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Abstract 

The transient Hartmann magnetohydrodynamic (MHD) flow of two immiscible fluids flowing 

through a horizontal channel containing two porous media with oscillating lateral wall mass flux 

is studied. A two-dimensional spatial model is developed for the two fluids, one of which is 

electrically-conducting and the other electrically-insulating (as is the wall in the second region). 

Both fluid regimes are driven by a common pressure gradient. A Darcy-Forchheimer drag force 

model is used to simulate the porous medium effects on the flow in both fluid regions. Special 

boundary conditions are imposed at the interface. The governing second order nonlinear partial 

differential equations are non-dimensionalized for each region using a set of transformations. The 

resulting transport equations are shown to be controlled by the Hartmann hydromagnetic 

parameter (Ha), viscosity ratio parameter (), two Darcy numbers (Da1, Da2), two Forchheimer 

numbers (Fs1, Fs2), two Reynolds numbers (Re1, Re2), frequency parameter (A) associated with 

the transpiration (lateral wall flux) velocity and a periodic frequency parameter (*t*). Numerical 

FTCS finite difference solutions are obtained for a wide range of the governing parameters. 

Benchmarking is performed with a Galerkin finite element method code (MAGNETO-FEM) and 

the results are found to be in excellent agreement. Applications of the model include magnetic 

cleanup operations in coastal/ocean seabed oil spills and electromagnetic purification of 

petroleum reservoir fluids.  
 

Key words: Electromagnetic flow; environmental electrical engineering, Immiscible; porous; FTCS; FEM; 

oil spill hazard; magnetic clean up; Hartmann number; electrical conductivity; frequency.   

 

1. Introduction    

Multi-fluid transport is an area of great interest in various branches of engineering and 

geophysical sciences. In petroleum recovery, stratified two-liquid flows are commonly 

encountered. Packam and Shail [1] presented an early study of stratified laminar 

hydrodynamics of two immiscible fluids in a horizontal conduit. Ranger [2] studied the 

two-phase flow of two immiscible fluids in a diverging channel. Napolitano [3] 
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investigated the plane Poiseuille flow of two immiscible fluids in a non-isothermal 

capillary channel under combined surface tension, gravitational and pressure gradient 

effects using an analytical approach. The stability of plane Poiseuille flow of two 

immiscible fluids with differing viscosities was studied in channels by Than et al. [4]. In 

these investigations the fluids were assumed to be non-conducting. However many 

applications exist in which magnetohydrodynamic two-fluid flows arise, for example in the 

liquid metal magnetofluid dynamic power generators, control of oil flows in pipelines, 

desalination systems, liquid stirring tanks, plasma flow control devices etc. This has 

stimulated some interest in the analysis of two-fluid immiscible flows in the presence of a 

transverse magnetic field with or without simultaneous heat transfer. Khedr et al. [5] 

explored the MHD flow of a micropolar fluid along a vertical semi-infinite permeable plate 

in the presence of wall suction or injection and heat generation or absorption effects. 

Chamkha [6] investigated the MHD free convection flows along a vertical plate embedded 

in a thermally stratified porous medium. Magyari and Chamkha [7] presented the exact 

solutions of MHD thermosolutal Marangoni convection flows due to imposed temperature 

and concentration in the presence of constant magnetic field. Chamkha and Mudhaf [8] 

used implicit, iterative finite-difference scheme to study the unsteady mixed convection 

flow over a vertical permeable rotating cone in the presence of magnetic field and heat 

generation or absorption effects. Chamkha and Khaled [9] considered the mixed 

convection in a stagnation flow over a flat plate embedded in porous medium. Chamkha 

[10] studied the closed-form transient solutions for hydromagnetic two-phase particulate 

suspension flow in channels and circular pipes. Shail [11] presented one of the earliest 

studies of the Hartmann flow of a conducting fluid in a channel between two horizontal 

infinite plates (both insulating) comprising a layer of non-conducting fluid between the 

conducting liquid and upper channel wall. Using a volumetric flow rate factor it was shown 

that considerable enhancement in the conducting fluid flow rate can be achieved for 

appropriate depth and viscosity ratios of the two fluids. More recently Baier and Graham 

[12] studied the two-fluid Taylor-Couette flow i.e. centrifugal instability of two radially 

stratified immiscible fluids in the annular gap between co-rotating cylinders. Their 

experiments showed that for fluids of sufficiently small viscosity a new instability is 

present in the two-fluid system which is similar to that of a thin film of liquid coating the 
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interior of a rotating drum. These studies have considered homogenous fluid continua. In 

many geophysical applications however, porous media are also of great importance. 

Transport in such domains can be modeled in a variety of ways including spatially-periodic 

models [13], volume-averaging procedures [14] and drag-force models [15]. The 

conventional model for slow, viscous flows in porous media is the Darcian model which 

simulates bulk porous media effects associated with pressure drop. At higher velocities a 

non-linear model is needed and the popular approach is to employ the Forchheimer-

extended-Darcy model. Bég and co-workers [16-23] have utilized the Darcy-Forchheimer 

porous model (and also the Darcian model) in numerous magnetofluid porous media 

transport phenomena problems including biomagnetic rheological blood flow in tissue 

structures [16], magneto-convection from a sphere in porous media [17], transient 

viscoelastic boundary layers in Darcy-Brinkman-Forchheimer porous materials [18], 

magneto-micropolar blood filtration [19], pulsatile blood flow and pharmacological 

dispersion control [20],  radiative magnetized polymer flows [21], magnetic nano-

convection [22] and rotating conducting flows in permeable systems. These studies were 

nevertheless confined to single liquid flows in porous media. Two-fluid flows in porous 

media, although equally important, for example in geothermal energy systems, oil recovery 

and planetary magnetohydrodynamics, have received less consideration. Several excellent 

articles have however been communicated. Lennon [24] employed boundary element 

procedures to analyze the three-dimensional, two-fluid hydraulics in porous media. 

DeGregoria [25] studied the two-fluid flow in porous media at finite viscosity ratio based 

on Monte Carlo simulations. Both linear channel and more complex geometries were 

examined at various numerical grid sizes. Casulli and Greenspan [26] numerically studied 

the hydrodynamics of miscible and immiscible fluid transport in geomaterials with 

applications in enhanced petroleum recovery. Than et al. [27] reported on Lattice-

Boltzmann computations of the two-fluid ideal flow in porous media, at the pore scale. 

They studied the specific case of water and tetrachloroethylene in a glass-bead porous 

system. Chamkha [28] examined steady, laminar magneto-heat transfer in two viscous, 

heat generating/absorbing fluids in a porous medium channel with applications in 

magnetohydrodynamic coal-fired generators.  
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Newly developed technologies in de-contamination of crude oil accidents in coastal zones 

penetrating into sea beds have garnered some interest. These magneto-hydrodynamic oil 

spill control methods exploit the electrically-conducting nature of ocean water (seawater) 

and magnetic fields have been shown to quickly separate oil from ecosystems, using the 

electromagnetic Lorentz force which characterizes magnetohydrodynamics [29]. This 

approach minimizes environmental impact and is portable and very adaptive. In the present 

study, motivated by such applications in environmental petroleum engineering, we 

consider the hydrodynamics of two immiscible fluids in a dual porous medium system with 

oscillatory wall suction. One fluid is electrically-conducting and the other electrically-

insulating. The fully-developed, laminar unsteady flow equations are presented, non-

dimensionalized and solved using a numerical method (finite differences). Computations 

are validated with a Galerkin finite element method. The effects of the control parameters, 

viz Darcy number, Forchheimer number, fluid viscosity ratio, Hartmann number and 

Reynolds number are studied in detail. Such a study has thusfar not been reported in the 

literature.  The present 2-dimensional simulations should also serve as a good benchmark 

for more complex 3-D models using commercial codes. 

  

2. Mathematical Model 

Consider the transient, incompressible, fully-developed flow of a Newtonian two-fluid 

electromagnetic system through a parallel-plate channel configuration containing 

homogenous, isotropic porous media. The physical regime is shown in figure 1 below. The 

plates are infinitely long and orientated along the x and z coordinates i.e. they lie in the xz-

plane. The y-coordinate is normal to the longitudinal axes of the plates. In region A (0 ) 

, the fluid is electrically-conducting, possessing a dynamic viscosity  1 and mass density 

1. This region contains a porous medium of permeability K1 and a Forchheimer inertial 

geometric parameter, b1. Region B contains electrically non-conducting fluid with dynamic 

viscosity 2, mass density 2, flowing through a porous medium of permeability K2 and a 

Forchheimer inertial geometric parameter, b2. Transverse to the flow direction a constant 

strength magnetic field, Bo, is applied. Induced magnetic field effects are neglected as the 

magnetic Reynolds number is small for weak magnetic fields. All fluid and porous media 

properties are constant for each region. Thermoelectric and electro-hydrodynamic effects 
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and porous medium deformability are all neglected. In addition both fluids are assumed to 

fully saturate each region. A common pressure gradient, 
x

p




− , drives the flow in both 

regions. The governing equations driving the flow can then be shown to reduce from the 

Navier-Stokes equations to the following form, with hydromagnetic body force term in 

Region A and both Darcian porous bulk drag and Forchheimer inertial (second order) drag 

in Regions A and B: 
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where  u is the x-direction fluid velocity, v is the y-direction fluid velocity, t denotes time 

and  is the electrical conductivity. The subscripts ( )1 and ( )2, are associated with Region 

A and Region B respectively. No-slip velocity boundary conditions are imposed so that the 

x-velocity component is zero at the plates. Following Loharsbi and Sahai [30] there is 

continuity of velocity and shear stress at the interface between the two fluid layers i.e. at y 

= 0. The penultimate and final terms on the right hand side of equations (2) and (4) 

designate the Darcian linear porous drag and Forchheimer quadratic drag in each region, 

respectively. The corresponding plate boundary and interfacial conditions for the 

effectively fourth order decoupled system of partial differential equations for the flow 

regime are: 

u1 (h) =0, u2 (-h) = 0, u1(0) = u2(0), 02
2

1
1 =


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yat
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u

y

u
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From the mass conservation equations (1) and (3) the y-direction velocity components in 

each region, viz v1 and v2, are independent of y-coordinate. They are assumed to be a 

harmonic function of time only, and denoting v = v1 = v2, following Umavathi et al. [31], 

we define: 

   ]1[ ti
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where A is a real positive constant,  is a small value constant obeying the  condition A  

1, and  is the frequency of the oscillatory motion. In the present analysis, therefore wall 

transpiration is present (lateral mass flux) which is defined by a velocity, v, that varies 

periodically with time about a non-zero mean, vo. For the special case of A = 0, constant 

(non-oscillatory) wall transpiration is recovered.  The present boundary value problem is 

well-posed and can be solved by a variety of numerical methods. However such solutions 

would be based on a single geometrical configuration and could not be scaled to any 

possible system arising in industrial technologies. We therefore implement a non-

dimensionalization procedure by introducing a set of dimensionless parameters to convert 

the present problem into a generalized one, independent of dimensions and applicable to 

any size of parallel plate two-fluid system. Defining the following change of variables: 
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where u1* is dimensionless velocity in x-direction in region A, y* is dimensionless 

coordinate normal to the plane of the plates, t* is the dimensionless time parameter, v* is 

dimensionless y*-direction velocity in both regions A and B, * is dimensionless frequency 

parameter, p* is dimensionless pressure, Da1, Fs1, Re1 are the Darcy number, Forchheimer 

inertial (quadratic drag) number and Reynolds number for region A, Da2, Fs2, Re2 are the 

Darcy number, Forchheimer number and Reynolds number for region B and Ha is the 

Hartmann hydromagnetic number for region A only. The parameter  denotes the ratio of 

the fluid viscosities. The dimensionless two-fluid momenta equations are thereby reduced 

for region A and region B, respectively to: 
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The dimensionless hydrodynamic boundary and interfacial conditions for the two fluids 

are found to be: 
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3. Special Cases 

Let us briefly study now some special cases of the generalized mathematical model. 

Several of these have been presented in order to provide comparison solutions with an 

alternative numerical method (FEM). 
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Case I: Oscillatory Hartmann Flow in a Two-Fluid Two-Darcian Porous Medium 

Setting Fs1 = 0 and Fs2 = 0 in equations (8) and (9), we arrive at the Darcian flow case for 

each region A and B, viz: 
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Case II: Oscillatory Hartmann Flow in a Two-Fluid Medium 

Prescribing Da1 →  and Da2 →   in equations (8) and (9), the porous media in the limit 

vanish and the regions A and B become purely fluid regimes. Case I can be further 

contracted therefore to produce the momenta equations used by Umavathi et al. [31] (in 

that study however heat transfer was also considered):  
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Case III: Oscillatory Flow in a Two-Fluid Medium 

Setting Ha → 0 in equation (13) negates all magnetohydrodynamic effects and region A is 

now also electrically non-conducting, as region B. Case II is therefore simplified only via 

(13) to give: 
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Case IV: Oscillatory Hartmann Flow in a Two-Fluid Single Darcy-Forchheimer Porous 

Medium 
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With Da1=Da2 and Fs1 =Fs2, the porous media in regions A and B become identical. This 

case is important when immiscible fluids are flowing in the same porous body e.g. 

geomaterial. Using a single Darcy number, Da and single Forchheimer number, Fs, the 

general equations (8) and (9) reduce then to: 
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We note that as the fluid viscosities are still different, two Reynolds numbers are still 

required to accurately represent the hydrodynamic problem. 

 

Case V: Steady Hartmann Flow in a Two-Fluid Two-Darcian Porous Medium 

Case I may be converted to the steady-state case by negating the velocity gradients i.e. 

temporal terms in equations (21) and (22). In addition the transpiration velocity will now 

be constant (v = vo in equation (6)) as A → 0 for the steady state scenario. The steady flow 

equations will then become: 
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Case VI: Steady Hartmann Flow in a Two-Fluid Medium 

Case V can now be reduced to steady-state magnetohydrodynamic flow in a purely two- 

immiscible fluid medium by once again setting Da1 →  and Da2 →  . Equations (18) 

and (19) will then become: 
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Case VII: Steady Flow in a Two-Fluid Medium 

Finally Case VI can further be reduced to non-electrically conducting flow in both regions 

A and B by setting Ha = 0 for region A. Of course as with case III, only the Lorentz 

hydromagnetic body force term will be affected in equation (20) which will reduce to: 
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The region-B momentum equation will remain the same as for case VI. 

We note that in all the steady state cases, p i.e. dimensionless pressure gradient is not 

affected as this is a steady gradient driving the flow. Unsteadiness is only experienced via 

the time-dependent velocity gradients and the y*-direction velocity component, v*, which 

as discussed above loses harmonic properties for the steady state case. Finally it is pertinent 

to mention that while the Hartmann number does not arise in the region B momentum 

equation, it is expected to indirectly affect the velocity field in region B via coupling with 

the v* velocity in the momentum equation for region A. Of course the influence of Ha will 

be more pronounced on velocity development in region A. 

 

4. FTCS Numerical Solution 

Explicit finite difference methods are commonly used for the solution of parabolic partial 

differential equations. The nonlinear differential system for the present flow (Eqns. (8-10)) 

is also parabolic in nature. Therefore, its solution can be readily found by explicit finite 

difference formulation. The forward time/central space (FTCS) method, Richardson 

method and DuFort-Frankel method are the available explicit finite difference schemes. It 

is just a matter of choice to use any one of them. The present problem is solved using the 

FTCS method. This method has been recently employed by Ali et al. [32]. For more details 

of this method regarding convergence and stability, the reader is referred to the book by 

Hoffmann and Chiang (section 3.3 page 64) [33]. For a general variable, w, according to 

this scheme the various partial derivatives of w appearing in (8) and (9) are approximated 

as follows in space (x) and time (t) coordinates:  
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where k

iw  denotes the value of w at node xi and at time instant tk.  In the present simulations 

we conducted grid independence and also time-independence tests and experimented with 

different space steps and time steps. The prescribed tolerance for computations was 

specified as 10−7 i.e. for both the space and time stepping, when the absolute difference 

between the corresponding numerical values is less than the prescribed tolerance, then it 

can be inferred that the results are accurate up to seven decimal places for ∆t and ∆x. For 

the present problem, an accuracy of 10−7 is achieved by taking ∆t = 0.00001 and ∆x = 

0.025. Smaller values of these steps merely achieve the same accuracy but require 

significantly longer computational times. At a particular location in the solution domain 

(finite difference grid), the simulations are carried out for a specific value of the temporal 

and spatial step sizes, ∆t = ∆t1 and ∆x = ∆x1. Indeed, it is anticipated that for this specific 

choice, the numerical values of velocity may not be convergent. This claim can be verified 

by choosing lower values of ∆t = ∆t2(∆t1) and ∆x = ∆x1(∆x2), and then comparing the 

numerical values of velocity with the previously obtained values. This approach is 

generally quite efficient and further elaboration is given by Hoffmann and Chiang [33]. 

Further details for other nonlinear multi-physical problems are documented in the articles 

[34]-[38]” 

 

 

5. Galerkin FEM Validation 

The explicit numerical scheme has been validated using a Galerkin finite element method 

(FEM). This approach has been used extensively in recent years in transient and 

magnetohydrodynamic (MHD) flows. Gupta et al. [39] studied non-Newtonian heat 
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transfer from an extending polymer sheet at high temperature with FEM. Other applications 

which have successfully simulated complex nonlinear flow problems with FEM algorithms 

include smart biomagnetic tribology [40], rotating magnetized nanofluid dynamics [41], 

double-diffusive unsteady rheological flow [42] and chemically reacting magneto-

convection [38]. FEM uses the opposite approach to FDM, viz numerical integration rather 

than numerical differentiation. Dropping the * notation and applying the Galerkin finite 

element method to equations (8) to (9) over the element (e) (yjyyk), we have [39-45]: 
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We postulate linear piecewise approximate solutions for the velocity components as 

follows: 
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Here: 
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Here Nj,k are the shape functions (interpolation functions). In order to prove the 

convergence and stability of the Galerkin finite element method, the Matlab program 

MAGNETO-FEM is executed with slightly modified values of the mesh distance in the 

y-and t-directions i.e. j and k, and no significant change is observed in the values of the 

velocity components. Mesh independence of solutions was therefore achieved with 
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excellent stability and convergence [45]. The boundary conditions (10) are easily specified 

in MAGNETO-FEM. To validate the FTCS finite difference code, a comparison solution 

is performed for the case Da = Da1 = Da2 = 0.1, Fs = Fs1=Fs2= 0.1, Re1 = Re2 = 5, Ha = 

2, p = 5.0, *t* = 2.36, * = 0.75, A = 0.1. In this case both velocity components are 

identical. We have tabulated y (-1 to 1) versus u i.e. u1 * =u2* (region A =region B) for 

various  variation (equivalent viscosity case i.e. only one fluid viscosity) below in Table 

1.  For all cases of the viscosity, excellent correlation is achieved between FTCS difference 

scheme and Galerkin MAGNETO-FEM. The porous medium is discretized into a domain 

which is delineated into smaller elements (sub-domains) of finite dimensions called “finite 

elements”. The collection of elements is called the finite-element mesh or grid. The element 

matrix, which is called a stiffness matrix, is constructed by using element interpolation 

functions. The algebraic equations so obtained are assembled by imposing the inter-

element continuity conditions. This yields a large number of algebraic equations defining 

the global finite element model, which governs the whole domain.  The essential and 

natural boundary conditions are imposed on the assembled   equations.  The assembled 

equations so obtained can be solved by any “matrix” numerical technique e.g. 

Householder’s approach, LU Decomposition method etc. Further details are readily 

available in [39-45]. Criteria for the selection for elements are also documented in the 

extensive review by Bég [45]. The non-linear algebraic system of equations is solved 

iteratively. An accuracy of 0.00001 is used. A convergence criterion based on the relative 

difference between the current and previous iterations is employed. When these differences 

reach the desired accuracy, the solution is assumed to have converged and the iterative 

process is terminated. Two-point Gaussian quadrature is implemented for solving the 

integrations. The FEM algorithm has been executed in MATLAB running on an Octane 

SGI desktop workstation and takes 15-20 seconds on average. Excellent correlation is 

obtained in Table 1 between MAGNETO-FEM and the FTCS, testifying to the validity 

of the latter computations, which are used in all graphical illustrations. Confidence in the 

FTCS code is therefore high. 
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6. Numerical Computations and Discussion 

The nonlinear boundary value problem defined by eqns. (8) and (9) under boundary 

conditions (10) is controlled by a number of physical parameters, viz Ha [Hartmann 

hydromagnetic number for region A only], A (transpiration frequency parameter) [which 

controls v*], 
ov (transpiration velocity), p* (dimensionless pressure gradient), Da1, Da2 

[Darcy numbers for region A and region B], Fs1,  Fs2 [Forchheimer numbers for region A 

and B] Re1 and  Re2 [Reynolds numbers  for region A and B],  [ratio of the fluid viscosities 

of the two regions].In the FTCS finite difference numerical computations, default values 

of parameters are assumed thus: Ha  = 2, A = 0.1 (A = 0.1), *t* = 2.36,  p = 5.0, Da1,= 

0.1,  Da2 = 0.1, Fs1, = 0.1  Fs2 = 0.1 Re1 = Re2 =5,
 0 2,v =   = 1.0, * = 0.75 [ i.e. the  

default values are for non-Darcian hydromagnetic case and assume that both regions A and 

B are the same porous medium and both fluids have the same viscosity and therefore 

Reynolds number]. The dual velocity distributions are plotted in figs. 2-11.  

Figure 2 illustrates the influence of the Hartmann number, Ha on the velocity fields. It is 

immediately apparent that at the juncture of the two porous media i.e. the line y = 0, a 

smooth progression from region A to region B is achieved. The boundary condition at the 

interface is therefore physically sensible and also achieves the gradual transition required.  

With increasing Hartmann number, there is an evident suppression in the velocities through 

both regions. The geometry of profiles is also altered significantly from parabolic 

distributions at low Hartmann number to skewed asymmetric distributions at higher 

Hartmann number. The application of a transverse magnetic field normal to the flow 

direction has a tendency to induce undulating behaviour at high Hartmann number. The 

appearance of a point of inflection mid-way across region A at high Hartmann number has 

also been identified for the purely fluid case by Umavathi et al. [31], although they 

considered heat transfer also. This disturbance in the normally parabolic profiles is induced 

by stronger magnetic field, and is more pronounced as expected in the region A (conducting 

fluid) than  for the non-conducting fluid (region B). 

It arises only for Ha >1.  The peak velocity is also observed to migrate towards Region-B 

as the strength of the magnetic field increases, since Region B is non-conducting and 

experiences less impedance from magnetic effects. The decelerating effect of transverse 

magnetic field is well known in magnetofluid dynamics owing to the presence of the 
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Lorentzian hydromagnetic drag force. However when the Lorentzian force exceeds the 

viscous force in the regime (both forces are of the same order of magnitude when Ha = 1), 

instability arises. To sustain a homogenous retardation in the velocity field across both 

porous zones A and B, weaker magnetic field is recommended. A similar observation has 

been reported in purely fluid simulations of MHD channel flow by Lohrasbi and Sahai [46] 

and for Darcian hydromagnetic flow by Rudraiah et al. [47]. This has implications in for 

example magnetic field control (manipulation) of petroleum flows [48]. It also may be of 

benefit in newly emerging technologies including de-contamination of coastal and ocean 

seabeds e.g. magneto-hydrodynamic oil slick (surface spill) control [49]. In the latter the 

electrically conducting nature of ocean water allows the use of magnetic field to rapidly 

separate and recover oil from oil-contaminated seawater, using the electromagnetic Lorentz 

force. This technique avoids the need for mechanical devices and dispersants, and is 

compact, less noisy and does not damage marine environments, especially seabed 

ecosystems. The present 2-dimensional simulations also serve as a good benchmark for 

more complex 3-D models using commercial codes [50]. 

Fig. 3 depicts the response of the velocity field to a variation in the frequency parameter, 

A, a characteristic of the lateral mass flux (transpiration) velocity. This parameter when 

positive implies injection at the upper boundary. It could represent for example mass influx 

out of a seabed. When negative the case of suction is apparent.   With increasing frequency 

parameter, the flow is accelerated in both regions A and B. A rise in A corresponds to an 

increase in amplitude of the periodic oscillations of the transpiration velocity. Such effects 

are encountered for example in sea-beds owing to the oscillatory nature of wave/current 

interactions [51]. Greater acceleration is computed in region B. The maximum velocity in 

the channel is observed to be again in Region B.  

Fig. 4 depicts the response of the velocity field to a variation in the periodic frequency 

parameter,  This parameter exerts a significantly less dramatic effect on velocity 

magnitudes compared with transpiration frequency parameter. However it does have a 

weak accelerating effect on the flow, in particular in region B. It aids in momentum 

development in particular close to the interface of the two regions.  

Fig. 5 depicts the effect of the pressure parameter on the velocity field. With an increase 

in pressure, the flow is massively decelerated across both regions A and B. The parabolic 
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profiles at low pressure values are also increasingly flattened as pressure increases. The 

plateau becomes progressively wider with larger p*. The inverse relationship between 

pressure and velocity is clearly highlighted in the profiles. Greater pressure opposes 

momentum development and retards the flow in both regions.  

Figs. 6, 7 illustrate the influence of Darcy numbers on the velocity profiles. Each region 

has a separate Darcy number, Da1, Da2. Forchheimer effects are ignored in fig. 5. These 

represent the permeabilities of each region. With greater permeability, less solid fibers are 

present to impede flow. The converse is apparent with lower permeabilities. The Darcy 

numbers feature respectively in linear Darcian impedance terms in eqns. (8), (9). With a 

rise in Da1, Da2, these drag forces are reduced. This accelerates the flow in the two regions. 

For the case when both regions have the same Darcy number, Da1= Da2 =0.01, the 

velocities are minimized, since these low permeabilities imply a very strong Darcian 

impedance. For the case where Da1 >Da2, the velocity is significantly elevated in region A 

compared with region B. The contrary effect is witnessed when Da1<Da2, for which region 

B is more permeable than region A. Fig. 7 shows similar trends to Fig. 6 with larger values 

of Darcy numbers. The decelerating nature of lower permeabilities in regulating flow is 

therefore clearly established.  

Figs. 8, 9 illustrate the influence of Forchheimer numbers on velocity distributions. As 

with Darcy number, a separate Forchheimer number, Fs1, Fs2. Forchheimer effects are 

associated with a second order (inertial) drag which becomes dominant at higher velocities. 

Unlike Darcy number, which has an inverse relationship with Darcian impedance forces, 

Forchheimer drag effects are directly proportional to Forchheimer numbers. As Fs1, is 

increased, Forchheimer drag forces are accentuated. This leads to a retardation in the flow, 

as observed in fig. 8, where Fs2 is fixed.  The greater decrease in velocity in region A is 

associated with the growing Forchheimer impedance in region A, whereas that in region B 

is unaltered. The contrary effect is observed in fig 9, where the Forchheimer drag in region 

A is unchanged, and a strong increase enforced in region B leading to the significantly 

lower velocities in region B. 

Fig. 10 illustrates the effects of viscosity ratio parameter, 
1

2




 = , on velocity profiles in 

region A and region B. With greater viscosity ratio, there is an evident deceleration in the 
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flow in both regions. Greater viscosity implies greater viscous drag force. This retards 

momentum development. There is a more prominent deceleration in region A, since a 

greater viscosity arises here than in region B.  

Fig. 11 finally shows the effect of the transpiration velocity, vo, on velocity evolution in 

regions A and B. With greater transpiration effect, the flow is strongly accelerated in both 

regions. The momentum is boosted with injection of fluid, and the effect is greatest in 

region B. 

 

7. Conclusions 

A mathematical model has been developed for the two-immiscible fluid flow in a dual 

porous medium with an interface between the fluids in the presence of a transverse 

magnetic field. The Navier-Stokes equations have been reduced to a dimensionless pair of 

second order partial differential equations coupled via a common oscillatory y*-direction 

velocity and a fluid viscosity ratio. A number of special cases of the model have been 

presented. Two numerical methods, viz the finite difference method and a finite element 

method are used to solve the dimensionless boundary value problem subject to appropriate 

hydrodynamic boundary and interfacial conditions. Very good correlation has been 

achieved between the two methods. Computations have shown that increasing Hartmann 

number significantly decelerates the flow in region A, whereas increasing Darcy number 

(porous medium permeability) accelerates the flow in both regions. Increasing 

Forchheimer number retards flow in both regions. With greater viscosity ratio, the flow is 

decelerated in both regions. The present model is relevant to new technologies utilizing 

magnetohydrodynamic control of oil separation in contaminated geological zones.   
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TABLES 

 

 

y 

Velocity ( u1 * =u2*) 

0.25 =  

FTCS  

0.25 =  

MAGNETO-

FEM 

0.5 =  

FTCS 

0.5 =  

MAGNETO-

FEM 

3 =  

FTCS 

3 =  

MAGNETO-

FEM 

-1.0000 0 0 0 0  0 

-0.8000 0.2301 0.2302 0.2024 0.2022 0.1186 0.1187 

-0.6000 0.3348 0.3347 0.3079 0.3076 0.2016  0.2017 

-0.4000 0.3802 0.3804 0.3603 0.3601 0.2573 0.2574 

-0.2000 0.3981 0.3979 0.3817 0.3815 0.2912  0.2911 

0 0.3850 0.3852 0.3699 0.3672 0.3062 0.3063 

0.2000 0.3508 0.3503 0.3428 0.3429 0.3093  0.3095 

0.4000 0.3258 0.3259 0.3216 0.3217 0.3039  0.3038 

0.6000 0.2920 0.2921 0.2898 0.2897  0.2807 0.2808 

0.8000 0.2140 0.2141 0.2130 0.2131 0.2088  0.2086 

1.0000 0 0 0 0 0 0 

 

Table 1: Velocity evolution across the channel for different values of   
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FIGURES 

 
Figure 1: Physical Model and Coordinate System 

  

Fig 2: y versus u i.e. u1 * and u2 * (both region A and B) for various Ha. 
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Fig 3. y versus u i.e. u1 * and u2 *  (both region A and B) for various A. 

 

 

Fig. 4. y versus u i.e. u1 * and u2 *  (both region A and B) for various *t*. 
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Fig. 5. y versus u i.e. u1 * and u2 *  (both region A and B) for various p*. 

 

Fig. 6. y versus u i.e. u1 * and u2 *  (both region A and B) for various Da1, Da2 [Darcy 

numbers for region A and region B] - for Darcian case only i.e. Fs1 = Fs2 =0. 
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Fig. 7. y versus u i.e. u1 * and u2 *  (both region A and B) for various Da1, Da2 [Darcy 

numbers for region A and region B] - for Darcian case only i.e. Fs1 = Fs2 =0. 

 

Fig. 8. y versus u i.e. u1 * and u2 *  (both region A and B) for various Fs1 variation with 

Fs2 fixed at 0.1 [Darcy numbers for region A and region B = 0.001 each]. 
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Fig. 9 y versus u i.e. u1* and u2*  (both region A and B) for various Fs2 variation with Fs1 

fixed at 0.1 [Darcy numbers for region A and region B=0.001 each]. 

 

Fig. 10. y versus u i.e. u1 * and u2 * (both region A and B) for various . 
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Fig. 11. y versus u i.e. u1 * and u2 *  (both region A and B) for various 
0v . 
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