
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 1

Collusion Defender: Preserving Subscribers’ Privacy
in Publish and Subscribe Systems*

Shujie Cui, Sana Belguith, Pramodya De Alwis, Muhammad Rizwan Asghar, and Giovanni Russello

Abstract—The Publish and Subscribe (pub/sub) system is an
established paradigm to disseminate the data from publishers
to subscribers in a loosely coupled manner using a network
of dedicated brokers. However, sensitive data could be exposed
to malicious entities if brokers get compromised or hacked; or
even worse, if brokers themselves are curious to learn about
the data. A viable mechanism to protect sensitive publications
and subscriptions is to encrypt the data before it is disseminated
through the brokers. State-of-the-art approaches allow brokers
to perform encrypted matching without revealing publications
and subscriptions. However, if malicious brokers collude with
malicious subscribers or publishers, they can learn the interests
of innocent subscribers, even when the interests are encrypted.

In this article, we present a pub/sub system that ensures
confidentiality of publications and subscriptions in the presence
of untrusted brokers. Furthermore, our solution resists collusion
attacks between untrusted brokers and malicious subscribers (or
publishers). Finally, we have implemented a prototype of our
solution to show its feasibility and efficiency.

Index Terms—Collusion Resistance, Secure Pub/sub, Sub-
scribers’ Privacy, Publications’ Confidentiality

I. INTRODUCTION

Publish and subscribe (pub/sub) systems enable dissem-
ination of data from publishers to interested subscribers
in a loosely-coupled manner, where the data is transmitted
without establishing direct contacts between publishers and
subscribers. Basically, publications, representing the data gen-
erated by publishers, are routed to interested subscribers using
a network of dedicated servers, referred to as brokers. These
brokers form a network and could easily be offered as Software
as a Service (SaaS) by cloud service providers. Typically,
a publication is composed of content and a set of tags
defining keywords that characterise its content. Subscribers
register their interests (a.k.a. subscriptions) in publications
through a set of constraints on these tags. To identify whether
a subscriber is interested in receiving specific publications,
brokers match the publications’ tags against the registered
interests. Then, the broker identifies the intended subscribers
and forwards the publications to them.

*This work is an extension of initial work appeared in the proceedings
of the 17th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications (Trustcom) 2018 under the title “Malicious
Entities are in Vain: Preserving Privacy in Publish and Subscribe Systems” by
Shujie Cui, Sana Belguith, Pramodya De Alwis, Muhammad Rizwan Asghar,
and Giovanni Russello [1].

Shujie Cui, Sana Belguith, Muhammad Rizwan Asghar, and Gio-
vanni Russello are with the Cyber Security Foundry, The University of
Auckland, New Zealand. Sana Belguith is with the School of Computing,
Science and Engineering, University of Salford, Manchester, UK. They
can be contacted by email: s.cui@imperial.ac.uk, S.Belguith@salford.ac.uk,
r.asghar@auckland.ac.nz, and g.russello@auckland.ac.nz, respectively.

Thanks to its characteristics, the pub/sub model has been
widely used in several applications. For instance, e-health
information systems [2], [3] use the pub/sub model to share
health records between involved parties, i.e., hospitals, doctors,
and pharmacies. Another example is that of stock exchange
services that deploy pub/sub systems to communicate available
trades to consumers [3]–[5]. Google offers Cloud Pub/Sub,
which is a real-time messaging service for stream analytic
and event-driven computing systems [6]. These are few appli-
cations among many others.

Despite its benefits, pub/sub systems present several security
and privacy challenges as the data is routed through a set of
brokers in a multi-party distributed system. Indeed, publishers
(or subscribers) may send (or receive) sensitive publications,
such as health information, religious, and political interests.
Thus, the brokers could collect sensitive information about
the publishers and subscribers. With the proliferation of out-
sourced systems, pub/sub services are typically based on third
party servers (e.g., cloud servers). Unfortunately, these servers
can be compromised or hacked. For instance, in 2016, an
attack on the Yahoo platform led to the leakage of 1 billion
user accounts [7]. Since brokers handle sensitive data and
could be compromised, it is reasonable to treat them as
untrusted entities and ensure the protection of publications and
subscriptions.

To protect sensitive information from untrusted brokers, sev-
eral works propose to encrypt the publications and subscrip-
tions in such a way that the brokers can still match the sub-
scriptions against the publications’ tags without learning their
content [8]–[12]. As a result, subscriptions and publications
are protected from brokers. However, it is still possible for
malicious brokers to collude with subscribers and publishers.
Specifically, as described in [13], a malicious subscriber could
collude with a broker by disclosing the content of her subscrip-
tions. Consequently, even if the subscription from an innocent
subscriber is encrypted, the broker can still infer the content by
checking if the subscriptions from both an innocent subscriber
and a malicious subscriber match the same publication tags.
Likewise, a malicious publisher could mount a data injection
attack, i.e., publish a fake publication to learn subscribers’
interests. Specifically, a malicious publisher can collude with
a broker to reveal the interests matching the fake publication.
Therefore, to effectively ensure the privacy of subscriptions, it
is also necessary to resist collusion attacks between brokers,
publishers, and subscribers. The technique against colluding
subscribers and brokers was first studied by Rao et al. in [13].
Unfortunately, there is little work done on collusion attacks in
the context of secure pub/sub systems [14]. In our literature

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 2

review, we found that only the schemes proposed in [13], [15],
[16] resist collusion attacks between malicious subscribers (or
publishers) and brokers. However, all these approaches require
publishers and subscribers to communicate directly to protect
their privacy against colluding parties. As a result, the loosely-
coupled property of the pub/sub model is no longer supported
by these approaches.

In this article, we provide a privacy-preserving pub/sub sys-
tem that protects subscriptions effectively and resists collusion
attacks using a multi-broker setting without compromising the
loosely-coupled property of the pub/sub model. The novelty
of our proposal lies in the use of multiple types of brokers to
match and to route publications to the intended subscribers.
The main idea is to divide the match operations (between
encrypted subscriptions and publication tags) into different
phases, where each phase is executed by a different type of
broker. Each broker type only processes partial information
from which it cannot infer sensitive information about the
subscriptions. Thus, if a broker is compromised or colludes
with a subscriber (or a publisher), the subscriptions are still
protected.

Our contributions are multi-fold. First, using a scheme like
Key Policy Attribute-Based Encryption (KP-ABE), publica-
tions’ content can be accessed only by the authorised sub-
scribers. Second, we apply Searchable Encryption (SE) [17] to
ensure encrypted matching of publications’ keywords against
subscribers’ interests. Third, thanks to the use of multiple
brokers, the proposed solution is secure against collusion
attacks between brokers and subscribers/publishers. Herein,
we stress that the idea of using multiple types of brokers to
defend against collusion attacks in pub/sub systems has been
proposed in our previous work [1]. This work extends our idea
by giving a detailed architecture, a comprehensive security
analysis, and a thorough performance evaluation. Furthermore,
we give a motivating scenario, identify security requirements
for pub/sub systems, and present a technical background on
the applied cryptographic techniques, including KP-ABE and
SE schemes.

The remainder of this article is organised as follows. Sec-
tion II describes a motivating scenario and lists our security
requirements. Section III surveys related work. Afterwards,
we present in Section IV both the system model and the
threat model together with a brief overview of our approach.
Next, we give the technical background in Section V before
explaining solution details in Section VI. In Section VII,
we provide a security analysis of our solution and give
a complexity analysis in Section VIII. In Section IX, we
report the performance analysis of the implementation of our
proposed system. Finally, we conclude this article in Section X
highlighting some future research directions.

II. MOTIVATING SCENARIO AND SECURITY
REQUIREMENTS

To illustrate our solution, we use a scenario based on e-
health systems. In e-health systems, medical entities (such
as doctors, hospitals, clinics, and pharmacists) benefit from
pub/sub services by employing private or public brokers to
share patients’ Electronic Health Records (EHR) (cf. Fig. 1).

To effectively diagnose and treat patients, a publisher, say
a doctor from hospital A, may need to share an EHR with
other authorised entities from hospital B, including doctors,
pharmacists, and medical laboratory personnel. In this case, the
EHR must be routed to various health organisations, possibly
geographically separated and in independent administrative
domains, where the patient can be moved when her con-
ditions stabilise or tests have to be performed or analysed.
Considering the shared EHR contains personal information
about the patient such as her identity, address and type of
injury, it has to be protected from unauthorised accesses.
Moreover, subscriptions are also highly sensitive information
as they can reveal which patient is treated by which clinic,
for which type of disease, and other information related to the
subscribers that could reveal details of the patient’s conditions.
To protect the patients’ privacy, the pub/sub system should not
leak any sensitive information related to medical personnel and
patients’ EHRs.

To provide a secure privacy-preserving pub/sub service, the
system should protect the confidentiality of both publications
and subscriptions. Based on the aforementioned e-health sce-
nario, we define the following security requirements:

R1. The published data should be protected from brokers
and unauthorised subscribers, i.e., the publications
should not be accessed by brokers and unauthorised
subscribers whose interests do not match the publi-
cations’ tags, even if they collude together.

R2. The brokers should be able to check if subscribers’
interests match the publication tags without knowing
the content (which can reveal information about the
publication payload and subscriptions).

R3. The publishers and subscribers should be loosely-
coupled. In particular, publishers and subscribers
should not communicate directly. When publishing
messages, the publishers should not need to know
the identity/location of the subscribers that might
be interested in their publications. Likewise, when
receiving publications, the subscribers should not be
aware of the publishers’ identity/location.

R4. If colluding with malicious publishers and/or sub-
scribers, the brokers should not be able to learn the
interests of innocent subscribers, even in the presence
of injected publications and subscriptions.

III. RELATED WORK

Table I summarises how existing pub/sub systems presented
in the related literature fare in respect to our requirements.
Unfortunately, none of the proposed works achieves all of the
aforementioned requirements.

In [18], Raiciu et al. introduce a secure pub/sub system
that ensures confidentiality of publications and subscriptions
from brokers. By combining with different SEs based on the
type of values, their system supports encrypted filtering for
both equality and range interests (R2: 4). However, in their
solution, the secrets for data encryption are shared among
publishers and subscribers, and the publication payload is
encrypted with symmetric encryption. Sharing secrets reduces

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 3

B B

B

Insurance company

Hospital A

Hospital B

Pharmacy

Injury = Scald

Injury = Bone fracture

Age: 29

Injury: bone fracture

Content

Name: John

Cause: car accident

T
a

g
s

EHR
1

Age: 10

Injury: scald

Content

T
a

g
s Name: Bob

EHR
2

Content

EHR
1

Content

Name = Bob
Public brokers

Publication

Publisher Subscriber

Publisher

Publication

Subscriber

Subscription

Subscription

Subscription

Private broker Private broker

B

Fig. 1: E-health pub/sub Service: Several brokers are connected into a virtual cluster. Each broker belongs to a different trust
domain. The publishers forward patients’ Electronic Health Records (EHRs) to their local brokers, then the publications are
forwarded to the intended subscribers via other brokers.

TABLE I: A comparison of pub/sub schemes.

Schemes R1 R2 R3 R4
Raiciu et al. [18] 8 4 8 8
Nabeel et al. [19] 8 4 8 8
Nabeel et al. [20] 8 4 4 8
Di Crescenzo et al. [21] 8 4 4 8
Choi et al. [22] 8 4 4 8
Borcea et al. [23] 4 8 4 8
Tariq et al. [24] 4 4 4 8
Ion et al. [10] 4 4 4 8
Asghar et al. [9] 4 4 4 8
Yang et al. [8] 4 4 4 8
Rao et al. [13] [15] 8 4 8 4
Pires et al. [16] 4 4 8 4
Di Crescenzo et al. [25] 4 4 4 8
Onica et al. [26] 4 4 4 8
Our goals 4 4 4 4

4and 8indicate whether the requirement is fulfilled or not,
respectively.

the decoupling of the pub/sub system (R3: 8). If malicious
subscribers/publishers reveal the shared secrets to the bro-
ker, they can learn all the publications (R1: 8). Moreover,
in their scheme, the encrypted subscription is deterministic,
which leaks the relationship between interests directly. If the
broker colludes with malicious subscribers, it can infer other
subscribers’ interests (R4: 8).

In [19], Nabeel et al. present an approach based on both
symmetric and asymmetric schemes. Specifically, the publica-
tion payload is encrypted with a symmetric algorithm, and
both tags and subscriptions are encrypted with the Paillier
homomorphic cryptosystem [27], such that the brokers can
perform privacy-preserving matching over encrypted data (R2:
4). This solution offers confidentiality of publications and
subscriptions. However, it breaks the decoupling property of
pub/sub system, since the subscribers have to communicate
with publishers to get the subscriptions blinded (R3: 8). This

issue has been solved in [20] by using the modified Paillier
cryptosystem and the Attribute-Based Group Key Management
(AB-GKM) scheme [28]. However, if subscribers collude with
the broker, they can still access unauthorised publications
(R1: 8). Furthermore, they cannot prevent the broker from
inferring the subscriber’s interests by colluding with malicious
subscribers or publishers (R4: 8).

Di Crescenzo et al. [21] design a 3-party pub/sub protocol
that safeguards privacy of subscriptions and publications while
guaranteeing the performance of the system. In the protocol,
both interests and tags are encrypted with 2-layer crypto-
graphic pseudonyms, and the encrypted tags and interests are
semantically secure. A trusted third party server is employed to
perform the second layer of encryption. Due to the assistance
of the third party, the broker is able to test the equality
between encrypted tags and interests efficiently and securely
(R2: 4). Moreover, the publishers and subscribers are not
required to communicate directly (R3: 4). However, in this
protocol, the publication payload is encrypted with a key
shared among all the subscribers and publishers, which will
put all the publications at risk if a broker colludes with
malicious subscribers and/or publishers (R1: 8 and R4: 8).

In [22], Choi et al.introduce a method to route publications
to intended subscribers allowing brokers to perform matching
without learning the content of the publications and subscrip-
tions (R2: 4), and without requiring direct communication
between publishers and subscribers (R3: 4). This proposal re-
lies on the Asymmetric Scalar-Product Preserving Encryption
(ASPE) [29] technique, which is a geometric transformation
that supports sum, minimum, maximum, and count functions
other than equality filtering. However, in ASPE, the subscriber
knows the transformation matrix. If the broker and malicious
subscribers collude, they can decode the publications and other
subscriptions (R1: 8 and R4: 8). To mitigate this issue, the
authors propose to involve a trusted third party to encrypt
and forward subscriptions to the broker. However, the trusted

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 4

third party would be the bottleneck when a vast number of
subscribers enrolling the system.

In [23], Borcea et al. propose PICADOR, a secure topic-
based pub/sub system based on a proxy-re-encryption scheme.
The authors apply a lattice-based proxy re-encryption scheme
that allows partial homomorphic operations and ensures the
loosely-coupling property of the pub/sub system (R3: 4). That
is, the brokers have to re-encrypt the publications such that
only the authorised subscribers could recover the plaintext
of these publications (R1: 4). However, this re-encryption
increases the computation overhead significantly on the broker
end. Moreover, the topic of each publication is sent to the
broker in plaintext (R2: 8 and R4: 8).

In [24], Tariq et al. present a secure broker-less pub/sub
system, where the publications are distributed by honest-but-
curious publishers. In their system, publications are encrypted
using the Ciphertext-Policy Attribute-Based Encryption (CP-
ABE) [30], ensuring only authorised subscribers can recover
the publications (R1: 4). Moreover, they utilise Public-key
Encryption with Keyword Search (PEKS) [31] to support
search operations for matching encrypted tags and interests
(R2: 4). To ensure the decoupling property, the publication
is encrypted with each credential that matches the tags. By
doing so, the publisher does not need to know who subscribes
for the publication (R3: 4). However, this strategy increases
the computation overhead on the publishers and the commu-
nication overhead significantly. Moreover, the authors do not
take any measure to defend against the collusion attacks (R4:
8).

In [10], Ion et al. present a pub/sub system that ensures
confidentiality of publications and subscriptions. Their scheme
allows the publishers to express fine-grained access control
policies on the publications by applying Attribute-Based En-
cryption (ABE) [30] to the payload (R1: 4). Moreover, by
using the proxy-encryption [32], their scheme does not require
the publishers and subscribers to share any key (R3: 4),
and the broker can check if encrypted tags match encrypted
subscriptions (R2: 4). However, this scheme does not offer
any protection from collusion attacks between brokers and
publishers/subscribers (R4: 8).

PIDGIN [9] has been proposed to ensure subscriptions’
privacy and publications’ confidentiality in pub/sub systems.
In this proposal, the publication payload is encrypted using
CP-ABE with respect to access structures (R1: 4 and R3:
4). The publication tags and subscriptions are encrypted using
PEKS, allowing the broker to perform the matching over them
without requiring access to the content (R2: 4). However, if
the broker colludes with a subscriber, the broker will be able
to infer the interests of innocent subscribers (R4: 8).

Yang et al. [8] introduce a dual-policy ABE scheme that
ensures an efficient and secure keyword search in cloud-
based pub/sub systems (R2: 4 and R3: 4). In this proposal,
the publisher defines an access policy over the publications’
keywords while the subscriber sets a different access policy
through its interests (R1: 4). Basically, the publishers are
considered fully trusted, the subscribers are malicious and
the cloud server is curious. Moreover, they assume that the
subscribers can collude together to access the publications but

BI

Br BT

BrokersPublishers Subscribers

Encrypted
EHR & tags

Encrypted EHR

Encrypted
subscription

Fig. 2: An Overview of Our System: Three brokers BI , Br,
and BT in different domains are connected into a virtual clus-
ter. The publishers in these domains send publications to the
cluster. The three brokers in the cluster perform the matching
and routing separately, and finally only the subscribers whose
interests match the tags could get the publications.

cannot collude with the cloud server (R4: 8).
Although the aforementioned solutions ensure the publica-

tions’ confidentiality, they do not consider privacy of subscrip-
tions against colluding brokers and subscribers [14]. In fact,
a malicious subscriber can share her subscriptions in cleartext
with the broker, which can leak the subscriptions of innocent
subscribers. This issue was addressed by Rao et al. in [13] and
[15]. Specifically, Rao et al. use a trusted engine to cloak and
encrypt the subscriptions before sending to the broker (R4:
4). As a result, the precise interests are hidden from brokers.
However, the subscribers receive more publications than they
require and have to filter out the redundant publications by per-
forming about matching round. Moreover, the trusted engine
can be a bottleneck in the system as it must remain active and
uncorrupted throughout the lifetime of the system. To protect
publications and subscriptions from brokers, they follow the
idea given in [18], which supports encrypted filtering (R2: 4)
but needs secrets sharing among subscribers and publishers.
Thus, their schemes also reduce the decoupling property (R3:
8) and do not offer any access control mechanism over the
publications (R1: 8).

More recently, Pires et al. [16] present a pub/sub routing
engine that leverages the trusted execution environment offered
by shielded SGX enclaves [33]. In this approach, subscriptions
are stored in the trusted SGX enclave and the matching
operation between interests and tags is also performed by the
SGX enclave (R2: 4). In this case, if the brokers collude with
malicious publishers or subscribers, they cannot infer other
subscribers’ subscriptions, since the brokers cannot access the
results of the match operations because it is performed in the
enclave (R1: 4 and R4: 4). However, the subscribers have to
first send the subscription for re-encryption to the publishers,
which violates the decoupling property of pub/sub systems
(R3: 8).

IV. SOLUTION OVERVIEW

In this section, we begin by presenting the system model
and the threat model of our solution. Then, we provide a brief
overview of the approach.

A. System Model
As shown in Fig. 2, we consider a privacy-preserving

pub/sub service involving the following entities:

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 5

• Publishers (Pub). The publisher generates publications
and the related tags. Before publishing to the broker, it
encrypts both the tags and the payload of the publication.

• Subscribers (Sub). Each subscriber defines a subscription
according to its interests, such that it receives only the
publications whose tags satisfy the subscription.

• Broker (B). The broker is responsible for filtering and
delivering publications to the interested Subs. As shown
in Fig. 2, our solution involves three types of brokers,
which cooperate to perform the filtering and delivering
of publications (more details are given in Section VI).
Here, we stress that different types of brokers not only
perform different functionalities, but also are managed
by different domains.

• Trusted Authority (TA). The trusted authority is respon-
sible for managing the keys of Subs and Pubs.

B. Threat Model

In this work, we assume the TA is fully trusted and the
channels between the TA and the Pubs/Subs are secure. In
our system, we consider the following threat model:
• Malicious Sub. A malicious Sub may try to access

unauthorised publications and infer other Subs’ interests
by colluding with brokers.

• Malicious Pub. A malicious Pub may try to infer Subs’
interests by injecting malicious publications and collud-
ing with brokers.

• Honest but Curious Broker. The brokers are semi-trusted
(honest-but-curious) entities. They obey the protocol to
evaluate the subscriptions but they are curious about the
content of publications and interests. Moreover, a broker
may collude with any Sub or Pub to infer other Subs’
interests. In our setting, we require three types of brokers
that are managed by at least three different non-colluding
domains. Moreover, we assume that the malicious Subs
and Pubs could collude with at most two types of brokers
managed by two different domains.

C. Our Approach

In this article, we aim at providing a pub/sub service that
could protect publications and Subs’ interests from curious
brokers in the presence of malicious Subs and Pubs. To
protect the publications from unauthorised entities, the Pub
encrypts the publication using the Key-Policy Attribute-Based
Encryption (KP-ABE) scheme [34]. In this way, only the
authorised Subs can recover the content of the publications
(R1: 4). Note that other well-established techniques that can
ensure fine-grained access control, such as [35] and [36],
could also be utilised to achieve R1 in our system. Tags and
interests are encrypted using an SE scheme. Thus, the brokers
could check if the publication tags match Subs’ interests in an
encrypted manner, and distribute the publication to authorised
Subs (R2: 4). Furthermore, the TA generates the keys for
KP-ABE and SE and distributes them to Subs and Pubs. This
means our system does not require the Subs and Pubs to
communicate directly to share the keys (R3: 4).

Encrypting Subs’ interests using SE is not sufficient to pro-
tect the subscriptions from the collusion attacks between the
broker and malicious Pubs or Subs. As mentioned above, when
the broker colludes with malicious Pubs, it can inject compro-
mised publications and infer the interests of innocent Subs by
observing if they match the injected publications. Likewise,
when the broker colludes with malicious Subs, it can inject
compromised subscriptions and infer the interests of innocent
Subs by observing if they match the same publications as the
injected ones. In this work, we solve this issue whereby Subs’
interests are kept protected even when a broker colludes with a
malicious Pub or Sub. Unlike state-of-the-art pub/sub systems
that fundamentally use a single broker to match and forward
the publications to the Subs, the novelty of our work lies in
the use of three different types of brokers. Basically, the three
types of brokers are employed with different functionalities
and managed in different domains. The main idea of our
solution is to divide the match operations between interests and
tags into three different phases where each phase is performed
by a different type of broker. In our system, we allow at most
two types of brokers to collude and still be able to protect the
content of the interests. Each type of broker only knows some
partial information, from which sensitive information about
encrypted interests cannot be inferred. Thus, even if malicious
Subs or Pubs colludes with any two types of the brokers (out
of the three types supported in our solution), they are unable
to infer the interests of innocent Subs (R4: 4).

Note that, our solution can be generalised to resist the
collusion among N (N > 1) brokers and malicious Subs by
employing N + 1 types of brokers and dividing the match
operation into N + 1 phases, where each phase is performed
by one type of broker (see Section VI-D for more details).
Only when malicious Pubs or Subs collude with all the N +1
types of brokers, they could learn the subscriptions of innocent
Subs. However, colluding with all types of brokers will be
harder when N is bigger. In this work, we take N = 2 as an
example to show how our solution works.

The details of our solution and the security analysis against
collusion attacks are given in Section VI and VII, respectively.

V. TECHNICAL BACKGROUND

In this section, we briefly cover the KP-ABE and SE
schemes used in our solution.

A. KP-ABE

In KP-ABE, the ciphertext is labelled with a set of attributes
while the users’ private keys are associated with a non-
monotonic access policy [37]. The user is able to decrypt the
ciphertext if the access policy is satisfied by the attributes
embedded in the ciphertext. In this work, a Pub takes the
tags of each publication as the attributes sets and encrypts the
publications using KP-ABE. The private keys for decrypting
the publications are associated with the Subs’ interests. Only
the Subs whose interests satisfy the tags are able to recover
the publication. KP-ABE consists of the following four algo-
rithms:

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 6

• SetupKP−ABE(λ)– This algorithm is performed by the TA
and takes as input a security parameter λ. It generates
the public parameters PP as well as a master secret key
MK.

• EncryptKP−ABE(PP, C, τ)– It takes a message C, the
public parameters PP, and a set of attributes τ as input.
It outputs the ciphertext C∗. In this work, the publication
tags are regarded as the attributes set.

• KeyGenKP−ABE(MK,Ψ)– This algorithm takes as input an
access structure Ψ and the master secret key MK. It
outputs a secret key sk. In this work, Sub’s subscription
is regarded as the access structure. This algorithm is also
performed by the TA.

• DecryptKP−ABE(sk, C
∗)– It takes as inputs the Sub’s

secret key sk for access structure Ψ and the ciphertext
C∗, and outputs the message C.

B. Searchable Encryption

In our solution, to encrypt interests and tags we use the
SUISE symmetric SE scheme [38]. On the one hand, SUISE
ensures semantically secure encrypted subscriptions. Thus, the
broker cannot tell if Subs have the same interests or not just
based on their ciphertext. On the other hand, in SUISE, the
matching between encrypted tags and interests is performed
with a keyed hash function, which is much more efficient
than asymmetric encryption-based schemes. Specifically, its
AddToken and SearchToken primitives are used to encrypt
interests and tags, respectively, and the Search primitive is
used to match the encrypted tags with encrypted interests.
Here, we emphasise that our solution is independent of any
specific functionality offered by SUISE: other SE schemes that
could effectively ensure confidentiality of interests and tags,
such as [31], [39]–[41], could also be leveraged in our system.

The SUISE primitives involved in our system include:

• GenSE(κ): This algorithm is also performed by the TA.
It takes as input a security parameter κ, and generates a
secret key k.

• AddTokenSE(k, I): It takes as input the key k and an
interest I . It generates a searchable encrypted interest I∗

by computing I∗ = (HFk(I)(η), η), where η is a nonce,
F : {0, 1}κ × {0, 1}∗ → {0, 1}κ is a Pseudo-Random
Function (PRF), and H : {0, 1}κ × {0, 1}∗ → {0, 1}κ is
a random oracle.

• SearchTokenSE(k, τ): Given the secret key k and a tag
τ , this algorithm produces a trapdoor τ∗ = Fk(τ) .

• SearchSE(I
∗, τ∗) It takes as input an encrypted interest

I∗ = (µ, ν), and a trapdoor τ∗ of the tag. It outputs 1 if
Hτ∗(ν) = µ, and 0 otherwise.

VI. SOLUTION DETAILS

In this section, we first describe the representations for pub-
lications and subscriptions. Second, we discuss our strategies
for resisting collusion attacks. Finally, we provide the detailed
description of our proposed privacy-preserving multi-broker
system.

AND

OR

NOT

AND

NOT

Interests I

I1:
Age≠18

I4:
Injury=Scald

I3:
Injury≠Burn

I2:
Hospital=A

AND

ORAND

I1:
Age=18

I4:
Injury=Scald

I3:
Injury=Burn

I2:
Hospital=A

Interests I

Constraints T
Constraints T

(a) The original tree structure of the subscription ‘Age = 18 and
Hospital=A and (Injury=Burn or Injury=Scald)’.

AND

OR

NOT

AND

NOT

Interests I

I1:
Age≠18

I4:
Injury=Scald

I3:
Injury≠Burn

I2:
Hospital=A

AND

ORAND

I1:
Age=18

I4:
Injury=Scald

I3:
Injury=Burn

I2:
Hospital=A

Interests I

Constraints T
Constraints T

(b) The tree structure of the subscription ‘not (Age 6= 18) and
Hospital=A and (not (Injury 6= Burn) or Injury=Scald)’.

Fig. 3: The tree structure of a subscription: Each leaf node
represents an interest I . The non-leaf nodes define the con-
straints over interests. Formally, each subscription is defined
as: S = (T, I), where T is the structure of the non-leaf nodes
and I = (I1, I2, I3, I4) is the ordered set of the leaf nodes.

A. Data Representation

Formally, each publication P in our system is represented as
a tuple (ID, τ , C), where ID is the identifier, τ = {τ1, . . .}
is a collection of tags, and C represents the publication’s
payload. To ensure the uniqueness of ID, it can be derived
from C and the publisher’s identifier. Each tag τ is defined as
an attribute : value-pair, e.g., ‘Injury:Scald’ means that the
attribute ‘Injury’ has the value ‘Scald’.

In our solution, each subscription S is represented as a
tree. The leaves of the tree represent the interests and are
defined as an attribute = value pair. The non-leaf nodes of
the tree denote the constraints over the interests, e.g., ‘AND’
and ‘OR’. Interests will match tags when they have the same
attribute and value. For instance, the interest ‘Injury=Scald’
will match all the tags that have the attribute ‘Injury’ and
the value ‘Scald’. Formally, S = (I, T), where I = (I1, . . .)
represents the ordered interests set and T is the constraint
between the interests. Fig. 3(a) shows the tree structure for
the subscription ‘Age = 18 and Hospital=A and (Injury=Burn
or Injury=Scald)’. In this example, S = (I = (Age =
18, Hospital = A, Injury = Burn, Injury = Scald), T =
(()and())and(()or())).

B. Resisting Collusion Attacks

The main goal of this work is to prevent brokers and
malicious Pubs and Subs from learning the innocent Subs’
subscriptions even if they collude with each other. Before
giving more details of our system, we first show why previous
encrypted pub/sub systems, such as [9], [18], [19], fail to

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 7

resist the collusion between brokers and malicious Pubs or
Subs. Basically, in these systems, only one type of broker is
used, and this type of broker is responsible for performing
all the functionalities, including storing subscriptions, filtering
and forwarding publications to Subs. As a consequence, the
broker knows the match result between each (I, τ) pair and
whether Subs have the same interests or not. When a malicious
Pub exposes the plaintext of τ to the broker, they can infer
the content of I based on the match result. For instance,
if τ is ‘Injury:Scald’, the interest matching this tag must
be ‘Injury=Scald’. Likewise, if a malicious Sub reveals the
plaintext of its subscription to the broker, they can also infer
the content of I of other Subs. Formally, if both I and I ′

match τ and the plaintext of I ′ is known to the broker, then
the broker learns I could be the same as I ′. Above all, the
main issue in previous encrypted pub/sub systems is that the
broker not only knows all the matching results, but also stores
all the subscriptions.

Based on the above observation, to resist collusion attacks,
our basic idea is to (i) organise the brokers in three different
domains, (ii) divide the matching operation between tags and
subscriptions into three phases, and (iii) enable the brokers
in each domain to perform one of the three phases, so as to
limit the information learned by each broker. In this case, if
the malicious Subs or Pubs collude with one or two types of
brokers, they can not infer the subscription of innocent Subs.
In the following, we show how the functionalities are broken
down.

Our first step is to separate the interests I and constraint T
for each subscription, and send them to two different types
of brokers. The type of broker receiving I is responsible
for matching the encrypted interests with tags. We identify
this type of brokers as BI . The broker type that gets T is
responsible for evaluating the subscription tree by integrating
the match results for all interests with constraint T and
forwarding the publications to Subs. This type of brokers is
defined as BT .

However, this step is not enough to resist the collusion
attacks. By performing the match between encrypted interests
and tags, brokers of type BI know the match result for each
(I, τ) pair. If a broker of type BI colludes with a malicious
Pub or Sub, it could still learn what an innocent Sub is
interested in. To address this issue, our second step is to
randomly invert some of the interests and add a ‘NOT’ node in
the constraint part on top of the corresponding inverted interest
when defining the subscription tree. For instance, in the
example subscription in Fig. 3(a), the subscriber changes the
interests ‘Age = 18’ and ‘Injury=Burn’ into ‘NOT (Age 6= 18)’
and ‘NOT (Injury 6= Burn)’, respectively. The corresponding
tree structure is shown in Fig. 3(b). The BI brokers only get
the encrypted interests of a subscription (they do not receive
the T part of the subscription). Therefore, even if BI brokers
know τ in plaintext (either by colluding with a malicious Pub
or Sub) they cannot learn the real interests of the innocent
Sub, since they do not know if there is a ‘NOT’ node on top
of the interest in the corresponding T part of the subscription
tree (more details are provided in Section VII).

The matching results between each pair of encrypted I and
τ are stored in an array and sent to BT brokers for the sub-
scription evaluation. Specifically, the array contains 1 when the
interest matches the corresponding tag, and 0 otherwise. Since
BT brokers store T for each subscription, they know if there is
a ‘NOT’ constraint on top of each leaf node, so they can learn
if each interest sent to BI brokers is inverted or not. However,
BT brokers have no idea what the underlying interest is for
each leaf node. Thus, even if a BT broker colludes with a Pub
and/or a Sub, it still cannot learn the interests of innocent Subs.
For instance, assume a malicious Pub issues a publication
with tags {Age : 20, Injury : Burn,Hospital : A} and
a BT broker gets (1, 1, 0, 0) for the subscription shown in
Fig. 3. Based on the structure of T , the BT broker knows the
matching result should be (0, 1, 1, 0). However, they cannot
determine which two of the tags match the second and the
third interests, respectively.

By implementing these two steps, the confidentiality of
subscriptions is protected when malicious Subs/Pubs collude
with one type of brokers. However, if malicious Pubs or Subs
collude with both BI and BT , they could infer the innocent
Subs’ interests, since they would know both the underlying
interest for each leaf node and if the interest is inverted or not.
In the previous example, a BI broker knows which tags match
or do not match the four interests. Combining this information
with T , the colluding entities can infer the plaintext of the
matched interests.

To protect the subscription confidentiality of innocent Subs,
even when malicious Pubs or Subs collude with both types of
brokers, our third step is to randomly permute the interests
and involve a third type of broker, Br, into the matching
operation. Specifically, before sending the interests to BI , the
Sub permutes the interests with a Pseudo-Random Permutation
(PRP) π : {0, 1}κ × {0, 1}n → {0, 1}n, and sends the
permutation key to a Br broker. Without the permutation key,
even if the malicious Pubs and/or Subs collude with both BI
and BT brokers, they cannot map the interests in BI to the
constraints stored in BT . Therefore, they are unable to know
which interests are inverted by the Sub. For instance, for the
subscription shown in Fig. 3, assume the interests stored in
BI is (I2, I4, I1, I3) and the matching result obtained by BI
is (1, 1, 1, 1). From T , they know the second and the third leaf
nodes are inverted. From the plaintext of the tags, they learn
the plaintext of (I2, I4, I1, I3). However, they do not know
which interests stored in the BI broker are the second and the
third leaf nodes of T .

By permuting the interests, the confidentiality of subscrip-
tions is also protected when malicious Pubs and/or Subs
collude with BI and Br, or Br, and BT brokers. In the former
collusion scenario, the colluding entities would only recover
the order of the interests, yet they cannot learn the structure
of T . Likewise, in the latter collusion scenario, they would be
able to know the correct order of the matching results and the
structure of T , but they cannot learn the order of the interests
stored in BI .

Thus, our scheme is able to protect the subscriptions of
innocent Subs as long as at most two types of brokers collude
with malicious Pubs and/or Subs. More details on the security

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 8

5b. (SN ,r) Sub

BT

BI

Br
3. 𝐈𝐈 ∗= SE𝑘𝑘 𝐈𝐈 = (𝐼𝐼1∗, 𝐼𝐼2∗, 𝐼𝐼3∗, 𝐼𝐼4∗)
4. 𝐈𝐈 ∗ ′ = 𝜋𝜋𝑟𝑟(𝐈𝐈 ∗) = (𝐼𝐼2∗, 𝐼𝐼4∗, 𝐼𝐼1∗, 𝐼𝐼3∗)

TA

1. Filter=((¬(𝐼𝐼1)^(𝐼𝐼2))^(¬(𝐼𝐼3)v(𝐼𝐼4)))
2. (sk, k)

T=((¬()^())^(¬()v()))
𝐈𝐈 = (𝐼𝐼1 , 𝐼𝐼2 , 𝐼𝐼3 , 𝐼𝐼4)

Fig. 4: The Process of Subscription: Each Sub is identified
with a unique serial number SN and an address @. Before
sending the subscription S to brokers, the Sub encrypts its
interests I into I∗ using SE, and then permutes them into I∗

′

using PRP π and a random key r.

of our solution will be provided in Section VII.

C. Subscribing and Publishing Procedures

Our proposed solution consists of four different procedures
detailed as follows.

Setup. The TA takes as inputs the security parameters λ and
κ and generates the public parameters PP and the master key
MK for the KP-ABE encryption by running SetupKP−ABE(λ).
Moreover, it generates the key k for performing match opera-
tions based on searchable encryption by running GenSE(κ). k
is sent to each enrolled Pub and Sub. MK is kept secure and
only known to the TA.

Subscribe. Each Sub is identified by a unique serial number
SN and an address @. The brokers use the address to
forward the publications to the respective Sub. To subscribe
for publications, a Sub performs the following operations:
• First, the Sub defines the subscription S = (T, I) (as

shown in Fig. 3(b)). Then, it sends S to the TA in a
secure manner (Step 1, Fig. 4).

• The TA takes S as the access structure in the KP-
ABE scheme and generates the secret key sk. This key
allows the Sub to decrypt the publications that match the
subscription S. The TA sends in a secure manner sk to
the Sub (Step 2).

• The Sub encrypts each of its interests in I using the SE
scheme: I∗ = (AddTokenSE(k, I1), . . .) (Step 3).

• The Sub permutes the order of the interests by computing
I∗
′

= πr(I∗), where r is a random value used as the key
for permutation (Step 4).

• Finally, the Sub forwards (SN , I∗
′
) (Step 5a), (SN, r)

(Step 5b), and (SN,@, T) (Step 5c) to brokers of type
BI , Br, and BT , respectively.

Publish. When publishing a publication, the Pub first gen-
erates its ID and defines the set of tags τ according to its
content C. The Pub encrypts P = (ID, τ , C) as follows:
• Using KP-ABE, the Pub encrypts C to produce C∗ =

EncryptKP−ABE(PP, C, τ). Note that we use the set of
tags τ as the attribute set for the KP-ABE encryption.
Only the Subs whose subscriptions match against the tags
are able to decrypt the publication.

Pub (ID, C*) BT

BI

Br

TA
PP

Fig. 5: The Process of Publication: Each publication is iden-
tified with a unique ID. When publishing, the Pub encrypts
the tags τ into τ ∗ using SE, and encrypts the content C into
C∗ using KP-ABE.

BI

Br BT Sub
4. (SN , ID , 𝜋𝑟

−1(R)) 6. C*

1. R=SearchSE(τ*, I*’)=(1, 1, 0, 1)

3. 𝜋𝑟
−1(R)=(0, 1, 1, 1) 5. T(𝜋𝑟

−1(R))=((¬(0)^(1))^(¬(1)v(1)))=1

Fig. 6: The Process of Matching and Forwarding: BI performs
the match between interests I∗

′
and tags τ ∗ and gets the

matching result R. Br recovers the order of the result by
computing π−1r (R). BT combines the result with T and gets
the final result.

• Afterwards, the Pub encrypts each tag in τ by computing
τ ∗ = SearchTokenSE(k, τ). This allows the brokers to
perform encrypted match operations without accessing
the publications and subscriptions in cleartext.

• Finally, as illustrated in Fig. 5, (ID, τ ∗) and (ID,C∗)
are sent to BI and BT , respectively.

Matching and Forwarding. The matching and forwarding
operations are performed in three phases with the cooperation
of three types of brokers, as shown in Fig. 6. The operations
performed by each type of broker are given below:

• A BI broker gets (SN, I∗
′
) from the Sub and (ID, τ ∗)

from the Pub. First, it matches each interest in I∗
′

against the corresponding tag in τ ∗ by executing
SearchSE(τ

∗, I∗
′
), and gets the matching result R =

(0/1, . . .) (Step 1). Then, the BI broker sends (SN , ID,
R) to a Br broker (Step 2). Note that the attribute names
in the tags and interests, like ‘Injury’ and ‘Age’, are in
plaintext or encrypted using a deterministic algorithm.
This allows the BI broker to be able to perform the
matching of the tag values with the corresponding interest
value.

• For each matching result R received from the BI broker,
the Br broker retrieves the correct order by running
π−1r (R) (Step 3) and forwards (SN , ID, π−1r (R)) to
a BT broker (Step 4).

• The BT broker computes T (π−1r (R)), i.e., combines the
0/1 in R with the AND, OR and NOT operators in T ,
and gets the final match result (Step 5). If it outputs 1,
i.e., τ satisfies S, C∗ is sent to the Sub identified by SN
at address @ (Step 6).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 9

Decryption. After receiving the C∗, the Sub uses its secret
KP-ABE key related to its subscription to retrieve the content
by computing C = DecryptKP−ABE(sk, C

∗).

D. Generalisation

As mentioned before, our system can be generalised to a
case whereN+1 types of brokers are employed to perform the
encrypted filtering and forwarding. One possible generalisation
is to set two of types of brokers as BI and BT , respectively,
and set all the remaining brokers as Br. Moreover, when
subscribing, each Sub has to permute its encrypted interest set
I∗ for N − 1 times with N − 1 different keys, and distribute
the keys to the N − 1 Br in different domains. Likewise,
when publishing, the match result R obtained by the BI
broker has to be permuted inversely by each Br broker with
the corresponding key. Then, the BT broker can evaluate the
subscription tree to get the final match result. In this case, only
when malicious Pubs or Subs collude with all the types of
brokers, they can infer other Subs’ subscriptions. Otherwise,
they cannot learn (i) which interest are inverted if the BT
broker is not part of the colluding set of brokers; (ii) which
tags match the interests if the BI broker does not collude; or
(iii) the right order of the match result when one or more Brs
do not collude.

VII. SECURITY ANALYSIS

In this section, we first discuss the security of the pub-
lication payload. Second, we analyse the robustness of our
solution against collusion attacks. Finally, we discuss the
limitations of our scheme and give some countermeasures.

A. The Security of Subscriptions and Publications

In our system, the content of a publication is protected
using a lightweight KP-ABE encryption scheme [37]. This
scheme has been proven to be INDistinguishable under Chosen
Plaintext Attack (IND-CPA) and secure under the Decisional
Diffie-Hellman over Elliptic Curve (EC-DDH) assumption.
Both subscriptions and tags are encrypted with SUISE [38].
In [38], Hahn and et al. prove SUISE achieves IND2-CKA
security [42], indicating the security of tags and subscriptions.

B. Collusion Attacks

Our solution is designed to ensure confidentiality of sub-
scriptions against the collusion between malicious Subs/Pubs
and curious brokers. We achieve this by splitting the broker
functionalities into three different procedures performed by
three different types of brokers. Moreover, our system can
resist a collusion attack between malicious Subs or Pubs col-
luding with up to two brokers. In the following, we show the
security of subscriptions under different collusion scenarios.

Malicious Subs and Pubs colluding with BI and Br bro-
kers. In our solution, BI brokers store the encrypted interests
for each subscription and are responsible for checking if each
interest matches a tag. Br brokers store the permutation key
for each subscription and recover the order of each matching

result array. Thus, BI brokers know if there is a match between
each encrypted interest and tag pair, and Br brokes know
how the interests are permuted for each subscription. If a
malicious Pub colludes with both BI and Br brokers, the
colluding entities know the publication tags issued by the
malicious Pub in plaintext, and they can infer the content of
the interests matching against the tags. Similarly, if a malicious
Sub colludes with both BI and Br brokers, then the colluding
entities can infer the interests of the innocent Subs that match
the same tags as the interests of the malicious Sub. However,
the colluding entities do not have access to the constraint
structure T of other innocent Subs. Due to the randomly added
‘NOT’ gates in T , which are only known to BT brokers, there
is a 50% probability that the real matching result for each
interest is opposite to what BI brokers can infer. In this way,
the colluding entities cannot easily infer the real interests of
innocent Subs’.

Malicious Subs and Pubs colluding with BI and BT
brokers. The BT brokers know the constraint structure T
(including the ‘NOT’ gates) for each subscription and are
responsible for getting the final matching result by evaluating
the constraints over the matching results between tags and
interests that are provided by BI brokers. However, only Br
brokers are able to recover the correct order of the interests.
Note that Br brokers recover the order of the matching results
and forward them to BT brokers: no attribute names are
forward to BT brokers. Considering that each matching result
is an array consisting of 0 or 1, it is still difficult to recover
the order of the interests just based on the matching results.
For instance, for the subscription shown in Fig. 3, assume the
encrypted interests set stored in a BI broker is (I∗2 , I

∗
4 , I
∗
1 , I
∗
3),

and the matching result with a publication obtained by the
BI broker is (0, 1, 0, 1). A BT broker will get the array in
the right order from the Br broker, which is (0, 0, 1, 1). By
comparing (0, 0, 1, 1) with (0, 1, 0, 1), the order of the inter-
ests could be (I1, I2, I3, I4), (I2, I1, I3, I4), (I1, I2, I4, I3), or
(I2, I1, I4, I3). However, the colluding entities cannot deter-
mine the correct order. Formally, assume there are m interests
in the subscription, meaning a BI broker will get an m-bit
matching result when there is a publication. Assume x out of
the m bits are 1. There are x! permutations for the interests
whose match results are 1, and (m−x)! permutations for those
whose match results are 0. In other words, BI and BT brokers
could successfully guess the permutations for 1 bits and 0 bits
with 1

x! and 1
(m−x)! probabilities, respectively. To make this

probability negligible, the interests in each subscription can be
padded with fake interests, such that both 1

x! and 1
(m−x)! are

negligible.

Malicious Subs and Pubs colluding with Br and BT
brokers. The Br brokers recover the order of the matching
results, and BT brokers know if each interest is inverted
or not. In the example above, the malicious Subs and Pubs
colluding with Br and BT broker can learn that the interests
are permuted into (I2, I4, I1, I3) by the Br broker, and I3 and
I4 match tags. However, they do not know which tags match
I3 and I4 respectively. This information is only known to the
BI broker. As a result, even if the colluding entities know the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 10

plaintext of the four tags, they do not know which two of them
are the real interests of the innocent Subs.

C. Mitigating Guessing Attacks

Although each interest is inverted with 50% possibility, it
is not easy to infer whether the interest is real or dummy.
However, when there are few interests in a subscription, it
might be easier for BI and BT brokers to infer the permutation
of the interests. To this end, we suggest to pad subscriptions
with some dummy interests. Introducing dummy interests also
makes it harder to infer the interests of innocent Subs’ even
when malicious Subs (or Pubs) collude with both BI and Br
brokers. Investigating the detailed mechanism and the impact
of dummy interests on the performance is one of research
directions for our future work.

VIII. ANALYSIS OF COMPUTATION AND COMMUNICATION
COSTS

In this section, we provide an analysis of computation and
communication costs of our solution as well as compare those
costs with the schemes listed in Table I.

A. Computation and Communication Costs of Our Solution

This section, we empirically analyse the computation com-
plexities and communication overheads of each entity in our
proposed solution.

Let PRF , HASH and PRP be the computation overhead
of performing the corresponding operations, and let ABE
represents the overhead of using the KP-ABE scheme (see
[43] for details of the computation complexity). Table II lists
the computation and communication overhead for each entity
and each phase in our solution.

Specifically, in the subscription phase, the Sub encrypts
all the interests and permutes them, thus the computation
complexity of the subscription operation is m(HASH +
PRF) + PRP , where m is the number of interests in
the subscription. Moreover, the communication overhead of
this phase is 3|SN | + mκ + |η| + κ + |@| + |T | bits1,
where κ is the bit length of the encrypted interests. When
issuing a publication, the Pub encrypts the tags and payload
with F and KP-ABE, respectively. The computation cost of
a publication is mPRF + ABE, and the communication
overhead is 2|ID|+mκ+ |C∗| bits, where m is the number
of tags in the publication and κ is the size of the encrypted
tags in bits. BI brokers are only responsible for checking if
the tags match against the interests and sending the result
to Br brokers. Therefore, the computation complexity and
communication overhead for BI brokers are mHASH and
|SN | + |ID| + m bits, respectively. Br brokers reverse the
permutation of the match result and send it to BT brokers,
so their computation complexity and communication overhead
are PRP and |SN |+ |ID|+m bits, respectively. BT brokers
just evaluate the final output of the subscription tree, and
forward the publication payloads to the Sub if the output is

1Note that the nonce η can be the same for all the m interests.

1. Thus, their computation overhead can be negligible and the
communication volume is |C∗| when there is a match.

In summary, to ensure confidentiality of tags and interests
and support the encrypted matching between them, the com-
putation overhead on the system is 2m(PRF + HASH) +
2PRP , and the overhead to protect the payload is determined
by the applied KP-ABE scheme. In addition to the traffic
generated by the publications and subscriptions, the additional
communication overhead in our system is generated by the
match result R sent from BI to Br brokers and the m bits of
the permuted result π(R) sent from Br to BT brokers.

B. Comparison with other Pub/Sub Systems

Table III summarises the comparison between our solution
and the related work in Table I with respect to the computation
cost of encrypted filtering and publication payload encryption,
and the communication cost of the related work. Note that at
the time of writing this paper, we did not have access to the
implementations of the related work schemes. Therefore, the
following analysis is based on the details contained in the
respective papers.

Computation cost. In terms of the computation overhead, for
clarity, we summarise the high-level cryptographic primitives
used in other systems for encrypted filtering and payload
encryption separately.

To support encrypted filtering, as shown in Table III, most
of the pub/sub systems utilise expensive FHE, bilinear paring
or other asymmetric encryption primitives. In our work, we
use only PRF, hash function and PRP which are significantly
more efficient than the FHE and bilinear pairing techniques.
The only approach proposed more efficient than our system
is the work described in [21]: here the authors use only two
primitives including PRF and XOR, while our scheme uses
PRF, hash function and PRP.

For the payload encryption, [13], [15], [16], [18]–[21] use
symmetric encryption, which is much more efficient than ABE
and lattice-based encryption. However, symmetric encryption
requires all the Pubs and Subs to share the encryption key.
When one of them colludes with the brokers, all the pub-
lications will be revealed. By using ABE or lattice-based
encryption, Pubs can enforce fine-grained access policy on
their publication and avoid key sharing.

Communication cost. In [8]–[10], [16], [19], [20], [23],
brokers receive each publication from Pubs and forward it to
the Subs whose subscriptions match the publication’ tags. Let
m be the number of attributes defined in the publication and
n be the number of subscriptions matching the publication.
Assume |τ | and |C∗| represent the length of each encrypted
tag and the publication payload in bits, respectively. Formally,
the communication cost of these schemes is (n+1)|C∗|+m|τ |
bits.

In our approach, there is additional communication between
the three types of brokers, i.e., the matching result R. Fortu-
nately, the matching result R is just m-bit long. When there
are N subscriptions on BI , for each publication, BI (Br) only
needs to send Nm bits to Br (BT). In total, the communica-
tion cost of our solution is (n + 1)|C∗| + m|τ | + 2mN bits,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 11

TABLE II: Computation and communication costs of our solution.

Operation Computation Cost Communication Cost
Subscribe m(PRF +HASH) + PRP 3|SN |+mκ+ |η|+ |r|+ |@|+ |T | bits
Publish mPRF+ KP-ABE 2|ID|+mκ+ |C∗| bits

Match on BI mHASH |SN |+ |ID|+m bits
Permutation on Br PRP |SN |+ |ID|+m bits
Evaluation on BT Negligible 0 or |C∗| bits

PRP , HASH and PRF represent the computation overheads to perform the corresponding operations. We use ABE to represent the
overhead to perform the operations for KP-ABE encryption. m is the number of interests/tags in the subscription/publication. κ is the size
of the encrypted interest/tag in bits.

TABLE III: Computation and communication cost comparison of pub/sub systems.

Schemes Computation Cost Communication CostPrimitives for encrypted filtering Primitives for payload encryption
Tariq et al. [24] PEKS CP-ABE N/A
Ion et al. [10] ElGamal based proxy re-encryption KP-ABE
Asghar et al. [9] PEKS CP-ABE
Yang et al. [8] Bilinear pairing Dual policy ABE
Borcea et al. [23] No encryption Lattice-based proxy re-encryption

(n+ 1)|C∗|+m|τ | bitsRaiciu et al. [18] Different SE schemes Symmetric encryption
Nabeel et al. [19] Pailliar FHE Symmetric encryption
Nabeel et al. [20] Pailliar FHE Symmetric encryption
Pires et al. [16] Symmetric + Public-key encryptions Symmetric encryption
Crescenzo et al. [21] PRF+XOR Symmetric encryption (n+ 1)|C∗|+m|τ |+Nm|τ | bits
Rao et al. [13] [15] Different SE schemes Symmetric encryption (αn+ 1)|C∗|+m|τ | bits
Our Work Hash+PRP+PRF KP-ABE (n+ 1)|C∗|+m|τ |+ 2mN bits

m is the number of attributes, N is the number of subscriptions stored on the broker, and n is the number of subscriptions matching the
issued publication. |τ | and |C∗| represent the encrypted tag and payload lengths in bits, respectively. α is a number greater than 1, which
represents the security parameter.

which incurs 2mN bits extra overhead than [8]–[10], [16],
[19], [20], [23] and traditional pub/sub systems.

On the other hand, the only approaches that incur more
overheads than our solution are [21] and [13]. In particular,
[21] requires to blind all the interests with different nonces,
which are stored on a trusted third-party server. To enable the
broker to perform the encrypted filtering, for each subscription,
the third-party server has to blind the tags with the same
nonces as the interests. That is, for each publication, the third-
party server has to send N sets of blinded tags to the broker,
which incurs an additional overhead of Nm|τ | bits.

In [13], subscription privacy is also achieved by cloaking
real subscriptions with dummy interests based on a security
parameter α. This increases the chance of matching between
publications and subscriptions. The redundant publications,
forwarded to Subs, also increase the communication overhead
in the system. Moreover, the Subs have to send their subscrip-
tions to a trusted third-party server for the cloaking, which
also increases the communication overhead in the system.

To summarise, our system can resist against collusion at-
tacks between brokers and malicious Pubs and/or Subs, while
incurring computation and communication overheads that are
not dramatically more expensive that existing solutions.

IX. PERFORMANCE ANALYSIS

We have implemented a prototype of our system in C++
and tested its performance. The cryptographic primitives used
in SUISE, e.g., HMAC, are implemented using the MIRACL
7.0 library, and the KP-ABE scheme for payload encryption is
implemented on top of [37], the C++ code of which is available

in [43]. The performance of our system was evaluated on a
desktop machine running Intel i5 3.3 GHz 4-core processor
with 8GB of RAM. Moreover, we simulated the network
communication between any two entities with OMNeT++ [44],
and set the bandwidth as 100 Mbps. All the results presented
in the following are averaged over 20 runs.

As done in other pub/sub systems [15], [19], [28], the num-
ber of tags/interests in the publications and subscriptions varies
from 1 to 20, which is derived from the industry-standard
benchmark used for measuring the performance of pub/sub
systems [10]. As mentioned in Section VII, to ensure that the
colluding brokers cannot infer the permutation successfully
with a non-negligible probability, it is necessary to pad the
subscriptions to a larger size with dummy interests. Thus, in
our experiments, we also tested the cases where the number
of tags/interests varies from 70 to 116, which ensure that the
probabilities of inferring the correct permutation are less than
1

2128 and 1
2256 , respectively.

A. Encryption of Tags and Interests

Fig. 7 shows the time needed for encrypting publication
tags and subscriptions when the number of tags/interests varies
from 1 to 116. We can observe that the encryption time
in both cases grows linearly with the number of elements.
Moreover, the encryption time for the interests is higher
than for the tags. The reason is that the Sub performs more
operations than the Pub in order to preserve privacy of its
subscriptions. Specifically, as described in Section V, on the
Pub side, each tag is encrypted using F . In our prototype, F
is implemented as a keyed hash function, SHA-512. However,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 12

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 1 10 20

Ti
m
e

in
 m

s

 70 80 90 100 116
Number of tags/interests

Tag
Interest

Fig. 7: The time required for encrypting tags and subscriptions
when the number of tags and interests varies.

 0.001

 0.01

 0.1

 1 10 20 70 80 90 100 116

Ti
m
e

in
 m

s

Number of tags/interests

BI
Br
BT

Fig. 8: The time required on each broker for performing their
respective operation when the number of tags/interests varies.

for each interest, the Sub first encrypts it with F , and then
hashes a nonce by taking the encrypted interest as a key.
Moreover, all the interests have to be shuffled, i.e., permuted,
before sending to the brokers. In the experiment, the shuffle
operation is implemented with Fisher-Yates algorithm [45].

B. Encrypted Matching

Matching the publications to the subscriptions is performed
with the collaboration of three types of brokers. As mentioned
in Section VI, a BI broker checks if the encrypted tags match
against the encrypted interests, and then this BI broker sends
the result array to a Br broker. The Br broker recovers the
order of the array and sends it to a BT broker. Finally, the
BT broker evaluates the result and forwards the publication to
the corresponding Subs.

Fig. 8 shows the time required for each broker to perform
their respective operation when the number of tags/interests
varies. We can see that the matching time on BI bro-
kers increases linearly with the increase in the number of
tags/interests. When there are 116 elements, it takes less than
0.3 ms on a BI broker to check all the tags and interests.
The permutation time on a Br broker and the evaluation time
on a BT broker also increase with the number of elements.
However, the time required by the Br and BT brokers is
around 0.01 ms when there are 116 elements, which is
negligible.

C. Payload Encryption and Decryption

In our implementation, the publication payload is encrypted
with AES-CBC using a randomly generated symmetric key.
Then, the KP-ABE scheme is used to encrypt the symmetric
key. The KP-ABE scheme is affected by the number of tags,

 0.1

 1

 10

 100

 2 5 10 15 20

Ti
m
e

in
 m

s

Number of tags

Key generation
Encryption
Decryption

Fig. 9: The time for encrypting and decrypting the payload
using KP-ABE in publications with a different number of tags.
The graph also provides the time required for generating the
KP-ABE key.

 10

 100

 1 2 4 8 16 32 64 128

Ti
m
e

in
 m

s

Size of payload in MB

Encryption
Decryption

Fig. 10: The time of encrypting the payload of the publications
with different payload sizes.

while the AES-CBC algorithm is affected by the payload size.
We show the effects of the number of tags and the payload
size on publication encryption and decryption in Fig. 9 and
Fig. 10, respectively.

Fig. 9 shows the key generation time for the Sub’s interests
performed on the TA, the payload encryption time on the Pub,
and the decryption time on the Sub. In this experiment, the
payload size is fixed to 1 MB, and the number of tags varies
from 2 to 20. Note that the dummy tags and interests are
not involved in the access policy and decryption keys. Both
the encryption and decryption times shown in Fig. 9 include
the time of encrypting/decrypting the payload with AES-CBC
and the time of encrypting and decrypting the symmetric key
with KP-ABE. We can see that both the encryption and key
generation times go up linearly with an increase in the number
of elements. However, the effect of tags on payload decryption
is not evident, thanks to the lightweight construction of the
KP-ABE implementation used in our system.

Fig. 10 shows the effect of payload sizes on the encryption
and decryption time. For this experiment, we fixed the number
of tags for KP-ABE to 20. As we can see in the figure, both the
encryption and decryption time rises linearly with the payload
size. When the payload size is 128 MB, the payload encryption
and decryption take up to 485.5 ms and 424.6 ms, respectively.

D. Performance Tradeoff

In this experiment, we show the performance tradeoff to
achieve R1, R2, R3, and R4 in our solution when there are

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 13

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

T
im

e
in

 m
s

Number of tags/interests

Our work
Single broker

No encryption

Fig. 11: The end to end latency comparison among our solution
and two baseline scenarios. In ‘Single broker’ scenario, the
publications and subscriptions are encrypted in the same way
as our work, but only one broker is used. In ‘No encryption’
scenario, all the data is in plaintext and only one broker is
used.

different numbers of tags/interests. The payload size is set to
1 MB.

To achieve R1, R2, and R3, our solution leverages KP-ABE
and SE schemes to encrypt the publications and subscriptions.
To show the performance tradeoff to achieve R1, R2, and R3,
we compare the end-to-end latency of forwarding a publication
to a subscriber in our solution with that of a baseline scenario,
called ‘No encryption’, where both the publication and the
subscription are in plaintext. To achieve R4, our solution ran-
domly adds ‘NOT’ gates into the subscription tree, permutes
the order of the interests, and distributes the tasks to different
brokers. To show the cost of resisting collusion attacks, we
compare the end-to-end latency of our solution with another
baseline scenario ‘Single broker’, where only one broker is
used to perform the encrypted filtering as done in a typical
setting. Of course, in such a scenario, no privacy can be
guaranteed if the broker colludes with malicious Pubs or Subs.

The results are shown in Fig. 11. We can see that the
latency of ‘Our work’ almost overlaps with the ‘Single broker’
scenario, whereas there is a big gap between ‘Our work’
and the ‘No encryption’ scenario. These results show that
the extra cost of resisting collusion attacks in our solution
(i.e., using three different types of brokers) is negligible when
compared with a typical single-broker scenario. The main
computation overhead in our solution is added by the data
encryption to ensure data confidentiality and the de-coupling
property. Specifically, when there are 20 tags and interests,
the end-to-end latencies for ‘Our work’, ‘Single broker’, and
‘No encryption’ are 62.521 ms, 62.518 ms and 0.012 ms,
respectively. In this case, the techniques to achieve R1, R2,
and R3 add a 5208.8× overhead when compared to a plain-
text solution.

X. CONCLUSIONS AND FUTURE WORK

In pub/sub systems, publications are disseminated to inter-
ested subscribers through a set of brokers. These brokers are
able to collect sensitive information by accessing publications’
tags and subscribers’ interests. Although existing solutions
enable encrypted matching, they cannot protect subscriptions
of innocent subscribers if malicious subscribers (or publishers)
collude with untrusted brokers. To address this issue, in this

article, we propose a solution that uses three different types
of brokers and splits the matching operation into three phases,
where each phase is executed by a different type of broker.
Even in the case of malicious subscribers (or publishers)
colluding with up two different types of brokers, they are
unable to infer the subscriptions of innocent subscribers.

In this work, the brokers are assumed to follow the protocol
honestly. In practice, compromised brokers may tamper the
data actively. As future work, we aim to investigate approaches
to identify the malicious behaviour of brokers, such as sending
publications to unintended subscribers or not forwarding the
matched publications to intended subscribers. In general, our
goal is to make brokers accountable for actions they perform.

The SE scheme (i.e., SUISE) used in our system only
supports equality check between encrypted tags and interests.
For future work, we will also consider to support complex
operations, such as range queries.

ACKNOWLEDGEMENTS

This research is supported by STRATUS (Security Tech-
nologies Returning Accountability, Trust and User-Centric
Services in the Cloud), a project funded by the Ministry of
Business, Innovation and Employment (MBIE), New Zealand.

REFERENCES

[1] S. Cui, S. Belguith, P. D. Alwis, M. R. Asghar, and G. Russello,
“Malicious entities are in vain: Preserving privacy in publish and
subscribe systems,” in 2018 17th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications/ 12th
IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), Aug 2018, pp. 1624–1627.

[2] D. E. Bakken, A. Bose, C. H. Hauser, D. E. Whitehead, and G. C.
Zweigle, “Smart generation and transmission with coherent, real-time
data,” Proceedings of the IEEE, vol. 99, no. 6, pp. 928–951, 2011.

[3] C. Esposito, M. Ciampi, and G. De Pietro, “An event-based notification
approach for the delivery of patient medical information,” Information
Systems, vol. 39, pp. 22–44, 2014.

[4] M. Cinque, C. Di Martino, and C. Esposito, “On data dissemination
for large-scale complex critical infrastructures,” Computer Networks,
vol. 56, no. 4, pp. 1215–1235, 2012.

[5] I. M. Delamer and J. L. M. Lastra, “Service-oriented architecture
for distributed publish/subscribe middleware in electronics production,”
IEEE Transactions on Industrial Informatics, vol. 2, no. 4, pp. 281–294,
2006.

[6] “Google cloud pub/sub,” https://cloud.google.com/pubsub, last accessed:
November 27, 2018.

[7] “Yahoo data breach,” https://www.theguardian.com/technology/2016/
dec/14/yahoo-hack-security-of-one-billion-accounts-breached, 2016,
last accessed: November 27, 2018.

[8] K. Yang, K. Zhang, X. Jia, M. A. Hasan, and X. S. Shen, “Privacy-
preserving attribute-keyword based data publish-subscribe service on
cloud platforms,” Information Sciences, vol. 387, pp. 116–131, 2017.

[9] M. R. Asghar, A. Gehani, B. Crispo, and G. Russello, “PIDGIN: Privacy-
preserving interest and content sharing in opportunistic networks,” in
Proceedings of the 9th ACM symposium on information, computer and
communications security. ACM, 2014, pp. 135–146.

[10] M. Ion, G. Russello, and B. Crispo, “Design and implementation
of a confidentiality and access control solution for publish/subscribe
systems,” Computer networks, vol. 56, no. 7, pp. 2014–2037, 2012.

[11] C. Esposito and M. Ciampi, “On security in publish/subscribe services:
A survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2,
pp. 966–997, 2015.

[12] B. Shand, P. Pietzuch, I. Papagiannis, K. Moody, M. Migliavacca,
D. Eyers, and J. Bacon, “Security policy and information sharing in
distributed event-based systems,” Reasoning in Event-Based Distributed
Systems, pp. 151–172, 2011.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 14

[13] W. Rao, L. Chen, and S. Tarkoma, “Toward efficient filter privacy-aware
content-based pub/sub systems,” IEEE Transactions on Knowledge and
Data Engineering, vol. 25, no. 11, pp. 2644–2657, 2013.

[14] E. Onica, P. Felber, H. Mercier, and E. Rivière, “Confidentiality-
preserving publish/subscribe: A survey,” ACM Computing Surveys
(CSUR), vol. 49, no. 2, p. 27, 2016.

[15] W. Rao, L. Chen, M. Yuan, S. Tarkoma, and H. Mei, “Subscription
privacy protection in topic-based pub/sub,” in International Conference
on Database Systems for Advanced Applications. Springer, 2013, pp.
361–376.

[16] R. Pires, M. Pasin, P. Felber, and C. Fetzer, “Secure content-based
routing using Intel Software Guard Extensions,” in Middleware 2016.
ACM, 2016, p. 10.

[17] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in S&P 2000. IEEE Computer Society, 2000, pp.
44–55.

[18] C. Raiciu and D. S. Rosenblum, “Enabling confidentiality in content-
based publish/subscribe infrastructures,” in Second International Con-
ference on Security and Privacy in Communication Networks and
the Workshops, SecureComm 2006, Baltimore, MD, Aug. 28 2006 -
September 1, 2006. IEEE, 2006, pp. 1–11.

[19] M. Nabeel, N. Shang, and E. Bertino, “Efficient privacy preserving
content based publish subscribe systems,” in Proceedings of the 17th
ACM symposium on Access Control Models and Technologies. ACM,
2012, pp. 133–144.

[20] M. Nabeel, S. Appel, E. Bertino, and A. Buchmann, “Privacy preserving
context aware publish subscribe systems,” in International Conference
on Network and System Security. Springer, 2013, pp. 465–478.

[21] G. D. Crescenzo, J. Burns, B. A. Coan, J. L. Schultz, J. R. Stanton,
S. Tsang, and R. N. Wright, “Efficient and private three-party pub-
lish/subscribe,” in NSS 2013, ser. Lecture Notes in Computer Science.
Springer, 2013, pp. 278–292.

[22] S. Choi, G. Ghinita, and E. Bertino, “A privacy-enhancing content-based
publish/subscribe system using scalar product preserving transforma-
tions,” in International Conference on Database and Expert Systems
Applications. Springer, 2010, pp. 368–384.

[23] C. Borcea, Y. Polyakov, K. Rohloff, G. Ryan et al., “PICADOR: End-
to-end encrypted publish–subscribe information distribution with proxy
re-encryption,” Future Generation Computer Systems, vol. 71, pp. 177–
191, 2017.

[24] M. A. Tariq, B. Koldehofe, and K. Rothermel, “Securing broker-
less publish/subscribe systems using identity-based encryption,” IEEE
transactions on parallel and distributed systems, vol. 25, no. 2, pp. 518–
528, 2014.

[25] G. D. Crescenzo, B. A. Coan, J. L. Schultz, S. Tsang, and R. N.
Wright, “Privacy-preserving publish/subscribe: Efficient protocols in a
distributed model,” in SETOP 2013, ser. Lecture Notes in Computer
Science. Springer, 2014, pp. 114–132.

[26] E. Onica, P. Felber, H. Mercier, and E. Rivière, “Efficient key up-
dates through subscription re-encryption for privacy-preserving pub-
lish/subscribe,” in Proceedings of the 16th Annual Middleware Con-
ference. ACM, 2015, pp. 25–36.

[27] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT 1999, ser. Lecture Notes in Computer
Science, J. Stern, Ed., vol. 1592. Springer, 1999, pp. 223–238.

[28] M. Nabeel and E. Bertino, “Attribute based group key management,”
Trans. Data Privacy, vol. 7, no. 3, pp. 309–336, 2014.

[29] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure knn
computation on encrypted databases,” in Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data. ACM,
2009, pp. 139–152.

[30] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-
Based Encryption,” in S&P 2007. IEEE Computer Society, 2007, pp.
321–334.

[31] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” in EUROCRYPT 2004, ser. Lecture
Notes in Computer Science, C. Cachin and J. Camenisch, Eds., vol.
3027. Springer, 2004, pp. 506–522.

[32] C. Dong, G. Russello, and N. Dulay, “Shared and searchable encrypted
data for untrusted servers,” in DBSec 2008, ser. Lecture Notes in
Computer Science, vol. 5094. Springer, 2008, pp. 127–143.

[33] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016.

[34] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryption with
non-monotonic access structures,” in CCS 2007. ACM, 2007, pp. 195–
203.

[35] J. Alderman, N. Farley, and J. Crampton, “Tree-based cryptographic
access control,” in ESORICS 2017. Springer, 2017, pp. 47–64.

[36] A. Castiglione, A. D. Santis, and B. Masucci, “Key indistinguishability
versus strong key indistinguishability for hierarchical key assignment
schemes,” IEEE Trans. Dependable Sec. Comput., vol. 13, no. 4, pp.
451–460, 2016.

[37] X. Yao, Z. Chen, and Y. Tian, “A lightweight attribute-based encryption
scheme for the internet of things,” Future Generation Comp. Syst.,
vol. 49, pp. 104–112, 2015.

[38] F. Hahn and F. Kerschbaum, “Searchable encryption with secure and
efficient updates,” in SIGSAC 2014. ACM, 2014, pp. 310–320.

[39] M. R. Asghar, G. Russello, B. Crispo, and M. Ion, “Supporting complex
queries and access policies for multi-user encrypted databases,” in CCSW
2013. ACM, 2013, pp. 77–88.

[40] S. Cui, M. R. Asghar, S. D. Galbraith, and G. Russello, “P-McDb:
Privacy-preserving search using multi-cloud encrypted databases,” in
CLOUD 2017. IEEE Computer Society, 2017, pp. 334–341.

[41] F. Buccafurri, G. Lax, R. A. Sahu, and V. Saraswat, “Practical and
secure integrated PKE+PEKS with keyword privacy,” in SECRYPT 2015.
SciTePress, 2015, pp. 448–453.

[42] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in CCS 2012, T. Yu, G. Danezis, and V. D.
Gligor, Eds. ACM, 2012, pp. 965–976.

[43] “A lightweight Attribute-Based Encryption scheme in c++,” https:
//github.com/ikalchev/kpabe-yct14-cpp, last accessed: November 27,
2018.

[44] “OMNeT++ discrete event simulator,” https://www.omnetpp.org, last
accessed: November 27, 2018.

[45] R. A. Fisher, F. Yates et al., “Statistical tables for biological, agricultural
and medical research,” Statistical tables for biological, agricultural and
medical research, no. 3, 1949.

VITAE

Shujie Cui is a Ph.D. Candidate in Department
of Computer Science, The University of Auckland,
New Zealand, and a Research Assistant in the Large-
Scale Data & Systems (LSDS) group in the De-
partment of Computing at Imperial College Lon-
don, UK. She received her joint M.Sc. degree in
Computer Science from Shandong University, China
and the University of Luxembourg, Luxembourg in
2013. She obtained her B.Sc. degree from Shandong
University, China in 2011. After obtaining her M.Sc.
degree, she worked in the Department of Computer

Science at City University of Hong Kong as a Research Associate. Her
research interests include applied cryptography, security and privacy in cloud
computing and distributed systems.

Sana Belguith , is a Lecturer at School of Com-
puting, Science and Engineering, University of Sal-
ford, Manchester, UK. Previously, she used to be
a Post-Doctoral Researcher in the Department of
Computer Science at The University of Auckland,
New Zealand. She received her engineering degree
in Computer Science from the National Engineering
School of Tunisia, in 2012 and her Ph.D. degree
from the Tunisia Polytechnic School, Tunisia in
2017. As part of her Ph.D. programme, she was a
Visiting Fellow at Télécom SudParis, France. Her

major research interests include applied cryptography, distributed systems
security, privacy enhancing techniques, access control, attribute-based encryp-
tion, and searchable encryption.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC) 15

Pramodya De Alwis is a student at the University
of Auckland completing a graduate diploma in Com-
puter Science. Upon completing his civil engineering
honours degree in 2016, he decided to study com-
puter science and follow his passion. Currently, he is
working as a backend database engineer while also
working on two start ups he has co-founded. His
interests include cloud computing, machine learning,
and data science.

Muhammad Rizwan Asghar is a Senior Lecturer
in the Department of Computer Science at The
University of Auckland in New Zealand. Previ-
ously, he was a Post-Doctoral Researcher at inter-
national research institutes including the Center for
IT-Security, Privacy, and Accountability (CISPA) at
Saarland University in Germany and CREATE-NET
in Trento Italy. He received his Ph.D. degree from
the University of Trento, Italy in 2013. As part of his
Ph.D. programme, he was a Visiting Fellow at the
Stanford Research Institute (SRI), California, USA.

He obtained his M.Sc. degree in Information Security Technology from the
Eindhoven University of Technology (TU/e), The Netherlands in 2009. His
research interests include access control, cybersecurity, privacy, and consent
management. He is a member of IEEE and ACM.

Giovanni Russello is an Associate Professor in
the Department of Computer Science at the Uni-
versity of Auckland, New Zealand. He received his
M.Sc.(summa cum laude) degree in Computer Sci-
ence from the University of Catania, Italy in 2000,
and his Ph.D. degree from the Eindhoven University
of Technology (TU/e) in 2006. After obtaining his
Ph.D. degree, he moved to the Policy Group in
the Department of Computing at Imperial College
London, UK. His research interests include policy
based security systems, privacy and confidentiality

in cloud computing, smartphone security, and applied cryptography. He has
published more than 60 research articles in these research areas and has two
granted US Patents in smartphone security. He is an IEEE member.

