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ABSTRACT

The thesis is concemed with the calculation of carrier

mobilities in organic molecular crystals.

Five models which have been proposed to account for the
trangport of chﬁrge carriers in such crystals are discussed and
evaluated in the light of the most recent improvements in the
estimates of transfer integrals; and from these five, two have

been chosen for further consideration.

Numerical calculations have therefore been made for several
aromatic hydrocarbons and heterocycles under conditions in which the
electron - lattice interactions are both strong and weak, and for
which the crystal wave function may be represented respectively by
localized molecular wave functions, and by Bloch sums of molecular

wave functions within the crystal.

The use of molecular orbitals based on single Slater = type
atomic orbitals in the calculations of energy band structures has
been assessed; and a procedure, based on a simple configuration -
interaction treatment, has been developed for the consideration of
the effects of band - band interactions in those crystals wherein
the molecular energy levels, which give rise to the energy bands

in the solid, are degenerate,

A study has also been made of the effects on the calculated
mobilities in anthracene of the temperature dependehce of the .

transfer integrals,
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CHAPTER (1)

INTRODUCTION




The behaviour of materials when subjected to an applied field of
varying intensity led initially to their classification into
(1) conductors (i.e, those such as copper and graphite that readily
conduct electricity)and (2) insulators (i.e. those such as diamond
that did not) .

The conduction properties of metals were accountable by Drude
and Sommer”ield in terms of free-electron theory 055; whilst the
distinction between conductors and insulators was resolvable in terms
of the band theory of solids. The origin and mathematical description
of energy bands in high resistivity solids is discussed at some length
in Chapter 2; so for the moment it is sufficient to give a purely
descriptive account of the processes involved.

When atoms (or molecules) condense to form a solid, the
discrete atomic energy levels are broadened due to nuclear-electronic
and electronic-electronic interactions. Thus the discrete energy
levels of the atom degenerate into broad energy bands in the solid.

The two extremes cited above are illustrated in figure (1.1).

Fermi surface at 0°K.
Band

occupied states

conduction band.

Energy gap.

valence band.

(b)

Figure (1.1)
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Figure (1.1) (a) shows the band picture of a typical monovalent
metal, In the ground state electrons with paired spins will £ill
the lower half of the energy band and hence this will be incapable of
supporting conduction. However, there are current carrying states in
the band an infinitesimal distance in energy above the top of the
filled band, thermal fluctuations will, therefore, be sufficient to
excite electrons into these levels and the solid will be a good
conductor. Because of the very low energy of activation of excess
carriers the conductivity will show little temperature dependence,
except in so far as this governs the mechanism by which the carriers
are scattered.

The second situation shown in figure (1.,1) (b), illustrates the
case for a solid having a full valence band above wﬁich is an energy
gap, E gap, followéd by a conduction band., In the ground state such
a system will be incapable of supporting conduction since a finite
excitation énergy is required to carry electrons.over the energy gap
into the band of higher energy. If the necessary energy cannot be
supplied by the thermal or electric fields, then the solid will act
as an insulator. However, if the energy gap is relatively small such
that at a particular temperature, T , there is a small but finite
density of electrons excited by thermal fluctuations or by other means
in the upper band, then the material will have a small but observable
conductivity., Since the density of electrons in the upper band is
characterized by‘a Boltzmann factor of the type exp(- Egap/koT)’ the
conductivity will increase rapidly with temperature. Materials
exhibiting this type of electrical behaviour, of which many organic
solids form a part, are termed semi-conductors., Organic materials
exhibiting the above behaviour are usually termed "Organic

semi-conductors",
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The first paper on the subject is considered to be that of
Stoletov (1), who, in 1888, observed the existence of the photo
voltaic effect in dye films irradiated with ultraviolet light,

Later Pochettino (2) in 1906 reported the photo conductivity of
anthracene which was studied further by Byk and Borak (3) and

Volmer (4), however, it was not until the 1940's that the study

of the electrical properties of organic solids began to gain momentum,

The study of semi~-conduction processes in organic solids,
especially compounds of biological interest, received a stimulus
after Szent-Gyorgyi's (5=7) publications on their biological
implications appeared in 1941, In the years that followed many papers
were published on both theoretical and experimental aspects of the
role of electronic conduction in biological processes (8).

Brillouin (26) has suggested that the periodic structure of
deoxyribonucleic acid (DNA) should give rise to an energy band
structure and several calculations (27), based on simplified model
structures and using the SCF=LCAO ~ crystal orbital method (24), have
been reported.

A further stimulation was provided with the widespread success
of inorganic semi-conductors in the field of electronics., However,
the range of inorganic materials is only a fraction compared to the
immense number of organic materials that are available which led to
the idea of synthesising a particular molecule for a definite purpose.
A rather intriguing example of this is the proposal éy Little (25) of
a possible structure for a superconducting polymer which, according
to Little, should remain superconducting at and well above room
temperature.

In a large nroportion of the earlier work on the dark

conductivity of organic solids, the experiments took the form of
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determining the temperature variation of the resistivity (or
conductance). It was found that the conductivity, ¢ , invariably

obeyed the equation

o ; o9 exp(= E/2kqoT) (1.1)

where ky 1is the Boltzmann constant and o 1is a constant, largely
temperature independent and termed the specific conductivity. From
the gradient of the 1oge(a) vs 1/T curve the value of E was
determined, The value of E wusually in the region 0.5 + 3.0 eV. was
then ascribed to the energy band gap for intrinsic carrier generation.
However, more recent photo conductive experiments indicafe that this
is very much an over simplification of the mechanism of charge carrier
generation and that the true energy gap for intrinsic generation of
charge carriers is, for anthracene at least, much higher (9). Pope,
Kallmann and Giachmo (9) estimate that the band gap for intrinsic
carrier generation is greater than the energy of the singlet state in
the isolated molecule.

The mechanism of carrier generation in organic molecular
crystals, particularly anthracene, has been extensively studied and
various mechanisms have been proposed, however, the subject is far
too diverse to discuss here. The review article of Le Blanc (10)
and the references quoted therein contain more detailed information.

On the basis of solid state theory the conductivity, o , is
related to the velocity with which a carrier moves under a unit

electric field, u , through the equation :

O =nzeuy (1.2)
when only one type of carrier is present, and

en. u. (1.3)
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where i types of charge carrier are present and Zoy Myy and 1,

1
are the charge, number and drift mobility, respectively of specimen i.
e 1is the charge of the electron. The drift mobility, often shortened
to simplify the mobility, wu , of charge carriers is a more
fundamental property of the crystal than the conductivity, o , and
can be considered as providing a measure of the ease of which an
electron, or hole, can move from molecule to molecule in the solid.
The study of mobilities of excess carriers in organic single crystals
has been enhanced by the introduction and wide spread use of Kepler's (11)
pulsed photo conductivity technique and the discovery by Kallmann and
Pope (12) of techniques for forming ohmic injecting contacts, Room
temperature measurements of the drift mobility indicate that, for
aromatic hydrocarbons, they are of the order 1 em?/volt=sec and,
for the relatively few cases in which the mobility along different
crystal axes ~  has been determined, anisotropic. Temperature
dependence studies indicate that the mobility almost always varies
as some inverse power of thé absolute temperature. Kepler (11) found
a T°! dependence for the hole mobility along the a axis in
anthracene. . Bogus (14) observed a variation T"2 between 230° and
270°k, Delacote (15), T~ !e¢7 between 280° and 400°k for hole
conduction in the c¢' (a x b) direction while Raman et al (16)
observed dependences of T~le* - T72.3 for different cfystals between
295° and 333%. Belper (17) found a T~1s5 wvariation for both holes
and electrons in the ab plane of pyrene, T 1¢3 and T"2.0 | for
holes and electrons respectively, along the c' axis. A notable
exception to this kind of temperature dependence is the electron

mobility along the c' axis in anthracene which has a temperature

variation of T*0.3 |
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In contrast the mobilities in ferrocene and triphenylamine
are very much smaller than 1 cm?/volt sec. and are temperature
activated (18) suggesting a different mechanism to that in higher
mobility crystals.

The T temperature dependence of the drift mobility observed
for aromatic hydrocarbons is qualitatively the same as that found in
iﬁorganic semi~-conductors, known to be ameniable by energy band
treatment, while the much lower, thermally activated mobilities in
ferrocene and triphenylamine are similar to those in nickeé oxide
crystals with small amounts of lithium as impurity (19). Yamashuta
and Kurowasa (20, 21) have explained the experimental features of N;0
in terms of the Heitler-London scheme in which the electron or hole is
bound to a particular site for a sufficient length of time to polarize
the surroundings resulting in the carrier becoming self trapped.

On the basis of this model, Yamashuta and Kué?asa established an
upper limit for the mobility of 0.6 cm?/volt-sec.

The qualitative agreement of the temperature dependence of the
drift mobility in aromatic hydrocarbons and inorganic semi-conductors
has led several authors to attempt theoretical treatments of the
transport in organic crystals by the standard Bloch band theory
method (38), By considering the crystal to be absolutely and
perfectly rigid and treating phonon interactions as small perturbations
which scatter carriers between eigenstates within an energy band,
reasonable agreement with the observed drift mobilities were obtained.
In addition the Hall effect in anthracene was predicted to be anomolous
in both sign and magnitude (100), a point which has since been verified
experimentally (22).

Several alternative models of charge carrier transport have been

proposed in which conduction occurs via resonance transfer between
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localized states. These together with the energy band model are
discussed in greater detail in Chapter (2).

This thesis is concerned with the calculation of the mobility
of excess carriers in organic homomolecular (23) crystals, these
form the simplest type of organic solid. Because of the lack of
data relating to the mechanism of conduction it was necessary to
calculate the mobility by two models correspondiég to the cases
where the mean free path of the carriers is either greater than or
less than the lattice spacing. At the instigation of this work
calculations had been restricted to naphthalehe, anthracene and a
few simple polyphenyls and subsequently these have been extended to
include a series of condensed polyacenes and a number of nitrogen

containing heterocyclic molecules,



CHAPTER (2)

THEORIES OF THE TRANSPORT MECHANISM IN ORGANIC MOLECULAR CRYSTALS

2.1 Introduction,
2.2 Tunnelling and Hopping models.
2.3 The energy band model of conduction in

organic molecular crystals,
(i) Origin of energy bands in solids.

(ii) Construction of the crystal wave function =

The Bloch Theorem,
(iii) Derivation of the energy expression.

(iv) Conditions imposed by the energy band model.



2.1 Introduction

The proposed models of charge carrier conduction in organic solids
can be roughly divided into two groups (1) those in which the carrier
moves via a series of localized states (44,47-63) and (2) those in which
conductioﬁ occurs in a wave-like mntioﬁ, the carriers being periodically
scattered bf lattice phonons, crystal defects etc. The ﬁodels in the
localized state group can be further subdivided into those in which the
carrier is envisaged as tunnelling through a series of potential barriers
(47-50, 52-54), 59-63), which are termed tunnelling models, and those in
which the fransfer probability distribution is randomized after each
transfer (44,55,56,65), i.e. the carrier is arbitrarily assumed to be
gcattered after each transfer, such models are termed resonance transfer (65)
or hopping (44) models. The model‘of Gosar and Choi (51) cannot be
strictly assigned to either of these two subgroups, but in many ways it
has strong connections with the latter.,

It is the object of this chapter to discuss some of the more
sophisticated of the above models in the light of more recently reported
values for the energy transfer integrals and also with a view té the
extension of the models to molecules other than naphthalene and anthracene.
Sincé, in general, the extent of electron-phonon coupling is unclear it
is necessary in several cases to calculate the mobility of excess
carriers in both the localized and delocalized representations. For
convenience the models are discussed in two sections corresponding to
the two groups outlingd above.

In section (3.4) the conditions to be satisfied for the energy

band model to be applicable are outlined

2,2 Tunnelling and Hopping models

Of the tunnelling models of carrier transport the most refined
are those of Keller and Rast (60) and Keller (63) which are essentially

extensions of the models of Eley et al in which the temperature
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‘dependence of the mobility is incorporated into the model by allowing
the energy barrier to vary sinusoidally éé a regsult of lattice
vibrations, Such variations are predicted fo give the mobility a linear
dependence with temperature, the slope of the curve being either positive
or negative depending upon the parameters chosen., Application of the
uetﬁod to anthracene revealed that the parameters which gave good
agreement with the experiﬁeﬁtally measured mobilities (69,75) gave rise
to a temperature dependence opposite tovthat obtained experimentally (69)
while those chosen to give a negative temperature dependence led £o rather
high values for the mobility. The temperature dependence of the model
has been criticised by Tredg%gold (64) who pointed out that within the
framework of the model the mobility should always ingrease with
incréasing temperature., An additional anomaly in the model, as mentioned
by Keller and Rast (60), is_that the mobility of excess electrons, which
are associatéd with the first excited state of the free molecule, will
always be greater than that of excess holes, which are associated with
the highest bonding ublecular orbital,

The resonance transfer model of conduction in organic molecular
crys;als was first proposed by Keafns (65). Based on time-dependent
perturbation theory; the time in which an electron, localized on
molecule i , takes to move to a neighbouring molecule j is given

by (66)

= 'y ~'- .‘ !

TR AT Lt A P AL L (2.1)
where H' describes the perturbation of the donor molecule {1 ,
produced by the neighbour j , wi ’ wj are the molecular wave functions

of molecules i and j . The mobility of charge carriers can be

related to tij through (67,68) :

u = a2 e/(kyT tii) (2,2)
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where a 1is the transfer distance and ko the Boltzmamnconstant,
Mobilities calculated on this model are predicted to vary approximately
inversely Qith temperature, T ., Application to crystalline
anthracene (65)4showed the'predicted anisotropy of the hole mobility

along the crystallographic axes a, b and c' (a xb) tobe:

Wb Zuaa - Suc'c' (2.3)

where u.. are the diagonal elements of the mobility tensor, yu ,

corresponding to the mobility along axis i . This is in good agreement
with experiment (69,75) but the predicted anisotropy of the electron in

the ab plane was
Maa i zubb ’ (2.4)

opposite to‘that_observed experimentally. The absolute values of the
unbilities calculated by Kearmns (65), were ~ 5 times too low, wﬁich,
in view of the approximafions used to‘estimate the integrals in
equation (2.1)‘caﬁ be considered to be reasonable results.

In the above model the effects of electron-phonon interactions
are not considered explicitly, This problem has however been treated
in some detail by Goser and Choi (51) who studied the effects of the
fluctuations of the polarization energy and the transfer integrals on
the electron and holé motion in crystalline anthrécene. The‘acoustic
and intermblecular vibrations of the lattice displace or change thé
orienﬁation of the ﬁolecules within the crystal resulting in
fluctuations in the poiarization energy, thus coupling the electrons
with the phonons, and the energy transfer integrals, The latter types
of interaction has also been studied by Friedman (70)., 1In a very
elegant piece of mathematical analysis in which the wave functions of

the charge carriers are represented by Wannier functions (76,77) and



the mobility calculated using the linear response theory of Kubo and

Tomita (72,73), Gosar and Choi derive the following expression for the

mobility tensor, M 3

I § (g = ) (g = xp) Wy ¢ Hletg, v

a0 + 1] }al,) (2.5)

where Jij is the transfer integral between molecules i and j whose
geometrical centres, at equilibrium, are defined by the vectors x; and
lﬁ respectively, The parameters wu(i,j,)) and a(i,j) contain the
effects of'electron-phdnon ihteractions and n()) is the thermodynamic
equilibrium number of phonons in mode X . The second term in curly
brackets represent the contribution to the mobility u from phonon

assisted tunnelling and can be related to the transfer integrals, J

ij *
through
‘ 2
koT a,
s s 1 0 s
Tlu, g 012 [2fa0) +1] = = [=4)
A < p8c r,, 1
ij J
quax * rij
_ 8in(x)

0 Q=== (2.6)

where 9ax is the wave number corresponding to the Debye frequency;
Qe ™ 121r2/Vc ’ Vc being the vplume‘of the unit cell, o is the
density of the crystal, and s the velocity of sound in the solid.
Cosar and Choi assumed the differential in equation (2.6) to be of the
form,

3, 4 _

Jr,, = A Jij , (2.7)

1]

where A 1is constant, and using a value A =0.4nm. estimated that the
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effect of phonon assisted tunnelling is to effectively increase the
energy transfer integral by between 35 and 697 depending upon the value
selected for the velocity of sound. Using the energy transfer integrals
of Katz et al (40), Gosar and Choi obtained values of the elements of
the mobility tensor in very good agreement with those obtained
experimentally for all but electronic conduction along the c' axis,
The lack of agreement along this axis they claimed was a result of
inaccuracies in the transfer integrals,

The calculation of transfer integrals has been investigatediby

GClaeser and Berry (44) who showed that they could be expressed as @

J.. = [;(resonance) + AJ(resonance) + J(electrostaticil o Sij (2.8)

ij
where J(resonance) is a sum of terms involving the neutral molecule
potentials (for excess electrons) or positive ion-molecule potential
(for holes) and terms arising from the intermolecular exchange.
AJ(resonance) gives the correction to these terms which results from
the use of polarized orbitals. J(electrostatic) represents the
of f-diagonal elements of the long range interaction between the
access charge and the induced dipoles on neighbouring molecules, Sij
is the product of overlaps of neutral molecules polarized by a charge
at i with a neutral molecule polarized by a charge at j ., Glaeser
and Berry considered two cases, one in which the outmost orbital was
polarized, the second in which all seven orbitals were polarized.
Explicit calculation (44) of AJ(resonance) and J(electrostatic)
for the first case showed the two integrals to be of opposite sign and
very much less than J(resonance) thus neglect of those interactions
introduces errors well within the computation errors of J(resonance).
Thus for this case the principle effect of including polarization has

in the overlap factor, S,. , which serves to reduce J(resonance) by

i]

a factor of about a half, TFor the second case the term AJ(resonance)
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was found to be extremely small, the overlap factor Sij very close to
unity while the term J(electrostatic) was an order of magnitude smaller
than J(resonance). Therefore for this second case the effects of
polarization can be neglected. The two functions described above
represent the two extremes of the polarization and the true effect will
be a compromise of the two.

The carrier mobilities, calculated using the integrals of Glaeser and
Berry (44) for the two extremes of polarization and the method of Gosar and
Choi (51), are shown in table (2.1). From these it can be seen that
transfer integrals, incorporating the effects of molecular exchange of the
excess electron or hole, serve to vastly increase the calculated values of
the mobilities which, with the exception of the electron in the .E'
direction, are of the order of 4 - 10 times too large. The high values of
the mobility probably arise as a result of inaccuracies in the calculated
values of the polarization fluctuation constant, « s the accuracy of which
Gosar and Choi claim is only an otder of magnitude value. This is
substantiated by the essentially correct prediction of the mobility
anisotropy and the ratio u _/u_, but again the electron mobility along
the ¢' axis is an excepéion to the rule., A possible method of
overcoming the problem is to treat the congtant, o , as an adjustable
parameter. However, this would put the model on par with the energy band
model, which is treated in a later section, since, strictly speaking,
both models would only be capable of predicting mobility ratios, It is
worth noting that if the expression for the mobility on the Gosar - Choi

model is written in the form

Te

u = St

ij oT

-

R R C R (2.9)

J

where Jij' is the transfer integral, including the effects of phonon

assisted tunnelling, between molecules i and j » it is very similar
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Gosar and Choi Glaeser and Berry Expt.
I II III v I II v VI
1.8 2.4 16 7.0 58 L2 0,95 1.710.2
9.5 10,0 5.4 4.5 1.7 1;1 0.98 1.1&9.1
0.04  o.04  0.07  0.01 0.3 0.2  0.15 0.4
| - (a)
I II III IV I II v VI
6.6 6.6 33 3.7 0.9 0.6 0.5 1.2£p.2
16.2  16.2 7.3 8.3 1.8 1.2 1.02 1.859.2

5.4 5.4 1.4 1.6 1.8 1.2 1.02 0.8
| (v) |
Table(2.1)

Values of the mobllitles* of excess electrons(a) and holes(b)

computed ﬁsing the Gosar-Chol and Glaeser-Berry models.

I calculated using the integrals from Ref (44) (no polarization)
and s = 1.77p3 m/sec.

II calculated using the integrals from Ref(44)(no polarization)
and s = 3.44p3 m/sec.' |

IIIcalculated using the integrals from Ref(44) (outer most orbital
polarized) and s = 1.77w3 m/sec.

IV calculated using the integrals from Ref (44)( outer most orbital
polarized) and s = 3.44x3 m/sec.

V values taken from Ref(44).

VI Ref(11).

*units: 1wp-4 m*/volt-sec.
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to the band-model expression for the mobility in the mean free time

approximation (38) :

ety

5 7 TT O

i vj>> (2.10)

with 1ty proportional to -é and the velocities v, to (r. - r.)J..' .
J =J 1 1]

These similarities are reflected in the predicted anisotropy of the

mobility tensor, which is rather fortuitous since extension of the

Cosar = Choi method to other organic molecular-crystals is limited to the

few crystals in which the velocity of sound is known.,

An‘ altémative method for the mobilities of excess carrier in organic
solids has been proposed by Glaeser and Berry (44). In some ways the
model has close similarities with the resonance transfer model of
Kearns (65). As this model has been used extensively in this thesis the
model will be treated in rather more detail than has been given to the
previous models.

The crystal wave function is constructed as an antisymmetrized
product of molecular wave functions in which one molecule is either a
positive or a negative ion and the remaining molecules are perturbed by
the ionic molecule, If, at time t = O the charge is localized on

molecule 1 then the exact (non stationary state) wave function is

given by 3

2(0) =Av,(2ax1) 1 v, a (2,11)
1 . : J
jk |
where a is the number of filled orbitals in the neutral molecule,
wi(za + 1) denotes the wave function of appropriate molecular ion,
v.(l)(Za) "is the wave function of a molecule in the field of this ion
as A is the normalized antisymmetrising operate#, 'permuting electrons

between the molecules.
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In the Glaeser =Berry model (44) the excess charge originally
localized on molecule 1 (say) moves slowly onto other molecules so that,
at a particular time, t , the crystal wave function &(t) becomes a
supposition of ¥, and other Wi's » Where ¥, is the molecular wave
function of the i-th molécule, After a short time, At , it is supposed
that the charge is relocalized on a molecule, j , in the near

neighbourhood of molecule 1. Thus the wave function ¢(At) is given by ¢

o(At) = Wj

Physically this means that in time At the excess carrier has jumped from
molecule 1 to molecule j. An additional assumption is made that the only
transitions of importance are one step jumps whose jump probabilities and
frequencies are independent of each other. This assumption is justified
by the small values and rapid depreciation of the perturbation matrix
elements (the transfer integrak). This being the case the system can be
treated as a two state system and the wave function ¢(t) can be expanded
in the wave functions Wi of the unperturbed time dependent wave equation
where the expansion coefficients are time dependent.

Within the assumptions of the model outlined above the charge

localized on molecule 1 at t = 0 moves to molecule i in time

t, = h/4|Ji| (2.12)

where lJil is the transfer integral between molecule 1 and i . This
expression is.similar to that used by Keams (65), however, on their
model the oscillation frequency is calculated on the assumption that
molecules 1 and i are effectively isolated such that resonance

transfer occurs only between these two molecules in which case

t, = h/2|Ji|
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However, the Glaeser = Berry model requires that there are several
available states so that the wave function localized about molecule 1

at short times is

-~

o(t) T ¥, + ] sin@|3,|t/m)y, | | (2.13)

ifj
The probability that the electron jumps to a particular site j will be

Tz - cj'l/ g t,~! N (2.14)
where Eﬁ is the vector connecting ;he geometrical centres of molecules
1 and j and the summétion 1 goes over all molecules in the
neighbourhood of molecule 1 . On the assumption that the probability
distributions, 1(x) , are randbmized after each jump the system can be
treated as a stationary Markoff process. This enables the basic
probability distribution t(gi) to be related to the prdbability
distribution, w(x|y,t) , of the particle at position y , originally
at x , after time t , after a large number of jumps (78). 1In effect
the second moments of the probability distribution w(x|y,t) are simply
given by the second moments of the distribution ngi) multiplied by
the number of jumps. All that remains is to relate the probability
distribution to the diffusion.

Letting the probability of finding a particle, originally at x
at time t =0 , after time At at position y be w(x|y,t + At) then

by the Smoluckowski equation

w(x|y,t + At) = _[dz w(x|z, t)w(z|y,At) (2.15)

Consider the integral

f&y R(y)-%? wix|y,t) . (2.16)
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where R(y) 1is any function obeying the relation
R(y) »0 y+*tw
Rewriting equation (2.16) in the form

fay R(y) Fxly,v) = 40 Jay Ry [wixly, esa) = wixly, 0] (2.17)

and substituting for w(x|y,t+At) from equation (2.15) gives

LU ay Ry [ dz wixlz, v z]y,a0) - Jay Rty)wtx|y, 00} (2.18)

Rearranging the order of the first double integration term in equation

(2.,18) in the form

fdz w(x|z,t) J dy R(y) w(z|y,At) (2.19)

expanding the arbitrary function R(y) as a power series about z

R(y) = R(z) + (7=2)R'(2) +5(3-2)2 R"(2) + O(3)
and ignoring terms 0(3) , equation (2.19) becomes
fdz w(x|z,t){R(2) f dy w(z]y,At) + R'(2) /.dy(y-z) w(z|y,At)
+ 3 '@ [ ayty)2 wizly,a0)) (2.20)
Since the probability of finding the particle somewhere within the system
is 1,

| .fdy w(z|y,At) = 1 (2.21)

and assuming that there is an even probability of the particle moving

backwards or forwards, i.e. w(z|y,At) is an even function, then

.[dy(y-z) w(z|y,at) = 0 (2.22)

thus equation (2.20) reduces to

fdz w(x|z,t) [R(z) +-21- R"(z) dy(y-z)? w(z|y,at)] (2.23)
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Substitution of equation (2.23) into equation (2.18) leads to
Jndy R(y) w(xly,t) At+0 Idz w(x|z,t) R(z)
+-%-f dz w(x|z,t) R" (z) f dy (y=z) 2w (z|y,At)
fdy R(y) w(x|y,t) (2.24)

The first and last terms of equation (2.24) are identical apart from the

dummy variable of integration and therefore cancel leaving
1 ™
dy R(y) = wixly,©) =5 [ @2 " @) wixly,®)
o J =22 wizly,atey (2.25)

The second integration, over variable y, in equation (2.25) is just the
second moment of the distribution function w and since the basic
probability distribution, <t , is independent of the initial position of
the particle this will be reflected in the distribution function w .
Then the quadratic moment, B , of the distribution will be independent

of z and equation (2.25) reduces to

Q[dy R(y) (xly,t) =3 j—dz R" (2) w(x|z,t) (2.26)

Partial integration of the second integral, together with a change of the

durmy variable from z to y gives @

jdy R(y)[ w(X|y.t)- —wixly,t)] = o0 (22D

3y2

which must hold for all functions R(y) therefore

2 otxly,e) = B2 Lxly, 0 (2,28)
t ’ 2 32 '
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This is a special form of the more general Fokker-Plank equation.
Comparison of equation (2.28) with the normal diffusion equation (39)

shows that the diffusion D is simply -% therefore

D = -% Secoﬁd moment of the distribution function

Thus
i ‘ ‘
where xéi) -is tﬁe component of fhe vector r. in the direction a,
and N 1is the number of jumps. DqB can be related to the mobility tensor
" through the Einstein equation |
T (2.30)

The number of jumps per second is given by

N = gt_(_}:i)/ti | (2.31)
Mobilities calculated on this model (44) give fair agreement with the
experimentally obsefved values both in the anisotropy and magnitude of the
mobilities, however, the model has been criticized (51) in that in no way
are the effects of phonon interactionsntaken into account, This problem
was noted by Glaeser‘and Berry (44) who stated that to consider such a
probability distribution would require‘a detailéd analysis of the
acoustical phonon spectrum as well as an estimate of how the various
transfer integral were affected, an accurate treatment of which at the
moment is out of the question, The second term, that of variation of
traﬁsfer integrals with displacement from equilibrium, could be incorporated
into the Glaeser-Berry scheme in a semi-quantitative sort of way by
including in the expression for the transfer integral, Jij (equation (2.6)),

a term of the type (51)



2n+l1
1 koT (-1) (qmax X rji)
s prij (2n+1) (2n+1) (2.32)

The symbols used in equation (2.32) have been defined previously (see
equation (2.5)). The effect of inclusion of such a term would be to
increase the transfer integrals by between 35 and 69% (51) depending upon
the value used for the velocity of sound, s . The mobility of excess
electrons and holes in anthracene have been calculated on the Glaeser;Berry
model using the transfer integral of Giaeser and Berry (44) and incorporates
the term representing the fluctuation of the transfer integrals, the results
are given in table (2.1) together with the mobility as calculated by
Glaeser and Berry. As can be seen from the table the calculated values of
the mobility are in good agreement with those experimentally determined,
however, the predicted anisotropy of the mobility, with the exception of the
electron mobility along the c'-axis, is not as good as that of the
Gosar~Choi model. In addition neglect of phonon interactions still

predict values of the mobility within a factor of 2. As has beeﬁ |
previously stated the velocity of sound in organic solids is, generally
speaking, unknown, therefore the results quoted in this thesis are for

the case where phonon assisted transfer is neglected.

2,3 The energy band model of conduction in organic molecular cystals

2.3(i) Origing of energy bands in solids

On the basis of the energy band model the quantum states of an organic
ﬁolecular crystal can be traced back to their origin in the isolated
molecules of which the solid is composed. If one imagines that the N
molecules of the crystal, N being a large number, are arranged in their
lattice positions but at many times their normal separations such that the
interactions between the molecules are negligible, then the quantum gtate
distribution for such a system would be essent1ally that of an. N-fold

degenerate molecular state. As the molecules are brought to their
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equilibrium positions each energy level associated with a particular
quantum state will be modified since the molecular wave functions
overlap and the quantum states will no longer be restricted to single
molecules but instead will extend over the whole crystal. Thus each
molecular energy level leads to a band of energy levels in the crystal,
In the process of splitting the number of quantum states in the atom or
molecule remains invariant: i.e. the number of quantum states in the
energy band will be the same as the number of quantum states from which
it is produced. Furthermore the width of the energy band arising from a
particular molecular energy level will be independent of the number of
molecules in the crystal but will be dependent upon the magnitude of the

interactions between molecules in the near viecinity of one another,

2,3(ii) Construction of the crystal wave function = The Bloch Theorem

The periodicity of a crystal can be described by specifying a set of
vectors R. such that if f£(r) 1is any function which is periodic with

the lattice then the function f£(r) is unchanged upon displacement by

any vector Ei

£(x +R;) = () (2,33
The vectors R, can be expressed in termg of three primitive
translation vectors 20 3y and 2, |
e B T P18 YR 8t y3 8, | (2.34)
where nij are integers,
Such periodic behaviour can be described in terms of a set of
translation operators {_s_:_l_l}_i} where {£|§i}. has the property that if

\
f(r) 1is any function of position

lelR; }(x) = f<£+.§i)' (2.35)

The translation operators {EiLlii} form an Abelian group of unit

element, € o
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)

If the potential energy of an electron at position r is
denoted V(r) then since the potential energy must be periodic with

the lattice
V() = v(r +_1_{_i) (2.36)

As a result the translation operators commute with the Hamiltonian for
an electron in a periodic potential and thus if the Hamiltonian of the

system is denoted H
[{e|g;}, ] = o L (2.3D)

Consequently the wave function of an electron in a periodic potential may
be chosen to be simultaneously an eigénfunction of the energy and all the

'translatioﬂs. If ¢(£) is such an eigénfunction then
{e[R;} o(x) = o(x+R) = A (D) (2.38)
and

le(x + RDIZ = [2]2 [e(D)]2 (2.39)

But the wave function of the electron mi;st have the periodicity of the
léttice
le¢z + R)[2 = [e(m)|2 | (2.40)
and Ai must be a complex number of modulus unity i.e, Ai - exp(i ei),
If the two translation operators {EIBi}’ {el_r_{_j} act in

succession then the subsequent translation is equivalent to that

produced by the single translation operator {el_l_{_i + Ej}
{Efﬁi} {elﬁj}‘b(ﬁ) = o(x +R, "’Bj) - _)‘i>‘j ¢(xr)

and {e|R, * Rl = Ay 00D
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Therefore the product of the eigenvalues corresponding to the different
translations must be equal to the eigenvalue of the combined translation.

This condition is satisfied if
6. = k . R,
-— -1

where k is an arbitrary vector that is the same for each operation

i k.ﬁi
o(x +R,) = e ¢ (x) (2.41)

This result is known as the Bloch theorem (80) and the vector k is

referred to as the wave vector.

2,3(iii) Derivation of the energy expression

The energy of a crystal, E(k) , with Hamiltonian, H , and wave

function (k) can be expressed:

<Q(k) [H]ak) >
<) [ak)>

E(k) (2.42)

Expanding the crystal wave function Q(k) as a Bloch function of the
molecular wave functions, Wl s gives:
exp(i(r - 1)) <<I>2|H|<I>m>

Ek) = [ ) (2,43
m ¢ L1 <o le >expliz = r)) ‘
m

o

which can be expressed as

| ) {<¢£|H|¢z> + méz exp(ngo(gnl-;2))<¢2|H|¢m>}

E(k) = z I Z (2.44)
- {<t |6 > + exp(i.k.(xr =1 ))<¢ |9 >}
AR AR S X S Sy A
Setting £ = 0 and suppressing the sutmation over £ the above
equation reduces to
<0p|H| 09> + ] exp(i.k.r )<oy|H|e >
m#0 -n m
Ek) = (2.45)

1+ exp(i k.r )<¥o|V >
mio --n m



- 27 -

It is generally assumed (38-43) that the overlap integral <W0,wm>

is zero. Furthermore, it is assumed that the Hamiltonian, H , can

be partitioned into terms representing all the potential energy terms
involving the excess electron, Hy , and the remaining terms representing

the Hamiltonian in the absence of the excess electron, Hy . Thus

H = ﬁo + H, . » (2.46)

The wave function, Vz » for a crystal containing an excess electron

sited on molecule % 1is of the form:

Yo = a8 D wa) 1 p®(2a L (2447)
%L

where ¢zn is the n-th molecular orbital occupied by the excess elecffon
on molecule 2 . wz(Za) is the molecular wave funection of‘molecule 2,
wj(l) is the wave function of the molecule at j in the presence of the
excess charge on molecule £ , and" A is the normalized antisymmetrizer i
ﬁermuting electrons between the molecules, If the perturbations due to
the excess electron are small (i.e, if the effects of polarization #re

negligible) the above expression reduces to (2.48), Note that this

assumption is consistent with the zero overlap approximation

Y, = A ¢2n(1).¢z(2a) jgz wj(Za) 7(2,48)

Making use of the approximation that the functions Wz are eigenfunctions

of Hp , and invoking the zero overlap approximation, the k dependent

part of E(k) can be expressed as (41):

B = ] emlkr) <oliy]e (2.49)

m

where H; = vcryst(r) = Vp(r)
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and Vcryst and Vy. are the crystal potential and the neutral
molecule potential respectively. It is generally assumed (38 = 43)
that the crystal potential can be approximated by a linear
combination of.neutral molecule potentials ¢

Veryst® = gvn(-’-’ -r) (2.50)

with Vn(g - rn) of the form (41)

a . .
- i_ i
Vn(£ rn) vcore * igo (2Jn Kn ) (2.51)

The summation over i runs over the occupied molecular
orbitals ¢n1(u) of molecule n where u stands for the space
coordinates xu, yu, z¥ of the occupying i electron, Jni and

Kn1 are the coulomb and exchange operators of the i-th molecular

orbital of the n—th molecule defined by :

. . . 2 . .
Ihel, () = <o T2) l%;l 8 12> ¢, (D)
. . . 2 . . (2'52)
1.3 - 1 e __ ] ]
K © g0 (1) = <4 7(2) Irlzl ¢.1(2)> ¢ (1)

and Vcore is the potential energy operator of the core electrons

and the atomic nucleii. In the approximation that the core states
can be considered localized at the nucleus on which they are centred,

i.e., exchange interactions of the type defined in equation (2.52) are

neglected, then VCore can be expressed as

M
Veore Agl ZA/RA g <6, (2)|T12 léA(2)> (2.53)
core states



RA is the disfance of the electron from the A-th nucleus of
nuclear charge ZA ’ eii) is the atomic wave function of the
i=th core state and ), is the distance between electrons 1 and
2. In practise the atomic core states are constructed from the
wave functions of the 1ls, 2s, 2p, and 2p_ atomic states for first
row elements. |
| Substituting equation (2.53) andkequation (2.52) into
equation (2,51) and the resulting expression for Vn(s - rn) into

equation (2.49) it can be shown that the energy wave vector

relationship is

M

I {z,/R,

ACIEN exp(ik.r_) {<¢5(1)]- L

- ] <e§i)(2)lrlz‘lleii)(2)>}[¢m“(1)>
i core «
store

a . .
+ 2<¢o“<1>l_Zl<¢m?<2>lr12‘1|¢mf(z>>l¢o“<z)
il=

- a . .
+ <0t (] ] <o F@)]r, e "(2)>]40" 2> ) (2.54)
i=0

Expanding the molecular orbitals, ¢ , in terms of a basis set of

- atomic orbitals, u, E'(k) becomes :

. T n _n ?
E'(k) = § exp(kk.rn? Z ¢ Cg [<ua|- ZA/RA
mE0 A=1

a,B

- Z {é(i)lrlz-lleéi)> |u3>

. A
i core
store
a m . s
+ 1] et et 2<u |eu e, " u >|u, >
i=l &,y § Ty a' "8'712 y '8

- <ua|<u6'r12'1'u8>,uY>}J (2055)
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Katz et al (40) have carried out band structure calculations in which

three centre terms were.included and the potential was represented by

V(z- 1) = -e? JZ,/R, +2 i (2.56)

)
73
A im0 %

The notation here is the same as that of equation (2.51). Their
results showed that ;he exclusion of just four-centre terms resulted
in values for the transfer integrals which were about 307 larger than
those obtained by the exclusion of three- and four- centre terms.
However in their potential equation (2.56) they omitted the electron
exchange terms, KQi » which tend to increase the two-centre
contribution to the transfer integrals by a factor of three but at
the same time add little to the three-centre contribution, This
then reduces the relative contribution of the three-centre terms in
a potential of the form of equation (2.51) to approximately 10%.

Since the three centre terms are extremely tedious to calculate
and require large amounts of computer time, the two centre approximation
(38, 39, 41, 42, 43, 45) is used throughout this thesis and multicentre

terms are negative, Thus equation (2.55) reduces to

N
. n _n
E'(k) = méo exP(¥E°rm) {agaca cq <ua|- ZG/RBIuB>
¢ - i
+ <u /' Z <6u )(Z)Irlz 1|6§1)(2)>|u8>
. i occ
core states
i i - '
+ 2121 c, ©, <ua|<ua|r12 llua>|u8>
a [} *
- ] et et <ua|<uq|r12'1[ua>|us> } (2.57)

i=1
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) = Py » the m-electron density at centre o ,

therefore equation (2.57) becomes

: N
E'(k) = éo exp(%h.rm) { Z can can <ua|- Za/Ra|u8>
m . G.B

+ Z ’ <ua|<6a(1)(2)|r12-1|6a(1)(2)>|u8>
i core
states

+ ;2 <ua|<ua|r12'1|ua>|u8-1> } (2.58)
A similar derivation can be used to determine the energy band structure
of a crystal containing excess holes. It should be noted that in the
above derivation it is inherently assumed that the concenfration of
excess electrons or holes is small so that carrier-carrier
interactions are negligible, This has been found to be the case so
far where the average carrier concentration at room temperaﬁure is in
the region 1012 cm™3,

In the derivatioh of the energy band structure up to this point
' no mention has been made as to the effects of interactions of the
excess electron or hole with molecular vibrations. Such interactions
can be classified into two categories; (a) the interaction of the
excess charge carrier with low frequency intermolecular modes and
(b) the interaction of the excess carriers with high frequency
(h wyp ~ 0.2 eV) internal vibrations of the constituent molecules.
Interactions of type (a) serve to scatter the carrier within the
energy band and are discussed in a later section, whereas the
interactions of type (b) give rise to a series of vibronic sub-bands,
separated from the ground state vibronic sub~band by h wp and
modified by a vibrational overlap factor. Electronic motion in these

vibronic sub-bands corresponds to the simultaneous presence of an
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electron in the condﬁction band together with one or more vibrational
quanta. The existence of these vibrational bands has been detected
expérimentally (46) . Because of the small interaction of the
delocalized carrier as a large, non~polar, aromatic molecule and also
of the largeness of the optical quantum the coupling of the excess
carriers with the intermolecular vibrations is weak, Thus the

molecular wave function Wz can be represented as :

Y, = A ¢,"(1) v, (22) x, 522 (v5(22) x,) (2.59)

This represeﬁtation corresponds to the weak coupling limit of vibronic
interaction (41). Xg is the ground state vibrational wave function
of the j-th molecule, and it is assumed that all vibrational wave |
functions are the same except for that of the molecule with an excess
electron or hole. The effect of using a wave function of this’type
is to premultiply the transfer integral of equation (2.58) by a
constant factor |<X1,X0>,2 , where x; 1is the vibrational wave
function of the positive or negative ion and ¥xp that of the free
molecule.

In summary, the apﬁréximationé used in the tight binding
approximation are
(1) The perturbation of near neighbours due to the presence of
the excess electron or hole are small in which case the wave

functions of the molecule, & , obeys the relation

Hy being the Hamiltonian of the free molecule.
(2) The overlap of molecular wave functions is small and can be

neglected i.eo

.{‘?0* \yz dt - 620
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(3) The crystal potential can be constructed as a linear

conbination of neutral molecule potentials

(4) Multicentre terms are relatively small and can be neglected.
For crystals obeying the above assumptions the energy band

gtructure can be written

-

‘ N
E'(k) = m; l<x1lx0>|? exp(ik.r ) { e M P

- & - i
<ual ZG/RaluB> * z <ual<eu 1)(2)|r12 lleu(l)(2)>|u3>

1 COre
states

+ Pa <uu|<ua|r12'1|ua>|u8> } (2.60)

It should be noted that the transfe} integrals will be the same
for both the localized and energy band approximations,{the various
terms in the band expression being the off-diagonal éiémgnts of the
Hamiitonian in the localized representation (44). The mathematical
methods used to evaluate the various integrals in equation (2.60) are

discussed in appendix (1).

2,3(iv) _ Conditions imposed by the energy band model,

' The approximations used in energy band theory have been
‘described by Slater (81) as
i) _the use of a one electron potential
(ii) the neglect of multiplet structure oﬁ individual atoms
(iii) the treatment of electron-lattice interaction as a small
perturbation.

For high ﬁobility semiconductors only approximation (i) is

not strictly applicable, but even here the band description is

formally valid although the values of parameters used are not
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calcﬁlablé from a one electron potential, However, as pointed out
by Ioffe (82, 83), many semiconductors with mobilities less than
100 cm? v.sec~! have a nominal free path which is less than the
wave length of thermal electrons, in coﬁtradiction of assumption
(iii), since in this case one has strong electfon lattice
coupling, Difficulties arising in the use of energy band theory
in describing low mobility semiconductofs have been discussed by
Ioffe (82) and more recently by Frohlich and Sewell (84)., The

latter authors derived the inequality
Bt > h/é4n (2.61)

as the limitation on the validity of the band model where B is

half the band width and 1 is the relaxation time of the carriéfo
Requirements for the validity of the band model can also be‘expressed
in terms of the mobility as follows.

The current density ji in the direction i 1is given by

. BE(k) 3E(k) 3f(k)
S ;Yak ok, ER) dk (2.62)

where £(k) is the Maiwell distribution function and F is the

applied field. An alternative method of writing the above is

2
51'. = ltoTF n<<(vi(h) vi(_1_<_) t(k)>> (2.63)

where n 1is the concentration of electrons, the double angular
brackets indicating the appropriate averaging over the band., The

mobility w will, therefore, be given by

U <<vi(£) vi(h) t(k)>> ‘ (2.64)
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We now make the assumption that the relaxation time t(k) can be
treated as being independent of k , i.e. t(k) = 19 , and that
the resulting statistical average <<v;(k) v,(k)>> can be replaced

by vmaxz which is of the same order if 2J < kT .,

e Tp 2
u - A\ (2065)
'—-—koT max

The order of Voax has been given, for lattice constant a , as

Vmax = ZBa/h (2066)
be T0
po= - B2 a2 (2.67)

Now 2Btg > h

2e : :
u > ﬁ B a2 ) (2068)

o
which, for a ~ 5 A , reduces to

o> _6_2 c-,ma ’ volt - Sec

%T ‘ (2.69)

p > 232B at room temperature.

Application of scattering theory leads to the relation between

mobility and temperature dependence of the form

w o T3/2 (2,70)

Equation 2.70) does not hold when the maximunm velocity, Viax

of an electron on a band is less than s , the velocity of sound,
gince use of band theory demands that both energy and wave vector
are conserved and if v . < s then the emission or absorption

of acoustic phonons cannot take place with conservation of both

energy and wave vector, The above criterion places a limitation



‘on the band width as follows.

The velocity of a charge carrier in a state of given k is

vy = 2 (2.72)

Using the approximation introduced by Glarum (57) the component of the

velocity along the x—-axis is given by

a
Ve = % (B2 - E2)i (2.72)
where a 1is again the lattice spacing and
- B<E<B (2.73)

As before the order of Voax 18 8iven by

2Ba
Vmax h (2.74)
which, in terms of the velocity of sound is given by
2 Bs
Vmax - "k © (2.75)

where © 1is the Debye temperature for the lattice. Since YV oax

cannot be less than s it follows that, for band theory to be valid
2B>k8 (2.76)

Glarum (31) gives a similar condition for the validity of the band

model

B>h Wy (2.77)

where all the lattice vibrations are assumed to have the same

frequency, w_e.
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Finally it should be noted that conduction occurring via a
wavelike motion is strongly dependent upon the translational symmetry
of the crystal, therefore any reduction in this symmetry, as in the
case of the solid melting, will considerably reduce the mobility of
the carriers whereas carrier transport due to a hopping motion does
not rely Qn translational symmetry and should thus be about equally

effective for liquids and solids.
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3.1 Introduction

The tight binding approximation, as first used by LeBlanc (38) in
the calculation of the energy band structure of crystalline anthracene,
forms one of the most significant theoretical advances towards the
understanding of electronic processes in organic molecular crystals.,
Using a single Slater function, with screening parameter ¢ = 30,7 nm™!,
to represent the carbqn 2pz atomic wave function Le Blanc showed that
the essential featuresof the anisotropy of the mobility tensor could be
understood in terms of an energy band modéle In his work Le Blanc
assumed tﬁat a molecular crystal with two molecules per unit cell
could be related to a hypothetical crystal with one molecule per unit‘
cell. vHowever, this has sipce been shown to be incorrect (40) as
gymmetry considerations demand there be two energy bands for bbth the
electrons and hqles eachbcorresponding to the two molecules per unit
cell,

Naphthalene has been considered under the same approximations as
above by Thaxton, Jarnagin and Silver (39), while further developments
have been made by Katz et al (40) who replaced the single Slater
functions by SCF atomic orbitals of Clementi and Rootaan (89) and
obtained energy band widths increased by a factor of 5. Inciusion of
an exchange potential (44,41), of the type defined by equation @.52),
page (28), in the néufral molecule potential further increases the
calculated band widths to 0.1, 0.2 eV for electrons and holes
respectively. Using the calculated elements of the mobility tensor
.'and the experimental data of Silver et al (39) it can be shown that
the uncertainty in the energy of the scattered carriers is of the

order of the band width and the mean free paths of excess carriers
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is less than the lattice spacing, thus casting some doubt on the
validity of the energy band model (84) as a method of describing the
transport of excess carriers in naphthalene - antracene type crystals.

In the calculations sited above the molecules are assumed to be
non-vibrating and fixed at.their lattice positions, Silbey et al (41)
have shown that inclusion of the effects of molecular vibrations
serves to reduce the electronic matrix elements by a factor
|<x1|xo>|2 » where Xp and Xx); are the vibrational wave functions of
the neutral molecule and positive or negative ion respectively. For
the symmetric ground, first and second excited state vibrational
modes the vibrational overlap factors have the values (74) 0.605,
0,305 and 0.08 resbectively° In addition, as discussed in chapter (2),
page (14), polarizatioﬁ effects serve to reduce the transfer integrals
by ﬁp to a factor of 2. Therefore inclusion of the above effects
reduce the band widths by between-% and~%3 depending upon the
vibrational state of the molecular ion. Silbey et al (41(a)), in
their original paper, estimated the mean free path of excess carriers
in crystalline anthracene to be of the order 1nm for vibrational
overlap factor 0.5, thus removing the apparent violation of the
uncertainty principle. However, the above calculations were found
to be in error and in the erratum (4i(b)) the effects of molecular
vibrations were not included.

The question of proper representation of wave functions at
large distances is not a new one in fact as long ago as 1931 Slater
and Kirkwood (85) showed, in the calculation of the polarizability
of the helium atom, that considerable improvement in the quantities
dependent upon the tail of -the wave function could be achieved by |
using Slater functions with reduced screening parameters. More
recently McClelland (86) has shown that the electronic excitation

levels in benzene can be calculated using single Slater functions
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with 7 = 22,7 nm! to represent the carbon 2pz atomic wave functions.
This leads us to believe that, with suitable adjustment of the
screening parameter, results comparable to those calculated.with SCF
wave functions can be‘obtained using a single Slater function with a
considerable saving in 1abouf,

It is the purpose of this chapter to investigate the effects of
molecular vibrations on the calculated values of the mobility ratios
while, at the same time, attempting to assess the use of single Slater.

functions in energy band structure calculations,

3.2 Construction of symmetry adapted wave functions

Naphthalene crystallizes in the monoclinic system with spacé
group Cgh and has two molecules per unit cell, The factor group
of the space group contains the following opérations H
(i) inversion at any site
(ii) reflection in the ac plane followed by an a/2 glide in the

ac plane
(iii) a two fold rotation about the b axis followed by a }/2

glide‘along this axis,
The factor group, including the identity operation,‘is, therefore,
isomorphous with the point group C2h o Group theory demands that
the cell wave functions belonging to the k =0 representétion
must transform like the irreducible representations of the factor

group and, since all the irreducible representations of C, are

2h
one dimensional, symmetry adapted wave functions for k = 0 can
.be constructed by utilizing the projection'operatbr

pl - 1 g YRR (3.1)

where R is a symmetry operation in CZh' xl(R) the character
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of R for the i-th irreducible representation, and n is the order
of the group C2h °
The transformations of the one site wave functions under the

group operations are :

e

900 = =¥,(0)

e

1,000 = =¥,(0)

N O

100 = =¥, (0)

i

The symmetry adapted functions can be obtained by means of the

projection operator equation (3.1) in the form
i
@i(O) P WZ(O)
where i represents any of the irreducible representations of the

c2h point group. The representations Ag and Bg give only

vanishing results owing to the odd parity of‘the molecular wave

functions, and for the representations Au and Bu

1
o (k) = 72' (¥,00) - ¥,(0))

and

1
0,() = = (¥,00) + ¥, (0) .
When k # 0 the unit cell wave functions are given by
1
o, (k) = 5 (¥(k) £ ¥, (k)

but the symmetries of ¢ (k) or ¢_(k) depend on the group of the
wave vector k o If the vector connecting the centres of molecules 1

and 2 is8 r it can be shown that as a consequence of the translational



symmetry of the crystal
Y, (k) = ¥ (0

‘ ik.r
and 'i’z (k) e = -—‘1’2 o) .

The general symmetry adapted wave functions are therefore

0,00 = = (100 ¢ 5Ly () (3.2)

2

Thus, when the molecules come together to form the solid, each
molecular energy level will split into two components due to the
symmetric and antisymmetric combinations of the one site wave
functions in the cell giving rise to two energy states for the
excess eiectron and two for the hole.

The crystal wave function is constructed, in the Bloch
representation, as a linear combination of unit cell wave funcﬁions.

If the vector locating the origin of the i-th unit cell is x; then

Q,(k) = ] exp(ik.r;) ¢ (k) (3.3)
¢ %

where -the summation i runs over all cells in the crystal.
Substitution for ¢, (k) and replacing the summation over all unit

cells by a summation over all molecules in the crystal equation (3.3)

becomes
2,0) = ] () expliok.r,)y, (304)
z j A R |

where L =0 1if -Ej contains nb and L =1 if -r-j contains

(n + i)k °

The single site functions Vj are taken to be an antisymmetrized



product of molecular wave functions in which one molecule is
represented as either a positive or negative ion., The effect of
molecular vibrations are included by taking the molecular wave
functions as being the product of an electronic part and a
vibrational part., This representation corresponds to the weak=
coupling limit of vibronic interaction. Symbolically, the wave

function corresponding to the electron or hole on molecule °%° ig

¥, = A¢, v, (2a) T y,(2a)y, 3,5
[} L 7L T 3 3 (3.5)

where ¢, is the lowest undccupied molecular orbital in the case of

an excess electron, highest occupied for an excess hole, xj is the
ground state vibrational wave function of the j=th molecule, A is the
antisymmetrizing operator pérmuting electrons between the molecule and
is of the form (74)

A = (/w5 epte (3.6)
P

where N is the number of unit cells in the crystal,

3,3 Method of calculation

As has been shown in chapter (2) (equation (2.54), page (29))
the energy dependence upon the wave vector when the effects of
-intermolecular overlap have been neglected may be written as
E'(k) = J (21)" cos(k.r,) E (3.7)
+ S B A} °

where Ez is given by

N
- 2 n n -

E, |<x;|XO>| {azB s g <“a| Za/qu“5>

]

(i) -11,(1)
+ ] <u |<6 "7 (2) |r,, =16t (2)5]u, >
i core * ° 12 @ l B
states

P - : ~
= <u |<u |r;, Hug>lug> ) (3.8)
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the symbols have been defined in chapter (2), page (29), and L = 1

if r, contains (n+ §)b or L =0 if I

I, containg n L

L
The amount of labour involved in the numerical calculation

of the electronic part of the transfer integrals, El » can be

considerably reduced if the core electrons are considered as point
charges at the nucleus on which they are centred. If the number of
electrons contributed to the pi-system by the centre a :is n, then
equation (3.8) becomes :

Ez - ]<x1|x0>I2 azg <ua|-na/Ra|uB>
’

P -
+ a <ua[<ua|r1;|ua>|u3> : (3.9)

In forthcoming sections this approximation is referred to as the
pi-electron approximation.

The matrix elements involving the operator rI; in equation (38)
and equation (3.9) give rise to the so-called hybrid integral.
Evaluation of such integrals (discussed in appendix (1),
page (32)) is very involved and considerabie simplification can be
obtained'if it is assumed that the charge distribution of the second
electron, lual2 , can be considered as concentrated at the nucleus « .
The problém then reduces to the calculation of two-centre, one electron
integrals which, by comparison, are easily evaluated. In this

approximation equation (3.9) reduces to

E, = [<x!|x0>|2e? ] €, Cau (T = rL)I;g - na[ue(r)> (3.10)

The integrals between the molecule at the origin and the
molecules at the corners and side centres of the unit cell have been
calculated using equations (3.8), (3.9) and (3.10), This is equivalent

-

to the calculation of the integrals between the moiecule at position
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numbered (1), figure (3.1);, and the molecules in position (2)
through (10). Neglecting interactions with other molecules the

energy dependence on k is

Ei(_l_c_) - 2E, cos(k.c) + 2E, cos(k.b)+

2 3
2E, (cos (ko (b+c)) + cos(k.(b=c)))

+

2E; cos(k.a) + 2E6 cos (k. (c*a))

5
2E,(cos (k. (a+h)) + cos(k.(a<b)))

+

+

2E8(cos (k.(a+b+c)) + cos(k.(a-b+c)))

+

2E9(cos (k.iCa+b)) + cos(k.}(a~b)))

i+

2E,,(cos (k. (1(atb)+c)) + cos(k.(4(a-b)+c))) (3,11)

The energy bands can be more readily visualized if the special cases when
the wave vector, k , is parallel to a reciprocal lattice vector
a~1, _13'2 or _"3 are considered. The relationships between energy and

wave vector is then

—1 -
Et(l‘.”.i ) Z(E:2 +Ey+ 2E4) + 2(E:5 * E6 + 2E7 + 2E8)

cos (k.2) £ 4(Ey + E, )cos(k.a/2)

-l -
E, (k|e™h 2(E, + Eg + E) + 2(E, + 2E, + 2E, + 2E.)
cos(k:b * 4(Ey + E, )cos(kb/2)
-] =
E,(k|]e™) 2(E, + E5 + E, + 2E)
+ 2(12'.2 + 2E4 + E6 + 2E8 + 2E10)cos (ko) (3.12)

3.4 | Numerical Calculations

The first step in numerical calculation of the tramsfer
integrals is choice of a suitable wave function for the positive or
negative ion. Following the example of Le Blanc and Katz the excess

electron or hole is assigned to the lowest unoccupied, highest



occupied, molecular orbital of the neutral molecule, The molecular
orbitals of the neutral molecule are approximated by a linear
conmbination of neutral carbon 2p wave functions u The

) z

analytical form of the electron and hole wave functions are therefore

$c-x) = g o u (3.13)

J

where c; are the Hueckel coefficients, calculated withoutthe inclusion

of overlap, for the lowest unoccupied and highest occupied molecular
orbital respectively. The neutral carbon 2pz wave functions, wu, ,
i

are taken to be single Slater 2pz functions characterized by the

screening parameter I .

g,5, 4
u, = n,.r ( - ) exp(~-
i LERR S p(-z; 1) (3.14)
where n, is tbg»unit vector defining the d%rection_of the 2p
orbital, The two centre integrals can be simplified by expanding in

the form

-(‘Bi °—Rij)(25 °3ij)

<y, |F u,> =
11Fopl ey — <@ |7, Ip>
1]
(n, .R..)(n,.R..)
2 e S S M B
+ p (-1'.°nj . R..Z ) <PTTIFODIP"> (3915)
1]

where n. , n, are unit vectors defining the direction of the orbitals

j

u; and u.j » R is the vector connecting atoms i and j s F

ij op
represents either the nuclear attraction or electron repulsion
operator, p_ and p, are Slater Zpﬂ And 2p° atomic orbitals
respectively.

The one-electron integrals were evaluated in closed form by
expanding the integrals in prolate spheroidal coordinates, The

resulting integrals can be expressed as a sum of products of functionms,



An(a), Bn(B), (34) which are easily calculated. The two electron
integrals are calculated using the Zeta function expansion method of
Coulson and Barnett, which has been discusse& in appendix (I),

page ¢32)., For a given basis set of internuclear distance

R = 4,5 (0.125)16,0 au, the values of the integral for a particular
internucleér distance, Rij are obtained by interpolation using
Aitken's method. It is found that by using a large basis set in R
very high accuracies are obtained for the interpolated integrals and
that the order of polynomial used in the interpolation has little
effect on the accuracy of the result. Since the one electron integrals
are relatively simple to evaluate these are determined for each
individual Rij o It should be noted that, for the two-electron
integrals, once a set of integrals have been calculated for basis
set R and screening parameter [ further sets of integrals of

basis '5' and screening parameter % can be obtained using the relation

I(a-) I'(Gj)

T~ T
‘ (3.16)
. = R, = 'R!
olJ : ] : ]
where the elements of the new basis set R' 1is given by
RsZ
Ry = == (3.17)

where R'j and Rj are the j-th elements of the basis sets .EV

and R respectively,
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;03(3.2),

Naphthalene showing the numbering of the atoms

in the molecule, -

0.716 0,092 2,816
0.934 0,960 1.892
0,390 0,611 0,297
0.614 1.483 -0.685

H O aQ tw >

0.083 1.121 -2.195

a b c beta
8.235 6.003 8.658 122 55
Table(3.1)

Atomic co-ordinates* and unit cell constants#* of naphthalene.

# units: 1p-1 nm.
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3,5 Numerical results and band structure

The crystal data for naphthalene was taken from Abrahams et al (90)
and is listed in table (3.1). The transfer and overlap integrals,
calculated between the molecules at position 1, the corner of the
unit cell; and the remaining molecules within the unit cell, for various
values of the screening parameter, { , are given in tables (3.2) and
(3.3) respéctively° As was expected a decrease in screening parameter,

L , results in an increase in magnitude of the transfer integral: due
to the slower rate at whichtthe Slater functions fall off with
intermolecular distance, In table (3.2) the vibration overlap
integral is taken as unity. The plots of the excess electron and
hole band structure, for screening parameter 24.57 nn~l, along the
reciprocal crystal axes are given in figures (3:3) and (3.4), The
shapes of the energy bands for any other cases are not shown as
variation of the screening parameter, in general, alters only the
band widths, the shape of the band remaining unaltered, If needed
these can be calculated using the results of table (3.2) and
equation (3.12). The electron repulsion, nuclear attraction and
transfer integrals’ calculated in the pi-electron and localised core
approximations (equation (3.9) and equation (3,10) respectively) are
given in table (3.4), It can be seen that these approximations are
quite good when the centres of_phe interacting molecules are separated
by large distances, unfortunately, these interactions contribute little
to the band structure. There is an overall error of about 25%7 for the
pi~electron approximation and over 30% for the localised core
approximation which although large are to be expected since in the
pi-electron approximation a large proportion of the neutral potential

is neglected while the localised core approximation amounts to a

1

complete neglect of the coulomb part, J, » of the molecular potential,
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Screening parameter

Position 20.8 22.7 24.6 26.5 28.3 30.7
0,0,1 13.71 1.68  -3.74  =5.19  =3.06 -4,49
0,1,0 64.32 58.63 u5,07 32.80 23.52  14.1
0,1,1 0.58 0.26 0.09 0.33 0.02 0.00
1,0,0 -0.16 -0.01 0.02 0.11 0.00 0.00
1,0,1 8.70 5.99 3.23 1.42 0.81 0.32
1,1,0 ~0.1 -0.18 -0.07 -0.24 ~0,.01 0.00
1,1,1 -0.12 0.00 -0.03 -0.13 -0.01 0.00

L$,0  -276.94 -218.35 =-168.35 =-120.34  -65.41 -45.48
Pl by b2 26,08 15.62 T.69 3.56  5.21
(a)

Screening parameter

Position 20.8 22.7 24.6 26.5 28.3 30.7
0,0,1 7.94 1.39 -0.66 -0.23 0.06 1.28
0,1,0 =408.59 =302.26 =-210.64 =142.35 -91.61  -51.84
0,1,1 3.53 1.42 10.53 0.19 0.07 0.00
1,0,0 2.30 1.02 0.45 0.19 0.08 0.02
1,0,1 71.66 28.21 14,24 6.87 3.22 1.20
1,1,0 2,26 0.99  0.33 0.12 0.04 0.00
151,1 0.21 0.00 0.05 -0.,02 0.01 0.00

1,4 ,0 257.80  155.69 76.07 47,03 35.04 6.33
14,1 -217.55 =-142.28 -90.47 -58.85 ~34.55 -20.81
(b)
Table(3.2)
Variation of transfer 1ntegrals* wlth screening parameter for

excess electrons(a) and holes(b) in crystalline naphthalene.

sunits: 1p=4 eV,

/
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Screening parameter

Position 20.8 22.7 24,6 26.5 28.3 30,7
0,0,1 -6.08 2.2 ~0.30 0.b45 0.63 0.54
0,1,0 -6.42 -7.01 -6.34  -5.17 -3.92 -2.58
0,1,1 -0.20 -0,09 -0.04  -0,01 0.00 - 0.00
1,0,0 0.10 0,02 0.00 0,00 0.00 0,00
1,0,1 -2.59 -1.56 -0.85 ~0.46 -0.23 =0.09
1,1,0 -0.14 0.06 0.02 0.01 0.0V 0,00
1,1, 0.03 0.00 0.01 0.00 0,00 0,00
PIRING 32,64  28.95 23.55 17.99  13.08  8.33
1ot sl -9.59 -6.00 -3.56 -2,02 -1.09 -0,48

(a)
Screening parameter

Position 20.8 22.7 24.6 26.5 28.3  30.7
0,0,1 -3.13 -1.14  -0.33 ~-0,04 0.0k 0,05
0,1,0 59.18 k9.67 37.52 26.49 17.83 10.34
0,11 -1.29 1.2 0,20 -0,08 0.00 0,00
1,0,0 -0,72 -1.53 -0.15 -0,06 -0.03  0.00
1,0,1 -14.25 -7.89 -4.12 -2.,04 -0.98 -0.37
1,1,0 -0.84 -0.3%  -0.33  -0.05 -0.02  0.00
1,1,1 -0.05 0.00 =0.02 0.00 0.00 0,00

*,%,0 ~55.96 -35.63 -21.32 -12,06 = -6.44 -2.68
5% M.0N  27.92 18.26  11.59  T.18  3.86
(v) |
Table(3.3)
Variation of Overlap integrals* with screening parameter for

excess electrons(a) and holes(b) in crystalline naphthalene.

sunits: 1w-i.
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Fipure (3.3)

Enerpy hand structure of excess electrons in naphthalene.
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Figure (3.4)

Fnergy hand structure of excess holes in crystalline naphthalene,




Position
0,0,1
0,1,0
0,1,1
1,0,0
1,0,1
1,1,0
1,1,1
RN
1,%,1

Nuclear

Attraction

-0.62
63.76
0.18
0.02
5.47
-0.13
-0.06
-220.66
23.79

Electron Transfer integral
Repulsion I II III
-0.69 -0.07 -0.31 -0.66
26.92 36.84 '31,88 bs5,07
0.09 0.10 0709 0.09
0f01 0701 0.01 0.02
2.54 2.93 2.73 3.23
-0.06 -0.07 -0.06 -0.07
-0.03 -0.03 -0.03 -0.03
-98.23 -122,38 -110.33 -168.35
11.53 12.26 11.9 15.62
(a)
Table(3.4)

Error

I IT
18.26 29,27
27.31 34,46
21.51 33.84

Comparison of methods for the calculation of transfer integrals*.

Figures refer to excess electrons in crystalline naphthalene.

‘I Calculated using eqn(3.14)

ITI Calculated using eqn(3.15)

III Calculated using eqn(3.13)

*units: 1p-4 eV.

- 9§ -



Position
0,0,1
0,1,0
0,1,1
1,0,0
1,0,1
1,1,0
1,1,1
1,%,0
1%,1

Nuclear

Attraction

-0.62
-318.46
0.97
0.80
24,45
0.61

0.10

140,72

-138.87

III
"00 66

0.53
0.45
14,24
0.33
0.05
76.07
-90. 47

Electron Transfer integral
Repulsion I IT
-0.69 -0.07 -0.31
-138.33 -180.13 -159.23 -210.64
0.46 0.51 0.49
0.38 0.42  0.40
1.4 13.05 12.23
0.28 0.32  0.30
0.04 0.05 0.05
66.06 7466 70.36
-63.13 -75.74 -69.43
(v)
Table(3.4)

Comparison of methods for the calculation of transfer integrals*.

Figures refer to excess holes in crystalline naphthalene.

I Calculated using eqn(3.14)

II Calculated using eqn(3.15)

IITI Calculated using eqn(3.13)

*units: 1p-4 eV.

- /G -
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The electron and hole band structures are similar to those. .
given by Katz et al showing the major splitting in the 5?‘ direction with
much smaller splittings in the gfl and.gfl directions. The degeneracy of
the two components of the electron and hole bands at k = ﬁ_g‘l and

v

k= Efl arises as a consequence of the existence of a two fold screw
axis in the b direction and a glide plane in the a direction in the
Naphthalene crystal. The group of the wave vector k at these points
has only a two d1menslona1 representatlon resulting in E, and E_
being degenerate° The degeneracy and subsequent invertion of the two
energy bands along the €°! axis observed by Katz et al has no origins
in the symmetry of the crystal and arises simply as a consequence of
the magnitudes and signs of the transfer integrals. Such behaviour
is only observed by us for the case where the screening parameter is
1.4, The energy band widths along the.grl, Bf and < -1 d1rect10ns
and splitting in the E:l difeétions, for an excess electron and hole,
for various values of screening parameter, f , and vibretional
overlap factor:unity, together with the energy band widths calculated

using the transfer integrals obtained using an SCF wave function and

including exchange are given in table (3.5).

3,6 The mobility tensor

3,6(i) Variation of the calculated mobility ratios w1th screening
parameter and vibrational overlap factor

In order to calculate the elements of the mobility tensor it is
usually assumed that the scattering of carriers- can be deecfibed in
terms of a relaxation time function 7t(k) (91). The mobility of the
carriers along an axis i 1is then related to the Qelocity of the

carriers along the axis through:

Wiy = -%'-f <<vi(k) vi(-li) t(k)>> (3.18)



20.8
F 4,50
E(EIIEL) 4. 80
+ 3.36
E(Kllh_) 5. o
+ 2.24
E(k i)
- 1.31
c 12.85
splitting
20.8
+ 4,77
E(x l|_a__) .5k
* 14.25
E(EILQ-) 1718
j 13.92
‘E(Elkg_) 20.98
e 38.03
splitting
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Screening parameter

22.7
7. 47
7.92
5.34
10.04
2.
1.76

19.55

24,6
5.99
6.23
4, 31
7.9
1.23
1.27

14,72
(a)

26.5

47

4,54

5.82
0.48
0.75
10.24

28,3
2, Ll

2.50

1.53
3.4

0.20
0.37
5.52

Screening parameter

22,7 24.6
1.78 0,04
0.71  1.19

11.36  8.93

12,43  7.78

10.08  6.65

12.68 7.83

23.84 13.22

(v)
Table(3.5)

26.5

0,18
»0,76

- 6.14

5020
4,43

4,99
8.47

28.3
0.16
0;12
3.63
3.67
2.63
2.90
5.57

30.7

1.60
1.62
1.03
2.19
0.25
0.58
4,06

30.7
0.53
0.63
2,65

2.17

Variation of the calculated energy bandwidths*

and band-splitting in crystalline naphthalene

wilth screening parameter,’f.

* ynits: 1p=-2 eV.

SCF
7.15
8.12
b, 49
10.78
1.13
0.94
13.20

SCF
2,62
1.62
16.96
17.96
11.32
13.64
25. 96
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where v (k) is the i-th component of the velocity véctor' (&) , kg
the Boltzmann constant, e the charge on the electron and t;he doublé
angular brackets ‘indicate an average over the Boltzmann distribution of
electrons within the- energy band. The functional forms of t(k). are

generally considered (40) each involving an isotropic scattering

parameter H
(1) (k) - Aro ’ constant free time
2) (k) [v(k)] = A , constant free path

where v(k) is the velocity associated with the wave function ¥ (k)

and is given by !
v(k) = 1 v E(k) (3.19)
h k= °

The components of the mobility tensor in the mean free time and mean

free path approximations are given by :

ety :
”ij - Eo_'i‘- <<vi (_15) vj (k)>>
(3.20)
el
and Nij OT <<Vi (_k_)vj (E)/'_X(_lﬁ) l >> °

For molecules crystallizing in the structure P21/a containing two
molecules per unit cell the functions in angular brackets are given

by @

32E+Q£) B 3%E_(k)
J {55 Bk, ok, A C RS B B, £} &

<<v, (k) vj k)>> =
| w2 [ 1e P + £ 200 a
and - | | (3.21)
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<<vi(_l§)vj k) /vk)>> = Jt B, ok, £ ak ok ¢

B(k) b= £ D) dk

oE, (k) _(5
b U T 18 0 v b 128 &



where fg(_li) are the Boltzmann distribution functions of the positive
and negative branches of the‘ energy band. It should be noted that,
since the creation of an excess hole requires the movement of an
electron from its position in the valence band to the conduction band,
the energy of excess holes is measured downwards from the top of the
valence band,

" The mobility tensor calculated using equation (3.18) through
equation (3.21) and the energy equation (3.11) gives the elements of the
mgbility tensor in a coordinate system whose axes are parallel to the
unit cell vectors a, b and L. To facilitate comparison with experiment
the elements of the mobility tensor are transformed té: the orthogonal
coordinate system of a and b unit cell vectors and the vector c' (a x b).
If the coordinates of a point X in the crystallographic coordinate
system, denoted by the vector X , are transformed to the coordinate

Y in the orthogonal system, where X ad y are related through
Yy = o.Xx (3.22)

a being a 3 x 3 matrix,
then the elements of the mobility tensor in the orthogonal coordinate

system, u’ , are related to those in the crystallographic system,
u' s by

u.' - z ao'i [« PO UiQoq . (3.23)
9

To calculate the mobility tensors from equation (3.18) an assumption
must be made as to the value of the mean free path and mean free time
parameters. Accurate calculatioﬁ of these by present methods is out
of the question but one can obtain an order of magnitude value from
the uncertainty principle. As discussed in Chapter (2), section (3),

page (34) for energy band theory to be physicaily meaningful the mean-



free time, Tp , must be greater than h/band width since the
uncertainty in the energy, h/ty , must be less than the band width,
Similarly the mean free path, = A , must be greater than the lattice

spacing, Thus the equations for the mobility become
UTE. e<vi(5)vi(§)>/BikoT <3°24)

and

u

g > e Xy v () /|y () | > /1T | (3.25)

where Bi and Xi are the band widths and lattice distances in
direction 1 . Alternativeiy the values of 13 and A can be
calculated to give the observed 'mobility along a particular axis and
using this value the mobility along the remaining two axes estimated.
The elements of the mobilify tensor, without the constant
premultiplicative factors e 1o and e ) , along the b axis together

koT koT ‘ _
with the ratios of the components of the mobility tensor along the

orthogonal axes a, b and c' for several values of the screening
parameter, [ , are given in table (3.6). A 1Z change in écreening
parameter produces a 407% change in the elements of the mobility

tensor, however, with the excéption of ”c°c7/ubb for electrons, the
mobility rdtios remain approximately constant, decreasing approximately
1 Z per percenfage increase in screening parameter, r ,

The variation of the mobility ratios with vibrational overlap
factor, |<x1|x0>|? , for screening parameter, ¢ = zzoeng‘l' is
gshown in table (3.7) and are compared with values calculated using the
SCF integrals of Glaeser and Berry (44), It can be seen that the
agreement for the mobility ratios, calculated using the two wave
functiong, is very good, although the ratio uaa/ubb for excess holes
shows a largervariation with vibraéional overlap for the SCF case as a
result of the‘lérger band width in the a direction (see table (3.5),

section (5), page (58)). The remaining mobility ratios show only
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Sereening parameter /io
0,208 0,227 0,246 0,265
6.565 4,239 L,347 1.334

<vbvb/v(k)>**1.153  0.957 0.759  0.558

H aa

———r—

" bb

ucc

" oo

IJ.(:(!

—

"aa

{vbvb>*

1.790 1.721 ,1;7ou 1.679

0.283
0.462
0.330
1.459

(1.526) (1.504) (1.508) (1.514) (1.393)

0.181 0,086 0,050 0,027

0,020

0.307
0,169
0.185
1.794
(1.632)
0,088

(0.175) (0.093) (0.055) (0.029) (0.023) (0.087)

0.101 0,050 0,029 0.016

0,014

0,049

(0.114) (0,062) (0;036) (0.019) (0.017) (0.053)

(a)

Sereening parameter [ioo

0,208 0,227 0.246 0,265
33.366 18.176 8.616 3.934

<vbvb/v(k)>**2.336  1.909 1,406  0.972

* o
" bb
k ce

bb
kce

aa

0.27T4 0,192 0,102 0,087

0,283
1.645
0,614
0.117

0.307
0.503
0.372
0,013

(0.318) (0.224) (0.121) (0.105) (0.139) (0.017)

0.619 ‘ 0,508 0,452 0,428

0.359

0.379

(0.592) (0.482) (0.118) (0.396) (0.347) (0.326)

2.259 2,646 4,430 4,804

3,085

29.150

(1.862) (2.152) (3.443) (3.757) (2.496)(19.176)

o
Table(3.6)

Variation of the mobility ratios, H 11/ K JJ, of excess

electrons(a) and holes(b) in crystalline naphthalene,

calculated in the mean free time and mean free path

(in parentheses) approximations,with screening parameter.

Vibrational overlap factor 0.1,

# unitss

##units:

18 m*/sec®

1 ’3 m/sec o



Vibrational

Overlap O.1
I 1.583
Moa (1.413)
(1.386)
I 0,090
(0.054)
ucc
—_— II 0.089
Hbb
(0.070)
Vibrational
Overlap 0,1
I 0.102
Foa (0.124)
by II 0.121
(O.14k)
I 0,452
1IN (0.339)
(0.324)
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0.2 0.5
1.600 1.657
(1.491) (1.773)
1.496 1.541
(1.463) (1.72%4)
0.089 0.087
(0.059) (0.080)
0.088 0.087
(0.079) (0.110)
(2)

0.2 0.5
0.097 0,085
(0.112) (0.090)
O.114 0.097
(0.128) (0.100)
0,429 0.373
(0.306) (0.240)
0.393 0.336
(0.288) (0.234)
(b)

Table(3.7)

1.0
1.632
(2.331)
1.499
(2.176)
0,078
(0.,128)
0,078
(0.176)

1.0
0,073
(0.079)
0.083
(0.086)
0.315
(0.194)
0,284
(0.188)

Expt.
1’00

0.57

Expt.
0.64

Variation of the mobility ratlos,calculated in the mean

free time and mean free path(in parentheses) approximations,

with vibrational overlap factor.

I - calculated using single Slater function with 3 = 22,7 nm.

II- calculated using the transfer integrals of Glaeser and

Berry (L44).



- 65 =

slight variation with vibrational ovérlap, the ratios for éxcéss
electrons shoving a slight increase, the ratios for excéss holés
showing a slight decrease. Similar results are obtained using
different values of the screening péraﬁeter, L o Thus it can bé
concluded that the anisotropy of the mobility tensor can bé
détérmined without accurate specific knowledge of either the
scfeening parameter or the vibration overlap factor, However,
accurate determination of the energy band widths necessitates a

detailed knowledge of both the aforementioned factors.

3,6(ii) Optimum value of the screening parameter, I ,

It is widely accepted (40) that the use of SCF wave functions
as a basis for constructing molecular orbitals leads to a more
accurate description of the wave function at large distances from the
origin. The problem is, thefefore, to determine the best value of 4
to reproduce the SCF wave function af large r ., To this end it is
required to derive a suitable function involving the difference between -
an SCF and a single Slater function which when minimized, by variation
of § , over ﬁhe'required range of r will yield the appropriate value
of T o,

If the SCF and Slater functions are denoted V(SCF, R) and

¥(z, r) respectively, then minimization of the function 3

£(2) = [ Cu(scF, 1) - y(z, )2 dr (3.26)
0

ghould yield the normai (30,7 nm~!) value of the screening parameter,
¢ , as the largest contributibns to fl(;) will come from those

regions of r which contribute most to the energy in the normal

variation method: i.e. the function y(z, r) will be most accurate

for small r .



Minimization of fl(c) using a Simpléx techniqué (188) verified

the above arguments., At the other extreme calculation of the function

X
£,(2) = [ ((SCF, ) - ¥(z, ¥))/Y(SCF, )2 dr
-0

showed the contributions to fz(;) to be approximately constant for
all values of r . Hence by incorporating the weighting function

g(r) = 1/y(SCF, r) equ#l weights can be added to all parts of the
curve, i.e. the tail of the wave function will contribute just as much
to fz(c) in the minimizatibn procedure és will parts of the wave
function for smaller r . Unfortunately one is now left with the
problem of where to terminate the integration over r .

The above functions fl(c) and fz(c) are really the two
extremes of the problem one placing equal weights on all parts of the
curve the other strongly weighting the curve for small values of r .
In the calculation of transfer integrals a weighting function, similar
to g(r) . is required which has maximum weight at those values of r
which contribute most to the transfer integral. Such a weighting can
be applied by minimizing the function

[

£,00) = [ g'(x)(w(sCF, 1) = v(z, 1) % dr (3.27)
0 |
where  g'(r) = ¢,(1)<4,(2)[r;,7 e, (2)>4,(1)

is essentially the radial profile of the hybrid integral,numerical
values of which can be obtained by inserting the appropriate "write"
statements in the program given in appendix (1). As the wave functions
¢A and ¢B are centred on different nuclei the function g'(r) will
be a function of the intermolecular distance, R , and also the

screening parameters of the wave functions, ¢i o Strictly speaking

the function g'(r) should be evaluated for every value of { required
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in the minimization of ‘f3(c) , howévér, this is prohibitivé in terms
of computér time, therefore, fB(C)' was minimizéd, for sé§éra1 valués
of the internuclear distance R between Oc3nm, and056nm°,.with
g'(r) calculated assuming all the ¢'s to be 2pz atomic orbitals
characterized by a screening parameter [ = 3p°7'nm?1 o The valués
of r obtained in this way were in the region 22,7 to 24.6 nm ! g
of a similar order of magnitude to those obtainéd by McClelland (86).,
Thus use of a screening parameter in this range rather than the normal
value of ¢ = 30.7 nm~! should lead to more accurate values of the
energy band widths., Comparison of the elements of the mobility
tensor (table (3.6), page (62)) and calculated band widths (table (3.5),
page (58)) with their SCF counterparts reflect the above concluéiono

3,6(iii) Effects of small rotation of the molecules on the
calculated mobilities,

Accurate X-ray crystallographic studies on orgénié molecular
crystals have shown (98) that the molecules in a crystal are able,
under normal conditions, to rotate about their equilibrium positions
through angles up to approximately 4°, The effects of such rotations
on the calculated principle transfer integrals and mobility ratios
are shown in table (3.8) and table (3.9) respectiveiy° The moiecules
have been rotated thrbugh 110,120 and +4° about thé.3,|3 and ¢ axes.
The magnitude of the changes induced are quite large, the interaction
most affected being that betweén the moiecule at the origin and the
molecule at position (4, 4, 0) where a rotation of +2° gbout a
produces a SOZ change in the transfer integrai° For all rotations the
clockwise and anticlockwise motions compensate each other and the net
result is the equilibrium value, However, the calculations infer
that in the region of dislocations, where angles much larger than used

here are to be expected, the mobility pattern could be drastically



Position

(0,1 ,0)

(*¢*1)

Position

(0,1 ,0)
( »O)

¢ =1)

Position

o, of

(T*T*U)

Fluctuations

(in parentheses)

Rc(-i°)

-206.94
(44.77)

-87.70
(166.64)

88.71
(-15.30)

Re(-2°)

-202.76
(44.32)

-100.96
(162.24)

93.68
(-14.93)
Re(-4°)

-220.67
(44.38)

-44.44
(160.59)

96.55
(-16.76)

Rb(-r )

-213.09
(i15«73)

-71.78
(153.73)

91.81
(-13.11)
Rb(-2° )

-215.12
(46.28)

-68.83
(134.41)

86.54
(-10.62)
Rb(-4°)

-197.73
(41.74)

-86.94
(229.83)

81 .22
(-26.37)

in the major resonance

Ra(-1° )

-194.92
(31.91)

-103.95
(170.19)

86.03
(-15.59)

Ra(-2° )

-180.31
(19.74)

-130.14
(171.10)

81.51
(-12.76)
Ra(-4°)

-280.45
(99.75)

29.45
(229.83)

107.33
(-7.02)

Table(3-8)

Equilib.

-210.64
(45.07)

-76.13
(168.35)

90.47
(-15.61)

Equilib.

-210.64
(45.07)

-76.13
(168.35)

90.47
(-15.61 )

Equilib.

-210.64
(45.07)

-76.13
(168.35)

90.47
(-15.61)

Ra(+1°)

-227.17
(58.70)

-47.78
(165.62)

94.67
(-14.86)
Ra(+2°)

-245.42
(73.22)

-20.46
(161 .43)

98.56
(-15.55)
Ra(+4€)

-153.23
(8.38)

-180.94
(171 .97)

73.06
(-15.59)

Rb(+r )

-207.80
(44.34)

-78.61
(182.19)

88.74
(-18.04)
Rb(+2°)

-204.61
(43.52)

-78.62
(197.98)

92.78
(-20.38)
Rb(+4° )

-218.81
(47.28)

-69.54
(97.82)

92.68
(-4.17)

in crystalline naphthalene on rotation of the molecules

through a small angle +a about one of the crystallographic axes.

eunits:

1»-4 eV.

RC(+r )

-213.82
(45.24)

-66.55
(167.95)

92.11
(-15.90)
Rc (+2¢)

-216.50
(45.26)

-58.36
(166.02)

86.54
(-16.21)
Rc(+4t)

-193.24
(43.13)

-128.23
(151 .55)

82.73
(-14.08)

integrals* of excess electrons and holes



Rz(-1c) Ry(-i ) Rx(-1 ) Equil. R(1 ) Ryd ) Rz( )
<vbvb> 266.09 232.58 259.69 271.38 287.11 311.26  270.58
(841.23) (867.68) (782.91 ) (853.79) (951.36) (83%.65) (867.37)
Un 1.65 1.61 1.76 1.65 1.51 1.69 1.65
%b (0.29) (0.25) (0.36) (0.26) (0.19) (0.26) (0.23)
vVec!' 0.0%4 0.04 0.0%4 0.04 0.04 0.05 0.04
Upb (0.%4)  (0.46) (0. %4 (0.45) (0.44) (0.44) (0.46)
Rz(-2 ) Ry(-2 ) Rx(-2 ) Equil. Rx(2 ) Ry(2 ) Rz(2 )
<vbvb> 253.2*4 186.70 251.19 271.38 307.76 360.73 265.35
(8*41.68) (870.91 ) (736.*45) (853.79)(1086.00) (818.90) (869.70)
Un 1.6*4 1.53 1.8*4 1.65 1.3% 1.72 1.64
h (0.35) (0.22) (0.50) (0.26) (0.15) (0.28) (0.20)
0
0.0%4 0.03 0.03 0.04 0.04 0.05 0.05
Ve (0.%49) (0.40) (0.42) (0.45) (0.42) (0.49) (0.40)
uw,
Rz(-*4 ) Ry(-*4 ) Rx(-4 ) Equil. Px(4 ) Ry(*4 ) Rz(4 )
<vbvb> 2*49.38  *473.81 353.27 271.38 249.00 116.86  223.21
(903.39) (767.60) (1*410.53) (853.79) (706.78) (907.46) (814.33)
1.6*4 1.77 1.00 1.65 1.88 1.29 1.63
(0.19) (0.29) (0.14)  (0.26) (0.84) (0.23)  (0.44)
>u
0.05 0.07 0.01 0.04 0.05 0.01 0.04
Ve (0.48) (0.40) (0.38) (0.45)  (0.35) (0.44) (0.39)
Table(3.9)

Effects of small rotations on the mean square velocities and mobility

ratios of excess electrons and holes(in parenthesis)

eunits: 1b6 m/sec

in naphthalene.

Exp.



changéd. In addition the presence in the lattice of impurity

molecules is éxpeéted to cause slight reallignmént of moléculés in

thé near vicinity so modifying the interactions between host moléculés.
Finally, the magnitude of the change induced shows very clearly that

the formulation of crystal structures, for compounds of which the éxact '
crystal structure is unknown, from the crystal structures of similar

compounds can lead to erroneous results when used in band structure

calculations.

3.6(iv) The validity of the Energy band model,

In Chapter (2), section (3), paée (33), several criteria were
outlined which must be obeyed for the energy band model to be
applicable to the conduction process in a particular molecular
crystal, These can be summarised briefly as :

(1) Band width > k 6 (equation (2.76)), where © {s the Debye temperature.
(2) Band width > h/ty (equation (2.61)) = the uncertainty principle,
(3) A > lattice spacing,

Assuming the Debye temperature for naphthalene to be similar to
that of anthracene (92) then criterion (1) states that the band width
must be greater than 0.007 eV . The remaining two criterion can be

_rearranged as in equation (2.29) and equation (2.30) such that the
ﬁinimum values of the calculated mobilities serve as the criterion,
Numerical values for these quantities are shown iﬁ table (3.10),
| For the remaining screening parametéfs, with the exception of
z = 20,7 nm ~!, the calculated mobilities are less than those quoted
in table (3.10), For values calculated in the mean free time
approximation the uncertainty principle isvobeyed for all values of
the vibrational overlap factor. However, for values calculated in the

mean free path approximation only those values corresponding to a



Vibrational
Overlap

0.1
0.2
0.5
1.0
Expt.

Vibrational
Overlap

0.1
0.2
0.5
1.0
Expt.

Minimum values of the mobllity* for various values

0.14
0.29
0.56
0.73
0.7
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Electron
b <
0.09  0.01
0.18 0.02
0.34%  0.03
0.45  0.04
0.7 0.4
(a)
Electron
b e
0.28 0.02
0.53  0.03
1.09 0.09
1.62 0;21
0.7 0.4

Table(3.10)

(b)

|

0.03
0.05
0.09
0.10
0.9

Im

0.05
0.12
0.22
0.24
0.9

Hole

0.30
0.50
1.05
1.4
1.4

o

0.14
0.21

0.39
0.44

0.4

o

0.13
0.33
0.58
0.58
0.4

of the vibrational overlap factor calculated such

that the Energy band model 1is internally consistant.

Screening parameter3 = 22.7 mm .

(a) Mean free time approximation.

(b) Mean free path approximation.

* units: 1p-4 m /volt-sec.



vibrational overlap factor < 0.2 obey criterion (3)., As statéd éarliér
thé vibrational overlgp factor is 0.5 and in addition polarization
éffects (44) serve to reduce the transfer integrals by a factor of up
to 2, Thus the combination of these two effects could culminate in
criterion (3) being satisfied, while at the same time any changés in
the calculated band widths would be insufficient to causé a
contradiction of criterion (1). However, it is only fair to point

out that the applicability of the energy band model has so far not
been gonclusively proved. For the remaining screening parameter

g = 20,7 nm~! and 24.6 nm~! the results obtained are similar to those
of ¢ = 0,227 nm" !, vhile for ¢ = 26,5 nm~! and upwards criteria (2)
and (3) are obeyed for practically any value of the vibrational overlap
factor. It should however be noted that for the larger screening
parameters criterion (1) is in danger of being contradicted for values

of the vibrational overlap factor which are substantially less than

wni tyo

3,7 Discussion and conclusion

The anisotropy of the mobility tensor of excess electrons and
holes in crystalline naphthalene have béen calculated on the energy
band mbdel using single Slater functions with modified orbital
exponents to represent the carbon 2p, atomic wave funetion.
Results in good agreement with those obtained using SCF atomic
orbitals can be obtained using a screening parameter in the range
22:7 to 24.6 nm~1 » however, both sets of wave functions give only
fair agreement with experiment.

The general lack of agreement between theory and experiment

could arise as a result of :

(a) the assumptions used in the calculation of the mobility ratio

are incorrect in that the relaxation time function 1t(k) is not

isotropice



(B) énérgy bands other than the first conduction band are involved

in the migration of charge carriers.

(c) the energy band ﬁodel is not applicable to the méchanism of
transport in crystalline naphthalene, |

With regard to point (a) we can only re-iterate what has already béén
stated, i.e. that the accurate calculation of the relaxation time
function is be&ond the scope of present methods, however, an
approximate estimation of 7t(k) for anthracene (70) indicated that
t(k) was indeed isotropic. Similarly with point (c¢) it has been shown
in section (6) that inclusion of molecular vibrations and polarization
effects can lead to mobility values consistent with the uncertainty
principle, Thus there is no theoretical reason why the energy band
model should not be applicable. This leaves point (b). Jager (124)
using the LCAO-HCO method of Ladik (125) has estimated the energy

band width of the second conduction band in anthracene to be of the
game order of magnitude as the first conduction band, and experimentally
injection of excess electrons into higher conduction bands has been
obgerved in crystalline anthracene (9,87). Point (b) is therefore a
feagsible proposition., The symmetry of the molecular orbitals which
would be employed as a basis in the construction of the crystal wave
function for the second conduction band are such that qualitatively
one would expect the second conduction band to be similar to the hole
band, Thus the overall ratios uaa/ubb would decrease whilst
“c’c”/ubb would increase bringing the theoretical results more in line
with experiment, Furthermore, if electrons were injected from the firgt
conduétion band they would leave hole vacancies in the conduction band,
thus, the hole mobility ratios would attain some electron character,
vizo u_,/u, would increase and Metgt/Wy, would decrease, again
bringing the ratios more in line with experiment. This point is -

congidered in greater detail in the next chapter.
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CHAPTER (4)

On the energy band structure and carrier mobilities in

crystalline anthracene.

4,1 Introduction.

4.2 The energy band structure of molecular crystals with

nearly degenerate bands,

4,3 Molecular Orbitals.
4ob Numerical results and band structure.
4,5 Mobility tensor.
(i) General.
(ii) Electron mobility along the c¢° axis.
(iii) Comparison of the results obtained using the modified
(; = 24,6) and normal (% = 30,7 nu~!) Slater functions
to represent the 2pz atomic wave functions,
Giv) Comparison of the results obtained using Hueckel and
Mathur = Singh molecular orbitals.,
(v) Temperature dependence.
(vi) = Hall effect.

4.6 Conclusion
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4,1 Introduction

- In the past decade anthracené‘hés received considerable attention
as a prototype molecular crystal and the literature ﬁas been inundated
wiih experimental values of the resistivit& and energy gaps (93).
Single crystal and mobility measurements, h&wever, are somewhat rare.
and the complete anisotropy of thé mobility has only been determined
by Kepler (li). Theoretical caleculations (39, 40, 41, 43) ﬁave shown
that the major features of Fhe mobility anisotropy can be understood
in terms of an energy band model, the only éxceptipn being electronic
conduction along the axis pefpendicular to the ab plane where the
calculated mobility is too low by a factor of about 100, In the
above mentioned calculationselectfonic conduction was assumed to occur
only in the lowest conduction band. The precise location of this
band is not known with any degreé of certainty although it has been
suggested that it lies agove the first singlet state (101). Hence
the photo conduction band gap is above 3.1 eV., and may be greater
than 3.7 eV (102). Several workers have 'claimed that intrinsic
photo generation of carriers only occurs with photo energies in excess
of 4 eV (9, 151, _103) and that the photo conduction spectrum shows
two maxima 4.4 eV (9,151, 103) and 5.5 eV (103) indicating that
electrons can be excited to bands of a higher energy than the first
conduction band, Sano, Pope and Kallmann ( 103, ), in an electro
luminesceﬁce experiment, have shown that electroﬁs can be injected
from the normal conduction band into higher energy bands under the
effect of an applied field, thus producing holes in the conduction
band., It is‘partially the purpose of this chapter to investigate
the nature of the second conduction band on the assumption that,

like the first, the band can be treated in the tight binding

approximation.



The calculation of the energy band structure of the second
conduction band in anthracene is complicated by the fact that the
molecular energy level giving rise to the band is degenerated, Thus;
corregponding to the two molecular energy levels there will exist two
energy bands in the close proximity of one another and subsequently
interactions between the two bands cannot be neglected., A procédure
for the calculation of such bands is outlined in section (2),

The temperature dependence of the mobility Of‘charge carriers
has been studied experimentally by several authors (11, 14, 16, 38, 94, 95)
and the general con§ensus is that electrons and holes have a different
temperature dependence of the type Trn, with n usually between
1 and 2. The only excep}{on to this is that the drift mobility of
excess electrons along the axis perpendicular to the ab plane is
found to be virtually temperature independent (11, 109, 110, 111),
Because of the absence of crystal data only very approximate methods
have previously been used (40) to estimate the effects of temperatures
on the calculated mobilities. However, since the publication of the
earlier work Mason (98) has completed a study of the thermal
expansion properties of the énthracene crystal thus facilitating a more
detailed study which is reported in section (5). .

4,2 The energy band structure of molecular crystals with nearly

degenerate bands .

In the two centre approximation, with zero overlap, the energies

of the two symmetry states in(k) , in the absence of all other

states, are given by @

+ + (0) |
@ [nle, > = B ¢ mE‘O l«gLKV(z - ) ]e,>

+ (il)nl<x1 X0> 2 <. v -

cos(k . r)) (4.1)
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o)
L

+
molecule, 92 (k) are the symmetry adapted crystal wave functions

where E is the energy of molecular orbital ¢z in the free

formed as a Bloch sum of molecular orbitals ¢2 o The difference
in energy between the highest occupied and lowest unoccupied
molecular orbitals in anthracene is about 4 eV, It is therefore
justifiable to neglect the possibility of band mixing between
crystal states formed with the above two molecular orbitals as a
basis set, and the band energies can be obtained by direct
substitution of the appropriate integrals into equation (4.1); The
vseéond and third lowest unoccupied levels of anthraceﬁe, of symetry

b and a respectively, are degenerate in the Hueckel

2g
apprdximation° Hence the centres of the energy bands formed from
these molecular orbitals will lie close together and one must

subsequently expect an appreciable amount of band mixing. The

energies of the resulting states will be the solutions of the

determinant -
+
By o - F B,
Zg’ng 2g°au
. - 0
+ +
" H™ - E
au,bzg au,au
h Ht = <D i.IHIQ %
where H, . . m (4.2)

- E(0) 5, + Ci.m . Z G+ glom cos (kor ) .3)
n - n
n¥0
where 6, is the Kronecker & function,

Ciom - <¢£§£)Iv(£ - )¢ (o> (4.4)

L,m
and En

= <z = IV - )8 (o> (4.5)
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The two solutions of the determinant for each symmetry afe

given by :

+ + +
W (k) = § {H + H
bt 8,08, Hbzgo b2g

i+

@ - 2 +2 ) '
8y, Hng‘ng) +4Hau.b2g }‘ (4.6)

thus the energy depéndence on the wave vector k depends not only on

the last term in‘equation (3:1) but on the other terms also.
Expanding the molecular orbitals, ¢ , in terms of their

congtituent atomic orbitals, u , and substituting the potential in

the manner given in chapter (2) (equations (2.9) through (2.13)) then

BT w2062 [ cf o
o, B
wlz /r_- 7 o 1y 5
a' o a i oce a 12 a ]
. P =1
_a <ua|<ualr12 'ua>|u6> } (4.7)

where c; is the coefficient of centre j of the molecular orbital

¢. the remaining symbols have been defined in chapter (2).

Similarly
L.m - a2 2 m
Cy (e a§s cg g <UglZ4/Rolug>

3> -114(3)
- < uBI° ) 0y ,r12 lea luB>
j oce

_';a (<uB|<ua|r12-l'ual>uB>

(408)

<u8|<ua|r12—1|u6>|ua>) }
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Of the last two terms in equation (4.8) the latter represents the

exchange interaction between the atomic orbitals -
v and ug the

former being the coulomb interaction between the charge distribution

2 2 $ ~ o
luel and Iual » The fourth term is 1000 times smaller than the

third xR =7, i Lo
hird (at % 7.0) and is neglected. Cn' therefore reduces to

im L rla2 L m
c {-e2 ] ¢ 6 S <u6[zu/RaluB>

n o, 8
3 -11,03)
- < z ¢ ’r 1¢J >
Blimgee @ 12 log" " Tug
- Pa <“B"“a’r12-ll“u"“e’ } (4,9)

For aromatic hydrocarbons the electron density, p_, at centre a is
. [0 ]

unity and for large internuclear distances the electron charge

distributions

] 689 ma

u
j=oce ¢ o o
" can be considered as localized on the centre ¢ . Thus the last two

terms of equation (4.9) reduce to

<u8(r?lzu/RB]uB(r)>

and hence

cﬁ’m = 0.0,

To test the validity of the above approximation we have calculated

the nuclear attraction and electronic repulsion parts within the

gquare brackets of equations (7) and (9) using the molecular integral

rables of Kotani et al (34). The results are given in table (4.1)



- 80 -

L,m L,m
En Cn
Electron Nuclear Electron Nuclear
ZR Repulsion Attraction Difference Repulsion Attraction Difference
4 4 4 4

5.0 0.1743525 0,1931544 0,018809 0,74638501 0.75218740 0.00580239
6.0 0,0867993 0,0941924 0.,207391 0.63743608 0.63891160 0.00147552
7.0 0,0415234 0.0443784 0.002855 0,55358831 0.55393868 0.00035037

8.0 0,0192620 0,023512 0,001892 0.48820259 0,48828160 0,00007901

Table (4.1)

Nuclear attraction and electron repulsion parts of the

hybrid, E , and coulomb, C , integrals°

For screening parameter Z = 30,7 nm™! the internuclear
distances corresponding to the values in table (4.1) are 0,163, 0,195,
0.228 and 0,261 nm . These are considerably smaller than the average
internuclear distance in anthracene, the smallest internuclear distance

being 0,367 nm, however it does show that Cz‘m is decreasing at a

L£,m

N and that in the region R = 0,370 nm to

faster rate than E
1,058 nm will be several orders of magnitude less. It should be
noted at this point that the above arguments only apply to molecules
having an even distribution of e1ectron§° For cases where there is

polarization of the m-electron system, leading to greater densities

at certain atoms, the above conclusions to not apply,

4,3 Molecular orbitals

Following the procedure outlined in Chapter (3), page (47), the
wave function for the positive ion was obtained by assigning the excess
hole to the highest occupied molecular orbital ih the neutral molecule.
For the excess electron the molecular orbital of the ion was obtained
by assigning the electron to the first; second or third lowest |

unoccupied molecular orbital giving rise to the first, second or third



conduction bands, The molecular orbital coefficients are taken as the
Hueckel coefficient (108) of the appropriate energy level,

The use of Hueckel molecular orbitals in band structure
calculations has recently been criticised by Mathur and Singh (105).
Their criticisms are based on the following two inconsistencies :
"(1) One is not justified in combining resonance integrals between
molecules situated far apart at different molecules with Hueckel
coefficients because in calculating Hueckel molecular orbitals one
neglects all resonance integrals except those between nearest
neighbours,

(2) The atomic orbitals centred on a given molecule, when
calculating intermolecular resonance integrals, are non-orthogonal,
whereas Hueckel coefficients are based on the assumption of
orthogonality."

With these criticisms in mind Mathur and Singh have developed a
modified procedure for determining molecular orbital coefficients,
These coefficients, together with those calculated using the Hueckel

approximation are given in table (4.2).

4.4 Numericalresults and energy band structure

The crystal data used is taken from Mason (98). The unit cell
constants and atomic coordinates were determined both at 95°K and 29O°K°
X=ray photographs were also taken by Mason at temperatures intermediate
to these two temperatures and no discontinuous changes in unit cell
cons tants were observed. Precision measurements on the single film
gshowed the thermal expansion coefficients to be markedly anisotropic
the maximum value being approximately in the direction of N, the axis
perpendicular to the molecular plane., Calculated torsional
oscillations, at 290°%K about the molecular axes L, M and N are 3560,

2,7° and 3.1° respectively in reasonable agreement with the earlier



o, i . 2. 3 4. 1. 2# 3. 4

Axsy T o8 0311  .0.091 -0.440 0.24269 0.3064 -0.10231 -0.45530
sxsy B 0.220 -0.311  -0.091 0.440 -0.27: 0.37937 0.05053 -0.47iSi
AXAy O 0.204 o. o -0.204 0.000 0.24353 -0.51 r* 0.30056  0.00000
SxAy 10 -0.354  0.000 0.354 0.000 0.47415 -0.04131 0.43256  0.00000

Table(4.2)

Molecular orbital coefficients, ¢ , In the Hueekel and Mathur-Singh approximations

Numbering of the atoms in anthracene. The figures in parentheses refer to the

electron densities calculated in the Mathur-Singh approximation.
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Crystal data for anthracene(98).

290
95

K
K

a nme.

0.8562
0.8443

b nm
0.6038
0. 6002

¢ nm.

1.1184
1.1124

Fractional atomlc coordinates.

atom

1

~N O U oW N

95 K

x/a y/b

0.08600 »0.023&
0.11750  0.15677
0.05888  0.07961
0.08835 0.20949
0.02972  0.13458
0.06056 0.26109
0.00399  0.18707

z/c’

0.36797
0.28348
0.13963
0.05174

~0.09030

-0718263
-0. 31804

beta.
124 42
125 36

290 K

x/a ‘
0,08893
0.11849
0.05878
0.08712
0.03077
0.05911
0.00260

v/o
0.02818

0,15836
0.08054

70,20829

/e
0.36586
0.28041
0.13804
0.04766

0.13087 -0.089%0
0.26461 -0.18260
0.18099 -0.31673

Inclination of the molecular axes L,M and N to the orthogonal

axes a,b and ¢ .

L
M
N

a - -

120.74
107.67
36.51

95 K
b

- 97.52"

153.76
114.97

Table (4. 3)

c
31.88

108.75"

65. 22

290 K

a b
L 119.61 97.32
M 108.51 153.44
N 35.97 115.38

c
30.68
108. 36

66.23
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valﬁes of Cruickshank (112); The translational vibrations aré a good
deal more isotropic having /1:5 values of 0.022, 0.017 and 0.016 nm
respectiﬁely. At 95°K the molecules are much more rigidly fixed in
the lattice, the rotational amplitudes being O.9°, 0.9° and 1.6°
réspectively with translational amplitudes of 0.613, 0,007 and

0.009 nm;” The unit cell data at 95°K and 290°K together with the
atomic coordinates and the orientations of the crystal to the
molecular axes are given in table (4.3). It should be noted that the
atomic coordinates in table (2) of Mason's paper are wrongly quoted,
the corrected coordinates are given in table (4.3).

Intermolecular transfer integrals have been calculated for the
excess hole and the three conduction bands using the normal Slater
screening parameter, 7 = 30.7 nm™! | the modified screening parameter,
L= 24.7*nm"1 and Hueckel coefficients for both temperatures. The
results are listed in tables (4.4), and table 4,5), The principle
transfer integrals for the electron and hole bands at the two
temperatures show only a small variation, E3 . (seebfigure (3.1),
page (46)), decreasing by about 107 whilst E9 and ElO show a rather
larger increase. The temperature dependence of the transfer integrals
in the higher conduction bands is more complicated.

Transfer integrals have also been calculated using the molecular
orbitals coefficients of Mathur and Singh. The results, using the
normal Slater screening parameter are given in table (4.6), With the
exception of EIO for the electron the integrals for the electron and
hole bands are comparable to but rather smaller than their Hueckel
equivalents. Elo for the electron band is larger by a factor of
about 10‘than the same calculated using Hueckd&t molecular orbitals,
For the hiqher conduction bands the differences in the transfer
integrals is much larger reflecting the large differences between the

two sets of coefficients,



95" K

Position <«8I8> <TITD

(0,0,1)
(0,1,0)
(051,1)
(1,50,0)
(1,0,1)
(1,1,0)
(1,1,1)
(%,%,0)
(%, %1)

Transfer integrals* for the excess hole and first three conduction bands in crystallilne
anthracene computed at 95 K and 290 K using Hueckel molecular orbitals as basis in the

Bloch sum and a single Slater function with% = 30.7 nm' . to represent the carbon atomic

1.07  1.06
39.32 -51.98
- -0.01
0,05 0.03
-0.19  =1.01
0.01  -0.01
-137.97 -67.06
0.26 23.65

<818>
0.51
45,31
0.01
-0.16
0,08

-115.21

-0.34

290°K

<TIT> <9195
0,10 -0.90
-58.07 81.30

-0,01 -
0.24 -0,0k
-0.77 0.25
-0.01 -0.02
- -0.01
-47.247 -1.02
19.05 7.00

Table(4.4)

95 K

<10I10) <1019

2.64
-6.81
0.01
-0.05
0.55

18.59
-31.94

-1.52
28.69
0.02

0.53
0.01
-31 010
"'3-33

<919>
—0.’-‘»2
84,49
-0,06
0,22
0,01
15,44
6.12

290 K

<10I10> <10I9>

-0.34
-6.58
0.01
0.01

0.43

14,35
-27.58

0.31
27.90

-0.02
-3086

"5.58

wavefunction.The numbers within the angular brackets refer to the number of the molecular

orbital used to calculate the transfer integral.

* units: 1p-U4 eV,

- 03 -



Position <¢8I8>

(0,0,1)  -4.93
(6,1,0) 166.71
(6,1,1) -6.03
(1,0,0) 0.73.
(1,0,1) -1.02
(1,1,0) oQo3
(1,1,1) 0.03

(¥,5,0) -410.66
(34,1)  -8.T1

Transfer integrals* for the excess hole and first three conduction bands in crystalline

95 K
<TIT> <818>
-2.07 -3.84
-210.45 16{.67
~0.22  -0.03
0.01 0.4k
-10.96 =1.08
-0.09  0.02
-0.08  0.02

-207.9u -376.62

106.12 -1.96

290 K

<TIT> <919
-2.62 4.2

-218.18 321.45

| ~0.22 0.06
0.05  -2.41
-3,00 =1.76
‘-0.09 -0405
~0.09  -0.14

_148.97  8.26
91.77  43.13
‘Table(4.5)

-129.46

95 K

<10I10> <1019
2.48  2.46
-53.20 159.96
0.17 -6.05

‘ 0.24 =0.75
7.i1 -8.91
Q.O7 ”6.01
0.02 -Ofou
99.22 330.64
46 40,68

<9195
3.4
332,51
6.06
=1.75
1.89
~0.42
-0.11
31.87
28.98

290 K

<10110>
4.33

-46.50
0.17
0.18
5.90
0.05
0.18
71.84

107.41

anthracene computed at 95'K and 290 K using Hueckel molecular orbltals as basis in the

Bloch sum and a single Slater function with%= 24.6 nm . to represent the carbon atomic

wavefunction.The numbers within the angular brackets refer to the number of the molecular

orbital used to calculate the transfer integral.

* units: 1p=-4 eV.

<10I9>
~0.43
151.23
~0.03

-0.58

-4.90
-0.15
~-0.05
73.58
14,64

- 93 =



95 K 290" K 95" K 290" K
Position <818 <K7ID <818> LTIT> <919 <10I10> <10I9 <9I9> <10I10> <K10I9

(0,0,1) 1.25 -1.48 0.31 0.11 5.09 -1.13 -2,.36 ~0.67 ~0.141 2.72
(0,1,0) 20.39 =-36.96  31.01 =43.94 -5.62 127.88  17.05  -6.4% 132.50  19.64
(0,1,1) = -0.01 - -0.01 0,01 - - 0,01 - -
(1,0,0) 0.12 0.03 0.06 - 0.05 -0.11 0.02 - ~0.12 -0.07
(1,0,1) =041 -0.68 -0.32 -6.51 -0.32' 0.20  -0.99 -0.18 0.20 0.71
(1,1,0) 0.01  =0.01 0.01 -0.01 - - - - ~0.01 -

(1,1,1) - - - - - - - - - -
(£,£,0) -120.51 -~24,02 -97.48 -16.28 -80.78 24,83 -185.28 -54.98 55.14 -137.38
(3,5,1) 5.03  31.99 2.41 26,01 -40.52 8.99 -25.83 -35.97 8.21  -19.25
Table (4.6)

Transfer integrals* for the excess hole and first three conduction bands in crystalline
anthracene computed at 95 K and 290" K using Mathur and Singh molecular orbitals as basis

in the Bloch sum and a single Slater function with& = 30.7 nm' . to represent the carbon

atomic wavefunction.The numbers within the angular brackets refer to the number of the

molecular orbiltal used to calulate the transfer integral.

* units: 1p-4 eV.

-L8-



- 88 =

Thé énergy band structures of excess electrons and holés along
thé three crystallograpﬁic axes, computed using the transfer integrals
calculated, at 95°K and 290°K, with Hueckel coefficients, are
illustrated in figure (4.2) and figure (4,3)., The general shapes of
the valence and first conduction bands calculated using Mathur - Singh
coefficients are similar to those shown in figure (4.3) and figure (4.4)
and subsequently a;e not reproduced here., TFigure (4.4) shows the energy
bands, at 95°K, calculated using equation (4.3) i.e. without taking into
account the effects of band interactions. It is easily seen from the
diagram that there will be a considerable amount of band mixing. The
conduction bands resulting from band mixing are displayed in figure (4.5)
and the resultant effect is that the two conduction bands are forced
apart, each band imparting some of its character onto the other. The
energy zero.for these bands is arbitrarily chosen as the energy of the
Hueckel moleculér orbitals in the free molecule, The separation of
the centroids of the tﬁo conduction bands at k = 0 and with
vibrational overlap factor = 1,0 is of the order 0.03 eV in both cases
therefore thermal enérgy will be sufficient to excite electrons from one
band to the other and so increasinglthe range of allowed E(k) values
for the wave vector k . The energy band structure of the second and
third conduction bands calculated at 95°K using Mathur and Singh
coefficients is shown in figure (4.6). The band at 290%K is very
gimilar to the 95°K band, A comparison of figure (4.5) and figure (4.6)
{1lustrates the large differences between the second conduction bands.
The general shapes of the second and third conduction bands will be
discussed in more detail later in connection with the Hall effect.

The energy band widths for the valence and first conduction
bands at 95°k and 290°k for Hueckel molecular orbitals and Mathur=-Singh

molecular orbitals are given in tables (4.7). The values are calculated
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The enerpgy band structures of the second and third
conduction bands at 950K, “calculated usinp equation (4,3)
showing the overlapping of the two enerpy bands
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The energy band structures of the second and third conduction bands

in crystall1ne anthracene after taking into account enerpv band mxine,
The basis set used in the Bloch sum are the Hueckel molecular orhitals
for the second and third lowest unoccupied states in the free mlecule,
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The energy band structure of the second and third conduction bands
in crvstalline anthracene after taking into account ban mxing,
The basis set used in the bloch sum are Mathur = Sin molecul ar

orbitals for the second and third lowest unoccupied state in the
free molecule,
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I

‘ + 1.80
E(klld")

- 1.70

+ 3.80
E(x/lv™)

- 0.30

. 1.80
Ekllc)

- 1,90

C 7030

splitting

Hole
II

| G.29

0.35

1.6
1.80

2,47

2,65

4.48

I1T

4,52

3.62
12.52

4.38

7,94
9,04
25.12

1st Cond.
I II
5;50 4,67
5.50 4,65
3.90  3.84
780 5.48
0;10 0;36
- 0,01 | 0,29
11,06 9,96
(a)
Table (4.7)

IIT
16,78
16.77
10.10
23,44

0.94

0,46
32.16

2nd Cond.

I 1T
0.28 6.21
1.17 9.35
1.72 8051
2.62 11.65
0.13 1761
0;ﬂ3 3.46
0.33 12,90

3rd Cond.

I
0.54
0.84
0.96
0.66

II
9.72
5.85
T.12
3.26
3.98
0.78
0.66

Energy bandwldths* and splitting at k = g/ﬁ in crystalliﬁe anthracene,for vibrational

overlap unity,at 95 X(a) and 290 K(b).

I Calculated uSing Hueckel coefficients and B = 30.7 nm .
II Calculated using Mathur and Singh coefficlents and S = 30.7 nm. e

III Calculated using Hueckel coefficlents and 9= 24.6 nm'e
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I
1.20
E(kna’
hand 1010
+ 3.50
E(x Il v*)
- 1.20
+ 1.50
E(k Ic")
- 1060
c 5030’
splitting :

Hole
II
0.39
0f41
1.37
2.15
2.06
2.10
3.88

III
2.65
1.92
11.05
647
6.85
7.83
19.26

1st Cond.
I IT
4,60 3.81
b0 3.79
2,80 2.56
640 5,04
- 0.9
- 0.19
0.92  T7.79
(v)
Table (4.7)

III
15.17
15.12

8.68
21,61

0.35

0.0k
29.97

2nd Cond.

T II
0.73 5032
0;18 '6.03
2.28 7.88
1.73 8.59
0.52 1.04
0.38 2.98
0,40 1.23

3rd Cond.

I
0.37
0.49
1.17
1,05
2.24
1.34
3.70

IT
6.43
4.93
3.94
2.44
3430
0.80

1.00

Energy bandwildths* and splitting at k ;‘g/n In crystalline anthracene,for vibrational

overlap unity,at 95 K(a) and 290°K‘.(b)°
I Calculated using Hueckel coefficients and S = 30.7 nm '
II Calculated using Mathur and Singh coefficlents and S = 30.7 nm e

III Calculated using Hueckel coefficlents and 3 = 24.6 nm .
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on the assumption that the vibrational overlap factor is unity,
Jortner et al (74) have estimated that the vibrational overlap factor
reduces the band widths by~z to-% and in addition Glaeser and Berry (44)
have shown that polarization of the crystal by the excess carriers
further reduces the band width by-%. The actual band widths will
therefore be approximately 1/10 thoge listed in the tables, i.e,
0,005 eV (g = 30.7 nm"1), 0.01 eV (¢ = 20,5 nm"!) in reasonable
agreement with the value 0,006 as determined by Delacote and Schott (22),
The energy band widths of the second and third conduction bands are
given in table (3,7),

It is interesting to note that the band Qidth, inéthe c'
direction , of the second conduction band is several orders of
magni tude larger than for the-first (cf. figures (4.5) and
figure (4.3)) indicating that electrons in this band can have an

appreciable mobility in this direction,

4,5 Mobility tensor

4,5(i)  General

The components of the mobility tensor for the hole and first
conduction bands have been calculated using the methods of Chapter (3),
The component of the mobility tensor along the b axis, without the

e
____2 and e ) computed at 95°K and
koT koT ¢ ©OomP a an

premultiplicative factors
290°%k using Hueckel coefficients and the normal (5 « 30,7 nnf'). Slater
screening parameters, together with the ratios of the non-zero elementg
of the tensor to this are given in table (4.8), Due to the larger values
of the band widths and smaller value of koT , the mobility ratios at
05K show a stronger dependence on vibrational overlap factor, With

the exception of the electron mobility in the o direction, the

calculated room temperature mobility ratios, computed using vibrational
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Electron Hole
Vibrational 0.1 0.5 1.0 0.1 0.5 1.0
Overlap ‘ :
<vbvby* 1.571 19,209 43,635 0.791 12.135 27.214
vbvb/v(k)>** 0.635 2,064 3,045 0.361  1.391 1.773

Fag 1¢879 2.738  3.268 0.935 1.193 1.673

[ (1.670) (2.200) (2.359) (0.934) (1.148) (1.542)

beg - 0.001 0,002 0.550 0.847 1.526

or (0,001) (0.003) (0.007) (0.531) (0.786) (1.295)

bao -0,001  -0,001  -0,001 50.176 -0,269 -0,483

d;;- - (-o.ooz)(-o.oos) (=0.240) (~0.347) (=0, U452)
(a)

Electroh | Hole
vibrational 0.1 1.0 Exp. 0.1 1.0 Expt.
Overlap ‘
<VDVDD* 1.409 81.44 0.794 64,795
<vbvb/v(K)>** 0,601 4,218 0.399 3.582

paa 1.562 2.169 1.7 0.495 0,495 0.5
[ (1.493) (1.991) (0.526) (0.508)
boo - - 0.4 0,373 0.391 0.4
;;; - - (0.372) (0.384)
koo - - -0.108 -0,112
;;; - - (=0.150) (=0.152)
© (b)
Table(4.8)

ati f exce
calculated mobility r tlos o %ﬁ ss

cry

electrons and holes in

stalline anthracene computed in the mean free time and

spree path(in parentheses) approximations at 95 K (a) and 290 K

(v
106 m"/sec.

1p3 m/sec.

# uynits:

»#ynits:

) using Hueckel coefficients and screening parameter o= 30.7nﬁ".
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ovetlap factor, O.1, are in good agreement with the experimental
values of Kepler (11). However, the electron mobility ratio ESLEL
is too low by a factor of the order 1000, Electronic conductlogbalong

this axis will be discussed later in connection with conduction in

higher energy bands.,

4,5(ii) Electron mobility along the ¢ axis

The band width of the first conduction band along the c° axis
is very small and gives ;iée to very low values for the electron
mobility in this direction, The mobility of electrons under
consideration is promoted by resonance interactions between molecules
whose centres are gonnected by the latticé vectors 31-3 + -:21-_13_ + ¢ and

1 a "l.k + c. The symmetry of the molecular wave functions is such

2~ 2

that these in;gractions nearly vanish when the molecules are at their
equilibrium position and it has been sqggested that slight displacements
' from equilibrium, as in lattice vibrations.-would result in large
increases in these interactions. As stated in section (4), page (81),
the angular oscillations of tbe molecule at 290°K a;e approximately
39, therefore, the resonance interac;ions have been calculated after
rotating the molecule at (2 a, ; '.S) through # 2°° The reaulfs
indicate that, although there is an iqcrease in the interaction, the
magnitude is such that the calculated mobility ratios are still far
too low,

An alternative pos§ibi1ity is that c;rrier migration occurs via
injection of carriers into higher conduction bands of sufficient width
to support conduction on an appreciable scale. Ags can be seen from
table (4.7) the band width of the second conduction band along the
c' axis is several orders of magnitude larger than that of the first
conduction band and tﬁis should result in a relatively high value
for the mobility in this direction° The calculated mobility ratios

of excess electrons in the second and third conduction bands are



givén in table (4.9) from which it can be Seen that the mobility of
excess eiectrons along the .S' axis is indeed much higher, To
calculate the overall mobility ratios the relative number of carriers
within each band is needed but this is unkﬁown. However, 207 of the
free electrons in the second conduction band would be sufficient to
give the observed mobility ratio. Such a figure would give a value

-to the ratio _aa of the order 1,4 which is still in reasonable

¥bb

agreément with experiment,

The effect of injecting electrons into higher conduction bands
on the hole mobility ratios is rather complicated since it depends
hpon whether the electrons are injected from the first conduction band,
in which case excess holes are created in the first conduction band,
or injected directly from the valence band into the second conduction
band. Generation of holes within the first conduction band by
injection of electrons into higher conduction bandgrunder the influence
of an applied voltage has been suggested by Pope et al (9, 103),
This effect should be particularly important in conduction along the
c' axis since, due to the extreme narrowness of the energy band,
acceleration of excess electrons under the influence of an applied
field is practically impossible unless electrons are injected into a
higher conduction band, the hearest of which is Separated by about 2 ev,
Direct injection of electrons into high energy conduction bands is
known to occur via e%ﬁton—eﬁiton and photon-photon annihalation
processes (9, 106, 107), Under the conditions of Kepler's experiment
the majprity of carriers were generated by e%}ton-surface processes,
however, e%iton-e{iton and photon-photon effects may have been present
to a lesser extent, The effect of including these mechanigms of

carrier production on the hole mobility ratios would be to increase

Ucvcr

H
aa - 006 8nd

* 0.3, for screening parameter T = 30,7 nm~!
bb *bb
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2nd Cond. 3rd Cond.
Vibrational O.1 0.5 1.0 0.1 0.5 1.0
Overlap |

<VbVDA(K)>** 0.326  1.690  3.390  0.526 2,739 5,707
1.141 1,005  0.937  0.318  0.287  0.255

"aa
;;; (0.741) (0.645) (0.600) (0.356) (0.314) (0.280)
b 2,491 2.171 2,030 0.449 0.484 0.508
. (1.116) (0.978) (0.923) (0.384) (0.400) (0.410)
by -0.696 -0.619 -0.59% -0.130 -0.139 -0.145
[y (-0.394) (-0.357) (-0.348) (-0.139) (-0.141) (-0.139)
2nd Cond. (=) 3rd Cond.
vibrational 0.1 0.5 1.0 0.1 0.5 1.0
Overlap :
<VbVD>* 0.576 14.234 58.919 0.857 21.275 93.975

<vbvb/v (k) >** 0.3M4 1,725  3.834 0,468 2,324 4,830
0.724  0.682 0.602 0.197 0.202 0.176

"
;E% (0.561) (0.519) (0.434) (0.203) (0.207) (0.195)
Bec 2.256 - 2.092 1.818 0.539 0.574 0.496
Top (1.109) (1.023) (0.836) (0.424) (0.443) (0.424)
Byo -0.588 =0.546 =0.470 =0.130 =0.137 =0.122
Wy (-0.356) (=0.338) (-0.275) (~0.120) (-0.124) (-0.122)

(v)
Table (4.9)

calculated mobllity ratios of excess electrons in the second and

third conduction bands 1n crystalline anthracene computed in the

mean free time and free path(in parentheses) approximations at

95 K (a) and 290" K (b) using Hueckel coefficients and screening

P
» units: 1p6 m*/sec

s#units: 1p3 m/sec.

apameterS = 30,7 ni .
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which are in good.agreement with experiment,

4,5(iif)  Comparison of the results obtained using the modified
(z = 24,6 nm~!,) and normal (t = 30,7 nm 1,) Slater functions to

represent the %g;; atomic wave functions,

The elements of the mobility tensor, calculated in the mean free
time and free path approximations, without the premultiplicative factors
f_:f_ and f_i » along the b - axis and ratios of the non-zero elements

koT koT

of the tensor to this are given in table (4.10), Because of the
relatively large band widths (-~ 5 koT for vibrational overlap unity)
obtained using the modified'screening parameter, the mobility ratios
show a much stronger dependence on the vibragional overlap factor than
the same calculated using the normal Slater function. For ; vibrational
overlap factor 0.1 the mobility ratios'of the excess hole and first
conduction band show fair agreement with experiment, However, as with
the normal Slater function the calculated mobility along the c' axis
is too low by a factor of about 1000. For higher values of the
vibrational overlap factor all the mobility ratios progressively
increase so lessening the agreement with experiment,

Asg was discussed,in the previous section, to explain the
relatively large mobility along the c' axis, electronic conduction
in higher energy Bands mst be assumed, The percentage of the total
number of electrons which would need to be in the second conduction
band to give the required mobility ratio is considerably higher than
needed using the normal screening parameter (~ 507 ag compared to 20%).

However, the resulting values of the mobility ratios “aa ang Hatet

"bb b

of 1.87 and 0.45 are in good agreement with the experimental values of
1,7 and 0.4 (11). The effects on the hole mobility ratios would again

be to bring them more in line with experiment.
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Overlap
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Hole
0.5

1st

0.1 1.0 0.1

10.222 186.960 501,360

5.868 9.237 1.809 5.

1 0.385 0.387 O.k2h 1,616 2.
(0.410) (0.398) (0.437) (1.576) (2.
0.647 0,709 0.816 0,001 0.

(0.581) (0.611) (0.718) (0.002) (0.
~0,184 -0.,193 -0,205 =0,001 -0,

(-0.190) (-0.197) (-0.216) (-0.001)(-0.

2nd Cond. 3rd

0.1 0.5 1.0 0.1

19.905 448,790 891.340

9.908  2.916 10.
2.124 1,342 1,521 0.967 1.
(1.555) (1.131) (1.311) (0.853) (0.
0.929 1.189 2.185 0,207 O,
(0.559) (0.845) (1.577) (0.226) (0.
-0.239 =0.319 -0.539 -0,046 -0,

(-0.219) (-0.312) (-0.503) (~0.079)(-0.

Table(4.10)

O.

13,818 150,

O.

hh,018 666,

Cond.
5 1.0

710 299.130
292  T.024
3.656
353) (2.925)
003

609

0.007
009) (0,022)
001 -00001

001) (~0.001)

Cond.
5 1,0

690 1890.600

856 15,766
029 1.84
884) (1.648)
341 0.460
341)  (0.540)
075 =0,089

113) (-0.135)

calculated mobility ratios of excess electrons and holes in

crystalline anthracene computed in the mean free time and

rree path(in parentheses) approximations at 290°K using

Hueckel coefficients and screening parameter S= 24,6 nm .

# units

»#units

1n6 m’/secz .

1»3 m/sec.
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4.5(iv)  Comparison of the results obtained using Hueckel and

Mathur = Singh molecular orbitals,

1t has been shown in section (5,i) that, using Hueckel molecular
orbitals and a single Slater function with screening parameter
g = 30.7 nm l., mobility ratios in good agreement with those obtained
experimentally are cbtained. In order to test the molecular orbitals
of Mathur and Singh, the calculations have been repeated using the
transfer integrals computed.using Mathur ~ Singh coefficients. The
results for the valence and first conduction bands are given in table
(4,11) and the same for the second and third conduction bands, including
the effects of band mixing, are given in table (4.12).

If electronic conduction is considered to occur in the lowest
conduction band only, then contrary to expectation, the use of the
revised molecular orbital coefficients leads to a lower degree of
agreement between theory and experiment. Inclusion of the second and
third conduction bands in the transgport scheme again results in
considerable improvement in the overall values of the mobility

u
c'c' for excess

Y56

electrons of 0.4, conduction would have to occur predominantly in the

ratios, however, to_give an overall value for

third conduction band which seems rather improbable.,

4.5 (v) Temperature dependence

The temperature dependence of the mobility arises as a consequence

.

of ¢

(a) the temperature dependence of the relaxation time

(b) changes in the trangfer integrals ariging from changes within the
unit cell

(c) changes in the dis;ribution of carriers within the energy bands.
For vibrational overlap factor 0.1 the energy band widths of both

electrons and holes at both temperatures are less than kT leading to
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Hole Electron
Vibrational 0.1 0.5 1.0 0.1 0.5 1.0
Overlap
vbvbD* 0.344  6.822 19.906 1.159 18.309 47.101
wbvb/v(k)>** 0.211 - 0.924 1.532  0.538 1.969 2.931
Mag 0.433 - 0.483 0.588 1.995 2,437 2,656
b (0.439) (0.487) (0.592) (1.653) (1.955) (2.086)
Beg 2.315  2.509 2.907 0.013  0.027 0.052
b (1.651) (1.726) (1.919) (0.016) (0.039) (0.081)
T -0.621 -0.681 -0.803 -0.012 -0.019 =-0.030
. (-0.522)(-0.554)(-0.630) (-0.014)(-0.026)(-0.045)
Hole (a) Electron
vibrational 0.1 0.5 1.0 0.1 0.5 1.0
Overlap
<vbvb>* o.412  9.910 37.492  0.933 19.670 62.083

cvbvb/v(k)>** 0.262 1.293 2,531  0.483 2.159  3.707
 0.186  0.181  0.177 1.703 1.897 2.180

"

;Es (0.195) (0.189) (0.183) (1.539) (1.692) (1.898)

Boc 1.342  1.309 1.27 0.005 0.076 0.0"8

Yop (1.026) (0.990) (0.950) (0.007) (0.009) (0.013)

boe -0.326 -0.317 -0.308 -0.006 -0.007 -0.0'8

;;; (-0.281)(-0.271)(~0.260) (-0.008)(~0.009)(-0.011)
(v)

Table(4.11)

Calculated mobility ratios of excess electrons and holes in
crystalline anthracene computed in the mean free time and
rree path(in parentheses) approximations at 95 K (a) and 290" K
(b) using Mathur-Singh coefficlents and screening parameter,
~ = 0.7 nm .

» units: 1p6 m*/sec .
**units=’ 103 m/sec.



Vibrational 0.1
Overlap
<Vbvb>* 9.546
<vbvb/v(k)>** 1.380
Haa | 1.150
[ (1.007)
Fec 0.249
Ty (0,202)
Koo -0.028
[
Vibrational 0.1
Overlap
<vbvbD* 14.211
<vbvb/v(k)>** 1.679
Hoa 1.295
Vo (1.092)
Mee 0.196"
[ (0.154)
oo -0.017
o
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2nd Cond.
0.5 1.0
229,300 172.380
6.938 9.378
1.067  0.014
(0.912) (0.013)
0.210 0.010
(0.166) (0.010)
-0.018 -0,002

2nd Cond.

0.5 1.0

247,180 281.860

7.280  11.078
1.160 O.104
(0.898) (0.109)
0.127 0.012
(0.098) (0.148)
-0,007  =0,001

(v)

3rd Cond.

0.1 0.5 1.0
2,826  77.506  61.400
0.509 3.067 2.551
3. 901 3.249 1.350
(2.992) (2.555) (1.289)
1.038 0.995 2.201
(0.656) (0.649) (1.704)
-0.148 -0.161 0,462

(=0.055) (=0.040) (-0.003) (~0.301) (-0.210) (=0.529)

3rd Cond.

0.1 0.5 1.0
6.896 205.110 hW1.172
0,930 4,798 2.193
2.803 1.881 1.344
(2.315) (1.707) (1.211)
0.675  0.938  2.734
(0.473) (0.776) (1.858)
-0,098 -0,213 -0.536

(-0,042) (-0.027) (-0.003) (~0.154) (-0.324) (-0.552)

Table(4.12)

Calculated mobllity ratlos of excess electrons in the second and

third conduction bands in crystalline anthracene computed in the

mean free time and free path(in parentheses) approximations at

95°K (a) and 290° K (b) using Mathur-Singh coefficients and

screening parameter™ =
* units: 16 mz/seé'.

sxunits: 13 m/sec.

3007 nm-'-
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an even distribution of carriers through the bands hence by using
this value effect (c) can be eliminated. As previously stated in
section (4.4) the unit cell constants show no discontinuous changes
with temperature and it therefore seems reasonable to suppose that
effect (b) leads to a temperature dependence qf the type TR,
Assuming for the moment that <t is constant over the temperature
range 95%k to 290°K then for an excess electron in the first
conduction band the contribution to the total temperature dependence
of effect (b) is of the order T~!+! for excess electrons in the ab
plane.
| Simplified calculations by Friedman (70), assuming acoustic

phonon scattering, led to a temperature dependence for T3 of the
type 1.0 | Thus the predlcted total temperature dependence should
be approxzmately T"2 1. A similar analysis using the elements of
the mobility tensor for vibrational overlap factor unity lead to a
tempefeture dependence in the ab plane of the type T1¢8 , The
latter value is in fair agreement with the observed value of
Kepler (11) of T 1.5,

| stng similar arguments it can be shown that for excess holes
effect (b) is highly anisotropic leading to total temperature
dependence along the a b and c' axes of T 2.5 | T72.0 gpq
T=2+3 , respectively, for vibrational overlap factor 0.1, and T 2.3 |
T=1¢2 and T"!e% for vibrational overlap factor unity., The
predicted temperature dependence for hole conduction along the c'
axis is within the extremes of the reported»values of T~le ¢o
2.3 (14, 15, 16), however, Keﬁler (11) noted no observable
anisotropy in the ab plane, 1£ is interesting to note that the
3nisotropy of the temperature dependence reflects the anisotropy of

the thermal comparison coefficients, a s Viz. a, > a > o
- c
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Similar trends are observed for the temperature variation computed
using screening parameter ¢ = 24,6 nm ! where the respective

v

dependences along the a b and ¢’ axes are t

24 | 18 and T"2.1 , for vibrational overlap factor 0.1,

and T-2¢1, T%6 and T"2¢! for vibrational overlap factor unity,

For values calculated using the Mathur-Singh coefficients the
predicted temperature dependences of both electrons and holes in the ab
plane are similar to the values quoted above. However, for hole

' axis the value ~ T-% is much higher than

conduction along the ¢
observed experimentally,

In the foregoing discussion the electronic conduction along
the c' axis and the role of higher conduction bands in determining the
temperature dependence has been omitted. The predicted temperature
dependence of the mobility along the c' axis for the first conduction
band is of the order T-3 whereas for the second and third conduction
bands it is of the type T-2 , however, due to the relatively large

pand widths along the ¢’

axis coupled with the close proximity of
the two energy bands one would expect effect (a) to be of greater
iﬁportance in the higher energy bands. Since, in general, effect (c)
leads to a lwering of the overall temperature dependence this ;rxay be
' gufficient to reverse the sign of the temperature dependence for

carriers in these bands.

4.5(vi) Hall effect

" The Vtatio of the Hall to drift mobility has been calculated in
the manner outlined by Le Blanc (100).

Consider a one carrier zero transverse current Hall experiment
. in which the current Hall fi’eld and magnetic field vectors are
parallel to the orthogonal axes g, b and c' respectively, Let

the energy of the carrier of wave vector k be E(k) , its group
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vélocit& v(k) and inverse effective mass ld'l(_lg) and assume that -
scattering can be accounted for with a relaxation time function t(k).
It can be shown that, for Boltzmann statistics, the ratio of Hall to
drift mobilities along a is a function bnly of the direction of

application of the applied magnetic field, B .

koT <<t (va Mbb 2v£lvb Mab t vy Maa > (4.10)
Bl e' 2

<t v 25> << v. 25>
a b

- uH/uD

The angular brackets indicate a statistical average over the
Boltzmann distribution in k space.
| For‘simplicivty an abbreviated form of the anthracene band
structure is considefed which retains only those terms corresponding

to intermolecular interactions between neighbours in the ab plane.

Thus

E,(k) = 2E, * 4By cos(} k.a) cos(} k.b) ,

where the symbols have their usual meanings.

Assuming the mean free time approximation to be valid then for
koT > band width the above ratio reduces to

“H/“D - - -3 koT F.3/(2E32 + Egz) (4,11)
Bll ¢’

from which it can be seen that the sign of the Hall effect is
determined by the sign of the resonance integral between the molecule
at the origin and that at position (0, b, 0O). A more general
calculatioh has been done by Hermann (104). His theoretical argument
assumes the energy E(_lg) to be a cosinelfunction of k and for the

extreme case of w << koT the ratio uH/uD becomes =2,15 kyT/band width

which again predicts an anomalous Hall effect for narrow bands.,
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Thé ratios of the Hall to drift mobilities calculated using
equation (4.10) are listed in table (4.13)s The agreement between
theory and experiment for both sets of molecular orbitals with
z = 30,7 nm” ! is good, however, the values calculated with the
modified screening parameter are rather low, te Blanc (100) has
shown that the ratio 'uH/uD for B||a xb is relatively insensitive
to the band assyﬁ%try (i.e. the ratio E3/E9 but is very sensitive
to the band widths, It therefore appears that the band widths
calculated using the modified Slater function and S,C.F, atomic

' functions are too high, indicating that thege wave functions over
estimate the true wave function at large distances,

Because of the effects of band mixing it is not possible to
determine the values of the Hall to drift mobilities by equation (4,.11)
in the higher bands. However, the energy bands along the 2 axis,
figure (4.5), show either an increase in the second conduction band
or a slight decrease in the third conduction band with increasing‘ko
The bands along the b axis show a very sharp decrease with increasing
k indicating that Ey is positive and E3 more strongly negative,
thus giving rise to an anomalous Hall effect in these bands, Injection
of electrons into the second and third conduction bands will not alter
the sign of the Hall effect, but if the electrons are injected from
the first conduction band in the manner described by Sano (103),
leaving behind an excess hole, the magnitude and possible sign of the
Hall effect for excess holes will vary since holes in this band will
have the opposite sign to those in the valence band. Such a change
of sign has been observed for one of the carriers in crystalline
anthracene, however, the sign of the carrier could not be determined (99),

The situation in the case of electron bands calculated using the
Mathur-Singh molecular orbitals, figure (4.6), is not quite so straight-

forward. Using arguments similar to those sbove one comes to the



Temp. Vibrational

Overlap
0.1
95 K
1.0
O.1
290 K
1.0

Hueckel

Electron

2.18
0.22

9.77
0.98

= 3007 nm

Hole

-6.45
-0065

-24,25
-2.43

Hueckel

Electron

0.91
0.09

3.12
0.31

Hole Electron
-1096 1.63
-0.20 0.16
-6.97 10.17
-0,.70 1.02

Table(4.13)

= 30.7 nm
Hole

-13094
-1.39

-39091
'3099

I
Hole

-25+10

Ratio of the Hall to Drift mobilities in crystalline anthracene.

I Figure taken from Ref(22).

Electron

13.6

IT
Hole

-3507

II Figures calculated from data in Ref(99) assuming the mobility of excess electrons and holes in the ab

plane to be 1.4p-4 m /volt-sec(11) and the sign of the Hall effect to be anomalous(22).

- B60L =
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conclusion that the magnitude of the Hall effect in thé two bands is
gimilar but of opposite sign. The separation of the energy bands,
with vibrational overlap factor 0.1, is of the order koT at room
temperature therefore both bands will be populated giving rise to a

low value of the Hall constant.

4,6 Conclusion

The energy band structure and carrier mobilities in crystalline
anthracene have been calculated in the tight binding approximation in
which the wave function for a crystal containing an excess electron or
hole is constructed using both Hueckel and Mathur - Singh molecular
orbitals as a basis in constructing the Bloch sum. The wave functions
cons tructed using Hueckel molecular orbitals give better agreément
with experiment than their Mathur - Singh counterparts, although both
predict a mobility along the c' axis several orders of magnitude
lower than observed experimentally. Inclusion of higher energy bands
in the transport mechanism can, under certain conditions, remove this

apparent discrepancy.
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CHAPTER (5)

Mobilities of excess electrons and holes in crystalline phenanthrene,

5.1 Introduction.,

5.2 Crystal and molecular wave functions.

5.3 Energy band structure.

5.4 Mobility tensor.

(ijk  Carrier ﬁobilities in the energy band
approximation,
(ii) Carrier mobilities in the localized

representation,

5,5. Comparison of phenanthrene with anthracene .,

5.6 Comments on the polarization'phenomena observed in

high purity phenanthrene crystals.

5.7 Conclusion,
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5,1 Introduction

The electrical properties of anthracene have been extensively
gtudied both theoretically and experimentally and the molecule is now
regarded as a test model for the investigation of semiconduction
propertigs of aromatic hydrocarbons, Phenanthrene, a structural isomer
of anthracene, on the other hand has received considerably less attention
experimentélly and no theoretical calculations relating to the mobility
of excess carriers have been reported. It is the object of this chapter
to investigate the electronic properties of phenanthrene and to determine
whether any similarities exist between the two structural isomers,

In the absence of any conclusive data concerning the mechanism
of charge carrier transport, calculations have been carried out in beth

the localized and Bloch representations,

v

5,2 Crystal and molecular wave functions-

Phenanthrene crystallizes in a monoclinic lattice, space group
P21 . wich two molecules per unit cell., The two molecules within the
unit cell are related by a C2 screw along the b axis, thus the
elements of the space group are the identity, E , and the two fold
, (b)
2

rotation C o The point group containing these operations is ¢

2 9
therefore, using the methods given in Chapter (3), page (41), together
with the character table of the point group C2 it is easily shown that
there are two symmetry adapted crystal wave functions, Q (k) ,

corresponding to the symmetric and antisymmetric combinations of the

two molecular wave functions in the unit cell
Q. (k) = Z(-l)L i j
+ 02 ) exp(i k o 1) V] (5.1)
J v

where L is O 1if the molecule j 1is related to the molecule at (0, O, O)

by a direct tramnslation or 1 if the molecule is related by a screw axis
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followed by the required translations, ‘Pj are taken to be
antisymmetrized products of molecular wave functions in which one
molecule is represented as either a positive or a negative ion and
the summation over j runs over all molecules in the crystal. The
structure of the molecular wave function \!/J., which includes the effects
of molecular vibrations, has been discussed in Chapter (3), section (2),
page (44), and will not be discussed further here.

The wave functionsof the positive or negative ion were obtained in
the same manner as those of naphthalene., However, in phenanthrene the
second lowest molecular orbital is only separated from the lowest by
0.7 eV, hence the probability of electronic conduction occurring in
energy bands other than the first will be much higher than in either
anthracene or naphthalene where the energy difference of the two
molecular orbitals is about 2 eV. Thus the excess electron is assumed
to occupy either the lowest or second lowest antibonding molecular
orbital; giving rise to two conduction bands, the centroids qf which
will be separated by about 0.7 eV. The close proximity of the two
energy bands raises an additional problem which is not encountered
in the instances of naphthalene and anthracene., The effects of
coupling of the electrons with high frequency molecular vibrations is
to split the energy bands into a series of vibrational sub bands
corresponding to the different vibrational states of the molecular
ion. These sub bands are separated by the vibrational quantum of the
molecule which for aromatic hydrocarbons is of the order 0.2 eV, thus
there exists the possibility of the third or fourth vibrational sui)
band of the lower energy band interacting with the zeroth vibrational
component of the higher energy band. The vibrational overlap integrals
for the phenanthrene molecular ions have not been evaluated, however,
Miller and Murrell (131) have shown that use of a general Franck -

Condon factor, equivalent to the square of the zeroth vibrational
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overlap integral of the first electronic excited state of naphthalene
as calculated by Jortner and Rice (74), gives good agreement between
theoretically calculated and experimentally observed vibrational
spectra of a series of aromatic hydrocarbons including phenanthrene.,
In addition there is very little difference between the zeroth,

first and second vibrational overlap integrals for the fifsf electronic
excited state of anthracene and the corresponding integrals for
naphthalene, thus it seems reasonable to assume that use of the
vibrational overlap integrals of the naphthalene ion in calculations
on phenanthrene will lead to only a small error. The sum of the
squares of the zeroth, first and second vibrational overlap integrals
for the naphthalene ion is 0.990, therefore, since the integrals must

obey the vibration sum rule :

Il ¢™>12 = 10,
n

the total sum of the remaining 33 ((3n - 6) - 3) vibrations must be
0.01 and hence the maximum value of the vibrational overlap integral
for the third vibration state is 0.0l.,

The tramsfer integrals for the third vibrational sub band will
thus be ~ 5;9-6 eV. and the interaction of this band with the zeroth

vibrational sub band of the second conduction band will be

negligible,

5.3 Energy band structure

The relationship between the two molecules in the unit cell,
together with some of the shorter intermolecular distances, is shown

in figure (4.1),

Unlike anthracene neither of the two molecules in the unit cell



115

Figure (5.1)

Projection of the structure of Phenanthrene along tho

b axis showing short interactions. Molecules | and 11

are related by a screw of b/2 along tho b axis.
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is at the origin and if the geometrical centre of one molecule is
denoted by (%9 8, Yo b , zo €) then the vector connecting the origin

to the centre of the remaining molecule is (-xp 2, 4 + yj b, =200,

In band structure calculations it is convenient to set the origin of
the system at the geometrical centre of one of the molecules, thus the
vector connecting the new centre to the remaining molecule in the

unit cell is (-2x9 a, } , =229 c). The energy dependence on wave
vector can then be written :

E;(_l_c_) = 2E; cos(k . c) + 2E3 cos(k « b) + 2E, cos(k + (b + c))

+ 2Eg cos(k . (c-Db)) + 2Eg cos(k . a) + 2E; cos(k « (a + ¢©))

+ 2Eg cos(k o (@a= c)) + 2Eg cos(k « (a + b)) + 2Ejg cos(k « (a = D))

I+

Ejp(cos(k « (=2xqa + b/2 = 2zpc)) + cos(k « (-2xga - b/2 =2z(c))
'+ Ejp(cos(k « (=2xga + b/2 + (1 = 2z9)c) +
- cos(k(-2xga - b/2 + (1 = 2z4)¢))
t Ej3(cos(k . (=2xqa + b/2 = (1 + 2zy)¢c) +

cos(k « (-2xpa - b/2 = (1 + 2zp)c))

I+

Eju(cos(k « ((1 = 2xp)a +b/2 - 2zgc) +

cos(k « ((1 = xp)a=b/2 = 2200)))

+

Ejs(cos(k « ((1 = 2xp)a +b/2 - (1 + 2zp¢))
+ cos(k o ((1=2x0)a=b/2 = (1L+ 2zpc))) ¢+ E,q (cos(k((1-2xq)a

+b/2 + (1 = 2zp)¢)) + cos(k . ((1 = 2zg)a = b/2 + (1 = 2z5¢))).

(5.2)

The energy bands structure can be more readily visualized by considering

the special cases where the wave vector, k , is parallel to a

reciprocal lattice vector, a !, b™! or ™! . The relationship between

energy and wave vector is then
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E;(&lla 1) =  2(E3 + E3 + Ey + Es) + 2(Eg + Ey + Eg + Eg + Ejg)cos(k » a)
t 2(E); + Ejp + Ejzdecos(k . 2xqa)
* Z(Elg,L + EIS + EIG)COS<E o'(l - 2x0)_§)°

E;(‘I ll)_"l) = 2(E; + Eg +Eq + Eg)+2(E3 + E, + Es + Eq + Elo)cos(_li ° _lz)

+

Z(Ell + Ejp + E;3 + Eiy + Ey5 + EIG)COSQC_ ° R/Z)o

~
=
In
]
f
N’
]

2(E3 + Eg + Eg + Ej0)+2(E; + E, + Eg + E; + Eg)cos(k . <)

I+

2(Ej) + Eypy)cos(k . 2z9c) * 2(E), + Ejglcos(k . (1 - 2zg)c)

I+

2(E13 + Els)COS(l(' « (1 ¢ 220)_5)

(5.3)

The transfer integrals, Ei s Were calculated using eqtation (3:15) and
equation (3.20) of Chapter (3) with single Slater functions,
characterized by the normal, ¢ = 30.7 nm™!, and modified, ¢ = 24,6 nm !,
screening parameters to represent the carbon atomic wave functions, The
molecular orbital coefficients were calculated in the Hueckel
approximation without inclusion of overlap and assuming all carbon atoms
equivalent, The transfer integrals, for vibrational overlap factor unity,
together with the molecular overlap integrals (electronic) are given
in table (5.1) and table (5.2) and the energy band structures,
calculated using equation (5.3), are illustrated in figure (5.2).

The energy band structure of phenathrene is similar to that of
anthracene showing congiderable band splitting at k=0 and
degeneracy of the two components of the energy band at k=n 2"10
However, since the phenanthrene crystal structure does not contain a
a/2 glide plane, the energy bands are not degenerate at k= 'n_g-l .

The energy band widths, calculated using the modified and normal

Slater screening parameters, together with the band splittings at
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Position Transfer Overlap Transfer Overlap Transfer Overlap
0o, 0, 1 =-5.578  1.104 4,997 -0.883 1.192  0.603
0, 1, 0 113.972 -17.613 -32.399 7.755 =30.292 4,044
0, 1,1 =-0.148 0.005 0.017 =0.006 =0.060 0.002
0,-1, 1 0.024  -0.008 -0.018 0.006 -0.022 0.0n8
1, 0, 0 0.069 -0.01 0.074  -0.0n3  0.061  =0.001
1, 0, 1 0.003  =0.001 ~0.003 0.001  0.087 -0.029
1, 1, 0 - - - - 0.0 3 =0.001

-1, 1, 0° - - - - - -

1, 1,1 - - - - - -

0, ¥ 0 -23.899 4,725 93.359 -17.0 1 75.247 -15.517
0, ¥ 1 0.005  -0.002 0.004 -0.072 =-0.012 0.0 5
0, % -1 0.632 -0.145 0.352 -0.085 =3.117 0.694
1, ¥ 0 -25.804%  5.274  13.793  -~1.079 43.017 -8.128
1,-%,-1 - - - - - -
1,4 1 -0.830  0.179 0.295 0.057 =-0.054  0.070

mransfer* and Overlap** integrals for phenanthrene computed using

Table(5.1)

single Slater functions with screening parameter¥= 30.7 nm'.

»*

»*

units

* units

1 m-l-l eV.
1 m-}‘"o
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Transfer Overlap Transfer Overlap

Position
0, 0, 1 -23.013
0, 1, O 338.307
0, 1, 1 =0.280
Op=1, 1 0.bu7
1, 0, O 0,019
1, 0, 1 0.100
1, 1, 0 =-0.039

-1, 1, 0 =0,010
1, 1,1 0,014
0, ¥, 0 -128.967
05 %5 1 0.125
Oy F,-1 3.874
1, ¥, 0 =-97.324
1, ¥,-1  =0.0m
1, 3, 1 4,061

L, 292
-54,425
0.093
-0.149
-0,003
-0,038
0.019
-0,001
-0,006
-28.340
0.047
-0.833
-15.454
-0.003

0.831

14,369 -1.491
-127.914 15,319
0.386 -0.138
-0.256 0,077
0.226 -0,090
-0,090 0,033
-0,016 0,005
-0.,022 -
-0,006 0.003
358,101  62.852
0.091 0.032
2.436 0.538
20.649 3.606
-0,011 -0.006
1.485  0.289
Table(5.2)

Transfer Overlap

-9.890
-98.703
-0.589
0,041
0.079
1.315
0.117
0,003
315.165
-0.183
-16.313
168.834
-0,011

"2 0353

0,084
16.389
0,011
0,013
-0,037
-0, 421
-0.074
-0,001
-51.527
0.036
-3.304
-28.614
0.004

 0.637

Transfer* and Overlap** Integrals for phenanthrene compﬁted using

single Slater functions with screening parameter $= 2U4.6 nm .

* units

*#* units

1 n-u eVo
19=-4.
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k= 3'1 and k = n_g"l are given in table (5.3). Note that the
energy band widths quoted are for vibrational overlap unity. The
polarizability of phenanthrene is extremely similar to that of
anthracene (129), 2.5,¢0=2 nm3 compared to 2.419-2 nm3 and the
crystal structures are not too different hence one would expect the
polarization of the lattice by the excess electron or %ole to be
‘similar for the two crystals., Glaeser and Berry (44) have shown that
the effects of including polarization is to reduce the transfer
integrals almost linearly by a factor of 2. The vibrational overlap
integrals for phenanthrene are not known, however, by comparison with
naphthalene and anthracene the effects of intermolecular vibrations
is to reduce the band widths linearly by factors of 0.6, 0.3 and O.l
for the zeroth, first and second sub vibrational bands, hence the
true band widths will be those given in table (5.3) multiplied by
factors of 0.3, 0,15 and 0.05 for the first three vibrational levels,
Thus for the lowest vibrational state the average energy band widths
in the &b plane for all three sets of energy bands are 0.008 eV,
using screening parameter { = 30.7 nm~! | and 0.032 eV for the
modified parameter, while the band widths perpendicular to this plane
are approxirﬁately an order of magnitude smaller., This is more or less
what one would expect on the basis of crystal structure since the
short internuclear distances, and hence large interactions, are

predominantly between molecules which promote carrier transport in

the ab plane.

5.4 Mobility tensor

5.4(i) Carrier mobilities in the energy band approximation

The components of the mobility tensor, Mg e can be computed from
the energy band structure using either the mean free time or mean free

path approximations (132), through the relations :
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Normal Modified
Hole 1st Cond 2nd Cond Hole 1st Cond 2nd Cond
0.94 3.61 3.36 11.77  13.83 4,95

+
E(E”g')- - 0,94 3.60 3.26 11.66 13.82 5.05
E(k"b-,)£ 3.54 0.86 1.09 5.36 2.54 9.00
= = - 5.54 3.45 3.51 13.25 12.46 18.05
E(klld“)+ S 0.24 0.23 0.07 1.08 0.75 0.92
- T - 0,22 0.17 0.17 0.35 0.40 0.90
splitting 0.13 2.90 4,85 4,83 12.35 0.86
at k.a =7
splitting 1.98 4,25 0.96 12.07 14,96 9.03
at keCc =7
Table(5.3)

Energy bandwldths* in crystallline phenanthrene computed
using single Slater functions with the normal(¥ = 30.7 nnm'.)
and modified(% = 24.6 nm~'.) screening parameters.

vibrational over 1lap factor unity.

* units 1p-2 eV.
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u = e T <<v, vj>>/k0T (5.4)

ij
and

where the symbols have their normal meanings (132), The components
of the mobility tensor, without the constant multiplicative factors
e 19/koT and e A/koT , along the Bfl axis together with the

=1 axes to this are

ratios of the components along the a =1 and c
given in table (5.4).

Studies on anthracene (133) have shown that the uncertainty
principle as formulated by Frohlich and Sewell (84) is not violated
and, in view of the close similarities between anthracene and
phenanthrene both structurally and crystallographically, one might
expect a similar situation to exist in phenanthrene. However, in
addition to normal carrier = phbnén scattering there is an additional
problem of electron - dipole interactions which could, if of
significant magnitude, reduce the mean free path to below the lattice
spacinga'Phenanthrene crystals are kno&n to be piezo electric (136) an
effect for which a necessary, but not sufficient, condition (135) is that
a system of induced or permanent dipoles exist in an arrangement lacking
central symmetry. An éstimate of the value of the effective dipole
moment in the crystal is ~ 130=3 D (129), hence electron ~ dipole
interaction in phenanthrene will be of a similar order of magnitude
to electron = induced dipole interactions in anthracene which have
been shown to be small (44). In addition the experimentally observed
trap'density in phenanthrene is véry similar to that of anthracene,
and, as the energy band model is applicable to anthracene, it appears
reasonaﬁle to assume it will also be applicable to phenanthrene. This
solid/cliquid
indicates that the conductivity is much higher in the solid than in

is substantiated by the observed value of ¢ which
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Hole. 1st. Cond. 2nd. Cond.
Vibrational 0.1 1.0 0.1 1.0 0.1 1.0
Overlap ‘
<vbVb>* 2,497 213.809 o0.425 49.596 0.361 42.219

<vbvb/v(k)>** 1.020 8.618 0.229 2.533 0.223 2,474
Yaa 0.188  0.220 9.368 8.492 7.981 7.168
"bb (0.199) (0.335)(5.749) (5.359)(4.978) (4.605
Yee 0.011  0.014 0.044%  0.037 0.028 0.027
“bb (0.021) (0.028)(0.043) (0.035)(0.020) (0.021)
0.05  0.65 0.47  5.60 0.39 415
(0.06) (0.92) (0.29) (4.34) (0.35) (3.64)
0.33 2.96 0.05 0.66  0.05 0.58
(0.32) (2.76) (0.07) (0.81) (0.07) (0.79)
0.0%4  0.040 0.002 0.020 0.010 0.020

( aa)min. ***
( “bb)min.

( Hce)min.
(0.003) (0.040)(0.004) (0.030)(0.001) (0.020)

Table(5.4)
Mobility ratios and minimum values of the mobility, computed
in the mean free time and free path(in parentheses) approx-
imations using single Slater functions with™ = 30.7 nﬁ*.,
in crystalline phenanthrene.
* 196 m*/sec .

* * 103 m/sec.‘

*%% 1p-4 m3/volt-sec.
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Hole. ' ’1st. Cond. 2nd. Cond.
Vibrational 0.1 1.0 0.1 1.0 0.1 1.0
Overlap
<Vbvb ¥ 22.07 1029.89 6.73 621.45 0.93 592.86
<vbvb/v(k)>** 2.65 12,52 0.93 8.38 5.32 10.21
Faa 0.45 1.23 8.85 B.09 5.4 6.17
bbb (0.52) (1.68) (5.42) (5.64) (9.43) (3.38)
Bee 0.01 0.03  0.03 0.03 0.03 0.02
kb (0.02) (0.07) (0.03) (0.02) (0.04) (0.02)
0.36 4,58 2.12 18.11 6.22 14,80
(Faalmin™™ un) (6.75) (1.62) (15.17)(16.13)(11.07)
0.80 3.73  0.24 2,24 o.04 2.4
( *bb)min. ’
(0.85) (4.02) (0.30) (2.69)(1.70) (3.28)
. 0.01 0.13 0.01 0.06 0.00 0.05
( Fee)min. (0.02) (0.29) (0.01) (0.06)(0.06) (0.06)
Table(5.5)

Mobility ratios and minimum values of the mobility, computed

4in the mean free time and free path(in parentheses) approx-

imatidns using single Slater functions with™ = 24.6 nﬁ“.,

in crystalline phenanthrene.

* 196 m~/sec .

193 m/sec.

1p-4 m*/volt-sec.

* %

* ¥* ¥
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the liquids The observed value of o / 32 , determined (135)

9liquia =

on a close packed polycrystalline sample, is similar to that of

solid

naphthalene obtained under similar conditions, The value obtained

on single crystals of naphthalené is several orders of magnitude higher
than obtained using polycrystalline samples and a similar effect might
be expected for phenanthrene. Since the density of phenanthrene
increases slightly on melting, the decrease in conduction is not due

to larger internuclear distances and appears to be a result of the
breakdown in the periodic structure of the crystal lattice. Conduction
occurring via ; wavelike motion is dependent upon the translational
symmetry, of the lattice, therefore, any reduction in this symmetry,

as in the case of melting, will considerably reduce the mobility of
carriers. Conversely carrier transport due to a hopping motion does
not rely on the translational symmetry and should thus be about equally
effective for both liquids and solids (57). If the energy band model
'is apélicable to the conduétion mechanisﬁ éf crystalline phenanthrene
the uncertainty principle can be rephrased to yield approximate values
of the scattering constants 13 and X . Thus in the mean free time

approximation the average band width, B , is related to the mean free

time, 1Tg , through :

19>h/B (5.6)

Substitution of equation (5.6) into equgtion (5.4) gives :

Similarly, in the mean free path approximation the mean free path, A ,
must be greater than the lattice spacing, a , hence, assuming ) to

be isotropic and equal to the average of the lattice constants,
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equation (5.5) becomes

e a
ETE IR TA L Y (5.8)

The values of the minimum mobility calculated using equation (5.7) and
equation (5.8) are shown in table (5.3).
The mean square velocities <<, v.>> and the velocity components

<<y vi[x(5)>>, calculated using vibrational overlap factor 0.1, are
gimilar to the corresponding values for anthracene. However, these
values show a much larger increase with increase in vibrational
overlap which results in the minimum values of the mobility, for
vibrational overlap unity, being muéh greater than the observed

value in anthracene. As was discussed in section (3) the effects

of coupling of the excess carriers with high frequency intramolecular
vibrations, together with polarization of the crystal by the excess
charge, serve to reduce the transfer integrals by a factor -~ 0.3.

The resultant values.of the éverage mobility of éxcess electrons and
holes in the ab plane are 1.0 (6.0) and 0.6 (1.4) em?/volt.sec.,
respectively, while perpendicular to the &b plane the corresponding
mobilities are 0,01 (0.02) and 0.01 (0.04) cm?/volt.sec. Thus the
mobility ratio, “1139/9433 ~ 100 for excess electrons and ~ 60 for
excess holes, is rather larger than the value ~ 30 obtained from

the resistivity measurements of Matsumoto and Tsukada (127)., However,
bearing in mind that a slight anisotropy in the energy gap, E , results
in massive changes in the anisotropy of the resistivity, p , the
agreement between theory and experiment is not as bad as might appear

at first sight.

5,4(ii) Carrier mobilities in the localized representation
The carrier mobilities in phenanthrene were calculated on the

Gleaser — Berry model (44) using a modification of the program outlined

in appendix 3.
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The probability distributions, r(zi) » jump frequenciés. 1/ti ’
and diagonal elements of the mobility tensor, computed using the transfer
integrals of table (5.1), are given in table (5.7). The average values
for the mobility in the &b plane and the mobility perpendicular to this
plane aré given in table (5.6) where they are compared to the corresponding

values for anthracene calculated on the same model,

Phenanthrene Anthracene
Hole Electron 1 Electron 2 Hole Electron Exp.
”ab(a) I 0,281 0,321 0.218 0,118 0.288 1.5 1.4
o II 0.826 1.375 . 0.889 0.390 0.940
Mote! 1 0.058 0.045 0,029 0,149 0,008 0.8 0.4
II 0,206 0.164 0.186 0.688 0.053

Table (506)

Calculated values of the mobilities in phenanthrene and anthracene

computed in the gsimple hopping model,

(a) units ¢ 1ljg=4 m?/volt.sec.
1 transfer integrals calculated using z = 30,7 nm-!
11 transfer integrals calculated using Z = 24.6 nm~!

The calculated anisotropy of the carrier mobilities is much less than that
obtained using thé energy band model, the predicted values of the
mobilities in the ab plane being ~ twice that of anﬁhracene,

i.e. ~ 3 cm/volt.sec., while perpendicular to the &b plane the average
mobility is ~-% that of anthracene, giving a mobility anisotropy,

My ab/li b9 of « 6. This is much lower than that obtained

experimentally.
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Hole Electron 1 Electron 2
Position (ri) 1/t1 (r1) 1/t1 (r1) 1/t
0,0, 1 0.033 0.540 0.034 0.483 0.008 0.115
0,1, 0 0.667 11,025 0.223  3.134 0.198 2.9%
0,1, 1 0.001  0.014 - 0.002 - 0.006
0,4 0 0.140  2.312  0.643 9.031 .49 7.279
1,4 0 0.151 2,496 0.095 1.33% 0.281 4.161
0s4:-1  0.004  0.061  0.002 0.034 0.021  0.307
t,4 1 0.005 0.080 0.002 0.029 - 0.005
Average Jjump 2,361 2.007 2.115
frequency
No. of jumps 8.073 6.649 5.366
Faa** 0,12 O.44 0.28
Hbb . 0. 44 0.20 0.16
Hece 0.06 ?.?5 0.03
’ a
Hole Electron 1 Electron 2
Position (ri) 1/t1 (r1) 1/t1 (r1) 1/t1
0,0, 1 0.039 2.226 0.027 1.390 0.016 0.957
0,1, 0 0.568 32.726 0.244 12,374 (.16 9.548
011 ’ 1 - 00027 - 0-013 00001 00057
0, » O 0.216 12,476 0.682 34.61 0.515 30.487 -
1, , 0 0.163  9.415 0.039 1,997 0.276 16.332
0, ,=1 0.07 0.375 0.005 0.236 0.027 1.578
1, 1 0,07 0.393 0.003 0.14% 0.004 0.228
Average Jump* 8.234 7.256 8. 455
frequency
No. of Jumps 22.911 26.756 25.810
‘aa**  0.53 1.89 1.21
bb 1.12 0.84 0.59
ce 0.21 0.;6 0.19
b
Tableg5.7)

Jump probabilities, T (ri), Jump frequencies*,1/t1,and

mobilities 1n crystalline phenanthrene, computed using

single Slater functions with Screening parameters

§_= 3().7 m’..(a) and ":-—: 24-6 nnl-'o(b)o

*units

1012 sed’ .

**units 1p-4 m*/volt-seo.
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5,5 Comperison of phenanthrene with anthracene,

The resistivity anisotropy of phenanthrene was first studied by
Matsumoto and Tsukada (127). The& obtained resistivity values of
4,8y015 and 1.9;914 Q-cm along the &b plane and perpendicular to the
&b plane respectively at 288°K. Since, within the limits of
experimental error, the energy gap was isotropic, having a value of
1,14 eV, they argued that the anisotropy resulted from a;t£sotropy in
the mobility tensor., The theoretical calculations reported in the
previous section substantiate this reasoning. Using the above values
of the resistivity and energy gap Matsumoto and Tsukada estimated the
pre-exponential factor, pg , to be 1.8;94 in the ab plamne and
6.0104 perpendicular to the ab plame, while the corresponding values
for anthracene are seven orders of magnitude lower (189). Later
studies (128, 129) cast some doubt on the purity of the crystals used
in the experiment, Matsumofo (128) obtained a value for the resistivity
in the ab plane of 531013 Q-cm while Arndt and Damask obtained a value
of 9.2,9l4 9-cm perpendicular to the ab plane, thus confirming the
‘observed anisotropy of Matsumoto and Tsukada. However, Arndt and Damask
gshowed the log (resistivity) vs 1/T curve to consist of two straight
lines of slope 1.5 eV, (T < 345°K) and 1.1 (T > 345°K). This change of
gradient was‘accompanied by an order of magnitude decrease in the
resistivity and controlled experiments on impure crystals léd to a
decrease and finally elimination of the effect resulting in the
Matsumoto - Tsukada result. Using the Arndt and Damask values for the
resistivity and energy gap the estimated value of py in the &b plane

is 0.07 Q-cm which is within an order of magnitude of the corresponding

value for anthracene,

5.6 Comments on the polarization phenomena observed in high purity

phenanthrene crystals.

In this section suggestions are put forward as to the origins of the

polarization phenomena observed experimentally by Arndt and Damask (129).
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All experimental data quoted is taken from their paper unless otherwise
s tatedo

The observed phenomena have been described in terms of reversible
and irreversible polarization states» Crystals in the reversibly
polarized states were obtained by heating the crystals to temperatures
above 345°K and then allowing them to cool in the presence of an

applied field» Above 345°K. the current due to dark conductivity was

observed, however, at 345°K a current pulse was emitted (see figure (503))

which decreased approximately exponentially with temperature» Various
other experiments were performed using different voltage bias and in
all cases the current showed a pulse with a maximum at 345°K» From the
area under the curve the charge release was calculated to be of the
order 2i0” !0 coulombs»

Crystal without a centre of symmetry can show electrical

polarization in the absence of an applied external field because of

the alignment of electrical, or induced dipoles» Such polarization

will not be observed under static conditions because the polarization
charges are compensated by free charges » However, change of

temperature will cause a change in polarization and hence some of the

free carriers are liberated giving rise to a current» Such crystals

are called pyro electric» If the crystals allow their spontaneous
polarization to be reversed in polarity by an external field the

crystals are termed Ferro electrics0 The observed phenomena suggests
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that phenanthrene is either pyro or ferro electric,

Phenanthrene is known to be piezo electric (136) with a piezo
electric coefficient about equal to that of quartz and it is noted
that substances which exhibit piezo electric phenomena often also
.exhibit ferro electric phenonena.' A ferro electric crystal usually
contains domains, that is a large number of aligned dipoles. The
direction of the aligned dipoles is different in different domains and
the orientation of the dipoles is opposed by thermal motion. As the
temperature is increased the alignment is disturbed and at a certain
temperature, called the Curie temperature, becomes completely random
and the crystal then loses its ferro electric properties. Thus, if
T =345°K represents the Curie temperature, above this normal dark
conductivity will be, and is observed. |

Generally in a ferro electric material the symmetry is lower below
the Curie point as the material must be polar, whereas above the Curie
point it may not necessarily be polar. Hence many ferro éléctrics show
a transition entropy which will be reflected in the heat capacity. A
heat capacity anomoly has been observed in phenanthrene (129, 120) which
shows a maximum of 340 cals./mole. at 345°K.

Crystals illuminated with intense white light for several
minutes, and then heated with a biasing field, showed in addition to the
reversible polarization, other, more permanent phenomena, A crystal in
the irreversible polarized state changes to a dielectric, which suggests
that polarization is largely in one direction. In addition neither
chemical etching nor cleaving of the crystal impairs this ability to
cling to the dielectric. This directional polarization suggests that
the crystals are electrets, i.e. the electrical analogue of a magnet.
Such persistent internal polarization phenomena has also been observed

in benzene (137), naphthalene (138, 139) and anthracene (140 = 143),
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Conclusion

The energy band structure of phenanthrene has been calculated using
the tight binding model. The calculated energy band widths in the ab
plaﬂe, assuming vibrational overlap unity, are of a similar magnitude
to anthracene being 0,055 (0.210) eV, and 0,057 (0,213) eV. for the
valence and first conduction bands, respectively, while perpendicular
to this plane they are an order of magnitude lower, The above figures
refer to values calculated using single Slafer functions with
r = 30,7 nm ) and £ = 24.6 nm~! (in parentheses), Coupling of the
excess carriers with high frequency intramolecular vibrations and
polarization effects are estimated to reduce the above band widths
by a factor of about-%o The energy band widths of the second
conduction band, which is centred approximately 0.7 eV. above the
first, are at a similar magnitude and show the same degree of
anisotropy as the first conduction band,

The ratio of the mobility of carriers moving perpendicular to
and parallel to the & plane have been calculated in both the energy
band and simple hopping models. The magnitude of the\mobility in the
ab plane is predicted to be about twice that of anthracene,

i.es - 3 cm?/volt.sec., on both models, however, the anisotropy is

considerably lower on the hopping model. For the energy band model

and in the hopping model

whereas the ratio calculated from resistivity studies is

Miap © P,
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The available data on phenanthrene has been reviewed in the light of
the calculated mobilities and the comparisons with anthracene are

more pronounced than indicated by the work of Matsuméto and

Tsukada (127).
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The energy band structure and carrier mobilities in some condensed
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6,1 Introduction

The lower molecular weight aromatic hydrocarbons are
characterised by low mobilities, high resistivities and large energy
gaps. At the upper extreme in condensatio# of benzene rings is graphite,
characterised by a relatively high mobility, which shows a high degree
of anisotropy, low resistivities and low energy gaps. Intermediate
between these two extremes are the condensed aromatic hydrocarbons
coronene (C24 le), ovalene (032 H14) and circumanthracene (C40 H16)°
The interplanar distance in these molecules is very similar to the
graphite value of 0,335 nm. and as can be séen from figures (6.1) and
figure (6.2) the normal projection of two parallel molecules shows a
marked resemblence to the graphite structure as viewed along the
c ~axis, It seems reasonable, therefore, to expect those molecular
crystals to have an appreciable value for the mobility,

No mobility measurements have been reported in the literature
for any of the above compounds although values for the resistivity
and energy gaps have been determined (190 = 196), and these are
1isted in Table (6,1) along with the uetﬁods of measurement.

Table (6,1)

Molecule Resistivity AE(eV) Method of Ref.
» (@ _cm) - measurement

Coronene 1.71917 1.7  compressed powder 190

1.0,018 1.6  deposited film 190

2,3 compressed powder 191

2.55 evaporated film 192

17917 = 1,418 1.60 evap.film - sand.cell 193

11012 = 1,13 1.65 " " < gurf.cell 193

Ovalene : 2.31015 1.13 compressed powder 194

2.31015 1.14 compressed powder 195

- 2,0 evaporated film 192

Circumamthracene 6.01012 1.8 single crys.|| b axis 196
2.5,013 1.9 evap.film - surf.cell

1.0,916 ~ 1.0,017 1.7 evap.film - sand.cell

Experimental data on coronene, ovalene and circumanthracene.
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Tionro (6.1)

Crvstal structure of ideal frapbito.

Figure (6.2)
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An approximate value for the anisotropy in coronene and
circumanthracene can be obtained by comparing the Qalues of the
registivities obtained using surface and sandwich cells, 1In the
former method the electric field is applied along the surface of
the £ilm and in the latter perpendicular to it; Electron micro
diffraction and X-ray studies indicate that the films consist of
a number of single crystals& arranged in close packing, with their
ab planes parallel to the ;urface of the film, Hence, the sandwich
cell effectively measures the resistance along the ‘¢! axis while the
surface cell measures the average resistance in the ab plane. Since
the energy gaps obtained in the two experiments are very similar it
gseems reasonable to suppose that the carrier density is fairly
igsotropic. - Therefore, an order of magnitude value of the mobility
ratio in the ab plane to that along the c' axis can be obtained
from the ratios of the corresponding conduétivities indicating that

the mobility along the ¢

axis is several orders of magnitude less
than in the ab plane. No aniso;ropy values have been reported for
the ab plane.

It is thus the purpose of this chapter to calculate the energy

band structure and the anisotropy of the mobility tensor in coronene,

ovalene and circumanthracene,

6.2 Energy band structure

The energy band structure of circumanthracene has been reported
by Harada et al (197). The transfer integrals were calculated using
single Slater functions to represent the carbon 2pz atomic ﬁav;
function, the normal Goeppert = Meyer and Sklar potential (202), and
atomic coordinates constructed from the atomic coordinates of
coronene (199) and the unit cell data of Robertson et al (198).

Unfortunately the Geoppert = Meyer and Sklar potential does not
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includé thé effects of electron exchange and the contribution of
thése terms to the transfer integral are far larger than their
coulombic counterparts. In the following sections an attempt is
made to obtain an order of magnitude correction for the exchange
contributions to the original integrals of Harada. Such a
correction will be very approximate but will give an idea of the
magnitudes of the interactions involved.

The crystal data for coronene (199) and ovalene (200) together
with the Hueckel coefficients and symmetry of the excess electron and
" hole wave functions are given in table (6.2). The highest bonding
and lowest anti-bonding orbitals in ovalene are separated from the
nearest energy levels by about 1.3 eV and hence band mixing effects
will be negligible and the calculation of the energy band structure
straightforward. However, in coronene both the highest occupied
and lowest unoccupied energy levels are degenerate,subsequently the
energy bands constructed with these molecular orbitals as a basis
will interact considerably giving rise to two sets of energy bands
for both the electron and the hole. Hence when determining the energy
band structure of these bands -the methods developed in Chapter (4),
section (2), page (76) must be used.

The necessary transfer intggrals for coronene and ovalene have
been computed using a single Slater function with both the mddified and
normal Slater screening parameters. The results of the calculation
using the modified screening parameter are given in table (6.3).

To facilitate the comparison of the present results with those of
Harada et al (197) the transfer integral, for the normal Sléter
screening parameter, are quoted as a sum of the contributions from the
coulomb and exchange interactions separately. From the magnitude of the

two contributions to the transfer integral for ovalene it can be seen




IAO

V.
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Coronene Ovalene
Electron Hole Electron - Hole
Position <I I> <KII II> <KI II> <KI I> <KII II> KI II>
0,0,1 27.95 -46.04 8.99 -25.35 -15.25 -85.99 363.91 ~A473.70
- 0,1,0  ~334.,48 2383.04 12.73 65.65 =660.32 =322.83 1675.21 3121.04
0,1,1 - - - - - - 4.25 \-11;01
$ 450 12.56 -38.80 -28.93 90.76 -4.07 -19.18 31.56 15.90
b4 2.57 7.90 L.u3 =3.11 -14.32 1.23 b.h4g -7.14
Table (6.3)
Transfer iﬁtegrals* for excess electrons and holes in coronene and ovalene
computed using single Slater functions with screening parameter™ = 24.6 nﬁ“.

*units 1p-4 eV.
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that the effects of including exchange interactions is to increase the
interactions between the molecule at the origin and those at the
corners of the unit cell by a factor of 4 whilst the interactions
with molecules at the centre of the ab faces are increased by a
factor of about 6, In order to obtain an approximate value for the
energy band widths we have multiplied the integrals of Harada by the
appropriate factor. It should be emphasised that this is a rather
drastic approximation, however, in the absence of accurate atomic
refinements and because of the remote possibility of obtaining anf (201)
there appears to be no other alternative. The transfer inteérals for
coronene and ovalene together with the modified integrals of Harada
are given in table (6.4). There are two points of interest in the
calculated interaction between the molecule at the origin and that at
the position (0, 1, 0). Firstly, the magnitude of the interactions for
ovalene and circumanthracene are in the reverse order to that which
would be expected from considerations of increasing ring size
coupled with little change in the intermolecular distances, i.e. the
more condensed hydrocarbon would be expected to have the larger valugo
Secondly, the interactions of the electrons and the holes have the
same relative sign.

The reason for these apparent anomalies can be traced to the
symmetry properties of the two sets of molecular wave functions.
The relative phases of the Hueckel coefficients in circumanthracene
are such that all the interactions between atoms which are very
close together (~ 0,35 nm) cancel with equivalent interactions in
other parts of the molecule giving rise to a smaller overall
interaction than one might at first expect. Similar cancellations

occur in ovalene but to a lesser extent and the sign of the products



Coronene Ovalene
I I> <IT II> <I II> |
Position Coul. Exch. Tran. Coul. Exch. Tran. Tran. Coul. Exch. Tran.
0,0,1 -0.23 -3.11 3,64 4.08 4,89 8.97 2.47  20.11 64,08 8419
0,1,0 160.80 435.45 596.24 24,34 268,31 -92.97 - 5.66 89.14 271.45 360.59
+, 50 -0.36 =4.74 -5.11 0. 37 1.69 2,05 -11.30 0.49 3.85 4, 34
35 H1 c.10 0.59 0.69 0.06 0.24 0.30 0.29 0.09 0.4 0.50
(a)
Coronene. Ovalene
<II> <II II> <I II>
Position Coul. Exch. Tran. Coul. Exch. Tran. Tran. Coul. Exch. Tran.
0,0,1 -2.37 =-5.27 -7.64 4,50 -4,96 -9.46 15,9 -24.,17 -78.71 -102.88
0,1,0 -31.64 -22,62 -54,26 -57.43 -151,64 -208.89 -107.37 199.50 534.89 734.39
4, 0 4,27 13.12 17.38 -0.30 -0.9 -1.19 -3.39 0.38 2.68 3.06
s H1 -0.07 -0.30 = -0.37 =-0.21 -1.21 -1.42 0.10 =-0.06 -0.45 -0.51
(v)
Table(6.4)

Circumanthracene

Coul. Approx Tran.'
-21.25
-53.69 =214,75

0.77 4, 61

0.13 0.78

-84.%

Circumanthracene

Coule. Approx Tran.
21.73 86.89
-55.99 -223.99
-0.75 =4.50
-0.18 -1.32

Coulomb and exchange contributions to the transfer integrals* of excess electrons(a) and holes(b) in

coronene,ovalene and circumanthracene.

The figures 1in angular brackets refer to the molecular orbital of the free molecule.

*units: 1p=-4 eV.

1
—
£~
w

1
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of the Hueckel coefficients is negative for the large
non-cancelling terms for both electrons and holes giving rise to
transfer integrals which are positive for both carriers.

The energy band structure of excess electrons and holes in
crystalline coronene, calculated including the effects of energy
band interactions, are illustrated in figure (6.3) and figure (60‘4)0
The rather strange behaviour of the energy bands along the b axis
requires some comment,

The energy bands of excess electrons show, in addition to the
normal maximum and minimum at the centre and edge of the Brillouin
zone, a minimum, a maximum in the case of the band of lower energy,
at approximately k = m a~!/2 . The origin of the effect lies in the
structure and relative positions of the two "pure" energy bands
resulting from the degenerate energy levels of the lowest
antibonding molecular orbital in the free molecules. The phrase
"pure" energy band is used to descfil;e the energy band resulting from
one of a pair of near degenerate molecular levels calculated
assuming the second band to be absent. Such bandswill not exist
physically but are extremely helpful in understanding the structure
of energy bands resulting from ﬁhe mixing of two or more such bands,
Figure (6.5) shows the structure of these bands along the reciprocal
lattice axes, _5'1, k"l and _g"l o To distinguish between the energy
bands resulting from the degenerate molecular energy levels I and 11
the notation Ei(}g) has been modified slightly to include the
molecular energy level as a superscript: viz E+I(L<,| |x~1) denotes
the two components of the energy band in the 3_{"1 direction calculated
using the molecular orbital coefficients of energy level I . As can
be seen from figure (6.5) the "pure" energy bands along the _g';l

and _(_:"1 axes are reasonably well separated whereas along the b™l
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Figure (6,4)

Enerpgy band structure of excess holes in crvstalline coronene corputed

using a single Slater function to represent the carbon 2pz wave

function with screening parameter, £ = 31,7 np~!,
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Figure (6.5)

Enerpgy band structures of excess hole (left) and electron
Tn coronmene in the absence of band mixing.
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Figure (6.6)

Enlarged sections of the crossing repions of the excess

electron (¢) and hole (a) bands and the energv band shapes

resulting from band-band repulsion., The superscripts on

w+(1<_) have been omitted for clarity.
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axis they intersect, hence, one would expect band mixing effects to be
of greater importance in this directionm. .This is substantiated by the
close similarities between the "pure" energy‘bands in figure (6.5) aﬁd
the corresponding energy bands in figure (6.3) along the Erl and
3‘1 axes. Figure (6.6) shows an enlarged section of the crossing
regions of figure (605) and the band shapes resuling from band-band
repulsion. For low values of k (k < 0.4 7 b™1) E}_(_ls| [b~1) and
Eil(gllhfl) are reasonably well separated and the energy bands in
figure (6.3) show a strong correlation with the pure energy bands of

figure (6.5)s In the region
0.4 mb™1 <k < 0,6 np~!

the two sets of energy bands experience an increasing repulsion due

to the presence of the other and this results in the energy bands ;hanging
_direction and ultimately exchanging roles. The situation is

illustrated in figure (6.6) (c), the dotted lines showing the

bending of the energy bands due to mutual repulsion and the resulting
band shapes are shown in figure (6.6) (d). For k > 0.6 m Efl the
repulsion effects decrease and the energy bands again show a strong
correlation with the pure energy bands.

Similar arguments can be used to explain the strange behaviour
of the energy bands of excess holes along the Efl axes. These are
illustrated in figure (6.6) (a) and figure (6.6) (b).

The above effects are effectively an extension of the familiar
non-crossing rule (203) into the energy bands in k - space. It
should be noted that E (k) and E_(k) belong to different
symme try species hence crossing of these energy bands as in
figure (6.3) and figure (6.4) does not constitute a violation of

the non-crossing rule.
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The energy band structure of circumanthracene and ovalene,
calculated using thebtransfer integrals with screening parameter
30,7 nm !, are shown iﬁ figure (6.8) and figure (6.7) respectively.
The general shapes of the energy bands for ovalene calculated using
the transfer integrals with the modified screening parameters are
very similar to the ones shown and are not given here, however, if
needed they can be easily calculated using the transfer integrals
of table (6.3) and equation (3.12) of Chapter (3), section (3),
page (47).

Unlike the linear polyacenes the energy bands of ovalene and
circumanthracene show only small splitting between the two components
of the energy band and, due to increased molecular size and the
relatively short length of the ¢ axis, have a relatively large
band width in the ¢! direction. In addition E,(k||b~1) shows
the same type of variation for both electrons and holes hence the
lower energy states will be around the minimum at k = = b=! for
electrons and around the maximum k = O for holes in ovalene, while
the reverse is true for circumanthracene. It should be noted that fhe
energy léveis for excess holes are measured downwards from the top of
the band. Thus S.Z_(Ei(_lf,l |b) will be positive for excess electrons

2
dkb

and negative for excess holes in ovalene and the same is true for
circumanthracene, The effective mass, m* ; of a carrier of energy
E and wave vector k can be written (204)

hZ
wk = d2E (6.1)
2
dk

Hence the effective masses in the lower energy states will be positive
for electrons and negative for holes and, since the energy band widths

are several times koT at room temperature, it will be these states
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Figure (6.7)

Energy band structure of excess electrons (left) and

excess holes (right) in crystalline ovalédne !<VU!XEEJ2 = 1.0
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Energy band structure of excess holes (a) and excess

electrons (b) in crvstalline circumanthracene
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Coronene Ovalene

Electron Electron Hole Hole Electron Hole
4 0.012 0.006 0.034 0.006 0,014 0.004
E(xll &)
' - 0.013 0.006 0.033 0.005 0,014 0.004
+ 0.329 0.431 0,064 0.146 0,688 1.243
E(xlIp')
- 0,408 0.118 0.130 0.135 - 0,659 1.236
+ 0,012 0,014 0.007 0.038 0.153 0.204
E(k lic’)
- 0,025 U.009 0,020 0,022 0.145 0.193
¢ splitting 0.067 0.008 0.079 0.005 0.022 0.018
Table(6.5)

Energy bandwidths* of the electron and hole bands in coronene and ovalene
computed using single Slater functions with screening parameter™® = 24.6 nm .
Vibrational overlap factor unity.

units: ev.
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"Electron Electron

E(klla’)

E(kllp")

+
E(kllc")

c splitting

0.0017
0,0020
0.0964
0.1002
0.,0010
0.0019
0.0047

Coronene

0.0009
0.0012
0.1041
0.1020
0.,0039
0.0033
0.0015

Hole
0.0062
0.0060
0.0411
0.0532
0.0012
0.0028

0.0150

Ovalene
Hole Electron Hole
0.0004 0,0019 © 0,0010
0.0002 0.0019 0,0010
0.0584 0.1462  0.2948
0.0578 0.1423  0.2927
0.0094 0.0341 0.0416
0,008 0,0333 0.0407
0,0006 0,0031  0.0029
Table(6.6)

Circumanthracene

Electron
0.0022
0.0022
0.0837
0.0881
0.0333
0.0346

0.0031

Hole
0.0023
0.0023
0.0919
0.0873
0.0337
0.0358
0.0025

Energy bandwlidths* in coronene ovalene and clrcumanthracene computed using S1ngle

Slater functlons wlth screening parameter1:= 30.7 nm .

Vibrational overlap factor unity.

*units: eV,

]
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which are most densely populated. Therefore, in ovalene at least,
one should noﬁ observe any anomalous effects in the electrical |
properties along the b axis. This provides an easy method of
determining whether or not band theory is applicable to ovalene as

the model predicts that the ratio uD/ﬁH éhould be positive for bbtﬂ
electrons and holes unlike in the case of iinear polyacenes where

the reverse is true. In the case of circuganthracene the ratio

uD/uH should again be positive for both ;lectrons and holes, although
the effects of ﬁolecul#r vibrations may reduce the band width to the

extent that the band width < kyT and then the sign of uD/uH would

be reversed.

6.3 Mobility Tensor

The ratios of the elementg of the mobility tensor, calculated
in the mean free time and mean free path approximations using the
methods of Chapters (3) and (4) and ﬁhe transfe¥ integrals computed
with single Slater fuﬁctions characterized by both the normal and
modified (g = 2406 nm~!) screening parameters, are given in table 6607)
and table (6.8)., The mobility ratios féf coronene crystéls
containing excess electrons is relatively independent of the
vibrational overlap factor and show the electron mobility in the Efl
direction to be several orders of magnitude greater than either the.

al or c'! directions. In general

1 1
Mg ™ Moogs '1'6-55(-17)“5) LR for both energy bands

. where the figure in parentheses refers to the value calculated
using the screening parameter [ = 24.6 nm™ ! ,
The variation of the hole mobility ratios with vibrational overlap

factor is rather more complicated, the two energy bands showing opposite
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variations as the factor is increased. If the ﬁole mobility ratio
uaa/ﬁbb , calculated using ¢ = 30,7 nm~! , is considered; for the
band of lowest energy the mobility ratios decrease with increasing
vibrational overlap factdr while the reverse is true for the higher
band. As with the rather peculiar behaviour of the energy bands
in the Brillouin zone, the mobility ratios can be understood in terms
of the mobilities in the "pure" energy bands, and the large band widths.
For vibrational overlap factor unity the energy band width along 'gfl
is much larger than koT the excessrhole will therefore be predominantly
in the lower energy states which show a strong resemblence to the.”pure"
energy bands which leads to the higher band having the higher degree,
of anisotropy. For vibrational overlap factor 0.1 the band width along
kfl is less than kyT resulting in the upper regions of energy band
being more heavily populated and, gince the relationship between actual
energy bands and pure energy bands has been reversed, the anisotropy
of the mobility ratios is reversed. Thus one would expect similarities
between the mobility ratios in the first band with vibrational overlap
factoi‘ 0.1 and the second band with vibrational overlap factor 1.0 and
vice versa. Such correlations are amply illustrated in table (6.7).
Similar trends are observed using screenihg parameter = 24,6 nm~1 ,
however, even with vibrational overlap 691 the energy band width
is still ~ koT and so the effect is not ;3 pronounced.,

Th; mpbility ratios of ovalene and circumanthracene, with
g = 30,7 om™! , show some similarities in that the ratios for
electrons aqd bolés are approximately the same, uaa/ubb being
less than u;'é'/ubb , and they are relatively insensitive to the

degree of vibrational overlap. For § = 30.7 nm

. -~ l— ~ -]-'- f 1 ‘ .
Yaa " 0 Yaa T 50 Ypp  FOT Ovalene

: 1
and VHaa = 2

o

. _
Vaa = 35 Mbb fqr circumanthracene,
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I Coronene IT Ovalene Circumanthrancene

Vibrational 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

Overlap

<vbvb)* 4,38 114,56 L42.96 3.13 65.06 197.04 54.95 850.92 2322.40 5.28 128.49 uh2.12

<vbvb/v(k)>** 1.19 6.43 12.99 0.99 4,09 6.27 5.27 18.73 27.74 1.23 6.03 10.74
Yaa 0. 0.08  0.05 0,05  0.07 0.1  0.01  0.01  0.02  0.03  0.02  0.03
“bo  (0.30) (0.22) (0.14) (0.16) (0.23) (0.35) (0.01) (0.02) (0.03) (0.03) (0.03) (0.03)
Fee 0.03 0.03  0.0F 0,03  0.03 0,03 0,09  0.14  0.21  0.68 0.68  0.75
Fpb  (0.05)  (0.07) (0.10) (0.06) (0.05) (0.05) (0.13) (0.24) (0.39) (0.72) (0.75) (0.88)
“ac -0.01 -0,01  =0.01 -0.,01 -0,01 -0,01 -0,03 =-0,04 20,06 -0.12  -0.12 -0.13
E:;; (-0.02) (=0.03) (=0.04)(-0.02)(=0.02) (-0.02) (-0.04) (=0.06) (=0.10) (=0.13) (=0.13) (-0.15)

(2)
Table(6.7)

Mobility ratios of excess holes(a) and electrons(b) in crystalline coronene,ovalene and circumanthracene
computed in the mean free time and free path(iﬁ parentheses) approximations using single Slater functions
Awith screening parameter ¥= 30.7 nm .

* units: 1x6 m™/sec .

**units: 1x3 m/sec.



I Coronene IT Ovalene ‘ Circumanthrancene

Vibrational 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0
"~ QOverlap ‘
<VbvbD* 15.96 287.06 728.68 22.97 535.80 1494.60 14.39 322.18 924,09 4,70 105.95 343.84
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<vbvb/v(k>** 2.65 10.07 15.06 3.32 16.45 25.70 2.1 10.93 166.81 1.10 4,98 8.27
Yaa  0.003 0.003 0.003 0.0 1 0.001 0.001 0.02 0.02 0.03 0.04 0.06 0.08
b (0.010) (0.007) (0.007)(0.005) (0.003) (0.002) (0.02) (0.03) (0.04) (0.05) (0.08) (0.12)
Hee  0.001  0.002  0.004 0.0"1  0.001 0.001 0.23% 0.263 0.363 0.736 0.802 0.949
b (0.010) (0.015) (0.021)(0.006) (0.005) (0.006) (0.288) (0.357) (0.551) (0.776) (0.869) (1.070)
bac  -0.001 -0.001  =0.002 ~0.001 =0.001 =0.001 =0.063 =-0.070 =-0.097 -0.112 -0.115 -0.128
bbb (-0.004) (=0.005)(=0.009)(~0.002)(-0.002) (~0.002)(=0.077)(-0.095) (-0.014) (-0.122) (~0.130)(-0.149)
(v)
Table(6.7) cont.

Mobility ratios of excess holes(a) and electrons(b) in erystalline coronene,ovalene and circumanthracene
computed in the mean free timeAand free path(in parentheses) approximations'using single Slater functions
with screening parameter 3= 30.7 nm .

* units: 16 m?/sec?.

**units: 1p3 m/sec.
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I Coronene IT Ovalene

Vibrational 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0
Overlap :
<vbvbD* 37.66 786.27 1919.90 28.39 532.98 1581.30 611.58 2200.60 1868.50

vbvb/v(k)>** 3.51 16,14 22,21 2,95 11.66 19.65 14.06 13.98 6. 51
Faa  0.37 0.20 0.08 0.18 0.35 0.56 0.01 0.08 0.27
Lbb (0.46) (0.24) (0.11) (0.29) (0.50) (0.67) (0.03) (0.22) (0.92)
bee  0.05 0.07 0;13 0.06 0.05 0.04 0.19 1.06 3.26
bbb  (0.08) (0.16) (0.35) (0.08) (0.06) (0.05) (0.37) (2.37) (8.11)
Yac -0.02 -0.02 =-0.05 -0.02 -0.01 -0.02 -0.05 -0.28 -0.86
pb (-0.03) (=0.06) (-0.02) (-0.02) (-0.02) (=0.02) (-0.10) (-0.62) (~2.07)

(a)

Table(6.8)
Mobillity ratios of excess holes(a) and electrons(b) in crystalline coronene and ovalene

computed in the mean free time and free path(in parentheses) approximations using single
Slater functions with screening parameter? = 24.6 nm .
*units: 16 m~/sec .

**units: 13 m/sec.
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I Coronene IT Ovalene

Vibrational 0.1 0.5 1.0 U1 0.5 1.0 Ol 0.5 1.0
Overlap

<vbvb)* 197.19 1226,20 2167.50 359.38 2678.20 2288.10 277.12 2362.70 3904.60

<vbvb/v(k)>** 8.02 19.84 34,72 12,94 25.63 13.88 10.45 23.13 23.58
Haa 0,01 0,01 0,01 0.003 0.003 0,007 0.02 0,04 0.07
Epb (0.01) (0.01) (0.02) (0.01) (0.01) (0.05) (0.02) (0.07) (0.12)
Hee 0.003 0,008 0.02 0,002 0,008 0.04  0.22  0.56  1.02
¥bb (0.01) (0.02) (0.02) (0.01) (0.08) (0.34) (0.29) (0.90) (1.71)
Faec -0.001 -0.002‘ -0.005 ~0,001 =0.003 -0.015 -0.06 ~0.15 =0.27
kbbb (-0.004)(~0.008) (=0.008) (=0.004) (-0.028) (-0.129) (-0.077) (-0.242) (-0.458)

(b)
Table(6.8)

Mobillity ratios of excess holes(a) and electrons(b) in crystalline coronene and ovalene
computed in the mean free time and free path(in parentheses) approximations using single
Slater functions with screening parameter <= 24.6 nm .

* unitss 1xp6 m"‘/sec2 .

#aunits: 1w3 m/sec.

3
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The mobility ratios of electrons and holes in crystalline ovalene
calculated using screening parameter § = 24.6 nm~! show a large variation
with increase in vibrational overlap. For vibrational overlap factor
0.1 the mobility ratios for electrons and holes are very similar,
however, due to the extreme widths of the energy band along Efl , this
situation does not hold for any other value of the vibrational overlap
factor, It is interesting to note that the mobility ratios for the
electron band with vibrational overlap factor 1.0 and the mobility ratios
for the hole band with vibrational overlap factor 0.5 show a strong
correlation in keeping with the Qidth of the hole band being twice

that of the electron band.

6,4 Orientation of the principle axes of the mobility tensor

The direction cosines of the principle axes of the mobility tensor
with respect to the orthogonal crystallographic axes a, b and _g' are
obtained by diagonalization of the mobility tensor. The crystal
symmetry is such that the crystallographic b - axis is always a
principle axis and if the principle axes of the mobility tensor are
represented by A; B and C the array representing the relative

orientation of the principle and crystallographic axes is of the form

2 b
A 8A =90 -aC
B 90 0 90

Q

aC 90 aA

The values of the elements aA and aC for coronene, ovalene and
circumanthracene are given in table (6.10). Unlike anthracene type
crystals the principle axes  of the electron and hole mobility tensors
for both ovalene and circuménthraeene are colinear and independent

of the degree of vibrational overlap. In.additiop, the calculated
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L M N
84.8 4uy.2 133.7
b 85.6 46.7 43,7
c 6.9 96.8 89.6
~Coronene
L M N‘
a Ly, 7 78.5 132.4
b 51.5 Th. 4 ha.7
c T70.8 160.5 86.2
Ovalene
L M N
a 44 82.4 128.7
b 548 75.8 38.7
¢ 67.2 159.1 9.0
Circumanthracene
Table(6.9)

Orientation of the molecular axes L,M and N

to the crystal axes a,b and c.



I IT Coronene I IT Ovalene Circumanthracene
Element Vibrational Electron Electron Hole Hole Electron Hole Electron Hole
| 0.18 0.36 6.81  28.11  15.06 15.02  9.96  9.93

2-3 o1 (1.07) (3.02) (&80) (11.91) (15.08) (15.06) (10.00) (9.93)
-89.82 -89.63 -83.19 -61.89 74,94 74.97 8Bo.o4 8o.o7
22 (-88.93) (-86.98) (-85.24) (-70.09) (74.92) (74.9%) (80.00) (80.04)
A 0.83 0.27 30.54 7.28 15.02 15.03 9.98 9.9
- o (1.09) (1.58) (30.02) (3.52) (15.01) (15.09) (10.06) (9.91)
e -89.72 -89.72 -59.45 -82,72 74,98 T4.97 8o.02 8o0.10

(-79.70) (-88.42) (-59.98) (-86.48) (74.99) (74.91) (79.95) (80.09)
Table(6.10)
Orientation of the principle axes of the mobillty tensor with respect to the crystallographic

axes a,b and ¢ computed using single Slater functlons with screening parameter$ = 30.724 nm .

- €91 -



I IT Coronene*I IT Ovalene* Ovalene#*#*

Element Vibrational Electron Electron Hole Hole Electron Hole Electron Hole

Overlap | _
" 9.55  35.83 2,75  6.10 15.09  15.01 15.10 15,03
- 0.1 (37.81) (31.14)  (4.30) (6.16) (15.10) (15.09) (15.08) (15.01)
aC - =Bo.45  -sh.17  -87.25 -83.89 T4.91 Th92  Th.90 ,7“'97
T - (-52.19) (-58.86) (-85.70) (-83.84) (74.90) (74.91) (T4.92) (TL.97)
o 38.83  21.45  30.79 1.87 15,01 1494 15,01 14,90
T ‘0 (33.24) (20.45) (24.03) (2.25) (15.01) (14.95) (15.01) (14.70)
hC -51.74  -68.55 =59.21 -88.13 74,99 T75.06  T4.99 7510

(-56.76) (~69.15) (-65.97) (-87.53) (74.99) (75.05) (74.99. (75.38)
Table(6.10) cont.

Orientation of the'principlé axes of the mobility tensor with respect to the crystallographic

axes a,b and c. ‘ |

* computed using single Slater functions with screening parameter s = 24,565 nm ' .

*#»computed using single Slater functions with screening parameterS = 22.676 nm .

- %91 -
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(0,0,1)  (0,1,0) (0,1,1) (4,%,0) (4,%,1)
Electron 548.92 2606.01 T.12 57.10 6.34
Hole 734.21 471,29 13.21  26.14 13.17
Transfer integrals* for excess electrons and holes in ovalene
computed using single Slater functions with screening parameter

-§= 22.7mn0

Electron "Hole
+ 0.0256 . 0.0052
E(k a™")
- - 0.0256 0.0052
+ 1.0767 1.8799
E(k JIv")
- . 1.0254 1.8695
+ 0.2337 0.3260
E(k I1E)
- 0.2227 0.3049

Energy bandwidths** of excess electrons and holes in ovalene.

Electron ’Hole

Vibrational 0.1 0.5 1.0 0.1 0.5 1.0
Overlap

CVOVbS***% 580,62 3334.20 4160.40 994.36 2200.4 8UB.60
<vbvb/v(k)>***14,63 24,24 18.78  15.81  10.18  1.93

HFaa 0,02 0,06 0.11 0.02  0.16 1.05
Moo (0.03) (0.09) (0.20) (0.,05) (0.49) (4.16)
Bec. 0.23  0.77 1.56  0.29 1.99 11.51
"o (0.33) (1.29) (2.79) (0.58) (4.54)(27.79)
Pac -0.06 =0.21 -0.49 -0.08 -0.53 =-2.99

Pob  (~0.06) (-0.35) (-0.75) (=0.16) (~1.68)(-6.67)
Mobility ratios.
Table (6.11)
* units: 1p-4 eV.
** units: eV,
#%+ units: 13 m/sec.

s#x¥units: 1p6 m?/sec .
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values of aA and aC are the same whether the screening parameter
r = 30,7 am~! or [ = 24,6 nm~! are used even though the
mobility ratios uaa/ubb and uc'c;/ub have changed by a factor
of about 10, Thus it appears that, for ovalene atileast, the
relative orientations of the principle axes are independent of both
vibrational 6verlap factor and screening parameter. To test this
statement further the elements of the mobility tensor have been
calculated uéing screening parameter [ = 22.7 nm~!., The transfer
integrals, energy band widths and ratios of the components of the
mobility tensor are given in table (6.11). The values of elements
aA and aC are consistent with those obtained using the previous
two screening parameters indicating that the effgct arises as a
result of the crystal structure and relative orientation of the
molecules within the unit cell. This is further substentiated by
the correlation between the angles a&.C , A.c’ of the mobility
tensor with the angles &.M and L.c' (c.f. tables (5.9) and
table (5.10)), where M and L are the ﬁolecular axes of the
molecule. Thus the principle axes of the mobility tensor A and C
approximately lie along the molecular axis .g‘ and L , and the
remaining axis B 1is coincident with the crystallographic axis b .

Similar correlations are observed for circumanthracene, however,

possibly due to band-band interactions the above effects are not

observed in coronene.

6.5 Comparison of theory with experiment

Assuming the energy band model to be applicable to the
conduction mechanism in coronene type crystal;, then, by the methods
described in Chapter (3), the relationship between the minimum value

of the mobility and the energy band width is 3
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Mii ) KT B Vi Vi (6.2)

The mobilities calculated in this way are found to vary approximately
as the vibrational overlap factor and hénce it would be an

advantage to have some idea of the magnitude of this factor.

Miller and Murrell (131) have shown that a common Franck-Condon factor,
which is essentially the square of the vibrational overlap integral
between the ground and first electronic excited states, can be used
to calculate the vibrational eﬁvelopes of a series of condensed
aromatic hydrocarbons. Assuming a similar situation to exist for

the vibrational overlap integral between the neutral molecule and

the ionised states then the value of the factor |<x0|x!>|2 will

be of the order 0.5 (74). The validity of this assumption does not
effect the general conclusions in the following discussion,

Using the value |<x0|x!>|2 = 0.5 together with éhe energy
band widths of table (6.5) and table (6.6) and the mean square
velocities given in table (6.8) and table t6.7) the minimum values
of the mobility, Vip of electrons and holes in coronene are
1.5 (4.1) and 4.6 (6.3) cm2/volt.sec., respéctively, where the
figures in parentheses refer to values calculated using screening
parameter [ = 24.6 nm !, The electron and hole mobilities in each
of the pairs of energy bands are approximately equal.,

Assuming the conductivity to be intrinsic and not affected

by traps then (205)
00 = el Now ! Gy +u) (6.3)

where o0 is the pre-exponential factor, Np, and Ngh are the

effective dengities of states of the electron = hole conduction
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bands, and e and W, are the mobilities of free electrons and
holes respectively; 'Theoretical considerations of Le Blanec on
anthracene led to approximately equal densities of states for holes

and electrons so that equation (6.3) reduces to ¢

00 = e Nolw +u) (6.4)

where Nj is'the geometric mean of Noe and Noh and e 1is the
charge on the free eieétrono Quantitatively N, is about twice the
molecular density and hence for coronene N, = 2.63021 em™3 ,
Eqﬁation (6;4) can be extended to conduction at any temperature, T ,.

inrwhich case
o. = e N(ue + uh) (6.5)

where N = Ng exp(E/2 kgT) ;§ E is the experimentally measured energy
gap. Thus, for coronene at 15%c, using the values E(||ab) (193) and
Eﬁl.ab) (193). Ny has the values 6.6;312 cm~3 and 2.4,012 em™3 giving
values of 61012(1;011) Q=cm'and 2;915(11914) Q-cm for the
resistivity parallel and perpendicular to the ab plane respectively,
As before the figures in parentheées refer to value calculated using
7= 24°6'nm"1o The value of N is extremély sensitive to both E and
T and in view‘of this the values of the fesistivity can be considered
in ;easdnable agreement with the observed values of 1,q12-1;413 Q-cm,
and'11017-lldl8 Q=-cm, for the résistivity parallel and perpendicular
to the ab plane respectively.,

‘The effective density of states, Ny , in circumanthracene

3 and the calculated mobilities along the b axis

is 1.81021 cm
are 1.2 and 1.9 cm?/volt.sec. for electrons and holes respectively,
Using the value E = 1.8 eV (196) the calculated resistivities o(||b)

is 63912 Q-cm which is in good agreement with the observed value (196).
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Similarly using values of the mobility and energy gap in the‘ &b
plane the predicted resistivity of.71013 Q=cm. is in good agréémént
with the observed value of 2.5,913 R~cm. (196). However, the
predicted resiativity, calculated using E = 1,7 eV, of 3,513 Q~cem, is about
four orders of magnitude too low, This vast discrepancy between
theory and exﬁeriment cannot be explained in terms of an errof in
the calculated mobility since to giye the observed resigtivity would
fequire a mobility of the order 1;p~5 ﬁm /V91t.sec. which is sevgral
orders of magnitude lower than those nérmélly observed in materiéls
of this type. Hence the discrepancy must lie either in an error in
the observed value of E or to a breakdown of equation (6.5) ng to
‘trﬁpping effects. ‘

A gimilar situation is encountered iq the case of crystalline
ovalene where the calculated value of the igsistivity, in the absence
Qf trapping effects, using E = 1.13 eV, (194, 195) is of the order
1107 2-cm. which is about 8 orders of magnitude lower than observed
experimentally. If, however, one uses a valﬁe‘ E=1,8¢eV,,
intermediate between the values for coronene and circumanthracene,
the resulting value for the resistivity of p((fgg) ~ 61013 R~cn., is in
much better agreement with experiment. This infers that the value of

E determined by Inokuchi et al (195, 196) represents a trap depth
rather than a band gap giving ET = 0.59 eV.. Using equation (6.5)
in reverse, the number of free carriers, at room temperature,
required to give the observed resistivity is of the order 1y35 cmd
thus the effective density of states, N, , is of the order

31014 cm™3 which is of a similar order of magnitude to that observed

in phenanthracene under space charge limited conditions (128).

Conclusion
The energy band structures of coronene, ovalene and

circumanthracene have been calculated in the tight binding approximation
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using single Slater functions to represent the carbon atomic orbitals.
The energy band structures of both excess electrons and holes in

crystalline coronene consist of‘twé seté of energy bands, corresponding

to the two degenerate molecular enmergy levels in the free molecule,

which exhibit a high degree of anisotropy with an average width

~ 0,05 eV, The energy dependence on the wave vector for k parallel

to p_"l has several unusual feetures, however, the behaviour can be

understood in terms of energy Band—band interactions. Minimum values-

of the mobility, calculated such that the uncertainty principle is

not violated, are 1.5 (4.1) cm?/volt.sec. and 3.5 (6.3) cm?/volt.sec.,

along the ‘_1_)_'1- axis for electrons and holes respectively, and the

mobilities along the remaining axes are related to this through

Maa = Mete' T —1%3'6 LTC})-G‘) bb
where the figures in parenthesis refer to values calculated using
g = 24,6 nm-1,

The energy band structures of ovalene énd circumanthracene are
comparatively simple, again showing a high degree of anisotropy and
large band width, It is noted that the emergy bands along the b~!
axis should be of sufficient width (~ 0.1 eV) to effectively localize
excess carriers around the band minimum thus removing the anomolous
electrical and magnetic effects observed in anthracene type’crystals.
Minimum values of the mobility along the _b_"l axis are 2.8 (3.1)
and 3.8 (2.7) cr?/volt.sec. for excess electrons and holes in ovalene,
respectively, and 1.2 and 1.9 cm? /volt.sec, for excess electrons and
holes in circumanthracene. Approximate values for the mobilities

along the two remaining axes can be obtained through the relations

~ L - -]-‘- f 1
Maa = T8 Mee T 53 R or ovalene
1 1 :
and M, " 55 Voo © 35 Mb for circumanthracene.
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The mobility anisotropy of ovalene, calculated using { = 24,6 nm !, is
very sensitive to the vibrational overlap factor and the above
equation only holds for |<x?|x}>|?2 = 0.1; for the mobility
ratios for higher values of the vibrational overlap factor
table (6.8) should be consulted. |

In summary the energy band widths and carrier mobilities of
condensed aromatic polyacenes are considerably larger than those
previously obtained for lower aromatic hydrocarbons. It should be
noted that the values of the mobility reported here represent the lower
limit and simple hopping calculations of the type used on anthracene

predict a value of the order 10 cm?/volt.sec.
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CHAPTER (7)

On the carrier mobilities in crystalline o-phenazine.

7.1
'702
7.3

7.4

7.5

Introduction,
Molecular orbitals,
Numerical calculations.

Mobility tensor.

(i) Mobilities in the band approximation,
(ii) Mobilities in the localized representation.,
Conclusion.
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7.1 Introduction-

In the previous calculations reported in this thesis the molecul ar
orbital coefficients of the molecules in question have been calculated
using the Hueckel approximation, an approximation which is known to giVé
reasonable agreement when used to calculate physical properties of
' aromatic hydrocarbons. For heterocyclic molecules, however, the
Hueckel approxigation is much less reliable and when calculating the
physical properties of such molecules SCF-LCAO-MO theory is generally
used, In fhe present calculations the MO's representing the wave
function of the positive or negative molecular ions have been
obtained from solutions to the corresponding ground state prcblem,
Fraga and Ransil (207) have noted that this approximétion ﬁill lead to
results that are not better than, and probably poorer than, the
ground state, but which are still.qualitatively useful,

As a basis for calculating the m=MO's of heterocyclic molecules
use has been made of the Roothaan LCAO-SCF equations (147) suitably
simplified by the "neglect of differential overlap" approximation
(144, 145). This involves the;heglect of products of pairs of
different atomié orbitals in certain electron interaction integrals.
‘fhis kind of treatment is intermediate in complexity between full
LCAO-SCF calcuiations for m electrons and the very.simple Hueckel
approach which does not take into account electron interactions in
any explicit manner.

Several methods have been derived for estimating the
parameters needed in SCF calculations, thus introducing a certain
degree of uncertainty into the molecular orbital coefficients.

It is the dbject of this chapter to determine what effects the
use of different parameters have when the resulting molecular

orbitals are used in mobility calculations,
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In the absence of any experimental data relating to the
conduction mechanism in a-phenazine the carrier mobilities have
been calculated using both the energy band and hopping models, The
atomic wave functions of the carbon and nitrogen atoms are
represented as single Slater functions using the normal screening

parameters.

7.2 Molecular Orbitals

The molecular orbitals and energy levels were calculated using
the LCAO-SCF-MO method with the simplifications introduced by
Pariser and Parr (l44) and Pople (145), The method assumes that the
pi-electrons can be treated apart from the sigma-electrons, the
pi-electrons moving in an effective field due to the core region
composed of sigma electrons and nuclei . Parr (146) has given a
set of sigma~pi separatability conditions which the wave functions
of a set of molecular states must satisfy in order that they can be
treated separately, In the pi-electron approximation correlation
energies between the sigma and pi-electrons are necessarily
neglected and the sigma parts of the wave functions are assumed to
be invariant of the molecular state.

The Hamiltonian for a system containing 2n pi-electrons can

be written @

2:21 ZE o2 : :
H - (.) — (7.1)
where Hcore(i) = T{) +U_ () is the kinetic energy operator

for electron i plus its potential energy in the field of the core.
The ground state wave function for a molecule with a closed

shell is written as a single, normalised, Slater determinant :

Yo = det [9; @) 0, T, v ® <x>n| (7.2)
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where oi - wi a and ‘Ei - wi B are molecular spin orbitals, In
orowaly

the LCAO approximation the molecular erystsals wi are assumed to be
linear combinations of a basis set of m~atomic orbitals, ¢u :

p, = If et o (7.3)

i ysp LM
The atomic orbitals ¢u are centred, one to each atom, on the various
atoms contributing pi-electrons to the system under consideration,
They are mutually orthogonal orbitals of such a nature that
differential overlap is negligable. Although their exact analytical
form is unknown they may be expected to resemble deformed 2p“
orbitals,

A procedure for the determination of the coefficients ciu
which minimise the total pi-electronic energy, Ej; = [WS Hﬂ ¥y dt ,‘
has been given by Rootﬁaan (147) . However, the calculations are
very tedious, The equations can be simplified considerably by the
introduction of the zero di fferential éverlap (z.ﬁuo,) approximation
as suggested by Pariser and Parr (144) and Pople (145). The Z.D.O.

approximation can be expressed as @

i) 8 () 1) =05 AV (7.

It is rather difficult to determine theoretically whether or not the
Z.D.0, assumption is a justifiable approximation, however, for
hydrocarbons it appears to be a good first approximation but for
heterocyclic molecules where the distribution of electrons is not
so uniform one would expect overlap effects to play a greater

role (146).

Within the Z.D.0. approximation, the coefficients ¢ ¥

4 and

molecular orbital energies Ei are the eigenvectors and eigenvalues
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of the Hartree - Fock matrix nf whose elements are given by

F 1
h, = =
uu et *3 Puu Yuu * vgu va Yuv - (7.5
F 1 X
huv - Buv 3 Puv Yoo (u £ v) (7.6)

In these equations the quantity &, is the one-centre core matrix

defined by

a, = Jor) H () 6 (D) av()) 7.7

core

the quantity Buv is the two-centre core matrix or resonance

integral defined by

B = o *(1) H (1) ¢ (1) dv(l) 7.8
L J M core v ' (7:8)

the quantity Yuv is the coulomb repulsion integral defined by :

. ‘ el '
Yo = [%*(1) 8 *(2) = 6,(1) 6,(2) av(D) dv(2) (7.9)
and Puv is an element of the charge density = band order matrix

P defined by :

*
P =2 ] ey (7.10)
w occupied * *
orbitals

The integral @y of equation (7) can be expanded according to

Goéﬁert ~ Meyer and Sklar (202)as :

a =W, - I (uusv) + z, Y (7.11)

uv
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where z, is the number of electrons contributed to the pi-electron
system by atom v . The penetration integrals (uu : v) are usually
neglected. If, as suggested by McWeeny and Peacock (148), we choose

the energy zero for the molecular orbital energies e; as

1_(0)

€o = wc:"'Zch

then the Hartree = Fock Hamiltonian hF assumes the form 3

F oo L -1 ) _
by =80, v F P Y T T Yot ugv =z Y, (7.12)
F 1 o

By "B T2 P T d (v #v) (7.13)

where qu - W -W_ . Here wu measures the electron affinity

u
of the single framework ion at u and takes the value Wc for a

(0)

carbon atom; while Yee

is the value of Yw also for a carbon

atom. The energy zero is then such that hﬁu = 0 for a carbon atom
in an alternant hydrocarbon. Because hF depends on P , and hence
on the ciu's’ s an iterative calculation must be used to determine the

c.u's and ei's o A procedure for the direct iteration of the

i
matrix R (--;- P) utilising the method of steepest descents has been
proposed by McWeeny (149). As it only involves the manipulation of
matrices, it is particularly adaptable for electronic computation,
The entire procedure was programmed in K.D.F.9 Algol, the input data
consisting of the nﬁmgrical v‘alues for Z, s Gmu . BW and Yov
defined by equation (7.11), (7.14), (7.8), and (7.9) and an initial
estimate of the matrix ‘P .A b At the enci of each descent the
idempotency of R was res’tor’ed according to McWeeny's procedure

(149) . The procedure was regarded as self consistent when successive

iterations did not change any of the elements of R by more than
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1;0=4+ The eigenvectors and eigenvalues of the self consistent
Hamiltonian hF were determined by diagonalising the matrix nF
utilising Householders method of rotations as developed by
Wilkinson (150). The Algol text of the program is given in
appendix (4) together with more detailed instructions for the
construction of the data tape.

The energy levels of phenazine have been calculated using
the coulomb integral parameters Yuu of McWWeeny and Peacock (148)
and Nishimoto and Forster (152) with the off diagonal élements
calculated using the method of Mataga and Nishimoto (153). 1In
addition Yuv have also been calculated using the Ohno
approximation (159 and the integral of values of McWeeny and
Peacock (148). In the construction of the resonance integral
matrix it is assumed that Buv =0if u and v are not directly
bonded and for adjacent atoms the values of Linderberg (156) have
been used.

The molecular orbital coefficients of the excess electron and
hole together with the electron densities of the neutral molecule,
calculated using the above three sets of parameters are listed in
table (7.1). Since it is the object of this chapter to show that
different, but reasonable, values of the integral parameters do not
drastically alter the general results in band structure calculations
no attempt has been made to test the quality of the molecular
orbital by computing the electronic, or physical, properties of the
jsolated molecule, However, all sets of parameters have been shown
to give reasonable results when used in calculations on pyridine
(148, 152). The points of interest for band structure calculations
are that the three sets of wave functions are of the same symmetry
and the corresponding molecular orbital coefficients are of the same

sign varying only in magni tude.
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II
Y7 Vg Deneity. 7 g
Symmetry AxSy SxSy AxSy SxSy
1 0.07672 -0.15436  0.95538 0.07153 =-0.14886
2 -0.29399 -0.24875  1,00083 -0.20404 -0,.24554
3 -0,20876 0.20144  0.99425 -0.,20560 0.19770
7 047867  0.49812  1,09938  0,48247 0.50730
I Inte~ral parameters from McWeeny(155). 813 calculated using

II  Intesral parameters from McWeony(155).

IIT Integral parameters from

Xij calculated using

Table(T7.1)

Electron

Density

0.956457
0.99785
0.99367

1.08799

+7
AxSy
0.01297
~0.33317
~0.21664

0.42930

Ohno approximation.

I1I

+8

Sx Sy
-0.19730
-0.22065
0.20000

0.49517

Mataga-Nishimoto approximation.

Electron
Density

0.91295
0.99533
0.98445
1.21506

Nishimoto-Forster(152). ¥1j calculated using Mataga-Nishimoto approximation.

lolecular orbital coefficlents of the highest occupled and lowest unhoccupled orbitals and electron

¢ensgities of the neutral molecule in phenazine.
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7:3 Numerical calculations

The crystal and molecular structure of a-phenazine has been

studied both at room temperature and 80% (157 -.159)., The crystal

(5)
2h ) -

The main feature of the molecular packing may be visualized in terms

structure is base centred monoclinic of space group P2;/a (C

of molecular "stacks" which consist of molecules separated by unit
translations along 010 , Each mblecule has three kinds of near
neighbours : those within its own stack, those in stacks separated
by unit translation along O O 1 and those in étacks generated by

a glide plane. Within each stack the molecules are parallel,
separated by interplanar distance of 0.349 nm, and are staggered in
such a way as to minimise overlap. The shortest distance of approach
betwéen carbon atoms separated by the length of the c-axis is

0.373 nm and in the molecule related by the glide plane 0,382 nm,

The molecules are inclinéd to the (O 1 0) plane at an angle of about
45° and thus molecules in stacks related by the glide plane are
approximately perpendicular. The molecular arrangement in
a-phenazine is closely similar to coronene and ovalene (161, 162), a
similarity which is reflected in the magnitudes of the principle
transfer integrals, Whereas in anthracene the conduction along the
Bfl axfé occdfs jointly through the interactions of the molecule at
(0o, 0, 0) and those at (0, 1, 0) aﬁd (4, 4, 0) in o-phenazine and
coronene, the latter’interaction is much smaller than the former,
However, the interaction (i, i, 0) together wiﬁh the interaction (4, }, 1),
which is also considerably smaller than (0, 1, 0) give rise to -
conduction along ﬁhe_g-axiso Hence the energy bands in phenazine
will exhibit a muéh highef degree of anisotropy in the ab plane
than in crystals having an anthracene type structure, In calculations

based on a hopping model the degree of anisotropy may be lowered by
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the high quadratic moments of the smaller distribution functions,
Using the molecular orbital coefficients of section (2), the
transfer integrals between the molecule at (0, 0, 0) and near
neighbours have been calculated using the crystal data refined at
80%. In addition the transfer iﬂtegrals have been calculated using
the molecular orbitals coefficients of set I and the room temperature
crystal data., Due to the heterocyclic nature of phenazine the
interactions between the molecule at the origin and the molecule at
the general positions (ng ’ ux%-, 2) and (n§ . -ﬁ% » ) are no
longer equivalent. The tr?nsfer and overlap integrals for the excess
electfon and hole are given in table (7.3) and table (7.2) respectively,
The results of the calculations using the coefficients of sets I and II
are extremely similar and show a strong correlation with the results
of set III and, as was predicted on the basis of crystal sftucture,
the anisotropy of the tr;nsfer integrals bears little resemblence to
anthracene while showing a strong correlation to coronene type
crystals (see chapter (6)).

The energy dependence on wave vector, k , for o-phenazine can

be written ¢

E!(k) = 2B, cos(k . c) + 2E3 cos(k . b)

] +le., (cos(k o (b +c)) + cos(k o (b m ©)))
+ 2E5 cos(k o a) + 2Eg cos(k . (c + a))
+ 2E; (cos(k o (a+ b)) + cos(k . (8 =D1)))

+ 2Eg (cos(k o (a+b +¢)) + cos(k(a=-D1 + ¢)))

t 2Eq cos(k . {(a + D))
b4 2E10 COS(}S ° (i(}_ +_b) + c)
+ 2E)) cos(k . $(a = b))

133
°

2E)p cos(k - (da=Db) + o) &
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Posiﬁion Transfer Overlap

0, 0,

—

16.01

C

0, 1, 0 -70.94

0’ 1, 1 -0029

%: %,0 7319
"‘"}: i‘ ’ 0 5,25
¥y » 1 -19f79

%,‘%}1 ’190“2

-3.01
11.13
0.16
1.25
1.25
-3.57
-3.57

IT

Transfer Overlap

15.77
-70;80
~0.31
7;20
5.29
-20,40
20,3

11T

Transfer Overlap

-2,98 12.89
11.23  -94.81
0.17 —1723
1.25 5470
1.25 5.70
-3.69 -18.67
-3.69 =18.35
Table (7.2)

_2.57
16.61
0.3
1.02
1.02
3,43
~3.43

I

Transfer
16,67
5816
-0.19
5?46
3.72
-16?29
-15.93

Overlap

‘3013
9.33
0.18

‘3045
'3045

Transfer* and overlap** integrals for excess holes 1n phenazine.,The Roman numerals

refer to the sets of molecular orbital coefflclents of table(7.1).The first three

sets of flgures were calculated usling crystal data obtained at 8o° K,the fourth

at room temperature.

* units: 1m-4 eVe.

**yunits:1p-4.

- €81 -



I IT ITI I

Posltion Transfer Overlap Transfer Overlap Transfer Overlap Transfer Overlap

0, 0, 1 =-23,02 hos2  -22,47 4.50  -20,98 4,33 -23.96 4o
0, 1, 0 268,52 -50.87 265,09 -50.51 291,02 -57.53  273.32 -45,51
0, 1, 1 26;70 5400 -26;80 5.03 -32781 6,11 -23.52 4,58
*»¥, 0 23.88 -3.66  23.31 -3.61  21.58 -3.78  17.60 -2.65

| -5,%, 0 13.08 -3,66 12_.82 -3,61 13.77 -3.78 8.88 -2.65
.1, 01 -#.66 1.45 =4,75 1.48  -5.68 1.76 -7.66 1.38
Fo, 1 =4,66 1.45 =477 1.48 -5.68 1.76 -7.64 1.38

Table (7.3)

Transfer* and overlap** 1ntegrals for excess electrons in phenazine.The Roman numerals
refer to the sets of molecular orbital coefficlents of table(7.1).The first three
sets of flgures were calculated using crystal data obtalned at 80° K,the fourth
at room temperatu;e.
* ynits: 1p~4 eV,

**ynits: 1p-L4.

- £81 -
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The numbering of the molecules in the crystal is shown in figure (7.2).
The energy band structures of excess electrons and holes along the
inverse a, b and ¢ axes are illustrated in figures (7.3) and
figure (7.4) and the energy band widths are given in table (7.4).

The energy band widths computed using the three sets
of transfer integrals are extremely similar, each showing the energy
band to be highly anisotropic. Comparisons with anthracene are .
rather few, the energy band being similar to those of coronene and
ovalene, however, there is a limited correlation between the band
widths in phenazine along the & and c axes with those of anthracene

along the ¢ and a axes corresponding to the approximately equal

lengths of these axes.

7.4 Mobility tensor

7.4(1) Mobilities in the band approximation

In the energy band model the mobility tensor can be related to
the mean square velocity of the carriers in the mean free time

approximation through :

e T
ss W omem <Y, >
ulJ OT Vl VJ

and in the mean free path approximation :

e A
uij -a'r'iv' <<vi vj /x(_l_(')>>

where the symbols have their usual meanings (160). The components

of the tensor <v. v > and <v v /v(k)> and the ratios of
b~1 p7! b=1 p71 7T T

the non-zero elements of the tensor to these are given in table (7.5).
The mobility of excess electrons show a high degree of anisotropy in
both the bc' and ab planes whilst being practically isotropic in the

ac plane. The value of the mean square velocity of excess electrons
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Figure (7.1)

Schematic representation of the unit cell of o-phenazine

showing the nurbering of the molecules with the wumit cell.
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-00I0-
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-Q03"

Figure (7.2)

Energv band structure of excess holes in a-phenazine,

The energy zero is arbitrarily chosen as the enersv of

the lowest antibonding molecular orbital in the free

molecule,
UL LR
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Energy eV,

0.00

Q08-

Figure (7.3)

Energv band structure of excess electrons in a-phenazine.

The energv zero is arbitrarilv chosen as the energv of the

hiphest bonding molecular orbital in the free molecule,
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Low temp. Room temp.
Electron Hole Electron Hole
,  + 0.006 0. 005 0.002 0.005
E(kffa )
- - 0,006 0,005 0,002 0.005
L.+ 0.123 0,034 0,074 0,028
E(kllb)
- - 0.134 0.023 0.078 0.019
.+ 0.016 0.010 0.022 0.007
E(kllc¢')
c 0.019 0.021 0.017 0.017
splitting
P Table(7.4)

Energy bandwidths* in crystalline phenazine.

Electron Hole
Vibrational 0.l 0.5 1.0 0.1 0.5 1.0
<v332§ifp 9.383 138.330 272.490  0.658 15.150 50.027
<vbvb/v(k)>***2,032  6.468  T7.396 0.405 1.999 3.593
Laa 0.08 0.4 0.29 0.23 0.22  0.24
;;;: (0.09) (0.19) (0.44) (0.22) (0.22) (0.25)
bee 0.05 0.16 0.29 0.32 0.26 0.23
Hbb (0.09) (0.24) (0.44) (0.30) (0.24) (0.22)
Electron &) Hole
Vibrational 0.1 0.5 1.0 0.1 0.5 1.0
<v%3§§13p 7.216 171.620 284,561  0.456 11.324 U48.724
vbvb/v(k)>***1.848  9.216 11.224  0.331  1.671  2.895
vaa 0.05 0.05 0.05 0.22 0.21 0.20
;;; (0.07) (0.07) (0.07) (0.22) (0.21) (0.22)
lee .0.05 0,03 0.03 0.38 0.36 0.35
;;; (0.07) (0.04) (o.oh)(b§o.35) (0.33) (0.33)

Table(7.5)

Mobility ratios of excess electrons and holes in phenazine at

. room(b) and low(a) temperatures.
* ynits: eV.
1p6 m>/sec .

103 m/sec.

#* ynits:

*x#ynits:
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along the b~! axis is sbout 5x the corresponding figure for
anthracene and a similar behaviour is observed for the band widths

giving rise to

/ Phenazine : Anthracene
‘\"b"lb-l) ) ("b‘lb“)
minimum minimum

A similar situation exists for excess holes. It is interesting to note
for excess ho;es :'Fn a-phenazine Hag > Metet the’reverse being true
for anthracene. | |

The ratios of the Hall to drift mobilities for excess electrons
and holes, calculated using the method of Le Blanc (100) are,
respectively, 7.885 and -32,126 at room temperature and 1,920 and =7.260
at 80°K, with vibrational overlap factor O.l. These results are ve.ry

similar to the values for anthracene and show the Hall mobility to be

anomalous in both sign and magni tude,

7.4(ii) Mobilities in the localized representation

The eleﬁenté of ‘the mobility tensor ’havé been caiculated using
the method of Glaeser and Berry (44). The quadratic moments of the
probability distributions 1(r;) for o-phenazine and anthracene at
room temperature at 90°K are given in table (7.6) and the jump

¢ g . '} : 1 [}
probabilities, jump frequencies, T and diagonal elements of the
i

mobility tensor are given in table (7.8) and table (7.7). Unlike the
energy band model, the hopping model predicts the values for the hole
mobility in phenazine to be very similar, both in magnitude and in the
degree of anisotropy, to those of anthracene., Correlation between the
two sets of electron mobilities are not quite so pronoﬁnced although,
as predicted on the energy band model, there are some similarities
between the mobility along the &' axis in phenazine and that along

the a axis in anthracene.



Phenazine

Molecule XX Xy XZ vy yz A4
0,0,1 5.59 -  =15.80 - - Ly.65
0,1,0 - - - 25.61 - -
0,1,1 5.59 =11.97 -15.80 25.61 33.82 44,65
1,1,1 117.83 - 72.50 - - L. 65
5,0 43.69 16.73 - 6.00 - -
&, 18.11 10.74 28.36 6.40 16.91 44,65

Phenazilne (2)

Molecule XX Xy X2z vy vz zZ
0,0,1 5.43 - -15.53 - - Lk, 35
0,1,0 - - - 24,81 - -
0,1,1 5.43 =11.61 =15.53 24,81 33.17 44.35
1,1,1 113.12 - 70.83 - - Ly, 35
¥,%,0 k2,04 16.15 - 6.20 - -

% ,%,1 17.24  10.34 27.65 6.20 16.59 4?5?5

Table(7.6)

Quadratic moments of phenazine and anthracene at room(a

*units: 1p=-2 nm* .



XX
40.53
40,53
4,82
18.33
4.35

XX
h1.93
41.93

3.87
17.82

5.08

Anthrakcene
¥y Xz vy

- -58.54 -

- - 360 557
-38.44 -58,54 36,55

- 20,19 -
12.92 - Q.14
-6,30 -19.18 9.1

Anthrancene

Xy Xz vy

- =58.57 =

- - 36,02

~-38.86 -58.57 36.02

- 17080 -
12.67 - 9.01
-6.76 =20.39 9,01

) and low(b) temeratures.

zZ

84.55

84.55

84.55

ZZ

81.82

81.82
81.82

81.82

- 061 -
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I Anthray{cene
Molecule R (_r_i) 1/t1 ~(ri) 1/t1
0,0,1 0.143 1,613 0.001 0;010
0,1,0 0.497 5.626 0.303 5;618
0,1,1 0.003 0;018 - 0,001
1,0,0 - - - 0;002
1;0,1 - - Of004 0.074
P 50 0.079 o_.mm 0,493 4;570
ERERY 0.279 1.576 0.199 1.843
I (=) Anthr@ﬁbene
Molecule < (ri) /61 % (r1) 1/t1
0,0,1 0.068 2.313 0,002 0.050
0,1,0 0.678 22.957 0,164 4,333
0,1,1 0.134 2.275 - -
1,0,0 - - - 0.001
1,0,1 - - 0,001 0.015
3 40 0,076 1.280 o_.831 11144
341 o.044 0,74 0,003 0.034
Hole (b) Electron
I Anth. I Anth.
Average Jump 1.325 1?731 L2224 27232
oo of jumps 3,501 ho3h 16,57 9.983
kaa 0;06 0,09 0;17 0;31
" oo o5 ok ol ol
Table(7.7)

Jump probabllities,jump frequencles* and mobilitieg**

in phenazine and anthracene at room temperature.

% units: 1012 sed .

x*yunits: 1p~84 m*/volt-sec.
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III
Molecule <%(ri) 1/t1 ¢ (r1) 1/¢1
0,0,1 0.059 2.226 0.049  2.029
0,1,0 0;686 25.975 03686 28.152
0,1,1 0.136 2.583 04155  3.173
1,0,0 - - - -
1,0,1 - - - -
+,%,0 0;094 1;788 0,083 1.710
3,1 0;024 0.451 0.027 0,550
Molecule < (ri) 1/t1 ¥ (r1) a)1(t1
0,0,1 0;155 1:549 03082 1:2h6
0,1,0 0;508 6,862 0,600 9,171
0,1,1 o;oou 0,028 0.016  0.119
1,0,0 - - - -
1,0,1 - - - -
$,%,0 0.089 0.603 0.066  0.503
SRR 0;284 1.914 0.236 1.806
Electron (?)
I III Anth. I
Average Jump 4. 717 De 083 24027 13565
Ngfegﬁegggps 18 Lop 20 056 10?519 uf262
b aa 0.73 0,74 1.0 0.29
* vb 2;84 3.13  0.T1 0.46
¥ ce 1;30 1.49 0.8 0.55
Table (7.8)

Jump probabililtles, jump frequenciles* and mobilitiesg**

Anthracene

< (r1) 1/t
0;005 0;121
0.075 1;972
- 0.012
0.002 0,040
0.889 11.648
0;030 0;389

«(ri) 1/t1
o;oou 0;102
0;221 5;028
- 0;001
- 0;002
0,004 0;098
0;570 6,400
0;201 2;288
Hole
Il Anth
1.835 2.001
6;070 5;264
0.32 0.37
0;76 0.49
0.65 0;55

in phenazine and anthracene at low temperature.

¥ unlts:

*¥unlts:

1p12 sed' .

1p=-4 m™/volt-sec.
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Conclusion

The mobility tensor of crystalline a~phenazine has been
calculated using both the energy band and hopping models of charge
carrier transport. Three sets of integral parameters have been used
to determine .the orbital coefficients of the isolated molecule which
were then used to estimate the transfer integrals., The differences
in these integrals was found to be very small.

The minimum value of the mobility along the b axis in
phenazine is predicted, on the basis of the energy band model, to be
similar to that (;f azithracene with

: My - 5 Mag 3 Mo for excess holes, while for excess

electrons Moy~ 20 Maa ™ 20 Hae o

As in crystalline anthracene the ratio of the Hall to drift mobility is
predicted to be anomalous in both sign and magnitude, the numerical
values being similar to those of the parent hydrocarbon,

On the basis of the hopping model, the magnitude of the hole
mobility along the b axis is similar to the corresponding value for
anthracene, the mobilities along the remaining axes being related

fhrough

while the electron mobility along the b axis is predicted to be

about three times that of anthracene with

ubb~6uaa~2uc'c‘ e
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CHAPTER (8)

On the energy band structure and carrier mobilities

in crystalline B-phthalocyanine.

~ Introduction,

Molecular Orbitals, -

Energy band structure.

Numerical calculations.

Mobility tensor.

¢9) General.,

(i)~ Hall mobility.

b(iii) Validi ty of the energy banﬁ model.

(iv) Mobilities in the localized representation.,
Conclusion,
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8,1 Introduction

The phthalocyanine molecular structure is built on the porphyrin
ring system which is a basis of many natdrally occurring compounds of
biological interest. This, together with its hiéh stability anﬁ
relative eése of purification, has led to extensive study of its
electrical properties, Togethér with its copper derivative,
B-phthalocyaniné is one of the reiatively few organic crystals to have
found application in the solid:state field (163 - 165), In spite of
this, at the instigation of these calculations very little theoretical
work had been reported concefning the ﬁeéhanism of charge carrier
transport.

The applicability of the band model to the tranéport mechanism
in metal free phthalocyanine has been suggested by Heilmeier, Warfield
and Harrison (l66), who, from Hall effect measurements and expressions
applicable to wide band semiconductors, estimated the number of free
carriers in phthalocyanine single crystals to be 2 to 12,46 cmra. in
agreement with the value 1106 to 1,47 derived from bulk measurements
in single crystals. In addition, using the method of Frohlich and
Sewell (84) and the experimental value of the band width, they
calculated a Hall mobility of 0.2 cm?/volt.sec. which is in good
agreement with their experimental value of 0.1 to 0.4 cm?/volt,.sec.
More recently Barbe and Westgate (167) have successfully used
equations based on the enérgy band model to interpret bulk trapping
states in B-phthalocyanine single crystals,

The thermal activation energy for electrical conduction , first
optical absorption and energy of initiation of photo-conductivity have
all been found to be 1.68 eV. (168) indicating that carriers can be

created by direct excitation of electrons from the valence band,
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While this work was in preparation the energy band structure of
crystalline B-phthalocyanine has been published by Sukigara and
Nelson (169). The calculation-is based on molecular wave functions
constructed from a molecular geometry in which the central hydrogen
atoms are situated on opposite nitrogen atoms., However, Chen (170)
has shown that much better agreement with the observed absorption
spectra can be obtained using a model in which the central hydrogen
atoms are shared between neighbouring nitrogen afoms in the form of
a hydrogen bond. In the calculations reported herein the "shared
hydrogen" model of molecular phthalocyanine is used.

More recently Chen (171) has published a calculation of the
energy bana structure based on the shared h&drogen model. His
treatment of the'enetgy band structure is very similar to the

one given here,

8,2 Molecular Orbitals

- The molecular orbitals of phthalocyanine have recently been -
investigated by Chen (170) in which he compared the merits of two
models. One in which the hydrogen atoms are localized on opposite
nitrogen atoms and the other in which the hydrogen atoms are shared
between neighbouring nitrogen atoms in the form of a hydrogen bond,
Calculations with a range of parameters showéd the shared hydrogen
model to successfully predict the observed abgorption frequencies
whilst with the localized hydrogen model agreement with experiment
was poor. Using the parameters of Chen we have recalculated the
energy levels of phthalocyanine using both Householder and Jacobi me thods
to diagonalise the secular determinant and while agreement is
obtained between the results of the two methods they are both slightly

different to those quoted by Chen, Following the procedure of Chen some
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of thé transitions in the ultra violet/visible region of the spéctrum
have been recalculated. The calculated transition frequencies are given
in table (8.1).

The energy parameter B was calculated to give v; the accepted
value of 14306 cm™!, and the parameters used in thé secular equation were
chosen to give the ratio of the doublet separation Av; to the frequency

vy the experimental value 19,54 (calculated value 19.59).

Table (8,1)

Transition Calculated Experiment
frequency frequency (172)
* *
-1 -1
ay by, (by) v 14306 e 14306 crm
*k k%
-1 -1
a ng (bzg) Vo 33548 cn 30380 em
Kkk  kkk
-.1 -
au -> b3g bzg ) Vi 46025 cm
*% %% ' -1 -l
blu > b3g (ng) vy 39099 cm 34580 cm
Kk kkk
b * ) v3' 51579 cn"! ' -

1lu > b3g b2g

Calculated trangition frequencies of B-phthalocyanine in the ultra
violet region,

The Hueckle coefficients of the highest bonding and two lowest
antibonding mo{ecular orbitals together with the electron densities
of the neutral molecule and the parameters used are given in

table (8.2).

The molecular orbitals of the positive ion were obtained by
assigning the excess hole to the highest filled molecular orbital of
the neutral molecule. Since this molecular orbital energy level is
well separated from the next nearest level the energy band arising
from these levels will be well separated.so that, in treating
conduction in the hole band, the effects of band mixing will be
negligible. For the excess electron, however, the energy levels of

the first and second antibonding orbitals are quite close together
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Figure (8.1)

Molecular structure of phthalocvanine showing the

nurbering of the ators.,




Atom

C VW W N O B = W N -

-—

11

Energy
of MO.

Molecular orbiltal coefficlents of au,b3g and b2g

au

-0;1295u
0;12954
0.16775

-0,08006
0;08006

-0,16775
o;ooooo
0;27142
0,00000

-0.27142
o;ooooo
0;2950*

-1.0388%* 0,7345 _
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b3g

o&o6781
-0+ 14890
-0,03291

0.15662
-0.09898

0.13301

o;ooooo
-0;26643

0.17935

0.09518
-0,34034
-032086

b2g

o;1u595
-0;07107
-0.13112
0.09842
-0;15442
0.0Lo62
0.34779
-0310683
=0.17077
0,26500
o;ooooo
-0,2343
0,8250

Table(8.2)

orbitals Iin phthalocyanine.

*  Hueckel units.

** eV,

Electron
Density

O:99886
0399805
0.98149
1.02690
1.02851
0398047
1.18716
0;92726
1.45646
0.93376
1.14930
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hence the energy bands arising from these levels will mix appreciably
and subsequently the effects of band mixing must be taken into account

when treating electronic conduction.

8.3 Energy band structure

The theory of band mixing in near degenerate energy bands has been
discussed earlier in relation to conduction in the higher energy bands
of anthracene. For aromatic hydrocarbons it was shown that the
coulombic repulsion term Cz'm can be ignored, however, in phthalocyanine
due to the localization of charge densities at certain points in the
molecule, this approximation no longer applies,

The conduction bands resulting from the‘interaction between the
energy'bands constructed from molecﬁlar orbitals of symmetry b2g

and b38 can be written

-+
+

@ =GB o rE e O

+ *
WG 2 - B )2+
* bogrPag 3g'"3g 2g'°2g Hb32;'1’3&;
4 Hlf X : (8,1)
28’ 3g
where
* - (o) Lym n
Hz,m - ) Sem * héo Cn’ ¥ ngo(il)
[<x?x1>(2 Ei'm cos(k « r )
(8.2)
and C:'l'm = <¢£(£)IV(_1: . rn)l¢m(r)> 7 (8.3)
Ef;'m = < (x - )V - )] (0)> (844)

and E§°) is the energy of the molecular orbital ¢2 in the neutral

molecule,
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The evaluation of the transfer integral, Eﬁ'm » has already been

discussed in relation to the energy bands of aromatic hydrocarbons and

so will not be discussed here, On substituting for the potential,

V(r - rn) s in equation (8.3) and expanding the molecul#r‘orbital. g »
L in terms of their constituent atomic orbitalé, u, it can be

shown that :

Rem  _ o _.2 B B8 ,
c. { -e GEB LA <uB(£)IZ°/RGIuB(_r')>

. @) =-11,€3)
<uBQ£)|j gcc ¢a |r12 |¢a Ius(r)>

- 'pu<u8(£) u (x -.gn)lrlz'llua(s -x) u8(5)> (8.5)

For large internuclear distances the electronic charge distributions in
the second and third terms can be considered localized at centre « ’
therefore, if the number of core electrons on centre a is n& ’

L,m ‘

c reduces to
n

Cﬁ'm —y azs cze cmB (za -n, - pa) <u3€5)| 1/Ralu8(£)> (8.6)
] .

Unlike the transfer integrals, Ei’m , the two centre one electron

coulomb integrals in equation (8.6) decrease very slowly with increased

Cz,m

n an extremely large

internuclear distance hence in calculating g
: ng0

nunmber of molecules have to be taken into account and, although the

integrals themselves are easily evaluated, to attempt such a large

number of calculations is prohibitive in terms of computer time.,

The approximation (174)
e?eug (@R Jug(@> = 14417k (8.7)

has therefore been used, where RaB is the internuclear distance
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[+]
(in A) between centres o and B .

Lym _ Z B B - -
Cn , c Cm (za na DC) 14.41/RGB (858)

The above result is gimilar to that used by Chen (171), however,
since we have included both core states and pi-electrons in the
potential the sum over o of (za -n, - pa) is zero hence, unlike Chen
a 41st site at the centre of the molecule with 2,0 = 2 and Pap ™ O»

is not added.

8.4 Numerical calculations

The crystal structure of f-phthalocyanine has been determined
by Robeggon (173), The structure is monoclinic, of space group, P21/a ’
with twd molecules per unit cell, The molecular structure of
phthalocyanine is illustréted in figure (8.1). Depending upon whether
a shared or localized hydrogen modgl is assumed one obtains either
L and M or L' and M' as the symmetry axes in the molecular pléne.
However, as can be seen from the figure L', M' are not symmetry axes
since the angles 14' ~ 7 - 8 # 10 - 11 - 12 and this indicates that
the hydrogen atoms are shared,

The electronic parts of the transfer integrals, calculated
using Slater wave functions with the normal screening parameters for
carbon and nitrogen and the methods given in Chapter (3), page (44),
are given in table (8.3). In the estimation of the core state
contribution to the transfer integral the central and peripheral
nitrogen were assumed to be in the 1s2 tr3/2 tr tr and 1s2 tr? tr tr
core states respectively while the carbon atoms were assumed to be
in the state 182 tr tr tr. The coulomb interactions terms, computed
using the approximations outlined in section (8.3) are also given in

table (803)0
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Position En g B 0% goEeD3E PResb3g
0,1,0 323.47 243.84 Tho17 -32.02
0,1,1 0.22 - -0.39 ~0.23
34,0 2.85 -1.88 33.10 1.79
4, 3.56 -0.78 -2.94 4,24
5, o1 2,40 2.35 0.34 2.03
ci’m -0.27030 =0.32618  =0.32030 =0.07919
Table (8.3)

Transfer* and coulomb** integrals for phthalocyanine.

Electron Electron Hole 1st. Cond. 2nd. Cond.
(b3g) (v2g)
Wt 0.012 0.001 0.004 0.012 0,001
E(kll &)
- = 4 0,012 0,001 0,004 0.012 0.001
Lob o 0.017 0.097 0.126 0,041 0.096
E(kl|v)
- = <. 0.0 0.098 0.133 0.017 0.098
. + 0,002 0,002 0,005 0.,0004 0.003
E(k llc) |
== "2 0.003 0.003 0.005 0.0002 0.003
band 0.001 0.007 0.048 0.012 0.001
splitting ‘
P Table (8.4)

Energy bandwidths** of the excess hole and electron bands 1n
the abscense of band mixing and the conduction bands resulting
from band mixing of the two. Vlbrational overlap factor unity.
* units: 1p=-U4 eV.

*# ynits: evV.
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Due to the heterocyclic nature of phthalocyanine the transgfer

integrals between the molecule at the origin and those at% 0 -'é-n s L

and -g- N = %‘ » L are not necessarily equal as they are in

anthracene, however, explicit céiculation of such terms has shown
them to be very nearly so and hence, for simplicity they are
a;sumed equal,

The general features of the k dependent parts of the energy
bands of excess electrons and holes in crystalline B-phthalocyanine
are shown in figure (8.2) and figpre (8.3)s For all the states
the energy bands are extremely anisotropic, the band widths along the
b axis being an order of magn;itude larger than in either of the
remaining directions. The calculated band gap and separation of the
two conduction bands at k = O are 1.69 eV, and 0.19 eV,,
respectively, in good agreement with the experimental values of
1.68 eV. and 0,12 eV, However, the oBserved band splitting of
0.05 eV, is about five times the calculated value, The energy band
widths and band splittings at k = O are shown in table (8.4) and

are of a similar order of magnitude to those obtained experimentally.,

8.5 Mobility tensor

8,5(1) General

The component of the mobility tensor, along the b axis,

without the constant premultiplicative factors == and e} and

koT koT
computed using the methods of Chapter (3) and Chapter (4), together
with the ratio of the non-zero elements of the tensor to this are
given in table (8.5) for various values of the vibrational overlap

factor. The mobility ratios reflect the highly anisotropic nature

of the energy bands and are relatively ins_ensitive to the vibrational

overlap factor,
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Figure (8,2)

Energy band structure of excess hole in crvstalline

B-phthalocyanine, The enerpv zero is arbitrarily set at

<¢au|n|¢au> + ngo C:u.au
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Figure (8.,3)

Energy band structures of the first and second eonduction

bands in crvstalline B-phthalocvanine.,




b3g

Vibrational O.1
Overlap
<Vbvb)* 0.652
<vbvb/v (k) >**  0.385
- 1.49
e (1.23)
/‘lc-‘_c' 0003
e (0.02)
Vibrational 0.1
Overlap
<vbvbhb)* 0.785
<vbvb[!(5)>** 0.364
u.ou
freo
/("’Jb (2.94)
/:E)c' 0.001
Fro (0.001)

Mobility ratios of excess electrons and holes(in parentheses) in

b2g

1.0 0.1 1.0 0.1 0.2
59.945 6.532 436,11 11.172

3.832 2.143 20.651 2,736 5.289

1.24 0.002 0.002 0,002 0.002
(0.99) (0.005) (0.030) (0.005) (0.006)
0.02 0.001 0.001  0.003 0.004
(0.02)  (0.005) (0.003) (0.01) (0.01)
1 st Cond. 2 nd Cond.

0.2 0.5 0.1 0.2 0.5
3.118  19.021 6.626 26.553 159.380
0.728 1.818 1.983 3.981 9.711
3.98 3.78 0.001 0.001 0.001
(2.89) (2.73) (0.002) (0.001) (0.001)
0.001 0.001  0.013 0.015 0.010
(0.001) (0.001) (0.02) (0.02) (0.01)

Table (8.5)

crystalline { - phthalocyanine.

* units:

16 m / sec .

au

** ynits 1»3 m/sec.

0.5

11.401

0.002
(0.01)

0.006
(0.03)

1.0

43,190 229.740 T31.331

28.918
0.002
(0.01)
0,008
(0.03)
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No experimental data on the anisotropy of the mobility ténsor
is available for comparison although the magnitude of the mobility
has been determined. Of the values reported several lie in the
range 1.8 cm?/volt.sec. (175 = 178) although much lower values have
been reported., Westgate and Warfield (181) and Barbe and Westgate (167)
have reported drift mobilities of electrons and holes along the .E'
axis in the range 0.05 to 0.1 cm?/volt.sec. while Kearns and Calvin (182)

estimated the mobility of carriers in amorphous films to be 0.001 =

0,002 cm?/volt.sec.

8,5(ii) - Hall mobilities

The ratio of the Hall to drift mobilities for the hole and
isolated bzg and b3g bands, for various values of the vibration
overlap factor, have been calculated using the method of Le Blanc (100)

. and are given in table (8.6).

Vibrational '
Overlap Hole (au) Electron (ng) Electron (ng)
0.1 5.99 7.951 23,770
0.5 1,198 1.590 4,754
1.0 0,599 0,795 2,377
Table (8.6)

Ratios of the Hall to drift mobilities for various values of

the vibrational overlap factor.

The ratios uH/uD for metal free phthalocyanine are much smaller than
values for the copper derivative in which Hall mobilities two orders

of magnitude larger have been reported (184, 185).
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An interesting result of the calculation is that the sign of
the Hall effect is the same for both electrons and holes, the sign for
holesAbeing anomolous. A similar effect has been predicted
theoretically for the aromatic hydrocarbon ovalene (186) which has
a similar crystallographic structure to phthalocyanine, both crﬁstals
having an extremely short b axis. No experimental data is available
as to the relative signs of the Hall to drift mobility ratio although
a Hall mobility, along an unspecified direction, 6£ 0.1 to 0.4 cm?/

volt.sec. has been reported (166).,

8,5(iii) Validity of the energy band model

For the energy band model to be applicable to the conduction
mechanism in a particuiar organic solid ceftain criteria have to be
obeyed, These criteria have been discussed in some detail in
Chapter (2) and so will not be discussed further here.

The lower limits of the diagonal elements of the mobility tensor
calculated such that the energy band model is physically meaningful
are given in table (8,7). For a vibrational overlap factor 0.1 the
uncertainty principle is obeyed in all bands and ;11 directions, For
higher values of the factor however, only the mobilities in the second
conduction band are within the limits demanded. This raises the
question of whether the band model is the best approach to account
for charge carrier transport in crystalline B=-phthalocyanine and in
view of this the components of the mobility tensor have been

recalculated with a change of basis from the Bloch to a localized
representation.

8,5(iv)  Mobilities in the localized representation

The theory underlying the hopping model as developed by

Glaeser and Berry (44) has been discussed in detail in Chapter (2).
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Vibrational Hole 1st Cond. 2nd Cond.
Overlap

boo Jen Jce /"‘“‘ Ao e Frea Hron oo

0.070 1.115 0.091 0,34 0,035 - 0,008 0.09 0,04
0.1 (0.050)(2.607)(0.087)(0.82)(0.07) - (0.001)(0.36)(0.02)
0.140 2,15 0.212 1.33 0,07 0,007 0,014 0.17 0,09
0.2 (0.121)(5.040)(0.227)(1.61)(0.13) - (0.003)(0.73)(0.03)
0.379 4.587 0.734% 1.53 0,08 0,008 0.040 0.50 0.12
0e2 (0.418)(10,80)(0.849)(3.82)(0.33) -  (0.007)(0.78)(0.06)
Table(8.7)

Minimum values of the mobllity* calculated such that the energy band model
is iInternally consistant. The fligures in parentheses refer to values
computed from the mean free path.

* units: 1p-4 m /volt-sec.
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Molecule X.X X.y X. 2 VY
0,0,1 62. 38 - -98.85 -
0,1,0 - - - 22,28
0,1,1 62.38 -38.28 ~98.85 22,28
1,0,1 142,85 - 149,60 -
4L%,0 98. 51 23.42 - 5,57
%51 h.n 4,78 25.37 5.57

Quadratic moments*.

Molecule 2 (ri) 1/t1 x(r1) 1/t1
0,0,1 - - - -
0,1,0 0.961 31.291  0.505 T7.175
0,1,1 0.001  0.022 0,005 0,037
1,0,1 - - - -
55,0 0.017  0.276  0.450 3.202
5 %,1 0.021  0.034 0.040  0.28%4

Average jump 4,562 1.528

T 0o 5073

SR 0:14
uce 0.20 0.07
Table(8.8)

Ze2Z

- 156.66

156.66
- 156.66

156.66

2(ri) 1/t1

0.979 23.588

0.181

0.006 0.075
3. o6
23.088

0.015

0.0
0.9
0.04

Jump probabilities, Jump frequencies** and mobilitles***

in phthalocyanine.
* units: 1p-2 rm".
** units: 1»12 sec .

**¥yunlts:

1p-4 m*/volt-sec.
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Thé crystal wave function is constructed as an antisymmetrized product
of molecular wave functions in which one molecule is represented as
either a bositive or a negative ion and the remainder are perturbed
by the ionic molecule. If these perturbations are small then the
fransfer integrals given in table (8.3) can be used to construct the
non-stationary state wave function ¢(t) (see Chapter 2).

The jump frequencies and jump probabilities between the molecule
of the origin and near neighbours, together with the respective
quadratic moments, are given in table (8.8)., The jump probabilities
between molecules which give rise to conduction along the a and c'
axes are rather small, however, this is partially off set by the
large quadratic moments of these molecules giving rise to an
appreciable value for the mobility along these axes; The predicted

electron and hole mobilities along the c'

axes are in good agreement
with the values obtained by Westgate and Warfield (181)., In general
the degree of anisotropy predicted on the basis of the hopping model

is much lower than predicted by the band model. Comparison of

tables (8.5) with table (8.8) provides a very good example of this,

8.6 Conclusion

The energy band structure and anisotropy of the mobility tensor
have been computed using both the energy band and hopping models and,
while the energy band model yields band gaps and band widtﬁs in good
agreement with those observed experimentally, the uncertainty principle
as formulated by Frohlich and Sewell ig not strictly obeyed except for
cases where the vibrational overlap factor < 0.2, The sign of the
Hall effect is predicted to be anomolous for excess holes but not excess
electrons, in agreement with the results of Nelson (169) but in contrast

to the result of Chen (171) where both are predicted to be anomolous,
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Mobilities calculated using the simple hopping model are of the
same order of magnitude as those observed experimentally, the values
along the _c_' axis being in good agreement with the values of

Westgate and Warfield (181) and Barbe and Westgate (167).
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CHAPTER (9)

Transfer and Overlap integrals for imidazole and purine.

9,1 Introduction,

9.2 Numerical calculations.
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9,1 Introduction

. The energy transfer integrals foir‘imidazole and purine have been
calculated using the methods préviously described (Chapter 3). At the
instigation of the projectvit was inten&ed to calculate the energy band
structure and carrier mobilities based on the energy band model, however,
recent experimental data (113—115)‘has indicated that conduction occurs
via protonic tunnelling. If this is the case then any calculations
based on the models used in this thesis would be inapplicable end .
subsequently the calculations have been suspended., However, the
transfer integrals may be useful for some alternative calculation and

are therefore reported briefly.

9,2 Numerical calculations

The molecular orbital coefficients and electron densities were
calculated by the SCF method using the parameters of Miller, Lykos
and Schmeising (116) for purine, and Brown and Heffernan (117) for
imidazole, from the Hamiltonians quoted in Orloff and Fitts (118),
The coefficients of the molecular orbital containing the excess electron
and hole and'the electron densities of the neutral molecule are given
in table (9.1). Figure (9.1) shows the molecular structure of purine
and imidazole illustrating the numbering of the atoms in the molecules.
Both compounds contain tﬁo types of nitrogen atom in the five
uaubered rxng. one is bonded.to a hydrogen atom which in the crystalline
state is extensively hydrogen bonded to the second nitrogen atom on a |
neighbouring molecule., For the purpose of calculating the contribution
of the core states to the transfer integrals the two nitrogen atoms |

were assumed to be in the following valence states

N~-H 182 tr tr tr n?

N 182 tr2¢r tr r
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Both molecules crystallise with four molecules per unit cell,
imidazole in a monoclinic 1att1ce, space group P2 /a (119-121) while
the purine crystal is orthorhombic with space group P a2 (122) . The

relationships between the four molecules per unit cell are as follows :

for imidazole

molecule (1) { ifo 1} molecule (2)
b

molecule (1) {oac ]5 +§ }  molecule (3)
b

molecule (1) {C2 li +-§'- }  molecule (4)

and for purine

molecule‘(l) {Cz(c) l } c} ’niolecule (2)

molecule (1) {o, | 4a+}ib+ic} molecule (3) |

molecule (1) {o,, | dic+ib} molecule (4)

The numerical evaluation of the transfer and overlap integrals was
carried out using single Slater functions to represent the various atomic

orbitals with the screening parameters ¢

carbon H

Tyg = 107.7 oo}

Loy = 5 = 30.7 nm !
nitrogen ¢

L1s = 126,7 nm™!

= = -1
Cep ™ By 36,8 nm
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The role of the labile proton in the molecular pbtential has
not been considered explicitly since the electron deﬁsity on the
hydrogen atom is not known with any degree of certainty., Calculations
have been performed on the two extremes of the resonance structures |
illustrated in figure (9.2). 1In both the diagrams the excess hole,
or electron, is considered to be on molecule (1) and the resonances
correspond to exchange of the labile proton between hydrogen bonded
molecules. Such a conduction mechanism has been proposed by
Brown and Aftergut (123), however, the more recent mechanisms are
rather more sophisticated (113). The intermolecular resonance and
overlap integrals for the two resonance structures of imidazole and

purine are given in table (9 .2) and table (9 .3) respectively.



—

W 00 N O 0 = W

Imidazole

Hueckel Coeff.

Hole
0.08256
-0.62532
-0, 48044
0.23832
0.56085

Electron
0.41278
-0.62741
0.43152
0.17889
-0, 46665

Electron
density

1.649
1.101
1.099
1.034
1.117

Purine

Hueckel Coeff.
Heole Electron
0.10053 =-0.41185
0.35577 -0.13345
0,22843  0,34120
-0,L2954 -0,28478
-0.,47539 -0,0527%
-0.,29690 0,66602
-0,07922 -0,03200
0.44835 0.31786
0.32L34 -0,25819

Table(9.1)

Electron
density

1.272
0.791
1.239
0.941
1.052
0,782
1.779
0.911
1.232

Hueckel coefficients of the highest bonding and lowest
antibonding molecular orbitals.ahdét-electron densitiles

in imidazole &nd purine.

Numbering of the atoms in imidazole(a) and purine(b).
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o1 II

Hole ;’ Electron Hole . Electron
l m n Trans. Over. Trans. Over. Trans. Over. Trans. Qver,
0, 1, 0 -69.37 15.54 5.67 2,44 -63.62 14,56 0.99 -2,47
0,=-1, 0 =-68,17 15,54 2.51 -2,44 -64,53 14,56 3,46 -2,47
1, 0, ¥ -60.14 9,08 -30-57 3. 47 4,53 -0.87 -26.38  3.56
0, 4 }« 4. 61 -0.67 -10.58 0.91 -4,26 0.69 -5.56 0.95
0,-4-4 ~6.94 0.59 -0.47 0.91 -51.32 10.30 12.04 0.9
0,-4 1} .1 0.59 -23.38 0.76 -62.25 10,20 -10.46 0.9
0. b} . 2.5 -0.67 =301  0.91  -1.38  0.69 -2.50 0.9
.ohL 7 12,01 -B.91 17.27 259 7.92  0.70 -17.15 .71
1, &3 2618 4ot -z21 259 135.19 0.70 15.73 2,71
Table(9.2)

Transfer* and overlap** intezrals for the resonance fcrms of imidazole.

1
!

* ynits 1yp-4 ev. ¥

*xunits 1yp-4.
- N
3 |
H
. N N\\\1
< N
N N 5

v Frr

Figure (9,2)



l m n Trans.

Molecule
0, 0, 1
0, 0,=~1
0, 0, 2
0, 0,~2

Molecule
0, 0, §
0, 0,~%

3

0, 0, 2

2
0, 0’-2
1, 4

"0, 15=1

o,

Molecule
il ilo
-4 4,0

Lo, 1

-3, §,-1
L 1,
-4, 8, 1
Molecule
i, L 4
b,- 4~}
b,-4 4
b, 4,-1

related
362.72
465.54
0.05
0.08
related
0.55
~2.00
0.13
0.10
1.88
2.99
rélated
-18.68
-16.21
~0.29
~0,23
~4.09
-3.58
related
-22,47
~5.73
14,34
14.09

Over. Trans.

by translation la+mb+ne

145.24

177.03
0.02

~102.70
-102.70
-0,03
«0.03 0,01

by C2¢ followed

Over.

‘33 . 52
‘33 052
-=0,01

-0.01

Trans.

Over,

518.52 ~119,.29
512,13 =119.29

0.08

0.08

-0-03

-0.03

II

by translation la+mb+ne

~0,01 0.02 0.12 0.75 =0.04
20,01 1.37  =0.12  =1.97 -0.04
-0.05 0.01 - O.11 -0.05
~0.05  «0.10 - 0.10  =0,05
-0.72 10.28 4,9 1.86 ~0e72
-0.72 19.93 -4,91 2.97 -0.72
by obc followed by translation latmb+nc
3.43 12.78 =2.21 =19.42 3.63
| 3.43 10,04 2.21 -18.h§ 3.63
0.08 0.09 ~-0.02 ~0.30 0.09
0.08 0.01  =0,21 =~0.24 0.09
0.90 2,00  =0.43 @ ~4,22 0.95
0.90 1.56 0.43  -2.79 0.95
by dac followed by translation la+mb+nc
4,68 -9.28 2,40 =9.90  4.99
4,68 -12.74 2.40 -20.90 4.99
=2.73 =1.24 -0,32 22,98 3,87
-2.73 2.39 -0.32 21.9% 23,87
Table(9.3)

Transfer* and overlap** integrals for the resonance forms

* units
*»#units

1p-U eV,

Tp=8.

Trans. Over.
138.97 =30.37
164,35 -30.37
0.01  =0.01
0.01 0,01
0.06 0.12
1.38 -0.12
-0,01 -
-0.01 -
10.27 =4.91
19.91  =4.9%
12,70 =2.19
9.93 ~-2.19
-0.28 0,02
0.02  =0.02
1.96 =0.42
1.51  =0.42
-13.28 2,94
=-13.07 2.94
-6.78 1.08
~6.27 1,08
of purilne.,
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‘Appendix(1).
Evaluation of the molecular integrals.

(A1.1) 1. Two centre - two electron integrals.
ii. Two cenﬁre - one electron integrals.
(A1.2) A computér’program to evaluate two centre - one electron
integrals.
1. Genefalg
ii. Construction of the’data tape.
111; Text of the program.
(Ai.3) Tables of Hybrid integrals between Carbon and Nitrogen

atoms.



-~ 233 -

(A1.1) Evaluation of the molecular integrals.,

(A1.1.1) Two centre~two electron integrals.

The method used to evaluate the two centre-two electron
integrals was the Zeta function expansion method as developed
by Coulson and Barnett(28,29), a brief synopsis of which 1s
given here. A more detalled account of the method is glven in
the original(28,29) and related(30,31) papers.

The problem can be expressed as the evaluation of integrals
of the form:

Jo (e1,8,1) w(elha1) £7} v (¢2,B,2) 4(c2,c,2) avi ave (A1.1)
., where ry, denotes the distanée between electrons t and 2, the '
integration 1s over the spaces V1,V2 of these two electrons and
the symbol ¥ (c1,X,1) denotes a nodeless one electron atomic
orbital of an electron,i,referred to an atomic nucleus X,
as origin. The analytic form of ¢ 1s spec;fied by the label -
ci which summarizes the the quantum numbers ni,li,mi and
screening parameter ki. Formally if Py1s P44 and 944 are the
polar co-ordinates of electron 1 measured from the nucleus,X,
as origin and some arbitrary polar axis andlreference plane _
that passes through the origin then the orbital ; ¥, 1s of the‘
form:
| N(n,1,m)rl;' exp(~kry) Py(cos( 6 x4 Jexp(im ¢) (A1.2)
The Legendre functions P?(cos(e )) are those defined by Hobson
(32) and N(1,m,n) denotes a normalization factor. A function
» ¥, having the form of eqn(A1.2) 1s termed a Slater atomic
orbital or Slater function. If the centres B and C in eqn(Al.1)
are coincident the integral 1s termed a coulomb integral and
if centre A 1s coincident with centre B but not with ¢ they are
termed hybid(28) or ionic(34) integrals. The program given in
this appendix 1s concerned with the evaluation of both types
of integral for the cases where the wavefunctions of electroﬁ

2 are either 2py or 2pz atomic qrbitals and the wave functions
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of electron 1 can be any function with principal quantum number
sn, elther 1 or 2.

The method 1s based on the expansion(35) of a molecular
orbital on centre B about centre A:

rm-Iexp(l-Br ) = f 2n+ ‘ |
b £y (53;::) Pn(cos( e y)) &, (8 ,rasR)

n=0
which can alternately be expressed as:
l-m
2n+1 ] .
i} . X Lzs__ Pn(COS( ) %, n(’ t; v) : .(AI.3)

where ry and ry, denote the distance of a point P from the}tﬁo
centres A and B that are separated by a distance R, The angle
- subtended at A by the line PB 13 denoted 6  and
t = Bry,

- T-BRo
P, 1s a Legendre polynomial of degree n and &, .(1,t; ) 1s
the so-called zeta function. Whenm = 0,1,2 the zeta functions
are commonly denoted Yn(1,t3 T):Ph(’atif ) and qn(1:tiT )

respectively.
integral

Barnett and Coulson have shown that aﬁy coulomb can . be
reduced to the form: ,
| C(cl,c2,c3,ch) = N (cl,cZ,cS,cﬁ)_{t g, (cl,c2,c3,ch)dt

and hybrid integrals to the form:
I(c1,c2,c3,cl) = Ni(cl.ce,c3,c'4)ft* exp(~k3xt/kl)x
gy (¢1,02,e3,ch)dt ‘ (At;n)

The functions g, and g4 are products of zeta functions and a
simple polynomial Jn(r) and N1 sN, are numericai constants;
The analytigalvequations.ror the above functions are tablulated
in ref.(28).

The zeta function Z, (1,t3t ) can be expressed as products

of Bessel functions of Imaginary argument and half-odd integer

order:
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con(TET ) =T (0K, (1) e g

n+i(t)1n+i(‘) T <t (A1.5)
and functions of higher order can be calculated by means of
simple recurrence formulae:
1,63t ) = tXt
'-'m ’n( ) 3t) (2n+])[m N (‘ot,t ) n+.|(l t;t )]
~(m=-1)[*m_p , o(1,t5 ¢ )- Ym-2;n+l("t;' )

and . |
2 2 '
allsts T) = (t7+ 17) & (1,85 1)-2tx (nx
m=2,n (2n+1)
~cm-2,n-l(1't;T )+(n+1) zm-2,n+1("t3':))
| | (A1.6)

Repeated application of the above recurrence formulae can lead
to lossof accuracy However, m can be raiéed from O‘to 4 without
loss of more than 1 of 2 figures which 1s sufficient for the
puposes of calculations based on atomic orbitals with quantum
number n £ 2. The Bessel functions In+;(x) nH(x) show approxe
imately exponential type behavior with x and for large values
of x §1+Q(x) can have values out side the range of normal

computors.Hence,it is convenient to work with scaled Bessel

functions defined by:

1n¥i(X) = Inyy (X)/R(x) - (A1.7)

(x) = K, (x}gfx) (A1.8)

n+i
where

£(x) = nl(2x)"/(ent1)! ,n0
and

‘(x) = 1/(2x).

'The recurrence relations between the scaled Bessel runctlons are

1n+l(x) - in+§(x)+[ x /((2n+3)(2n+5))] 1 +5(x) - (A1.9)
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and

Koy g(x) = [(Enfl )/(2n+1)] lg,.:;(x)¥[x2/(ur;2-:)] kn_g(x)‘
(A1.10)

o0

2x

ky (x) -F_“ expéx).

2x
For small values of x use of the recurrence relations(3ﬂ) leada

k_!(#) - 1k, (x)

to large errors in the calculated values of i
n+i(x) and for

such cases the serles expansion

Lneg(x) = ?;5 I 85, n>o0 (A1.11)
- L J=0 | |
8p =0 3
2 Y
BJ = 83-1’( /(24(2n+23+1)), 4 2 1

should be used. -

In thg calculation of the transfer integrals between two -
molecules of (say) 20 atoms ﬁf the order 2400 hybrid integrals
bave to be calculated.Thus to reduce the amount of computor
time needed to perform the caiculation,hybrid'1ntegrals have
been calculated.oVer a fixed grid ofyinternuclear distances,
The resulting tables are given in tables(Al;i)-(Al;u); Values
- of the hybrld integral for a particular internuclear distance
sRy, can be obtained f:om the tables by interpolation., Tests
have shown that’using‘an Altikan interpolation procedure,of
low order(4 to 6),high,ac¢uracies can be obtained in the
interpolated integrals with very low computation times.

(A1.1.11) Two centre-one electron integrals,

The one electron integrals are of the following types:

[ ¥(ci,a01) oo ¥(c2,B,1) any (A1.12)
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where the operator Op can be either T/ra,resonance integral,
Or unity,overlap integral. Such 1ntegra.is can be calculated
using the zeta function expansion, however, there are alter-
native methods which are more efficient.
By transforming the above integrals into a system of

prolate spheroidal co-orfiin}ateS(Q) and performing a simple
integration over the angular cd—ordinate the above integrals

can be reduced to a finite summation over products of’

functions of the type:
i

where -
Ay(a) ’J, Wlexp(=- a1)d (A1.13)

= (kg +icg)xR/2
Bm(B)=fv exp(=8 ¥ )du (A1.14)

= (kA kg)XR/2

The function An( a ) can be readily computed using the
recurrence formular |
A,(a) =exp(-a)/a
and , |
v A (a) = (exp(~ o )+nd.1(a ))/a | (A1;15)
which 1s applicable to all a . However, as a check,values of

A,( a) for large n can be calculated explicitly using the

equation:
An(a) = exp(-a)X(1 + n+ nSn-H! esoee N )/
a o an

If, for the two atomic orbitals in equ(Al.1) and eqn(A1.14),
kp = kg then the function Bp(8 ) reduces either to zero,if m 4s
odd,or 18 a simple fmction, vizs ‘

(0) = m even
P TEFTT .
= 0 m odd
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For the case where 8 # O the function can be calculated

using the fecurrence formula

B _(8)= ((=1)"exp(e ) + m Bm_,(ﬁ )=exp(- 8 )] (A1.16)

Again for large values’of m,Bm(t{) can be calculated using the

equatlion:
m v
Bm(B) = ("'1) ex 8 [1 -%ﬂ_-&-m! B’Z oofoooo("")gl}“] .
- GXES‘ 82 [1 + m "Hlsm 12 sevso0ccccces M ] (A‘ol?)
B 8 T g2 g '

Problems arising in the numerical computation of the above
integrals have been discussed by Gautsch1(37L who concluded

' that upward recursion was applicable if B > 8, Wwhilst for

B < B Bmpax( 8 ) should be calculated using eqn(A1.17) followed
by downward recursion using eqn(A1.16). Gautschi(37) calculated

the value of Bn to be

3 « [n 40.5 In(n)+In(" 27 (14e))]/e (A1.18)

Procedures have been wrltten in KDF 9 algol to compute the
A and B functions,incorporating the Gautschi criterion, the
texts of which are gilven in appendix(2) labeled avector and

bvector respectively.
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(A1.2) Computer program to evaluate 2 centre-2 electron integrals

(A1.2.1) General.

The program calculates coulomb and‘hybrid integrals for
the cases where the orbitals of électron 2 (see eqn(A1.1))
are either 2py or 2pz Slater type orbitals,characterized by
the screening parameters k3 and k4.The orbitals of electron
1 are set as 1s,1s( with screening parameters k5 and k6),2s, 23,
2pX,2pX, 2py, 2py and 2pz,2pz( with screening parameters ki and k2),
In general k1 = k2 and k5 = k6.

The output of the program is in the following form:
INTERMOLECULAR DISTANCE - value of R(see section A1.2.11).
IONIC(or coulombic)INTEGRAL

ELEMENT OF INTEGRATION
T PY1S1SPY  PY2S2SPY PYPXPXPY PYPYPYPY PYPZPZPY

* ¥ I W % X * W W H % 3 ¥ 3 % %% LA 2 X2 2 X L XTR R R R

IPY1 S1SPY  #%%*x%%*xx -
IPY2S2SPY  *%¥ %%k %%
IPYPXPXPY ¥ %*¥*%%%%

IPYPZPZPY (¥*%X¥%¥x¥%x%
The values listed under ELEMENT OF INTEGRATION refer to the

value of the integrand at the upper limit of the numerical
integration and serve as an accuracy‘check. For a limit of
accuracy of five figures in the calculated integrals the
values in the ELEMENT OF INTEGRATION column should be of
the order 1p-7 less than the value of the integral.

(A1.2.11) Construction of the data tape.

REPEAT:
kl: Screening parameter of the first orbitai of

electron 1 for quantum number n =2,

1 kK1 > 998 then goto TERMINATE.

k2 Screening parameter of the second orbital of
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electron 1 for quantum number n =2,

Screening parameter of the first orbital of
electron 2.

Screening parameter of the second orbital of
electron 2.

Screening parameter of the first 1s orbital.
Screening parameter of the second 1s orbital.
Lower limit of integration.

Upper 1limit of integration.

Maximum tolerable error when calculating Bessel

functions by series expansion.

REPEAT FOR NEW INTERMOLECULAR DISTANCE.

R:
1f R > 998 then
ns

type:

goto REPEAT FOR
TERMINATE:

Intermolecular distance.

goto REPEAT.

Number of polnts 1ln the numerical integration.

An integer which determins the types of integral
calculated.

type = 2 Orbitals of electron assumed to be

2pz ,hybrid integrals calculated.

type = any other even number; Orbitals of electron
2 assumed to be 2py,hybrid integrals calculated.
type = 1 Orbitals of electron 2 assumed to be

2 pz,coulomb integrals calculated.

type = any other odd number;Orbitals of electron 2
assumed to be 2 py, coulomb integrals calculated.
NEW INTERMOLECULAR DISTANCE.

program terminated.

(A1.2.111) Text of the program.
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begin
real z0,z1,22,23,z4,k!,k2,k3,kl,k5,k6,ka, kb, ke ,upl,

lol,X,Y,R,a,b,c,t,w,x,y,grid,eps, §1,33,47,48 ;
integer n,1,type,f1,JJ;

array CPY1S1SPY,CPY2S2SPY,CPYPXPXPY,CPYPZPZPY,
CPYPYPYPY,CPZ1S1SPZ,CPZ2S2SPZ,CPZPXPXPZ,CPZPZPZPZ,
IPY1S1SPY,IPY2S2SPY,IPYPXPXPY,IPYPZPZPY, IPYPYPYPY,
IPZISlSPZ,IPZZSQSPZ,IPZPXPXPZ,IPZPZPZPZ[O:100];z[O:M];

real procedure INTEGRATE(n,x,A) ;

value n,x 3

real x

integer n

begin

real wi,w2 3
sinteger 1,3 3
J t=n/2-1 ;

1 = Al1];
1= 0,0 H

£

R

for 1 :=1 step 1 until J do

begin
wl := wi+A[2xi+1] 3
w2 = wo+A[2x1]

end ;
INTEGRATE := xx(A[0]+Uxwi+2xw2+A[n])/3.0

‘.o

end 3

real procedure K(n,z) ;

value n,z 3
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integer 1,J,p,q:r,8:t H

y = exp(-z) 3;
yn i=y
X &= 1/z 3

if n < 0 then n := -n-1

ve

A )

if n = O then goto FGBC

t =1 3
for J t= 1 step 1 until n do
begin

= n+J 3
t= (1f n = J then 1 else n-j) ;

P

q

t 1= 2xXtXJ 3
Yy t=yxXx 3§

r =1 3

s =1 3

for 1 := 1 step 1 until p do r = rxi 3

for 1 := 1 step 1 until q dos =58x1 3.
error := yxr/(sxt) 3

;n {= ynt+error ;

end ;3

FGBC

K := 8qrt(3.1415926536/(2xz))xyn ;

e

o}

°
]

<

I

real procedure I(n,z) 3

value n,z 3}

real z 3}

integer n j
begin

real yn,x,xx,y,yy,error,Z2
integer 1,J,pq,r,8,t

ifn = -] then

begin
7 tm sqrt(l/(EXzXS-1“15996535))X(GXD(-z)+exp(z))
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goto WDVRDX

end ;

if z £ 1.0 then
begin

r=1 3

if n = 0 then goto UJMLKJ 3

for 1 := 1 gtep ! until ndo r = rmd 3

UJMLKJ
8 t=1r 3
p t= 2xn+1 3

for 1 t= n+! step 1 until pdo 8 := axi 3

yn t=1v/8 }

x = 1,0 3

y t=zXz }

t =1 3 A

for J ¢= 1 step 1 until 15 do

begin
£ e tXJ

-

r =1 3

.o

8 =1
X = yxXx 3

p :=n+) ;

q 1= 2Xn+2xJ+1

for 1 :='1 step 1 until p do r := rxi 3}

for 1 t=1 step 1 until q do s = gxi 3

error = xxr/(sxt) ;

yn = yn+error ;

~ Af error < eps/100 then gotoWDVTFC ;
end ;

WDVTFC:

2 1= sqrt((2xz)T(n+1)/3.1415926536)xyn

end else

begin
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xx := exp(z) 3

yy t= (=1)T(n+1)/xx ;

yn = xx+yy 3

if n = 0 then goto UJMOKN ;
t=1/2 3

= -y 3

L

for J ¢t= 1 step 1 until n do

t = 2xtXxJ 3
p t=n+J 3
q ¢= (if n = J then 1 else n~j) ;

XX = XXXX

Yy = yxXyy
r =1 3
8 =1 3

for 1 := 1 step 1 until pdo r :=rx1 ;.

oo

for 1 := 1 step 1 until q do 8 := sxi

error t= (yy+xx)xr/(sxt) ;

yn = yn+error }

ed 5

UJMOKN s

Z 1= sqrt(1/(3.1415926536x2x2) )xyn 3
end 3

WDVRDX @

I =2 3

end

real procedure Jj(n,a) ;

value n,a 3}

real a 3

integer n 3

begin
switch SWITCH := L1,L2,L3,L4,L5,L6,L7,L8 3
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real X,y

y =exp(-a) ;

goto rWITCH[Nn] ]

LI : X = 2-(2+ta)xy ;
goto exit ;

L2: x := 6-(6Hxataxa)xy $
goto exit J

L3: x = 24-(24+18xat6xaT2+at3)xy ;
goto exit ;

LU: X = 8-(8PBxatdxaT2+aT3)xy ;
goto exit J

L5: x 1= 40-(40+40xa+20xar2+6xaT3»al )xy ;
goto exit J

L6: X = 96+8xaT2-(96+96xadbbxaT2+22xaT3+6xali|+al5)xy -
goto exit j

L7 : X = 144-(144+144xa+72xaT2+24xa13+6xar4+at15)xy
goto exit \

L8: X = =24+4xar2+(24+24xa+8xaT2+art3)xy ;
exit

J T X

end J

real procedure zeta(m,n,a,b) J
value m,n,a,b ;

real a,b ;

Integer m,n ;

begin

real x,y ;
Integer 1 ;

array X[n-1:n+1] ;
If a > b then



- 2k6 -

nd ;

if (m+2)x2 = m then

begin
for 1 t= n,n-1,n+1 do
begin

X[1]) = I(1,y)xK(1,x) 3
1f m = O then goto exit ;

Q.

en

else

Q.

n

begin

o

|

:

or 1 := n,n-1,n+1 do

begin
x[1] := (I(1-1,y)xK(i-l,x)-I(1+1,y)xK(i+1,x))xaxb/

ln)

|

(2xi+1) 3

if m = 1 then goto exit 3

on ,

end 3

X[n] := (axa+bxb)xX[n]-2xaxbx(nxX[n=11+(n+1 )xx[n+1])
/(2xn+1) 3

exit :

zeta := X[n] ;

end
open(20)
open(30) 3;

£1 3= format([6s-d.ddddddp-nd]) ;

Repeat _
Kl &= read(?O) 3

if ki > 998 then goto OUT ;
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k2 := read(20)

-s

k3 := read(20)
k4 := read(20)

we

“e

k5 := read(20)

we

k6 := read(20)

-e

lol:= read(20)

we

we

upl:= read(20)

eps:= read(20) ;-

RepeatR :

R := read(20) ;

if R > 998 then goto EXIT ;

n := read(20) ;

type := read(20) ;
grid := (upl-lol)/n 7
1 = <-1 3

upl := upl+grid/10 3

write text(30,LLGSlINTERNUCLEAR*DISTANCEl) H
write(30,£142,R) ;

1f (type+2)x2 =type then goto THMBJO ;

write text(30,LL6leOULOMBIC*INTEGRALSLecll) H
ka := (k1+k2)/2
kb := (k3+kl)/2
ke := (k5+k6)/2
a := 2xkbxR

Y 1= sqrt((kixkexk3xkh)T5/(2xkbxR)) 3

write text(30,LL6leLEMENTS*DF*INTEGRATIDNL?CI25]
tLlhslPYlSlSPYLlOslPY2S2SPYL1lslPYPXPXPYL!Osl )

we e

-s

PYPYPYPY[118]PYPZPZPY[2c]]) ;

if type =1 then goto TCBRYV ;
for t := lol step grid until upl do

begin
b := kaxt/kb
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1 =141 3

c := kext/kb
w = sqrt(t) ;
J1i=J(1,c) ;

33 = J(3,b) ;
J7 = J(7,0) ;
8 := 3(8,b) ;

for JJ =0 step 2 until 4 do z[J4) := zeta(l,jj,t,a) 3
x := z[0)~z[2] ;
y = z[2]-z[4] ;
CPY1S1SPY[1] := txtxwx]Jixx

.o

EXtXwWX J3xx

»e

CPY2S25PY[1] :

CPYPXPXPY[1] := wx(xxJ8+J7x(x-3xy/7)/10) ;
CPYPYPYPY[1] = wx(xxJ8/3+0.1xJTx(x-3xy/7)) ;
CPYPZPZPY[1] := wx(JBxx/3+0.1xJ7x(x/3tUxy/7)) 3
L2:

end ;

write(30,£1,t) 3
write(30,f1,CPY1S1SPY(1])"
write(30,f1,CPY252SPY[1]) ;
write(30,f1,CPYPXPXPY[1])
write(30,f1,CPYPYPYPY[1]) ;
write(30,£1+2,CPYPZPZPY[1]) ;

X = sqrt(k5T3xk6T 3xk3T 5xklT5/(2xkbxR ) ) /( 2lxkeT 3xkbTh )x

-e

.

INTEGRATE(n,grid,CPY1S1SPY) ;
write text(30,[[6s]CPY1S1SPY]) ;

write(BO,f1+2,X) 3

X 1= ¥/(288xkat 5xkbT 4 )XINTEGRATE(n, gr1d ,CPY2S2SPY)
write text(30,[[6s]CPY2saspy]) ;

write(30,£1+2,X) ;
X := Y/(h8xkaT7xka2)xINTEGRATE(n,grid,CPYPXPXPY) 3

write text(30,[[6s]CPYPXPXPY)) ;
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write(30,£142,X) ;
X = Y/(16xkaT7xka2)xINTEGRATE(n,grld,CPYPYPYPY)

write text(30,[[6s]CPYPYPYPY]) ;

-e

write(30,£142,X) ;
X := Y/(16xkaT7xkbT2)xINTECRATE(n,grid,CPYPZPZPY)

write text(30,[[65]CPYPZPZPY]) ;

write(30,f1+2,X) ;

.o

goto EEXXIITT ;
TCBRYV :

for t := lol step grid until upl do
begin

b := kaxt/kb
c := kext/kb

AV 1Y

-e

1 :=1+1 3

\ae

w := sqrt(t)
J8 := j(8,c)
J7 = J(7,c)
20 := zeta(1,0,t,a) 3

it
e

.o

1

21 := zeta(l,l,t,a)

-s

zeta(1,2,t,a)

.o

z2 :
z3 := zeta(3,0,t,a) ;
zh := zeta(1,4,t,a)

\=e

x = z0-22 -

e

y = z2-24

CPZ1S1SPZ[1] := wx(J8x20+0.5xJ7x(20-2xx/3))/(txt) ;

37 = J(T,0) ;

J8 := J(8,b) ;

cPz2S2SPZ[1] := wx(J8xz3+0.5xJ7x(23-2x(23-zeta(3,2,t,a))
/3))/(txt) 3

CPZPXPXPZI1] = wx(JBxx/3+0.1xJ7x(x/3+bxy /7)) 3
CPZPZPZPZ[1] := wx(axax(J8xz0+0.5xI7x(20-2xx/3))/( txt

y-2xax( J8xz1+0.5xJ7x(21-0.4x(z1~zeta(1,3,t,a))))
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/t+J8x(zO-QXX/3)+U-5XJ7X(ZO‘0-éXX‘8XY/35))
L3:
end ;
write(30,f1,t) 3
write(30,f1,CPZ1S1SPZ[1])
write(30,£1,CP22525PZ[1]) 3
write(30,r1,CPZPXPXPZ[1])
write(30,f1,CPZPZPZPZ[1])
write(30,£14+2,CPZPXPXPZ[1]) 3
X t= sqré((k5xKk6)1T5x(k3xks)T3/a)/(UxketT)x
INTEGRATE(n,grid,CPZ1S1SPZ) ;.
write text(30,[[6s]CPZ1S15PZ]) ;
write(30,1142,X) ;

X := x/(aexkaf7xkb72)xINTEGRATE(n,grid,cpzesespz)
write text(30,[[6s]CPz2s25PZ]) ;
write (30,£142,%)
X := ¥/(16xkaT7xkbT2)xINTEGRATE (n, grid,CPZPXPXPZ)
write text(30,[[6s)CPZPXPXPZ]) ;
write(30,£142,X) ;

1= Y/(16xkaT7xka2)xINTEGRATE(n,grid,CPZPZPZPZ)
write text(30,[[6s)CPZPZPZPZ]) ;
write(30,£142,X) ;
write text(30,[[pll) ;
goto EEXXIITT ;
THMBJO |
write text(30,LLEc6slIDNIC*INTEGRALSL2cll) 3
a = kxR 3
ka := (k1+k2)/2 ;
Y := sqrt((kixkexk3)t5/R) ;
ke := (k5+k6)/2 3
write text(30, [[63]ELEMENTS*OF*INTEGRATION[2c123]t[losl
PYISISPY[!OSJPYESESPYfils]PYPXPXPY[lOslPYPYPYPY[lIs]

oo

‘.o

oo

we

-e

we

-
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PYPZPZPY[2c]]) ;
if type = 2 then goto TFHKOL ;
for t := lol step grid until upl do
begin b := 2xkaxt/k4 ;
¢ := kextx2/k4
1 =141 3
o= J(1,e)
33 1= J(3,p) 3
J7 = J(7,0) 3
J8 = 3(8,p) ;
x := zeta(1,0,t,a)-zeta(1,2,t,a) ;
w 1= gqrt(t)xexp(-k3xt/k4)
IPY1S1SPY[1) := txtxwxJixx
for JJ := 0 step 2 until 4 do z[JJ] := zeta(1,3J,t,a) ;
x = z[0)=z[2] |
y = z[2]-2z[4]
IPY2S2SPY[1] := txtxwxJy3xx 3
IPYPXPXPY[1] := wx(xxJ8+J7x(x-3xy/7)/10) ;
IPYPZPZPY[1] := wx(xxJ8/3+0.1xJ7x(x/3+lxy/7)) ;
IPYPYPYPY[1] := wx(xxJ8/3+0.1xJ7x(x-3xy/7)) H

.o

-e

e

“ws

L
end 3

write(30,£1,t) ;
write(30,f1,IPY1S1SPY[1])
write(30,r1,IPY252SPY[1])
write(30,11,IPYPXPXPY[1])
write(30,r1,IPYPYPYPY([1]) 3
write(30,f1+2,IPYPZPZPY[1]) ;

X := 2xsqrt(k5T3xk6T3xk3T5/R)/(3xkeT 3xki12)x
INTEGRATE(n,grid,IPY1S1SPY) ;

write text(30,[[6s]IPYISISPY]) ;
write(30,£142,X) ;

-e we

ee
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X := Y/(18xka15xku12)xINTEGRATé(n,grid,IPY2$2$PY)
write text(30,[[6s]IPY2S25PY]) ;

write(30,£142,X) ;
X := Y/(12xkaT7)xINTEGRATE(n,grid,IPYPXPXPY) ;

write text(30,[[6s]IPYPXPXPY]) ;

write(30,£1+2,X) ;
X 3= Y/(4xkat7)XINTEGRATE(n,grid, IPYPYPYPY)

write text(30,[[6s]IPYPYPYPY]) ;

write(30,£1+2,X) ;
X := Y/(4xka?7)XINTEGRATE(n,grid, IPYPZPZPY)

write text(30,[[6s)IPYPZPZPY]) ;
write(30,£1+2,X) 3
goto EEXXIITT

“we

we

TFHKOL @
for t := lol step grid until upl do
begin

b 1= 2xkaxt/kl
¢ = 2xkext/kl

{1 = 1+1 3

s

oo

31 = 3(1,e)

33 = J(3,b) 3

37 = J(7,0) ;

38 := 4(8,p) 3

z0 := zeta(1,0,t,a) ;

z1 := zeta(1,1,t,a) 3

z2 := zeta(1,2,t,a) ;

z3 := zeta(1,3,t,a) ;

zli 1= zeta(l,l4,t,a) 3

w = sqrt(t)xexp(-k3xt/klt) ;

X = 20-22 ; )

-e

y &= z2-zl
IPZ1S15PZ[1] := wxtxJix(axzl-tx(z0-2xx/3)) ;
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wxtxJ3x(axz1-tx(z0-2xx/3))

il

IPZ2S25PZ[ 1]
wx(ax(J8xz1+0.1xJ7x(21-23)) /¢t

IPZPXPXPZ[1]
- 18x(z0-2xx/3)-0.2xJ7x(x/6+2xy /7)) ;

IPZPZPZPZ[1] := wx(ax( JBxz140.5%JTX(21~.Ux(21-23)

) )/t-38x(20-2xx/3)-0.5xJ7x(20-0.8xx-8xy/35)) ;
L4 | '

end ;

write(30,f1,t) 3
write(30,£1,IPZ1S1SPZ[1])
write (30,f£1,IP22S2SPZ[1])
write(30,f1,IPZPXPXPZ[1])
write(30,£1,IPZPZPZPZ[1])
write(30,£1+2,IPZPXPXPZ[1]) ;

X = 2xsqrt( (k5xk6)T3xk3T5/R)/ (ke 3xklT5)x
INTEGRATE(n,grid,IPZ1S1SPZ) ;

write text(30,[[6s]IPZ151SPZ]) 3
write(30,£1+2,X) ;

X t= Y/(6xkat5xklt2)xINTEGRATE (n,grid, IPZ2S2SPZ )
write text(30,[[6s]IP2252SPZ]) ;
write(30,£1+2,X) 3

X := Y/(Uxka®7)xINTEGRATE(n,grid, IPZPXPXPZ)
write text(30,[[6s]IPZPXPXPZ]) ;
write(30,£1+2,X) ;

X i= Y/(4xkaT7)xINTEGRATE(n,gfid,IPZPZPZPZ)
write text(30,[[6s]IPZPZPZPZ]) ;

write(30,f1+2:x) H

oo e -e

oo

-e

we

EEXXIITT :
goto RepeatR j
EXIT :

goto Repeat ;

ouT

’
’
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close(30)

s

close(20)

e

end PROGRAM
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(A1.3) Tables of hybrid integerals between carbon and.

nitrogen atoms.

The screenling parameters used in computing the tables
were as follows:
Carbon: 1s = 5.7 au. (107.7 nm'.)
2x = 1.625 au.( 30.7 nm”.)
Nitrogen: 18 = 6.7 au. (126.7 nn'.)
2s = 1,950 au.( 36.8 mm',)
where x = 28,2pX,2pY,2pZ.
The values of the integrals within the tables are given
in atomic units. To convert the integrals to eV multiply by the

factor 27.21. To convert the internuclear distances to nm.

multiply by the factor 0.05292.
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<pyl1sIlspy>

1.209529-02
1.03177-02
8.793010-03
7.48687%-03
6.3691 0p-03
4.598071~-03
3a %222”-03
13 309229-03

8.644665-04
7.29005p-04
6.144509-04
4, 358665-04
3.66832y-04
3.08589x-04
2.59477p-04
2.1 80 6”"04
1.832219-04
1.538665-04
1.291 63x-04
9.09125p-05
7.62518%-05
60 389553'05

<py2sI2spy>

1.33097x~02
1.13918p-02
9.73936p~03
8.317760-03
7.096445,-03
6.04851 9-03

'5.15056%-03

3.72493,x-03
3.16378p-03
2.685049-03
2.27703»-03
1.92960%-03
;634043-03
1.38280p-03
9.883719-04
8. 34833p-04
7.04733p-04

-l

5.94571 p-04

5.01 360p-04
4,22531p-04
3.5591 5p-04
2.99653p-04
2.52162x-04
2.121000-04
.T8322p-04
- 498575-04
. 25882p-04
.05715p-04
.87168x-05
444840005

1
1
1
1
8
7
6.24263p-05

<pypxIpxpy>

1.274779-02
90 33826”‘03
T«979530-03
6.81155»-03
2 80881 »-03

. 949095-03
“4.21282»-03

3.582999-03
30 0&“’80”"0 3
2.58539p~03
2.19362p-03
1.85985p~03
1.575T4p-03
1.33412p-03
1.12880p-03
8.06578p-04
6.81192p~04
5.74967p~04
4.850u2p-04
4,08957p~04
3. 44627p-04
2.90271 p-04
2.443683-0&
2.05626x-04
1045398ﬂ‘04
1.221835-04
1.026479-04

Table(Al.1)

Hybrid integrals between tv



<pypyIpyry>

1.15641 »-02
9.87984%-03

N

121 59-03
3202x~03
. 76552%-03
.19669x-03
1171 9-03
.29862y9-03
470T7»-03
-648169-03
. 39421 =03
.17865%-03
. 95805p-04
. 40827p-04
.09562p-04
n-0L4

‘ 4 25046»-0’4
3.57935p-04
3.01274p-04
2.53463p-04
2.131 429-04
1.791570-04
} «50525p-04
1.
8.
7.
6.

NeuE

\JCD\O"‘"'"“"NNU)UO
\Ol\)

(O]
&
=
n
\D

U’l
O
=
&
Qo
"

]
(@]
=

\1"\1‘!0

2641 6p-04
061 142,,-0&
90572p-05
47161 9-05
26425%-05

v0 carbon atoms.

<pypzlpzpy>

1 . 36&&"02
1.1694659-02
9.99998»-03
8. SLH 5)“'”-03
7.28815p-03
5.290459-03
4. 501 ‘ 8»'03
3.826299-03
3.24986p-03
2.338849-03
1,981889-03
1.67821p-03
1.42008-03
1.20086p-03
1.014839-03
8.57095p-04

7.23446p-04

6.102879-04

4, 33591 p-04
3.65182p-04
3- 071” 3»-0’4
2-58656n-0ﬁ
2.17530»-0

1.82860p-04
] . 5364’8n-04
] Y 2%""7”’04
1.083550-04
9.091 Vn-05

. 70 627923'05

6.395579-05

-9§2-



<pylsIispy> <py2sI2spy> <pypxIpxpy>

5.3538U4p-05 5.23367p-05 5.08911p-05
4.48450p-05  4.38620p-05 L.266529-05
3.75506%-05 3.67467p-05 3.57561 =05
3.143265-05 3.077519-05 2.995545-05
2.63031p-05 2.57655p-05 2.5087Up-05
2.200400-05 2.15643p-05 2.10035p-05
1.84018p-05 1.80425p-05 1.757870-05
1.28591p-05 1.26188p-05 1.230219-05
1.074495-05 1.05485p-05 1.02867%-05
8.975845-06 8.81526p-06 8.599039-06
7.-49610p-06  7.36L481p-06 7.186235-06
6.25860p-06 6.151295-06 6.003825-06
4, 35911 9-06 L, 28781 9-06 4,187324-06
3.63712p~06 3.5

3.034269-06 2.98607p-06 2.9176kyx-06
2.52982p-06 2,49068p-06 2.434235-06
2.10952p~06 2.07733x-06 2.03076x-06
1.758125-06 1.731979-06  1.69357x-06
1.465300-06  1.44380x-06 1.41214x-06
1.22063p-06 1.20317p-06 1.177070-06
1.016959-06  1.002599-06  9.81068x-07.
8.46794xp-07 8. 351 33p~-07 8.173990-07
6.553500-07  6.465065-07 6.329800-07
5.86976x-07 5.791 Vx-07 5.671495-07
4,886300-07 4.82230x-07  4.72309%-07
4,057070-07 4.0 509%-07  3.92338p-07
3.383169-07  3.34042p-07 3.27312x-07
2.81379%0-07 2.77917%-07 2.723759-07
2. 34071 p-07 2.21280p-07 2.266545-07

Table(Al.1)
Hybrid integrals between t:



<pyryIpypy>

5.250870~-05
4,39987%-05
3.68552p-05
3.08112»-05
2.58336-05
2.161829-05
1.808500-05
1. 26}452n-05
1 3 05692:)-05
8.831519-06

. 98968x~06
« 49343-06
.079459-06
.73358%-06
4h502p-06
20408p-06
00 328p-06
« 35637907
« 46833p-07
. T94550-07
4,824199-07
40 01 638!)-07
3. 341 30p-07
2. 77971 0~07
2. 312500-07
1 . 923] 5”-07
1.59918p-07

cont.

U= == =N
e o

w0 carbon atoms.

<rypzlIpzpy>

5.36103p-05
4, h92225-05
3.15089%-05
2.63755»-05
2.2071 3p-05
1.84636x-05
1.54410%-05
1.29093»-05
1.07895%-05
7.530691-06
6.288832-06
5.250390-06
4, 382305-06
3.656800-06
3.05091 »-06
2.54437»-06
2.12178p-06
1. 76876n-06
1. 478285-06
1.22836%-06
1.023429-06
8.523630-07
6.597059-07
50 %9661)“'07
4,919€1 9-07
4. 08552”"07
3. 40685%-07
2.83405%-07
20 3575()"07
1.96043%-07
1.630059-07
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<pylsIlspy>

1.11793»-07
9. 3031 9-08
7.71891 p-08
6. 141 2665-08
5. 32628y-08
4, 423435-08

1.44694y-08
1.20047D-08
9. 958545-09
8.26006-09
6.850380-~-09
5.68056%-09
4,70991 x~-09
3. 90465%-09

3.236670-09

2.682649-09
2.2231 99-09
1.70872p-09
1.526350-09
1.26450%-09

<py2sl2spy>

1.32962-07
1.105330-07
9.20001%-08
T.634824-08
5.27017-08
4, 37759%-08
3. 635625-08
3.01898p-08
2. 50651 n—08
2.086945-08
1.72708%-08
1.43330p-08
1.18933p-08
9.86757p-09
8.185759-09
6.78969%-09
5- 630982)"09
3.87158p-09
3.20966p-09
2.66058%-09
2.20517%-09
1.695155-09
1.51433p-09
1 . 25&68”'09

<pypxIpxpy>

1.30418%-07
1 .08"’38"'0

9' 02755»'0

7.492955-08
6.22701 9-08
5.174155-08
4.29860p-08
3.570650-08
2.965565-08
2. 462579-08
2.05079-08
1.697370-08
1. 40888p-08
9.70257T0-09
8.0501 4yp-09
6.67823p-09
5.53939%-09
4,591 6p-09
3. 80 un'09
3.158855-09
2.618845-09
2.17088x-09
1.6€69125-09
1.49120p-09
1.235699-09
1 0023‘83n'09

Table(Al.1)

Hybrid integrals between ¢



<PYyPYIPYPY>

1.32959p-07
1.10523p-07
9.19868p-08
T.633370-08
6. 34233p-08
5.26867n-08
L, 3761 5%-08
3.63426x-08
3.01773"08
20 08589D"08
1.432409y-08
1.18861%-08
9.86127”'09
8.18025%-09
6.78490-09
4,665845-09
3.868495-09
3020701D-09
2.65831x-09
2:20323”-09
1.693599-09
1.512929-09
1.25349%-09
1 -0384211-09

cont.

wo carbon atoms.

<pypzIpzpy>

1.3551 39-07
1.12638»-07
9. 37378x-08
7.7781 3x-08
6. 462045-08
5-36768D-08
4, 45801 »-08

3.701930-08

3.07366x-08
2.551 589~08
2.1241 35-08
1.757700-08
1.45854»-08
1.2101 3p-08
1.00389p-08
8.32687»-~09
6.905930-09
5.726720-09
L4, 74826%-09
3.93650p-09
3.263119-09
2070458»‘09
1.72273p~09
1.538870-09
1.274889-09
1.056069-09
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R.

4,500
4,625
L. 750
4.875
5.000
5.125
5.250
5.375
5,500
5.625
5750
6,000
6.125
6.250
6.375
6.500
6.625
6.750
6.875
7.000
7.125
T.250
T1.375
T.500
7.625
T.750
7.875
8.000
8.125
8.250
8.375
8.500

<pz1slispz)

6.61159'-02
5.8811Tp=02
5.21826p-02
4,61911-02
L,07963-02
3.5955U,-02
3.16261,-02
2.77655p-02
2.4332454-02
2.128759-02
1.85935p9-02
1.621535-02
1. 41205402
1227971 p-02
1.066335-02
9.2U4828,-03
8.011125-03
6.93125p=-03
5.990125-03
5:171125-03
L 4594l,-03
3.84179x5-03
3.30646,-03
2.843064-03
2.18“93’-03
2.09635x-03
1079782h‘03
1.540545-03
1.3190h”-03
1.12864’-03
9,64813y-04
8.24343,-04
7.03697n-04

<{pz28I2s8pzd

6.09658”‘02
5 [ hu28 3’-02
u.8u577a-02
4,3030Uy-02
3.81181p-02
3.36891p-02
2.9710khp-02
2.61“81‘-02
2.29683-02
2.013824-02
1.T76260x-02
1.54017x-02
1.34368y-02
1.17050”—02
1.01817y=02
8.84448y,-03
T 67280503
6.64798’-03
5.75308p~03
4 ,97289,-03
L,293759-03
3.70338»-03
3.19090,-03
2.7“662’—03
2.361959-03
2.02928”'03
1.74193-03
1.493985-03
1.28027”-03
1.09631-03
9.37963w-04
8.019672‘0“
6.8512&)‘0“

<pzpxIpxpz>

5081“22‘-02

5.193879=-02
u 62692p-02
§,111214-02
3. 6441 0p=02
3.222654-02
2.84378y-02
2.50U432,4-02
2.201104=02
1.931034-02
1.69113’-02
1.478584-02
1.2906Q9-02
1.12497,-02
9.791129-03
8.50988'-03
T.38653-03
6.403355-03
505““28‘-03
h.79h88.-03
L, 14214y-03
3.5T4395-03
3.081265-03
2.65352,-03
2.282964-03
1.96232'-03
1.68521’-03
1.44599,-03
1.23968'-03
1.062019-03
9.08997T»-04
7. T75239-04
6.64510p-04

Table(Al.1)

Hybrid integrals between ty



<pzpylpypz)

5.81422,-02
5.19387»=-02
b ,626925-02
4,111214-02
3.64410p=-02
3.22265,-02
2.84378x-02
2.50U32,-02

2.201109=-02 .

1.93103-02
1.“78583-02
’ 1 0121‘97'—02
9,.79112x-03
8.50988,-03
7.38653»-03
6.40335=-03
5.54428-03
ll».792¥881-03
3.57439»-03
3.,0812694-03
2.65352-03
2,282965~03
1.962324-03
1.685214-03
1.445995-03
1 023968""03
1.062015-03
9.08997n-04
7.T75239-04
6.64510-04

cont.

¥vOo carbon atomse.

<pzpzlpzpz)

6.66130x=02
5.940759=-02
5.283U6,-02
4 ,6867T0n-02
U, 14722=02
3.225559-02
2. 488294-02
2. 1T7910y-02
1.9055l4-02
1.663359-02
1. 4496 T =02
1.261559-02
1.09628¢-02
9.5136T»-03
8.24535-03
T.137245-03
6.170689-03
5.32893»-03
b ,5969T»-03
3.410179-03
2.932829-03
2.519924-03
2.163195-03
1.85535»-03
1.5899T»-03
1.36145,4-03
1.16&91’-03
9.95893p-04
8.508565-04
T.2635lp-04
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8.625
8.750
8.875
9,000
9.125
9,250
9.375
9,500
9,625
9.750

9.875
10,000

10.125
10.250
10.375
10,500
10.625
10,750
10.875
11,000
11.125
11.250
11.375
11.500
11.625
11.750
11.875
12,000
12.125
12.250
12.375
12,500
12.625

<{pzisllspz)

6.00360x-04
5011867"0&
L4 ,36139x-0L
3. 71371 w=-04
3. 1605904
2.68817p-04
2.28507 =04
1.941365-04L
1.6L846,-04
1.39903p-04
1.1867“‘-0“
1000613!-0”
8.52651 =05
7 .22221 =05
6.114T0x-05
5.174625-05
h.37748,-05
3.701119=-05
3.12832p-05
2,6U42735-05
2.23201 =05
1.884124-05
1 .590045=05
1.341219-05
1.05637»-05
9.533655-06
8.03403x-06
5.69903-06
4, T79723-06
4,037435-06
3.39651 =06
2,85653p-06

{pz2s8l2s8pz)

584924504
4 ,99039n-04
L 254804
3.62535n-04
3,08713p=-04
2.62721 90U
2.23449-04
1 .89940y5-04
137018=04
116282504
9.86336»-05
8.362319-05
7;08621’-05
6, 00203 )9=05
5.08138=05
ki ,30015-05
3.637225-05
3.07536»=-05
2.599059-05
2.19576p-05
1.85“20'-05
1.565250-05
1. 04067 =05
9-39385D’06
7 .91830p-06
6.67187n-06
5.6200k,-06
4.732193-06
3.983545-06
3.352109-06
2.81991”‘06

<pzpxIpxpz>

5.675500=-04
L ,84404g-04L
L4 ,13164,-04
3.52170p-04
2.99997»=-04
2.55396-04
217296504
1.847Thye-04
157031 =04
1.33381p=04
1.13233-04
9,.607819-05
8.14822-05
6.9069Ux-05
5.8519Tn-05
4,95582%-05
4.195133‘05
3.54942,-05
3.00197»=-05
2053773”'05
2. 14450405
1081144,-05
1.529559=-05
1.29097»=-05
1.017569-05
9.18663'-06
7. Th553-06
6.52787n-06
5.+ 500059-06
L ,63224-06
3-900303-06
30282793'06
2.762219-06

Table(A1.1)

Hybrid integrals between ti



<pzpylpypz>

5¢67550p9=04
L, 84404y-04
h,13164,-04
3.52170p=04
2.9999Tp-0U
2+553969-04
2.17296p-04
1. 847Thy-04k
1.57031=-04
1.333819-04
1.13233-04
9,60781»-05
8.14822,-05
6.9069U,-05
5.85197»-05
4,95582,-05
4,19513-05
3.54942,-05
3.001979=-05
2.53773»-05
2., 14450 ,-05
1.811444-05
1.529559-05
1.29097»-05
1.01756'-05
9,18663»-06
T+ T4553»-06
6.52787'-06
5.500055=-06
L ,6322k44-06
3.90030'-06
3.282799-06
2.76221 =06

cont.

vOo carbon atoms.

<pzpzlpzpz)

6.19673p-04
5¢28309y~04
u.501243-0u
3.832663-04
3.26145,-04
2.TT7372p~04
2.35756=-04
2.,00273-0L
1070038’-0“
1.44292,4-04
1.03745=-04
8.T904T»-05
T BULT5-05
6.302144-05
5¢332495,-05
4.,510195=~05
3.8128“’—05
3.2221454-05
2.72169’-05
2.29820p~05
1.939730-05
1.6366“’-05
1.38033,-05
1.086899~05
9,808304-06
8.26384x-06
6.95987»-06
5.86002 =06
},932115-06
4 ,1500U4-06
3.&9072,-06
2.93530p9-06

- 092 =~



R.

12,750
12.875
13.000
13.125
13.250
13.375
13.500

13.625

13.750
13.875
14,000
14,125
14,250
14,375
14,500
14,625
14,750
14,875
15,000
15.125
15,250
15.375
15.500
15.625
15,750
15.875
16,000

<{pz1slIlspz)

2 . 40190x-06
2.,01876p-06
1069637”-06
1. 42505,-06
1.19672’-06
8. 434U64-07
70077863-07
5093808n-07

u0980u1”-07'

4.176213-07
3.50103»-07
2.934314-07
2.05979w-07
1.72518»=07
1. 4UU605-07
1.20939»-07
1.012279=07
80#7092'-08
7.08722’-08
5.92833»-08
u095795§-08
3.85901»-08
3.465660-08
2.89670p-08
2, 4206908

<{pz2s812spz)

2.37T1U435=06
1.99380p=-06
1.6757Tn-06
1 . 40805,-06
1.182665-06
9.93268-07
8.33897»-0T7

6099911“07‘

5.87303-07
L ,926829=07
4.132043-07
3. 46U461,-07
2.90U420,4-07
2.“3&00’-07
2.03989p-07
1.70836’-07
1.430750-07
1.19789%-07
1.002864-07
8.39339p-08
7.02335p-08
5.875720-08
4 ,91462y4-08
3.82599,-08
30“3627”‘08
2,872U405-08
2.“0076’-08

<pzpxIpxpz)

2.32342,-06
1.95385x-06
1.6425U4-06
1.380“2'-06
1.15979»~06
9074168‘-07
6.86T721-07
5.763hun-07
4 ,835809-07
L ,056455-07
3.401860-07
2.852199-07
2.39076p=-07
2.00351 =07
1067859’-07
1 40605407
1.177495-07
9.85873x-08
8.25256,-08
6.,90660xp-08
50778951‘08
L ,83442,4-08
3.76436p-08
3.38121’-08
2.826894-08
2.36298x-08

Table (A1.1)

Hybrid integrals between t



<pzpylpypz)

2.323“2'-06
1.95385»-06
10380“2'-06
1015979’-06
9.7“168;-07

6.86T21=-07

5.7634“,-07
4,835804-07

b,056454-07

3. 401864-07
2.8521094-07
2.39076»-07
2.003519=07
1.678595-0T7
1. 4060507
1.17749y-0T7
9.85873»-08
8.25256-08
6.90660~08
5.7T78959-08
L4, ,83442,-08
3. 761436-08
3.38121-08
2.82689‘-08
2,36298,-08

cont.

WO carbon atoms.

<pzpzlpzpz)>

2 U6TUT»-06
2.07370p-06
1.7L223-06
1.46332,-06
1.22862"06

1.03147-06

8.656U465-07
7.262935-07
6009219’-07
5¢108861-0T7
L,28321 =07
3.590139-07
3.008&8’-07
2.520U8,-07
2.11115p=07
1.76T7909-07

1.U8014,-07

1.2389U5-07
8.67505x-08
T «2568L-08
5.07501 =08
3.94926-08
305“638”‘08
2.96371’-08
2.476314-08

- L92 -



R.

4,800
4,625

b,750

4,875
5.000
5.125
5.250
5375
54500
5.625
5.750
5.875
6,000
6.125
6,250

6.375 .

6. 500
6.625
6.750
6.875
7.000
7.125
7.250
7375
7 « 500
7.625
7750
7.875
8.000
8.125
8.250
8.375
8.500

<pylsIispy>

1.01091p-02
8.51863p-03
Te17150p-03
6.031905-03
4,256105-03
3.570885p-03
2.99363,-03
2.099424-03
1.75633p-03
1.&6839m-03
1.226929-03
1.024515-03
8.54967yx-04
713094504
4.952965-04
4,1247245-04
3.433329-04
2.85651 =04
2.3755U-04

1.974709-04

1.64079,-04
9.39047,x-05
T« 7H72p=-05
6.461205-05
5.35672p-05
L. 43959,-05
30 67828n-05

<{py2sI2spy>

90&%67”‘03
6.755505-03
5.69083p-03
u'78939n'03
h.02708m-03
3.38317-03
2.839865-03
2 . 38] 9010-03
1.99627%-03
1.671870-03
1.39923p-03
1.1702759=03
9.78131p-04
8.17019p-04
6.820435,-04
506%&6”—0“
h. 7)450619-024
3.954645-04
3.294205-04
2.74271%-04
1.89858,-04
1.57854p-04
1.31189p-04
1.08984y-04
9.050294x-05
751260p-05
6.23383p~05
5.1708kyp-05
4,287645-05
3.55407p-05
2. 9115055-05

Hybrid integrals between carbon and



<pypxIpxpy>

- 7.T0762p-03
6.50205y5-03
 5.47953-03

4,613395-03
3,88060-03
3.26135p-03
2.738624-03
2.29783»-03
1.92651p-03
1.61801,-03
1.351261~-03
1.13053,-03
9.452264-04
7.89791p-04
6.595215-04
5.5042h8 504
4.591164x-04
2.65603xy-04
2.21093yx-04
1.83957»-04
1.27178p=-04
1.05678p-04
8077786D“05
7.288184-05
6.04903yx-05
5.01870p-05
4, 162415-05
3.451C24-05
2.860274-05

Table(Al1.2)

<eypryIpyry>

71645503
19734p-03

9.

8.
'6.90865p-03

5.

81688y-03
4.89310»-03

3.45330-03
2.897505-03
2.U429271$-03
2.035195-03
1.703835-03
1.4250745-03
1.19181-03
90958()81)-01*
8.31523p-04
6.939415-0L4
5.78805x5-04
4,825094-04
4 ,020265h-04
3.34799yp-04
2.78680p-04
2.318605x-04
1.92820p-04
1.602825-04
1.10613x-04
7.621825-05
5.244105-05
L, 347625-05
2.985255-05

<pypzlpzpy>

9.62849,-03
8.12906y-03
6.85579p~03
5.776079~03

4,088264-03

3. 43485503
2.883444-03
2.02713p~03
1.69778p-03

1.420955-03

9.93350p-04
8.29T43p~04

- 6.92668y-04

5« 77909y-04
4,81894,-04
4,016179-04
3. 345405~04
2.78529,~-04
2.31785p-04
1.92797-04
1.60294y4-04
1.332144-04
1.1066354-04
9.18934,-05
7.62775p-05
6.32917p-05
5.24974p-05
4,352905-05
3.608()3”-05
2.989659-05

nitrogen atoms with the potentlal due to the former.
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R.

8.625
8.750
8.875
9,000
9.125
9.250
9.375
9. 500
9.625
9.750
9.875
10,000
10.125
10.250
10.375
10,500
10,625
10.750
10.875
11.000
11.125
11.250

11.375
11.500

11.625
11.750
11.875
12.000
12.125
12.250
12.375
12,500
12.625

<pylsIispy>

2.52259p-05
2.08811p-05
1.727959-05
1.429519-05
1.18231p-05
9 . 7761 O]D-O6
8.081415-06
6.67883p-06
5.51833»-06
L, 5584144-06
3. 10840yp-06
2.56598p-06
2.11778p-06
1.74749yp-06
1.44166p-06
1.189129-06
9.80650p-07
8.085709-07
6.66569,-07
5.49407p-07
L, 5276Up-07
3.73056-07
3.073330=-07
2.53148p-07
2,084825-07
1.71659p-07
1.163245-07
90 571‘88D-08
6.48396p-08
5.33463p-08

<py2sI2spy>

2.439615-05
2.,02030p-05
1.6725445-05
1.38423x-05
1.145309-05
9,47369,-06
7.83U27p-06
6. 476895-06
5.35333p-06
u-.142362n-06
3.654484-06
3.01839,-06
2., 4924445-06
2.05770p-06
1.698411-06
1.15637%-06
9.53896p~07
7.8671U45-07
6.487155-07
50 34822]0—07
3.633249-07
20 99383»—07
2. 46654507
2.031799-07
1.673350-07
1.37792p-07
1.134509-07
9.33987x-08
7.687895-08
6.32720p-08
5.206625-08

Eybrid integrals between carbon and



<pypxIpxpy>

1.962944-05
1.62537=-05
1 03&546”—05
1.113444-05
9.21183y-06
7.619129-06
6.30014y-06
L ,30439,-06
3.556584-06
2.938014-06
2.426464p-06
2,003544-06
1.653969-06
1.36509p-06
1.126444-06
7.6657Up=07
6.321959-07
5.21274y-07
L ,297404-07
2.91914yp-07
2.40530,-07
1.98159,-07
1.63220-07
1.106864-07
9.11341,-08
7-50235B‘08
5.082055-08

<pypryIpypy>

2.047235-05
1.69458,-05
1.402275»h-05
1.160064--05
9.594484-06
7.933115-06
60 55776!0"06
5.41949,-06
b L777h,-06
3.69875p-06
2.52207%-06
2.081944-06
1.71823,-06
1.16963,-06
9.647379-07
7.955815%-07
6.559665-07
5.407519-07
4,L45698y-07
3.67288p-07
3.02624p-07
2.49303p-07
2.05345,-07
1.69106p-07
1.39239p~-07
1.14633,-07
7.76698x-08
6.39184y,-08
5.259455-08

Table(A1.2) cont.

<pypzlpzpy>
2. 476455-05

' 2.05072%-05

1.697659-05
1.40496,-05
1.162415-05
90 61 476”-'06
7« 95059=06
6.57278p-06
L4, L8872K-06
30 708] O]D-O6
3.0625549-06
2.52880yp-06
2.,087631%-06
1.72304,-06
1.42184p-06
1,173059-06
9.67607p=-07
7.97988y-07
5.N2hh3m-07
u.u71]3n-07
30 681"’71 n-OT
3.03612p-07
2.501279=~07
2.060329-07
1.69678y-07
1.39716=-07
1.15030p5-07
9. u696on-08
7.79439,-08
6.41L460--08
5.2783U5-08

nitrogen atcrms with the potential due to the former.

- §92 -



<pylsIlspy>

3.60973»-08
2.96879,p~08
2.441344-08
2.00738yp-08
1.650359-08
1.115149p-08
753173p-09
6.1888951-09
177485-09
431784p-09
819025-09
31533»-09
901 38p-09

56131p-09
«28199p~-09
.052544,-09
8.64080p—10
7009309]!)-1 0]
5.82200p-10
4 7781 79-10
3.921649-10
2,65417p-10

5
m
3
2
2
1
1
1
1

<py2sI2spy>

4 ,283971-08
3. 52433,-08
2.89905p-08
1.612379p-08
1.32566-08
1.089815-08
8.958245-09
7« 3628U43-09
6.050969-09
L ,972264-09
L ,08550p-09
3'35660m“09
2.757530-09
2 026509m-09
1.86038%-09
1.25465p-09
1.030219-09
6.94428-10
4,67899p-10
3.15497-10
2.,600509-10

Hybrid integrals between carbon and



<pypxIpxpy>

L,181924x-08
3. 44073p-08
2.83057p-08
2.328305=-08
1.914044-08
1.574765-08
1.2948645+08
].06&58m-08
7+19374-09
5.912521%-09
L,858935-09
3.99272p-09
3.280659-09
2,695369-09
2.214204-09
1081873”“09
1.493759-09
1.226769-09
1.00738%-09
8.27167p-10
6.79]37D-10
5.575459-10
L, 576724-10
3.75685p-10
3.08570p-10
2.54125p-10

<pyprylpypy>

L,327164-08
3.55963p-08
2.927909p-08
2., 40797p-08
1.980159-08
1.62813p-08
1.338544-08
1.10033p-08
9,044244-09
7.433129-09
6.108405-09
5.019204-09
L ,123864~09
3.387950-09
2.783169-09
2.2860445-09
1.87750D-09
105“183D-O9
1.26608p-09
1.03955,-09
8.534804~-10
7.006624=10
5.751“8”-]0
L4, 72061 9=-10
3.874605-10
3.18283p-10
2.62352p5-10

Table(Al1.2) cont.

<pypzIpzpy>

3,.572625-08
2.938664-08
2,41688p-08
1.9875245-08
1.63423,-08
1.34359y5-08
1.104514-08
9.078764-09
7.46164%-09
6.13196m—09
5.038665-09
L,139924-09
3.401195-09
2.79407-09
2.29503p-09
1.884924-09
1.547955-09
1.271125-09
1.043704-09
7.03483p-10
5077“70”-10
4.73970p=-10
3.89033p-10
3.19600p=-10
2.635165=-10

nitrogen atoms with the potential due to the former.
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R.

4,500
h.,625
,750
4,875
5.000
5.125
5250
5.375
5.500
5.625
5.750
5.875
6.000

6.125

6.250
6.375
6.500
6.625
6.750
6.875
7.000
T.125
T.250
7.375
T.500
7.625
T.750
7.875
8.000
8.125
8.250
8.375
8.500

<pzl1slispz)

5¢198965-02
I .557299-02
3.985209=-02
3. 47T703p=02
3.027209=02
2.63026=02
2.28103p-02
1 «9TL605=02
1.706415-02
1.472265-02
1.26828,=02
1.09097p-02
9.371309-03
8.03908,~03
6.88T40p=-03
5.89353p-03
5.03721p-03
4.,300525-03
3.66760p-03
3.124475-03
2.659119=-03
2.26111p=-03
1.92105p-03
1.630605=03
1.382815=03
1.17175p=-03
9.921455-04
8.39427p-04
7.096935-04
5-99587»-0&
L ,27106p=-0U4
3.601299-04

<pz28I2spz)
4,82109,-02

- 4,23680ph-02

3.713765-02
3. 2UThlp=02
2.83323p=02
2.4665Tp=02 .

- 2.143031-02

1.85837p=-02
1.608615-02
1.390059-02
1.199245-02
1.03302p-02
8.88528,-03
T.63173-03

© 6.546260=03
© 5.608019=-03

4 [ ) 79 83 8‘ -03
4 ,100849-03
3.50078p~03
2.98532-03
2.164315=03
1..84017p=03
1.56314,4-03
1.326655-03
1.124995-03
9.53212p=04
8.07027x-04
6.82743,=-04
5.7717To=-04
I'" . 87589’-02‘
h,116264-04

Hybrid integrals between carbon and



<pzpxIpxpz>

4,622615-02
u.oshhon—OZ
3.564394-02
3.11832p-02
2.T72187p=02
2.37073p=02
2.06070p=-02
1078778”'02
1.548195-02
1.338h05=-02
10155155-02
9.954485~03
8.56558p=03
7.3600245-03
© 6.3155Tp~03
5.’41 238”'03
4,63267p-03
3.960625=-03
2.885209=03
2.458654=03
2.09308=03
1078016'-03
1512635=03
1.284169-03
1.089275~=03
9.23207'-04
6.616124-04
5.59&60»‘04
4,727h35-04
3.99192”‘0&
303686]"0&

<pzpylpypz>

14,62261 =02

h,064400-02
3.561439,-02
3.11832=02
2.72187p~-02
2.37073p=-02
2.060T0p=02
1078778“02
1054819”‘02
1.33840p=02
1.15515p=02
9.95448y~03
8456558p=03

- Te36002p-03F

6.31557p=03
5.412389=03
4,63267p=03
3.960625=03
3.382244-03
2.88520p=03
2045865”‘03
2.09308p-03
1.78016”‘03
1.51263,-03
1.284165=03
1.089274=-03
G9.23207p=-04
7.818395=04
6.61612,-04
5.594605=04
3.99192,-04
3.36861p=04

Table(A1.2) cont,

nitrogen atoms with the potential due to the former.

<pzpzlpzpz)

5021805'-02
h,582225-02
h001251p°02

© 3.50517p=02

3.05540-02
2.65798p-02
2.307T0p=02
1.999679=~02
172950p=-02
1-4933“”‘02
1028740.-02
1.10815¢-02
9.¢52U4699=~03
8.17523p~03
7 +007655=03
5¢99927-03
5¢12981 =03
h038‘30ﬂ“03
3.73787w=~03
3.18557p=03
2.712125-03
2.30679-03
1.96019,-03
1.664175-03
1.411645-03
1.196435-03

1.013225-03

8.57“01"04
7.250045-04
6.126109-04
5¢17280p=-04
4.36491p-04
3068082"0&

- §92 -



R.

8.625
8.750
8.875
9,000
0.125
9,250
9.375
9.500
9.625
9.750
9.875
10.000
10.125
10,250
10.375
10.500
10.625
10.750
10.875
11.000
11.125
11.250
11.375
11.500
11.625
11.750
11.875
12.000
12.125
12.250
12.375
12.500
12.625

<pzi1slispz)>

3.0346Tp-04
2.5556Tp=04
2 * 1 51 02')-0”
1.80942y4-04
1.52125,5=-04
1.27830p~04
1.07360p-04
9.01233p~-05
T+561729=05
L 4542l -05
3.73058p-05
3¢1231995-05
2.61361p=05
2.186319-05
1.828165-05
1.528125=05
1 0276851)-05
1.066525-05
8.90521-06
T 43314506
6.202355-06
5.173725-06
4031 u’32n"06
3059656D-06
2.99720p~-06
2.496965-06
2,07968,-06
1.73173p-06
1.44157p-06
9.981535-07

<{pz2sI2spz)

2.92786p-04
1.74836p-04
1 . 4T060,-04
1.23629,-04
1.03877p=-04
8.72358,=05
T +322435-05
6.14337p-05
5¢151755=05
'4 ° 3 1 823!)‘05
3.617965-05
3.02996y-05
2.536U45,5=-05
2.12246,-05
1.775345-05
1.48442,-05
1.240719-05
1.036635=05
8.65808,-06
7 .22886,-06
6003351 n-06
},199035-06
3.501325-06
2,91860p-06
2.143213,-06
2.02617p~06
1.68753p-06
1.16958y-06
9.73294p-07

Hybrid integrals between carbon and



<pzpxIpxpz>

2.8&079“0&
2.39419,-04
2.01658p=04
1.69753p=04
1042815”‘0&
1.20086p-04
1000921”‘0“
8. 47707 =05
T+116925=05
5.972119=05
5+00908yp-05
4.19942p—05
3.519065-05
2.947659=05
2.46797p=-05
2.065515-05
1.727999p=05
144507 =05
1.208015=05
1.009465-05
8.43244,-06
7 .041564-06
5¢87806=06
4.90518”-06
n.09199n'06
3.412535-06
2.8&&97”‘06
2437109906
1.97558p-06
1.645605-06
1.37034-06
1.14080p-06
9.4G45Ty-07

<pzpylpypz)>

208&079"0&
2.39419p-04
2.01658p=04
1.69753p=04
1.42815“0&
1.200865-04
1.00921 =04
8.4TT70Tp=05
T+11692=05
5.97211p~05
5.00908yx =05
L ,19942, =05
3e51006=05
2.947655=05
2.46797p=-05
2.06551 =05
1.72799p~05
1. 44507=05
1.20801 =05
1.00946,-05
8.4324h5-06
Te04156-06
50878063-06
4.90518,~06
4,09199p-06
3.41253,-06
2.8&497”‘06
2.37109”‘06
1.975589-06
1.645605-06
1.37034,-06
1.140809=-06
9. 49457y -07

Table (A1.2) cont.

{pzpzlpzpz)

3.10‘99"0&
2.61260-04
20199123-04
1.85002p-04
1.555499-04
1.30715”‘0&
1009789”'04
9.216625=05
T T33459=05
6.485905-05
5.43709p-05
4.555855-05
3.8157Tp=05
3.194579=05
2.673399-05
2.236359=05
1087005”'05
1.56313»-05
1.305939~05
1.09060,-05
90106813-06
7 +60346-06
6.3&5065-06
542922206
uou1295‘-06
3.67888’-06
3.06586”'06
2.55“21”’06
2.12737p~06
1077139”‘06
1. 474569-06
1.2271&'-06
1.02097p=-06

nitrogen atoms with the potential due to the former.
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R.

12.750
12.875
13.000
13.125
13.250
13.375
13.500
13.625
13.750
13.875
14.000
14.125
14.250
14.375
14,500
14,625
14.750
14.875
15.000
15.125
15.250
15.375
15.500
15.625
15.750
15.875
16.000

<pz1slispz)

8.302629=07
6.90434p-07

5. TUO16=07

B T7113=-07
3.964799-07
3.29399%~07
2.736109=-07
2.,272145-07
1.88643,5-07
1 L] 56588‘ -07

1.299569=07

1.078319=-07
8.945525-08

T+419T70p-08

6.153045-08
5.101605=08
L ,229044-08
3.50509-08
2 ° 9()4591,-08

1.993565-08

1 0651 19”"08
1.36739,-08
1.13216p-08
9.372945-09
7. 762029-09
6.”’3899”‘09

{pz2812sp2z>

8.097459=07
6.T73504-07
3.869T4yp=0T7
3 21 5561)'07
2.671370n-07
2.21878~07
1.842470=-07
1.529654-07
1.269695-07
1.05638p=-07
8.7425Tn=-08
7.2520425-08
6.015165-=-08
4 ,98798x-08
L ,135445-08
3.42798,-08
2.84107x-08
2.35422,-08
1.950485-08
1.33816p-08
1.108085-08
9,174825-09
T7.600419-09
6.310559=-09

<{pzpxlpxpz)

T«90007w~07
6.5T163p-07
546522907
4 ,543965-07
3.7TTT119=07
3.138924- =07
2 . 60798” -07
2.,16635p=-07
1.799125-07
1.493819=07

1.28006y-0T7

- 1.,029195=07

8.540154-08
7. 0851 5”"08
5087697‘-08
L" . 87383“08
4,041154-08
3.350115-08
2.776TTw=-08

1 0906651)"08
1.5797Uxn=08
1.308309-08
1.08118,-08
8. 871 u6'-09
7.13893p-09
5.47032,-09

Table (A1.2)

Hybrid integrals between carbon and nitrogen atoms



<pzpylpypz>

790007p-07
6.57163p=-07
5.46522p-07

4 ,543065=07 .

3.7TTT11p=07
3.138929-07
’ 2060798"’07
2.166359-07
1.79912p-07
1.49381p-07
1.029194=-07
805h015n-08
7008515n-08
5.8769Tp-08
4,87383p-08
uoou1 1 5”"08
3.35011=-08
2.776770-08
2.301064-08
1 .90665n-08
1.579749=08
1.30830p=-08
1.08118,-08
8-871&6”“09
7.138935-09
5.470325-09

cont.

with the potential due to the former.

<pzpzlpzpz>

8.492195=-07

T.0618U4p=-07
5¢87101p=07
L, 87980p=0T7
4 .055004=07
3036883”‘07
2.798155=07
2.323635-07

1.6013Uy=07
1032895"07

1.102679=07

9.14740p=08
7.5869U,-08
6029154”'08
5¢21630-08
3+58373-08
2.969685-08
2 [ 460’41 B-OB
2.03814”‘08
1.68807D-08
1.397899-08
1.15737”“08
9058154n-09
7+935899p-09
6.58737p-09

- 492 -



0~
ke

M
5,000
5.125
5

56375
5

8.500
¥Q

<pylsIispy>

8.036559=03
6.72069,=-03
5.61 494, +02
L,686825h-03
3.90867=-03
3.257005-03
2.256255=03
1.875844-03
1.293805p-03
1.073464p-03
8.901204=-04
7o 37647p-04
5.05717p=04
4 ,18L4024-04L
3.45985,-04
2.8596L4p-04
1.61018,-04
1.32849p-04
1.09563-04
9.03231p-05
6.13174p-05
5.0494310-05
4,156779-05
3.420779-05
2.814215-05
2.31448p-05
1.90293p-05

<py2sI2spy>

7.676705%-03
5.389605-03
L,508624%-03
3. 7678Ly-03
3.145759=-03
2.623965p~-03
2.186825-03
1.82099,-03
1.515165-03
1.25973p-03
1.04660p-03
8.68932yp-04
72094 35-04
5+ 977790-04
L ,95352,-04
3. 39556-04
2.80902y-04
2.32259,-04
1.91944,-04
] . 5855] D-Ou
1.30907p=-04
1.08035p-04
8.912144-05
7.34885p-05
6.05741p-05
4 ,99098p-05
4,11081p-05
3.384644-05
2.78581p-05
2.292159-05
] . 88538”"05

Hybrid integrals between carbon and



<pypxIpxpy>

7.346285-03
6.082681)-03
5.106015-03
L ,302924-03
3.61735p~03
3.026619~-03
2.523165%-03
2 o1 0] 99”'03
1.75376p-03
1.460624-03
1.215065-03
1.010244-03
8.39358-04
6 . 96%6]0-04
L,795079p-04
3.97386p-04
3.29139-04
2,72L63x-04
2.25U269-04
1.864155-04
1.54079p-04
1.27292p-04
1.051145-04
8.67621 =05
7.15837p-05
5.90369-05
4086698D-05
1‘.0] 082n-05
3. 30&04”—05
2.72085p=05
2.23982y-05
1.843244-05

Table(A1.3)

<pypylpypy>

7.694974-03
6.44677p-03
5.39523yp=-03
L,510624-03
3.767419-03
3.143769-03
2.,621045-p-03
2.183404-03
1.511579-03
1.25630p-03
1.043414-03
8.,66008y-0L
7.183104-04
5. 95439-04
4.,93293,-04
4 ,084405h=04
3.37998%-04
2.79559%90-04
2.31107p-04
1.909625~04
1.577165-04
1.302019-04
1.074394-04
8.86201p-05
7. 306789-05
6.022209-05
L ,96158x-05
4 ,08630p-05
3.364259-05
2.768879-05
2.27811p=-05
1.873750-05

<pypzlpzpy)>

7.988864-03
6.697069-03
5.60759%=03
3.270975%=-03
2.727691-03
2.272604-03
1.891825-03
1.573561-03
1.307825-03
1.086164-03
9.014311-04
74761304
6.196415-04
50 1 3256]()"01"
4,248864-04
3.51531p-04
2.90683,-04
2. 40242,-0h
1 .6385719-0’4
1.35228p-04
1.115525-04
9.19819p-05
70 58] 3810"05
6.24633,-05
4,23532y-05
3. 48565505
2 ™ 8677] n"OS
2.35853p-05
1.93915p-05

nitrogen atoms with the potential due to the latter.

- g9%e =



R.

8.625
B8.750
8.875
9.000
9.125
9.250

9.375

9.500
9,625

9.750

9.875
10,000

10,125

10,250
10.375
10,500
10,625
10,750
10,875
11.000
11.125
11.250
11.375
11.500
11.625
11.750
11.875
12.000
12.125
12.250
12.375
12.500
12.625

<pylsIlspy>

1.564105-05
1.0558245-05

8.671265-06

701 ] 96910-06
5.« 844365-06
4 ,796304=06
3.935301-06
3.228129-06

2.64T7UTp~06

1.7795T»~06
1 ou5856]o~06
119524406
9.79260p-07
8.02163x-07
6.56972-07
5¢37973p-07
4 ,450448y,-07
3.60543-07
2.95082-07
2. 41467907
1.97559%=-07
1.61608p-07
1.08082y4-07
8.84123,-08
7.23383-08
L4, 834799y-08
3.951529-08
3.22986-08

<py2sI2spy>

1.550319-05
1.27441 =05
8.,604364-06
7 .06725,-06
5¢80307y-06
4,763044~06
3. 90823,~-06

1 3.207029=-06

2.63175p=-06
2.158710-06
1.76988y-06
1 Y Ll'508910-06
1.189271p-06
9.74578-07
7.98U7Tp-07
6« 5407 Ty-07
50 3570ll m-07
L, 38665~-07
3¢59143,1-07
2.93983y-07
1.968825-07
1.61076y-07
1e 3] 750!)"’07
1.077545-07
8.81544,-08
7«21353,-08
5.89962y-08
4,82229,-08
3.94171,-08
3.222165-08
2.63344,-08

Hybrid integrals between carbon and



<pypxIpxpy>

1.516384p-05
1.24710p=05
1.02533p-05
8.42758-06
6.924064-06
)4 0671 96]9-06
3.835%~06
3. 148761-06
2. 58407,-06

1.739129-06
1.426264-06
1.169444-06
9.58654,-07
7+857051=07
5.27478p=-07
4 ,32067,-07
3.538515-07
2.89739p-07
1.941535-07
1.29996y-07
1.06349,-07
8.70283,-08
70123224508
5.82723p-08
4, 764294-08
3.184924,-08
2.60361p-08

<pyprylpypy>

1.5406945-05
1.266479=-05
1.040765-05
8.550424-06
7.022754=06
5. 76658}0-06
L4,733905-06

3.885244-06

3.187959-06
2.61523y-06
20 1 "‘,’49] }0-06
1 07588210—06
9.68539,-07
70 9356210-07
6.50071-07
5.324355-07
4, 360044-07
3.569770-07
2391 71p-07
1.957179-07
1.60129p=07
1.309815-07
1.07130p=-07
7.172404-08
5.866259-08
4,795244,-08
3.91979-08
3.20439,-08
2.6] %51"08

Table(Al.3) cont.

<pypzlpzpy>

1.59385%=-05
1 +309664-05
1.07583p-05
8.835084-06
7 +25369-06
5.95387%~06
4,008271~06
3.28761y~06
2.695944~06
2.210254-06
1.81169y-06
1.48468-06
1.216471-06
9.965054-07
8.1616514=-07
6.683359-07
5.471905=-07
3.6660045-07
2.99989,-07
2. 454041 =07
2,00776x-07
1.64210ph-07
1.3U2724-07
1.097844-07
8.978819-08
7 .34499,-08
6.00538,1--08
4,.907359-08
4,010124-08
3.277179-08
2.677679p-08

nitrogen atoms with the potential due to the latter.

- 692 -



R.

12.750
12.875
13,000
12.125
13.250
13.375
13.500
13.625
13.750
13.875
14,000
14,125
14.250
14,375
14.500
14,625
14,750
14.875
15.000
15.125
15.250
15.375
15.500
15.625
15.750
15.875
16.000

<pylsIispy>

2.15673p-08
1.76208,=08
10“3951n‘08
1.17587p=-08
9.604&0»—09
7.84396D-09
6.40566n-09
5.23058,~09
4,27073p-09
3.48669,-09
2.84639-09
2.32346,-09
1.89648,-09
1.547831-09
1.263195-09
1.03081p-09
8.411365-10
6.86306K-10
5.5994Up-10
3.72659=10
3.03991~10
2.479555-10
2.,022244-10
1064943”‘10
1.347064=10
1.10577p=10

<pyesI2spy>

2.15199yp=-08
1.7583Tp=-08
1.436615-08
1.173605=08
9.5865Tx=-09
T .8299Tp=-09
6.39469y-09
5.22197p~09
L ,26398,,-09
3.481395-09
2.84223,-09
2,.,320209-09
1089392n-09
1.54582,-09

1.26162,-09 °

1.02958”‘09
8-”0166n-10
6.85545p=10
5.59348,-10
4.563“7”‘10
3.72292p=-10
3.03703p-10
2.47730D-10
2.,02050p=10
1.64804p-10
1034576”‘10
1.10404-10

<pypxIpxpy>

24128094 -08
1.73923»-08
1.42128,5=08
1.161325=08
9,48821-09
7+751195-09
6+331605=-09
5¢1714545=09
L ,22352,-09
2.81629,-09
2,29943,-09
1.877299-09
1.53250-09
1.250955-09
1.02103,-09
8033322n'10
6.80067%=-10
5.548675=-10
4 ,52842,-10
3069&88D-10
3.014584=-10
2.45930p=10
2.006075=-10
1.636515=-10
1-33656”‘10
1.096655-10

Table (A1.3)

Hybrid iIntegrals between carbon and nitrozgen atoms



<pyprylpypy>

2.14033,-08
1.7“893n-08
1.42896,-08
1016741”‘08
945365209
T.789495-09
6.3619“”‘09
5¢19549-09
4, 24257,-09
3.46409,-09

2.828259-09

2.30890y=09
1.88479y-09
1.538454=09
1.255671-09
1.02478,-09
8.36288-10
6.82414p-10
5.568220=10
4,51309,-10
3.70648y=-10
3.0237Tp=-10
2., 46660p-10
2.,01186p-10
1.64108,-10
1.340155=10
1.09954p-10

cont. ,
., with the potential due to the latter.

<pypzlpzpy>

2.18755p-08
1.78696n-08
1.45959-08

- 1.19207p-08

9.73499,-09
T+949239-09

6.49052)=-09

5.29897p-09
3.531099-09
2.,882155-09
2.352264-09
1.91967-09

1.566509=09

1.27823,-09
1.04292,~09
8050878”‘10
6.941415-10
5.6624445-10
4,61884-10
3.76T444-10
3.07282n-10
2050599n-10
2.043434-10
1.666535-10
1.3615U4p=10
1.11990p~10

- 0de -



R.

4,500
4,625
4,750
L4.875
5000
5.125
5.250
5375
54500
5625
5.750
5.875
6,000
6.125
6.250
6.375
6.500
6.625
6.750
6.875
7.000
T.125
T.250
Te375
T7.500
7.625
T.T750
7.875
8.000
8.125
8.250
8.375
8.500

<pzisIispz)>

’4.35147)4;;-02
3. T786025=02
3.28378p=02
2.454134-02
2.115139=02
1.819544-02
1 L] 562}-'-8!)"02
1.33947p-02
11464602
9.79763p-03
Te125119p=03
6.063959-03
54154345-03
4,375925-03
3.71080p=03
3.143325=03
2.659815-03
2.2’481"0”-03
1.898799-03
1 .602055-03
1.13743p=-03
9 . 571 98!)'0“»
8.048844-04
5.67820p=04
L, 7640Tp=-04
3.994355-04
3 .3&678;)-04
2.80239p-04
2.3“51 Op-(ﬂl

<pz2s12spz>

)4 00881“'6”-02
3+.56806=02

3.105645=02

2.696435=02
2433568p-02
2.018759=-02
1.T4122y=02
1.498905p~02
1.287929~02
110470902
9.45980,~03
8 . 08786!)-03
6 [ 90452”"03
5.88593~03
5¢010799p~03
4 ,260265~03
3.6176Tn~03
3.06837p-03
2.599539-03
2.19997»-03
1. 85991 D-03
1 L] 570859-03
1.325449-03
1 «11 735”‘03
9.41106-04
7+91993p~04
6 [ 65968”‘0“
5¢59558p~04
4 ,69798p-04
3.941519-04
3.30454,~04
2.31814p-04

Hybrid integrals between carbon and



<pzpxIpxpz)

3.89101 =02
3439872p=02
2.,96089y-02
2.573064=02
2,230805h=02
1.92882,=02
1.66599y-02
1.435414-02
1.2344549-02
1.059765=02
9,08261 =03
TeT71919p=03
60 6}4033n-03
5- 66535»-03
4 ,8269045=03
4.,107164=03
3.490384»-03
2.51189,=03
2.127365=03
1.799819=03
1.52116p5=03
1 0284)'", n-03
9,13200p=04
7 « 69009 ~04
6.47052n-0’4
5. 44004 5-04
4,57017p=-04
3.83656p=04
3.21842,-04
2.26027p=04

Table(A1. 32
nitrogen a

<pzpylpypz)

389101 =02
3.39872,=02
2 . 96089”"02
2.573069-02
2.230809=02
1.929825=02
1 .66599,=02
1.43541 =02
1.234454-02
1.059765=02
9,08261 =03
TeTT191 =03
6.640335=-03
5.665355=03
4 ,826904-03
4,107164=03
3.490389~03
2.06268~-03
2.51189,=03
2.12736p~03
1.799819=03
1.521165=03
1.284415=03
1.08350=-03
9.13200p=04
7 « 69009y -0l
6.470529-04
5.440045-04
L ,5701Tp=-04
3,836565-04
3 [ 21 8&2”‘04
20 69802” "04
20 26027” "OLI'

oégngith the potential due to the latter.

<pzpzlpzpz)

4, 4833Tp=-02
3.906T70p=02
343951302
2.9""31 9”‘02
20 5)45)'”49-02
2.19661 =02
1.891679=-02
1.625884-02
' D39l‘87n-02
1.19461 =02
1.021425=02
8.719T4yp=03
7.43288-03
6.32706p=03
5.37856=03
4 .566444-03
3.872235-03
3.27976=-03
2077&87”"03
2.34522,-03
1.98009¢=03
1.67020p=-03
1.40750=03
1.185065-03
9,96920y =04
7.03801 n-O’-l
5.006705-04
L ,95362,-04
§,151419=-04
34767 Tp=-04
2.909864-04
2.43387p=04

- e -



R.

8.625
84750
8.875
9.000
9.125
9,250
9.375
9,500
9.625
9.750

9.875

10.000
10.125
10.250
10.375
10.500
10.625
10.750
10.875
11.000
11.125
11.250
11.375
11.500
11.625
11.750
11.875
12.000
12.125
12.250
12.375
12,500
12.625

<pzlslispz)

1.961255-04
1.63928,=04
1.36940p-04
1.1“333”’0“
9.540799=05
T+957509=05

- 6.63367=05

5.527469-05
4 ,603565-05
3.83238,-05
3.18899&‘05

2.652505-05
2,20535p=-05 -
1083286n—05”

1.522693-05
1026455”'05
1.049784-05
8.71184p-06
7 .22722,-06
5+99366y-06
4.969039-06
4.11832”'06
3.4122254-06
2,82640,--06
2.34058,-06
1.937655-06
1.603195-06
1.32584n-06
1.096444-06
9.067565~07
7 -49629-07
6.18514,-07
5.118815-07

{pz2s12spz)

1.93972D‘0u
1 622105=04
1.355695-04
1.13230,=04
9.4535U4,-05
T7.88795p-05
0.57825p=05
5.483295-05
4.56838m-05
3,804364=-05
3.16668,-05
2.,6347Th,y=05
2.19122,=05
1.821615-05
1.51375p=05
1.25T4U,-05
1.04413,-05
8.66689,-06
7.191149,-06
5.965265-06
I} , QL 64T,-06
1 ,10040,-06
3+39799-06
2,81510p-06
2.33161p-06
1.93053p-06
1.59754,-06
1.32135p=06
1.09288,-06
9.03927p-07
7.4738L5=07
6.17734p-07
5.10470p=07

<pzpxlpxpz>

1.89233p=-04
1058331n-04
1.32396p-04
1.106455-04
902&157”‘05
7.71&81m-05
6.“3689”‘05
5.367959-05
4 474315-05
3.72768p=05
3010&19m-05‘
2,58384p=05
2.14977p=05
1.78788-05
1.486309-05
1.235119=-05
1.02597p-05
8.519319=06
7.07157p-06
5.86785”‘06
4,867370-06
4.03618»-06
303“586”‘06
2.297295-06
1.90270x-06
1.5749Tx~06
1.30306p-06
1.07806-06
8.91916p-07
7.376545=07
6.09853p-07
5.0“088n-07

Table (A1.3)

Hybrid integrals between carbon and nitrogen atoms



<pzpylpypz)>

1.89233-04
1.58331p=-04
1.32396p-04
1.10645,-04
9.24157p=-05
T+T1481 =05
6.“3689”‘05
5.36795p-05
L, 47431 5-05
3.72768p~05
3.10419,-05
2.5838U4y-05
2.1497Tp=05
1.78788p-05

1.48630p-05

1.23511=-05
1.02597x~-05
8.519319-06
7.07157p=-06
5.86785p=06
L ,86737p-06
4003618n-06
3.34586p-06
2.772809~-06
2.297295~06
1.902705=06
1.5749Tp-06
1.30306-06
1.078065-06
8.919164=-07
7+376545=-07
6.09853p-07

conte.

with the potential due to the latter.

<pzpzlpzpz)

2.03450p9-04
1.69968,-04
1.41915”‘04
1.18428,-04
9.877559-05
8.234244-05
6.860935-05
5¢713955-05
3.95TT4p-05
3.291679-05
2.T736559-05
2.27412=05
1.88909,-05
1.568655-05
1.30209,=05
1.08043-05
8.96203,-06
T.43133,-06
6.16009n-06
5.10469,-06
3.502245,-06
2089970”'06
2. 400245 ~06
1098619p°06
1.642665-06
1.35793p-06
1.122525-06
9.27950p~07
7.668465-07
6.33497p-07
523234507

- 2l -



R._ <pzlslispz> <pz2sI2spz>

12,750  4.22861-07  4,217424,=07
12.875  3.49237p-07  3.483505-07
13.000  2.883699-07 2.876661-07
13.125 2,380565-07  2.37499,-07
1 30250 1 . 96“‘81 m-O? 1 . 96014'010—07
1 30 375 1 0621 3210-07 1 061 783]0-07

3.625  1.1033U43p=-07  1.101164=07
750  9,09933p-08 - 9.08198y-08
875 | T.50280p-08 = 7.489054p-08

.000 0.185271p-08  6,17439,-08
- 5,098164=-08 5.089551-08

4,201424-08  L4,194604,x-08
375  3.45179p-08  3.45639,-08
500 2,851929-08 2,.84764,x-08
625 2,34909x-08 2,345719-08
1.934621)-08  1.931955-08
1.59302y=08 1.59090,-08
1.311545-08 1.309864,5-08
1.07963,1-08 1.07830p-08
8.88609p-09  8.875604-09
«375  T.3128Lp-09  7.304571p-09
500 6,01714p-09  6.010575-09
625  4,95013p-09  4,.94485,-09
4,07224p-09  L4,06813x-09
875  3.35274p-09  3.35028,-09
.000 2,76989p-09  2.77064yp-09

¢ o
N ==
B35

. . .
C oo~
Cc~wu
C C

o o
N =
N
Ccwu

WUV B B e EWW
.
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Ut

Hybrid Integrals between carbon and



<pzpxIpxpz)>

4,165754-07
3. 44167%-07
2.842804-07
2.34760p-07
1. 9382410"07
1.599913-07
1.320364p-07
8.98715,-08

7.412375=08-

6.112414-08
4,15412,-08
3.42368m-08
2.821219-08
24324354--08
1.914704-08
1.57697%-08
1.29861-08
1.0692245-08
8.802224-09
5.962743x-09
4,90627,-09
4,036974%-09
30 324&”—09
2.748955-09

<pzpylpypz>

4,165754-07
3. 441674-07
2.842804~07
2.347604=-07

Te 5999] 10‘07 ’

1.08943,-07 -

7.412379-08
6.112415=-08
5.039464,-08
4.,154124~-08
2.82121p-08
2.324354-08
1.914704-08
1.576971-08
1.29861p-08
1.06922,-08
8.8022245-09
7+.245319-09
5.96274y-09
L,906275-09
4,036979-09
3¢324804-09
2.748954-09

Table(A1.3) cont.

<pzpzlpzpz)>

4 ,320764(-07
3.567159-07
2.944364x-07
2.429784-07
2.,004734-07
1.65369p~07
1.363864-07
9.271644-08
7.642394-08
6.29834yp-08
5.18974,-08
L,27557=03
3- 52] 83]0-08
2-%05] w-OB
2.38841-08
1.96644,,-08
1.618764-08
1 03323710-08
1.09648,-08
9,02235,-09
7.42302-09
6.10623,-09
5.022165-09
4 ,130474-09
3.39973p-09
2.8076Tm-09

nitrogen atoms with the potentlal due to the latter.

- ¢lz -



4,500

- 4,625
4,750
4,875
15,000

- 5.125 .
5.250 .

5,375
5. 500
5.625

5.750
5.875

. 6,000
6.125
6.250

6.375

6. 500
6.625
6.750
6.875
7.000
7.125
7.250
70375
7.500
7.625
7.750
7.875
8,000
8.125
8.250
8.375
8.500

<pylsIispy>
5¢339879-03

u.38426n-03 B

3.595885-03
2.946324-03

C 2.41176-03 .
1.97237”'03"
1.611595-03 .-

1.31570p-03
1.073269-03
8.74806n-04

- 7+125153=-04

5. 799221-04
L, 71657p-04

3.833509-04 .
3011373”‘0& .
2.52751 p-04"

2.05043,-04
1.662405-04
1034741”-04
1.09095,-04
8.83315p-05
T7.1436445-05
5.77699-05
4,66905p-05
3.771929-05
3.04578p-05
2.45835-05
1.983350-05
10599”8”-05
1.28939»-05
8.36928x-06
6- 738%”"06

<py2sI2spy>

5009065n'03
4,187719-03
3. 440925-03
2.824181-03

2.31552%-03
1.89656n—03 5
1055189m-03 -
‘1;26870b—03 .

1.03625p-03

- 8.45680-04
6.89593D‘Ou #

5.61879p-04
4 ,574665-04
3.72188y-04
3.025955-04

- 2.45850p-04

1.99617p-04

1.61975p-04
1031371”‘04 :

1.064609-04
8.62473p-05
6098120”‘05
5.,64910p-05
u.56863n—05
3.69302p-05
2.98381p-05
2.40967”—05
l.9u5143-05
10569&6”’05
1.26582p-05
1.020505-05
8.22394”-06
6.62u8un-06

<pypxIpxpy>

4,894619-03
343125403
2.720464-03
2.231825-03
1.82907m-03
1.4975U45-03
1.22495,-03
1,00109%-03
8.174319-04
6.66915”—04
4.42883m-04
2.932”2”—0h
2.38365p-04
1093632D—0u
1.57192p-04
1.27549,-04
1.03409,-0b
8038119”'05
6.78695%-05
5.”9”2]”—05
4,445174-05
3.594655-05
2.90547%-05
1.895495-05
1.52998p-05
1.234415-05
9.95523p-06
8.02543y-06
6.467105-06

Table (A1.4)

Hybrid integrals between t



<pypyIpypy>

5.148215-03
4,2325049-03

3.475739-03 -

2.851219=-03
2.33648,-03

- 1.912805-03

1.564465-03
- 1.278419-03
. 1.043769-03
. 8. 51 1&75;,,-0&
6.94060p-04
5- 6531 9'D"’0u’

4,60112p-04"

3. 74221 p-04
3.0&156”-0&
2.470a6p-04
2.,00534p-0U
- 1.626765-04

1031907D”0u‘

. 1.068695-04
8.65593p-05

7.004865-05

5066705”‘05
4,582609-05

3.69735p-05

2.992325-05
2.415324-05
1.94959,-05
1.57279p-05
1.26831p-05
1.02235p~05
8.23777p-06
6.63510p-06

<pypzIpzpy>
5.229119-03

;u030167n—03

3.53U4519-03
2.9008713-03
2.37826p=03
1.9”780”-03
1.59367p-03
1.302719-03
1.063915-03
8.68136n-04
7.07811 n-()ll
5¢7666Ux-0U
u.69396n-04

‘ 308] 83810-0’4

3010387E‘0u
2.52137y9-04

: 2.04685”‘0”

1.66058y-04
1.34656p-04
1.09103p-04
8'837063-05
7.151790-05
5.78602p=-05
L4 ,678459-05
3078107”-05
3.05435p-05
2.,466169-05
1.99035p-05
1.605659-05
1.2947h5-05
1.043619-05
8.40863p-06
6.77232p-06

w0 nitrogen atoms.

- 72 -



8.625

8.750
8.875
9.000

9.125

9.375

9.500

9,625

9.750

9.875
10,000
10,125
10,250
10,375
10,500
10,625
10,750
10.875
11.000
11.125
11.250
11.375
11,500
11.625
11.750
11.875
12.000
12,125
12.25()
12.375
12.500
12.625

<py1sIispy>

5¢423885-06

3.511249-06

2.82293y-06
2.26941y-06
1.823624-06

1.178405-06.

9.207269-07
T.246105-07

6
I
3
3
2
2
1
3.39653p-08
2.72121-08
1.38771p-08
8.859500-09
7.076860-09

<ry2sI2spy>

5¢33470x~06
L,29423,-06

3.45573~06

2 . 779561D°06 ‘

2 [ 23526»-06

1 07968] D-06 .

1. 44380y-06
1.16183p-06
9-08] 6319"'07
7.14939,-07

6.058525-07 .

3.865024-07
3.09830p-07
2. 48U4T73,-07
1. 99] 02D'°7
1.59556p-07
1.27853p-07
1.02503-07
8.19578,-08
6.56359-08
5.25310p-08
4,20362,-08
3.36261x-08
2.694645-08
1. 7] 996D"'08
1.09885p-08
8.78053p-09
5.60329p-09
4, 47894409

<pypxIpxpyd>

5.209405-06
3.37671-06
2.716844-06
2.18548,-06
1.75732p=-06
1.41248y4-06
1.136944-06
8.88985yx-07
7.000565-07
5.93354x-07
4,708065-07
3.787360-07
3.036474-07
2.43558y,-07
1.952519-07
1.565029-07
1.254345-07
1.00589y-07

- 8.04429,-08

6.443754-08
4,128655-08
3¢30333p-08
2.116205-08
1 06W65n-08
1.35171p-08
8.635865-09
6.90060p-09
5.51298p-09
4,403595--09

Table(A1.14)

Hybrid integrals tetween t



<pypyIpypy>

5.3U228y-06
4,299819-06
3 [} L¥59849—06
2.78253p-06
1. 440904-06
1.162611-06
9.086769=-07

6.0603249-07
4,819669-07
3.86459-07
. 3.09900y%-07
2.484514-07
1.99114y-07

1.59551-07 .

1.27839p~07

8.194025-08

- 6.561 T9%-08

4,202015~08

3.361169-08

2.69333»-08
2.152145-08
1.71899p-08
1.37403-08
1.098135-08
8.774455-09
7.00980p-09
5.59900p-09

cont.
wo nltrogen atoms.

<pypzIpzpy>

5. 45244506
3.530655-06
2,.83930,-06

2.28288p-06

1. 478035-06

1.18593-06

9.268284»-07
7.29487y-07 .
6.18101!)-07 .
4,902624-07

3.941779-07

3.159015-07.

2.53280p-07
2.02962,-07

1.626164-07
1.30284y 07
1.04433,-07

8.348995-08
6.685205-08

5,34961,-08

4,280184-08
30 u2334n-08
2.74283p-08
1.750255-08
1.39888y-08
1.11787p-08
8.931279-09
7. 13U435p-09
5.6970p-09
L, 54987p-09

- Gle -



.000
.125

«375
625

g5

o3
50

.000

-7
5
I
3

<py1sIispy>

3.60208y-09
2.8875Tw-09

- 2.16037p=-09

1.83162%-09
1.45719%-09
1.166L4545-09
9.29723p~10
cA14109-10
0712921)-10
2.994024-10
2.38589%-10
190100%-10
1.51447m-10
1.20635p-10
9,60803p-11
7.65131p=-11
6.09239p~-11
3.07329p-11
2.44593p-11
1.94644 =11
1.54869p~-11
90801961)"'12

<py2sI2spy>

3.57219p-09
2.143145-09
1.81719%-09
1.44591$-09
1.15758-09
9.22782y-10
7+35965p-10
4,.67943p-10
. 307301"’211’10
2.97343p-10
2.3697l4p=-10
1.504545-10
1 . , 9856n'- 1 0
9.54697p-11
T.60341p-11
6.05484p-11
4,82095p-11
3083808m-1 1
3.05519p-11
2.43173p-11
1.93532p-11
1. 53995”'1 1
1.22504p-11
9.74680p=-12

Hybrid 1integ



<pypxIpxpy>

3.51585p-09
2.110145-09
1.7894445-09
1.424064-09

1.140254-09

9.0912L-10
7.251831-10
I ,61227%-10
3.67742=-10
2.93160y-10
2,33675p~10
© 1.862309-10

1.48400yp-10
1.18236p-10
9.41916p-11
7.50263p-11
5.97536p-11
L, 758260-11
3.01621p-11
20’40] Oon‘] 1
1.91108p-11
1.52085p-11
1.20998p-11

<pypylpypry>

3.569215-09

2.14119p-09

1.815509~09
1.44453,-09
1.156444-09

~ 9.21868yp-10

7.352079-10
b,67433p-10
3.72627p-10
2,970055=10
2.36701p-10
1.886114-10
1 . 50275]9" ‘ 0
1.19711p-10
9.53521p~11
7+59393p-11
6.04720p-11
L4,.81478p-11
3.83311p 11
3.05118p-11
2.42851p-11
1.93272p-11
1.537870~11
1.22338p-11
9.73310p-12

Table(Al1.4) cont.

<pypzlpzpy>

3.631525-09
2.911205=-09
2.17808yx-09
1.8466L44-09
1.469155-09
1.176041h-09
9.37377w-10
5.,96029,-10
3.78757%-10
3.018624-10
2.,405484-10
1.9165095-10
1.52687p~10
1.216224-10
9.68651p-11
7.71371p=-11
6.142009-11
L,88981p-11
3.89249yp-11
3.09817y-11
1.96214p-11
1.56113p-11
1.25177p-11
9.87877p-12

rals between two nitrogen atoms.

'942"



b ,500
4,625
k,.750
4,875
5000
5.125
5250
5.375
5.500
5.625
5.750
5.875
6,000
6.125
6.250
6.375
6.500
6.625
6.750
6.875
7. 000
T.125
T7.250
7.375
T« 500
T.625
7750
7.875
8.000
8.125
8.250
8.375
8.500

<pzl1slispz)

3.245525-02
2.768405=-02
2.35576p-02
2,00007 =02
1.,60U46,4-02
1.432655=02
1020894”’02

1.018325=-02

8056267n-03
7.18815'-03
6.02478,-03
5.04215;-03
4.21153n-03
3.53389,-03
2.621925~03
2.476219-03
2.01610p=03
1.68583.-03
1.397359=03
1.15778p=-03
9.58469,-04
7+ 92507p=04
6.54751p-04
540425404
b 45646904
3.67206yp-04
3.02304-04
2.486765-04
2.048025-04
1.6788”“0&
1.37789p=-04
1.13007p=-04
9,26230p=05

{pz2812spz>

3.05791x=-02
2.615535=02
2.23136p-02
1.89899y,-02
1.612425-02
1¢366135=02
1.+15508y=02
9.T4TU2y=-03
8.210444-03
6.903705=03
5.79527%~03
4.85711»-03
4,064635-03
3.396545-03
2.83434y=03
2.362065-03
1.965995-03
1.634344<-03
1.357119-03
1.125565=-03
9.32589p-04
T.7T181Tp=04
6.38173D-04
5.271545=04
L ,350425-04
3.587125-04
2.95515p-04
2.,00067p-04
1.641422,-04
1.35025-04
1.10803p-04
9.086285~-05

<pzpxIpxpz>

24,929055-02
2.50T7T12¢=02
2.14038,-02
1.8228U4,4-02
1.54883“02
1.31314p=-02
1.111025=02
9.381729=03
T+ 90TU8p=03
6.65314,=03
5.58839'-03
4 ,686545-03
3.924215=03
3.28110‘-03
2.739559=03
2,28433,-03
1.902324-03
1.582254-03
1.314544-03
1.09080p=03
9.04237p-04
T 48T714p=-04
6.193625-04
5.118519=04
L 2250/ ,-04
3.486109=-04
2.8731Tp~04
1.94678,-04
1.60057y=-04
1.31493p=04
1.079464-04
8.85531p-05

Table (A1.4)

Hybrid integrals between t



<pzpylpypz)

2.02905-02
2.50712p-02
201&038.-02
1.822845=-02
1.5“883‘-02
1.313145=-02
1111029=02
9038172n‘03
T.90748p=-03
6.65314p~03
5¢58839p=03
4.68654n-03
3.924219-03
3.28110-03
2.739559=03
2.28433”‘03
1.90232p-03
1.582259-03
1031”5&'-03
1.09080p=03
900&237“04
T 48T145=-04
6.19362"0&
5.11851p=-04
,226049=04
3.48610p=04
2.87317e=04
2.36601p=04
1.94678x=-04
1.60057”‘0&
l.31h93n-0u
1.07946p-04
8.85531p=05

cont.
w0 nitrecgen atoms.

<przpzlpzpz)

3.315625-02
2.83237-02
2.141332=02
2.05129'-02
1.73960p-02
1.472105=02
1.24321 =02
1.04788y=02
8.81637D-03
T 40482,-03
6020905n-03
5¢198244-03
4.,345479=-03
3.62742=-03
3.023919-03
2.51752=03
2.09332,-03
1.73851‘-03
1.442264-03
1.19507»=03
9.89293p~04
8. 18025904
6.757950=04
5¢57760p=04
4,59920,-04
3.78916"0&
3¢11913p=04
2.56548,-04
2.1084h,=008
1.73151"0h
1.420905-04
1.16518=04
9.548194=-05

- L2 -



R.

8.625
8.750
8.875
g.000
g9.125
‘90250
9.375
9.500
9.625
'9-750
9.875
10.000
10.125
10.250
10.375
10500
10.625
10.750
10.875
11.000
11.125
11.250
11.375
11.500
11.625
11.750
11.875
12.000
12.125
12.250
12.375
12.500
12.625

<pz1sllspz)

T.586325=05
6.209559=05
5.07980p=-05
u.15260”-05
3.392859=05
2. 77050p=05
2.26094’-05
1.8&710”'05
1. 46704y =05
1.174959~05
1.0060Tp=-05
8.12063p=06
6.607503-06
5.37310p=06
4.36785;-06
3-54866p-06
2.88228'-06
2.339699-06
1.898645-06
1.540019=06
1.2“871'-06
1.01213x=06
8.200“9'-07
6.64186p-07
5¢377340=-07
4.352139p-07
3.52117w=07
2.8h790n-07
2.302619=07
1.861125-07
1.50380p-07
1.214725=07
9.80905p-08

<{pz2sI2spz)>

T.145934-05
6.09766p=05
L4 ,990455=05
4,081514=05
3.336215=-05
2.72536”‘05
2.225045-05
1.818415=-05
1. 41579,-05
1.157659=05
9.915065-06
8.0062U445-06
6.516275=06
5¢30078p~06
4,310215~-06
3 [ 50302”-06
2.84571”‘06
2.31090,=06
1.8757un’06
1.52180p-06
1.234275-06
1..00068p-06
8.10955p-07
6.569595-07
5¢320099~07
4.30671p-07
34“8514n—07
2.81943,-07
2.28042‘-07
1.84307p~07
10&89“9”‘07
1.203&3"07
9.71953p=08

<{pzpxIpxpz)>

T.25933p=-05
5.94699,-05
h.86885‘-05
3.983439=05
3.25713p=05
2.,661655=05
2.17373w=05
1.77703=05
1.41336,-05
1.13208-05
9,69810p=06
7 .833445-06
6.377lp-06
5.189305-06
} ,22072,-06
3.43119p-06
2.78810p-06
- 2.261695-06
1.83870p-06
1.149220-06
1.210529=06
9.81627p-07
T.95702=07
6. 44 THOR=0T
5.,222385-07
u.22855n-07
3.422624-07
2.76934,=-07
2.23999-07
181122507
1.46404,-07
1.18305”‘07
9.55678p-08

Table (A1.4)

Hybrid integrals between t



<pzpylpypz>

T+.259339=-05
5¢946999-05
4 ,868855-05
3.983435=-05
3.25713p=05
2.661655=05
2.17373p=05
1.77T7039=05
1.41336-05
1.13208,-05
9.69810x=06
T.8334hy=06
6.37T4hyp=-06
5.189309=06
u022072n-06
3.&3119.-06
2.78810p=06
2,264699=06
1.83870p-06
1.492205-06
1.21052p=06
9081627"07
T«95T02p=-07
6.“4749,-07
5.222381=07
h0228555-07
3.422625~0T7
2.769345=-07
2.23999p=07
1.811225=-07
1.&640un-07
1.183059=07
9.55678p-08

cont.
.wo nitrogen atoms.

<pzpzlpzpz)>

7.81912"05
6+.39899,-05
5.233649-05
4,2776Tp=05
3.49435,~05
2.85280n-05
2.327685~-05
1.90117»=05
1.51062~05
1.208805-05
1.03&90'-05
8.3518U45-06
6.79392-06
5¢523T6p=06
b ,48921 =06
3.,6146665=-06
2.96096y=-06
2.40331,=06
1.581185=06
1.28184'-06
1.03877‘-06
8.“1461‘-07
6.81377'-07
5.51540=07
4.&630&‘-07
3.610179~07
2.919304=07
2.35986p-07
1,90703-07
1.54060p5=07
1.24&]9'-07
1.004519-07

-géz-



12.750
12.875
13.000
13.125
13.250
13.375
13.500
13.625
13.750
13.875
14,000
14.125
14,250
14.375
14.500
14.625
14.750
14,875
15.000
15.125
15.250
15.375
15.500
15.625
15.750
15.875
16.000

<pzisIlspz>

T+91653=08
6.4153Tp=08
L ,866245-08
4,158799~08
3.34462,5-08
2.705019=08
2.17875!)"08
1.755465=08
1 418054=08
1 [ 1 3877”‘08
9. 1 6839!)-09
T¢379819=09
5.93881»-09
B 477801 =09
3.84328y=09
3.09068y=09
2. 484924=09
1.99T7455-09
1.60527»=09
1.03613p=-09
8032177”“10
6. 682”’6”"1 0
5¢36511p=10
4.30638,,-1 0]
207731 2])-1 0

{pz2s812spz>

708"’563’-08
6.358959-08
L, 82442-08
},123524-08
3.31676p~-08
2.68287])-08
2.16123»-08
1 .'ﬂH 58!)"08
1.40307»=08
1.13008n-08
9.09957»=09
7-32533D'09
5.89570-09
4.7’439019-09
3 006932D-09
2.1468029-09
1.98407p~-09
1.59470p=09
1.029529=09
8. 26951 n“‘ 0
6.64110p=-10
5.33237p=-10
4,28052p-10
3.43516p=10

<pzpxIpxpz)>

7.71 569'-08
4 TL650p=-08
b ,05745,-08
3 026’421 3‘08
2.64080,5-08
2.12771p=08
1 071 4855-08
1¢381765-08
1.11310p=-08
8. 964‘28”"09
7+217569-09
5.809845-09
4 ,675525=-09
3.76183p=-09
3.02597p~09
2.433519-09
1.956615=09
1.572859-09
1.264064=09
1.015695,-09
80 1 59“’8”-1 0
6.55357p=10
52627 Tp=10
4 ,225195-10
3.39120p=10
2.72185p=10

Table (A1.4)

Hybrid integrals between 't



<przpylpypz>

7.715699=-08
6 L] 25’"’78n-08
4 Th6509-08
4.05745»-08
3026421”‘08
2,640805=-08

2.12771”-08 '
~ 1.79503-08

1.714859=-08
1.38176”-08
1.113109-08
8096428”-09
7+21756=09
508098&'-09
4 ,67552x-09
3.76183’-09
3.025979-09
20&335]”‘09
1.956619=09
1.572859=-09
1.261064=09
1.01569-09
8.159“8”‘10
6.553579=10
5.26277”‘10
4,22519p=-10
3039120”‘10
2.72185p=10

cont.
:wo nitrogen atoms.

<pzpzlpzpz>

80105&8“08
6.56T7279~08
A098028‘-08
4,255659~08
3042187”“08
2.T6700=08
2.22828yp~08

104”568”'08
1.16403,=08
9.37018,~09
705&091'-09
6.06Th1=09
4 ,880664-~09
3¢925199~09
3.156029=09
2.53704p-09
2.03901~-09
1.638415-09
1.31622p-09
1.05719p=09
8.489599~10
6.,8161L5=10
5.“7158'-10
4,39110p=10
352311910
2.82669p~10

- 642 -
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Appendix(2)

The Algol text of a program to calculate transfer integrals.,
(A2.1) 1Introduction.

(A2.2) Construction of the data tape.
(A2.3) Text of the program.
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(A2.1) Introduction.

The program evaluates the transfer integral between
one molecule at the origin and another whose coordinates
are given on the data tape. The two centre-two electron
integrals are Input as data for a fixed internuclear
distance grid; and the values for any intermediate inter-
nuclear distance are obtained by an Aitken interpolation
procedure. The one-electron integrals are evaluated anal-
ytically within the program using the methods outlined in
Appendix(1). The program contains the text of the procedures
used to determine the functions An(a) and Bm(b) referred to
in the previous Appendix.

Several variations of the program are avallable, each
being designed for a specific problem. The most important
of these are:
(1) A program for those cases in which the second molecule
cannot be generated from the first by a symmetry operation,
eg:- the unit cell of tetracene contains two molecules that
are symmetrically unrelated.
(11) A program which allows the molecule at the origin to
pe rotated slightly about its equilibrium position, and
the interaction between this displaced molecule and a second
molecule at 1,m,n is calculated.
(111) A program to calculate the pi contribution to the
transfer integrals without calculating the one electron
integrals.

The output of the program conéists of a synopsis of the
input data, 1le. crystal constants,atomic co-ordinates,Hueckel
coefficients etc.,vwhich 1s essentlally for checking and iden-

tificatlon purposes followed by:
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INTERMOLECULAR RESONANCE AND OVERLAP INTEGRALS BETWEEN THE
MOLECULE AT 0,0,0 AND THE MOLECULE AT **,%x, %
ELECTRON(au.) HOLE(au.) ELECTRON(eV.) HOLE(eV.)

GAMMA 3% % I W3 % % ‘ ¥ 33 % KX X X ********* L2 EX X X X3
RESA ********* 3 3 3 3 3 H % % 3 3 3% 3 % I % % I 363 3¢ % %
RESB 2% K %R XTI Y R f******** I N NN
OVERLAP 3 9% ¥ % I KX 96 3 396 ¥ % %% I I 3 % I # % * L2 2T X ]

Tn addition to the four columns listed above, the output
contains two others which give the differences between
RESA,RESB and GAMMA, where GAMMA 1s the electronic contr-
ibution to the transfer integral and RESA, RESB are the
nuclear contributions to the transfer integral assuming

the excess electron(or hole) to be on molecule A or B

respectively.

(A2.2) Construction of the data tape.

If m < 4 then the molecule 1s assumed

m
to have inversion symmetry,and the co-
ordinates of only half the atoms in the
molecule need to be specified,

DV A device on which the output is to be read
(usvally 30).

PP The number of points in the integral tables
-1.( Note that there must be the same
number of points in each set of integral
tables.)

N The number of atoms in the molecule,

mm An integer fixing the possible types of
interaction.( See text.)

q The order of the polynomial in the Aitken

interpolation procedure.
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1] The molecular orbital coefficients of the

excess electron.
HI[ 1] The molecular orbital coefficlents of the
excess hole.
HI[ 1] ' The electron density for the excess electron.
HK[ 1] ' The electron density for the excess hole.
In general HJ[1] = HK[1].

s[1] - Denotes the type of atom 1. 1e. C = 1, N =2
and 0 = 3. ‘

T 1] . The screening parameter of atom 1.

Nu[1] - The nuclear charge of atom 1.

The above values ( H{1] » Nu[1] ) are fed in for each atom 1.
ie. H(1] HI(1)] HI(1] HRO1] sS(1] T(1] Nul1]
u{2] Hil2) HI[2]) Hk[2] s[2] T(2] Nu2]

H{N] HI[N] HJI[N] HK[N] S[N] T[N] Nu[N]

X[ 3,11 A 3XN array containing the atomic co-ordinates
of atom 1. The values should be fed in as
follows:

x13 yls z13
x23 y23 22§
xN3 yN zN3
For a molecule possessing a centre of symmetry
(m <4 ) only the atomic co-ordinates of
| half the centres need to be specified.
angle[il » A 1 XN array contalning the angles between atoms
1-1,1 and i+l., If 1 = N then the angle N-1,N,1
should be given and i1f 1 = 1 the angle N,1,2,
Again 1f m < 4 only half the angles need be
specified.
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Pccl1,J] A Sxpp array containing the hybrid( or coulomb)

integrals for interactions between atoms
corrosponding to S = 1. The values are fed
in in sets of 5 in the order:-
<py1sl sby) <py2s2spy> <pypxpxpy> <DPYPYPYPY> <DPYDPZDPZDY)D
.DCC[i,J] - As above except that the (pz~----pz> integrals
replace the <{py----py)> integrals.
1f mm =1 then goto MISS. (ie. The molecule contains one type of
| katom only)
1f mm > ! ahd ¢ 5 and odd, then goto NO NITROGEN,
PCN[1,J] A Sxpp array containing the hybrid( or coulomb)
| | integrals between atoms denoted by S = 1 and
| S = 2 with the potential due to the former.
OCN[1,J] | As above only the <py----py> interactions
are replaced by {pz-=--=pz)>.
PNC[1,3] A 5xpp array contailning the hybrid( or coulomb)
1ntegrals between atoms denoted by S = 1 and
S = 2 with the potential due to the latter.
oNc[1,3] | As above only the {py----py> interactions
are repladed by {pz==-=DZD.
PNN[1,J] A 5xpp array containing hybrid integrals
between atoms denoted S = 2,
ONN[1,J] As above only the {py----py> interactions
are repléced by <{pz==-=-pz).
NO NITROGEN:
4f mm = 2 then goto MISS. ( 1e. only two types of atom in the
molecule)

pcol1,d] A Sxpp array containing the hybrid( or coulomb)

integrals between atoms denoted by S = 1 and
S = 3 with the potential due to the former.

ocol1,J] As above only the <{py----py> interactions



pocl 1, J]

oocl 1, J]
Poo[i,j]
oool 1, 31
if mmoda and
PNO[ 1, J]
ono[ 4, J]

PON{ 1, J]

onNol 1, J]

MISS:
x[1]
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are replaced by <{pZe~=--pz).
A 5xpp array containing the hybrid( or coulomb)
integrals between atoms denoted by S = 1 and
S = 3 with the potential due to the latter.
As above only the <py----py> interactions
are replaced by <pz=--=--pz>.
A 5xpp array contalning hybrid integrals
between atoms denoted S = 3.
As above only the <{py----py> interactions
are replaced by <pz----pz>.
< 5 then goto MISS.
A Sxpp array containing the hybrid( or coulomb)

integrals between atoms denoted by S = 2 and

S = 3 with the potentlal due to the former.

As above only the <py----py> interactions

are replaced by <pzZ=~=-pzd.

A 5xpp array containing the hybrid( or coulomb)
integrals between atoms denoted by S = 2 and

S = 3 with the potential due to the latter.

As above only the <{py=----py> interactions

are replaced by {pZ====pZD.

A 1Xpp array containing the internuclear

distances corresponding to the above tables.

REPEAT CALCULATION:

a
if a
b
c

theta

eta

< 0.0 then goto TERMINATE.

Crystal constants.
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qQa The number of molecules considered in the
calculation.
RR The maximum internuclear distance considered.

For values of the internuclear distances

> RR the integrals are assumed to be zero.
c1[1] A 5X1 array containing the contribution of

the 1-th integral to the potential for atoms

with S = 1,
c2[1] As above for atoms with S = 2,
c3[1] As above for atoms with S = 3.

These are repeated for the 5 components of
‘the integral tables.
eg. If the carbon atom 1s assumed to be in
the sp2 hybrid state then c1{1] = 2.0 since
the 1s electrons are considered to be localized;
c1[2] = ¢1[3] =c1[5] = 1.0 corresponding
to the sp2 hybrid and c¢i1{4] = 0,0,

Values derived in a similar manner should
be given for c2 and ¢3. The result would then
correspond to the core contribution to the
transfer integral. For aromatic hydrocarbons
having an even distribution of pi(py) electrons,
the total transfer integral can be calculated
by setting c1[l4] = 1.0(no exchange) or 0.5
(exchange included). However this cannot be
applied to heterocyclic molecules. In this
case the pl Interactions must be calculated
seperately.

The ci 8 are fed in the following order:

c1l1] c2[1] e3[1]
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c1[5] c2[5] e3[5]

REPEAT FOR ANOTHER MOLECULE OF THE SAME CRYSTAL SYMMETRY SPECIES:

syl 1, J] A 3x3 array of the symmetry operatioh which

A méps the‘mglecule at (0,0,0) onto the molecule
at (1,m,n).
ol1,J] The orthogonalizatlon matrix for the crystall-
B ‘ographic system.
LL[1] | A vector contalning the translational part of
Athe symmetrykoperat;op,ﬂ

The figures from REPEAT FOR ANOTHER.......SYMMETRY SPECIES are
repeated for eaéh of the qq calculations.
goto REPEAT CALCULATION. |
TERMINATE: | Program terminated.

(A2.3) Text of the program.

]
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begin
real D,E,HH,a,b,c,theta,ALPHA,BETA,eta,e8a,esb,ver,
RESA,RESB,OVER,HOLA , HOLB, HOLO,RR , SUM, xx ,EE, SUM1  }
integer 1,1,J,N,pp,qq,mm,f1,2,03,04,k,DV,p,q,m 3}
array cl,c2,c3[1:5],AA,BB[0:4],5Y,0(1:3,1:3),11,TR
[1:3] ;

integer procedure format(str) ;

string str
format := layout{str) ;

procedure AITKEN(x,f,n,xx,FF) ;

value n,f,x,xx 3

array x,f j
integer n
real xx,FF j
begin

integer 1, 3
for J := 0 step ! until n-} do

for 1 := J+1 step 1 until n do
£{1) o= ((xx-x03))xr2]=(xx=x[1))xe (3] )/(x[1}-x(4])
FF := f[n]
end AITKEN

ee

.o

procedure INTERMOL(xx’O'TR:LoSYMoNaM:!nsleoint.coan.cocb)
value XX,N,M,L 3

integer N,M 3
array XX,0,L,TR,1int,cosa,cosb,angle,SYM 3

begin

real w,wl,ri,r2 ;
integer 1,J,Pp 3
array X[1:3,121f M < 4 then 2>N else N),a[1:5,1:3)

1f M < U4 then

pegin

for 1 := 1 step 1 until N do
or J i=1 step 1 until 3 do

——
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begin
angle[1+N] := angle[1]

XX[J,1+N] := =xx[3,1] ;

end 3
N :=2xXN 3
end 3

for 1 :=1 step 1 until N do

for J :=1 step ! until 3 do

begin w :=0,0 ;
for p := 1 step ! until 3 do

W= w+XX[p,1]xSYM[p,J] H
x{Joil = w |

end 3

or 1 t= 1 step ! until N do

)

for J := 1 step | until 3 do

————

X[J,1] &= X[J,i]+TR[J]XL[J]
for 1 :=1 step 1 until N do

e

for J :=1 step 1 until 3 do
begin w := 0,0 ; §
wl := 0.0 3 |
for p := 1 step 1 until 3 do

begin w := wtXX[p,1]x0[p,J] ;
wl:= wi+X[p,1]x0[p,J] ;

end 3
xx(J,1] t=w 3
X[J,1] 1= w1 3

end 3§
for J [ X3 | stgpl until N _d;g

begin for p := 1 step 1 until 3 do

begin a[1,p] := XX[p,1f § = 1 then N else jJ-1]-xxlp,J] 3
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al2,p] := XX[p,ig J = N then 1 else JH1)-xX[p, J] $

end ;
w = 0,0 ;3
wl := 0,0 3
for p :=1 step 1 until 3 do

begin w := af1,plxa[1,pl+w
wi:= a[2,plxa[2,p]+w) ;

end ;

r1 := sin(angle(J] )xsqrt(wxwi) 3
for 1 := 1 step 1 until N do

begin for p := 1 step 1 until 3 do

begin al3,p] := X[p,1] -Xx[p,J] ;
al4,p) :=X[p,if 1 = 1 then N else 1-1)-X[p,1)

“-e

al5,p] := X[p,if 1 = N then 1 else 1+1)=-X[p,1]

we

end
w :=0,0 3
wl := 0.0 3

for p 1= 1 step 1 until 3 do

begin w rm wta[l,plxall,p] ;
wl:=wl+a[5,p]xa[5,p] ;

end ;

r2 := sin(angle(1])xsqrt(wxwi) 3

for p :=1 step 1 until 3 do
W = w+a[3,p]xa[3,p] ’
int[1,J] := sqrt(w) ;

wl := 0,0 3
for p := 1 step 1 until 3 do

begin

;
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w := wta[3,plx(al1,1r p = 3 then 1 else p+i1)x

a(2,1f'p > 1 then p-1 else 3]1-a[2,1f p = 3 then 1 else p+i]x

‘al1,1f p > 1 then p-1 else 3]) ;
wi:=wi-a[3,p]x(al4,1f p = 3 then 1 else p+1)x
a(5,1f p > 1 then p-1 else 3]-

a[5,1f p = 3 then 1 else p+1]x

a[4,1f p > 1 then p-1 else 3]) ;
end ; |
cosal1,4] := w/(rixint(1,J]) ;
cosbl1,4) := wi/(r2xint[1,4]) ;
end

end

end INTERMOL ;

procedure avector(b,nmax,avalues) ;
22329 b,nmax 3

real b s

"~ integer nmax

array avalues 3

begin

integer m
avalues[0] := exp(~b)/b 3

if nmax = O then goto exit ;

form := 1 step 1 until nmax do

avalues[m] := avalues[0)+mxavaluesim-1]/v 3

exit @

end avectors

procedure bvector(a,n,b) ;

value n,a
————

integer n

real a
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array b 3

begin real w,y,suml 3

integer m,1i,p ;
if abs(a) < 1p=-10 then

begin for 1 := 0O step ' until n do
b{1] := 1f (1+2)x2 = 1 then 2/(1+1) else © 3

goto exit

end 3
®

w := exp(a) 3

if abs(a) > (n+n/6+3)/2.3 then

begin y t=1/w 3
b[0] := (w-y)/a ;

if n = O then goto exit j
for 1 :=1 step 1 until n do

begin w := -w 3
bl[1] := (w-y+ixb[1-1]))/a 3

end
goto exit
end ;
1 :t=n 3}

suml i= (=1)T2xw/a-1/(axu) 3
y :=1/a 3

m:ﬁi 9
p := (=1)T1 3

loop ¢
p :==-p 3}
y i=ym/a ;

suml = suml+yXwxp-y/w 3
m :=m-1 3

if m > O then goto loop
b{1] := sum

y = 1/w
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m := n«j y
if (n+2)x2 # n then w i=m -y 3

‘for 1 :=m step -1 until O do

begin w = -w 3
b[1] := (w+y+axb[1+!])/(1+l) H

end 3

exit :

.o

end - bvectors
open(20) ;

m := read(20)
Af m = -6 then goto XSGB

we

DV := read(20) 3
open(DV)
pp := read(20)

we

-

N := read(20)

we

mm := read(20)
q = fead(eo) 3
begin integer array S[1:N] ;

array angie,T,H,HI[!:N],cosa,cosb,R[!:N,l:N],;Xx[l:3,1gnj,
x[o:pp],PICC,PICN,PINN,PICO,PINO,PIOO,PINC,PIOC,PiDN,POCC,
POCN,PQNN,POCO,PONO,POOO,POOC,POON,PONC[O:pp],PCC,OCC,PCN,
OGN, NG, ONG, PRN,, ONN,, PNO, ONO, PON, 00N, POD, 000, PC0, 00, POC,
OOC[I:S,O:DDI,Nu,HJ,HK[l:N]. 3

switch SWITCH := CCC,CNN,COD,NNN,000,NOQ 3

procedure INTERPOLATE(x,FI,F2,P,xx,k,HH,q,Ex1T) ;

value x,xx,Fi :Fe:Pokaq s

integer P,q,k ;

real xx,HH ;

array F1,F2,x 3
label EXIT .;
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begin real A,F ;

*

array x1,F3,F4{0:q]
‘integer s,1 3

s =0 3
HH := 0,0 3
for 1 := 0 step 1 until P-1 do

begin 1f (x[1] > xx ggg’k[i+1] < xx)

or (x[1] < xx and x[1+1] > xx) then

begin
1f 1> a/2 and 1 < P-q/2 then s t= 1-q/2

ig 1 > aq/2 and 1 3 P-q/2 then s i= P-q-l
if i { q/2 then s :=0

goto njirgn 3

.

end‘ s
TN

end

nJirgh
A :=D 3

for 1 t= 0 step 1 until q do
begin x1[1) := x[1+s) ;
F3[1] := F1[1+s]

F4[1] := F2[1+s]

oo

oo

end

AITKEN(x1,F3,q,xx,F)

e

HH := HH+AXF 3

-e

AITKEN(x1,Fl,q,xx,F)
HH := HH+EXF j

ouUT :
goto EXIT ;
end INTERPOLATION ;
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cornient N - No of atoms in the molecule.

.|

PP - No of 1integrals to fed in-t.

Q
MM - Denotes type of interaction

No of molecules to be consldered,

eg MM = 1 **%¥C - C only.
MM =2 **%%C = C,C = N,N - N only.
MM = 3 *¥%%C - C,C - 0,0 = O only.
MM = 4 *x%xany combination of C,N and O

.o

for 1 :=1 step 1 until N do

| begin H[1] := read(20) ;
" HI[1] := read(20)

we

HI[1] := read(20)

\se

HK[i]l:= read(20)
s{1] := read(20)
T[i]';= read(20)

-e
-a

o -e

Nu[1]):= read(20)
end ; |
comment HI,H(1) - Huckle Coefficients for the hole and
electron respectively.

HK,HJ(1) ~ Electron densities for the hole and electron
respectively.

S(i) - denotes the type of atom 1.

C=1 N=2 0=3

T(i) - Screening parameter for atom 1.

" Nu(1)- Nuclear charge of atom 1 3

for 1 := 1 step 1 until (£ m < 4 theri N/2 else N) do

for J :=1 step ! until 3 do

xxx[J,1] := read(20) ;
for 1 =1 step 1 until (if m < 4 then N/2 else N) do

e -

anglel1] := read(20) ;
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for J‘:= O step 1 until pp do
1 :=1 step 1 until 5 do PCC[1,J] :=

for

————

for

for

J =0 step 1 until pp do
1 :=1 step 1 until 5 do 0CC[1, 4]

if mm = 1 then goto MISS ;

Af (mm+2)x2 # mm and mm < 5 then goto

for
for
for
for
ror
for
for
for
for
for

for

J
1
J
i
J
i
J
i
J
1
J
1

t= 0 step

1

until pp Qg

1 step

L

until 5 do PCN[1, 4]

O step

1

until pp do

1 step

0 steg
1 step

until 5 do OCN[1, 4]
until pp do

until 5 do PNC[1, J]

O step

until pp do

(= 1

step

O step

until 5 do ONC(1, j]
until pp do

step

t= )

until 5 do PNN[1, 4]

step

until pp do

step

until 5 do ONN[1, 4]

then

step

goto MISS

1

until pp do

step

1

until 5 do PCO[1, 4]

step

1

until ppdo

step

until 5 do Oco[1,4]

step

~until

PP do

step

until 5 do POC[1, 4]

step

until pp do

step

until 5 do 0OcC[1, 4]

step

until pp do

step

1

until 5 do POO[Y, ]

.
.

*e

e

e d

.o

No

read(20)
read(20)
N 3

read(20)
read(20)
read(20)
read(20)
read(20)

read(20)

read(20)
read(20)
read(20)
read(20)

read(20)
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for J :=0 step 1 until pp do

for 1 := 1 step 1 until 5 do 000(1, ] := read(20)

we

if (mm+2)>x2 # mm and mm < 5 then goto MISS
for J := 0 step 1 until pp do

for 1 :=1 step 1 until 5 do PNO[1,4] := read(20)

-e

for J := 0 step ! until pp do

for 1 :=1 step | until 5 do ONO[1, 3] := read(20) ;
for § := 0 step 1 until pp do

for 1 :=1 step 1 until 5 do PON[1,j] := read(20) ;
for J t=0 step 1 until pp do

for 1 :=1 step 1 until 5 do OON[1,3] := read(20) 3
MISS

for 1 :=0 step 1 until pp do x[1] := read(20) 3

Repeat Calculatiop $

a := read(20) 3

if a < O then goto XSGB 3

b := read(20) ;

c := read(20) 3

theta := read(20) 3

eta := read(20) 3.

qq t= read(20) H

RR t= read(20) 3

for 1 t=1 step 1 until 5 do

begin c1[1] := read(20) ;
c2[1] := read(20) ;

c3[1] := read(20)
end 3

for 1 :=0 step 1 until pp do

we

begin PICC[1].:= POCC[1] 1= PICN[1] :m POCN[1] 1= PING[1]
s= PONC(1] := PINN[1] := PONN[1] ;= PIOO[1] := PODO[1])
= PICO[1] := POCO[1] := PIOC[1] := POOC[1] := PINO[1)
s= PONO[1] := PION[1] := POON[1) := 0,0 ;
for J =1 step 1 until 5 do
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begin
PICC[1] := PICC[1]+c1(jIxPCCly,1] 3

POCC(1] := POCC[1i]+c1[y]xacCy,1]

if mm = 1 then goto PASS ;

;g(mm+2)x2 # mm and mm < 5 then goto NON 2
PICN[1] := PICN[1]+c1{JIxPCN[J,1] 3

POCN[1] := POCN[1]}+c1{J]xOCN[ 4,1)]
PINC[1] := PINC[1]+c2[3]xPNC[4,1]
PONC[1] := PONC[1]+c2[J)xONC[ 4,1)
PINN[1] := PINN[1]+c2[J]xPNN[J,1]
PONN[1] := PONN[1)+c2[JIxONN[J,1] ;
NON2 |

oo

we - ‘ese

-e

if mm = 2 then goto PASS ;
‘PICO[1] := PIco[1]+ct[J]xPc0[J,1]
POCO[1] := POCO[1]+c1{Jj]x0CO| 3,1
PIOCL4| := PIOC{1]+c3[j)xPOC(,1]
PDOC[ij‘:a POOC({1]+c3[ y)x00c( §,1)
PI0O(1] := PIOO[1])+c3[J]xPoO( 4,1]
POOO[1] := POOO[1]+c3[4]x000[ 4,1] ;

if (mm+2)x2 # mm and mm < 5 then goto PASS
PINO[1] := PINO[1]+c2[j]xPNO[4,1]) 3

PONO[1] := PONO[1]+c2[ 3)xONO[ §,1]
PION[1] := PION[1]+c3[J]xPON]4,1)
POON[1] := POON[1]+c3[J]x00N[ 4,1)
PASS

end

end 3

£1 := format([2s-nd.d}) ;

2 := format([5s-nd.ddddd]) ;
£3 i= format([6s-d.dddddp-nd)) ;
£l := format({4snd]) ;

-e - we -e

wse

e we e
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write text(DV,LL4c651LATTICE*CONSTANTSL?clIslALl3sl
BLI3leL10slBETALIOSlTHETALECll) 3

write(DV,f2,a)
write(DV,f2,b)
‘write(DV,f2,c)
write(DV,f2,eta) 3

write(DV,f2,theta) .

write text(DV,LL206slATDMIC*CO-ORDINATESL?cllleLlle
YL13leLI151ANGLEL981H(1)LIOBlHI(i)LBalELEC*DENLEal
T(1)[2c]]) ;

for 1 :=1 step ! until N do

we we

L 1]

begin for j :=1 step 1 until 3 do

if m < 4 and 1 > N+2 then write(DV,fQ,-XXX[J,N-1+l])
else write(DV,r2,Xxxx[J,1]) ;

if m < 4 and 1 > N+2 then write(DV,f2,ungle[N-1+l])

else write(DV,f2,anglel[1])
write(DV,f2,H[1]) ;
write(DV,f2,HI(1])
write(DV,f2,HK[1])
write(DV,r2+2,T[1]) 3

Y
e

.o

end ; ,
write text(DV,[[2c]]) ;

p:=0 3
EE := cos(theta) 3 .

Repeat :

p t=p+l 3

for 1 :=1 step 1 until 3 do

for J :=1 step 1 until 3 do
SY[J,1] := read(20) ;
for 1 := 1 step ! until 3 do
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for J (=1 step ' until 3 do

0(J,1]) := read(20)

11{1] = a 3

LL[2]) :=b 3

11[3] = c 3

for 1 :=1 step ! until 3 do

TR[1] := read(20)
INTERMOL(XXX,0,TR,11,SY,(1f m < 4 then N/2 else N),

m,angle,R,cosa,cosb)

SUM1:= HOLA := HOLB := HOLO := SUM := RESA := RESB

¢= OVER := 0,0 3

h zé 0 3

Repeat 1 :

1 := 141 3}

Ji=0 35

£ 1 =1 then begin

write text(DV,[[2c3s] INTERMOLECULAR*RESONANCE* AND*OVERLAP
*INTEGRALS*BETWEEN*THE*MOLECULE*AT*0,0,D*ANDL2c3alTHED
MOLECULE*AT*]) 3

write(DV,f1,TR(1]) ;

write(DV,f1,TR[2])

write(DV,f1+2,TR[3])

‘o0

end
Repeat § :

J = J+

E := cosa[J,1]xcosb[J,1] ;
if abs(E) > 1 then

begin

write text( 30:-LUVERFL0W_[_1&3_]_1) 3
write(30,rormat(L23ndl),1);
write(30;format(Lasndcl),J);

if E > 1 then E t= 1 else E ;= -13
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xx := R[J,1] ;

if xx > RR then goto BYE PASS ;

if abs(D) < 1»-10 then k := 3 else k := 2 3
1 :=5[1)xs[3) ;

if 1 =9 then 1 t=5

goto SWITCH[1] 3

cce e
 INTERPOLATE(x, PICC, POCC, pp, xx, k, HH, q, EXIT) ;
CNN :

1r S[J) < s[1) then
INTERPOLATE(x,PICN,pOCN.pp,xx,k,HH,q,EXIT)
else INTERPOLATE(X,PINC,PONC,pp,xx,k,HH,q,EXIT) 3

coo :

ir s[4] < s[1] then
iNTERPoLATE(x,PIco,poco,pp,xx,k,HH,q,ExxT)

else INTERPOLATE(X,PIQC,POOC,pp,xx,k,HH,q,EXIT) 3
NNN :

INTERPOLATE(x,PINN,PONN,pp,xx,k,HB,q,EXIT) 3

000 ¢

INTERPDLATE(X,PIOO,PDOD,pp,xx,k,HH,q,EXIT) 3

NOO

if s[4] < S[1] then
INTERPOLATE(X,PINO,PONO,pp,xx,k,HH,q,EXIT)

else INTERPDLATE(x,PIDN,PDDN,pp,xx,k,HH,q,EXIT) 3
EXIT :

SUM 1= HAH[LDA[IDHI[ g1+s0M

SUM1 := SUMI+HI[1]xHI[ 31xHK[ §)xHY ;

ALPHA = (T{1]+T(J])xxx/2 ;

BETA := (T[J]-T{1])xxx/2 ;
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avector(ALPHA,4,AA)
bvector(BETA,4,BB)
esa := (XXXxxxTII]XT[J])72.5X(((AA[3]~AA[I])X(BB[O]-BB[Q])
-(AA[el-AAIOJ)x(BB[l]-BB[3]))XD+2xEX(AA[t]xss[o]-AAtijBB[e]
-AA[o]xBB[1]+AA[2]xBB[3]))/(asxxx) ;
esb := (xxxxxxT[1]xT[J])r2, «5x(((AA[3]-AA[1])x(BB(0]-BB[2])
+(AA[2]-AA[0])X(BBIII-BBIBI))xD+2xEX(AA[lIXBB[o]-AA[3]xBB[2]
+AA[0]xBB[1]-AA[2]xBB[3]))/(16xxx) 3
ver = (xwxuoxTlL1XTL 31 )12, 5x(( (AA[4]-AA[2] )xBBLO]- (AA[ 4]
-AA[o])xBB[2]+(AA[2]-AA[0])xBa[b])xD+Ex2x(AA[2]xBB[o]-AA[
41xBB[2]-AA[0]xBB[2]+AA[2]xBB[4]))/32
RESA := RESA+H[1)xH[ J)xNul j]xesa
RESB := RESB+H[1]xH[ J)xNul1])xesb
OVER := OVER+H[1]xH[ J]xver ;
HOLA := HOLA+HI[1]XHI[J)xNu[J]xesa ;
HOLB := HOLB+HI[1]XHI[j)]xNu[1]xesb ;
HOLO := HOLO+HI[1]xHI[jlxver

oo oo

BYEPASS  :
if J < N then goto Repeat j
if 1 < N then goto Repeat 1 ;
write text(DV,LLi7leLECTRDNL12slHOLEL2cll) 3
write text(DV,[[3s]GAMMA[3s]]) ; write(DV,r3,5uM)
write(DV,f3,5UM1) ;
SUM := 27,21x5UM;
SUMI:= 27.21XSUM1;
write(30,r3,S5UM);
 write(30,£3+2,5UM1);

write text(DV,[[3s]RESA[4s]]) ;
write(DV,f3,RESA)
write(DV,r3,HOLA) 3
RESA := 27.21XRESA;
HOLA := 27.21xHOLA}
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write(DV,£3,RESA);
write(DV,f3,HOLA);
write(DV,f3,SUM-RESA);
write (DV,f3+2,SUMI1~HOLA);
write text(DV,[[3s]RESB[4s]]) ;
write(DV,£3,RESB) §
write(DV,£3,HOLB) 3
RESB t= 27.21XRESBj
HOLB 1= 27.21xHOLB;
write(DV,f3,RESB);
write(DV,f3+2,HOLB);
write(nv,f3,sum-RESB); |
write(DV,3+2,SUMI ~HOLB);
.write text(DV,[[3s]OVERLAP]) ;
write(DV,f3,0VER) 3
write(DV,£3+2,H0LO)
1 =0 3
1f p < qq then goto Repeat j
goto Repeat Calculation ; |

end 3
XSGB @

‘close(20) ;
“close(DV) 3

~ end PROGRAM
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Appendix(3)

Calculation of the Energy band structure and the
elements of the mobllity tensor in both the Bloch
and localized representatlons.

(A3.1) General.
(A3.2) Construction of the data tape.
(1) The data tape for the first program.

(11)The data tape for the second program.

(A3.3) The text of the programs.
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(A3.1) General.

In this appendix two computer programs are given which
have been used to calculate the components of the moblility
tensor in organic molecular crystals having moneclinic
structures, space group P21/é, with two molecules per unit
cell. The first, in KDF9 Algol, calculates the energy band
structare and carrier mobilities, in both the mean free time
and free path approximations, from parameters input as data.
Several alternative programs have been developed for molecules
having different space groups, eg. phenanthrene, and for the
case where the molecular energy levels giving rise to the energy
pands are degenerate,

The output from the program consists of the energy band
structure along the three crystallographic axes and the
components of the mobllity tensor with respect to thls system
and also an orthogonal system defined by the vectors a,» and
axb. This program can also be used to calculate the components
of the mobility tensor within the Glaeser and Berry scheme,
however the resultg quoted in this thesis were obtained using
the second program. This program, written in 903 Algol, calculates
the components of the mobility tensor in the localized reprent-
ation using both the Glaeser and Berry and Gosar and Chol models.
As with the first program several alternative programs
have been written for different space groups. An example

of the output from this program is given in section(&:tti)

(A3-2) Constuction of the data tape.

(A3.2,1) Data tape for the first program.
A The vibrational overlap factor.
q The number of points for the integration over ki.
r The number of points for the integration over k3.
s The number of points for the integration over kJe
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hole An integer = 1 for hole and any other number for
a electron.

E2 + E14 The transfer integrals(see fig(3.1)).

n The number of points used in the band structure
plot.
Temp The temperature.
aa
bb
ce The crystal parameters.
alpha Usually 90 .
beta
gamma Usually 9 .
ni An integer = 1 for calculations on the band

model only, = 2 for calculations on the hopping
model only and any other number for both.

To terminate the program set E2 > 1%8.

(A3.2.11%) Data tape for the second program.

(1] The transfer integrals E2,E3,E4,ES5,E6,E9 and E10.
A

B The crystal parameters.

C

BETA

TEMP The temperature.

The polarization factor.

The phonon interaction factor.



begin

real E2,E3,E4,E5,E6,E7,E8,E9,E10,E11,E12,E13,E14, temp,A,B,C,D,E,
FiGjHjalphajgammajaajbbjCCjbetajSuml,sum2 $

Integer eveni,evenj,evenk,r,s,p,q,m,n,ni,nd,nk,u,v,f1,f2,f3,
f4,hole ;

array o,mu,vec[l 3™ *3]>val[1 3] #band[l 3] >

Integer procedure format(str) J.

string str ;

format := layout(str) $

Insert eigenvectors:

open(20) \

open (30) ;
repeat :

A =read(@0) $
q :=readQo) ;
r = reado) ;
s = read(o) ;

hole = reado) 1]

E2 := read(20)x1®-4xA $

If E2 > 998 then goto LLL }
E3 2« read(@o)xi®-4xA ;

E4 := read(20)x1®-4xA ;

E3 2« read(20)x1®-4xA j

E6 := read(20)x1®-4xA ;

E7 2 read(o)xi»-4xA \

E8 := read(20)x1®-4xA $

E9 1 read(@o)x1®-4xA \

E10:= read(20)xI®-4xA ;
EIl:* read(20)x1®-4xA ;

El2:= read(20)x1»-4xA ;
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E13:= read(20)x1yp-4xA
Etl:= read(20)x!p-4xA

e

we

n := read(20) ;

temp := read(20)

L 1)

aa := read(20) 3
bb := read(20) 3

ce := read(20) 3

we

alpha:= read(20)

we

beta := read(20)

-e

gamma := read(20)
ni := read(20) 3

ba)
]

or p := 1 step | until 3 do

l

H

or v := 1 gtep 1 until 3 do

-y

l

olp,v] 1= 0.0 3

suml := (COB(alpha)XCOS(EAmma)-cos(beta))/(ain(alpha)xsin(gamma))3
o[1,1] := sin(gamma) ;

o[1,3] := -sin(alpha)xsuml ;

6t2,1] ;= cos(gamma) ;

ol2,2) =1 3} .

o[2,3] := cos(alpha) 3 )

o[3,3] := sin(alpha)xsqrt(i-sumixsumi) j

if ni = 1 then goto Band'bnly 3

array tr(1:31,x[1:7,1:3],t0r,t01:7]),muf1:3,1:3) ;

integer array wl1:7]
switch sw := L2,L3,L4,L5,L6,L7,L8 3
integer 1,4,K;

t{1] := E2
t[2] = E3
t[3] := E4

-e

A 1] “we

we
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t[4] := E5
t[5] := E6
t[6] := E9
t[7]1 := E10
suml := 10000/A 3

A" 1) ‘oo .o

-e

., for u :=1 step 1 unti1l 7 do

tlu] := t{u]lxsuml ;
for u := 1 gtep 1 until 7 do

for v := 1 step 1 until 3 do

xtu,v_]‘:" 0.0 H

X[3,1] = X[1,1] := cos(beta)xccy

x[3,2] := x[2,2] := bb;

- X[5,1] := aa+X[1,1];
X[6,1] := 0.5xaa}

X[6,2] := X[7,2] := 0.5xbb;
X[751] := O.5xaa+x[1,1];

x[1,3] :=x[3,3] := X[5,3] := X[7,3] ;= cexsin(beta)s

wl1] = w[2] = w[4] := w[5] ;= 2

w[3] = w[6] = w[7] := 4 ;
for p := 1 steép 1 until 7 do
tip] := abs(t[p])/10.3376 3

sum! := 0,0 3

for p := 1 step 1 until 7-22

sum! := suml+t{plxw[p] ;

for p :=1 gtep 1 until 7 do
tor[p] := t{plxwlpl/sumi ;

gum2 := 0,0 3

for p i= 1 step 1 until 7 do
sum2 := sum2+tor[p]xt(p] ;

for p :=1 step 1 until 3 do
for u := p step 1 until 3 do

————

begin

[3
EJ
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o8

sum!l := 0,0

for v := 1 step 1 until 7 do

suml = sumI+tor[v]Xx[v,u]Xx[v,p] 3. J

mulp,u] t= mu[u,p] := smn2><sum1/(l.723312xtemp) 3

end '

£1 = format(L3s-ndd.dddl) 3

£2 im format([3snd]) ;

write text(30,[[pchs]JIumpx PROBABILITIES*AND* JUMP*FREQUENCIES
*BETWEEN*THE*MOLECULE*AT* (0,0,0 ) *AND*NEAR*NEIGHBOURS [2c3s)
MOL{4s]TOR(I)[5s]1/T(I)[2¢c]]) ;

for u := 1 step 1 untii 7 do

begin |

write(30 f2,u) ;

write(BO,fi,tor[u]) 3

write(3o,r1+2,t[u]) 3

end 3

\on

sum! := 0,0
for p i= 1 step 1 untll 7 do

suml := suml+t[p) ;

write text(30,[[4s)AVERAGE* JUMP*FREQUENCY] )
write(30, rl,sumt/7) ;

write text(30, _[__ecuslm*op'*wmpsl) 3
write(30,£142,5um2) ;

write text(30,[[4s MOBILITY*TENSOR[2c 1)
for u i= 1 step 1‘until 3 do |

we

for v :=1 step 1 until 3 do
‘write(30 if v = 3 then £1+2 else fl,mu[u;v]) H

write text(30, __Uls_]_EIGENVALUES*OF*MOBILITY*TENSOR[2c 1) ;
eigenvectors(mu,3,3,val,vec) 3

for p i= 1 step 1 until 3 do

\'write(30,fl,va1[p]) 3
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write text(30 ,[[2cls]RATIOS]);
write(30,£1,mu[1,11/muf2,2]);

write(30,r1+2,mul3,31/mu(2,2]);
write text(30,[[2cls]EIGENVECTORS*OF*THE*MOBILITY*TENSOR [2¢

Lls_]_DIRECTIDN*COSINESLQc_]_]_) H
for u :=1 step 1 until 3 do

for v := 1 step 1 until 3 do

write(30,1f v = 3 then £14+2 else £1,veclu,v]) ;
write text(30,[[4s)ANGLES[2¢]]) 3

for u = 1.step 1 until 3 do

:= 1 step 1 until 3 do

for Vv
write(30,1f v = 3 then f1+2 else f1,

arctan(sqrt(abs(l-vec[u,v]T2))/vec[u,v] )X57.29577951) 3
write text(30,[[p]1) 3
end Calculatlon of mobility tensor and principle axes

of th mobility tensor by the hopping model ;

Band only @

if ni = 2 then goto Hop only j

real x1 x4 xK, XV 5 x2,x3, x4, 31 ’VQ’Y3’3'”’Z':22s23.21¥)gr1d1,g'p1dj,
gridk,ui,uj,uk,11,¥J,lk,Ep,Em,ki,kJ,kk,STEP,EA,AE,SPLITA,EB,BE,
SPLITB,EC,CE,SPLITC,I,J,KA,KB,KC,KAE,ICBIE,‘K3B2,Emax,path 5
array sum_,sumi,sum.j,sumk[l :6,1:6],dEp[1:3],dEm[1 :3] ;

Emax = 0.0 3

£3 := format([2sd.ddd]) ;

£l = format([4s-d.dddd]) ;

write text(30,[[p2c]EXCESS*]) ;

1f nole = 1 then write text(30,[HOLE])

else write text(30,[ELECTRON]) ;

write text(39, [ [ s) BAND*AND*BAND*SFLITTINGS* IN*THE*
INVERSE*A,B*AND*C*DIRECTIONS[2c155 ) POSITIVE**NEGATIVE
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[145] POSITIVE**NEGATIVE[145] POSITIVE**NEGATIVE[2¢8s]
x[118]A[118]A[65]SPLITTING[5s])B[115]B[6s]SPLITTING[
58]C[118)C[6s)SPLITTING[2c]]) ;

A := 2x(E2+E3+2xEU) ; '

B := 2x(E5+E6+2xE7+2xE8+E12+2XE13) H

C := UX(E+E10+E11+E14)

D := 2x(E2+ES5+E6+E12)

E t= 2X(E3+2xE4+2XET+2XEB+2XE13)

F 1= Ux(EQHEIOSEN) 3

0 := 2x(E3+E5+2xET+2XE9) 3

H := 2x(E2+2xEu+E6+2xE8+El2+2xEl3+2x(E10+E11+Elu))‘ 3
T := 2%(E3+ES+2XE7=-2XE9) 3

J 1= 2X(E2+2XEU+EG+2XEBVEI 24281 3-2x(E10+E1 1+E14)) 4
gridi := 3.1415926536/n ;

£2 := format([4s-d.ddddp-nd]) ;

n 35;1 s

for STEP := 0.0 step gridl until 3.142 do

begin n = n+l 3
KA := KB := KC := STEP 3

write(30,r4,STEP) 3
KA2 := KA/2
KB2 := KB/2
K3B2:= KBx3/2 3;

EA := A+Bxcos(KA )+Cxcos(KA2)

e

we

ve

AE := A+Bxcos(KA)-Cxcoa(KA2)

wse

SPLITA := EA-AE

iﬁ n = 0 then

begin x1 := EA
x2 = AE ;

end 3
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write(30,74,EA) ?

write(30,f4,AE) |
write(30,f4,SPLITA)

EB := D+EXxcos(KB)+Fxcos (KB2)+4xE14xcos (K3B2)
BE := D+Excos(KB)~Fxcos(KB2)~UxE1lxcos(K3B2)

‘e

we

SPLITB := EB-BE 3
AL n =0 then
pegin y! i=EB j
y2 := BE 3}

end 3
write(30,f4,EB)
wrilte(30,f4,BE)
write(30,f4,SPLITB) 3

-e

“we

EC := G+Hxcos(KC) 3;
CE := I+Jxcos(KC) - ;
SPLITC := EC-CE 3}

if n = 0 then

z2 :=CE 3}

ond
write(30,f4,EC)
write(30,£4,CE)
write(30,f4+2,SPLITC) ;

-a

“e

end ;3
x1 := abs(EA-x1)

ve

x2 := abs{AE-x2)

-e

vo

y1 := abs(EB-y1)
y2 := abs(BE-y2) ;
21.:u abs(EC-z1) 3
22 := abs(CE-z2) ;
band[1] := 1f x1 > x2 then x1 else x2;

pand[2] := 1f ¥! > ¥2 then y1 else y2;3

ve

ws
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band[3] := 1f 21 > z2 then z1 else 22;

writetext(30,L£2c2318ANDWIDTHl) 3
write(30,r4,x1)
write(30,£4,x2)
write text(30,[{(11s]])
write(30,r4,y1)
write(30,rh4,y2)
write text(30,[[115]])
write(30,f4,2z1) ;
write(30,f4+2,22) 3

write text(30,[[p]]) ;
ui := 3,1415926536/aa ;

»e [V “we we
we

we

11 = -ui 3
gridi := 2xui/q ;
ul := ul+gridi/1o ;
uj := 3.1415926536/bb
13 t= ~uJ ;

gridJ := 2xuj/r 3
uj = u+gridy/10
uk t= 3.1415926536/cc
1k ¢= «uk ;'
gridk := 2xuk/s
uk = uk+gridk/10

we

e

temp := 8.61260x-5xtemp 3
evenl =1 ;
for p := 1 step 1 until 6 do

for v := p step 1 ﬁntil 6 do

sumi[p,v] := sumilv,p] := 0,0 ;
t= tep grid
for ki := 11 step gridi until ui go

begin

ni = ni+t s
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xi := kixaa 3

-

x1 := cos(xl)

“we

x2 := sin(x1l)

ve

x3 := cos(x1/2)
xlit := sin(x1/2)

we

evenJ =1 3§

for p := 1 step 1 until 6 do

for u := p step ! until 6 do
sumJ(p,ul] 1= sumilu,p] := 0,0 ;
for kJ := 1) step gridJ until ug do

begin nj := nj+1 3

xJ t= kjxvb 3

>

:m cos(xJ)

sin(xJ)

-e

R
i

y3 := cos(xy/2) 3
y4 := sin(xy/2) ;
nk = -1 3}

evenk = 1 3

for p := 1 gtep 1 until 6 do

for u := p step 1 until 6'g9.

gumk[p,u] := sumk[u,p] := 0.0 ;
for kk i= 1k step gridk until uk do
begin nk ¢= nk+l

xk = kkXcc 3§

z1 = cos(xk) ;

z2 := sin(xk) 3;

Ep := E2XzI+EY+EUXY1X21+E5Xx1+E6X( 21 Xx1 ~22xx2 )

+2XETXXIXY1+2XEBX( X1 Xy 1X21 - x2xy 1 %22 )

+2XEIXXIXY 3+2XET0X( 21 Xx3Xy 3~xlxy 3x22 ) +2XE1 bx(y1xy3-y2xyl)x

(x3le-an22) s
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Em := Ep-U4xE9xx3Xy3~UxXE10X(z1xx3Xy3-xlUxy3xz2 )=UXE1Ux
(y1x73-y2xyh)x(x3x21-xlxz2)
Ep := 2xEp
Em := 2xXEm 3}
if hole = 1 then
pegin
Ep := Emax-Ep 3§
Em := Emax-Em
end 3
depl1] := 2xaax(-ESXx2-E6x(zIXX2+z2xx!)
—OXETXX2xy1=2XE8X(x2xy1 X2 1+x1 Xy 1X22 ) ~E9XxUXy 3-E10X
(zIxxhxy3+x3xy3xz?)-Elhx(ylxy3-y2xyh)x(xhxzt-x3x22))xln_ei.
aEml1] := dEp[1]+hxaax(Egxxlxy3+E10X( 2 xxkixy3+x3xy 3x22)
+E1Ax(y1Xy3-y2xyl )x(xbxz1=x3xz2 ) )x1p-8 3 |
deEpl2] &= 2xbbx(-E3xy2;2xzuxy2x21-2xE7Xx‘xya_éngx(x‘xyexz’
~x2Xy2%22 }=EIXx 33Xy lU=E10X( 21 Xx3Xyl~xlxylixz2 ) =1 . 5XE1 Ux(y2xy 3+
y1 Xyl )x(x3xz1=x4x2z2) )x1 =83
dEn[2) t= AEP[2]+xbbx(EIXxIxyMEIOX( 21 Xx3xyl-xlixylixz2 )+1 . 5x
E1bx(y2xy3+y 1y )x(x3xz1 =xbxz2 ) }x10-8;
dEp[3] := 2xch(-E2xz2-2thxylxze-Esx(zakx1+ztxxz)-2xE8x(
21 Xy1 Xz24+X2Xy1 %21 ) =2XE10X( 22xx3xy F+xlxy3xz1 )=2XE1 hx(y1xy3-
yzxyh)x(x3xz2+xthl))xlp-s;
dEm[3] := dEp[314+8x(E10x(2z2xx3xy3+xkxy3xz1 )+E14x(y1xy3-y2xyh)x .
(x3xz2+xlxz1))xcex1p-8 3

23 := exp(-Ep/temp)

.o

2zl := exp(-Em/temp)

gum[4,1] = 23+24 3

“we

for u = 1 step 1 until 3 do

for v ¢=u step 1 until 3 do

sum{u,v] := sunlv,u] := dEp[u)xdEp[v)xz3+dEm[u)xdEm{v]xz4 ;

path = 000 ;
for u =1 step 1 untll 3 do
a—— —
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path := path+abs(dEp{u]) ;

z3 := z3/path 3
for u :=1 step 1 until 3 do

path := path+abs(dEm[u]) ;
zld = zl#/path e
for u := U step 1 unt11 6 do

for v :=u step 1 until 6 do
 sunlu,v] i= sunlv,u] :- dEp[u-slxdEptv-szxz3+dzmtu-31xazmtv-31xzu;‘
if nk = q then evenk := 1 ;

for u :=1 step 1 until 3 do

for v :=u step 1 until 4 do

sumk[u,v] := sumk[v,u] := sumk[u,v]+evenlo<smn[v,u] 3

for u := 4 step 1 until 6 do

for v := u step 1 until 6 do

sumk[u,v] := sumklv,u] := sumk(u,v]+evenkxsum[v,y] 3

if evenk =1 or evenk = 4 then evenk = 2 else evenk ;= 4
end Calculation of elements fop integration over kJ;3

if nJ = r then evenj := ) H ‘

——

for u :=1 step 1 until 3 do

\

for v i= u step 1 until h'g_g

sumJlu,v] := sumj[v,u] :w sumk[u,v]xeveri,j+sum.1[u,v];

for u := 4 step 1 unt11 6 do

for v := u step 1 until 6 do

- sumJlu,v] := sumi{v,u] := sumk[u,VJXevenJ+sumJ[u;v];
if evenJ =1 or evenJ = 4 thep even) := 2 else even] = 4;
end Calculation of elements fop integration over ki ;

1f ni1 = s then evenl := } 3

—

for u := 1 step ! unti} 3 do

for v i~ u step 1 until 4 d4o

sumtlu,v] t= sumifv,u] := sumJ[u,VJXeveni-l-sumi[u,v]s

for u := L step 1 until 6 4o
am— -
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for v := u step 1 until 6 do
sumifu,v] := sumil[v,u} := sumy[u,v]xeveni+sumifu,v];
1f evenl =1 or evenl = & then eveni := 2 else eveni := 4

end Integration over ki j

for u :=1 step 1 until 3 do

for v ¢= 1 step 1 until 3 do
gumifu,v] := sumi[u,V]/(Sumi[h.l_]xh.32648p-21) 3
for u := 4 gtep 1 until 6 do

for Vv 1= 4 gtep 1 until 6 do

gumi[u,v] = sumi[u,v]/(sumi[4,1]x6.581122p-11) ;

wrlte text(30,[[4s]COMPONENTS*OF*THE*MOBILITY*TENSOR*W, R, Ts
#THE*CRYSTALOGRAPHICH AXES* IN*THE*MEANFREE*TIME* APPROXIMATI

oN[2c]]) 3

. for u =1 step 1 until 3 do

&v:-lstegimtnt‘g_' |

write(30,if v = 3 then f2+2 vglg_g_ r2,sumifu,v]) 3

write text(30,[[Y4s]COMPONENTS*OF*THE*MOBILITY* TENSOR*W,R. T,
#ORTHOGONAL*AXES* IN*THE*MEAN*FREE*TIME*APPROXIMATION[2¢]])

for u =1 gtep 1 untll 3 do

for v =1 stgp; 1 until 3 do

beglin

suml} = 0.0 3

for r ¢=1 step 1 until 3 do

for p =1 step 1 until 3 do

g
guml = suml +o(V:p]><0[uor]><sum1[p:I‘]5

write(30)!~£, v = 3 then £2+2 else £2,mulu,v]) H

end 3
write text(30,[[2cks]RATIOS] );
write(30:f2:m1[1 211/mu(2,2]);
write(30,£2+2,mu[3,3]/muf2,2]);
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write text(30,[[l4s]LOWER*LIMITS*OF*THE* COMPONENTS* O+ THi
MOBILITY*TENSOR*ALONG*THE*ORTHOGONAL*AXES[2c]]);
for u := 1 step 1 until 3 do
write(30,1f u = 3 then £2+2 else 2, 6.5811 ;6 xmulu,u}/(bvand(ulxtemp));
pand[1] := aaj T
pand[2] := bbj
band(3] _
wrlte text(30,[[4s]EIGENVALUES*OF*THE*MOBILITY*TENSOR[2c]]) 3

elgenvectors(mu,3,3,val,vec) j

= ccCj}

for u := 1 step 1 until 3 do

write(30,12,vallul) ; '

write text(30,[{2c8s]EIGENVECTORS*OF*THE*MOBILITY*TENSOR[2¢"
445 | DIRECTION*COSINES[2c]]) ;

for u i= 1 step 1 until 3 do

for v := 1 step 1 uwntil 3 do

write(30,if v = 3 then £2+2 else f2,vec{u,v]) ;
write text(30,[[4s]ANGLES[2c]]) 3

for u := 1 step 1 until 3 do

for v =1 step ! until 3 do
———

write(30,if v = 3 then £242 else 12,
arctan(sqrt(abs(1-vec[u,v]12))/vec[u,v] )x57.29577951) ;

write text(30,[[plis]COMPONENTS*OF*THE*MOBILITY*TENSOR*W.R. T,
»CRYSTALOGRAPHIC*AXES* IN*THE*MEAN*FREE*PATH*APPROXIMATION[2¢]]) . 3 .
mguzahstegluntnGg_q '

for v i= 4 step 1 until 6 do
— —

write(30,1f v = 6 then £2+2 else r2,sumifu,v]) 3 |
write text(30,[[4s]COMPONENTS*OF*THE*MOBILITY*TENSOR
W oR+T. *ORTHOGONAL*AXES* IN* THE*MEAN*FREE* PATH*APPROXIMATION

_[_2c]_1) 3

:= U4 step 1 until 6 do

u
for

for'v = L step 1 until 6 do
f A ——

be Ein
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sum!l := 0,0 3

for r := 4 step 1 until 6 do
for p := 4 step 1 until 6 do

suml := sum1+o[u-3,p-3]xo[v-3,r-3]xsumifp,r]s
muf[u=3,v-3] := suml ;
write(30,if v = 6 then £242 else f2,mulu-3,v-3]) ;

end
write text(30,LL2chslBATIDSl);
write(30,f2,mu[l,1]/hu[2,2]);
write(30,f2+2,mu[3,3]/mu[2,2]);

write text(30,[[4 B_]_LOWER*LIMITS*OF‘*’I‘HE*CDMPDNENTS4bp*rmm* :
MOBILITY*TENSDR*ALONG?THE*ORTHDGONAL*AXESL2cll)5

for u :=1 step 1 until 3 do

write(30,4f u = 3 then f2+2 else f2,"'3beand[u]xmu[u,u]/bemp);
write text(30,L_hleIGENVALUES*OF*THE*MOBILITY*TENSORLacll) 3
eigpnvectors(mu,3,3,va1,yec) 3

for u i=1 step 1 until 3 do

write(30,f2,vallu]) ;

write text(30,LL?CﬁleIGENVECTORS*OF*THE*MOBILITY*TENSQRL?C
hleIRECTION*COSINESL?cl_) 3

ggg u =1 step 1 until 3 do

for v :=1 step l until 3 do
write(30,1f V = 3 then £2+42 else f2,vec[u,v]) 3

write text(30,[(ls]ANCLES[2¢]]) ;
for u =1 step ! until 3 do

for v := 1 step 1 wntil 3 do
write(30,1f v = 3 then ra2+2 else r2,
arctan(sqrt(abs(!-vec[u,v]Te))/Vec[u.v])x57 29577951) 3
~end Calculation of mobility within the band approximation H
Hop only :

Eoto repeat
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LLL ’

close(20)
close(30)

end Program

A 1Y

.o



KR00693
“"BEGIN" |

"REAL™ A,B,C,BETA,SUMI,SUM2, TEMP 3

“INTEGER" 1,J,K 3

YARRAY'" TORLTLW(1 $T1,X01:

“SWITCH"™ F t= REPEAT 5 7”‘3]:MU(1'30'33] 3
REPEAT ¢

"FOR™ I 1= 1 “STEP' | “UNTIL®" 7 wpge

“READ" TC[11 3

“READ" AsBsC,BETA,TEMP

“FOR™ 1 8= 1 “STEP" | “UNTIL* 7 wpge

“FOR™ J 2= 1 “STEP" | "“UNTIL* 3 wpgm

XCIsJ) 5= 0.03

X(3,21 3= X[2,2) 1= B

XC5»11 3= A+X{1,11 3

X(6s11 8= 0e5%A 3

XC622) 3= XL75,2) 2= Qo548 3

XC7511 3= 0+5%A+X[1,1]

X123 1= X[3,3] 8= X(5,3) ;= :
WETD = WI2) t= WL4) 1= Ws) ,:[;'3} t= C*SINCBETA)
WE3J 3= WL6D 1= WL7) 1= 4

“"PRINT" *MOLECULAR INTEGRALS

C0.0,1) (€051,0) (0,1,1) (1,0,0) (1,0,1) Cosrtsn) (oot

< 3
“FOR™ 1 = 1 "STEP" | “"UNTIL" 7 *DO"
YPRINT' SAMELINE:ALIGNED(4:A)JTCIJl

YPRINT **°L2%;

“FOR 1 t= | "STEP" | "UNTIL" 7 D
TC1) 2= ABS(T(11)/10.337¢ ;

suMl = 0.0 3

'.FDR.. I := l O'STEP.. l l.UNTIL.. 7 .'DD'C
SUMI $= SUMI +TL11+WCI)

.'FDR.. I : - l 'ISTEP.' l .'UNTI L'. 7 ..DD..
TORCI) 3= TCIJ*W[IJ/SUM! 3

sum2 t=z 0«0 3

“FOR' I 8= 1| “STEP"™ “UNTIL" 7 "pg*e
SumM2 = SUM2+TORLCII*TC]I) 3 ‘
SUMI 1= 0.0 -

COFOR" 1 s= 1 USTEPT ) “UNTIL®* 3 ''pg"
CEFOR" J t= 1 “STEP™ } “UNTIL" 3 '""pg-
eREGIN'' SUMI = 0.0 3 )

CFOR'™ K 8= | “STEP'" | “UNTIL' 7 DO
SUM) = SUMI*TDR[K]*X[K:J]*X[K:IJ 3
mMULI»J] t= SUML 3

.'END" , .

BETA t= 0.03
*PRINT"® GQUADRATIC MOMENTS
T XY

XeX XeZ
.3 1 | 1 ST Y Ye2 2.2
"FOR" 1= o EP*" "UNT!L" 7 " o
wBEGIN® -

*PRINT"SAMELINE, PREFIXC **520% 3, AL 16

N
x[I:lJ*xtlolJnALIGNED(aaS)axtI:Ithtf?é?:zz;
L1211 3 AT GNED g s A s 0L L2 ) AL L GNED 01

231, 3 ’
.;féN‘;"‘ :3)0)([!:3]*)((1,3],-.[_7.‘ ’
wPRINT**  JUMP PROBABILITIES ap
BETWEEN THE MOLECULE AT 0,g.p XSSPNE§SQUENCIES
MOL  TORCD) 1/7¢1) NEIGHBOURS

‘s
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v NT"SAMEL1NE , PRE *54%

AtTéNEbfzta)'T[IJ"fiff} 54 Y+DIGITS 1, 1,ALIGNEDC1,3),10k0] 3,

"END"’

VFOR™ 3= 1 “STEP'™ | “yUNTIL» 7 wpge

BETA t= BETA+T(11/7;

"PRINT"® AVERAGE JUMP FREQUENGY *,sam

L ppD OF JUMPS S SAMELINE.ALIGNEDCE $) s soms ) SVED (24 904BETa,
DIFFUSION TENSUR

MR

PFORT J 2= 1 MSTEP™ | wUNTILe 3 wpge

JFOR™ I 8= 1 “STEP™ | “UNTIL" 3 *rpges

“BEGIN'

WPRINT"SAMELINE,ALIGNED(S, 4y, MUt T, g7

“IFT 1= 3 “THEN'"PRINT***epss 4 '

“END' 3
“PRINT" * MUBILITY TENSOR

)

H

YFOR' J t= | “STEP" 1} “UNTIL'" 3 »pge
“FOR™ I $= | “STEP* | “UNTIL" 3 *DQ*
“BEGIN" ; .

MULTI»J] = SUM2*MU[I:J]/(10723312*1'EMP) 3
“END*! ]

“FOR™ J = | “STEP" } "UNTIL" 3 "*Dgr

FOR™ 1 82 1 "STEP" | “UNTIL™ 3 wpge

\'BEGINH

NPRINT"SAMELINEJALIGNED(S&4’0MUIIJJJ H

"IF" 1 =3 "THEN" MPRINTHOOLQQ 3

“END" $

“PRINT™ *°L4*s 3 '

“YPRINT' ‘LINEAR RESPONSE TREURY OF 1 L
“FOR'* 1 2= 1 "STEP" | "UNTIL™ 7 "DU"HE HOBILITY LA ’
TC€I) t= T(11*10.33763 ’

"READ"A’B’

“PRINT" “POLARIZATION FACTOR® » SAMELINE, A

¢ ’L*PHUNON ELECTKRON INTERACTION FACTOR® ’;‘;gzgl{)l‘s&f"‘h
ALIGNEDCSs4),B, **L '

“FOR 1 = 1 “STEP*" | "UNTIL™ 7 wpges

JORC1) := 1‘(1]12*(“8)*&0(1])

SuUMl = D.0 3 '

CFOR™ 1 ot= 1 "STEP™ | “UNTIL® 3 wppe

YFOR' J t= 1 “STEP"™ { “"UNTEIL"™ 3 DO

“BEGIN' SUMI 3= 0.0

“FOR' K t= 1 “STEP" ) “UNTIL" 7 "D

SUMI $= SUMISTORLKI#XUK, J1axXLKs 1] s

MULI,JI 3= 3.1415926%SUM1/(TEMPAA);

.'END.' ,

MpOR" J 1= 1 “STEP® 4 MUNTIL™ 3 epges
CFOR™ 1 82 1 “STEP | “UNTILm 3 wpge
\.BEGINN .
PRINT“SAMELINE,ALIGNEDCS, 43, mucy, gy
"IF.. I =3 ..1~HEN'I OOPRINT"O'L‘Q ‘

vy 1) 3

NERINT" *°L20°*

\'GUTD" REPEAT 3

"END"
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FORMAT OF THE QUTPUT FROM KR0D69.

MOLECULAR INTEGRALS

-€02051) (0,1,0)
=4+2300 224.5100
QUADRATIC MOMENTS
XeX XY
400532 0.000
0.000 0.000
40532 “38+«441
0.000 0.000
40820 0.000
18327 12.924

40349 - =64296

-1
JuMP PROBABILITIES AND
BETWEEN THE MOLECULE AT -

TAR(D)
0.004
‘De211
0.000
0.001
0.005
0760
D.018

MOL

NN D QN -

RAGE JUMP FREQUENCY
- 34.299

NO OF JUMPS
DIFFUSION TENSOR
14.2067
97015

~0 4957
MOBILITY TENSOR
09425
0.6436
-0.0329

9.7015
14.8092
05113

046436
0.9825
0.0339

(0,1,1)

(1,0,0)
~0.1600 1.5900
XeZ YeY
~58.540 0.000
00000 36457
0 <000 0.000
20,188 0.000
0.000 901!4
9176 o114

JUMP FREQUENCIES

1/T¢C1)
0409
21.718
0.015
0.1549

- 0e492

39051}
0915
84965

~0+4957
0+5113
2.2737

~0.0329
0.0339
01508

LINEAR RESPONSE THEORY OF THE Mom1Lrry

POLARIZATION FACTOR

276
PHONON ELECTRON INTERACTION FACTQR

MOBILITY TENSOR

0.2

11.8015 843180 ~0.0078
8.3180 945003 0.0098
-0.0078 0.0098 0.0372

(1,0,1)
-5.0900

Yeo2
0.000
0.000
55.52)
0.000
0.000
0.000
27.76p

0.4760

C(r%,0)
~403:.6900

YAy 4
844550
0.000
84.550
0.000
844550
0.000
B4.550

0,0,0 AND NEAR NEIGHBOURS

(%o¥, 1)
2.4600
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Appendix(4)

A computer program to determine the energy levels
and molecular orbital coefficlents of a molecule
by the SCF-LCAO method.

(Ak.1) Introduction.

(Ak.2) Construction of the data tape.

(A4.3) Text of the program.
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(Al4.1) Introduction.

The functlon of the program outlined in this appendlx
is two fold:
(1) To determline, from parameters input as data, the molecular
energy levels and orbital coefficlents of a particular molecule
using the LCAD-SCF-MO method as discussed in chapter(7).
(2) To calculate the energy levels, molecular orbltal coeff-
icients and bond order-charge density matrix of a matrix
input as data.

The data output for (1) consists of the idempotent
density matrix and molecular Hamiltonian for each iteration
and, if the data reaches self consistency and wh # 1, the energy
levels, orbital coeézcients_and denslty matrix. These are
printed on the line printer. In addition the charge density
matrix 1s output on punched tape.

The data output for case(2) consists of the eigenvalues
and eigenvectors of the matrix followed by the charge density

-bond order matrix.

(A4.2) Construction of the data tape.

n: The number of atoms in the molecule.
z[1]: An nX!1 array containing the number of
electrons contributed by atom 1 to the
pl system.
eV: An integer set equel to 1 if the units of
energy are eV or O 1f the units are in
Hueckel units.
maxs The maximum number of iterations to be
performed.
If the program is to be used to diagona}ize
a secular matrix max should be setd> 998.

The position and value of the non-zero elements
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of the matrix should then be input terminated by

setting the first position integer > 998.
This should be followed by £ENDJOB and the
remaining instructions 1lgnored.

EXAMPLE To diagonalize a matrix of the form:

252313
333313
9993
£ENDJOB
The zero elements and symmetrically equivalent
(invertion) elements are constructed within the
programe
wh An integer set equel to 1 if the resulting SCF
Hamiltonian 1s not to be diagonalized.
idem: The maximum number of iteratlons required to |
restore idempotency (usually 2 or 3 are sufficientx
ge: The coulomb integral parameter for carbon. i
awl[1]: A nX1 array containling the differences in
ionization potentials of carbon and atom i.
heli,3]: A nXn array containing the approximate charge
denslty-bond order matrix.
bli,J]: A nxn array containing the elements of the
Resonance integral matrix.
gli,il: A nxn array containing the elements of the
Coulomb integral matrix.

(A4.3) The text of the program.
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begin

real AA,ge;

integer 1,3,n,fo,t,rF,count s8UM,max,idem,ev ,wh,fw sk
integer procedure format(str) 3

string str 3
format := layout(str) ;

open(20);

open{30);

opout ;

n:=read(20);

begin

array r,rm,s,b,h,he,rs,g(1:n,1:n],
X,¥sZ,Aw[1:n];

integer array ull:n,1:n];

comment LUA 15 JUNE 196l

procedure matmult (a,b,c,m,n,p);

value a,b,m,n,p;

integer m,n,p;
array a,b,c;
begin
integer 1,J,k,r,s;

ir m<0 then ri:=-m else ri=m;
ir p<O then s:=-p else 8:=p;

for 1:=1 step 1 until p do

for J:=1 step 1 until s gg

begin c[1,3]:=0;
for k:=1 step 1 until n do

c[ixJ]==C[i:J]+(££m<0thena[k,1]elsea[1,k])x
(1£p<Othendl J,klelseblk,3])
end

end matmult}
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procedure matinvert(x,r,y,error);

value X,r;

integer r;

real array X,y;

label error;

begin

comment Direct method (Todd) for matrix inversion.
The coefflclents of the matrix to be inverted are
stored 1n the two dimensional array x , r 1s the
number of rows (or columns, since the matrix is
square). On exit the inverted matrix is in the two
dimensional array y. Array x must have one extra
column for use &8s working space. 1i.e. x must be
declared with dimensions [1:r,1:r+1]. error is the
label Jumped to 1f x is a singular matrix;

integer s,1,v,z;

zggi maxs;

integer array rrli:r];

for s:=1 step 1 until r do

for 1l:=1 step 1 until r do

begin for vi=1 step 1 until s-1 do
1f l=rr[v] then goto 11;

ir abs(x[1,1])>abs(max) then
begin rr[s]:=i;

- maxs=x[1,1]

end;

11:
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end;

for 1l:=1 step 1 until p do
x[1,r+1):=1f 1=rrls] then 1 else 03
1f abs(max)<w-10 then goto error;

for l:=1 step 1 until r do

x[rrls],1)e=x[rr{s],1+1]) /max;

for l:=1 step 1 until r do

begin max:=x[1,1];
if 1#rrls] then

for z:=1 step 1 until r gg

x[1,2]:=x[1,2+1 ]-maxxx[rr[s],z]
end

end;

for z:=1 step 1 until r do

for 1l:=1 step 1 until r do

viz,1]:=x[rr[z],1];

for z:=1 step 1 until r do

for 1l:=1 step 1 until r do

x[z,1]:=y[2,1];

for z:=1 step 1 until r do

for l:=1 step 1 until r do

vll,rrlz]}]:=x[1,z];

end;

comment LUA 12 APRTL 1964

LUA 5 APRIL 1964;

procedure householder tridiagonalisation (a,n,c,b);

value n;
va.iue

integer nj
array a,b,c;

comment numerische mathematik 4.4 p,357 wilkinson, householders

method for eigenvalues and elgenvectors;
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begin
integer J,1,k;
real ai,sigma,h,by,bigk,bi;
array ql1:n-1];
for 1:=n step -1 until 3do

beglin
sigma:=0;
for k:=1 step 1 until 1i-1 do

sigmas=sigma+ali,k]xal1,k];
ail:=a[1,1-1];

Af al>0 then bil:=-sqrt(sigma) else bi:= sqrt (sigma);
comment LUA 12 PAGE 2

LUA 5 PAGE 2;

bl1-1]:=b1;

if biF0 then

begin

h:=sigma-aixbi}

a[1,1-1]):=ai-bi;

for J:= 1-1 step -1 until 1 do

begin

bJ:=0;
for k:=1-1 step -1 until jdo

bJ:=bJ+alk,JIxal1,k];

for k:=3-1 step =1 until 1 do
bj:= bJ+ alj,kixal1,k];

al J1:=bJ/h

end J;

blgk:=0}

for J:=1-1 step -1 until 1do
bigk:=blgk+al1,3Ixql §];
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bigk:=bigk/(2xh);

forJ:=1-1 step -1 until 1 do
alJl:=alJ]-bigixal1,3];

for J:=1-1 step -1 until 1 do

begin

for ki=J step -1 unb1l 1 do

al J,kl:=alJ,k]-al1,31xqlk]l-al1,k)xql ];

end J;
end

end 1;

for 1i:=nstep -1 until 1 do
c[1]:= al[1,1];
bl1]:= a[2,1];

b{n]:=0

end householder tridiagonalisation;
comment LUA 12 PAGE 3

LUA 6 APRIL 1964;

procedure backtransformation (a,b,z,n,ml1);

value n,ml;

integer n,ml;

array 8,b,z;

comment numerische mathematik 4.4 p.358;
begin

integer 1,J,k;

real 83

for J:= 1 step 1 until m! do

for k:= 3 step 1 until n do

1 b[k~11#0 then

begin

s:=03
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for 1:= 1 step 1 until k-1 do

s:=s+alk,1]xz[1,4];
s:=s/(blk-1]xalk,k-1]);
for 1:=1 step 1 until k-1do
z[1,3):=2[1,3]+sxalk,1]

end
end backtransformation;

comment LUA 12 PAGE L4

LUA 9 APRIL 19643

procedure tridibisection 3 (e,b,n,m,t ,gemma ,w,norm) ;
value n,m,t,gamma;

integer n,m,t;

EEﬂl gamma ,norm;

array Cyb,ws

begin

integer al,1,]J;

real pl,q1,y,lambda,l,g,h;

array pl1:n];

procedure sturms sequence;

begin Integer 1;

pl:=0;3
ql:=1;
al:=0;

for 1:= 1 step 1 until n do

begin
y:=(c[1]-lambda)xql-p[1]xp1;

pl:=ql; ql:=y;
1f p1>0 eqv Q130 then al:=al+l
end;

1f q1=0 and p1>0 then al:=a1-1

end;
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comment LUA 12 PAGE 5 ILUA 9 PAGE 23
norm:= abs(el1])+abs(b[1])3

for 1:=2 step 1 until n do

begin 1:= abs(bl1-1])+abs(cl1])+abs(bl1]);
if 1>norm then norm:=
ends

for 1:=1 step 1 until n-~1 do

begin
1f b[1]=0 then pl1+1 ]:= gammaxnormxnorm
else p[1+1]:=b[1]xb[1]

end;

pl1]:=03

if m>n then mi=nj

for 1:=1 step 1 until m do

begin
gi=norm;
ht=-norm;

for J:=1 step 1 until t do

begin lambda:=(g+h)/2;

sturms sequencej

if al>1 then h:=lambda else g:=lambda
end;

wl1]:=(g+h)/2

end

end tridibisection}

comment LUA 12 PAGE 6

LUA 10 APRIL 19643
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procedure tridiinverse iteration 1(c,b,n,w,norm,m1,macheps)
result:(z);

value n,ml, norm,machepss

integer n,mil}

real norm,macheps;

arrayc,b,w, z§

comment numerische mathematik, 4, 368-376;
begin

integer 1, J;

real bi,bil,lambda,u,v,h,eps,eta}

array m,p,q,r,int[1:n],x[1:n+2];

lambda :=norm}

eps:=machepsxnorm;

for J:=1 step 1 until ml do

begin lambda:=lambda-eps}

if w{ J]<lambda then lambda:=w[jl3
us=c[1]-lambda}

vi=b[1];

if v=0 then vi=eps;

for 1:=1 step 1 until n-1 do

begin
bi:=b[1];

if bi=0 then bi:= eps;

b1l :=b[ 141 ];

1if bil1=0thenbil :=eps;

comment LUA 12 PAGE 7

LUA 10 PAGE 23

1f abs(bi)> abs(u) then

begin

m{ 1+1 J:=u/b1}

1f m{1+1]=0 and biceps then m[1+1 ]:=1
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pl1]:=Db1;
ql1]:=c[1+1 ]-1lambdaj
r[1]:=b11;
ur=v-m[ 1+ Ixq[ 1]}
vi=-m[1+1 Ixr{1];
int[ 1+1 ] :=H1
end

else begln
m{ 1+1 ]:=b1/u;

pl1]:=ug

al1):=v;

r{1]:=03

ur=c[ 1+1 ]-lambda-m[ 1+1 Ixv;
vi=bill}
int[ 141 Je=-1

end

end 13

plnl:=u;

alnl:= r{n]:=0;
x[n+1 Ji=x[ n+2]:=0;
h:=03

eta:=1/n;

for 1:=n step -1 until 1 gg

begin
ur=eta-ql 1]1xx[ 141 J-r[ 1 ]xx[ 1+2]3

1f pl[1]=0 then x[1]:=u/eps else x[1]:=u/pl1];
h:=h+abs(x[1])

end 1

comment LUA 12 PAGE 8

LUA 10 PAGE 33
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h:=1/h3
for 1:=1step 1 until ndo
x[1]:=x[1]xh;

for 1:= 2 step 1 until n do

begin
if int{1]>0 then

begin

us=x[1-113

x[1-17:=x{1]3
x[1]:=u~-m{ 1 ]Ixx[1~1]

end

else x[1):=x[1]-m[1]xx[ 1-1]
end 13

h:=03;

for 1:=n step -1 until 1 do

begin
ur=x(1]-qf 1]Ixx{1+1 J-r{1Ixx[1+2];
1f p[1]=0 then x[1]:=u/eps

else x[1]:=u/p[1];

he=x[1]xx[ 1]+h

endi;

h:=1/sqrt(h);

for 1:=1 step 1 until n do

Z[ i,J]:=X[1]><h
end

end tridiinverse iteration 13
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comment LUA 12 PAGE 9

procedure eigenvectors (a,n,m,w,z);}

value n,m;

array a,w,2zj

integer n,m;

begin

array b,el1:n]3

real normj

householder tridiagonalisation (a,n,c,b);
tridibisection 3 (c,b,n,m,39,2?(—78),w,norm);
tridiinverse iteration 1(c,b,n,w,norm,m,ZT(—39),z);
backtransformation (a,b,z,n,m)

end elgenvectorss
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comment Constructlon of idempotent matrix-R;

procedure potent(idem,n,r,u,count,rs,lo);
value r,1dem,n,u;

integer 1dem, count,n}

array r,rs}

integer array uj

label lo3

begin real a,be;

integer c, 1, };
array rm,s[1:n,1:nl;
count:=03

for c:=1 step 1 until idem do

begin count:=count+l
matmult(r,r,s,n,n,n);
for 1:=1 step 1 until n do

for Ji=i step 1 until n do
rm{ 1, 3):=mm[ J,1]:=3.0xul 1, 3]-2.0xr{1, J];

matmult(s, rm,rs,n,n,n);

for 1:=1 step 1 until n do

for J:=1 step 1 until n do

v ——

if abs(rs(1, 3]-r[1, J])>p-4 then goto 1w;

goto 1o}
lw:ends
a:=0.0;

for 1:=1 step 1 until n do

m——

at=a+rs[1,1];
be:=(n+2-a)/n3
for 1:=1 step 1 until n do

for J:=1 step 1 until n do

I"S[ i, J]!"-—'I‘S[ J,i]:=r's[ 1,J]+be><u[ 1:3];

end potent;
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comment Construction of new matrix-Rj

procedure newr(u,r,h,g,s,n);
value u,r,h,g,n;

integer nj

array r,h,g,ss

integer array uj;

begln reél a,be,c,d;

integer 1,J}
array 11,33,mm[1:n,1:n],
rs{1:n,1:n+1]3

for 1:=1 step 1 until n_gg

for J:=1 step 1 until n do
rsl(1,3):=rs(J,1]:=ul1, 3]-r[1, 3];

matmult(rs,h, rm,n,n,n)}
matmult( rm,r,s,n,n, n);

for 1:=1 step 1 until n do

for J:=1 step 1 until n do

begin 111, J]:=s[1, J]+s[J,11;
JI1,3)e=sl1,5]-s[3,1]

end;

matmult(ii,h, rs,n,n,n);

a:=0.0;3

for 1:=1 step 1 until n do

‘at=a+rs[1,1]3
matmult(1i, 33,s,n,n,n)}3
matmult(s,h, rs,n,n,n);
be:=0.03

for 1:=1 step 1 until n do

pe:=be+rs{1,1];

for 1:=1 step 1 until n do

for j:=1 step 1 until n do
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rm{ 1, J):=2.0x11[1,1]x110 3, 3]-1401, 31x11[ 1, 33
matmult(g, rm, rs,n,n,n)}

c:=0.03

for 1:=1 step 1 until n do

c:=c+rs(1,1];
1=-a/(2.0xbe~-c) 3
matmult(ii,ii,rm,n,n,n)3

for 1:=1 step 1 until n do

for J:=1 step 1 until n do

rsl1,3]:=ul1, J]+dxdxrm{ 1, 3]}
matinvert(rs,n, rm, 1s);

for 1:=1 step 1 until n do

for J:=1 step 1 until n do
rs[i;J]:=dx11[1,j]+dxdxs[1,3];
matmult(rm, rs,s,n,n,n)

end newr;

for 1 :=1 step 1 until n do

z[1] := read(20) ;

fo := format([ ss-ndd.ddddd]) ;
£t := format([ndel]) 3
£f := format([-nd.dddde]) ;

fw := format([ s-d.ddddds])

ev := read(20) 3
max := read(20) 3
if max > 998 then
begin

for 1 =1 step 1 until n gg

for J := 1 step 1 until n do
n(1,3] :=nlJ,1] := 0.03
XXXX®

1 := read(20);
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if 1> 998 then goto out}

J = read(20);

AA:= read(20);

nl1,3] :=hlJ,1] := AAj
goto xxxx;

out:

wh = 2 3§

close(20) 3

goto 1f 3

end;

wh = read(20) H

idem := read(EO) H
ge:=(read(20))/2.03
comment Reading in dataj

for 1:=1 step 1 until n do dwl[i]:=read(20);

for 1:=1 step 1 until n do

P )

for J:=1 step 1 until n do

———p—

hel1,31:=r[1,3]:=0.5%xread(20);

for 1:=1 step 1 until n do

n—

for J:=1 step 1 until n do

begin if 1=j then u[1,J]:=1 else ul1,J]:=0;
bl 1, 3]:=read(20)
end;

for 1:=1 step 1 until n do

begin x[ 1]:=0.03

for J:=1 step 1 until n do

begin gli, J]:=read(20);
if 173 then x[1]:=x[1]-2[ JIxgl1, 3]

end;
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yl1]:=dw[1])-gec+x[1]

endj

close(20);

write text(30, ([ 10s]RESULTS*FOR* ITERATIVELY* CONSTRUCTED
*HARTREE-FOCK*HAMILTONIAN[ cc]]);

sums:=-13

lt:sum:=sum+l

potent(idem,n,r,u, count, s, 1o)}

lo:for 1:=1 step 1 until n do

for J:=1 step 1 until n do
r[i,J]:=r[J,i]:=s[1, J];

1f sum?0 then

begin for 1:=1 step 1 until n do
for J:=1 step 1 until n do
i1f abs(rl1, J1-hel1, J])>n-4 then

begin for i:=1 step 1 until n do

for J:=1 step 1 until n do

hel1,3):=hel J,1]1:=r[1,3];

goto 1z

end;

goto 1f

end;

lz:write text(30,[[ss]IDEMPOTENT*DENSITY*MATRIX[c]]);
write text(30,[[ ss]ITERATIONS*REQUIRED*]) 3
write(30,ft,count);

for 1:=1 step 1 until n do

begin
k :=0 3

for J:=1 step 1 until n do

begin

k 1= k+l13;
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write(30,1f J=nthen(If 1=] then fof2 else fo+ )else
fo, 1, 3Dj

IT k = 11 then

begin

k :=0;

write text(30,[[ cl1D:;

end

end

end;

for 1:=1 step 1 until n do
begin

k =o0;

for j:==1 step 1 until n do

begin

k ==k ;

AA = R[i, jJ1;

Ffixout(AA, 1,1,5);

scout;

if k =11 then

begin

k =o0;

crout( )

end;

if J = n then croutQ );

end

end;

gapout( O M);

comment Construction of hamiltonian-h;

for 1:=1 step 1 until n do

begin x[1]:=0.0;
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for J:=1 step 1 until n do

begin 1f 1#J then x[1]:=x{1]1+2.0xx[ J, JIxsl1, 3];
rm{1,3]:=rs(1, 3):=0.0

end}

rm{1,1]):=y(1]+x[1]+r[1,1]xl1,1];
for J:=1i+1 step 1 untll n do
rs(1,3]:=001,3]-rl4, 3]Ixel1,3];3

for J:=1 step 1 until n do

nl4,31:=hlJ3,1]:=rml 1, J]+rs( 1, J]
end;
write text(30,[[ ss]HAMILTONIAN[c]]);

for 1:=1 step 1 until n do

beglin
k := 03

for J:=1 step 1 until n do

begin

k = k+13

write(30,1f j=n then (if i=J] then fo+2 else fo+1)
else fo,hl1,3]1);

if k = 11 then

begin

k = 0;

write text(30,[[cll);
end;

end;

end;

if sum=max then goto 1f;
newr(u,r,h,g,s,n)}

for 1:=1 step 1 until n do

for J:=1 step 1 until n do
rl1,3]:=r{1,3]-sl1,3];
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gobo 1t
comment Construction of bond-order charge-density matrixg
1f:1f wh=1 then goto 1nj
eigenvectors(h,n,n,x, rm)}

for 1:=1 step ] until n do

begin write text(30,[[ ss]ENERGY*OF*MO*]);

write(30, £f,x[1]);

write text(30,[[ss]COEFFICIENTS*QOF*ATOMIC*ORBITALS[c]]);
k := 03 '

for J:=1 step 1 until n do

begin

k 1= k+13
write(30,1f J=n then fo+2 else fo,rm[ j,11);
1f k = 11 then

begin

k = 03

write text(30,{[cll);
end;

r{1,3]:=0.0

end

ends

idem := 0 3

for 1 :=1 step 1 until n do

1dem := idem+z[1] 3
if ev=1 then
begin max:=idem+2+1 }

for J:=1 step 1 until n do

for sum:=J step 1 until n do

et

for 1:=max step 1 until n do

amsrm—
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rl 3, sum]:=r[ sum, 3] :=r{ sum, J]+rml sum, 1 Ixrm[ J,1]

end else

begin max:=idem:23

for J:=1 step 1 until n do

—re—

for sum:=J step 1 until n do

for 1:=1 step 1 until max do

rl §, sum]:=r[ sum, 3] :=rl sum, J]+rml sum,1)xm{ j, 11
end;

for 1:=1 step 1 until n do

for J:=1 step 1 until n do

I’[ 1:J]:=I’[ j,i]:=2.0XI’[ i, J];
write text(30,LLSSlBDND-ORDER*CHARGE-DENSITY*MATRIXLQll);

for 1:=1 step 1 until n do

begin
k = 03
for J:=1 step 1 untll n do

begin k := k+l}
write(30,1f J=n then fo+l else fo,r{1,J]);
if k = 11 then

write text(30,[[cl]);

— t—

end

end

end;

for 1 :=1 step 1 until n do

begin
k := 0}
for J :=1 step 1 until n gg

begin
k := kt1;
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AA = v[1,3];
fixout(AA,1,1,5);

scout;

if J = n then crout(1);
if k =11 then

begin

k = 03

crout(1);
end

end

end;

goto 1nj;
1s:

write text(30,[ MATRIX*SINGULAR]);
In:
close(30);
clout;
end;

end



