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Abstract 33 

Objectives: 34 

Beside pathophysiological factors, pain is believed to play a crucial role in the progression of 35 

patellofemoral pain (PFP). However, the isolated effect of pain on biomechanics and 36 

quadriceps function has not been investigated in PFP. Thus, this study aimed to investigate the 37 

effect of pain on quadriceps function and lower limb biomechanics in individuals with PFP. 38 

Methods 39 

Twenty-one individuals with PFP (11 males and 10 females, age: 29.76 ±6.36 years, height: 40 

1.74 ± 0.09m, mass: 70.12 ±8.56kg) were measured at two different occasions: when not and 41 

when experiencing acute pain. Peak quadriceps torque (concentric, eccentric and isometric) 42 

and arthrogenic muscle inhibition (AMI) was assessed. Three-dimensional motion analysis and 43 

surface electromyography of the quadriceps and hamstrings muscles were collected during 44 

running, a single-leg-squat and step-down task. The normality was assessed using the Shapiro-45 

Wilk test and a MANOVA was performed at the 95% confidence interval.  46 

Results 47 

AMI increased significantly in acute pain. The net muscle activation of the knee extensors and 48 

flexors decreased during running in acute pain. The lower limb biomechanics and the 49 

quadriceps torque did not change in acute pain.  50 

Discussion: 51 

It appears that even if individuals with PFP experience pain they can still deliver maximal 52 

quadriceps contractions and maintain their moving patterns without biomechanical changes. 53 

However, the overall reduced activation of the quadriceps and the increased AMI indicate the 54 

presence of quadriceps inhibition in acute pain.  55 

Key words: patellofemoral pain, knee, PFP, AKP, inhibition, quadriceps, strength, pain  56 



 

1. Introduction 57 

Patellofemoral pain (PFP) is commonly diagnosed in individuals with knee injuries and often 58 

affects younger and active populations [1]. Follow-up studies showed that the majority of 59 

individuals with PFP still suffered from pain and dysfunction, despite initially received 60 

treatment and education; Lankhorst et al. reported an unfavourable recovery at 5 to 8 years of 61 

57% of individuals with PFP [2] and Stathopulu & Baildam found that 91% of patients still 62 

suffered from PFP 4-18 years after their initial presentation at a hospital [3]. Thus, the long-63 

term prognosis of PFP is still poor, which raises the question whether the pathophysiological 64 

factors that cause PFP are understood and addressed in treatments sufficiently. Currently, 65 

pathophysiological factors associated with PFP can be compared with a complex mosaic where 66 

various anatomical, biomechanical, psychological and social factors are interconnected to each 67 

other and are likely to contribute to pain [4]. Long-term studies showed that individuals with 68 

PFP with greater durations of pain and worse pain were more likely to develop an unfavourable 69 

outcome and a more progressive pathology [5, 6]. Thus, it is believed that pain might play a 70 

role in the aetiology and progression of PFP [7].  71 

Previous studies have reported a link between PFP and lower limb muscle weakness and 72 

inhibition, knee instability, and functional performance [8-10]. However, all studies either 73 

correlated the pain intensity to specific factors or based their findings on the comparison of the 74 

pain intensity before and after a treatment. The only studies that investigated the direct 75 

influence of acute knee pain on muscular function and lower limb biomechanics analysed the 76 

effect of artificially induced knee pain [11-14]. These studies demonstrate a link of pain to 77 

several factors, such as alterations of lower limb biomechanics, muscular coordination, 78 

quadriceps strength and arthrogenic muscle inhibition (AMI). AMI describes an ongoing reflex 79 

response which results in an inability to completely contract a muscle voluntarily, despite no 80 

structural damage to the muscle or innervating nerve [15, 16]. AMI is closely linked to knee 81 

pain, because it is caused by altered afferent input originating from mechanoreceptors and 82 

nociceptors, which reflexively reduce the efferent quadriceps alpha motor-neuron output [16, 83 

17].  However, the isolated effect of pain in individuals with PFP has not been investigated. 84 

Individuals with PFP commonly show altered movement patterns and aberrant muscle function 85 

[4], but it remains unclear whether these changes are consequence of pain or are causal factors 86 

in the development of PFP. It also remains unknown to what extent acute pain would influence 87 

the functional performance and muscular function in individuals with PFP. A better 88 



 

understanding of the influence of pain in individuals with PFP would provide further insights 89 

into PFP that might help to optimise management and treatment of PFP. Therefore, this study 90 

aimed to investigate the direct effect of acute PFP on quadriceps strength and AMI, quadriceps 91 

and hamstrings co-contraction and hip and knee biomechanics. 92 

 93 

2. Methods 94 

The study was approved by the University of Salford Research and Governance Committee 95 

(HSR 15-143) and the trial was registered at ClinicalTrials.gov (NCT02914574). The informed 96 

consent was obtained from each participant. Posters and flyers at fitness centres, gyms, and 97 

sports clubs in Manchester and Salford were used to recruit participants with PFP and without 98 

PFP. 99 

 100 

2.1. Participants 101 

The inclusion and exclusion criteria, as well as the clinical assessment were developed based 102 

on current recommendations [18]. The inclusion criteria for participants with PFP were: (1) 103 

aged 18-45 years (to exclude patients with knee or patellar osteoarthritis); (2) antero- or retro-104 

patellar pain with at least two of these activities: ascending or descending stairs or ramps, 105 

squatting, kneeling, prolonged sitting, hopping/ jumping, isometric quadriceps contraction or 106 

running (3) duration of current PFP symptoms >1 month 107 

The exclusion criteria were: (1) any history of previous lower limb surgery or patella instability 108 

and dislocation, (2) lower limb deformities or any history of traumatic, inflammatory or 109 

infectious pathology in the lower extremities or any internal derangements, (3) not able to 110 

perform running, squatting and the step-down task during the measurement. (4) Those who 111 

failed to satisfy the above listed inclusion criteria.  112 

Since there is no definite clinical test to diagnose PFP, further clinical assessment were carried 113 

out, which involved the Clarke’s test, a palpation test of the patellar edges and a single leg 114 

squat task to investigate the pain region [18]. These three tests have been chosen based on the 115 

current recommendations and have shown to provide limited to good diagnostic evidence [18]. 116 

All clinical assessments were performed by the same experienced musculoskeletal 117 



 

physiotherapist. All participants were fitted with standard running shoes (New Balance, model 118 

M639SA UK), to control the interface of the shoe and the surface. 119 

The participants were asked to attend the first appointment whilst not experiencing pain and 120 

the second appointment whilst experiencing acute pain. This order was set to ensure, that the 121 

participants had time to raise questions and concerns during the first visit, before they 122 

performed the exercises that triggered their acute PFP. Both measurement sessions were 123 

scheduled within one week. The participants were instructed to perform exercises before the 124 

second appointment which they were familiar with and were sure would trigger their acute 125 

PFP. Since the participants performed the exercises independently between the first and second 126 

assessment, the researchers were unable to control the exercises. However, the researcher 127 

documented the form of exercises the participants had chosen; Twelve participants chose 128 

running and 9 participants chose eccentric quadriceps exercises (in particular lunges and 129 

squats) to trigger the acute PFP. The pain intensity was reported but participants were not 130 

instructed to self-inflict their acute pain up to a specific pain intensity level. Instead the 131 

participants were instructed to self-inflict the pain to the extent that they experienced as their 132 

familiar acute PFP. To ensure that they were not fatigued they were asked to not perform the 133 

painful activity at least 5 hours before coming to the second appointment and were advised to 134 

rest before arriving at the gait laboratory.  135 

 136 

2.2. 3D movement analysis 137 

Three-dimensional motion data were collected with ten Qualisys OQUS7 cameras (Qualisys 138 

AB, Sweden) at a sampling rate of 250Hz. Three force plates (BP600900, Advanced 139 

Mechanical Technology, Inc. USA) were used to collect the force data at a sampling rate of 140 

1500Hz. The calibrated anatomical system technique (CAST) model, which included 141 

anatomical landmarks (markers on anatomical bony landmarks) and anatomical frames 142 

(segment mounted marker clusters), was used in the biomechanical modelling and analysis 143 

[19]. Retroflective markers were placed, with double sided hypoallergic tape to the following 144 

anatomical landmarks of both lower limbs of the participant: the anterior superior iliac spine 145 

(ASIS), the posterior superior iliac spine (PSIS), the iliac crest, the greater trochanter, the 146 

medial and lateral femoral epicondyle, the medial and lateral malleoli, the posterior calcanei, 147 

and the head of the first, second and fifth metatarsals. The anatomical frames were rigid clusters 148 



 

of 4 nonorthogonal markers and were positioned over the lateral shank, and the lateral thigh of 149 

the limbs (Figure 1) [19].  150 

For the electrode placement of the surface Electromyography (sEMG), the skin was shaved, 151 

abraded and cleaned with isopropyl alcohol. The sEMG electrodes (Noraxon Dual Electrodes, 152 

2cm spacing) were placed on the vastus medialis, vastus lateralis, biceps femoris and 153 

semitendinosus muscle in accordance with the SENIAM guidelines [20]. The sEMG data were 154 

collected with the Noraxon Telemyo system at a sampling rate of 1500Hz. The sEMG data 155 

were synchronised to the kinematic and kinetic data.  156 

All participants were measured at one occasion without acute pain or only very light pain and 157 

at the second occasion while the participant experienced acute pain. The participants were 158 

asked on both occasions to rate their pain intensity using the numeric pain rating scale (NPRS) 159 

after performing the biomechanical tasks. To investigate whether the application of the 3D 160 

markers and bandages modified the pain, each participant was asked to rank his/her pain 161 

intensity with and without the applied bandages and markers. Each subject was asked at both 162 

occasions to perform a static trial and to run on a 15m walkway at a self-selected speed. 163 

Running speed was measured and reported by using Brower timing lights (Draper, UT). The 164 

participant was asked to perform a single leg squat and a step-down test while holding his/her 165 

arms folded across his/her chest. Both tasks were demonstrated and explained by the 166 

researcher. Each task was performed until five successful trials were collected. Unsuccessful 167 

trials were ones whereby less than three markers per segment were visible or a partial/double 168 

foot contact with one of the force platforms happened.  169 



 

  170 

Figure 1: The placement of the markers and the sEMG electrodes 171 

 172 

2.3. Quadriceps strength and inhibition analysis 173 

At both occasions each subject was asked to perform three times the following knee extensor 174 

strength tests: an isometric, an eccentric and a concentric test. The peak torque was measured 175 

with an isokinetic dynamometer (Kin-Com, Chattanooga, USA). Participants were positioned 176 

in 90° hip flexion and 60° knee flexion in an isokinetic dynamometer and secured to the test 177 

chair with a chest and pelvic belt. The Kin-Com shin pad was attached 1 cm proximal to the 178 

malleoli of the ankle (Figure 2). The isokinetic knee extensor torque measurements were tested 179 

at the angular velocity of 60 degrees/second. The participants were advised to keep their arms 180 

across their chest.  181 

The muscular inhibition of the quadriceps was assessed, during a maximal voluntary isometric 182 

contraction (MVIC) of the quadriceps with the interpolated twitch technique, using a single 183 

twitch with a pulse duration of 200 ms and a stimulus amplitude of 125mA (DS7AH Digitimer 184 

Ltd, Hertfordshire, England). Two electrodes (proximal: 50×130 mm, distal: 7.5×100 mm) 185 

(Axelgaard, Fallbrook, Ca, USA) were placed on the quadriceps muscle at one-third and two-186 



 

thirds from the distance between the anterior superior iliac spine and the upper border of the 187 

patella [21].  188 

Prior to the test a warm-up session of 4 submaximal isometric and isokinetic quadriceps 189 

contractions were performed. The submaximal testing at around 50% of the participants MVIC 190 

was chosen to ensure that the participant was warmed up and familiarised with the 191 

measurement without feeling fatigued.  After the warm-up a familiarisation of the stimulation 192 

sensation was made with several test stimuli. Prior to the isometric MVIC two single twitches 193 

of 125 mA were triggered by the assessor on the relaxed quadriceps. During the MVIC attempt 194 

two single pulses of 200µs duration, 200Volt and 125 mA were triggered by the investigator 195 

when the MVIC force had plateaued on the monitor. The strength data and AMI data of each 196 

participant was exported from the Kin-Com to asci-files and loaded into Excel. The peak 197 

concentric, eccentric and isometric torque was determined for each file. AMI was quantified 198 

by calculating the difference between the stimulus-evoked torque during MVIC (ITT in Nm) 199 

to the stimulus-evoked torque at rest (RTT in Nm) and expressed in %: activation deficit (AD) 200 

at 100% MVIC from the ratio: AD = (ITT/RTT) x 100. An inhibition of 0% means that the 201 

subject was able to fully recruit the muscle without showing any signs of inhibition.  202 

 203 

Figure 2: Knee extensor strength and quadriceps arthrogenic muscle inhibition measurement 204 

 205 



 

2.4. Processing of 3D motion data 206 

The kinematic and kinetic outcomes were calculated using a 6 degrees of freedom model in 207 

Visual3D (Version 5, C-motion Inc., USA). The pelvis, thigh, shank, foot and virtual foot 208 

segments were defined and 4 tracking markers were used for each segment. Ankle and knee 209 

joint centers were calculated as midpoints between the malleoli and femoral epicondyles 210 

respectively and the hip joint center was calculated using the regression model of Bell et al. 211 

[22] based on the ASIS and PSIS markers. The global coordinate system was defined as x for 212 

the forward/ backward, z the vertical and y the left/ right (medial/ lateral) axis. Marker motion 213 

data and the analogue data from the force plate were filtered with a 4th order lowpass 214 

Butterworth filter with cut-off frequencies of 12Hz. The joint moments were calculated using 215 

three dimensional inverse dynamics and normalised to body mass. The kinematic and kinetic 216 

data were normalised to 100% of a single leg squat, a step-down task and the stance phase in 217 

running, whereby the stance phase was sub-grouped in early (0-24% of stance phase), mid (25-218 

62%) and late-stance phase (63%-100%) [23]. The peaks of the hip and knee flexion, adduction 219 

and internal rotation angles and the moments were calculated for the single leg squat, step-220 

down task and the early, mid and late-stance phase. Furthermore, the average knee angular 221 

velocity was calculated for the eccentric phase during the single leg squat and step-down task.  222 

 223 

2.5. Processing of sEMG data 224 

The sEMG data was band-pass filtered at 20-500 Hz and rectified by using a root mean square 225 

over a 75 ms window for the running task and 300 ms for the single leg squat and step-down 226 

task [24]. Co-contraction ratios were (CCR) calculated by using the formula of Heiden et al.:  227 

If agonist mean EMG > antagonistic mean EMG:  228 

 CCR= 1- antagonistic mean EMG/agonist mean EMG 229 

If agonist mean EMG < antagonistic mean EMG: 230 

 CCR= agonist mean EMG/ antagonistic mean EMG -1 [25] 231 

The peak quadriceps torque was determined for each file and AMI was calculated during the 232 

isometric contraction.  233 

 234 



 

2.6. Statistical analysis 235 

The statistical analysis was performed using SPSS (v. 20, IBM, USA) and Excel 2013 236 

(Microsoft, USA). The normality was assessed by applying the Shapiro-Wilk test and by the 237 

investigation of the normal q-q plots. The Wilcoxon rank test was used with a significance 238 

level set at p<0.05 to investigate the ordinal data (pain scale). 239 

Kinematic and kinetic variables, quadriceps strength, quadriceps AMI and co-contraction ratios 240 

were compared between the two conditions: with and without acute pain using a one way 241 

repeated measures MANOVA. The standard error of mean (SEM) was calculated using the 242 

following formula: SEM = SD/√sample size. The effect size for each variable was calculated 243 

using the Cohen d to give an indication of the magnitude of the effect of acute pain (>0.8 244 

large effect, 0.5 moderate effect, <0.3 small effect) [26]. 245 

 246 

3. Results 247 

Twenty-one individuals with PFP (11 males and 10 females, age: 29.76 ±6.36 years, height: 248 

1.74 ± 0.09m, mass: 70.12 ±8.56kg) participated in the study. The running speed without and 249 

with pain was not significantly different (p=0.608) (without pain: 3.32±0.71m/s, with pain: 3.4 250 

±0.15m/s).  251 

The application of the bandage and the markers did not result in significant changes in pain 252 

under both test conditions (NPRS: baseline pain: without marker application: 1.29±1.95; with 253 

application: 1.17±1.95,p=0.582, acute pain: without application: 3.88±1.92; with application: 254 

3.86±1.96,p=0.902). Pain was significantly increased when participants performed the tasks 255 

with acute pain (with and without pain: p=0.0001). A clinically significant change in pain has 256 

been described as 1.74 points, thus the pain increase by 2.59 represents a clinical meaningful 257 

increase in pain [27]. 258 

Only during the late-stance phase in running the external knee flexion moment significantly 259 

decreased with a moderate effect size in acute pain (p=0.042) (Table 2). Although the change 260 

was not significant a moderate effect size indicated also a reduction of the external knee flexion 261 

moment during the mid-stance phase.  262 



 

The net activation of the knee extensors and flexors decreased significantly during the early 263 

and mid-stance phase with medium to large effect sizes (quadriceps: 32.2% reduction, p=0.025, 264 

hamstrings: 11.4% reduction, p=0.008) in acute pain (Table 3).  265 

The peak isometric, concentric and eccentric torque did not change with or without acute pain 266 

(Table 4). However, the AMI increased significantly in acute pain with a moderate effect size 267 

(6.56% increase, p=0.035) (Table 4).   268 



 

Table 1: The lower extremity kinematics during the single leg squat task and the step-down task with and 269 

without acute pain (*indicated the results were significantly different.) 270 

The kinematic variables (º) during the single 

leg squat and step-down task 

Without pain With acute pain P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size Mean SD 

Std. 

Error 

Mean 

Mean SD 

Std. 

Error 

Mean 

Single 

leg 

squat  

Hip flexion angle 75.7 15.6 3.4 76.9 16.4 3.6 0.813 0.08 

Hip adduction angle 14.5 7 1.5 13.6 7.6 1.7 0.697 0.08 

Hip internal rotation angle  1.9 7.5 1.6 0.7 7.8 1.7 0.607 0.16 

Knee flexion angle 81.1 9.3 2 81.9 10.7 2.3 0.786 0.08 

Knee adduction angle 5.3 4.7 1 4.2 4.5 1 0.460 0.24 

Knee internal rotation angle -2.5 6.3 1.4 -1.5 5.9 1.3 0.575 0.16 

Step-

down 

task 

Hip flexion angle 71.8 18.2 4 74.5 15 3.3 0.608 0.16 

Hip adduction angle 16.4 6.7 1.5 15.7 6.7 1.5 0.717 0.10 

Hip internal rotation angle  2.2 6.8 1.5 0.6 7.6 1.7 0.485 0.22 

Knee flexion angle 89.4 14 3.1 90.3 13 2.8 0.842 0.07 

Knee adduction angle 5.4 4.4 1 4.5 4.6 1 0.508 0.2 

Knee internal rotation angle -1.1 6.5 1.4 -1.1 6.1 1.3 0.977 0 

Early-

stance 

phase  

Hip flexion angle 36.5 5.9 1.3 36.8 5.5 1.2 0.835 0.05 

Hip adduction angle 7.1 4.6 1 6.7 4.8 1.1 0.746 0.09 

Hip internal rotation angle  2.9 7.9 1.7 3.4 7.4 1.6 0.895 0.07 

Knee flexion angle 30.6 3.9 0.9 31.6 4 0.9 0.460 0.25 

Knee adduction angle 2.2 3.4 0.7 2.5 3.9 0.8 0.779 0.08 

Knee internal rotation angle -4.8 5.9 1.3 -3.9 5.2 1.1 0.373 0.18 

Mid-

stance 

phase 

Hip flexion angle 34.6 6.5 1.4 34.9 5.9 1.3 0.946 0.05 

Hip adduction angle 11.5 4.8 1 10.1 5.3 1.2 0.387 0.28 

Hip internal rotation angle  -0.1 7.5 1.6 -0.9 8.7 1.9 0.908 0.10 

Knee flexion angle 43.3 5 1.1 44.6 5 1.1 0.824 0.26 

Knee adduction angle 1.7 3.3 0.7 0.9 4.8 1 0.784 0.19 

Knee internal rotation angle 1 6.3 1.4 1.2 5.5 1.2 0.783 0.03 

Late-

stance 

phase 

Hip flexion angle 21.1 5.7 1.2 21 5.2 1.1 0.856 0.18 

Hip adduction angle 7.2 5 1.1 7 4.9 1.1 0.279 0.04 

Hip internal rotation angle  1.1 7.4 1.6 0.2 9.2 2 0.594 0.11 

Knee flexion angle 40.9 4 0.9 41.7 4.6 1 0.441 0.19 

Knee adduction angle 1.2 2.7 0.6 1.1 3.8 0.8 0.514 0.03 

Knee internal rotation angle 0 7.1 1.5 0.6 5.4 1.2 0.651 0.10 

  271 



 

Table 2: The lower extremity kinetics during the single leg squat task and the step-down task with and 272 

without acute pain (*indicated the results were significantly different.) 273 

The kinetic variables (Nm/kg) during the 

single leg squat and step-down task 

Without pain With acute pain P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size Mean SD 

Std. 

Error 

Mean 

Mean SD 

Std. 

Error 

Mean 

Single 

leg 

squat  

Hip flexion moment 1.29 0.55 0.12 1.34 0.55 0.12 0.790 0.09 

Hip adduction moment 0.95 0.28 0.06 0.91 0.2 0.04 0.636 0.16 

Hip internal rotation moment -0.14 0.05 0.01 -0.15 0.07 0.02 0.619 0.16 

Knee flexion moment 1.74 0.41 0.09 1.67 0.28 0.06 0.556 0.20 

Knee adduction moment 0.33 0.12 0.03 0.3 0.11 0.02 0.421 0.26 

Knee internal rotation moment 0.4 0.09 0.02 0.37 0.09 0.02 0.350 0.33 

Step-

down 

task 

Hip flexion moment 1.49 0.72 0.16 1.58 0.69 0.15 0.690 0.13 

Hip adduction moment 1.13 0.27 0.06 1.06 0.2 0.04 0.387 0.29 

Hip internal rotation moment -0.1 0.07 0.02 -0.12 0.06 0.01 0.405 0.31 

Knee flexion moment 1.74 0.35 0.08 1.69 0.29 0.06 0.594 0.16 

Knee adduction moment 0.39 0.18 0.04 0.35 0.14 0.03 0.475 0.25 

Knee internal rotation moment 0.4 0.09 0.02 0.37 0.09 0.02 0.252 0.33 

Early-

stance 

phase  

Hip flexion moment 2.03 0.42 0.09 1.99 0.4 0.09 0.545 0.10 

Hip adduction moment 1.24 0.45 0.1 1.08 0.33 0.07 0.396 0.41 

Hip internal rotation moment 0.05 0.12 0.03 0.06 0.09 0.02 0.946 0.09 

Knee flexion moment 1.42 0.48 0.11 1.38 0.33 0.07 0.060 0.10 

Knee adduction moment 0.52 0.28 0.06 0.45 0.26 0.06 0.576 0.26 

Knee internal rotation moment 0.22 0.1 0.02 0.2 0.11 0.02 0.648 0.19 

Mid-

stance 

phase 

Hip flexion moment 0.94 0.59 0.13 0.87 0.42 0.09 0.986 0.14 

Hip adduction moment 1.95 0.42 0.09 1.82 0.47 0.1 0.710 0.29 

Hip internal rotation moment -0.26 0.17 0.04 -0.26 0.17 0.04 0.523 0 

Knee flexion moment 2.89 0.72 0.16 2.48 0.77 0.17 0.078 0.55 

Knee adduction moment 0.55 0.29 0.06 0.5 0.3 0.07 0.918 0.17 

Knee internal rotation moment 0.44 0.14 0.03 0.41 0.15 0.03 0.764 0.21 

Late-

stance 

phase 

Hip flexion moment -0.03 0.28 0.06 0.02 0.26 0.06 0.540 0.19 

Hip adduction moment 1.43 0.42 0.09 1.37 0.46 0.1 0.680 0.14 

Hip internal rotation moment 0.02 0.03 0.01 0.02 0.04 0.01 0.778 0 

Knee flexion moment 1.96 0.51 0.11 1.68 0.51 0.11 0.042* 0.55 

Knee adduction moment 0.36 0.21 0.05 0.33 0.21 0.05 0.742 0.14 

Knee internal rotation moment 0.25 0.11 0.02 0.23 0.11 0.02 0.600 0.19 

  274 



 

Table 3: Co-contraction ratio, net activation of the knee flexors and knee extensors during the stance phase 275 

in running, the single leg squat task and the step-down task with and without acute pain, (*indicated the 276 

results were significantly different.) 277 

 

Without pain With acute pain P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size Mean SD 

Std. 

Error 

Mean 

Mean SD 

Std. 

Error 

Mean 

Single 

leg 

squat 

Co-contraction ratio (knee ext: knee flx.) 0.6 0.28 0.07 0.65 0.19 0.05 0.331 0.20 

Net activation knee extensors in % 74.97 36.65 8.64 52.95 35.32 8.32 0.177 0.61 

Net activation knee flexors in % 28.81 16.93 3.99 18.83 14.78 3.48 0.075 0.63 

Step-

down 

task 

Co-contraction ratio (knee ext: knee flx.) 0.58 0.29 0.07 0.63 0.23 0.05 0.688 0.19 

Net activation knee extensors in % 72.43 30.6 7.21 52.81 36.72 8.66 0.283 0.58 

Net activation knee flexors in % 30.55 20.7 4.88 19.29 14.74 3.47 0.183 0.63 

Early-

stance 

phase 

Co-contraction ratio (knee ext: knee flx.) 0.66 0.15 0.04 0.72 0.13 0.03 0.558 0.43 

Net activation knee extensors in % 134.49 67 15.79 102.29 59.11 13.93 0.025* 0.51 

Net activation knee flexors in % 38.26 17.91 4.22 26.86 17.99 4.24 0.008* 0.64 

Mid-

stance 

phase 

Co-contraction ratio (knee ext: knee flx.) 0.32 0.24 0.06 0.41 0.25 0.06 0.882 0.37 

Net activation knee extensors in % 81.74 41.9 9.88 63.16 35.75 8.43 0.010* 0.48 

Net activation knee flexors in % 50.21 21.43 5.05 33.29 19.61 4.62 0.002* 0.82 

Late-

stance 

phase 

Co-contraction ratio (knee ext: knee flx.) -0.44 0.47 0.11 -0.33 0.44 0.1 0.117 0.24 

Net activation knee extensors in % 6.76 5.67 1.34 8.9 16.29 3.84 0.928 0.18 

Net activation knee flexors in % 20.03 15.55 3.67 14.05 10.98 2.59 0.096 0.44 

 278 

Table 4: Strength, AMI, time to peak, rate to force development and the break phenomenon with and 279 

without acute pain. (*indicated the results were significantly different.) 280 

 

Without pain With acute pain P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size Mean SD 

Std. 

Error 

Mean 

Mean SD 

Std. 

Error 

Mean 

Isometric quadriceps strength (Nm/kg*100) 2.86 0.76 0.17 2.90 1.26 0.27 0.889 0.04 

Eccentric quadriceps strength (Nm/kg*100) 3.14 1.40 0.30 2.74 0.69 0.15 0.249 0.36 

Concentric quadriceps strength (Nm/kg*100) 1.74 0.71 0.15 1.88 0.57 0.12 0.480 0.22 

AMI in % 10.58 9.33 2.04 17.14 12.71 2.77 0.035* 0.59 

 281 

4. Discussion 282 

To the authors’ knowledge, this is the first study to investigate the direct influence of acute 283 

pain on hip and knee biomechanics, quadriceps and hamstrings activation and quadriceps 284 

strength and AMI in individuals with PFP. This study showed that despite acute pain, hip and 285 

knee kinematics were not significantly changed. However, the external knee flexion moment 286 

was slightly decreased in acute pain during the mid- and late-stance phase in running, which is 287 

in accordance with previous studies demonstrating that artificially induced knee pain resulted 288 

in a decreased knee flexion moment [11, 12]. A reduced knee flexion moment is believed to be 289 

caused by the quadriceps avoidance strategy, which is a compensatory strategy to decrease 290 

joint loading and thereby joint pain [28]. This assumption could be supported by the findings 291 



 

of a significantly increased quadriceps inhibition, decreased quadriceps activation and the 292 

slight decrease in the knee flexor moment. The simultaneously reduced activation of the 293 

quadriceps and hamstrings muscles has been previously described in individuals with artificial 294 

induced pain [12, 13].  295 

A balanced co-contraction of the quadriceps and hamstrings activation might assist in knee 296 

joint stabilisation in the frontal plane due to increased joint compression [29]. Thus, the overall 297 

reduced co-contraction of the quadriceps and hamstrings muscles might result in knee 298 

instability during the loading response and thus also might be responsible for the development 299 

of pain and the greater reduction and variability of the knee flexion moment [12, 13].  However, 300 

the reduced quadriceps muscle activation could also be a compensatory strategy to reduce 301 

patellofemoral joint reaction forces during painful activities, which has been described in 302 

literature as the quadriceps avoidance strategy.  303 

The quadriceps avoidance strategy is believed to be often caused by quadriceps inhibition [12, 304 

13, 30]. Rice et al. described that the inhibitory response of the quadriceps occurs partially due 305 

to spinal reflex inhibition of the alpha-motor-neuron (MN) [31]. This reflex inhibition is 306 

modulated by the pre- and postsynaptic mechanism and elicited by abnormal afferents from a 307 

painful or damaged joint [21, 32]. Thereby the painful or damaged joint causes a decreased 308 

motor drive to muscles and thus a limited muscle's potential to generate force [21]. Studies 309 

which investigated the association of pain to AMI found that it was significantly associated to 310 

knee pain [16, 21, 33] and that already 1 point increase on the visual analogue pain scale (VAS) 311 

caused an increase in AMI of 1.6% [21]. These findings are in accordance with the results of 312 

this study, where the pain increase of 1 on the NPRS caused an increase of 2.1% AMI. Thus, 313 

AMI appears to play an important role in the injury cycle of knee pain.  314 

Previous studies suggested an increase of the voluntary antagonist neural drive to overcome 315 

any inhibitory contractions [30, 33]. In contrary, this study showed that pain caused a decrease 316 

of the antagonistic muscles and thus indicates that not only the quadriceps, but also the 317 

hamstrings muscles might be inhibited due to pain [14]. This suggests that pain suppressed the 318 

motor output globally. But despite the significant altered muscle activation of the quadriceps 319 

and the hamstrings muscle, no significant biomechanical changes or differences in the maximal 320 

voluntary quadriceps contraction could be identified. Knee pain may be caused by a number of 321 

structures, such as the infrapatellar fat pad with its nociceptive innervations [34]. Previous 322 

studies have shown that knee pain, that was artificially induced in the quadriceps muscle or the 323 



 

infrapatellar fat pad altered the coordination of the quadriceps muscle [12, 13, 35]. These 324 

studies showed that pain caused a reduced activation and altered activation timing of the 325 

quadriceps muscle, which is in accordance to our findings.  326 

In contrary to our findings, previous studies have shown that pain also resulted in a decrease 327 

of quadriceps strength [14, 33, 36]. However, these results were shown in healthy individuals 328 

with artificially induced knee pain. Individuals with PFP experience knee pain frequently and 329 

thus might show a different physical reaction to pain. Furthermore, in comparison to strength 330 

results of individuals with PFP in previous studies the participants in this study appeared to 331 

belong to a strong subgroup of individuals with PFP. Selfe et al. described three subgroups of 332 

patients with PFP; a "strong subgroup" with high quadriceps and hip abductor strength scores, 333 

a "weak and tight subgroup" with weak quadriceps and hip abductor muscles and low muscle 334 

flexibility and a "weak and pronated foot subgroup" with weak quadriceps and hip abductor 335 

muscles, greater patellar mobility and an increased foot pronation [37]. The strong subgroup 336 

had quadriceps torque scores of 1.65 ±0.53 Nm/kg in comparison with the weak groups with 337 

quadriceps torque values of 0.84 ±0.32 Nm/kg and 0.82 ±0.32Nm/kg. The group of individuals 338 

with PFP who participated in this study were highly active and had an isometric quadriceps 339 

strength score of: 2.86 ±0.76 Nm/kg without acute pain and with acute pain of 2.9 ±1.26 340 

Nm/kg. These results demonstrate that participants with PFP that participated in this study were 341 

stronger than previously reported in literature. The good training status of the participants with 342 

PFP might have enabled them to deliver maximal quadriceps contractions and maintain their 343 

moving patterns without biomechanical changes even when they experienced more pain and 344 

had a presence of AMI. However, research on strong individuals with PFP is still lacking and 345 

thus further research is needed to confirm these findings [37]. 346 

 347 

2. Clinical implications 348 

These results indicate that quadriceps AMI appears to be a crucial factor in acute PFP. AMI is 349 

present in a wide range of knee joint pathologies and described as a reflexive "shut-down" of 350 

the quadriceps muscle [16]. Immediately after knee injuries a decreased voluntary quadriceps 351 

activation is believed to be a protective mechanism to prevent further injuries [38]. However, 352 

quadriceps AMI may persist for a long time after the original injury and can lead to 353 

posttraumatic weakness and muscle atrophy [39]. Thereby it can become a limitation during 354 

rehabilitation [16, 39]. Thus, it is important for clinicians to identify AMI and to devise a 355 



 

strategy to overcome this impairment [40]. Traditional strengthening exercises have 356 

demonstrated no effect on quadriceps AMI [38]. Although treatments, such as transcutaneous 357 

electrical nerve stimulation (TENS) have shown to have strong effects to reduce AMI they are 358 

not implemented in recommended physical interventions [38, 41]. Thus, a successful 359 

identification of AMI in individuals with PFP might be an important for clinicians to be able 360 

to apply an adequate treatment scheme. 361 

 362 

5. Limitations  363 

One limitation of this study was that pain caused by activities could not be monitored and 364 

standardised. The participants performed their familiar functional activities to reproduce the 365 

pain condition, which was not quantified and controlled. This study aimed to reproduce the 366 

acute PFP that these individuals experience during their familiar and functional and sports 367 

activities. Thus, the test procedure did not allow us to reproduce the individual familiar sport 368 

environment of each participant and to monitor and standardise the painful activities.  369 

It is important to note that the participants wore a pair of standard training shoes to control the 370 

shoe-surface interface and to minimise the influence of footwear in the study. The standard 371 

training shoes might have negatively influenced the comfort during running and thereby might 372 

have influenced their biomechanical performances.  373 

 374 

6. Conclusions 375 

To the authors knowledge this was the first study investigating the effect of acute pain on lower 376 

limb biomechanics, AMI and strength. Acute PFP pain caused a decrease of muscular activity 377 

of the quadriceps and hamstrings muscles and resulted in an increase of AMI of the quadriceps. 378 

However, acute pain did not alter biomechanical changes or quadriceps torque. These findings 379 

show that AMI appears to be an important factor that is linked to pain in individuals with PFP, 380 

which needs to be addressed appropriately in the treatment scheme. 381 
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