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Abstract

Frequency response functions (FRFs) are routinely used within experimental structural dynamics, among other fields. The un-
certainty associated with their measurement is typically modelled on the simplified assumption that additive uncorrelated noise is
present. This treatment of FRF uncertainty is questioned here by demonstrating that the notion of operator uncertainty (i.e. the
uncertainty due to inconsistent force excitation) introduces a correlation between measured FRFs which is not accounted for under
the assumption of additive noise. The origin of this correlation is illustrated and its experimental presence verified. The importance
of this correlation on the propagation of uncertainty is subsequently investigated as part of a numerical and experimental case study,
where its influence on the inversion of an uncertain FRF matrix is considered. It is shown that the neglect of such correlations can

lead to large errors in uncertainty estimates, for example in dynamic sub-structuring and the solution of inverse problems.
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1. Introduction

The measurement of frequency response functions (FRFs,
a frequency domain representation of a system’s dynamic char-
acteristics) is routine within experimental structural dynamics,
among other fields, and is often the first step in some further
analysis, for example, modal parameter extraction [1], system
identification [2], dynamic sub-structuring [3] or inverse force
identification [4]. Often these measured FRFs are used (per-
haps as part of one or more of the above procedures) to predict
and/or analyse the dynamics of complex built-up structures. In
many cases, for example, aerospace and automotive applica-
tions, these structures are designed so as to conform to strict
limits, be it to avoid structural fatigue and failure, or to pro-
mote passenger comfort. To this end, FRF based analysis is
an essential step is fulfilling the above. That said, as with any
measured quantity, FRFs are subject to a degree of uncertainty,
a proper understanding of which is essential if limits are to be
met with confidence.

FRFs are used extensively in both academic and industrial
settings and form the basis of numerous analyses. Their im-
portance is recognised in [5] where an ISO standardised mea-
surement procedure is given. However, there remain many un-
resolved issues relating to standardisation, e.g. a lack of ac-
cepted rules on how to present complex narrow band data (var-
ious similar but different formats exist and are in common use
to describe essentially the same thing: power spectral density,
Fourier spectrum, power spectrum, etc.). Further issues arise
regarding frequency resolution and measurement units. In this
paper we will address some unresolved issues related to the un-
certainties present in measured FRFs.

Whilst the measurement of structural FRFs is an ISO stan-
dardised procedure, minimal guidance is given regarding the
treatment of their uncertainty. In [5] it is suggested that co-
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herence be used to access the confidence in repeated measure-
ments, alongside repeatability, reciprocity and linearity checks.
This does not, however, provide an adequate description of their
uncertainty such that it may be propagated when the measured
FRFs are subject to further analysis.

This paper will discuss the necessary requirements for an
appropriate treatment of uncertainty in complex measured FRFs.
In doing so we will discuss the notion of operator uncertainty
and the inter-FRF correlation that it introduces. The importance
of this correlation in the subsequent propagation of uncertainty
will also be considered.

When estimating the uncertainty of measured FRFs one must
consider the experimental procedure undertaken [6], i.e. Sin-
gle Input/Single Output (SISO), Single Input/Multiple Output
(SIMO) or Multiple Input/Multiple Output (MIMO), as each of
the above will require a different treatment of uncertainty. As an
example, consider the SISO approach where a number of (indi-
vidual) FRFs are measured in turn. Under the assumption that
the measurement of each FRF is statistically independent, there
is unlikely to exist any correlation between the measured FRFs.
However, if one were to measure multiple FRFs simultaneously,
for example, through a SIMO approach, there would exist the
possibility of correlation between measured FRFs, since they
are acquired as part of the same measurement. The term cor-
relation here is meant generally in that it refers to an arbitrary
statistical dependence between two measured FRFs. Whilst the
nature of this correlation will depend upon the underlying cause
of uncertainty, it may be interpreted as a frequency dependent
tendency for the real and imaginary components of one or more
FRFs to deviate from their expected values in a similar way.

The notion of inter-FRF correlation is of particular impor-
tance in experimental structural dynamics, where SIMO meth-
ods are routine (i.e. roving hammer excitation with multiple
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response sensors). The standard treatment of FRF uncertainty,
however, is to assume an additive noise on the system outputs,
typically of a Gaussian form, and neglect the effect of any such
correlations. Whilst in the presence of a low level excitation
one might expect uncorrelated uncertainty (e.g. measurement
noise) to dominate, for a desirable signal to noise ratio (SNR)
correlated uncertainty (e.g. operator) is more likely to domi-
nate, as it is largely independent of excitation level. As such, the
assumption of uncorrelated uncertainty is unlikely to be valid in
most experimental scenarios.

In this paper we will introduce the notion of operator un-
certainty (also referred to as measurement bias in [7, 8]), which
describes the uncertainty introduced as a result of human er-
ror in the measurement procedure. Operator uncertainty ap-
plies in particular to impact based FRF measurements, where it
describes the underlying uncertainty in the applied excitation.
This uncertainty is introduced as a result of an inconsistent ex-
citation position, and/or orientation, when repeated measure-
ments are made. Although we are concerned primarily with
operator uncertainty as a source of correlation, external factors
may introduce additional correlations if their influence is regis-
tered by multiple sensors simultaneously, for example, imper-
fect boundary conditions, changes in temperature, etc.

Whilst impact excitation is preferred by many (as opposed
to shaker excitation) it comes with an increased uncertainty in
the position of excitation, especially if access is limited and
conditions are unfavourable. This is of particular importance
in dynamic sub-structuring (DSS), modal analysis, and trans-
fer path analysis, where it has been shown that inconsistencies
in measured FRF matrices can lead to: the extraction of in-
correct modal parameters [9], spurious peaks in sub-structured
FRF predictions [10], and large errors in reconstructed force
estimates [11]. This further highlights the need for an appro-
priate treatment of FRF uncertainty in experimental structural
dynamics.

The early work of Bendat et al. [12, 6, 13] sees the formula-
tion of the now common statistical error analysis relations used
in the quantification of uncertainty in measured input/output re-
lations, such as coherence and FRFs. These relations, which are
based on the assumption of small and uncorrelated uncertainty,
have been used by many, particularly in the field of structural
health monitoring [14, 15], to establish confidence bounds on
measured FRFs that are only exceeded in the presence of dam-
age.

A more general treatment of FRF uncertainty was presented
in [16] where the authors adopted a bivariate description of the
complex uncertainty associated with measured FRFs. The ef-
fect of calibration, cosine, and mass loading uncertainty were
considered and applied to the analysis of 100 repeated FRF
measurements on a tool-holder—spindle-machine assembly. Al-
though correlation between the real and imaginary components
of the FRF was included, analysis was limited to a single point
FRF. As such, the effect of operator uncertainty and inter-FRF
correlation was not considered.

The bivariate description of complex uncertainty, and its
propagation, was previously presented in [17] where the au-
thors were concerned with the estimation of complex reflection

and transmission coefficients (i.e. s-parameters) encountered
in radio frequency and microwave science. This approach was
further elaborated in [18], with an emphasis on the propagation
of complex uncertainty.

In [19] Schultz et al. derive expressions for the uncertainty
in FRF estimates when using a periodic random input for two
system models (output noise only, and uncorrelated input and
output noise), and further consider the propagation of uncer-
tainty from real and imaginary components onto magnitude and
phase descriptors. Whilst the authors acknowledge the correla-
tion between real and imaginary components of an FRF, they
considered only SISO estimation, and therefore neglect the ef-
fect of operator uncertainty.

Interested in the effect of FRF uncertainty on DSS proce-
dures, de Klerk and Visser [20] investigated the experimental
error associated with inconsistent excitation and response ori-
entation (referred to here as operator uncertainty), particularly
in the measurement of point FRFs. In [7] de Klerk went on to
derive an expression for the variance of a coupled FRF from a
sub-structuring prediction, based on the law of error propaga-
tion and the uncertainty of the uncoupled sub-structure FRFs.
It was assumed that the uncertainties present in the uncoupled
FRFs were small, obeyed a Gaussian distribution and, impor-
tantly, were uncorrelated. In [8] Voormeeren et al. further de-
velop de Klerk’s propagation framework [7]. The underlying
assumptions (small uncorrelated uncertainty) were retained, al-
though the authors did acknowledge its limitation, noting that,
‘When the noise on the signals is ‘mechanical’ of nature (e.g.,
vibrations from the environment, fluctuations in applied excita-
tion, etc.), the errors on the measured signals will be highly cor-
related due to the physical structure’. Furthermore, whilst the
authors considered the separation of real and imaginary com-
ponents, it appears they chose not to account for their possible
correlation, nor the effect of inter-FRF correlation.

Using a bivariate description, Mao and Todd [21] attempted
to quantify the uncertainty in the magnitude and phase of an
FRF using a random excitation and the HI estimator. The au-
thors make the simplifying assumption that the real and imag-
inary components of an FRF have the same variance, and that
they are uncorrelated. Since a SISO estimation was considered,
inter-FRF correlation was not.

Concerned with the propagation of uncertainty through in-
verse problems, such as force identification, Meggitt et al. [22]
proposed a general framework where the uncertainty of a mea-
sured FRF matrix was characterised using the bivariate descrip-
tion. Whilst the authors considered the FRF uncertainty gener-
ally such that there could exist any number of correlations, they
did not investigate whether or not such correlations existed, nor
their influence on the propagation of uncertainty. Nevertheless,
the authors went on to investigate the propagation of uncertainty
through a matrix inversion and derived a linearised relation for
doing so. The inversion of measured FRF matrices is an opera-
tion of practical importance in both DSS procedures and in the
solution of inverse problems.

Whilst the above literature illustrates an interest in the un-
certainty of measured FRFs, with the exception of [22], there
are few works, if any, that consider more generally its underly-



ing nature. It is typically assumed that the uncertainties present
in measured FRFs are independent and identically distributed
(i.i.d). Whilst the latter may be fair, the assumption of indepen-
dence is likely invalid if the FRFs are measured simultaneously
through some shared excitation (for example using SIMO or
MIMO procedures). In such a case, it is hypothesised that a
correlation is introduced through the shared underlying (opera-
tor) uncertainty, and that this correlation is scaled according to
the dynamics of the assembly. With that said, it is the primary
aim of this paper is to illustrate that such a correlation is in-
troduced between measured FRFs when the notion of operator
uncertainty (i.e the influence of a random excitation position) is
considered. A further aim is to investigate the extent to which,
if any, this inter-FRF correlation influences the propagation of
uncertainty. Of particular interest is the influence of inter-FRF
correlation on the propagation of uncertainty through matrix in-
versions, which are essential in both DSS procedures and in the
solution to inverse problems.

The remainder of this paper will be organised as follows.
Section 2 will begin by deriving some statistical relations for
‘measured’ FRFs subject to operator uncertainty. These rela-
tions will be corroborated against experimental data in section
2.4. The consequence of inter-FRF correlation on the propaga-
tion of uncertainty will be investigated in section 3 as part of a
numerical study. Lastly, section 5 will draw some concluding
remarks.

2. Theory

Before proceeding with the analysis of ‘measured’ (or un-
certain) FRFs, it is useful to first categorise the fypes of uncer-
tainty that one may encounter. For passive structural proper-
ties, such as FRFs, Meggitt et al. [22] categorise experimen-
tal uncertainty as either measurement or operator based. Mea-
surement uncertainty describes the cumulative effect of noise
sources within the measurement signal path and beyond, and
includes, for example: external disturbances, thermo-electrical
noise, sampling error, finite precision, etc. Measurement uncer-
tainty may be considered aleatory in that it is largely unavoid-
able, but may be reduced to some extent. Operator uncertainty
describes the effect of human error in the measurement pro-
cedure, for example, inconsistent location and/or orientation of
excitation forces. Operator uncertainty may be considered epis-
temic as it may be reduced by carefully executed experimenta-
tion.

As discussed in section 1, previous works have considered
almost exclusively the influence of measurement uncertainty on
measured FRFs.! This is typically modelled by considering a
measured FRF in the form,

HJ'*® = HI'™ + ¢ (1)

where € is a noise term distributed according to a complex nor-
mal distribution whose real and imaginary components may or

'Measurement uncertainty is also a common consideration in other param-
eter estimations, for example, inverse problems of the form a = Xb + € (e.g.
force reconstruction [23, 24, 25]).

may not be correlated. Whilst the above may be valid in the
presence of measurement uncertainty, it is likely not sufficient
for describing the effect of operator uncertainty.

To investigate the nature of operator uncertainty a measured
FRF may be considered an output of an FRF function of the ran-
dom variable (RV) a = ag + a, where a is a RV (given in bold to
distinguish from other non-random variables) which describes
the random variation around the intended excitation position ag.

H* = H"(ag + a) 2)

In what follows we will consider this more general treatment
of experimental uncertainty. In the following analysis, the un-
certainty of measured FRFs will be investigated by considering
a modal summation whose excitation position is considered a
RV. Firstly, however, a brief moment will be taken to discuss
the treatment of complex FRF uncertainty using the bivariate
description.

2.1. On the Treatment of Complex Uncertainty

The FRFs typically encountered in experimental structural
dynamics are complex quantities, acquired through the ratio of
Fourier transformed input and output signals [6]. Typical ex-
amples include accelerance, mobility and receptance, which are
given as the ratio of acceleration, velocity and displacement, re-
spectively, to an applied force [26].

The statistical properties of a complex RV, H € C, such as
an FRF, may be described generally by the complex bivariate
variance-covariance matrix [17, 18, 16, 19, 21],

ORH)R(H)

ZH =
O I(H)R(H)

OR(H)I(H) } 3)
T 3(H)I(H)

where, o yx () 15 the variance of the real part of H, ogmy3(m)
is the variance of the imaginary part of H, and ogmw@m) =
or@ 3w 1s the covariance between them. This notion may
readily be extended to describe the covariance between complex
RVs,

Xyn =

ORH)RH,) O RH\)I(H,) ] ) 4)
OSH)R(Hy) T I(HDI(H))
Consequently, the uncertainty of a measured FRF matrix H €
CM*N is completely described by the variance covariance ma-
trix Ty € R?MN<2MN " where M and N represent, respectively,
the number of response and excitation positions considered.
This may be obtained experimentally through the repeated ex-
citation of each measurement position (see Appendix A).
Whilst the above provide a general description of complex
uncertainty, in the FRF literature it is often assumed that Xy =
diag(O'%(H)%(H), O'g(H)g(H)) and that ZH1H2 = 0. That iS, the un-
certainties are uncorrelated. Although this assumption simpli-
fies the treatment of uncertainty greatly, its validity is question-
able, particularly if one considers the effect of operator uncer-
tainty, as will be shown in the following section.

2.2. First Order Statistical Properties - Expectation
Consider the receptance FRF of an arbitrary, proportionally
damped, structure in the form of a modal summation [1],

N
Hyy(w) = Z Dy, (D)D,(ap + a) (5)

— ! - W+ iw,



where, w is the frequency at which the FRF is evaluated, ®@,,(b) €
R is the response mode shape function of the positional argu-
ment b, @, (ap + a) € R is the excitation mode shape function
of the positional argument a = ay + a, where ag represents the
intended excitation position and a a RV (given in bold to dis-
tinguish from other non-random variables) embodying the op-
erator uncertainty, w, is the rth natural frequency, and 7, is its
associated loss factor. Equation 5 describes generally a mea-
sured FRF subject to operator uncertainty only. The additional
influence of measurement uncertainty € is not considered here.

We are not only interested in demonstrating the statistical
relation between the entries of an FRF matrix, but also their
real and imaginary components. As such, we separate the above
summation as so,

—w?)? + (W)

Z [(0) - wz)q)br(b)q)ar(ao + a)

wrnrq)br(b)q)ar(ao + a) (6)
(W? = w?)? + (w,)?
The expectation of the real part R(H,,),
(W? — WDy (b)
E[%(Hba)] [Z( w2)2 n (wr r) (Dr(aO +a) (7)

is readily found by noting the linearity of the expectation op-
erator, E[X + cY] = E[X] + E[cY], where X and Y represent
arbitrary RVs and ¢ a constant. Since ®,(ap + a) is the only
RV present, the remaining quotient is a constant and the above
reduces to,

N

2 _ 2(D,~b
E[R (Hy) = ) —er 2 )0n®)

(02— PP+ (@,1],)?

E[®r(ao+a)]. (8)

If we permit ourselves the assumption that the experimenter is
well trained, the operator uncertainty is likely to be small (i.e
the random deviation a will have a low variance), then ®,,(ay +
a) may be expanded as a first order Taylor series,

N 2 2
(wr — W )(D r(b)
E[R(Hpa)] = Z (W2 — w?)? + (ba)rm)2

(E [cDar(aO)] +E

d®q(a)
? ( da )a:ao]) (9)

where the derivative is taken with respect to excitation position,
a, and is evaluated at the intended position ag. Noting linearity,
the above leads to,

N
Z (W] = W) Dy (b)

- w?)? + (w,n,)?

i,
(cbar(aonE[a]( da(“)) ) (10)

%(Hba)

If we allow ourselves a further assumption that the well trained
experimenter is consistent and on average hits the intended lo-
cation agp, the operator uncertainty a will have a zero mean.

Consequently, the expected value of the real part of a measured
FRF subject to operator uncertainty is given by,

N 2 2
(W} — W) Dy (b) D, (a0)
E[R(Hp)] = ) e w2)2’7+ (wrm); .

r

an

Similarly, the expected value of the imaginary component is
given by,

wrnrq)br(b)q)ar(a())
(‘U% - (’-)2)2 + (wrnr)z.

N
E[S(Hpo)] = - ). (12)

Equation 11 and 12 represent the underlying true FRF of the
structure. The above illustrates that, provided the assumption
of zero mean and small variance are met, no bias is introduced
as a result of operator uncertainty. Note that the inclusion of
measurement uncertainty would yield the same expectations,
since E[e] =

2.3. Second Order Statistical Properties - Covariance

Having derived the expectation of the real and imaginary
components, we will now consider the second order statisti-
cal relationships between the real and imaginary components
of two measured FRFs, H;, and H,,, who share the excitation
position a.

We will begin by considering their real parts. The covari-
ance between R(H,,,) and R(H,,) is defined as,

COV[%(Hbu)’ ‘?\(Hca)] = ]E [(%(Hba) - ]E [%(Hba)])

(%(Hca) -E [%(Hca)])] . (13)

Substituting for the real part, and its expectation derived in sec-
tion 2.2, this becomes,

N (w? = 0Dy, (b)D,
R e e

(‘U% - wz)q)cr(b)q)r(ao + a)
(0.)% - "-)2)2 + (wrnr)z

~ M (w? - wz)d)br(b)q)ar(a())]( S

(0.)% - "-)2)2 + (wrnr)z

K (w%—w2><1>"<b>d>w(ao>”' (14

7 (0.)% - (’-)2)2 + ((*L)rnr)2

If, for simplicity, we assume statistical independence between
the modes, the above reduces to,

W)y (B)D, o + )
F— 0P + @,

N (0.)2 _
Cov[R(Hp,), R(Hc)] = ZE[( rw

(@ = D ()Pl | (@7 = )P (D) D (a0 + )
W= + () )( =P+ ()

(@2 = D)o (B) Do )

TR PR+ () )] (13)

The assumption of independence between the modal contribu-
tions is to say that the each mode responds independently to a
shared excitation, which is likely satisfied for well separated,



uncoupled modes. In the case that the above assumption is not
valid, a series of covariance terms must be included to account
for the correlation between modes. For simplicity, however, we
will assume the above assumption is valid.

After factorising common terms and utilising the definition,

_ (0.)% B wz)q)nr(b)
nr = (w% - w2)2 + ("-)rnr)z (16)

the above reduces to,

N
COVIR (Hpa), R(Hea)] = ) @hraresE [(@(ag + @) = Dyrlan))?].

(17)
Noting that @, (ap) = E[D,(ap + a)], we arrive at,

N
COVIR (Hpa), R(Heg)] = ) @prare, Var [@,(ag + @)]. (18)

Equation 18 states that the covariance between the real parts of
two FRFs, Hp, and H,, measured through a shared excitation,
is given by summing the excitation mode shape variance over
all modes, each scaled by an appropriate pair of coefficients,
.

Following a similar analysis the remaining covariances are
found as,

N
Cov[I(Hpa), I(Hea)] = Zﬁbrﬁcrvar [@gr(ao +a)]  (19)
and
N
COV[‘?\(Hba)’ S‘(I_Ica)] = Z abrﬁcrvar [(Dar(ao + a)] (20)

where a second coefficient 3, is defined,

wrr]rq)nr(b)
(w% - (1)2)2 + (wrnr)z '

Bur = 2D
Equation 18-20 describe the statistical relations between mea-
sured FRFs subject to operator uncertainty. If the influence of
measurement uncertainty is also considered, the resulting FRF
covariances are given simply as the sum of the operator and
measurement based uncertainty contributions, since they are
uncorrelated. Note however, that the measurement uncertainty
will be non-zero only for those covariances that relate the real
and imaginary components of the same FREF, i.e. for b = c.

In any case, other than a perfectly repeated excitation, the
above return a finite non-zero covariance. The magnitude of
this covariance is clearly proportional to the underlying oper-
ator uncertainty through the variance term, Var [D,,(ay + a)].
The coeflicient pair will amplify or attenuate this variance ac-
cording to the dynamics of the assembly, as suggested in [8].
At resonance it can be seen that the uncertainty in the real part
of the dominant mode vanishes, since a,,, — 0, leaving only the
contribution of the remaining modes. Hence, at resonance the
uncertainty in the real part is a minimum. Conversely, the imag-

. . . D, (b
Inary part reaches a maximum at resonance, since ,Bnr i u:"_1(7)

This is in agreement with experimental observations, as will be
illustrated in section 2.4.

The above analysis clearly illustrates that when one takes
into account the uncertainty associated with human error in the
measurement procedure (which is referred to here as operator
uncertainty) a correlation exists between the real and imaginary
components of the measured FRFs. This is in opposition to
what is commonly assumed and considered when investigating
FRF uncertainty and its influence on any eventual parameter
estimation.

Note that, if one considers the covariance between two FRFs
that do not share an excitation, say Hp, and Hpy, under the as-
sumption that the underlying operator uncertainties are uncor-
related, Cov [a, d] = 0, which is a fair assumption as they corre-
spond to different measurements, there will exist no correlation
between them, and their covariances will be 0. If, however, Hj,
and H,,; were to be measured using an MIMO approach, then
there may exist a correlation between them. The nature of un-
certainty in MIMO estimations is considered beyond the scope
of this work. Interest will instead focus on the SIMO procedure,
which is most commonly used.

2.4. Experimental Evidence

In this section we present the results of a simple experiment
that not only confirms the existence of operator uncertainty but
demonstrates its correlated nature.

A freely suspended beam was instrumented with two ac-
celerometers, positioned roughly 15cm apart. An excitation
was performed at one of their positions. This excitation was
repeated 20 times and the resultant mobility FRFs (denoted Y)
were calculated. The magnitudes of each point (excitation and
response at the same location) and transfer (excitation and re-
sponse at different locations) FRF are shown in figure 1la, in
black and grey, respectively.

With the aim of first illustrating that there exists a corre-
lation between the real and imaginary components of a mea-
sured FREF, the point and transfer FRFs of figure 1a are shown
on Nyquist plots in figures 1b and Ic, respectively. The mea-
sured FRFs are represented by grey circles, of which there are
20 at each frequency point. Surrounding each cluster of mea-
surements is the 95% confidence ellipse (assuming a bivariate
normal distribution) [17].

The size and orientation of these ellipses provide an easy
assessment of the associated FRF uncertainty. Under the (com-
mon) assumption of uncorrelated and identically distributed un-
certainty, at a given frequency the distribution of measured FRFs
and their associated confidence ellipse would form a circle around
the mean value. From inspection of figures 1b and lc this is
clearly not the case.

For both the point and transfer FRFs the confidence ellipse
can be see to rotate with increasing frequency. This indicates
that there not only exists a correlation between the real and
imaginary components, but that this is dependent on frequency.
It can further be noted that at resonance the maximum variance
occurs in the imaginary component, which is in agreement with
analysis presented above.
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Figure 1: Magnitude and bivariate uncertainty of point and transfer
FRFs measured on a free-free beam using 20 repeated excitations.

To demonstrate that there further exists a correlation be-
tween the real and imaginary components of two simultane-
ously measured FRFs, the covariances: Cov[R (Y1), R(Y>))],
Cov[3(Y11), 3(Y21)], and Cov[R(Y11), I(Y,1)] are plotted in fig-

ure 2. Also shown in figure 3 are the corresponding correlation
coefficients, defined as so,

Cov[A, B]
oa0p

Cort[A, B] = (22)

Although the covariances a largely near zero, there are clear
deviations about the resonant frequencies, i.e. around 160, 390
and 750Hz.  These deviations are more clearly seen in the
correlation coefficients of figure 3.
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Figure 2: Covariances between the real and imaginary components of
a point and transfer FRF.

These correlations provide further evidence of operator un-
certainty and raise the question as to whether the assumption
of uncorrelated uncertainty that is typically assumed is a valid
one.



Whilst the above results demonstrate that there exist corre-
lations between measured FRFs, their influence on the propa-
gation of uncertainty has not yet been considered.
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(c) Correlation coefficient between R (Y1) and J(Y7;)

Figure 3: Correlation coefficients between the real and imaginary
components of a point and transfer FRF.

In the following section the influence of inter-FRF corre-
lation on the propagation of uncertainty through a matrix in-
version will be investigated. The inversion of a measured FRF
matrix is a common procedure used often in experimental struc-
tural dynamics, and so is considered a representative example
of FRF propagation.

3. Numerical Study

The aim of this study is to investigate the potential influence
of inter-FRF correlation on some parameter estimation. Whilst

there clearly exists a number of parameters that could be es-
timated from a set of measured FRFs, here we will limit our
interest to those associated with matrix inversions. The inver-
sion of a measured FRF matrix is an essential step in both DSS
and inverse force identification procedures. With the aim of
answering the question ‘Do we need to account for inter-FRF
correlation?’, it is sufficient to investigate whether the propaga-
tion of uncertainty through a matrix inversion is sensitive the
inclusion of inter-FRF correlation.

A diagrammatic representation of the numerical study is
presented in figure 4. A numerical free-free beam model (see
Appendix D of [22]) is excited externally at two positions, la-
belled 1 and 2, each by a force-moment pair. The resulting
(mobility) FRF matrix Y € C*“ is inverted to obtained the
impedance matrix Y1 = Z € C**. Operator uncertainty was
modelled using randomly distributed excitation positions, cen-
tred about positions 1 and 2. The position of each force and
moment excitation was generated according to a Gaussian dis-
tribution. A total of 10 excitations were applied at each degree
of freedom (DoF). In keeping with experimental practice, re-
sponse positions were kept fixed. The degree of operator un-
certainty was set by the variance of the excitation distribution,
2. This corresponds roughly to a 95% probability of exciting
within +0 X 1.96 of the intended position. For clarity, the effect
of measurement uncertainty has not been included here.

M, M,
T . ' T . '
Vioy V, O,

Figure 4: Diagrammatic representation of numerical simulation.

We are concerned with the uncertainty present in an (arbi-
trary) element of the impedance matrix when the inter-FRF cor-
relations have, and have not, been included in the propagation
of uncertainty.

The propagation of uncertainty on measured FRFs through
a matrix inversion was considered by Meggitt et al. [22], where
a linearised relation was derived, relating the covariance of mea-
sured FRFs, to those of its inverse. An alternative derivation
of this relation, for the special case of complex square matri-
ces is given in Appendix B. Referred to as a Linear Inverse
Propagation (LIP), the relations of note are given by,

1
CovIR(Zy). R(Zn)) = 7 D (ZusiZicZanCOVYap, Yeal
a,b,c,d

ZiaZyjZ1. 24y, COVYap, Vo)) + 23,23 21 ZamCOV[ Y, Yeal+
7,23 225, CovlYy, Yigl) . (23)



1
Cov[S(Zij). 3| = =7 D (ZuZsiZicZanCoVYap. Yeal~
ab,c,d

ZiaZbj 23, 23y CV WY ap, Yigl = 23,23 21 ZamCoV Y gy, Yeal+
7,23 7.2, CoN Yy, Yogl) . (24)

1
Cov[R(Z;). 3(Zm)] = - a;d (ZiaZjZ1eZamCOV Y ap, Yeal

ZiaZyi 2,23, CovYe, Yo 1+ 22 7, jZIL.deCov[Y;h, Yeal—
24,2, 7075, CovY . Yigl) . (25)

a m &

and

1
Cov[3(Z;). R(Ziw)] = a;d (ZuZbjZ1eZanCOV Yap. Yeal

ZiZy 21 ZamCOVY gy Yeal + ZiaZ 21,23, CoV Y ap, Y 1=
73,23 7325, CoV[Y . Yigl) . (26)

where, Z;; is the ijth element of the expected impedance matrix
(acquired through the inverse of the expected mobility matrix),
Y;; is the ijth element of the mobility matrix (which may be
considered a matrix of RVs), and * represents complex conju-
gation. Note that the equations 23-26 are based on a complex
covariance (i.e. Y, and Y4 are in their complex form) and do
not require explicitly a bivariate covariance matrix. An alter-
native, more general, formulation is presented in [22] based on
the mobility’s bivariate covariance matrix.

The above state that the complex bivariate uncertainty in an
element of the impedance matrix is given by the quadruple sum
over all elements of the mobility variance-covariance matrix,
each weighted by a product of expected impedances and con-
jugated appropriately. These relations were derived by consid-
ering the first order expansion of a perturbed matrix inversion.
As such, they are appropriate for small uncertainty only. Nev-
ertheless, their form allows us to easily neglect the influence
of inter-FRF correlation by assuming Cov[Y,;, Y.4] = 0, for all
ab # cd.

A Monte-Carlo (MC) simulation is used to provide a correct
propagation of uncertainty for comparison. The MC simulation
involves the repeated inversion of realisations of the mobility
matrix, each built from an independent combination of the mea-
sured mobilities. The resulting impedances matrices are sub-
sequently used to estimate the variance-covariance matrix, Xz.
The MC simulation implicitly includes the effect of any correla-
tions that exist between the mobilities, whilst avoiding the need
to linearise the problem, thus capturing the non-linear mapping
present in the matrix inversion.

Shown in figure 5 are the predicted (bivariate) uncertainties
of the impedance element Z;;, for an operator uncertainty of
o = 1073, in the form of their relative variance and covariance,
defined, respectively, as,

Var[A]

RelVar [A] = W

27)

and
Cov[A, B]

E[AJE[B]

In blue are the uncertainties acquired through a MC simulation,
which involved the inversion of 1000 mobility matrix realisa-
tions. In orange are the uncertainties predicted through the LIP
approach (including inter-FRF correlation). In green are the un-
certainties acquired through the LIP approach when inter-FRF
correlation is neglected.

RelCov[A, B] = (28)
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Figure 5: Complex bivariate uncertainty of the impedance element
Z,, due to operator uncertainty. Calculated using Monte-Carlo prop-
agation (in blue) and the Linear Inverse Propagation method, with (in
orange) and without (in green) mobility covariances. The excitation
distribution was o~ = 107,

The results clearly illustrate that the neglect of correlation
between the measured mobilities can have a severe effect on the



estimated impedance uncertainty. Inclusion of the inter-FRF
correlation can be seen to yield an uncertainty estimate in excel-
lent agreement with that of the MC simulation, deviating only
marginally in some regions (this would be expected given the
linear assumption the LIP approach is based on). These results
further demonstrate the LIPs ability to propagated complex and
correlated uncertainty through a matrix inversion.
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Figure 6: Complex bivariate uncertainty of the impedance element
Z,; due to measurement uncertainty. The signal to noise ratio (SNR)
of each mobility element was 30dB. Legend as in figure 5.

It is worth noting that the LIP predictions ‘with covariance’
also account for the covariance between mobilities of different
excitation types/positions. The level of this covariance was typ-
ically on the order of 10728 and an identical set of results were
obtained when this covariance was neglected. This is in agree-

ment with the notion that the underlying operator uncertainty is
uncorrelated between excitation positions (Cov [a,d] = 0).

Shown in figure 6 are the impedance uncertainty estimates
in the case of an additive Gaussian noise on the mobility (i.e.
measurement uncertainty), as opposed to operator uncertainty.
In this case the elements of the mobility matrix are uncorrelated
with one another. As a result, the neglect of inter-FRF corre-
lation has a minimal effect on the propagation of uncertainty.
This result supports the use of the simplified DSS propagation
framework in [8] in the case of measurement uncertainty only.
Figure 5 however, demonstrates that in the presence of operator
uncertainty, inter-FRF correlation must be accounted for.

Further to the propagation of uncertainty in DSS, the above
results are of relevance to inverse problems of the form Ax = b,
where b represents an observable output of a system governed
by the matrix A, due to some unknown input X. Such prob-
lems are routinely encountered in fields as diverse as physics,
geophysics, engineering and finance. The present results sug-
gest that inter-element correlation within the matrix A can con-
tribute significantly to the uncertainty in the resultant solution,
and must therefore be accounted for if present.

Although a simple numerical study, similar effects have been
observed in experimental work by the author, see for example
section 4.

4. Experimental Study

To further illustrate both the presence and influence of inter-
FREF correlation, a brief experimental study is presented. In this
study, a 3 footed vibration source is rigidly coupled to a large
steel plate, as illustrated in figure 7. The aim of the study is to
measure the source-receiver interface FRF matrix, determine its
inverse, and investigate the influence of inter-FRF correlation
on its uncertainty (similar to the numerical study presented in
section 3). The measurement of such an interface FRF matrix
is an essential step in many analyses, for example, vibration
source characterisation, dynamic sub-structuring, transfer path
analysis [27], and experimental modal analysis (to name but a
few), and is therefore of some practical relevance.

N

Source

Figure 7: Diagrammatic representation of experimental study. Green
arrows and red circles correspond to excitation and response positions,
respectively.

For simplicity we will consider only the vertical Z inter-
face DoFs. Consequently, the measured FRF (mobility) matrix,
Y € C*3, is 3x3. Each measurement position was excited 20
times, from which an appropriate covariance matrix was esti-
mated. This covariance matrix was then propagated through a



matrix inversion as per equations 23-26. This was done both
with and without inter-FRF correlation, the latter achieved by
setting all but the diagonal covariance elements to 0. To provide
a correct propagation of uncertainty (including non-linear and
inter-FRF effects) a Monte-Carlo simulation was performed.
Note that due to the high modal density of the structure con-
sidered, results are presented over a frequency range of 100 to
500Hz. Outside of this range similar results are obtained.
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Figure 8: Complex bivariate uncertainty of the impedance element
Zy, from the experimental study. Calculated using Monte-Carlo prop-
agation (in blue) and the Linear Inverse Propagation method, with (in
orange) and without (in green) mobility covariances.

Shown in figure 8 are the predicted (bivariate) uncertainties
of the impedance element Z;; in the form of their relative vari-
ance and covariance. As in the numerical study presented in
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section 3, the neglect of inter-FRF correlation is seen to lead to
an over estimation of uncertainty in particular regions of the re-
sponse. When included, the inter-FRF correlations can be seen
to yield an uncertainty estimate in excellent agreement with the
MC simulation.

The results of figure 8 are reproduced in figure 9, where
the magnitude of the impedance element Z;; is shown along-
side a pair of 95% confidence intervals. These confidence in-
tervals were obtained by propagating the bivariate uncertainty
of Z;; onto its magnitude, as per equation 28 of [22]. The
magnitude variance was then used to compute the confidence
interval, for an assumed log-normal distribution, based on Ap-
pendix C of [28]. From figure 9 it is clear that a neglect of
inter-FRF correlation can lead to a reduced confidence in the
resultant impedance. This result clearly illustrates the impor-
tance of inter-FRF correlation when propagating uncertainty.

Based on the result presented above it is argued that a more
general treatment of FRF uncertainty is required if uncertain-
ties are to be handled and propagated correctly, for example in
the estimation of some parameter. In particular, the inter-FRF
correlation arising due to operator uncertainty has been shown
to influence greatly the propagation of uncertainty, and must
therefore be accounted for.

5. Conclusion

Frequency response functions (FRFs) are routinely used within

experimental structural dynamics, and have become an essen-
tial requirement in numerous analyses and standardised proce-
dures. As of yet, however, few works have considered generally
the treatment of their uncertainty. It is often assumed that mea-
sured FRFs are polluted by uncorrelated noise, and are there-
fore uncorrelated themselves. In the present paper it has been
shown that the notion of operator uncertainty (i.e. inconsistency
in excitation position and/or orientation) introduces a correla-
tion between simultaneously measured FRFs. The importance
of this inter-FRF correlation on the propagation of uncertainty
(for example in the estimation of some parameter) was demon-
strated by considering the inversion of a ‘measured’ FRF matrix
as part of a numerical and experimental study. It was shown that
in the presence of inter-FRF correlation, large errors can arise
in the propagated uncertainty estimates if such correlations are
neglected. To this end a set of Linearised Inverse Propagation
relations were introduced which facilitate the propagation of
correlated uncertainty through a matrix inversion. Whilst this
result applies directly only to procedures that involve a matrix
inversion, similar errors will likely emerge through other pro-
cedures, for example, modal parameter estimation.

It is therefore argued that a general treatment of FRF uncer-
tainty warrants a complex bivariate description that accounts for
all inter-FRF correlations that exists between simultaneously
measured FRFs.

Appendix A. Estimation of an FRF Covariance Matrix

The estimation of X may be performed in a number of
ways. In any case, each position of interest must be excited re-
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peatedly such that a series of P measurements are made. The
user must then decide at what point in the preceding analysis
to estimate the statistical properties of the measurements made.
As an example, one may consider the complex Fourier spectra
of the input and output signals as the initial RVs and determine
their associated variance covariance matrices. To then acquire
the variance covariance matrix of an FRF the Fourier spectra
uncertainty must be propagated through the H1 (or H2) estima-
tor function. Alternatively, one may consider the FRF itself as
the RV and determine the FRF variance covariance matrix di-
rectly, thus avoiding the need to perform additional uncertainty
propagations. This may be beneficial as each stage of propaga-
tion incurs an error since linearity of the propagation function
is assumed.

Let us consider the latter approach. Suppose we measure
the FRF matrix H € CM*V, repeating each excitation P times.
The resulting FRFs may be arranged as so,

1) 1 (e)) ()]
I-111 HM1 HlN HNN
(2) (2) (2) (2)
A H11 HM] HlN HNN
H-= ] (A.1)
P) (P) (P) (P)
I'111 HMI HIN IJIMN

where Hg)) = [?%(HEJI,J )9 (Hf;D ))] is the Pth measurement of
the FRF describing the response at i due to an excitation at j.
The matrix H € CP?V™ could then used to estimate the co-
variance matrix Xg. In the context of a covariance estimation,
each row of H may be thought of as an ‘observation’ of the FRF
matrix H. Note that,
YT CH D R N
say, is an equally valid observation, since the excitations at po-
sitions 1 and N are independent events. One may be tempted
to supplement A with additional (perhaps all possible) obser-
vations by considering different combinations of excitations.
Adding addition observations in this way would only aid in es-
timating the correlation between different excitation positions,
since no additional information is introduced regarding the FRFs
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of shared excitation position. However, noting that the exci-
tations at each pair of positions (say, 1 and N) are uncorre-
lated, adding addition observations will simply aid in the (inter-
positional) covariance terms tending to zero. Alternatively, the
variance covariance matrix Xy may be constructed by consider-
ing the variance covariance matrix of each column of H in turn,
and block diagonalising them as so,

Th, 0 0
Za=| 0 . 0 (A.2)
0 0 Iy,

where X, is the bivariate variance covariance matrix of the
Nth column of H, estimated over the P repeated measurements.

In its standard form Xy describes the statistical dependen-
cies between the set of repeated measurements. Whilst this may
be of interest, it is typical to consider instead the uncertainty in
the mean value of the repeated measurements. In this case a
1/P normalisation should be applied to Xy. This normalised
uncertainty may then be propagated as normal.

Appendix B. Linear Inverse Propagation

In what follows we will derive the complex bivariate forms
of a Linear Inverse Propagation (LIP) relation. We begin by
considering the measured mobility matrix, Y, € CN*N | as the
perturbation of a frue mobility matrix Y in the form,

Y, =Y +Ay, (B.1)

where Ay, € CY is some small random deviation resulting
from experimental error, and subscript n denotes the nth mobil-
ity matrix out of a series of repeated measurements.

For a small Ay, the matrix inverse, Y,1, may be approxi-

mated to first order by,
[Y+Ay, ' =Y - YAy YL (B.2)

In context, equation B.2 states that for a sufficiently small per-
turbation, the measured mobility matrix Y,, yields an impedance



of the form Z, = Z — ZAy,Z, where Z is the true impedance
matrix, and —ZAy, Z is the resultant perturbation,

Az, =Zy—Z = -ZAy,Z. (B.3)

Rewriting equation B.3 as an element by element summation
whilst taking its real part yields,

R(Az,,) = = > R(Ziahv,, 7).

n,ij

B.4)

Multiplying both sides of equation B.4 by - lS(AZx ) whilst
summing over N measurements yields,

1 N
o7 2L R(8z,)3(8z,) =

N
1
T 20 2 Rl Zo)I by, Zaw). (B.S)
n ab,.cd
Noting that R(x) = %(x+x*) and that J(x) = é(x—x*), where *

represents complex conjugation, the RHS of equation B.5 may
be separated as,

N N
1
s R(Az HT(A = ——
— 2R3z, = 7 D D
n n ab,cd
(ZlaAYmebj + ZlikaA;meZj)(Zlc »udde ZI*C ;,,_(dZ:;m)' (B6)
Expanding the bracketed terms we arrive at,
! EN:%(A )9, Y= — ] N >
1 Zu,ij Znim! — N _ 1 l4
n n ab,cd
(ZiaijZIchmAY,M,AY,,M - ZiaijZI*CZ:;mAY A* wcd +
Z;ZZjZ[Czd’"AY,,Y,,bAym-d - Zl*aZZ]Zl*cZ Am =Y ap Ymi) B.7)

A statistical parallel may now be drawn by noting that the co-
variance between the real and imaginary components of any
two elements of the impedance matrix is given by,

1 N
CovIR(Zi)), 3(Zim)l = 57— D, R(dz,)3(Az,,) (B3

and that similarly, the covariance between any two elements of
the mobility matrix is given by,

Cov[Yyu, Yeql = (B.9)

1 X
_ 1 Z AYn,abAY d

n
Substituting into equation B.7, the bivariate linearised propaga-
tion of uncertainty through a matrix inversion may be expressed
by the relation,

Cov[R(Zi)), 3(Zin)] = Z ZiaZpZicZimCON Yap, Yeal-

abcd
7 Z3 COVYap, Yoyl + Z3,Z5 ZicZamCOVIY 5y, Yeal -
7,257 75, CoVIY o, YogD). (B.10)

ZiaZpj
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Equation B.10 describes the covariance between the real and
imaginary components of any two elements of the impedance
matrix in terms of the true impedance, the mobility covariance,
and their conjugates. The impedance terms in equation B.10
correspond to those of the true impedance matrix and must
be replaced by the expected values obtained through the in-
version of an expected mobility matrix. This requires the fur-
ther assumption that the perturbation matrix has a zero mean,
E[Ay,] =0

Following a similar procedure to the above, the covariances,

Cov[R(Z;j), R(Zym)], Cov[I(Z;j), I(Zi)], and Cov[I(Z;}), R(Zym)]

may readily be found (see equations 23-26).
Lastly, in the special case that Y, € RV is a real square
matrix, note that the above derivation will reduce to,

Cov[Z, ijs Zim] = Z ZiaijZlCdeCOV[Yab, Yedl (B.11)

ab,c,d

which is in exact agreement with that of [29]. Equations 23-
26 may therefore be considered a generalisation of [29] to the
complex bivariate case.
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