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I was heavily involved in the conception and design of this study along with Stephen Martin, 

and David Peck. David Peck sourced the Arnot forest colonies. David Peck was also 

responsible for the establishment of the experimental bee yards and sample collection. The 



21 

 

samples were then shipped to the UK where I was responsible for sample processing, RNA 

extractions, RT-qPCR, sequencing, and data analysis. The chapter was written by myself 

whilst Stephen Martin suggested edits.  

 

 

Chapter 5: DWV recombinant prevalence in DWV positive colonies from England, Wales 

and the USA 

This study was conceived and designed by myself, Declan Schroeder and Andrea Highfield. I 

was responsible for providing honey bee samples which had previously been collected for 

chapters two and three. I was responsible for sample processing, RNA extractions, PCR, RT-

qPCR, gel electrophoresis, and data analysis. Flaviane De Souza conducted a small 

proportion of lab work which also contributed to the study. The chapter was written by 

myself whilst Stephen Martin suggested edits.  

 

Appendices  

The appendices contain two additional chapters to which I contributed my time and am 

listed as second author. These have been provided in the appendices as my contribution is 

lower in these chapters.   

 

Appendix 1: Effect of Varroa on the variation of transmission of DWV strains in  honey  bee 

pupae 

I was heavily involved in the design and conception of this study along with Stephen Martin. 

Sample collection was conducted by myself, along with Lucy Chambers, George Hawkins, 



22 

 

and Stephen Martin. Sample processing, RNA extractions, and RT-qPCR were conducted by 

myself, Lucy Chambers and George Hawkins. I was responsible for showing Lucy Chambers 

and George Hawkins how to conduct the lab work and subsequent analysis. George Hawkins 

analysed the date and was responsible for writing the manuscript which is currently under 

review by the Journal of Invertebrate Pathology.  

 

Appendix 2: Occurrence of Deformed wing virus variants in the stingless Melipona 

subnitida and honey Apis mellifera bee populations in North Eastern Brazil  

I was heavily involved in the design and conception of this study along Flaviane De Souza, 

Carlos De Carvalho, and Stephen Martin. Sample collection was conducted by Flaviane De 

Souza. Sample processing, RNA extractions, and RT-qPCR were conducted by myself and 

Flavian De Souza who undertook the majority of this work. I was responsible for showing 

Flaviane De Souza how to conduct the lab work and subsequent analysis. Flaviane De Souza 

analysed the date and was responsible for writing the manuscript, whilst myself and 

Stephen Martin made suggested edits. This manuscript is under review by the Journal of 

General Virology.  
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ABBREVIATIONS 

ABPV   Acute bee paralysis disease   

BBKA   British beekeeper’s association 

DWV   Deformed wing virus 

EBV   Egyptian bee virus 

ELISA   Enzyme – linked immunosorbent assay  

HRM   High resolution melt analysis  

JEBV  Japanese Egyptian bee virus 

Lp   Leader protein 

NGS   Next generation sequencing  

ORF   Open reading frame 

PCR   Polymerase chain reaction  

RdRp  RNA-dependant RNA polymerase 

RT-qPCR  Reverse-transcriptase PCR 

SIE   Superinfection exclusion 
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GENERAL ABSTRACT 

 

The European honey bee (Apis mellifera) is of global importance as a pollinator. Over the 

past 30 years an increase in colonies lost during winter has occurred, particularly in the 

northern hemisphere. These losses are attributed to the ectoparasitic mite Varroa 

destructor that acts as a vector of RNA viruses, most notably Deformed wing virus (DWV). 

Three master variants of the DWV have been discovered; Type-A, B, and C. The increase in 

overwinter colony losses are closely linked to DWV. At the same time DWV may also offer 

protection to colonies via superinfection exclusion (SIE), which may be linked to Varroa-

tolerant colonies. However, the role of each DWV variant in colony survivorship and mite-

tolerance is limited, so the main thrust of the thesis is to address this issue. 

 

Firstly, the detection of all three DWV master variants was only possible via Next Generation 

Sequencing (NGS), therefore I developed a reverse-transcriptase quantitative polymerase 

chain reaction (RT-qPCR) assay that enabled the detection of all three DWV master variants. 

This allowed me to re-analyse historic samples, and revealed that type-A and C were 

involved in the untimely demise of treated colonies. 

 

Secondly, I used the new assay to survey the three DWV master variants in English and 

Welsh honey bee colonies. DWV type-B was found to dominate colonies regardless of 

season, whilst overwinter losses remained low. English and Welsh Varroa tolerant colonies 

were also shown to have DWV viral loads similar to colonies which receive Varroa treatment 

throughout the year. 
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Thirdly, I conducted a similar study as Chapter two except in the USA. Here DWV type-A was 

dominant and linked to overwinter colony losses. Varroa tolerant bees also had DWV loads 

similar to Varroa treated colonies, a result which suggests mite-tolerant traits evolve over 

time. 

 

Fourthly, DWV populations were assessed in Varroa-tolerant colonies from the Arnot forest, 

USA. This study disproved that avirulent DWV infections were present and supports the 

importance of other life history traits being involved in the survival of these colonies. 

 

Finally, the role of DWV viral recombinants were investigated on a landscape scale using 

samples from England and Wales, and the USA. This provided further evidence that viral 

recombinants are not as fit as parent genomes. 

 

Together these results deepen our understanding of DWV variants and their impact on 

colony survivorship. 
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GENERAL INTRODUCTION 

The European honey bee  

Honey bees belong to the order Hymenoptera, along with sawflies, ants, bees, and wasps.  

Currently 12 species of honey bee have been described (Lo et al., 2012).  However, it is the 

European honey bee (Apis mellifera) which is most commonly domesticated, and as such 

has a global distribution. Honey bee colonies are comprised of one reproductive female 

called ‘the queen’, up-to as many as 80,000 sterile female worker bees, and during high 

summer contain hundreds of male ‘drone’ bees. Honey bees are famed for existing as highly 

organised social groups, headed by the queen whilst sterile female worker bees perform a 

range of age-related colony task from cooperative brood care, to foraging for food, and 

guarding the nest entrance. Therefore, honey bee colonies exhibit true eusociality. 

 

 Honey bees collect the nectar and pollen of plants; nectar is converted into honey which 

feeds the colony and pollen into ‘bee bread’ which is highly nutritious and fed to developing 

larva. In this way they provide the pollination services required to ensure the seed set of a 

variety of flora. Typically, wild honey bees nest in the cavities of trees (Seeley & Morse, 

1978) whilst managed colonies live in bee hives.  

 

Honey bees have been managed by humans for over 7000 years (Bloch et al., 2010) and are 

one of the most studied social insect species. Their popularity is part owing to their prolific 

honey production and bi-products such as wax, but also due to the pollination services they 

provide. Insect pollination dependant crops make up 35% of foods (Klein et al., 2007) that 
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our ever growing, human population relies upon (Williams, 1994; Aizen et al., 2008). Crop 

yield is increased by up to 96% (Potts et al., 2010) when bee pollinators are present in an 

agricultural setting. Pollination services in the UK for 2010 were estimated to be between 

£430 – £603 million annually (POST, 2010), with 34% of UK pollination services provided via 

the European honey bee (Breeze et al., 2011). In the USA major industries rely on European 

honey bees and they are estimated to provide $14 billion to the USA economy (Morse & 

Calderone, 2000) making it a species of great importance in terms of food security.  

 

European honey bee (Apis mellifera) colony losses 

A global decline in European honey bee colonies has been witnessed in the last 30 years, 

leading to a huge amount of environmental and economic concern (Aizen & Harder, 2009; 

Gallai et al., 2009). The majority of colony deaths occur in the temperate zone (e.g. Europe, 

USA & New Zealand) during the winter period when honey bee colonies form the winter 

cluster. Colony loss data has been collected for many years now in the UK and USA (Figures 

1 & 2). However, these losses are still considered to be at an unacceptable level. In the 

winter of 2016/17 both the UK and USA reported overwinter colony losses (OCL) of 13.2% 

(British beekeeper’s association (BBKA, 2017)) (Figure 1) and 21.1 % (Bee informed 

partnership, 2017) (Figure 2), respectively. The USA winter losses continued to increase over 

the winter of 2017/18 to 31%, whereas the UK data has yet to be released.    

 

The cause of these elevated  overwinter losses have been linked to the ecto-parasitic mite 

Varroa destructor and its association with several harmful viral pathogens, of which 
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Deformed Wing Virus (DWV) is evidenced to play an important role (Berthoud et al., 2010; 

Dainat et al., 2012a & b; Highfield et al., 2009; Martin, Ball, & Carreck, 2010, 2013; Martin et 

al., 2012). 

 

 

 

 

 

 

 

 

Figure 1. Percentage of overwinter colony losses in the UK, data obtained from the BBKA, 

(2017).  
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Figure 2. Percentage of total annual losses (orange), total winter losses (yellow) and the 

suggested acceptable winter losses (grey) of USA honey bee colonies. Figure obtained from 

beeinformed.org. 

 

Association between Honey bees and Varroa destructor mites  

There are four defined species of Varroa; V. jacobsoni, V. destructor, V. rindereri and V. 

underwoodi (Anderson & Trueman, 2000; Dietemann et al., 2013). Varroa was originally 

described in Java (Oudemans, 1904, cited in Sammataro, Gerson, & Needham, 2000) and 

confined to South Asia. Here, the V. jacobsoni mite was originally a parasite of Apis cerana 

(Asian honey bee) but in the late 1950’s jumped the species barrier to A. mellifera when 

European honey bees were kept alongside colonies of Asian honey bees (Danka et al., 1995).  
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Later the V. jacobsoni mites infesting colonies of European honey bees were shown to 

belong to a new species of mite, V. destructor (Anderson & Trueman, 2000).  

 

V. destructor (now referred to as Varroa throughout the text) is an ectoparasite which feeds 

solely upon the haemolymph of both adult honey bees (mite phoretic stage) and 5th instar 

larva and pupa, referred to as sealed brood (mite reproductive stage) since these stages are 

sealed into the cell by a silk cocoon and wax capping. Varroa completes each reproductive 

cycle inside a sealed brood cell (a hexagonal chamber where eggs and larvae are found). The 

feeding activities of Varroa have negative physiological and behavioural effects at the 

colony and individual honey bee level. Bees parasitised as pupae are severely affected; They 

exhibit reduced body weight, haemolymph, and abnormal carbohydrate levels at 

emergence (Amdam et al., 2004), as well as a reduced lifespan (Dainat et al., 2012a; Benaets 

et al., 2018). All of which reduce fitness at the individual level by suppression of the honey 

bee immune system (Berthoud et al., 2010). Other physiological differences occur in adult 

bees such as degenerated bodies and decreased flight performance in drones (Duay, de 

Jong, & Engels, 2002). Behavioural differences include; bees foraging earlier (Janmaat & 

Winston, 2000; Benaets et al., 2018), a reduction in swarming events (Villa et al., 2008) and 

flight performance (Wells et al., 2016), as well as prolonged absences with a lower return 

rate to the colony (Kralj & fuchs, 2006) ultimately disrupting normal colony function. 

Typically, colonies survive for only three to four years when unmanaged for Varroa (Korpela 

et al., 1992).  
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The Varroa mite now has a global distribution with the exception of Australia (Sammataro et 

al., 2000) and is a novel parasite of A. mellifera. As such mite populations can grow 

exponentially since this new host lacks any traits to control mite population growth (Martin, 

1998). A host-parasite equilibrium has evolved as a result of natural selection between A. 

cerana and Varroa (Peng et al., 1987). Both behavioural and physiological traits prevent 

exponential growth of Varroa mites within A. cerana colonies (Rath, 1999) as mite numbers 

are maintained at <800 per colony with no adverse effects upon the bees (Martin & Medina, 

2004). The worker bees of A. cerana have the ability to detect Varroa infested cells, even 

after the brood is sealed. When an infested cell is found workers of A. cerana open and 

remove the mites and brood. This behaviour is termed hygienic or removal behaviour (Peng 

et al., 1987; Rath & Drescher, 1990) and more recently has been referred to as Varroa 

sensitive behaviour (Carreck, 2011).  Varroa population growth is further limited in A. 

cerana colonies as Varroa females can only reproduce within the drone brood which 

represents 1-5% of all brood within a colony (Arechavaleta-Velasco & Guzman-Novoa, 

2001). 

 

Varroa mites are capable of dispersing from colony to colony and apiary to apiary via the 

natural drifting of bees and also when bees are foraging (Peck et al., 2016). A colony in the 

stages of collapse due to Varroosis (negative effects caused by a Varroa infestation) is likely 

to be invaded by drifting honey bees who willingly take advantage of the weaker colony, 

subsequently a large number of phoretic mites, capable of reproducing, enter the healthy 

colony. In this way several pathogens are likely to be transmitted from colony to colony 

(Rosenkranz et al., 2010).  
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In addition to the effects of their feeding activities, Varroa is an effective vector of honey 

bee viruses (Berthoud et al., 2010; Martin et al., 2012; Schroeder & Martin, 2012; Francis et 

al., 2013). Therefore, infested colonies often have viral infections, which have now been 

evidenced as a major factor in the decline of colonies (Highfield et al., 2009; Martin et al., 

2012). Typically, beekeepers employ a number of management techniques to reduce Varroa 

numbers in a colony. These involve the application of Varroacides in which mites have been 

shown to develop resistance (Milani, 1995;1999; Thompson et al., 2002; Sammataro et al., 

2005) and biotechnical methods involving various colony manipulations (Rosenkranz et al., 

2010). These treatment methods have recently been called into question as they may inhibit 

natural selection towards Varroa resistant colonies (Neumann & Blacquière, 2017).  

 

 

                

 

 

 

Figure 3. The reproductive life cycle of V. destructor inside a honey bee cell (Oldroyd, 1999). 

The female Varroa mite (black) enters the cell of a 5th instar larva prior to capping and lays 

an unfertilised egg which develops into a male Varroa mite (white) and fertilised eggs which 

develop in to female mites (grey). The female daughter mites then mate with the male who 

dies and when the bee emerges so do the reproductive females.  
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Honey bee viruses  

Approximately 23 viral pathogens have been identified in honey bees (Chen & Siede, 2007; 

Runckel et al., 2011; Li et al., 2014). The majority of honey bee viruses are present in a 

colony at low viral loads and cause asymptomatic disease symptoms. Multiple viral 

infections can be present in a single honey bee at any one time (Traynor et al., 2016). These 

are mostly positive-sense RNA viruses belonging to the families Dicistroviridae and 

Iflaviridae and are often associated with Varroa infestation (Bailey & Ball, 1991; Chen & 

Siede, 2007; Tentcheva et al., 2004). However new social insect viruses are frequently 

discovered (Mordecai et al., 2016a & c; Remnant et al., 2017; Brettell et al., 2017) and more 

recently negative-sense viruses were discovered to infect honey bees (Remnant et al., 

2017). The sense of a virus refers to the polarity of nucleic acids (5’-3’ positive-sense or 3’-5’ 

negative sense) and determines how they are replicated within a host cell. A prerequisite for 

viral replication is the requirement of viral mRNA which is translated into the proteins 

needed to assemble a new virion. Positive sense viruses consist of viral mRNA that is directly 

translated into viral proteins, whilst negative-sense viruses require RNA dependant RNA 

polymerase to create positive sense strand mRNA, which in turn are translated into viral 

proteins (Domingo, 2015).    

 

Of the viruses transmitted by Varroa it is the species complex forming the Paralysis viruses 

(Acute bee paralysis virus [ABPV], Kashmir bee virus [KBV], and Israeli acute paralysis virus 

[IAPV]) and Deformed wing viruses which are often detected in dying bees (Maori et al., 

2007; Highfield et al., 2009; McMahon et al., 2016). Interestingly the viral impact on colony 

health changes at different times of the year. The Paralysis viruses e.g. ABPV, are more 
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prevalent during spring (Glenny et al., 2017) and can kill an infected bee in as little as 3-5 

days (Maori et al., 2007), whilst Deformed wing virus becomes more prevalent during the 

late summer when Varroa numbers are at their highest (Highfield et al., 2009; Glenny et al., 

2017).  It is during the winter period when unacceptable numbers of colony losses are 

witnessed in the temperate zone (Highfield et al., 2009; Genersch et al., 2010; Berthoud et 

al., 2010), therefore making DWV of major concern and the main focus of this research.  

 

Deformed wing virus 

DWV is a single-stranded positive-sense RNA virus of the family Iflaviridae (De Miranda & 

Genersch, 2010). It is regularly detected in social and solitary bee populations across the 

globe (Genersch et al., 2006) and has recently been discovered in species associated with A. 

mellifera such as ants, wasps (Evison et al., 2012), Tropilaelaps mercedesae (Dainat et al., 

2009), V. destructor (Bowen-Walker et al., 1999; Chen et al., 2005), and Small Hive Beetle 

Aethina tumida (Eyer et al., 2009). DWV can be detected in all life stages (eggs, larvae, 

pupae) and type (Males, females, queens) of honey bee (Chen et al., 2005; de Miranda & 

Fries, 2008).    

 

DWV has recently been described as a quasispecies (Mordecai et al., 2016a). A quasispecies 

exists in a highly mutagenic environment as a number of master variants, each having their 

own swarm of mutant progeny. This constant process of mutation is due to the nature of 

RNA viruses which have high error prone replication rates (Palacios et al., 2008; Lauring & 

Andino, 2010) as a result of the reverse transcription process. A constant process of 
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mutation drives evolution as clouds of variants can gain a competitive advantage over 

closely related genomes, thereby allowing them to occupy several biological niches 

(Domingo et al., 2012). Furthermore, closely related viruses can co-infect a host cell allowing 

viral recombinants to form and emerge in the viral landscape.  

 

As a quasispecies, DWV exists as three closely related master variants: Variant type-A (Lanzi 

et al., 2006), B (Ongus et al., 2004), and C (Mordecai et al., 2016a).  Variant A is the most 

commonly detected and has been linked to colony declines (Martin et al., 2012; Schroeder 

& Martin, 2012; Francis et al., 2013). DWV type-B (previously designated as Varroa 

destructor virus-1 (VDV-1)) has been implicated in the long-term survival of a single mite 

infested honey bee population in the UK (Mordecai et al., 2016b), although other studies 

suggest that type-B is lethal to honey bees (McMahon et al., 2016; Natsopoulou et al., 

2017). The effects of DWV type-C are unknown as it is the most recently described variant 

(Mordecai et al., 2016a), however type-C was detected in colonies which subsequently died 

despite having low mite populations (Kevill et al., 2017; Chapter one). Furthermore, the 

ability of three master variants to infect the same host cell provides the opportunity for viral 

recombinants of DWV to form. Viral recombinants have been detected for all DWV variants 

(Mordecai et al., 2016a; Moore et al., 2011, Dalmon et al., 2017) and it is unclear how 

prevalent these are and their impact upon colony heath.   
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Deformed wing virus transmission 

DWV can be transmitted both vertically and horizontally, with the mode of transmission 

playing an important factor in virulence and pathogenicity. Both virulence and pathogenicity 

are used to describe the severity or harmfulness of a disease (Shapiro-Iian et al., 2005). 

Virulence describes the ability of a virus to replicate in a host (i.e. increased virulence) and is 

used to quantify the severity of a virus, allowing for the interaction between the host and 

pathogen to be assessed (De Miranda et al., 2013). Pathogenicity is a qualitative trait 

referring to the ability of a virus to cause disease symptoms in the host and is mediated by 

the virulence of a virus. 

 

Vertical transmission occurs when viruses are transmitted from parent to offspring during 

reproduction either in sperm or upon the egg surface (Chen et al., 2005; 2006; Yue et al., 

2006). Vertical transmission is often associated with less virulent viruses, as the next 

generation of host is required for the long-term survival and transmission of the virus (Day, 

2003; Ebert & Bull, 2003; Fries & Camazine, 2001). Therefore, vertical transmission is 

associated with reduced virulence and pathogenicity of the virus (the ability of a virus to 

cause disease symptoms and death of the host) (Shapiro-Iian et al., 2005). 

 

Horizontal transmission occurs via the feeding activities of honey bees (trophallaxis) with 

DWV detected in larval food and also pollen (Yue et al., 2007; Chen et al., 2006). The feeding 

activities of honey bees often lead to a low-level, asymptomatic infection (De Miranda & 

Genersch., 2010). Horizontal transmission also occurs via the feeding activities of Varroa 
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mites (Ball, 1989; Bowen-Walker et al., 1999) and is evidenced to cause lethal infections in 

honey bee colonies. This is achieved via the inoculation of DWV directly into the bee 

haemolymph. The feeding activities of mites in honey bee colonies have transformed a 

relatively benign virus into one of the most widespread in the world (Highfield et al., 2009; 

Martin et al., 2012; Schroeder & Martin, 2012). 

 

Deformed wing virus symptoms  

Deformed wing virus was given its name due to its regular detection in honey bees which 

exhibit the deformed wing symptom (Figure 4) however, it is typically present in colonies 

which have a lack of visible symptoms (Brettell et al., 2017).   

 

Viral infections are classified as overt or covert (De Miranda & Genersch, 2010).  Overt 

infections have obvious disease symptoms, a high level of virus particle production, and are 

likely to be spread horizontally via feeding Varroa mites (Carreck, Ball and Martin, 2010). 

Symptoms include deformed wings in workers which hinder the worker's ability to fly, as 

well as stunted growth (Bailey & Ball., 1991).  Overt infections are further categorised into 

acute and chronic infections. Acute infections are short lived and highly productive causing 

clear symptoms and death of the host. Chronic infections occur over the lifetime of the host 

in the presence of disease symptoms, such as reduced longevity. The only difference 

between acute and chronic infection is the duration in which the host survives.  
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Covert infections are characterised by a lack of symptoms in the presence of low-level viral 

particle production, which can be detected in more than one life stage of the organism. 

Covert infections are associated with the vertical transmission of the virus and can become 

overt in later life stages (Burden et al., 2003). Covert infections of DWV were present in 

colonies before the spread of Varroa as evidenced by Martin et al., (2012).  

 

DWV infection in honey bees, appears to follow a cycle in temperate regions. Covert 

infections are present in spring and summer during peak brood production but then become 

overt in autumn when brood production decreases/ceases (Highfield et al., 2009). Elevated 

winter viral loads are caused by Varroa mites becoming phoretic due to the cessation of 

brood production in the winter months, this is when viral loads become unsustainable 

causing colony death (Tentcheva et al., 2004, Highfield et al., 2009). 

 

 

 

 

 

 

 

Figure 4. Honey bee with the classic deformed wing symptom. The photograph was taken by 

the University of Florida. 
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Varroa as a Vector of Deformed wing virus  

Covert DWV infections were detected in A. mellifera populations before the global spread of 

Varroa. In the presence of Varroa, DWV viral loads are typically high (>108 particles per bee) 

causing overt infections (Highfield et al., 2009; Martin et al., 2013; Martin et al., 2012).  A 

clear association between Varroa, DWV and overwinter colony losses have been 

demonstrated (Highfield et al., 2009; Carreck et al., 2010; Martin et al., 2013; Francis et al., 

2013). Pathogenic infections with increased virulence are often associated with the 

horizontal spread of the virus (De Miranda & Genersch, 2010) and it is suspected that the 

replication of DWV in Varroa can increase virulence (Yue & Genersch, 2005; Gisder, Aumeier 

& Genersch, 2009) however, this is disputed as DWV particles have only been found in the 

Varroa gut (Santillan-Galicia et al., 2008) and not the tissues.  

 

The combination of DWV and high levels of Varroa infestation normally leads to colony 

death (Korpela et al., 1992). V. destructor induced immunosuppression of A. mellifera is 

considered to increase DWV virulence, this is often the case in bee pupae parasitized by 

Varroa which develop symptoms such as deformed wings (Bowen-Walker et al., 1999).  An 

increase in virulence of DWV was reported after the wide spread of Varroa in the UK 

(Martin et al., 2013; Carreck, Ball, & Martin., 2010), Hawaii (Martin et al., 2012), and New 

Zealand (Mondet et al., 2014). This increase in virulence also corresponded with a dramatic 

decrease in DWV viral diversity (Martin et al., 2012) as Varroa-mediated DWV transmission 

selected for one dominating master variant after a three-year period.  
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Historical DWV detection in honey bee colonies  

DWV was first detected in 1978 and was isolated from diseased adult worker bees of A. 

mellifera collected in Egypt (Bailey et al., 1979). This discovery in Egyptian bees led to DWV 

first being named Egypt bee virus (EBV). EBV was then discovered in dying colonies in Japan 

in 1980 (Ball, 1983) this isolate was named Japanese Egypt bee virus (JEBV). However, this 

virus was later found to be prevalent in honey bee pupa and adults which exhibited the 

deformed wing symptom and was therefore renamed DWV (Ball, 1997).  

 

Since the discovery of DWV a number of techniques have been developed to identify 

infections. Early DWV research employed the use of serological techniques such as ELISA 

(Kulinčević et al., 1990; Bowen-Walker et al., 1999; Shen et al., 2005) which were used to 

detect the presence of DWV-specific antigens.   

 

Recent technological advancements have led to the use of polymerase chain reaction (PCR) 

methods, which are now regularly employed in many research areas. PCR relies upon the 

use of specific primers that act as a starting point for DNA synthesis. This technique is used 

to amplify DNA or RNA copies of a target gene sequence. There are several PCR methods 

available. End-point PCR is limited to a negative/positive result whilst quantitative results 

are required in the field of virology to establish the virulence of a virus, since there is a basic 

assumption that higher the viral load the greater the virulence. Therefore, real-time 

quantitative PCR (RT-qPCR) has been useful in identifying DWV as a significant honey bee 

virus and is widely used (Tentcheva et al., 2004; Genersch, 2005; Berenyi et al., 2007; 
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Gauthier et al., 2007; Kukielka et al., 2008; Baker & Schroeder, 2008; Highfield et al., 2009; 

Francis et al., 2013; McMahon et al., 2016).  

 

 Next-generation sequencing (NGS) produces a vast amount of data pertaining to viral 

variants, recombinants, and load. This has led to the identification of new DWV master 

variants and a range of viral recombinants (Moore et al., 2011; Dalmon et al., 2017; Brettell 

& Martin, 2017; Mordecai et al., 2016a). The use of NGS has allowed researchers to deepen 

their understanding of how the DWV complex interacts with and impacts the host.  

  

To date, the majority of research efforts have concentrated upon the presence of DWV or 

viral load only (Tentcheva et al., 2004; Shen et al., 2005; Gauthier et al., 2007; Kukielka et 

al., 2008; Highfield et al., 2009; Martin, Ball & Carreck, 2010; Francis et al., 2013). However, 

due to the discovery of DWV variants and technological advancements, studies are now 

starting to concentrate upon the presence and role of DWV variants type-A and B (Ryabov 

et al., 2014; 2017; Mordecai et al, 2016b, McMahon et al., 2016; Natsopoulou et al., 2017), 

whereas the role and prevalence of type-C is limited (Mordecai et al., 2016a; Kevill et al., 

2017, Chapter 1).  

 

Varroa tolerant populations of honey bees  

Several A. mellifera populations (feral and managed) have developed a tolerance to Varroa. 

These tolerant races and populations of honey bees are of particular interest to researchers 

and bee breeding programs alike.  Mite tolerant populations of A. mellifera are found across 
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the globe: England (Mordecai et al., 2016b), Sweden (Fries, Imdorf & Rosenkranz, 2006; 

Locke & Fries, 2011), Mexico (Mondragon, Spivak & Vandame, 2005), France (Le Conte et 

al., 2007) and North America (Seeley, 2007). No one overall cause of tolerance has been 

identified therefore, much uncertainty exists in the literature about the mechanisms behind 

tolerant populations.  

 

One common feature of Varroa resistance is linked to the ability of honey bees to respond 

to phoretic mites via grooming. This is an important resistance factor in Africanised honey 

bee colonies (Aumeier & Rosenkranz, 2001) but also in tolerant colonies of European honey 

bees (Rinderer et al., 2001). Grooming behaviour is considered when artificially selecting 

bees in bee breeding programs (Harbo & Harris, 2005; Rinderer et al., 2010), bees which 

exhibit this trait auto-groom (groom themselves) or elicit allo-grooming (groomed by nest 

mite) which removes mites from the adult bee (Peng et al., 1987; Fries et al., 1996). 

However, this trait alone is not completely effective as grooming behaviour may not cause 

mortality of the mite. Large amounts of undamaged mites were recorded by Fries et al., 

(1996) whilst conducting studies upon grooming behaviour, suggesting that grooming is 

more affective when combined with other Varroa reducing traits.  

 

Other behavioural responses which suppress mite numbers are also important when 

considering tolerance. Recently, the uncapping of Varroa infected brood cells aided in the 

long-term survival of Varroa tolerant colonies (Oddie et al., 2018). This is also the case for 

Carniolan bees which were discovered to be able to detect, uncap, and remove pupae 

infested by Varroa (Boecking & Drescher., 1991). Colony size, frequent swarming events, 

and limited brood production have also been evidenced in long-term surviving populations 
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of honey bees (Fries & Bommarco, 2007; Locke & Fries, 2011; Loftus et al., 2016). Small 

colonies have limited brood space. Therefore, mite reproduction is capped by the number of 

available brood cells. Frequent swarming events interrupt brood production and in-turn halt 

Varroa reproduction. All of these behaviours limit the number of Varroa mites present in a 

colony and reduce the Varroa-DWV vectoring cycle, ultimately contributing to tolerance.  

 

Recently, evidence arose which implicated DWV master variant type-B in the survival of 

long-term Varroa infested colonies (Mordecai et al., 2016b). The type-B variant was 

hypothesised to out-compete lethal type-A. The type-B infected colonies did not succumb to 

the virus which is considered to offer a protective factor via superinfection exclusion (SIE). 

SIE has been well documented in other viruses belonging to the Flaviviridae, such as 

hepatitis-C (Tscherne et al., 2007).  Mordecai et al. (2016b), speculate that the co-evolution 

of the honey bee-Varroa -DWV cycle has selected for less lethal DWV variant to become 

dominant in these seemingly resistant colonies. Further research is required to establish the 

extent to which SIE occurs in other naturally occurring resistant populations of honey bee. 
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Aims  

Human reliance upon honey bees for pollination services and the bi-products they provide 

makes them one of the most valuable social insect species on earth. The current level of 

overwinter colony losses is unacceptable (Neumann & Carreck, 2010), with an association 

between Varroa and DWV being evidenced to be a major factor in colony death. The recent 

identification of three DWV master variants and their differing impacts upon colony health 

and survivorship is an area which is currently under-researched. Therefore, the overall aim 

of this Ph.D. is to identify the prevalence and impact of the three DWV master variants in 

honey bee colonies and to fill the gaps currently present in the literature.  

 

More specifically the aims of this thesis are as follows: 

 

1. To develop a quick, reliable and cost-effective method for the detection of each 

known DWV master variant (type-A, B and C).  

 

A study detailing the design and implementation of an RT-qPCR assay specific to each DWV 

master variant. The newly developed ‘ABC assay’ was used to assess DWV variants present 

in historic samples which either survived or died unexpectedly during the winter of 2007.  
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2. To identify the seasonal prevalence, viral load and distribution of the three DWV 

master variants present in honey bees from Varroa tolerant and susceptible 

colonies, and understand their impact upon colony health in England and Wales.  

 

There are currently no landscape scale comparative studies which address the seasonal 

prevalence and impact of all three master variants of DWV upon honey bee colony health in 

the UK. This study aims to address this gap by comparing DWV variant seasonal prevalence 

and viral loads in colonies of Varroa tolerant and susceptible honey bees from England and 

Wales. The role of DWV master variants in overwinter colony mortality and Varroa 

tolerance is also addressed.  

 

3. To identify DWV master variant prevalence, viral load, and distribution in honey bees 

from Varroa tolerant and susceptible colonies to understand their impact upon 

colony health in the USA. 

  

During the past decade annual colony losses occuring over the winter period in the USA 

have varied between 20%-30%, which is one of the highest levels anywhere in the world.  

The aim of this study was to investigate the prevalence, load, and distribution of the three 

DWV master variants (A, B, and C), within both Varroa susceptible and tolerant colonies 

from across the USA. This study provides an explanation as to why colony losses are so high 

in the USA and further explores the role of DWV in Varroa tolerant colonies.    
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4. To assess the role of DWV variants in one of the oldest Varroa tolerant populations 

of honey bees in the world.  

 

The Arnot forest is home to a well-researched population of Varroa resistant honey bees. 

Here, colonies have survived with Varroa infestations at population levels similar to those 

before the arrival of Varroa. The mechanism behind the long-term survival of these colonies 

is still under investigation as current research has failed to pinpoint the precise mechanisms 

aiding their long-term survival. This has led researchers to suggest that the long-term 

survival of Arnot colonies is due to a number of life history traits and also the avirulence of 

mites and the diseases they vector. However, no viral work has ever been conducted.  

 

5. DWV viral recombinant prevalence in DWV positive colonies from England, Wales 

and USA.   

 

DWV master variants are capable of invading the same host cell, as a result they readily 

recombine forming a mosaic of novel genomes, however no landscape scale comparative 

studies have been undertaken.  
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Chapter 1: ABC Assay - Method development and application to quantify the 

role of three DWV master variants in overwinter colony losses of European 

honey bees 

Abstract 

Deformed wing virus (DWV) is one of the most prevalent honey bee viral pathogens in the 

world. Typical of many RNA viruses, DWV is a quasispecies, which is comprised of a large 

number of different variants, currently consisting of three master variants: Type-A, B, and C. 

Little is known about the impact of each variant or combinations of variants upon the 

biology of individual hosts. Therefore, we have developed a new set of master variant-

specific DWV primers and a set of standards that allow for the quantification of each of the 

master variants. Competitive reverse transcriptase polymerase chain reaction (RT-PCR) 

experimental design confirms that each new DWV primer set is specific to the retrospective 

master variant. The sensitivity of the ABC assay is dependent on whether DNA or RNA is 

used as the template and whether other master variants are present in the sample. 

Comparison of the overall proportions of each master variant within a sample of known 

diversity, as confirmed by next-generation sequence (NGS) data, validates the efficiency of 

the ABC assay. The ABC assay was used on archived material from a Devon overwintering 

colony loss (OCL) 2006–2007 study; further implicating DWV type-A and, for the first time, 

possibly C in the untimely collapse of honey bee colonies. Moreover, in this study DWV 

type-B was not associated with OCL. The use of the ABC assay will allow researchers to 

quickly and cost effectively pre-screen for the presence of DWV master variants in honey 

bees. 
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Introduction 

RNA viruses have high mutation rates and exist as a diverse population of variants or 

quasispecies (Domingo & Holland, 1997). Quasispecies are a range of variants, genetically 

linked through mutation and organised around a master sequence or variant (Biebricher & 

Eigen, 2006; Lauring & Andino, 2010); they undergo a constant process of mutation, 

competition, and selection (Domingo et al., 2012). This provides a cloud of variants with an 

evolutionary advantage, allowing them to occupy several biological niches; however, even a 

single amino acid change can completely alter the pathogenicity of a virus (Domingo et al., 

2012). 

 

Of the many RNA viruses that infect the European honey bee, the Acute bee paralysis virus 

(ABPV) and Deformed wing virus (DWV) quasispecies complexes are readily detected in 

asymptomatic bees and often associated with colony losses (Baker & Schroeder, 2008; De 

Miranda & Genersch, 2010). It is proposed that ABPV, Israeli acute paralysis virus (IAPV), 

and Kashmir bee virus (KBV) all belong to the same cloud of ABPV variants (Baker & 

Schroeder, 2008; De Miranda & Genersch, 2010). ABPV follows a classic acute-type infection 

strategy that rapidly translates into overt symptoms of paralysis and ultimately death for 

the honey bee. Virulence is highly dependent on the mode of transmission and type of the 

genetic variant; for example, the differences in pathology among different strains of IAPV 

found globally is likely due to high levels of standing genetic variation (Chen et al., 2014). 
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Deformed wing virus (DWV), on the other hand, is a one of an increasing number of 

emerging RNA viral pathogens that are capable of replicating in a wide range of invertebrate 

species, such as; bumblebees, wasps, hornets, ants, hoverflies, and solitary bees (Evison et 

al., 2012; Manley et al., 2015, Brettell, 2017). More importantly, DWV is also vectored by 

ectoparasitic mites of honey bees (Bowen-walker et al., 1999; Dainat et al., 2009; Eyer et al., 

2009). Previous analysis indicates that the DWV population consist of many different 

variants (Baker & Schroeder, 2008; Martin et a., 2012; Mordecai et al., 2016a). When DWV 

infection is associated with the mite Varroa destructor there is a dramatic increase in viral 

load (Mordecai et al., 2016a; Lanzi et al., 2006) and a loss in DWV diversity (Martin et al., 

2012; Ryabov et al., 2014), which is associated with the death of the honey bee colony 

(Highfield et al., 2009). Therefore, DWV exists as a quasispecies and is now the most 

regularly detected virus in honey bees. 

 

Considering DWV’s host range and varying impact on different honey bee populations and 

hosts, it is important to establish the role that each DWV master variant within the various 

insect communities play. Currently, three master variants of DWV have been identified: 

Type-A (Lanzi et al., 2006), B (Ongus et al., 2004), and C (Mordecai et al., 2016a). Type-A is 

the most prevalent and has been linked to colony declines (Martin et al., 2012; Schroder & 

Martin, 2012; Francis et al., 2013). DWV type-B (previously designated as Varroa destructor 

virus-1 (VDV-1) has been implicated in the protection of the colony against DWV type-A in a 

mite infested honey bee population in the UK (Mordecai et al., 2016b), although type-B can 

be pathogenic at the level of the individual honey bee (McMahon et al., 2016). The effects 

of DWV type-C are still unknown, as it is the most recently-described variant (Mordecai et 
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al., 2016a). Furthermore, the ability of the three master variants to infect the same host 

provides the opportunity for viral recombinants of DWV to form and a range of 

recombinants have been detected for DWV master variants (Mordecai et al., 2016a; Moore 

et al., 2011; Dalmon et al., 2017). 

 

The most common detection method for DWV is reverse transcriptase polymerase chain 

reaction (RT-PCR), the majority of primers used are targeting the RNA dependent RNA 

polymerase gene (RdRp) (Francis et al., 2013; McMahon et al., 2016; Tentcheva et al., 2004; 

Highfield et al., 2009; Gauthier et al., 2007; Kukielka et al., 2008). Primers which target other 

regions in the DWV genome such as the Lp, Helicase, VP1, and VP2, have also been 

described (Genersch, 2005; Moore et al., 2011; Dalmon et al., 2017). Using several regions 

allows for the identification of DWV recombinants. With the exception of McMahon et al., 

(2016) and Moore et al., (2011) current studies do not discriminate between Type-A or B 

(Tentcheva et al., 2004; Genersch, 2005; Gauthier et al., 2007; Kukielka et al., 2008; 

Highfield et al., 2009; Carreck et al., 2010; Dainat et al., 2011; Martin et al., 2012; Schroeder 

& Martin, 2012) and have concentrated upon its prevalence and load, rather than the 

variants present or only report on one master variant. High resolution melt analysis (HRM) 

was previously used post RT-PCR to identify variations in nucleic acid sequences by 

detecting differences in amplicon dissociation curves (Mordecai et al., 2016a; Moore et al., 

2011)). Martin et al., (2012) reported the separation of DWV type-A and B via HRM. 

Unfortunately, DWV type-C fell within the same dissociation curves as DWV type-B 

(Mordecai et al., 2016a). To our knowledge, no assay has been designed to report on all 

three known master variants of DWV. 
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More recent quantitative-PCR (qPCR) methods have been developed, which allows for DWV 

viral loads to be calculated by either absolute quantification using a DNA (McMahon et al., 

2016) or RNA (Highfield et al., 2009) standards or via relative quantification using a ∆Ct 

(delta critical threshold) value determined relative to a known housekeeping gene (Gauthier 

et al., 2007; Kukielka et al 2008; Dainat et al., 2009; 2011; Francis et al., 2013). The absolute 

quantification method is considered the “gold standard” as it provides virus genome 

equivalent data which, in turn, can also be normalised to housekeeping genes for between-

sample comparisons (e.g., Highfield et al., 2009); and it can, in the long run, save both 

money and time (Leong et al., 2007). Research efforts are now moving towards 

incorporating next generation sequencing (NGS), which produces a vast amount of data 

pertaining to viral variants, recombinants, and load (Mordecai et al 2016a; Moore et al., 

2011; McMahon et al., 2016; Dalmon et al., 2017; Mordecai et al., 2016c; Brettell et al., 

2017). However, this technique is both costly and time-consuming.  

 

As evidenced, a simple DWV presence/absence assay using RT-PCR has limited value as the 

realisation that the viral load and variant diversity is vital in studying the evolution and 

impact of DWV master variants upon pollinator health. Therefore, primers which can detect 

all of the major DWV variants (A, B, and C) are required as a first step to investigate the 

impact that each DWV master-variant has upon its hosts and how they are evolving or co-

evolving. Here we report on a RT-qPCR or ABC assay, based on a new set of primers, to 

detect all the known DWV master variants (A, B, and C). This will hopefully allow researchers 

around the globe to investigate the role of the various variants via a common method, thus 
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allowing the results generated across the various studies to be comparable. We applied the 

assay to archived material collected during the Highfield et al. overwintering colony loss 

(OCL) study, which reported that the relative increase in DWV load during the overwintering 

period was implicated in colony losses. Here we provide evidence that multi-DWV master 

variant type-A and C are responsible for the decline in colony health. This is the first time in 

which type-C has been recorded in dying colonies, with the implication that the low levels of 

DWV type-B were unable to protect the colony (Mordecai et al 2016b). 

 

Methods 

Primer design 

Primers were designed using the DWV reference sequences for DWV type-A (NC_004830.2), 

type-B (AY_251269.2) and type-C (CEND01000001.1). The primers were designed in a similar 

RdRp region used by Highfield et al., (2009) as this is a highly-conserved region of the 

genome. All three primers use the same forward primer binding site since it has a high 

identity within, and between, master variants, and three different reverse primers (Table 1). 

Primers were designed with similar thermodynamic properties to allow each to be used in 

the same PCR cycling conditions. 
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Table 1. Primers used in this study. 

Target 
Primer 
Name 

Sequence (5′–3′) 

Genome 
Target 
(NC004830.
2) 

Size 
of 
Prod
uct 
(bp) 

Reference 

DWV DWVnew-F1 TACTAGTGCTGGTTTTCCTTT 8653–8673  This study 

DWV 
Type-A 

DWVA-R1 CTCATTAACTGTGTCGTTGAT 8808–8788 155 This study 

DWV 
Type-B 

DWVB-R1 CTCATTAACTGAGTTGTTGTC 8808–8788 155 This study 

DWV 
Type-C 

DWVC-R1 ATAAGTTGCGTGGTTGAC 8805–8788 152 This study 

DWV q 
DWVq-R1 CTGTGTCGTTGATAATTGAATCTC 8656–8676 

145 
(Highfield et 
al., 2009) DWVq-F1 TAGTGCTGGTTTTCCTTTGTC 8800–8777 

M13 
M13F GTAAAACGACGGCCA 

Na 361 
(Highfield et 
al., 2009) M13R CAGGAAACAGCTATG 

Actin 
ActinR1 

AAGAATTGACCCACCAATCCATA
C Na 120 

(Highfield et 
al., 2009) 

ActinF1 CCTGGAATCGCAGATAGAATGC 

 

Viral master variant plasmid standards 

To create standards for each of the three primers, plasmid vectors containing the target 

genes (RdRp region) of DWV master variants type-A, B, and C were created (Biomatik, Table 

2) and reconstituted as per the manufacturer’s guidelines. Heat shock transformation was 

performed using One Shot® TOP10 chemically-competent Escherichia coli following the 

manufacturer’s instructions (Life technologies). Using an aseptic technique, the 

transformants were selected on LB agar plates, containing kanamycin and left to incubate at 

37 °C overnight. A single colony for each master variant was propagated in LB medium 

containing kanamycin and a Qiaprep® spin mini prep kit (Qiagen) was used per the 

manufacturer’s instructions to extract plasmid DNA. The resultant plasmids were diluted to 

56 ng/μL and used in PCRs targeting the M13 regions flanking the multiple cloning sites 
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(Table 1); sequences were confirmed and used to produce linear strands of DNA which 

served as templates in PCR assays. M13 PCR products were visualised on 1% agarose gel. 

 

Table 2. DWV master variant (A, B, C) insert used in the plasmids. Primer sequences are 

underlined and reverse primer sequences are highlighted in bold. 

Target Insert 

DWV A TATCTTGGAATACTAGTGCTGGTTTTCCTTTGTCTTCATTAAAGCCACCTGGAACATCAGGTAA

GCGATGGTTGTTTGATATTGAGCTACAAGATTCGGGATGTTATCTCTTGCGTGGAATGCGTCC

CGAACTTGAGATTCAATTATCAACGACACAGTTAATGAGGAAAAAGGGA 

DWV B TATCCTGGAATACTAGTGCTGGTTTTCCTTTATCTTCATTAAAACCGCCAGGCTCTTCTGGTAA

GCGATGGTTGTTTGATATTGAATTACAAGATTCAGGATGTTATCTTTTGAGAGGGATGAGAC

CTGAACTTGAGATACAGTTGACAACAACTCAGTTAATGAGGAAGAAGGGA 

DWV C TTTCGTGGAATACTAGTGCTGGTTTTCCTTTATCCTCACTGAAACCAGCTGGAACATCAGGAA

AAAGGTGGTTATTTGATATTGAATTGCAAGATTCGGGATGTTATCTTTTACGAGGTATGCGTC

CCGAATTAGAAATACAATTGTCAACCACGCAACTTATGAGGAAAAAGGGA 

 

Primer optimisation  

Temperature step gradient PCR (48, 50.5, 52.9, 56.1, 58.5, and 61 °C) was performed to 

assess which annealing temperature provided the most specific result, using the newly-

designed primers listed in Table 1. Here, each PCR reaction contained 2 μL plasmid DNA, 10 

μL 5× buffer, 5 μL MgCI2, 5 μL dNTPs 2.5 mM, 2 μL DWV-forward primer (10 pmol), 2 μL 

DWV reverse primer (10 pmol) (A, B, or C, Table 1), 0.2 μL GoTaq® G2 Flexi DNA polymerase 

(Promega), and 23.8 μL RNAse free H2O. The results were visualised on 2% agarose gel. 
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Viral master variant cRNA standards 

To synthesise cRNA, 100 ng of gel purified M13 linear PCR product was recovered using a 

Zymoclean™ gel DNA recovery kit (Zymo research) and quantified using an Agilent 2200 

TapeStation. RNA transcription was conducted in vitro using a mMessage mMachine® T7 Kit 

(Life technologies), following the manufacturer’s instructions. Samples were treated with 

Turbo™ DNase (Life technologies) to remove DNA. cRNA recovery was conducted using an 

Ambion MEGAClear™ Kit (Life technologies). 

 

Method validation  

Quantification of nucleic acids (plasmid DNA and cRNA) for DWV variants A, B, and C was 

conducted using an Agilent 2200 TapeStation prior to analysis. To test reaction efficiency 

and create true competition experiments between primer sets for each of the DWV variant 

targets, a 10-fold dilution series and sample mixes containing each DWV variant in different 

concentrations were made from the quantified plasmid DNA and cRNA. Analyses were 

conducted via real-time PCR and real-time RT-PCR, respectively, on a Rotor-Gene 6000 

(Qiagen). In addition, competitive real-time qPCR and real-time RT-qPCR was also conducted 

on each DWV variant for both plasmid DNA and cRNA, respectively, i.e., the amplified Ct 

value for each variant were compared against a DNA or RNA standard curve. The mixed 

samples were analysed against a standard curve. Each primer pair was also tested 

sequentially against all three DWV variants, to ascertain if non-specific amplification 

occurred. Three master mixes were prepared for each DWV reverse primer (Table 1). The 

reactions for DNA contained 1 μL DNA, 10 μL SensiFAST™ SYBR® No-Rox (Bioline), 0.75 μL 

DWV forward primer, 0.75 μL reverse primer (Table 1) and 7.5 μL RNAse free H2O. Initial 
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activation occurred at 95 °C for 3 min, followed by 35 cycles of denaturing at 95 °C for 15 

sec, annealing at 58.5 °C for primers A and B, and 61.5 °C for primer C for 15 sec, and 

extension at 72 °C for 15 sec. 

 

RT-PCR was performed on the RNA using a SensiFAST™ SYBR® No-Rox One Step kit (Bioline). 

Each reaction contained 10 μL SensiFAST™ SYBR® No-ROX One-Step mix (2×), 0.75 μL DWV 

forward primer, 0.75 μL reverse primer (A, B or C; Table 1), 0.2 μL reverse transcriptase, 0.4 

μL RiboSafe RNase Inhibitor, 7.5 μL RNAse free H2O. The RT step occurred at 45 °C for 10 

min and denaturation at 95 °C for 10 min, followed by 35 cycles of denature 95 °C 15 sec, 

annealing at 58.5 °C for 15 sec and extension at 72 °C for 15 sec. RT negative PCR was also 

performed on the cRNA to confirm the absence of DNA in the cRNA. 

 

Robustness of the RT-PCR assay was also determined by spiking each target variant with 

equimolar concentrations at 9.94 ng/μL or 10-fold lower concentrations of competing 

master variant cRNAs. This was done to determine whether competing RNA could affect the 

linear range of the assay. The mean Ct values (carried out in triplicate) plus standard 

deviation was calculated. 

 

For both cRNA and DNA experiments, a melt curve analysis was performed between 72 °C 

and 90 °C, at 0.1 °C increments, each with a 5 sec hold period. Purity and amplicon size were 

confirmed on 2% agarose gel. Both methods ensured that no contamination was present in 

the negative template controls and that one product was amplified per primer set. Each 
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sample (plasmid DNA and cRNA) was analysed in duplicate. Copy numbers were determined 

using the following equations: 

 

Copy number plasmid DNA = (Concentration of DNA (ng/µL) × 6.022 × 1023) /  

(Fragment length base pairs × 109 × 650)  

Copy number RNA = (Concentration RNA (ng/µL) × 6.022 × 1023) /  

(Fragment length base pairs × 109 × 325)  

 

Application of the RT-qPCR (ABC Assay)  

Honey bee samples, which had previously tested positive for DWV (Highfield et al., 2009; 

Brettell, 2017) and had NGS data available (Mordecai et al., 2016a; Brettell, 2017), were 

selected for analysis. The 11.6, 6.7, and 21 million reads retained after BLASTn (Basic Local 

Alignment Search Tool) hits to a DWV reference database for samples GD1 June, GD1 late 

Oct and OW1a, respectively, were further partitioned by mapping the reads to the three 

DWV master variant genome (Mordecai et al., 2016a; Brettell et al., 2017). The honey bee 

samples (GD) were collected throughout 2006–2007 from Devonshire locations, and in 2015 

from Hawaii (OW), these samples were archived at −80 °C. A 30 mg sub-sample 

(representing ~2% of the total biomass) of previously-pooled and ground honey bees were 

weighed before total RNA was extracted using an RNeasy® mini kit (Qiagen) following the 

manufacturer’s instructions. Quantification of the total RNA was established using a 

spectrophotometer (Nanodrop 2000, Thermo Fisher Scientific). RNA was diluted to 50 ng/μL 

to avoid concentration-dependent effects on RT-qPCR efficiency (Evans et al., 2013). The 
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ABC assay was performed in triplicate for each of the DWV variants and actin. An actin 

control was deemed necessary to assess levels of degradation due to the long-term storage 

of samples. Master mixes were made, for each of the DWV primer sets, using a Sensifast™ 

SYBR® No-Rox One Step Kit (Bioline), and the temperature profile previously detailed. 

Genome equivalents were calculated per bee using the following equation: 

 

Genome equivalents = (average copy number) × (RNA dilution factor) × (elution 

volume of RNA) × (proportion of bee material) 
 

 

HRM assay 

High-resolution melt (HRM) analysis was conducted upon the archived Devonshire bee 

samples as per the protocol described in Martin et al., 2012. 

 

Sequencing 

A selection of the PCR or qPCR products generated in method validation and application of 

the ABC assay were Sanger sequenced (Bowen-Walker et al., 1999) to confirm the specificity 

of the assay. 
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Results 

PCR and RT-PCR sensitivities  

The sequencing results of the three DWV variant plasmids confirmed that they could be 

used in the PCR assays and for cRNA synthesis for the eventual use in the RT-PCR assays 

(Table 2). The optimum annealing temperature (as defined by the tightest PCR band of the 

expected size produced on an agarose gel without the presence of other fainter non-specific 

multiple sized bands) for the three primer sets was determined to be 58.5 °C when using 

plasmid DNA and cRNA as a template. Interestingly, when honey bee total RNA was used as 

a template the annealing temperature needed to be increased to 61.5 °C, especially when 

amplifying type-C. 

 

Competitive PCR 

Competitive PCR confirmed primer sets were specific to each DWV variant and amplification 

of non-targets did not occur (Figure 1). This was further confirmed through RT-PCR melt 

curve analysis (Figure S1A, supplementary information) and sequencing (Figure S1B, 

supplementary information).  
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Figure 1. Amplification plot of competitive PCR. Red line = type-A, blue line = type-B,  

green line = type-C, and black line = no template control. All primer sets amplified the target 

DWV variant, and non-targets are represented by coloured lines under 0.1 fluorescence. 

 

 PCR and RT-PCR efficiencies 

The performance of each primer set targeting the DWV RdRp region in a dilution series 

reveals that all the reactions were between 99% and 100% efficient (Figure 2). Interestingly, 

the RT-PCR (R2 = 1, −3.3 slope) was marginally more efficient than the PCR (R2 = 0.99, −3.5 

slope), however, the sensitivity of the reactions differs greatly within and between the RNA 

and DNA based assays. The cRNA standards (109 to 103 copies) detected in the Ct range 

spanning five to 25 cycles, while the PCRs starting with plasmid DNA as the template (108 to 
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104 copies) fell within the Ct range of between 8 and 25 Ct values (Figure 2). Primer set A 

was more sensitive and quantification can be carried between 4.5 and 25 Ct cycles whereas, 

for primer sets B and C, the Ct range is between 0 and 25 Ct cycles. The maximum number of 

cycles achievable for both RT-PCR and PCR were 35 cycles (=Ct 30) before non-specific and 

background cross-contamination could be detected. PCRs containing less than 103 and 104 

copies of cRNA and plasmid DNA, respectively, fell outside of the range of quantification. 

 

Both RT-PCR and PCR assays within and across different dilutions were highly reproducible 

(Figure 3). The mean Ct value for primer set A, B, and C detecting 109 copies of plasmid DNA 

being 8 (± 0.49), 8 (± 0.20) and 7 (± 0.70), respectively. This was different for the cRNA which 

had a mean Ct for primer sets A, B, and C of 3 (± 0.85), 9 (± 0.97), and 5 (± 0.91), 

respectively. Variation of <1 Ct from the average Ct value was witnessed for both RNA and 

DNA, therefore, reactions containing both RNA and DNA are highly reproducible (Figure 3). 
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Figure 2. Ten-fold dilution series for cRNA (A) and plasmid DNA (B) using the RT-PCR and 

PCR assays; the standard deviation bars are not shown for clarity. 
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Figure 3. Reproducibility of RT-PCR and PCR assays for each DWV primer set. Bars display 

the mean Ct of the average data calculated from the dilution series. Error bars show the 

deviation from the mean Ct between serial dilutions. DNA from plasmid, RNA refers to cRNA, 

DNA copy number = 109, RNA copy number = 1010.  

 

Robustness of the RT-qPCR (ABC assay) 

Ct values varied from the standard curve (triangles, Figure 4) when samples contained 

multiple master variants (circles, Figure 4). A 3.3 Ct value deviation is the equivalent of a 10-

fold increase/decrease in copy number, the deviation in this assay for primer set A is equal 

to 1.2 Ct’s, B = 0.87, and C = 0.61. Therefore, multiple variants present in the sample can 

affect the reaction stability but by no more than a three-fold increase/decrease in copy 

number. 
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Figure 4. ABC assay. Red = DWV type-A, blue = DWV type-B, and green = DWV type-C. 

Triangles represent DWV target only, and circles represent DWV samples containing 

multiple variants. Error bars represent the standard deviation from the mean Ct. 

 

Detection of DWV in honey bees using the ABC assay 

The results of RT-qPCR (ABC assay) revealed that all three master DWV variants were 

detected in honey bee samples (Figure 5). To further confirm the specificity of the new 

primers, the ABC assay data was compared to NGS data obtained for the same samples 

(Figure 5). Both assays detected the same DWV variants; a further confirmation of the 

specificity of ABC assay. The number of reads and viral loads differ between the results of 

the NGS and ABC assay, respectively, however, the presence of similar variants in each 

sample, and also that the sample was dominated by the same master variant, was 

consistent across all samples. 
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Figure 5. Comparison of ABC assay and NGS data for honey bees. Red = DWV variant A, blue 

= DWV variant B, and green = DVW variant C. 

 

DWV master variants implicated in OCL 

A study carried by Highfield et al., (2009) resulted in the collection of asymptomatic worker 

honey bees from three separate hives per apiary from a total five apiaries (n = 15 colonies), 

all known to have a history of Varroa mite infestation (Highfield et al., 2009). They were 

sampled over a year (bimonthly between May and October 2006, monthly between 

November 2006 and March 2007, and bimonthly in April 2007). All colonies with Varroa 

mites underwent control treatments to ensure that mite populations remained low 

throughout the study. Despite this, multiple virus infections were detected, yet a significant 

correlation was observed only between DWV viral load and overwintering colony losses 

(OCL). Our current dataset based on HRM analysis (Figure 6 and Figure S2 shown in 

supplementary information) reveal that multiple infections with DWV master variants 

coupled with consistently high viral loads (>107 DWV genome equivalents per honey bee) 

for several consecutive winter months played a causative role in OCL (Highfield et al., 2009) 
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observed in colonies GD1, GD3, PW2, and DM1 (Figure 6). Conversely, multiple DWV master 

variant infections were less frequent and at relatively lower levels (<107 DWV genome 

equivalents per honey bee) during the winter months in the colonies that survived (Highfield 

et al., 2009) the winter (Figure 6). 

 

The ABC assay was applied to select samples, focusing on months which represent the 

summer (July), autumn to winter transition (October) and winter months (January). The first 

spring bees (April) were also screen for the colonies that survived the overwintering period 

(Figure 6 and Table 3). DWV master variants type-A and C were detected in the majority of 

samples screened (Table 3), type-B was infrequent and up to three orders of magnitude 

fewer in viral load when compared to the other two master variants, especially in the 

colonies that suffered OCL. In addition, of the colonies which collapsed, type-C was the 

dominant variant in the final month before collapsing, reaching 10- to 100-fold more that 

the next highest variant. The ABC assay was only two orders of magnitude more sensitive 

that the HRM assay. 

 

DWV type-A was consistently present in all the samples tested. Interestingly, of the colonies 

that collapsed, GD1 and GD3 reported mid-winter highs (January) of >1010 DWV genome 

equivalents per honey bee (Table 3). This is in contrast to summer (July 06) samples which 

revealed through NGS (Figure 5) and the ABC assay (Table 3), respectively, to have been 

present in only a tiny proportion of type-A (0.002087% of the total 107 DWV infection in 

GD1, July 06) (Table 3). We note that it is at this time that DWV type-C starts to dominate 

the DWV variant landscape (Table 3). The role of DWV type-C is less clear in GD3. 
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Nonetheless, both DWV variants type-A and C dominated over type-B in the colonies which 

experienced OCL. 

 

Figure 6. DWV load plus variant data as revealed by HRM for bee colonies sampled in Devon, 

in the southwest of England (Shute, Honiton, Plymouth, Ashburton, and Newton Abbot), 

over a year (bimonthly between May and October 2006, monthly between November 2006 

and March 2007, and bimonthly in April 2007) as described in the Highfield et al., (2009) 

study. The DWV variants are displayed by colours: red = DWV type-A, blue = DWV type-B or 

C, and the shade of the colour relates to the viral load; light colours represent low viral 

loads, dark colours represent high viral load. 
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Table 3. ABC assay data alongside its respective HRM analysis on a reduced dataset (Figure 

6). DWV variant type and viral loads (darker shades indicate relatively high viral loads) are 

displayed for each sample. 

 

 

Colony ID Collection Date 
DWV Type 
A 

DWV Type 
B 

DWV Type C 
HRM Data 
^ 

GD1 * 

Late July 06 2.62 × 107 - 1.26 × 1012  

Early Oct 06 1.09 × 1011 1.73 × 108 2.68 × 1012  

Jan-07 2.65 × 101° 1.54 × 107 1.38 × 1011  

GD2 

Late July 06 9.75 × 106 - 5.84 × 107 - 

Early Oct 06 2.13 × 108 - 1.22 × 107  

Jan-07 2.12 × 107 - 2.51 × 105  

Late April 07 2.61 × 108 - -  

GD3 * 

Late July 06 3.61 × 106 - -  

Early Oct 06 4.41 × 108 7.45 × 104 4.69 × 104  

Jan-07 2.82 × 1011 4.99 × 106 9.50 × 105  

Early April 07 4.74 × 106 - 6.79 × 108  

CT1 

Late July 06 1.19 × 106 - 6.34 × 105   

Early Oct 06 3.56 × 107 2.07 × 106 -  

Jan-07 1.89 × 108 6.64 × 105 - - 

Late April 07 4.23 × 106 9.82 × 105 - - 

CT2 

Late July 06 6.71 × 107 - 1.24 × 106 - 

Early Oct 06 1.23 × 107 - 6.64 × 106 - 

Jan-07 8.69 × 107 - 4.23 × 107 - 

Late April 07 4.02 × 106 - 1.03 × 106 - 

CT3 

Late July 06 9.53 × 106 - 3.82 × 107 - 

Early Oct 06 1.74 × 108 - -  

Jan-07 2.20 × 107 - - - 

Late April 07 1.50 × 106 - -  

* unexplained OCL, colony died in winter or spring 

^ taken from Figure 6 

- below limits of quantification/detection 

 no RNA available 

 HRM type A, no viral load 
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Discussion 

The PCR assay that forms the basis of the ABC assay was shown to be specific for the 

detection of each DWV variant with no observed cross-reactivity, as evidenced via 

competitive PCR (Figure 1). We also go on to show the importance of using RNA, as opposed 

to DNA, in standards in RT-PCR-based assays when quantifying RNA viruses (Figures 2 & 3). 

 

As expected, the PCR efficiencies were the same for both PCR and RT-PCR assays, confirming 

the doubling effect of the product during each PCR cycle. Deviations were nonetheless 

observed in Ct values (Figure 4) when multiple DWV master variants were present in a 

sample. These deviations are considered to be caused by the forward primers being 

targeted by all the master variants in the reaction. In addition, as RNA viruses exist as a 

constantly mutating cloud of similar variants it is impossible to predict the role of unknown 

variants upon the RT-PCR assay. Nonetheless, the accuracy and robustness of the RT-PCR 

assay appears to be within a 0.5- to two-fold level (Figure 4). 

 

A comparison of the ABC assay with the NGS data confirms the efficacy of the assay. 

Discrepancies were observed between the precise amounts of DWV variant genome 

equivalents present; however, both methods yielded similar results, i.e., showing one 

dominant master variant over the less dominant master variant. These discrepancies are 

considered to be caused, firstly, by the NGS data obtained from oligo dT priming with a 3′ 

amplification bias. Given that the RdRp target is in this 3′ region (Dalmon et al., 2017), the 

inefficiency of the RT step could account for minor differences. Secondly, as we compared 
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the output of the top hit BLAST (Basic Local Alignment Search Tool) analysis from all the 

reads across the whole genome, samples confirmed to be free or with low-level 

recombinants, whereas our ABC assay is reporting only on the RdRp region. Thirdly, 

different methodologies will have different sensitivities. Nassirpour et al., (2014) conducted 

a comparative study between NGS and RT-qPCR and found minimum agreement between 

NGS and RT-qPCR platforms. They conclude that RT-PCR is more sensitive due to the use of 

targeted specific primer pairs. 

 

The HRM analysis revealed multiple DWV variants present in the Devonshire bees. The HRM 

technique can only separate DWV type-A from type-B & C master variant mix, with type-B 

and C sharing similar melting temperatures (Martin et al., 2012). However, analysis using 

the ABC assay revealed that type-C was the most prevalent variant for DWV melt curves 

falling within the type-B or C melt temperature range (<77.5 °C) (Martin et al., 2012). Type-B 

was infrequent and was present at lower levels independent on whether the colony 

collapsed or not. This result supports the superinfection exclusion hypothesis proposed by 

Mordecai et al., (2016b), who suggest that type-B is less virulent than other master variants 

of the virus. Here we hypothesize that it was not in sufficiently high enough numbers to 

protect colonies from the more virulent type-A, and possibly C, variants. This is the first time 

that type-C has been shown to be present, although not exclusively so, in colonies which 

collapsed during the winter period, and highlights the importance of variant specific assays 

for DWV detection. Given the sample size of both the Swindon (Mordecai et al., 2016b) and 

Devon (Highfield et al., 2009) studies, further validation of the virulence of type-C and 

putative protective nature of type-B (through superinfection exclusion) is still required. 
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Nonetheless, this study clearly shows how the ability to track variants throughout the 

season, at various sampling points, provides the opportunity for researchers to assess the 

putative role of DWV viral competition and evolution in honey bees. The HRM data revealed 

that DWV infection is variable between sampling points, as expected with RNA viruses which 

are under a constant state of competition (Domingo & Holland, 1997). 

 

The development of the DWV ABC assay provides an opportunity for a consensus approach 

to DWV research efforts. Standard curves are considered laborious to develop (Klein, 2002) 

and primer design can be troublesome, as efficiency and specificity must be equal to avoid 

poor reactions (Diffenbach et al., 1999). Past studies focused on the effects of multiple 

viruses upon colony health (Leong et al., 2007; Highfield et al., 2009; Berthoud et al., 2010; 

Genersch et al., 2010; Dainat et al., 2011; Ball et al., 2012; Nassirpour et al., 2014; 

Thompson et al., 2014; Mordecai et al., 2016c) that have revealed the role of DWV as a 

major factor in colony losses. Now, research efforts must focus on the effects of DWV 

variants. Currently, the knowledge about variant diversity upon honey bee health is limited, 

in particular for the type-C variant. Using three distinct primer sets provides an opportunity 

to study the effects of DWV variant diversity upon honey bee health for each of the known 

master variants of DWV. The ABC assay allows for a quick, reliable, robust, and quantitative 

method of three known master variants of DWV, providing an insight into total DWV 

infection in honey bees. 
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Supplementary information  

 

 

Figure S1: Validation of specificity of target amplification through A) Melt curve analysis and 

B) sequencing of resultant PCR product.  
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Figure S2. HRM melt curves of monthly samples from colonies that A) GD1 = collapsed 

during the over-wintering period, i.e. over-winter colony loss (OCL) and B) GD2 = survived 

the following year i.e. healthy colony. Shaded area indicates the melt position of the type-B 

or C variants in the months May to Sept in the OCL colony.  
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Chapter 2: DWV master variant dominance and seasonal prevalence in honey 

bee colonies from England and Wales 
 

Abstract  

Strong evidence supports an association between Varroa and Deformed wing virus (DWV) as 

the causal agent behind high overwinter mortalities of honey bee colonies in temperate 

regions. DWV persists as three master variants; Type-A, B, and C. Each variant may have 

differing degrees of virulence and their role in overwintering colony losses remains 

unknown.  The aim of this study is to investigate the seasonal prevalence, viral load, and 

distribution of the three DWV master variants within Varroa susceptible and tolerant honey 

bee colonies from England and Wales. The viral data was compared to overwinter colony 

mortality to address the impact of DWV variants upon colony health and survivorship. 

Honey samples were screened using the ABC assay detailed in Chapter one. The analysis 

revealed that DWV type-B is now the most prevalent and dominant DWV master variant in 

English and Welsh colonies regardless of Varroa control or location. Type-C was rarely 

detected and the once commonly detected type-A variant has now been almost totally 

replaced by type-B. Reported overwinter colony losses were low in the colonies sampled 

therefore yearly overwinter monitoring of DWV infection is required to further evidence if 

type-B dominance is a factor in reduced colony loss.  
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Introduction 

Typically, the northern hemisphere suffers from high overwinter losses of honey bee 

colonies each year (Lee et al., 2015: Van Engelsdorp et al., 2011).  It is now well evidenced 

that the cause of these overwinter losses is attributed to the ectoparasitic mite, Varroa 

destructor (Anderson & Trueman, 2000), as high Varroa infestation rates (>2000 mites per 

colony) cause the collapse of colonies (Martin, 2001). The first report of Varroa in Western 

Europe was made in 1970 (Griffiths & Bowman, 1981) and then in England in 1992 

(Rosenkranz et al., 2010).  Before the arrival of Varroa UK colony losses were consistently 

below 12%, whilst post Varroa UK losses increased to 30% (BBKA, 2017). An increase in 

colony losses due to the presence of Varroa has also been reported elsewhere in the 

temperate zone (Kraus & Page, 1995; Dahle, 2010; Genersch et al., 2010; Guzman-Novoa et 

al., 2010; Topolska et al., 2010; Le Conte et al., 2010; Van Dooremalen et al., 2012).  

 

Varroa mites reproduce in the brood of honey bees and feed upon the haemolymph 

(Webster & Delaplane, 2001) and fat bodies (Ramsey & Van Engelsdorp, 2016) of honey bee 

larva and adults. The mites feeding activities have several deleterious physiological and 

behavioural effects upon the host, including; deformed wings, stunted growth (Bailey & Ball, 

1997), reduced foraging activity (Janmaat & Winston, 2000) and colony related tasks. 

However, it is Varroa’s ability to transmit harmful viral pathogens especially Deformed wing 

virus (DWV) which is the cause of increased colony mortality (De Miranda & Genersch, 2010; 

De Miranda, Cordoni & Budge, 2010; Genersch & Aubert 2010; Martin et al., 2012). Of all 

the known 23 honey bee viruses (McMenamin & Genersch, 2015) DWV has been repeatedly 

shown to play a major role in overwinter colony losses of honey bees (Berthoud et al., 2010; 
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Dainat, et al., 2012a; 2012b; Highfield et al., 2009; Martin et al., 2010, 2012; 2013; Cornman 

et al., 2012; Nazzi et al., 2012; Francis et al., 2013). Furthermore, DWV is not a major driver 

behind colony losses in countries free from Varroa (Roberts, Anderson, & Durr, 2017) or 

where DWV infections are comprised of avirulent variants (Brettell & Martin, 2017). DWV 

viral loads are reduced alongside an increase in colony survivorship in studies where Varroa 

mites are removed (Martin et al., 2010), and beekeepers usually manage for the mite to 

enhance colony survivorship. Several authors (Nazzi et al., 2012; De Prisco et al., 2016) 

comment on the association between Varroa, DWV, and the down regulation of immune 

genes coinciding with increased DWV replication. Clearly demonstrating an association 

between Varroa, DWV, and honey bees, hereby termed the Varroa-DWV vectoring cycle.  

 

 DWV was discovered in symptomatic honey bees from Japan in the early 1980’s (Ball 

&Bailey, 1991) and the first full genome sequenced in 2006 (Lanzi et al., 2006). A study into 

DWV among the Hawaiian honey bee population (Martin et al., 2012) revealed that diverse 

DWV variants persisted prior to the arrival of Varroa. However, the establishment of Varroa 

selected the classic type-A variant which coincided with a dramatic reduction in wild honey 

bee colonies. Three DWV master variants have since been described; Type-A which is lethal 

(Martin et al., 2012; Schroeder & Martin, 2012; Francis et al., 2013); type-B which may help 

provide protection to the colony from more lethal variants (Mordecai et al., 2016a) but has 

been shown to be lethal to inoculated adult honey bees (McManhon et al., 2017) and; type-

C (Mordecai et al., 2016b) which was detected in Varroa treated colonies prior to the 

overwinter period (Kevill et al., 2017; chapter 1).  
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The seasonal role and prevalence of all three DWV master variants on a landscape scale is 

currently an under researched area. Further evidence is required to establish virulence and 

dominance of these viruses, which in turn can be used as a predictor for overwinter colony 

losses. Therefore, the aim of this study is to investigate the seasonal prevalence, viral load, 

and role of the three DWV master variants in colonies of honey bee from England and 

Wales. Samples include both managed Varroa treated/untreated bees and free-living feral 

colonies collected in 2016. Established feral colonies which were sampled in 2010 

(Thompson et al., 2014) were also screened to provide a historic insight into how DWV 

variant prevalence may change over time.  

 

Given the apparent association between Varroa and DWV and the recent implication of 

type-B offering a protective factor to colonies (Mordecai et al., 2016) via superinfection 

exclusion (SIE), it is important to compare both Varroa tolerant and susceptible colonies to 

assess the role of DWV upon overwinter colony survivorship. Typically, Varroa untreated 

colonies die after four years of infestation (Korpela et al., 1992), therefore tolerant colonies 

in this study have survived with Varroa for greater than four years and are considered 

tolerant to effects of Varroa and DWV. This reason for tolerance is yet to be explained and 

the presence of DWV variants and ability to be replicated (as indicted by viral load) in 

tolerant bees may explain resistance.  

 

This is the first time in which a UK wide initiative has been established and funded by 

beekeepers to assess the role of DWV master variant prevalence and viral load during spring 
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and late summer in free living and managed Varroa tolerant and susceptible honey bee 

colonies.  

 

Methods 

Sample collection  

The beekeepers of 35 apiaries located over a broad geographical range across England and 

Wales were contacted and requested that they identify up to five colonies in their apiary to 

be sampled. Each beekeeper was asked to collect a sample of up to 50 worker bees from a 

frame of brood. The first samples were collected upon the initial inspection in April (spring) 

and the second samples from the same colonies between mid-August to mid-September 

(late summer). All samples were stored in 100% ethanol at 4oC, Forsgren et al., (2017) 

shown that RNA yield of bees stored under these conditions was similar to that of live bees 

stored at 15oC, therefore RNA yield was not considered to be affected. A health 

questionnaire was sent to beekeepers who provided samples and was to be completed in 

the spring of 2017. The health questionnaire asked for the number of colonies lost during 

the overwintering period, the details surrounding any losses, and if any Varroa treatments 

where given to the colonies during the beekeeping season thus allowing the survival of the 

surveyed apiaries to be compared with the results of the DWV analysis. Unexpected 

overwinter losses are defined as a colony which died during the overwinter period which 

had no visible factors leading to colony death, such as lack of food, high mite drop etc.  In 

total complete data sets from spring and late summer were obtained from 28 apiaries, with 

additional spring or summer only samples (Table 1), as well as 25 completed health 
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questionnaires.  Untreated samples were selected from colonies which had survived for four 

or more winters as these were considered to exhibit a true tolerance to Varroa.   

 

Table 1. Number of apiaries involved in sampling and the number of samples received. 

 

 

 

 

 

 

 

 

 In addition, 16 historic samples of adult worker bees collected from feral colonies across 

England, in spring 2010 and had since been stored at -80oC (Thompson et al., 2014) were 

donated by C. Thompson. These samples had all previously tested positive for DWV but the 

variants were unknown.  

 

Sample processing  

Each sample was manually checked for Varroa mites and any visual deformities to the bee, 

which were both removed when found. Pools of 20 asymptomatic whole worker bees were 

homogenised in liquid nitrogen using a mortar and pestle. The homogenate was stored at -

80oC until RNA extraction was conducted. RNA was extracted from 30mg of honey bee 

tissue from the homogenised pool of 20 bees using an RNeasy Mini prep kit (Qiagen). RNA 

No samples per apiary 5 4 3 2 1 Total No of Apiaries 

Spring (all samples) 15 10 2 0 2 29 

Late summer (all samples) 15 8 4 2 1 30 

Treated spring 11 9 2 0 0 22 

Treated late summer 9 8 4 2 1 24 

Untreated spring 4 1 0 0 2 7 

Untreated late summer 6 0 0 0 0 6 
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was then quantified on Nanodrop 2000 (Thermo Fisher Scientific) and standardised to 

50ng/µl per sample.  

 

RT-qPCR 

RT-PCR was performed on the 1 μl total RNA (50 ng/μl) extracted from a pool of 20 adult 

asymptomatic honey bees using a SensiFAST™ SYBR® No-Rox One Step kit (Bioline). Each 

reaction contained 10 μL SensiFAST™ SYBR® No-ROX One-Step mix (2×), 0.75 μL DWV 

forward primer, 0.75 μL reverse primer (A, B or C; Table 1), 0.2 μL reverse transcriptase, 0.4 

μL RiboSafe RNase Inhibitor, 7.5 μL RNAse free H2O. The Reverse transcriptase step 

occurred at 45 °C for 10 min and denaturation at 95 °C for 10 min, followed by 35 cycles of 

denature 95 °C 15 secs, annealing at 58.5 °C for 15 secs and extension at 72 °C for 15 secs. A 

melt curve analysis was performed between 72 °C and 90 °C, at 0.1 °C increments, each with 

a 5 sec hold period.  RT-qPCRs also contained a negative template control (NTC) where 1 μl 

RNAse free water was used instead of total RNA. Both the amplification plot and melt curve 

were used to assess if contamination occurred in the controls. RT-qPCRs were repeated if 

contamination was found present in the NTC.  

 

Samples were analysed in triplicate, any samples which had a 3 Ct value deviation between 

triplicates were removed from the analysis, as 3 Ct values are the equivalent to a ten-fold 

increase or decrease in viral load. A total of 258 colonies were screened for each DWV 

variant.  
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Analysis of the results  

The samples were grouped into the historic (2010) feral colonies, and the more recent 2016 

samples into Varroa susceptible and tolerant colonies. The Varroa tolerant colonies have 

persisted without Varroa control for more than four years and as such are considered to 

have developed a mechanism for resistance, such as SIE (Mordecai et al., 2016a). 

 

The copy number of each DWV variant and viral load were calculated and converted into the 

genome equivalent per asymptomatic honey bee per colony, for each sample point (spring 

and late summer). The average DWV viral load per asymptomatic bee was then calculated 

for each apiary, i.e. a single location.  

 

 The following equation was used to calculate the copy number as per Kevill et al., (2017); 

 

Copy number RNA = (Concentration RNA (ng/µL) × 6.022 × 1023) / 

(Fragment length base pairs × 109 × 325) 

 

The genome equivalent was calculated as follows as per Kevill et al., (2017);  

 

Genome equivalents = (average copy number) × (RNA dilution factor) × (elution 

volume of RNA) × (proportion of bee material) 
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The viral load of each DWV variant were converted into percentages for individual colonies 

and the apiary averages.  These are represented by a single pie chart, the size of which 

reflects the viral load which were plotted onto a map of England and Wales, although the 

map is not an exact geographical representation as to protect beekeeper identity. As the 

viral load data was not normally distributed across all the samples, the statistical analysis 

was conducted using non-parametric tests. A Kruskal-Wallis test was used to compare the 

2010 and 2016 viral load data per DWV variant, as well as the viral load per DWV variant in 

colonies that survived or died in 2016, as the data were independent. Post-hoc analysis was 

conducted using a Dunn’s test of multiple pairwise comparisons (Dunn, 1961) and allowed 

for the identification of groups which differed significantly when using the Kruskal-Wallis 

test.  The 2016 apiary viral load data per DWV variant was compared using a Wilcoxon 

signed rank test, which is the non-parametric equivalent to a paired T-test and is used on 

dependant data.  The significance threshold was set at p<0.05 for all tests and when 

multiple comparisons were made the significance levels were adjusted using a Bonferroni 

correction (significance threshold / number of comparisons). The overall aim of the 

statistical analysis was to identify differences in DWV load per year, season, and variant 

between Varroa tolerant and susceptible colonies.  
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Results  

A comparison of DWV variant load and distribution in 2010 and 2016  

RT-qPCR data of feral bees collected in 2010 reveals that colonies are either DWV type-A 

dominated (>50% of the DWV viral load) (n = 5) or DWV type-B dominated (n = 10) (Figure 

1), whereas the 2016 colonies were mostly type-B dominated. Only two colonies from 2010 

tested below the quantifiable limit (e.g. outside the standard range at >30 Ct values) for 

type-A, three for type-B, and ten for type-C. Significant differences in DWV load for each 

variant was found between the 2010 and 2016 samples (Kruskal-Wallis; n = 217, H = 46.13, 

df = 3, p = <0.001) post hoc analysis using a Dunn’s test revealed that viral load for each 

DWV variant differed significantly from 2010 and 2016 (p = <0.001 for all pairwise 

comparisons). This result can be attributed to the differences in Type-A and B viral load 

between 2016 and 2010 (Figure 2).  

 

 

 

 

 

 

Figure 1. DWV map of honey bee colonies collected in spring 2010 and 2016. The size of the 

pie chart is indicative of viral load, and colour pertains to DWV variant (Type-A = red, B = 

blue, C = green). 
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Figure 2. A comparison of DWV load and variant in honey bee colonies in 2010 and 2016. X = 

mean, bold black line represents the median.  

 

Varroa tolerant honey bee samples from 2016 were compared to the feral bees of 2010 

(Figure 3) and show a reduction in type-A load and an increase in type-B load between 2010 

and 2016. A statistical difference was recorded in viral load between the two time points for 

type-A and type-B (Kruskal-Wallis - n = 70, H = 23.21, df = 3, p = <0.001), further post-hoc 

analysis confirmed that viral loads for DWV type-A and B differed significantly from 2010 to 

2016 (Dunn’s test p = <0.001 for all pairwise comparisons) (Figure 3). Type-C was 

quantifiable in one colony in 2010 and ten in 2016, when detected loads are often low 

(1E+08). 
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Figure 3. Comparison of DWV load and variant in feral colonies from 2010 and Varroa 

tolerant colonies from 2016. DWV type-A = red, type-B = blue, type-C = green, X = mean, 

bold black line represents the median. 

 

A comparison of apiary level DWV variant load and prevalence between spring and late 

summer 2016   

Apiary level analysis of the RT-qPCR data of the 2016 samples reveals that across both 

sampling points (spring and late summer) every apiary (spring n =29, late summer n = 30) 

tested positive for type-B and 99% tested positive for type-A. England and Wales are 

dominated by DWV type-B (Figure 4). DWV type-A was often below the quantifiable level of 

detection (<1E+02) and was dominant in only two apiaries in spring and two different 

apiaries in summer (Figure 4). Although DWV type-C was detected in 14 apiaries during 

spring and 12 in late summer the proportional amount of virus was low <0.31% and <0.70% 

in spring and late summer, respectively. In only one apiary did type-C infection represent a 
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high proportion (38%) of the DWV load (Figure 4). This occurred during the spring period 

and was localised as 50% of colonies screened in this apiary testing positive for type-C, 

however this was not maintained at the apiary level since in late summer type-B became 

dominant (Figure 4).   

 

The 2016 apiary level viral load data (Figure 5) reveals a pattern between the three DWV 

variants throughout the year i.e. from spring to late summer with type-B>type-A>type-C. No 

significant differences occurred between DWV variant viral load for spring and late summer, 

(Wilcoxon signed rank - Type-A; W = 87, n = 20, p = 0.50; Type-B; W = 76.5, n = 18, p = 0.69; 

Type-C; W = 82.5, n = 18, p = 0.89).  

 

 

 

 

 

 

 

 

Figure 4.  A map of England and Wales showing the average DWV load and variant per 

apiary in 2016. 
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Figure 5. A comparison of the average DWV variant load per apiary in 2016. X = mean.  DWV 

type-A = red, type-B = blue, type-C = green, X = mean, bold black line represents the median. 

 

Colony Level DWV viral load, within apiary variation, and associated colony mortality  

Colony level analysis of the RT-qPCR data of the 2016 samples reveals that across both 

sampling points (spring and late summer) every colony (n = 258) tested positive for DWV 

type-B and 99% tested positive for type-A (Figure 6). Only 16% (n = 258) of the samples had 

a >10% proportional load of DWV type-A, whereas type-B was detected at >50% 

proportional load in 88% (n = 258) of colonies screened. Type-C was detected in 58% (n = 

258) of colonies although it was only quantifiable in 16% (n =258), quantifiable samples had 

type-C viral loads which rarely exceed 1E+07.  

 

 Type-B dominance was maintained across the season, with proportional viral loads 

exceeding 50% in 85% of colonies in spring and 89% in summer (Figure 6). Type-A 

dominated nine non-corresponding colonies in both spring and summer, whilst type-C 
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dominated two colonies in spring and one in summer (Figure 6). Samples which have a 

corresponding spring and summer data are displayed in Figure 7, here competition between 

type-A and B can be seen in nine colonies and also between B and C in two colonies. Despite 

competition between variants type-B infection remained dominant throughout the season.  

 

The health questionnaire indicated that mortality was recorded in 9 out of 100 (9%) colonies 

for both sampling points; three colonies died in spring; one from robbing and two of no 

apparent cause. Six colonies died during the overwinter period; two winter deaths were 

attributed to weather, four were recorded as unexpected overwinter colony losses (Table 

S1, Supplementary information). A comparison of DWV loads at the end of summer was 

made between known surviving (n = 93) colonies and those which died of no apparent cause 

(n = 4). No statistical difference in DWV load or variant was recorded in colonies which died 

and survived (Kruskal-Wallis - n = 97, H = 0.76, df = 1, p = 0.38). Furthermore, viral loads in 

dead colonies did not exceed those of surviving colonies therefore, these deaths could not 

be attributed to DWV infection alone. 
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Figure 6. Colony level DWV load and variant maps for spring (left) and summer (right) in 

England and Wales 2016. 
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Figure 7. DWV variant proportional amounts (%) per corresponding colony for spring (A) and 

summer (B). Type-A = red, type-B = blue, type-C = green. Blank spaces indicate samples 

which fell below the quantifiable limit of detection. 

 

Varroa susceptible versus tolerant colonies  

A comparison of mean DWV infection for each variant remains the same in spring and late 

summer (type-A = 1E+08, type-B = 1E+10, type-C = 1E+08) for the susceptible bees, whilst 

the untreated bees had a 1.3-fold, 0.5-fold and 0.8-fold reduction in mean load for type-A, B 

and C (respectively) from spring to late summer (Figure 8).   

 



104 

 

 

 

Figure 8. Average DWV master variant viral load in Varroa susceptible and tolerant colonies 

during spring and late summer. DWV type-A = red, type-B = blue, type-C = green, X = mean. 
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Discussion 

The DWV type-B variant is currently widespread and dominant in UK honey bee colonies, a 

situation which has been maintained in the viral landscape from 2010 to 2016 (Figure 1).  In 

2016 Mordecai et al, found type-B dominating a Varroa resistant population of honey bees, 

leading to the suggestion that this variant was involved is the long-term survival of the 

colonies via SIE. SIE occurs when a virus has the ability to successfully outcompete and 

exclude other viruses and has been well documented in hepatitis C (Tscherne et al., 2007).  

The results presented here-within suggest DWV type-B SIE is not an isolated phenomenon 

and has occurred in honey bee colonies for at least six years. An increase in the prevalence 

of type-B over a six-year period has also been reported in USA honey bee colonies, where 

type-B was rarely detected in 2010 but was regularly detected in 2016 (Ryabov et al., 2017).   

 

Both the colony and apiary level analysis shows DWV type-B to be the dominant variant. 

Colonies were shown to successfully enter the beekeeping season with high type-B viral 

loads per bee (>1E+10) which were maintained into late summer. In addition, very few over 

winter losses were recorded (9%) and colonies that died of no apparent reason (n = 4) had 

mid-high type-B viral loads (1E+7-1E+11), with a mid-range (1E+06-1E+09) type-A co-

infection present in the majority of colonies. Chapter one implicates DWV type-A and C co-

infections in colonies which died unexpectedly in the 2007 overwinter period, however 

these variants were rare in the 2016 data. In addition, high type-B loads (>1E+10) were 

detected in 63% of the surviving colonies (Table S1, Supplementary information) therefore it 

is difficult to attribute the deaths of honey bees in this study solely to DWV. A clearer result 

may have been produced if samples were taken from later on in the season, however this 
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was not possible as participants did not wish to disturb the honey bees whilst they formed 

the winter cluster. Therefore, the exact DWV composition prior to colony death is unknown. 

To make a more robust seasonal study it would be best to sample colonies throughout the 

season at bi-monthly intervals (such as Highfield et al., 2009). Furthermore, as co-infection 

allows for DWV recombinants to form and viral recombinants between type-A and B have 

been shown to prevail in Varroa infested honey bee colonies in a previous study (Moore et 

al., 2011), it is hypothesised that viral recombinants are present in the honey bee colonies 

screened. Despite these limitations, the data clearly shows that DWV type-B dominance is 

maintained throughout the season in surviving colonies.   

 

DWV infection in Varroa susceptible and tolerant colonies differed slightly however the 

results were not significant (Figure 8). The Varroa susceptible colonies receive Varroa 

control therefore it was expected that viral loads in these colonies would be low, due to the 

lack of mites, however this is not the case. Recent evidence by Locke et al., (2017) shows 

that DWV infection is maintained after the removal of mites and may explain this result. The 

tolerant bees are considered to have developed some resistance as these colonies have 

survived with Varroa for longer than four years and comparable DWV loads between the 

two groups suggests that a mechanism for tolerance has evolved. 

 

The mechanism of Varroa resistance remains unclear in the tolerant bees, however a slight 

reduction in DWV load from spring to late summer was seen for all three DWV variants and 

was greater for the type-A variant (1.3-fold reduction in type-A and a 0.5, 0.8 reduction in B 

and C viral loads between spring and late summer). This reduction in mean viral load was 
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not witnessed in the susceptible bees. Over-all this result suggests that long-term Varroa 

untreated bees may have evolved traits that aid in resistance as has recently been 

evidenced in long-term Varroa resistant colonies (Oddie et al., 2018). 

 

Evolved resistance in the Varroa tolerant bees could be due to a trade-off in DWV virulence 

(ability to replicate) and pathogenicity (ability to cause disease symptoms) (Shapiro-Iian et 

al., 2005) caused by the Varroa-DWV vectoring cycle, as both the vector and the virus 

require a living host to ensure their survival. This study indicates low pathogenicity of DWV 

type-B in the presence of high viral loads, as evidenced by the large number of surviving 

colonies and the low number of overwinter colony losses reported here-within and also by 

the BBKA in their 2016 overwinter loss survey (13.2%). However, this is a complex scenario 

in which further research needs to be conducted.  

 

Furthermore, whilst there has been an upward trend in overwinter colony loss since the 

arrival of Varroa, and UK overwinter colony losses are still considered high (10%-30.5% in 

the last 9 years, [Carreck & Ashton, 2011; BBKA, 2017]), the British beekeepers association 

(BBKA) reported a reduction in overwinter colony mortality from 16.7% in 2015/2016 to 

13.2% for 2016/2017. The sample years in this study were years where overwinter colony 

losses were the 2nd and 3rd lowest on record (Figure 9) since the arrival of Varroa and the 

data shows that both 2010 and 2016 colonies are dominated by DWV type-B. Type-B was 

found to be low (<1E+07) in colonies which died from DWV type-A and C infection in 2007 

(Kevill et al., 2017, Chapter 1), this was also the year in which colony losses were the highest 

(Figure 9).  Whilst my results show a high number of colonies surviving with type-B 
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dominated DWV infections, others have shown type-B to be lethal (McMahon et al., 2017 & 

Natsopoulou et al., 2017).  High DWV type-B (>1E+12) loads were shown to kill inoculated 

caged bees (McMahon et al., 2017), and Natsopoulou et al, (2017) attributed a low type-B 

spring-time occurrence to a loss of winter worker bees. Therefore, it is hypothesised that 

type-B viral loads must exceed the threshold for host tolerance in all adult bees in order to 

kill a colony, however further studies of this nature are required to ascertain when a type-B 

infection becomes lethal to honey bee colonies. 

 

  

Figure 9. UK colony loss data. Grey bars show pre Varroa total colony loss and orange bars 

show overwinter losses from 2007 onwards. Data from the BBKA and David Aston. 

 

 

 

0

5

10

15

20

25

30

35

C
o

lo
n

y 
lo

ss
 %

Year



109 

 

Conclusion  

This is the first time in which colonies across England and Wales have been tested for each 

variant of DWV and shows DWV type-B to be dominant throughout the season. Type-B’s 

prevalence and dominance appear to be advantageous to honey bee colonies due to the 

low number of colony losses reported, however the situation will require monitoring over 

years. In addition, Varroa tolerant bees have been shown to have similar viral loads as 

colonies which undergo Varroa controls. The exact cause of the maintained DWV loads 

remains unknown and future work is required to establish the behavioural or physiological 

traits behind this result.  
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Supplementary information  
 

 

Table S1. The DWV master variants and total viral load in colonies which survived or died. 

Samples were collected in late summer 2016 from England and Wales 

 

Survivorship ID A B C Total 
Dead – 

Unexpected 
LH1 3.91E+08 1.60E+09 BL 1.99E+09 

Dead – 
Unexpected 

AB3.2 3.69E+06 1.70E+11 NEG 1.70E+11 

Dead – 
Unexpected 

AB4.2 BL 3.31E+10 BL 3.31E+10 

Dead – 
Unexpected 

NLBK1#2 BL 4.84E+07 NA 4.84E+07 

Dead - Weather  TREE2#2 1.01E+10 3.33E+06 6.65E+06 1.01E+10 

Dead - Weather  TREE3#2 BL 3.74E+11 1.36E+07 3.74E+11 

Alive LH2 1.76E+08 BL BL 1.76E+08 

Alive LH5 1.41E+10 1.97E+11 BL 2.12E+11 

Alive LH6 2.81E+08 2.66E+10 BL 2.68E+10 

Alive LH8 1.03E+09 1.03E+12 BL 1.04E+12 

Alive BTG BL 1.14E+10 BL 1.14E+10 

Alive NE2 1.39E+07 2.00E+07 NA 3.39E+07 

Alive NE1 1.64E+06 2.09E+07 NEG 2.26E+07 

Alive TT5 2.52E+06 9.62E+06 NEG 1.21E+07 

Alive TT52 9.75E+08 6.85E+11 BL 6.86E+11 

Alive TT7 1.43E+09 4.88E+11 NA 4.89E+11 

Alive TT9 1.99E+11 5.05E+07 NA 1.99E+11 

Alive TT6 3.35E+08 4.06E+07 NEG 3.75E+08 

Alive IP5.2 BL 6.53E+10 NEG 6.53E+10 

Alive IP7.2 BL 2.45E+10 BL 2.45E+10 

Alive IP4.2 BL 1.03E+11 NEG 1.03E+11 

Alive SW9 6.71E+05 8.89E+09 BL 8.89E+09 

Alive SW3.1 2.58E+06 6.12E+10 BL 6.12E+10 

Alive SW2.1 1.96E+09 1.33E+10 BL 1.53E+10 

Alive SW5 BL 5.61E+10 BL 5.61E+10 
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Alive CB88.2 BL 9.06E+07 BL 9.06E+07 

Alive CB3.2 BL 1.32E+11 NA 1.32E+11 

Alive CB12.2 BL 2.12E+10 NEG 2.12E+10 

Alive CB8.2 BL 2.09E+09 BL 2.09E+09 

Alive DFBKA19#2 1.29E+10 1.80E+09 NEG 1.47E+10 

Alive DFBK8.2 2.40E+06 9.12E+10 NA 9.12E+10 

Alive DFBK9.2 4.77E+09 6.50E+10 BL 6.97E+10 

Alive DFBK7.2 2.69E+09 2.04E+12 NA 2.04E+12 

Alive DFBK6.2 1.44E+11 3.76E+11 BL 5.20E+11 

Alive AB2.2 1.07E+11 3.52E+12 BL 3.62E+12 

Alive AB5.2 BL 3.15E+10 1.16E+08 3.16E+10 

Alive 163.2 BL 2.84E+10 BL 2.84E+10 

Alive 161.2 1.30E+09 8.34E+11 7.52E+06 8.36E+11 

Alive 153.2 BL 2.04E+12 NEG 2.04E+12 

Alive WD2.2 1.40E+07 4.26E+07 NEG 5.67E+07 

Alive WDL2 6.11E+07 1.47E+09 3.23E+06 1.54E+09 

Alive WD12.2 BL BL BL BL 

Alive WD7.2 2.01E+06 3.31E+07 NA 3.51E+07 

Alive 98.2 BL 1.79E+12 NA 1.79E+12 

Alive A1.2 BL 1.92E+11 NA 1.92E+11 

Alive R1.2 2.20E+07 6.10E+11 BL 6.10E+11 

Alive 20.2 9.08E+09 BL BL 9.08E+09 

Alive 66.2 1.17E+10 2.14E+11 BL 2.26E+11 

Alive fH1 BL BL BL BL 

Alive SKH1#2 8.02E+06 4.09E+09 NEG 4.10E+09 

Alive NLBK6#2 BL 7.40E+06 NA 7.40E+06 

Alive NLBK8#2 5.42E+05 2.19E+08 NA 2.19E+08 

Alive NLBK9#2 1.35E+05 2.57E+09 BL 2.57E+09 

Alive NLBK10#2 1.18E+11 4.32E+11 NA 5.50E+11 

Alive BP1#2 BL 1.08E+06 BL 1.08E+06 

Alive BP2#2 BL BL BL BL 

Alive WS4.2 2.63E+06 4.85E+11 1.49E+09 4.87E+11 

Alive WS9.2 BL 6.87E+09 BL 6.87E+09 

Alive WS8.2 1.09E+06 2.14E+11 NEG 2.14E+11 

Alive WS6.2 BL 1.87E+11 NEG 1.87E+11 

Alive WS1.2 2.05E+07 1.79E+11 NA 1.79E+11 

Alive ER1.2 BL 1.85E+11 BL 1.85E+11 

Alive ER2.2 BL 5.58E+10 BL 5.58E+10 

Alive ER8.2 1.29E+06 2.06E+11 2.70E+08 2.06E+11 

Alive ER4.2 BL 6.60E+11 BL 6.60E+11 

Alive ECH10.2 BL 7.63E+10 BL 7.63E+10 

Alive ECH2.2 BL 2.16E+06 NEG 2.16E+06 

Alive ECH4.2 2.71E+07 1.28E+07 BL 4.00E+07 

Alive ECH5.2 BL 8.80E+06 BL 8.80E+06 

Alive ECH7.2 1.84E+06 2.03E+06 NA 3.87E+06 

Alive W1Y#2 4.45E+11 5.06E+10 NEG 4.96E+11 

Alive W4A#2 5.35E+09 2.20E+10 BL 2.73E+10 

Alive W4#2 2.15E+06 1.06E+09 NA 1.06E+09 
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Alive W3#2 1.66E+07 6.72E+10 BL 6.72E+10 

Alive WN2#2 2.89E+07 1.95E+07 NEG 4.84E+07 

Alive C6 4.92E+06 3.02E+12 1.03E+09 3.02E+12 

Alive C8 BL 7.42E+09 BL 7.42E+09 

Alive C2 2.13E+06 5.49E+06 NA 7.62E+06 

Alive fEDW1#2 3.73E+05 4.16E+10 BL 4.16E+10 

Alive FEDW4#2 BL 3.92E+11 5.50E+07 3.92E+11 

Alive fEDW2#2 9.13E+05 7.28E+10 BL 7.28E+10 

Alive fEDW3#2 4.00E+09 2.68E+11 BL 2.72E+11 

Alive fEDW5#2 BL 1.19E+08 BL 1.19E+08 

Alive TREE1#2 1.15E+07 1.00E+11 NA 1.00E+11 

Alive TREE5#2 BL 1.43E+10 BL 1.43E+10 

Alive TREE4#2 BL 5.99E+10 5.80E+06 5.99E+10 

Alive WILLOW2 2.68E+06 1.76E+11 NA 1.76E+11 

Alive WILD2 1.08E+10 1.79E+11 BL 1.90E+11 

Alive garage 2 BL 9.46E+10 BL 9.46E+10 

Alive TRUNK2 BL 1.10E+07 BL 1.10E+07 

Alive ASTER2 BL 1.34E+07 2.03E+07 3.37E+07 

Alive W10H2 BL 2.73E+09 1.31E+07 2.74E+09 

Alive W14H2 BL 2.15E+11 BL 2.15E+11 

Alive W5H2 BL 2.45E+11 BL 2.45E+11 

Alive W12H.2 6.20E+06 2.79E+11 6.61E+07 2.79E+11 

Alive LB3#2 2.20E+06 2.24E+11 2.31E+07 2.24E+11 

Alive LB5#2 BL 4.91E+06 BL 4.91E+06 

Alive LB2.2 2.22E+05 2.32E+11 9.44E+07 2.32E+11 

Alive LB1#2 BL 3.53E+12 1.63E+08 3.53E+12 

Alive LB4#2 BL 3.27E+11 6.91E+07 3.27E+11 
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Chapter 3: DWV infection, mortality and survivorship in pre-wintering Varroa 

susceptible and tolerant honey bee colonies from the USA 

 

 

Abstract 

 
During the past decade annual colony losses during the winter period in the USA have varied 

between 22%-35%, which is one of the highest levels anywhere in the world. It is suspected 

that the association between Varroa and Deformed wing virus (DWV) is a factor in colony 

losses. The aim of this study was to investigate the prevalence, load and distribution of the 

three DWV master variants (A, B and C), within both Varroa susceptible and tolerant 

colonies from across the USA. The samples were collected in October-November 2016 and 

represent the pre-wintering population of USA honey bees when Varroa levels are at their 

maximum. Samples were screened using the ABC assay (Chapter one). This revealed that 

DWV type-A, was the most prevalent and dominant DWV master variant in US colonies in 

2016. Of the apiaries screened 63% were type-A dominated, type-B and C dominated 23% 

and 1%, respectively. Type-B appears to be an emerging virus in the USA honey bee 

population. Mortality data obtained for 45 colonies revealed that 18 colonies died during 

the winter period; of which 89% were dominated by type-A rather than type-B, the 

remaining 11% had DWV loads below the quantifiable limit. Due to the dominance of type- 

B in England and Wales (Chapter two), I predict that this variant will eventually replace type-

A and may lead to the long-term reduction in USA over-wintering colonies losses. No one 

master variant of DWV was found to be associated with mite treatment history i.e. if they 

were treated (Varroa susceptible) or untreated (Varroa tolerant), indicating that other 

factors are contributing to the evolution of mite tolerance.   
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Introduction  

Over the past decade the USA has continued to experience high annual levels of 

overwintering mortality of honey bee colonies (Hayes et al., 2008, VanEngelsdorp et al., 

2010; 2011; 2012; Spleen et al., 2013; Steinhauer et al., 2014; Seitz et al., 2015; Kulhanek et 

al., 2017). These losses are typically greater than those in the UK, Europe and the rest of the 

temperate zone (Neumann & Carreck, 2010). Overall winter colony losses in the USA have 

been recorded in the range of 22% - 35% in the last decade (Bee informed partnership, 

2017), whilst European winter losses range between 12% - 21% (Van der Zee et al., 2012; 

Brodschneider et al., 2016; 2018), with UK winter losses for the same period between 10% - 

30% (BBKA, 2016). The sustained level of colony losses is of grave concern in the USA since 

many major industries rely on honey bees for the pollination of crops, e.g. almonds, soft 

fruit and canola (oil seed rape), with honey bees estimated to provide $14 billion to the USA 

economy (Morse & Calderone, 2000). In order to sustain beekeeping operations, colony 

losses are recovered by beekeeping practices (e.g. splitting colonies, buying packages), 

although a decline of 5.8% in the total number of colonies maintained was witnessed in the 

USA between 2007-2008 (NASS, 2009 from Ellis et al., 2010) suggesting that bee populations 

are not always recoverable by conventional means.   

 

To help understand the reasons behind annual losses the Bee informed partnership 

conducts a yearly survey, where beekeepers are asked to complete and return a detailed 

questionnaire. These results are then collated and presented in annual reports, which 

inform the wider beekeeping community. The bee informed partnership is comprised of 

researchers, advisors and stakeholders, who rely on honey bees. The reasons given for the 
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loss of a colony in the USA are many, with hobbyist beekeepers mentioning queen failure, 

starvation, and poor weather. Whereas commercial beekeepers state ‘colony collapse 

disorder’ (CCD), Varroa infestation, and pesticides (Hayes et al., 2008; van Engelsdorp et al., 

2010; 2011; 2012; Ellis et al., 2010; Spleen et al., 2013; Steinhauer et al., 2014; Lee et al., 

2015). These differences, along with changing perceptions of the beekeeper provide 

difficultly in assessing the true causes of colony losses, particularly during the overwinter 

period when traditionally it is rare to inspect colonies.  The European scientific community 

commonly report pathogens, especially RNA viruses in the presence of Varroa to be a major 

factor in overwintering losses (Berthoud et al., 2010; Dainat, et al., 2012; Highfield et al., 

2009; Martin et al., 2010; 2013; Nazzi et al., 2012; Francis et al., 2013), with studies in the 

USA also providing evidence that pathogens are linked to weakened colonies and colony 

loss (Cornman et al., 2012; Martin et al., 2012; Traynor et al., 2016; Gleeny et al., 2017).  

 

In temperate regions, all the available evidence suggests that DWV is the main RNA virus 

associated with Varroa and the presence of Varroa leads to elevated DWV viral loads 

(Bowen – Walker et al., 1999; Gisder et al., 2009). DWV has been strongly associated with 

Varroa and the death of honey bee colonies during the overwinter period as evidenced by a 

range of studies in many countries (e.g. Berthoud et al., 2010; Dainat, et al., 2012; Highfield 

et al., 2009; Martin et al., 2010; 2012a 2013; Nazzi et al., 2012; Francis et al., 2013).  A key 

issue with DWV is that it is largely a hidden problem since almost all members of a colony 

are frequently infected and continue to appear healthy but their life spans are reduced 

(Dainat et al., 2012, Benaets et al., 2018), this is known as a chronic infection (De Miranda & 

Genersch, 2010). The characteristic deformed wing symptom associated with DWV is a poor 
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indicator of colony health, as only a small proportion of heavily infected individuals exhibit 

this symptom (Nordstrom, 2000), which often leads to the assumption that other causes are 

behind overwinter losses. Very few studies have emerged out of the USA which have 

concentrated on DWV as a driver for loss and often studies comment upon pathogen webs, 

and the interactions between Varroa and several viruses (Cornman et al., 2012; Runckel et 

al., 2011; Traynor et al., 2016; Cavigli et al., 2016; Gleeny et al., 2017). DWV was found to be 

abundant in USA colonies and follows the same seasonal pattern as the rest of the northern 

temperate zone (Traynor et al., 2016; Cavigli et al., 2016 Gleeny et el., 2017), however these 

studies failed to identify one cause behind colony loss and suggest that co-infection with a 

number of pathogens are behind weak colonies which subsequently die. Strong evidence 

exists in support of DWV being a major driver behind overwinter losses, it is important to 

establish the role of DWV master variants upon colony health, especially due to the 

seasonality of the disease and the fact that the USA has elevated yearly winter losses of 

honey bees.  

 

DWV exists as three known master variants; Type-A, B, and C. Briefly, type-A has been 

evidenced as lethal (Martin et al., 2012a); there is contention around the impact of type-B, 

as at a colony level bees can survived with high viral loads (Mordecai et al., 2016; Chapter 

two) but at the individual bee level has been evidenced as more lethal that type-A 

(McMahon et al., 2017), type-C was shown to be rare in England and Wales (Chapter two) 

but was detected in mite-treated colonies which died in 2007 (Kevill et al., 2017; Chapter 

one). Of the three known master variants, type-A was mainly present in the USA until the 

recent discovery of type-B by Ryabov et al., (2017). Therefore, the aim of this study is to 



120 

 

measure the prevalence, and load of all three DWV variants (Type-A, B, and C) from across 

the USA. DWV variant prevalence and load may explain why the USA suffers from 

periodically high overwinter losses of honey bees. This data will be used to assess 

associations between DWV variants, overwinter colony mortality and mite treatment 

strategy, since samples include managed colonies that are treated annually for Varroa 

(susceptible) and colonies that have survived for five years or more untreated (tolerant 

colonies). The colonies which have survived for longer than five years may be exhibiting 

Varroa tolerance, as untreated colonies typically succumb to effects of feeding mites at four 

– five years untreated (Korpela et al., 1992).   

 

Methods 

Sample collection 

Randy Oliver organised the collection of three honey bee samples containing 30-50 adult 

worker bees, per apiary from 78 apiaries across the USA, in the Autumn of 2016 (November 

& October). The geographical distribution of apiaries sampled spanned over 34 states, 

across the USA. Eleven of these apiaries were commercial beekeeping operations, the 

remaining 67 apiaries were hobbyist beekeepers. As the cause of over winter colony death 

is perceived differently in returned overwinter surveys between hobbyist and commercial 

beekeepers (Hayes et al., 2008; van Engelsdorp et al., 2010; 2011; 2012; Ellis et al., 2010; 

Spleen et al., 2013; Steinhauer et al., 2014; Lee et al., 2015) and DWV is largely a hidden 

problem it was considered appropriate to assess differences in DWV variants and load 

between the two groups to ascertain if differences in beekeeping operations (commercial or 

hobbyist) can influence DWV viral infections.  
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 Both Varroa-tolerant and susceptible colonies were also targeted to allow for a comparison 

between DWV variants and Varroa treatment history and also to assess if resistance is 

occurring in the Varroa tolerant bees. Beekeepers provided details of if a colony was 

untreated or treated for Varroa alongside their samples.  The cut-off point at which an 

untreated colony is deemed Varroa-tolerant was determined to be five years in this study. 

The rationale for this was based upon the fact that untreated colonies typically succumb to 

the effects of Varroa before this point (Korpela et al., 1992). The majority of colonies in this 

study were treated yearly and therefore are suspected to not have evolved traits seen in 

tolerant bees which have been left untreated for Varroa (Locke & Fries, 2011; Fries & 

Bommarco, 2007; Le Conte et al., 2007; Seeley, 2007;  Loftus et al., 2017; 2017; Oddie et al., 

2018) and as such are considered non-resistant to the effects of Varroa.  
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Figure 1. Number of samples provided from Varroa treated (pink) and untreated colonies 

(purple).   

 

Samples were collected and stored in 100% ethanol, this was decanted prior transportation 

to the UK where upon arrival, molecular grade ethanol was added to the samples and stored 

at 4oC. In total, 234 samples were received for analysis.  

 

Sample protocol  

Due to the large number of samples and time-consuming process of grinding up pooled 

whole bee samples for RNA extraction, an investigation into DWV load distribution for type-

A and B between the bee head and body was conducted. This was done with the aim of 

speeding up sample processing but is also based on sound reasoning since this method has 
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been employed previously in studies for DWV (Yue & Genersch, 2005; Genersch et al., 2010, 

Zioni et al., 2011), acute bee paralysis virus (Siede et al., 2008) and Kukugo virus (Fujiyuki et 

al., 2004).  

 

DWV type-A and B distribution in the heads and bodies of adult worker bees 

Ten adult bees from the same colony, were removed from the ethanol, which was left to 

evaporate. Bees were inspected for any visual deformities and when seen these bees were 

discarded.  The heads of honey bees were removed from the body and pooled separately 

into two groups, one containing heads only and the other group containing the remaining 

bee body parts (Thorax, abdomen and legs). The bee heads and body parts were then 

exposed to liquid nitrogen for approximately 30 secs. The bee heads were crushed into a 

homogenous powder within a 1.5 ml Eppendorf, whilst the bee bodies were crushed using a 

mortar and pestle. After each sample was crushed the bench and utensils were cleaned with 

bleach, Virkon and 70% ethanol to avoid cross contamination. In addition, an open test tube 

(blank) was left open during the crushing process. The blank was then subject to the RNA 

extraction process and analysed along with the samples using RT-qPCR, this step ensured a 

lack of airborne contamination.  

 

 RNA was extracted from 30mg of honey bee tissue from a pool of either ten bee heads or 

ten bee bodies using an RNeasy Mini prep kit (Qiagen) and quantified using a 

spectrophotometer (Nanodrop 2000, Thermo Fisher Scientific), as per chapter one. RT-qPCR 

was conducted upon 50 ng/µl total RNA obtained from a pool of ten bee heads, using the 
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DWV-A, B, C specific primers and variant specific standard dilution series detailed in Chapter 

one. The data from this experiment shows that bee heads contain very similar DWV loads as 

bodies. On this basis and reasons given above all the subsequent USA samples had the RNA 

extracted from pools of 10 bee heads, processed in the same way as above.  

 

RT-qPCR 

RT-qPCR was performed on the 1 μl total RNA (50 ng/μl) extracted from a pool of 10 bee 

heads using a SensiFAST™ SYBR® No-Rox One Step kit (Bioline). Each reaction contained 10 

μL SensiFAST™ SYBR® No-ROX One-Step mix (2×), 0.75 μL DWV forward primer (10uM), 0.75 

μL reverse primer (A, B or C; Table 1), 0.2 μL reverse transcriptase, 0.4 μL RiboSafe RNase 

Inhibitor and 7.5 μL RNAse free H2O. The Reverse transcriptase step occurred at 45 °C for 10 

min and denaturation at 95 °C for 10 min, followed by 35 cycles of denaturation at 95 °C 15 

sec, annealing at 58.5 °C for 15 sec, and extension at 72 °C for 15 sec. A melt curve analysis 

was performed between 72 °C and 90 °C, at 0.1 °C increments, each with a 5 sec hold 

period.  A no template control (NTC) was also included where 1 μl RNAse free water was 

used instead of total RNA. Both the amplification plot and melt curve were used to confirm 

there was no contamination of the controls.  

 

Samples were analysed in triplicate, any samples which had a 3 Ct value deviation between 

triplicates were removed from the analysis, as 3 Ct values are the equivalent to a ten-fold 

change in viral load. Therefore, 209 samples were analysed, the RT-qPCR failed for 35 

samples (more than 3 Ct value deviation between triplicates) and these results were 
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removed. In total, the analysis was conducted upon three samples for 61 apiaries, two 

samples from nine apiaries and one sample from eight apiaries. 

 

Analysis of the results 

To calculate the copy number of DWV master variant capsid genes RT-qPCR data for each 

DWV master variant was imported from the Rotor gene q series software® into Microsoft 

excel.  

Copy numbers were calculated as follows as per Kevill et al., 2017: 

Copy number RNA = (Concentration RNA (ng/µL) × 6.022 × 1023) / 

(Fragment length base pairs × 109 × 325) 

 

The genome equivalents per bee (DWV load), per variant were calculated as follows as per 

Kevill et al., 2017: 

Genome equivalents = (average copy number) × (RNA dilution factor) × (elution volume of 
RNA) × (proportion of bee material) 

 

The genome equivalent data for each variant was then summed and proportional DWV 

amount per variant was calculated as a percentage for each colony. The average DWV load 

per apiary was calculated from apiaries where more than one sample was received (n = 70). 

Apiary averages were converted into percentages to show the proportional DWV loads. 

Average DWV load per state was calculated by the sum of all DWV data per state and then 

the average calculated. Where only one apiary was sampled, the apiary average was used. 

In total, samples were provided from 34 states, 19 of these states provided samples from 
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more than one apiary. This data was inputted into excel, along with the state loss data 

obtained from the bee informed partnership.    

 

Participating beekeepers were also contacted and asked to provide details of colony 

mortality for the overwintering period of 2016-2017. Briefly the questionnaire asked if the 

colonies which had been sampled survived or died and also asked for confirmation as to if a 

colony was untreated or treated for Varroa. Out of the 78 apiaries contacted, 45 returned 

an overwinter survey questionnaire.   

 

Statistical analysis was performed using non-parametric tests upon the type-A and B data, 

as data were not normally distributed. Type-C positive samples were rare; therefore, the 

number of positive samples was too low to include in any statistical analysis e.g. n = <5. 

Spearman’s Rho was calculated to test for correlations between DWV load per state and 

state losses. A Kruskal- Wallis test was used to analyse DWV variant viral load when 

comparing hobbyist and commercial beekeepers, the colonies that died or survived the 

overwintering period, and the Varroa susceptible and tolerant colonies, as this data is 

independent. When a significant result occurred post-hoc analysis was conducted using the 

Dunn’s multiple pairwise comparisons (Dunn, 1961) which allowed for the identification of 

groups which differed significantly.  The significance threshold was set at .05 for all three 

tests and when multiple comparisons were made the p values were adjusted using a 

Bonferroni correction (significance threshold / number of comparisons). The overall aim of 

the statistical analysis was to identify differences in DWV load and variant between the 

different groups. 
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To investigate inter-apiary diversity of viral strains, a ‘city block’ method was used as per 

Martin et al., (2012b). This test was carried out upon the proportional (%) DWV data for 

type-A, B, and C. An example of how this method is conducted is provided in Figure 2, here 

the differences between DWV type-A, B, and C percentage per colony were calculated and 

then summed. The sum of the absolute difference was then divided by three (number of 

sample groups) and further divided by 2 (degree of freedom (n-1)).  This method produces 

scores between 0 (not diverse) - 100 (extremely diverse) and was used as it was considered 

a more transparent way to look at the data rather than using a complex analysis such as a 

three-way MANOVA. An example of how the city block scores were created is displayed in 

Figure 2.  
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Figure 2. Example of how the ‘city block’ analysis was performed. Three colonies (colony 1, 

2, and 3) per apiary (A1, A2, and A3) were analysed by calculating the sum of the absolute 

differences between each colony and dividing by the number of colonies and then further 

divided by the degrees of freedom (n-1). The ‘city block’ diversity scores are displayed in 

bold, 0 = no diversity, 50 = equal diversity and 100 = extremely diverse. 

 

 

 

 

Colony 1 Colony 2 Colony 3
Absolute 
difference 

Type A % 80 60 50 30

Type B % 10 20 30 40

Type C % 10 20 20 30

Sum of 
Absolute 
difference 100

0

10

20

30

40

50

60

70

80

90

100

A1                                   A2                                  A3

D
W

V
 p

re
va

le
n

ce
 (%

) 

Type A Type B Type C

Apiary ID

Colony 1

Colony 3

Colony 2

A1 

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

A2 

A3 

(100/3) / 2 = 16.6

(100/3) / 2 = 16.6

(220/3) / 2 = 36.6

Score        16.6                               16.6                                 36.6

Colony 1 Colony 2 Colony 3
Absolute 
difference 

Type A % 10 75 10 75

Type B % 85 15 85 15

Type C % 5 10 5 10

Sum of 
Absolute 
difference 100

Colony 1 Colony 2 Colony 3
Absolute 
difference 

Type A % 20 5 75 60

Type B % 85 15 0 70

Type C % 5 20 75 90

Sum of 
Absolute 
difference 220



129 

 

Results  

DWV load in honey bee bodies verses heads  

 

A comparison of DWV loads detected in individual adult worker bee heads and 

corresponding bodies reveals that DWV viral loads are similar between the bee head and 

bee body (Figure 3). A less than one-fold deviation between the head and corresponding 

body was witnessed for 83% of the type-A data and 80% of the type-B data, therefore 

confirming that the analysis of heads was sufficient for analysing DWV variant viral load.  

 
 

Figure 3. A comparison of DWV viral loads (type-A and B) found in an individual adult bee 

head and corresponding body.   
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Apiary level Analysis  

 

 

DWV was prevalent in the USA 2016 pre-wintering bee population (Figure 4), type A 

dominated 63% of apiaries, whilst only 23% and 1% were dominated by type B and C, 

respectively. The remaining 13% of apiaries were positive below the limit of quantification.  

Analysis of the 209 colonies tested within the 78 apiaries prior to the overwintering period 

of 2016 reveals that at the apiary level DWV is widespread and DWV type-A has greater 

prevalence than type-B or C (Figure 4). When comparing the state average DWV load for all 

variants (type-A, B, and C) to the state average overwinter colony loss reported by the Bee 

informed partnership for the winter of 2016-17 the trends were non-significant (Spearman’s 

Rho - Type-A - rs = 0.052, p = 0.76; Type-B - rs = 0.066, p = 0.74; Type-C - rs = 0.20, p = 0.45; 

DWV total load - rs = 0.20, p = 0.25) (Figure 5).  
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Figure 5. Comparison between the state average DWV load per variant and the average 

winter losses per state (Bee informed partnership, 2017).  

 

 

DWV variant prevalence and load in hobbyist and commercial colonies  

 

A high proportion of samples were co-infected with type-A and B. A comparison of DWV 

variants A and B reveals that hobbyist (n = 67) and commercial (n =11) colonies have a 

similar prevalence of type-A positive samples at 89% and 84%, respectively. Overall the 

percentage of type-A quantifiable samples (>1E+03) were higher in the hobbyist group, then 

the commercial at 61% and 42%, respectively (Figure 6). Conversely, quantifiable DWV type-

B prevalence was greater in commercial colonies than hobbyist at 45% and 36%, 

respectively. Whilst prevalence varied, DWV type-A and type-B loads between hobbyist and 

commercial colonies (Figure 6) were found to have no significant difference between the 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 10 20 30 40 50 60 70

D
W

V
 lo

ad
 (l

o
g 

1
0

)

Overwinter colony loss per state (%)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 10 20 30 40 50 60 70

D
W

V
 lo

ad
 (l

o
g 

1
0

)

Overwinter colony loss per state (%)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 10 20 30 40 50 60 70

D
W

V
 lo

ad
 (l

o
g 

1
0

)

Overwinter colony loss per state (%)

Spearman's Rho; rs 0.20, p 0.45 
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 10 20 30 40 50 60 70
D

W
V

 lo
ad

 (1
o

g 
1

0
)

Overwinter colony loss per state (%)

Type  A Type  B

Type  C Total DWV

Spearman's Rho; rs 0.05, p 0.76 Spearman's Rho; rs 0.06, p 0.74 

Spearman's Rho; rs 0.20, p 0.25 



133 

 

two groups for both DWV variants (Kruskal-Wallis - H = 2.53, df = 3, p = 0.46). Therefore, 

DWV prevalence and load is not affected by beekeeping operation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. A comparison of DWV type-A and B viral loads and prevalence in commercial (pink) 

and hobbyist colonies (yellow). DWV prevalence and loads were similar between the two 

groups. Quantifiable DWV positives for hobbyist (yellow) and commercial (pink), positives 

below the quantifiable limit (BL) (black) and negative results (grey) are shown in the pie 

charts.   
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Colony level analysis  

 

Across the whole data set, 95% of the 209 colonies, tested positive for DWV of these, 31% 

tested positive below the quantifiable limit, and 5% were negative of any DWV variant, 

showing that DWV is common and widespread throughout the USA (Figure 7). Prevalence of 

DWV variants at a colony level reveals a pattern of type-A > type-B > type-C (Figure 7). Type-

A dominated infection represents 73% of DWV positive colonies, type-B was dominant in 

24%, and type-C in 3%, showing type-A to be the most prevalent and dominant DWV variant 

in the USA (Figure 7).   

 

Inter apiary DWV diversity analysis of colonies using the ‘city block’ method reveals that 

DWV infection in USA apiaries between colonies is highly conserved, as 75% (n = 61) of the 

‘city block’ scores were <50, showing little diversity. Inter apiary diversity (city block score = 

> 50) did occur but in only 25% (n = 61) (Figure 8), here colonies had multiple DWV 

infections. 
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Figure 7. Map of winter losses and showing the proportional amount of DWV load per 

variant, per colony. Viral load is indicated by size of pie chart and variant by colour. The 

colour of each state represents the average percentage of winter colony loss, darker shade 

indicates high losses whilst paler shades represent low losses. Overwinter loss data was 

obtained from the Bee informed partnerships 2016-2017 colony loss survey. Preliminary loss 

data was plotted on to a map of the USA using https://createaclickablemap.com/.   
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Colony Mortality  

The returned overwinter loss surveys provided mortality data for 45 colonies. Colonies were 

separated into those which died (n = 27) and survived (n = 18). The results show a higher 

prevalence of DWV type-A and B quantifiable colonies (89% and 56%, respectively) for those 

that died during the winter of 2016-2017 (Figure 9). Whereas, DWV type-A and B prevalence 

were reduced (49% and 38%, respectively) in the colonies which survived (Figure 9). 

Statistical analysis revealed at least one significant difference between the groups (dead or 

alive) (Kruskal-Wallis – H = 15.2, df = 3, p = 0.0016), additional post-hoc analysis using a 

Dunn’s test revealed that all groups had significantly different viral loads for both DWV type-

A and B (Table 1).  The box plots (Figure 9) show that type-A viral load in dead colonies 

(1E+08 – 1E+11) exceeded those of surviving colonies (1E+06 – 1E+10), furthermore type-A 

loads (1E+08 - 1E+11) in dead colonies exceeded those of type-B (1E+06 – 1E+10). Whereas, 

the surviving colonies had greater type B (1E+06 – 1E+12) loads than type-A and B for those 

which died (Figure 9). The difference in viral load accounts for the significant difference 

witnessed in the post-hoc analysis (Table 1).  
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Figure 9. Box plots of DWV load for type-A and B positive colonies which survived the over 

winter period (alive – purple) and those which did not (dead - orange). DWV type-C was not 

found in the colonies which survived but was detected in two of the dead colonies. Pie 

charts show the percent of DWV quantifiable colonies and those which tested positive 

below the limit of quantification (BL).  

 

Table 1. The p values as per Dunn’s pairwise comparison of DWV Type A and B positive 

samples from colonies that survived or died during the overwintering period.  
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Varroa susceptible and tolerant colonies   

 

DWV prevalence was similar between Varroa susceptible (n = 182) and tolerant colonies (n = 

26), for the three DWV variants (A, B, C) (Figure 10). The percentage of type-A quantifiable 

Varroa susceptible and tolerant colonies was 54% and 59%, respectively. Type-A results 

which were positive below the quantifiable limit (BL) were also similar at 31% in susceptible 

colonies and 30% for the tolerant group. Type-B was quantifiable in 35% of susceptible 

colonies and 37% in the tolerant bees. Again, the percentage of samples below the 

quantifiable limit was similar for the susceptible and tolerant colonies at 27% and 32%, 

respectively (Figure 10). Susceptible colonies had a greater percentage of type-C 

quantifiable colonies (10%), however type-C prevalence was similar between the two groups 

as the percentage of colonies below the quantifiable limit was larger (>14%) in the tolerant 

group (Figure 10). In addition, no significant differences in viral load for type-A and B 

between Varroa susceptible (n = 182 from 70 apiaries) and tolerant colonies (n = 26 from 11 

apiaries) occurred (Kruskal-Wallis - H = 3.15, df = 3, p = 0.36) (Figure 10). Therefore, these 

results indicate that tolerant bees may exhibit a trait which maintains DWV loads at <1E+10, 

similar to colonies which under-go Varroa control (susceptible) (Figure 10).   
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Figure 10. DWV load (box plots) and prevalence (pie charts) in Varroa susceptible (lilac) and 

tolerant (purple) colonies. 
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Discussion  
 

In this study 95% of all 209 colonies sampled tested positive for DWV; of these 73% were 

predominately compromised of type-A, whilst type-B dominated 24% of the colonies and 

type-C was rare at 3% prevalence (Figures 4 & 7), dominance was defined as colonies with a 

greater than 50% proportional DWV load of one master variant. Non-significant correlations 

between the overwinter colony state loss data (Bee informed partnership) and DWV load 

per variant were witnessed (Figure 5) (Spearmans Rho - type-A - rs = 0.052, p = 0.76; type-B 

- rs = 0.066, p = 0.74, type-C - rs = 0.20, p = 0.45 and total load - rs = 0.20, p = 0.25), inferring 

that the correlations are very weak. However, further analysis of the results obtained from 

the overwinter mortality questionnaire provides evidence in support of type-A being a 

factor in overwinter colony losses when comparing colonies which survived the 

overwintering period to those that died (Figure 9). Here, type-A prevalence and viral loads 

were elevated in colonies which died, a result which was also reported in UK colonies 

sampled in 2007 (Highfield et al., 2009). In addition, the UK data presented in Chapter 2 

shows that DWV type-B is dominant in England and Wales where overwinter losses for the 

same period (2016-2017) were recorded at 13.2%, which are considered low post-Varroa 

losses.  

 

The DWV proportional load data was plotted onto data collected as part of the bee 

informed partnerships annual survey for 2016-2017. The bee informed partnership provides 

two data sets; one for total winter loss i.e. the total number of USA colonies reported lost 

that year and one for average winter loss per state. Total losses are considered to be 

representative of commercial losses (Randy Oliver personal communication). The average 
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loss rates are calculated per apiary, then the data is summed for each apiary and an average 

calculated per beekeeping operation per state, therefore these data are more 

representative of beekeeper losses. Study samples were largely provided by hobbyist 

beekeepers (n = 67). As such, the bee informed partnership’s average winter loss rates are 

more representative of this studies data.  No discernible difference between DWV 

prevalence or load when compared to hobbyist and commercial beekeepers was evidenced 

within these results (Figure 6). Therefore, there was no need to differentiate between 

commercial or hobbyist beekeepers during the data analysis.  

 

The findings in the study reveal that when multiple infections are present between type-A 

and B (32% of the data, n = 66), type-A is found to be dominant (61%), however it is 

predicted that over time, type-B will outcompete type-A and slowly become the dominant 

DWV variant in the USA. This has been demonstrated in studies where DWV type-B was 

experimentally injected into pupae (Ryabov et al., 2014; Amanda Norton, personal 

communication) and adult bees (McMahon et al., 2017) and was shown to out-competed 

type-A. Type-B dominance is also seen in honey bee colonies screened in England and 

Wales, where DWV type-B dominated apiaries and colonies (Chapter 2). In 2010, few (2.6%) 

colonies tested positive for DWV type-B in the USA whereas DWV type-B is now widespread 

(64.5% of colonies positive) across the states (Ryabov et al., 2017; this study). Only 37% of 

colonies screened in this study showed quantifiable levels of type-B, however a total of 69% 

of colonies tested positive, a number in-line with that of Ryabov et al., (2017). It appears 

that DWV type-B needs time to establish itself in the viral landscape. Due to its ability to 

outcompete other variants of the virus, I predict that it will only be a matter of time before 
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DWV saturates the USA, as has happened in the UK. If type-B superinfection exclusion 

allows colonies to be resistant to more lethal DWV variants (Mordecai et al., 2016), then it is 

predicted that the number of overwinter colony losses recorded in the states will be 

reduced to a level currently witnessed in the UK.   

 

Furthermore, the occurrence of type-B was higher in Californian colonies, where overwinter 

losses were lower compared to the rest of the USA (Bee Informed Partnerships preliminary 

data, 2017), which also fits the assumption that DWV type-B is avirulent under the host 

threshold (i.e. type-B loads can exceed those of type-A and bees survive). It is also worth 

noting that 6 of the 13 Californian apiaries were commercial operations in which some had 

selectively bred bees from survivor populations, in a bid to increase resistance (Randy 

Oliver, personal correspondence). Here, it appears that DWV type-B has been inadvertently 

selected for, a situation which also occurred in a seemingly resistant population of UK honey 

bees (Mordecai et al., 2016).  California was not solely comprised of type-B but also type-A; 

of all surveyed colonies which died (n = 18) only two were from a Californian apiary, these 

colonies were dominated by type-A. The presence of type-A in high loads, in pre-winter bees 

which went on to die, further supports that type-A is a causative factor behind high losses 

witnessed in the USA. A similar situation occurred in Hawaii after the arrival of Varroa, here 

colonies were subject to pressures from Varroa but also DWV infection predominately 

comprised of type-A, this resulted in the subsequent loss of Varroa untreated colonies (n = 

274 out of 419) and the loss of feral colonies from Oahu Island (Martin et al., 2012).   
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An interesting result occurred when comparing the Varroa susceptible and tolerant bees, as 

no notable difference was seen in DWV load and prevalence between variants regardless of 

treatment. The susceptible bees were subject to yearly Varroa treatments. Treating for 

Varroa is considered an important factor in managing honey bee health and when mite 

numbers are reduced, DWV infection is also reduced (Martin et al., 2010; Locke et al., 2017). 

The tolerant bees were untreated for Varroa for greater than 4 years, the maximum number 

of years untreated was 17, these colonies are considered true survivors as colonies typically 

die between 4-5 years (Korpela et al., 1992). This result indicates that tolerant bees have 

developed a trait which keeps DWV infection in-line with those of treated bees. European 

honey bees which exhibit Varroa resistance have also been reported elsewhere in the 

world, (Rinderer et al., 2001; Le Conte et al., 2007; Seeley, 2007; Locke & Fries, 2011), with a 

wide range of tolerance factors being present; Grooming (Rinderer et al., 2001), Hygienic 

behaviour (Rinderer et al., 2001; Mikheyev et al., 2015), small colony size (Locke & Fries, 

2011; Fries & Bommarco, 2007), frequent swarming (Loftus et al., 2017) and more recently 

the recapping of honey bee brood (Oddie et al., 2018), to name a few. Therefore, tolerance 

to Varroa may be attributed to any trait which hinders Varroa reproduction, presumably 

reducing Varroa-DWV viral transmission, however more research needs to be conducted 

upon Varroa reproduction in colonies exposed to long term untreated Varroa infestations 

and the relationship of DWV variants.  

 

In addition to the studies mentioned above, it would be sensible not to ignore the fact that 

Africanised bees are present in some of the southern states of the USA, these are; South 

California, Nevada, Arizona, South Utah, New Mexico, Texas, Arkansas, Louisiana, Florida 
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and Oklahoma. Africanised bees exhibit a range of natural tolerance mechanisms to Varroa, 

which are not exhibited in the closely related European honey bees. Africanised bees build 

slightly smaller worker brood cells (4.84mm) than other races of bee (>5mm) (Piccirillo & De 

Jong, 2003), the worker brood of Africanised bees is two times less attractive to 

reproductive Varroa females than the worker brood of European honey bees (Guzman-

Novoa et al., 1996) and Africanised bees are also more sensitive to Varroa volatiles which 

triggers the removal of mites and brood (Aumeier & Rosenkranz, 2001), this explains why 

the reproductive rates of Varroa are poor in Africanised colonies (Martin & Medina, 2004).  

Only four apiaries analysed in this study had Africanised bees, these were located in New 

Mexico, Texas, Oklahoma, and Tennessee (H. Kevill, 2016, master’s dissertation). The 

apiaries in Oklahoma and New Mexico were from colonies which were considered true 

survivors, whilst the apiaries in Texas and Tennessee were treated for Varroa. In addition, 

the beekeepers which provided these samples were not aware that they had Africanised 

bees in their apiary. DWV infection in these bees was below the quantifiable limit of 

detection in 7 out of 11 colonies screened. The remaining four colonies had DWV infections 

comprised mostly of type-A (n = 3) with viral loads <1E+09. Therefore, it is speculated that 

Africanisation results in increased resistance to Varroa and therefore DWV, however studies 

which concentrate upon Africanised bees are required to evidence this further due to the 

low number of Africanised colonies in this study.   

 

Conclusion  

 
DWV type-A is the most dominant and prevalent variant in colonies screened, whilst type-B 

was commonly detected in colonies it was only found to dominate 24%, and type-C was 
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found to be rare. All of the colonies sampled in this study were from pre-winter bees, 

therefore colonies generally entered the overwinter period with high loads of DWV type-A, 

particularly on the east coast of the USA where overwinter colony losses were typically 

higher than the west coast. Colonies which are considered tolerant to Varroa had similar 

prevalence, load and variants of DWV as those which are susceptible, indicating that these 

bees have developed a mechanism which allows them to survive infections that may 

otherwise be fatal. Further field and lab studies need to be conducted to assess the function 

behind Varroa and DWV resistance. The situation in the USA appears to be hopeful 

considering that the less virulent variant of DWV (type-B) is currently becoming established 

in honey bee populations. If type-B infections are maintained it is predicted that a reduction 

in the number of overwinter colony losses will be witnessed in the upcoming years, however 

the situation will need to be closely monitored. 
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Chapter 4: The role of DWV avirulence and superinfection exclusion in 

wild colonies of honey bees located in the Arnot forest and Ithaca, New 

York 
 

 

  

Abstract 
 

Overwinter colony losses of European honey bees are regularly reported in the northern 

hemisphere. These losses are now suspected to be caused by the Varroa mites ability to 

vector a number of viruses, with Deformed wing virus (DWV) often detected in colonies 

which die. However, these losses are less severe in some populations of bee which have 

developed a natural tolerance to Varroa over time. One such population are located outside 

of Ithaca, upstate New York, in the Arnot forest and are the focus of this study. Researchers 

suggest that Varroa resistance occurs in the Arnot honey bee colonies due to a number of 

life history traits and avirulent Varroa mites. However, no viral work has ever been 

conducted. Over a three-year period (2015-2017), honey bee colonies were collected from 

the Arnot forest and Ithaca. These were screened for the three DWV master variants to 

establish if these are avirulent. The results show that avirulence is not a factor in survival as 

DWV type-A infection steadily increased between sample years (2015, 2016, 2017) whilst 

type-B and C steadily decreased. Furthermore, the type-B variant was often detected below 

the quantifiable limit, ruling out superinfection exclusion as a mechanism for resistance.  

Whilst DWV avirulence and superinfection exclusion have been disregarded as resistant 

factors, type-A DWV loads rarely exceeded 1E+10 and were maintained between seasons 

(summer and autumn).  This result suggests that Arnot forest bees are surviving due to their 

ability to halt a seasonal increase in DWV load.  
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Introduction 

 
Populations of European honey bees (Apis mellifera) have been exploited by humans since 

7000 BC when early Neolithic farmers in Europe, the near east, and North Africa started to 

harvest bee products (Roffet-Salque et al., 2015). The popularity of apiculture is still present 

in modern day society and European honey bees have been exported outside of their native 

range to Eastern and Central Asia, America, and Australia (Moritz et al., 2005).  

Both the America’s and Australia/New Zealand did not have a native Apis species before the 

introduction of European honey bees.  

 

The movement of European honey bees, into areas with endemic honey bee populations led 

to a jump in host species of the ectoparasite Varroa destructor, which originally infected 

Asian honey bee (Apis cerana) colonies as Varroa jacobsoni. The host jump from A. cerana 

to A. mellifera was first reported in Japan and in 1957 (Sakai & Okada, 1973), followed by 

reports in the former Soviet Union, Korea (Crane, 1978), South America (Goncalves et 

al.,1987), North America and then Europe, with Australia being the only exception 

(Rosenkranz et al., 2010). Co-evolution between Varroa and its original host A. cerana has 

allowed for the adaptation of behavioural and physiological traits which prevent 

exponential growth of Varroa mites within a colony.  Asian honey bees typically maintain 

mite numbers of less than 800 mites per colony (Rath, 1999), whereas Varroa populations 

can increase 2000-fold within one year in a European colony (Martin, 1998), as a host-

parasite equilibrium has not yet evolved (Oldroyd, 1999). 
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European honey bees have little tolerance to Varroa and heavily infested colonies are 

severely affected. Once Varroa is prevalent within a colony, viral infection increases; this has 

been well evidenced for Varroa and Deformed wing virus (DWV) (Genersch & Aubert, 2010; 

Martin et al., 2012; 2013). DWV is now the most commonly detected virus of honey bees 

due to Varroa-mediated transmission (Sumpter & Martin 2004; De Miranda & Genersch 

2010; Rosenkranz et al. 2010). It is often during the winter months when DWV loads reach 

their maximum and colonies succumb to disease (Berthoud et al., 2010; Dainat, et al., 2012; 

Highfield et al., 2009; Martin et al., 2010; 2013; Nazzi et al., 2012; Francis et al., 2013). 

Therefore, beekeepers of European honey bee colonies use a number of mite control 

methods to reduce mite numbers and in turn the adverse effects of a Varroa infestation.  

 

 

To date, beekeepers have reduced the number of Varroa mites in apiaries by using several 

control mechanisms from chemical treatments to colony manipulations (Rosenkranz et al., 

2010). These control methods come with consequences from disrupting normal colony 

growth, chemical residue in bee products, to queen death (Le Conte, Ellis, & Ritter, 2010).  

Therefore, beekeepers are eager to see Varroa abolished from colonies, with breeding 

programs concentrating on resistance being one of the only feasible solutions to date 

(Neumann & Carreck, 2010; Carreck, 2011). However, human intervention is limiting natural 

selection for Varroa resistance in managed populations of honey bees (Neumann & 

Blacquiere, 2016). Therefore, bees which have evolved a natural tolerance to Varroa are of 

interest to researchers and beekeepers alike.  
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Fortunately, European honey bees which have developed a natural tolerance to Varroa have 

been reported from around the world; These populations are located in France (Le Conte et 

al., 2007), Brazil (DeJong & Soares, 1997), Sweden (Fries et al., 2003; Fries & Bommarco, 

2007), UK (Mordecai et al., 2016) and the USA (Seeley, 2007). Factors which contribute to 

resistance are; low-stress factors, good environmental conditions (Le Conte et al., 2007), 

grooming, hygienic behaviour (Rinderer et al., 2001), small colony size (Locke & Fires, 2011, 

Loftus et al., 2016), frequent swarming episodes (Seeley, 2017; Loftus et al., 2016), 

avirulence of Varroa mites (Seeley, 2007) and associated disease (Mordecai et al., 2016; 

Brettell & Martin, 2017). 

 

 

The most researched population of Varroa resistant honey bees are those found in the 

Arnot forest located just outside of Ithaca in New York. The Arnot forest is Cornell 

University's 4200-acre research forest, and the bee population here has been under 

investigation since 1978 (Seeley, 2007). In 1978 Tom Seeley conducted a census of the 

honey bee population, which was repeated in 2002, post-Varroa’s arrival. The census found 

that honey bee populations are at similar levels to those pre-Varroa. Since then, several 

studies have been conducted to understand the mechanism which enables the Arnot forest 

bees to co-exist with Varroa.  

 

 

Past studies have found that Arnot colonies have similar Varroa reproductive rates as 

Carniolan bees (Seeley, 2007), colonies will die once Varroa mite drop exceeds 100 mites 

(Seeley, 2017), and that Varroa mite populations increase along with available brood space 



156 

 

(Loftus et al., 2016), however wild populations of bees exist without any human 

intervention. Genetic analysis of Arnot queen mating frequencies found that they are the 

same as those in managed bees. Therefore resistance cannot be attributed to increased 

intra-colony genetic diversity (Seeley et al., 2015).  Further genetic studies found that the 

Arnot bees endured a mitochondrial genetic bottleneck shortly after the arrival of Varroa 

(Mikheyev et al., 2015). The selection of 232 genes were shown in this population. However, 

none of the genes under selection were associated with an immune response against viral 

infection, suggesting that resistance to viral disease is not a factor in this population’s 

survival (Mikheyev et al., 2015; Locke, 2016). The genes under selection in the Arnot bees 

are implied with hygienic behaviour and development. Changes to bee development can 

hamper the Varroa mite’s reproductive success and is a factor behind tolerance to Varroa in 

Africanised bees (Martin & Medina, 2004). To explain if these genes are expressed due to 

trade-offs made in response to Varroa, Seeley conducted a six year study upon Arnot forest 

bees from 2010-2016 (Seeley, 2017) and compared the results of life history traits to similar 

data obtained pre-Varroa. He found that the Arnot bees life history traits remained the 

same as they were pre- Varroa, these are; slow development of brood, an extended adult 

stage, and few but costly offspring. He also discovered that queen turnover is vital in 

established colonies, as colonies which did not requeen (e.g. by swarming) in the summer 

months had increased mite populations. Once mite drop exceeded 100+ mites per colony, 

they began to succumb to the negative effects of Varroa. This result inferred that bees are 

resistant to Varroa due to regular swarming episodes mediated by small nest size (Loftus et 

al., 2016), but also led Seeley to question to the role of avirulent mites and viruses in these 

populations.  
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The long-term survival of this population of bees suggests that mechanisms for resistance to 

Varroa do exist and may be partly explained by DWV viral populations. This was found to be 

the case for one of the oldest Varroa resistant honey bee populations located in Brazil 

(Brettell & Martin, 2017), which were found to have avirulent forms of DWV present in low 

viral loads (<1E+05). It was also the case for a population of honey bees located in Swindon, 

UK. The Swindon colonies were infected with DWV type-B (Mordecai et al., 2016), which 

was evidenced to out-compete and suppress the replication of DWV type-A in honey bee 

colonies. Therefore, Seeley (2017) may be correct when suggesting that mites are avirulent 

or have avirulent forms of viruses. However, no viral studies have so far been conducted 

upon the Arnot forest bees.  

 

 

As the Arnot forest bees have apparent Varroa infestations, and there is a proven 

association between DWV and Varroa, it is likely that DWV is present within the colonies. 

Therefore, this research aims to assess the prevalence and viral load of the three known 

DWV master variants (type-A, B, and C) in colonies from the Arnot forest and surrounding 

area of Ithaca. The role of superinfection exclusion via DWV type-B infection and seasonal 

DWV variant prevalence and viral loads are under investigation. A comparison of DWV 

infections in Arnot and Ithaca bees, Varroa susceptible bees from surrounding states (New 

York, Connecticut, Pennsylvania, and Vermont), and also Varroa tolerant bees from the USA 

(See Chapter three) will be also made to see if the Arnot forest bees differ from those in 

surrounding areas. Thus, allowing DWV via superinfection exclusion or avirulence to be 

considered as a factor in the long-term survival of these colonies.  
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Methods  
 

Sample history and collection  

 

Honey bee samples from the Arnot forest and Ithaca were provided by David Peck, Cornell 

University, New York, for the years 2015 (n = 20), 2016 (n = 49), and 2017 (n = 16). 

Approximately 30 adult honey bees were received from 85 colonies sampled. All samples 

were collected from the front of the hive entrance and contained older foragers and young 

bees taking orientation flights. Honey bee samples were stored and collected in 100% 

ethanol; this was decanted prior to transportation to the UK, where upon arrival molecular 

grade ethanol was added to the samples which were then stored at 4oC. Only the colony ID 

and date of sample collection were provided with the samples; colony histories were 

unknown until analysis was complete, allowing for a blind study.  

 

The data from all sample years (2015, 2016, 2017) dependant of colony history were 

categorised into the following groups; yard summer (n = 18), yard autumn (n = 28), wild 

summer (n = 16), wild autumn (n = 11), control summer (n = 4), and control autumn (n = 8).  

Yard bees are colonies founded by pristine Arnot forest swarms caught within the forest 

interior. The pristine Arnot swarms were kept in experimental bee yards (Figure 1) on the 

Arnot forest perimeter, at a distance of 21-73 meters apart from each other. Yard bees were 

only managed to prevent swarming; this involved adding extra supers (honey storage space) 

to create more room, and when colonies became too large they were split into two. The 

yard bee samples for 2015 are primarily (6 samples out of 9) from pristine Arnot forest 

swarms which had just been experimentally placed and as such will closely represent the 

viral population of Arnot forest bees. Wild bee samples are from long-term surviving feral 
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colonies of unknown origin. These colonies were located in the Ithaca area and occupy 

buildings, trees and experimentally placed bait hives (Empty hive containing empty brood 

comb in which swarms will move into). Control colonies are from commercial stock 

purchased from Vermont and California, these colonies were kept in separate bee yards in 

the Ithaca area and are considered to exhibit no resistance to Varroa or associated viruses.  

 

 

 

 

 

 

 

Figure 1. Example of the experimental bee yard in which the yard bees were kept. The 

experimental bee yard is shown by the large white area surrounded by mixed trees and 

shrubs. Colonies are indicated by black dots surrounded by circles (Seeley & Smith, 2015). 

 

 

Additional samples collected in 2016 were also included in the analysis. These samples were 

grouped as 2016-SS and 2016-U. The 2016-SS sample group were collected from Varroa 

susceptible colonies located in New York (n = 8) (outside of the Arnot forest and Ithaca) and 

the surrounding states of Connecticut (n = 3), Pennsylvania (n = 3), and Vermont (n =6). 

Therefore, allowing a comparison of DWV viral diversity, prevalence, and load between 
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colonies that are Varroa susceptable and tolerant colonies. The 2016-U samples are from 

colonies which have survived untreated for Varroa > 5 years and are considered Varroa 

tolerant (see Chapter three), therefore allowing for a comparison with other resistant 

populations of bees. These colonies were located in Alabama (n = 1), California (n = 5), Iowa 

(= 1), New Hampshire (n = 1), New Mexico (n = 2), South Carolina (n = 2), and Virginia (n = 2).   

 

Sample processing  

 

Total RNA was extracted from a pool of ten adult worker bees per colony for 2015, 2016, 

and 2017 Arnot and Ithaca samples. Bees were removed from the ethanol, which was left to 

evaporate. Once the ethanol had evaporated bees were inspected for any visible 

deformities and when seen these bees were discarded. The ten bees selected for analysis 

were then exposed to liquid nitrogen and crushed into a homogenous powder using a 

mortar and pestle. The homogenate of the ten whole bees was then transferred into a 1.5 

ml Eppendorf tube.  

 

RNA was extracted from 30mg of pooled honey bee homogenate, using an RNeasy Miniprep 

kit (Qiagen) and quantified on a spectrometer (Nanodrop 2000, Thermo Fisher Scientific), as 

per Chapter one. RT-qPCR was conducted upon 50 ng/µl total RNA, using the DWV A, B, C 

primers and variant specific standard dilution series detailed in Chapter one. The 2016-SS 

and 2016-U had already had the RNA extracted as per Chapter two, i.e. using pools of 10 

bee heads per sample. 
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 RT-qPCR 

 

RT-PCR was performed on the 1 μl total RNA (50 ng/μl) extracted from a pool of ten whole 

bees, using a SensiFAST™ SYBR® No-Rox One Step kit (Bioline). Each reaction contained 10 

μL SensiFAST™ SYBR® No-ROX One-Step mix (2×), 0.75 μL DWV forward primer, 0.75 μL 

reverse primer (A, B or C; Table 1), 0.2 μL reverse transcriptase, 0.4 μL RiboSafe RNase 

Inhibitor, 7.5 μL RNase free H2O. The reverse transcriptase step occurred at 45 °C for 10 min 

and denaturation at 95 °C for 10 min, followed by 35 cycles of denaturaturation at 95 °C for 

15 sec, annealing at 58.5 °C for 15 sec and extension at 72 °C for 15 sec. A melt curve 

analysis was performed between 72 °C and 90 °C, at 0.1 °C increments, each with a 5 sec 

hold period.  RT-qPCR also contained a no template control (NTC) where 1 μl RNase free 

water was used instead of total RNA. Both the amplification plot and melt curve were used 

to assess if contamination occurred in the controls.  

 

Samples were analysed in triplicate, against a ten-fold dilution series, specific to each DWV 

variant (A, B, or C). Any samples which had a 3 Ct (critical threshold) value deviation 

between triplicates had the RT-qPCR step repeated, as 3 Ct values are the equivalent of a 

ten-fold change in viral load. This ensured that a precise DWV copy number was obtained 

for each sample. 
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Data analysis  

 

 

RT-qPCR data for each DWV master variant was imported from the Rotor-gene q series 

software® into Microsoft Excel. Sample data which fell inside the range of the standard 

curve at 7 Ct’s – 30 Ct’s was deemed a quantifiable positive, whilst samples which fell 

beyond the standard curve at 30 Ct values were deemed below the quantifiable limit (BL), 

samples with no amplification curve on the amplification plot and melt curve were 

considered DWV negative. This data was further categorised into sample year (2015, 2016, 

2017) and the percentage of positive, BL (positive below the quantifiable limit) and negative 

samples per DWV variant, for each year, were calculated allowing for an annual comparison 

of DWV prevalence. Colonies were categorised per their life history regardless of year to 

allow for a comparison of DWV prevalence between groups (yard, wild, and control) with 

different life histories.  

Viral copy numbers were determined using the following equation as per Kevill et al (2017): 

 

Copy number RNA = (Concentration RNA (ng/µL) × 6.022 × 1023) / 

(Fragment length base pairs × 109 × 325) 

 

 The DWV genome equivalents per bee (DWV viral load), per variant (DWV type-A, B or C) 

were calculated for positive samples using the following equation as per Kevill et al., (2017): 
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Genome equivalents = (average copy number) × (RNA dilution factor) × (elution volume of 

RNA) × (proportion of bee material) 

 

The DWV load for each variant were then transformed using the log10 function in excel. 

Positive samples were divided by year and also the groups; yard, wild, and control, per 

season (summer and autumn). The log10 data for positive samples were then used to create 

the box plots shown in the results section. Statistical analysis was performed using non-

parametric tests as the data were not normally distributed. A Kruskal- Wallis test was used 

to compare DWV type-A load per year, season and group (yard, wild, control, 2016-SS, and 

2016-U) as this data is independent of each other. When a significant result occurred post-

hoc analysis was conducted using the Dunn’s multiple pairwise comparisons (Dunn, 1961) 

which allowed for the identification of groups which differed significantly.  The significance 

threshold was set at p = <0.05 for all three tests and when multiple comparisons were made 

the p values were adjusted using a Bonferroni correction (significance threshold / number of 

comparisons). The overall aim of the statistical analysis was to identify differences in DWV 

load and variant between the different groups. Type-B and C positive samples were rare 

between years and groups; therefore, the number of positive samples were too low to 

include in the statistical analysis, e.g., n = < 5.  
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Results 
 

 

DWV master variant prevalence per year 

 

DWV infection in honey bees from the Arnot forest and surrounding area of Ithaca in 2015, 

2016, and 2017 were primarily comprised of DWV type-A (Figure 2). A steady increase in the 

percentage of type-A positive and quantifiable samples was witnessed for all sample years 

(2015 - 45%; 2016 - 70%; 2017 - 75%) (Figure 2). This corresponds with a yearly reduction in 

DWV type-B positive colonies, which fell from 20% in 2015 to 0% in 2017 (Figure 2). DWV 

type-C was rare and only detected in two colonies in 2016 (Figure 2). Therefore, the 

remaining analysis mainly concentrated upon DWV type-A.  

 

A Kruskal Wallis test of the type-A viral load between sample years, colonies from 

surrounding states (2016-SS) and USA Varroa-tolerant colonies (2016-U) were conducted 

(Figure 2, Table 1). This result provided strong evidence of a difference in median rank 

between at least one pair of groups (Kruskal-Wallis test - n 53, H = 12.99, df = 4, p = 0.015). 

Therefore, Dunn’s pairwise comparisons were made for all five groups (Table 1). A 

significant difference in DWV type-A load was witnessed between the 2015 and 2016 Arnot 

forest and Ithaca colonies (Dunn’s post-hoc test – p = 0.029). This result is attributed to an 

increase in mean viral load from 1E+07 in 2015 to 1E+09 in 2016 (Figure 3). A significant 

difference also occurred between the 2015 Arnot and Ithaca colonies, and 2016-U colonies 

(Dunn’s post-hoc test; p = 0.008). Again, this result is due to a difference in viral load 

between Arnot and Ithaca 2015 (1E+07) and 2016-U (1E+10) colonies (Figure 3, Table 1). No 

difference in type-A viral load was recorded between 2016, 2017, 2016-SS, and 2016- U 
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colonies (Figure 3, Table 1). This result indicates that for sample years 2016 and 2017 the 

Arnot forest and Ithaca bees had DWV type-A loads similar to surrounding states and also 

USA tolerant bees.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The proportion of Arnot and Ithaca honey bee samples which were DWV positive 

(type-A = red; type-B = blue; type-C = green), positive below the limit of quantification (BL) 

(black) or negative (grey) for the years 2015, 2016 and 2017.  
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Figure 3. A comparison of DWV type-A viral load between each group (yard, wild, and 

control, 2016-SS, 2016-U), per year. 

 

Table 1. The p values as per Dunn’s pairwise comparison of positive samples from 2015, 

2016, 2017, 2016 colonies from surrounding states (2016-SS) and USA Varroa-tolerant 

colonies (2016-U). Significant p values are highlighted in bold and underlined. 

 

 2015 2016 2017 2016-SS 2016-U 

2015   0.029 0.149 0.065 0.008 

2016    0.086 0.204 0.807 

2017     0.686 0.205 

2016 -SS      0.382 

2016-U       
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DWV seasonal prevalence and load between groups 

 

As expected an increase in DWV prevalence was detected between summer and autumn 

samples, with an increased autumn prevalence of DWV type-A for all groups (Figure 4). 

Whereas, a similar trend was not detected for the prevalence of type-B  (Figure 4), due to 

the low number of positive DWV type-B samples (Summer – Yard n = 1, Wild n = 1, Control n 

= 1; Autumn - Yard n = 4, Wild n = 2, Control n = 1). Therefore, the remaining seasonal 

analysis of viral load was conducted upon DWV type-A.   

 

Interestingly, whilst prevalence increased between seasons (Figure 4), type-A viral load 

remained at a similar level between seasons (Kruskal-Wallis – n = 48, H = 2.117, df = 3, p = 

0.54). Furthermore, no significant differences in type-A viral load were found between the 

yard and wild bee’s sampled in summer (Kruskal-Wallis test - n = 14, H = 0.102, df = 1, p = 

0.255) or the autumn samples (Kruskal-Wallis test - n = 40, H = 1.505, df = 2, p = 0.471). This 

result suggests that the bees sampled as part of this study do exhibit a mechanism for 

resistance to DWV as viral loads were maintained between seasons (Figure 5). 
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Figure 4. A comparison of DWV type-A (red) and B (blue) prevalence between seasons 

(summer & autumn) and group (yard, wild, control). This chart shows the percentage of 

quantifiable results (red or blue), results below the limit of quantification (BL) (black) and 

negative results (grey). 
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Figure 5.  A comparison of DWV type-A viral load between each group (yard, wild, and 

control), per season (summer and autumn). 

 

DWV autumn infection in Arnot and Ithaca bees compared to surrounding states and USA 

Varroa tolerant bees  

Pooling all the data from across the three sample years, a comparison of DWV type-A 

samples collected in autumn from the three groups in the Arnot forest (yard, wild, and 

control) were compared to treated colonies from the surrounding areas and states (New 

York, Connecticut, Pennsylvania, and Vermont), as well as tolerant colonies found in the 

USA (Chapter three). This result revealed no significant difference between the viral load 

across groups (Kruskal-Wallis test; n = 67, H = 2.499, df = 4, p = 0.654,) (Figure 6) as median 

viral load were below 1E+10 (Figure 6) for each group. 
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Figure 6. A comparison of Autumn DWV type-A viral load between each group (yard, wild, 

control, 2016-SS and 2016-U), for all sample years. 

 

 

Discussion 
 

This study reveals that DWV viral infections in Arnot forest and Ithaca bees are primarily 

comprised of DWV type-A. DWV type-B positive colonies were present for all years; 

however, loads were often too low to quantify. Therefore, superinfection exclusion via DWV 

type-B (Mordecai et al., 2016) is not a mechanism for Varroa resistance in the Arnot bees.  

The yearly DWV result (Figure 2 and 3) also shows a significant two-fold increase of DWV 

type-A in Arnot colonies from 2015 to 2016. This result is believed to be the effect of placing 

wild swarms into spacious honey bee hives, as increased brood rearing will lead to increased 

Varroa infestation (Loftus et al., 2016) and a subsequent increase in DWV load (Martin et al., 

2010; 2013). This data provides evidence that avirulence of DWV is not a resistance factor in 
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these bees as DWV prevalence increased over the years. In addition, previous studies have 

shown that once mite drop exceeds 100+ mites then Arnot colonies will die (Seeley, 2017). 

Avirulent viruses do not cause any detectable damage to the host and have low viral 

replication rates (Casadevall & Pirofski, 2001), this is not the case for DWV infection in the 

Arnot colonies, as loads are maintained between 1E+07-1E+10 for the majority of the data 

(Figures 5 and 6).  

 

When the analysis was broken down into seasons (summer and autumn) between groups 

(yard, wild and control), no change in viral load was witnessed. Type-A viral loads were 

maintained at sub-lethal levels (<1E+10) in the majority of the data for all Arnot forest and 

Ithaca sample groups. This result was particularly true for the free-living, wild bees. 

Providing evidence that the Arnot forest bees have the ability to maintain DWV viral load 

over the season. Typically, colonies which are susceptible to Varroa have elevated pre-

winter DWV loads and are at risk of collapsing during the winter period (Berthoud et al., 

2010; Dainat, et al., 2012; Highfield et al., 2009; Martin et al., 2010; 2013; Nazzi et al., 2012; 

Francis et al., 2013). When the DWV results of the Arnot colonies were compared to 

colonies which undergo a Varroa treatment each year (2016-SS) and colonies which are 

Varroa tolerant (2016-U), viral loads were similar.  Therefore, the Arnot bee’s entering the 

winter season do so with viral loads similar to the colonies sampled from elsewhere with 

different Varroa treatment histories. 

 

The exact mechanism behind the seasonal maintenance of viral loads in these bees remains 

unclear.  Small nest size, which causes frequent swarming events is almost certainly a factor 
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in the wild Arnot bees, as Varroa numbers are reduced during the swarming season (Loftus 

et al., 2016; Figure 7). Regular swarming and small nest size is also an essential factor found 

in the Varroa resistant bees studied in the ‘live and let die’ experiment on Gotland island, 

Sweden (Fries et al., 2003; Locke & Fries 2011). However as the bees in this study were 

placed into large hives, this does not explain the full story.  

 

 

 

 

 

 

 

 

Figure 7. Dynamics of Varroa infestation rates on adult bees in colonies housed in small 

hives (dashed, green line) and colonies housed in large hives (solid, red line), from July 2012 

to October 2013 (Loftus et al., 2016). 

 

The data from Loftus et al., (2016), show that Varroa numbers are drastically reduced in 

small sized Arnot colonies between September and October (Figure 7), whilst brood 

production in September remains at a level similar to that seen in August. A reduction in 

Varroa numbers in pre-winter Arnot bees may explain why viral loads are maintained 
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between seasons, as the removal of Varroa mites has been shown to cause a gradual 

decrease in DWV viral loads (Locke et al., 2012), whilst DWV oral transmission from bee to 

bee is evidenced to maintain DWV loads in colonies of bees (Lock et al., 2017). Therefore, 

the reduction of Varroa mites in the pre-winter months suppresses Varroa mediated DWV 

transmission, allowing for sub-lethal DWV viral loads to be maintained horizontally via bee 

to bee, within the colony. However, once viral loads exceed host tolerance colonies will die 

and this was witnessed post-sampling in the winter of 2016-2017. This leads to the 

assumption that Arnot bees exhibit some tolerance to Varroa but not to DWV and colonies 

will die once viral loads become unsustainable.  

 

 A recent study by Oddie et al., (2018) found colonies of long-term (> 17 years) Varroa 

tolerant bees, maintain low Varroa populations via the recapping of sealed brood. The 

recapping of sealed brood exposes reproducing Varroa mites to shifts in temperature and 

humidity (Le Conte et al., 1990; Kraus & Velthuis, 1997) which impairs mite reproduction 

leading to a reduction in mite populations in colonies which display this behaviour (Oddie et 

al., 2018). Small nest size and frequent swarming appear to be an important factor in these 

colonies as this behaviour maintains low Varroa numbers, however, Varroa numbers 

increased in Arnot colonies post-swarming season (Loftus et al., 2016) (Figure 7). Therefore, 

it is suspected that an increase in numbers of Varroa induces a Varroa control response in 

the bees, which limits the Varroa mediated transmission of DWV. To understand the exact 

mechanism for resistant behaviour in the Arnot bees it is imperative that field research in 

the wild population is conducted as viruses do not play apart in this resistance story.  
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Conclusion  

The long-term survival of Arnot forest bees depends upon their ability to maintain sub-lethal 

DWV loads in pre-wintering colonies. The results of the study show that Varroa mites do not 

have avirulent forms of DWV, as colonies exhibited an increase in type-A viral loads 

between 2015 and 2016. Colonies are not subject to superinfection exclusion via DWV type-

B, as this variant was not prevalent in any of the colonies screened. A drastic reduction in 

mite numbers at the end of October has previously been evidenced (Loftus et al., 2016) 

(Figure 6), which may account for why DWV viral loads remained similar between seasons 

and did not significantly increase as is the case elsewhere (Berthoud et al., 2010; Dainat, et 

al., 2012; Highfield et al., 2009; Martin et al., 2010; 2013; Nazzi et al., 2012; Francis et al., 

2013). The method in which viral loads are maintained in the Arnot forest bees remains 

unclear. Therefore further research into how colonies reduce mite numbers is required, and 

it is predicted that colonies may exhibit the recapping behaviour witnessed in other 

populations of Varroa resistant European honey bees (Oddie et al., 2018).  
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Chapter 5: DWV recombinant prevalence in DWV positive colonies from 

England, Wales and the USA 

 

Abstract  

There is now a general consensus amongst the scientific community that Varroa mediated 

Deformed wing virus (DWV) infections are a major factor in the untimely demise of 

European honey bee (Apis mellifera) colonies around the globe. Three master variants of 

DWV have been formally identified (Type-A, B, and C), with current research efforts focusing 

on the impact of each DWV variant upon colony health. These DWV master variants readily 

recombine forming a mosaic of novel genomes, however no landscape scale comparative 

studies have been undertaken. Therefore, the aim of this study is to address the prevalence 

of DWV master variants and various recombinant forms of the virus in honey bee colonies 

from across England, Wales, and the USA, screening both Varroa tolerant and susceptible 

colonies. The data reveal that master variants of DWV type-A and B persist in a higher 

percentage of colonies than any of their recombinant forms. In addition, recombinants 

comprising the type-B structural genes (cp) and non-structural genes (RdRp) originating 

from all DWV master variants were detected in each data set, with type-B structural (cp) 

genes far exceeding the non-structural (RdRp) genes, suggesting that type-B has an 

evolutionary advantage over type-A and C. The data also confirmed the striking difference 

seen between DWV variants detected in the English, Welsh, and USA data sets (Chapters 

two and three) as master variant type-A was rare in England and Wales, whilst type-B was 

rare the USA.   
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Introduction  

Deformed wing virus (DWV) is now considered a major factor in the global decline of 

overwintering honey bee colonies (Berthoud et al., 2010; Dainat, et al., 2012; Highfield et 

al., 2009; Martin et al., 2010, 2012; 2013; Cornman et al., 2012; Nazzi et al., 2012; Francis et 

al., 2013). DWV was first discovered in symptomatic honey bees from Japan in the early 

1980’s (Bailey & Ball, 1991) and was present in colonies prior to the arrival of Varroa (Martin 

et al., 2012). Pre-Varroa DWV viral loads were low and infections were diverse, often 

causing no visible disease symptoms (Martin et al., 2012). In association with Varroa, DWV 

loads are typically present in high amounts (Carreck et al., 2010; Martin et al., 2012) 

accompanied with a loss in viral diversity, allowing for the selection of one dominant master 

variant in the honey bee host (Martin et al, 2012; Ryabov et al, 2014; Chapters 2 and 3).  

 

DWV is a small (30nm), single-stranded, positive-sense RNA virus belonging to the family 

Iflaviridae, within the order of the Picornavirales. Owing to the fact that RNA viruses have 

high mutation rates and frequently large population sizes, DWV exists as a diverse 

population of variants commonly referred to as a quasispecies (Domingo & Holland, 1997). 

A quasispecies consists of a number of master variants, with each variant having their own 

swarm of mutant progeny (Palacios et al., 2008; Lauring & Andino, 2010). This constant 

process of mutation provides clouds of variants with an evolutionary advantage, allowing 

them to occupy several biological niches (Domingo et al., 2012). DWV is regularly detected 

in Varroa exposed populations of honey bees as three closely related master variants; type-

A (Lanzi et al., 2006), type-B (which was originally designated as Varroa destructor-Virus 1) 

(Ongus et al., 2004), and type-C (Mordecai et al., 2016a). Each DWV variant is evidenced to 
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impact honey bee colonies in different ways. Type-A has been linked to colony losses 

(Martin et al., 2012; Schroeder et al., 2012; Francis et al., 2013) and has recently been found 

dominating USA honey bee colonies (Chapter two). Type-B was shown to be slightly more 

lethal than type-A when experimentally injected in DWV naive caged bees (McMahon et al., 

2017). Type-B’s ability to out-compete type-A was also reported by Mordecai et al., (2015) 

in a UK Varroa resistant population of honey bees and it was suggested that type-B infection 

offered protection to the colonies via phenomena known as superinfection exclusion (SIE). 

DWV type-C has been evidenced as rare in both English, Welsh, and USA honey bee colonies 

(Chapters two and three).  

 

Multiple DWV master variants are capable of co-infecting a honey bee, it is under these 

circumstances that viral recombination occurs.  Recombination is the process where a new 

genome is formed by the covalent linkage of genetic material from two or more differing 

parent genomes and is a major factor for genetic variation in all living organisms. Several 

types of recombination have been described (Domingo, 2016); there are those in which 

genetic exchange can occur from similar or identical nucleotide sequences, termed 

homologous recombination. Non-homologous recombination occurs when genes are 

swapped between closely related, yet distinct genomes, such as in almost all bacteria (Vos, 

2009). The process of generating a recombinant is either replicative or non-replicative. 

Replicative recombination occurs as a result of template switching during RNA synthesis and 

non-replicative recombination occurs via the random ligation of genome fragments (Galli & 

Bukh, 2014; Domingo, 2016).   
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Viral recombination was first described in RNA viruses belonging to the Picornavirales; 

polioviruses (Cooper, 1974) and Aphthae epizooticae virus (Foot and mouth disease) (King et 

al., 1985). Since then, the role of recombination has been well evidenced in a number of 

RNA viruses capable of infecting a wide range of host species. Recombinant viruses have 

been well evidenced in mammalian viruses such as Hepatitis C (Kalinina et al, 2002; Lee et 

al, 2010; Hoshino et al, 2012 ) and HIV-1 (Thomson & Najera, 2005; Delviks-Frankenberry et 

al, 2011); plant viruses such as tomato bushy stunt virus (TBSV) (White & Morris, 1994) and 

cucumber necrosis virus, (CNV) (Shapka & Nagy, 2004); and finally in viruses infecting 

invertebrates such as Israeli acute paralysis virus (IAPV) (Maori et al, 2007; Palacios et al, 

2008) and DWV ( Moore et al., 2011; Zioni et al., 2011; Ryabov et al 2014, 2017; Mordecai et 

al 2015a & b; Dalmon et al 2017, McMahon et al., 2017). However, the evolutionary 

advantage of viral recombination is disputed, as recombinants are often considered to be 

less fit than the parental genomes (Desbiez et al, 2011; Garcia-Arenal et al, 2003), therefore 

persisting recombinant viruses must be fit enough to evade selective pressures to become 

established in a population. Viral recombinants have been evidenced to become dominant 

in viral populations where the parental viruses are the target of anti-viral therapies, this 

leads to the rise of drug resistant variants (Moutouh et al., 1996; Morel et al., 2010).   

 

DWV Recombinants between the type-B structural and non-structural genes of type-A have 

been most commonly detected (Zioni et al., 2011; McMahon et al., 2016; Ryabov et al., 

2014; 2017; Dalmon et al., 2017). In addition, recombinants between DWV type-A structural 

and non-structural genes of type-B and C have also been reported (Mordecai et al., 2015a & 

b) as well as recombinants at the beginning of the open reading frame (ORF) at the 5’ end 
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(Dalmon et al., 2017). However, the extent at which recombination occurs on a landscape 

scale and how they affect the honey bee host remains unclear.  Therefore, the main aim of 

this study is to assess the prevalence and viral load of DWV recombinants against the 

parental genomes of DWV infections present in honey bee colonies sampled from across 

England, Wales, and the USA. Both Varroa tolerant and susceptible colonies were selected. 

This work was conducted using a new primer combination method that amplifies DWV 

master variants and recombinant genomes from the VP1 region at the 5’ end and RdRp 

region at the 3’end. In addition, a new RT-qPCR method was also used to quantify the 

structural (cp) genes of each DWV recombinant, the data was then compared to the non-

structural (RdRp) genes quantified in Chapters one and two. This is the first time in which 

landscape scale analysis has been conducted upon DWV recombinant forms.  
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 Methods  

Sample collection 

Approximately 30 adult worker honey bee samples were collected from 36 English and 

Welsh apiaries, and 57 USA apiaries. In total 112 colonies from England and Wales, and 79 

USA colonies were sampled, see Chapters two and three for more details. From these a sub-

sample of 93 colonies from England and Wales and 73 colonies from the USA were tested 

for the presence of DWV master variants and recombinants. To avoid subconscious bias, 

samples were selected without any prior thought given to season of collection, location, or 

colony mortality. Samples were screened for DWV viral recombinants between the non-

structural (cp) and structural (RdRp) genes for all three DWV master variants (A, B, and C). 

Only during the analysis stage was the true identity of the sample known (Varroa tolerant or 

susceptible) and if these colonies survived the overwintering period. The English and Welsh 

samples were collected in both spring (April, n = 71) and late summer (mid-August to mid-

September, n = 41), whilst USA samples were all collected in November. All samples were 

collected in 2016.  

 

Sample processing  

Honey bee Samples were processed as per Chapters two and three. Briefly, honey bees 

were checked for visual deformities and when found these were removed as were any 

Varroa mites. A pool of 20 whole bees (English and Welsh) or 10 heads (USA) per colony 

were homogenised. Total RNA was extracted from 30mg of homogenised bee tissue, using 

an RNeasy Mini prep kit (Qiagen) as per the manufacturer’s instructions. Total RNA was 

quantified on a spectrophotometer (Nanodrop 2000, ThermoFisher Scientific) and samples 

diluted to 50ng/µl prior to PCR and RT-qPCR.  
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DWV master variant and recombinant PCR protocol 

Nine combinations of DWV strain specific primers (Table 1), flanking between the structural 

VP1 genes and non-structural RdRp genes were used to amplify fragments >5 kb of DWV 

master variants and recombinants (Figure 1). Recombination hotspots (where differing 

genomes of parent viruses readily combine) for DWV were identified by Dalmon et al. 

(2017) and occur between the structural genes at the 5’ end of the open reading frame (LP, 

VP1, VP2, VP3, and VP4) and the non-structural genes (Helicase, 3c-pro and RdRp) at the 3’ 

end, with common breakpoints located in the Helicase. Other studies also confirmed 

recombinants between structural and non-structural genes are common (Moore et al., 

2011; Zioni et al., 2011; Mordecai et al., 2015 a & b; Ryabov et al., 2014; 2017; McMahon et 

al., 2017), hence the selection of primers which bind at the 5’ and 3’. The nine primer 

combinations are detailed in Table 2. These primers were designed and verified by A. 

Highfield, in the Schroeder Lab (paper in prep).  

 

 

Firstly, total RNA was synthesised into cDNA using an Invitrogen SuperScript IV first strand 

synthesis system (ThermoFisher Scientific), as per the manufacturer’s instructions. PCR 

reactions were prepared using a Q5 high-fidelity DNA polymerase kit and 10mM dNTPs 

obtained from New England Biolabs. Each reaction contained, 5 µl 5 x Q5 buffer, 0.5 µl 

10mM dNTPs, 0.25 µl Q5 high fidelity DNA polymerase, 1.25 µl forward  DWV variant 

specific capsid primer, 1.25 µl reverse DWV specific RdRp primer, 14.75 µl nuclease free 

H2O, and 2 µl cDNA template. The thermocycler was set to; initial activation 98oC for 30 

secs, followed by 35 cycles of denature at 98oC for 10 secs, annealing at 54oC for 20 secs, 

extension at 72oC for 3 mins, followed by a final extension at 72oC for 2 mins. Results were 
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then visualised via gel electrophoresis using a 1.4% agarose gel containing gel red against a 

1kb hyper ladder (Figure 2). A total of 93 UK and 73 USA honey bee colonies were screened 

using the nine combinations of strain specific primers for the recombinant PCR (Table 1).  

 

 

Table 1. Primers used in this study to generate a >5 kb PCR product of DWV master variant 

and recombinant genomes (see Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer Name Sequence (5′–3′) 

Capsid C forward C_Capsid_F2_AH GCATATTTGCGTATAAAAGATG 

RdRp C reverse C_RdRp_R_AH ATAAGTTGCGTGGTTGAC 

Capsid A forward A_Capsid_F2_AH TTTGTGGAGCAAAGAATTGA 

RdRp A reverse A_RdRp_R_AH CTCATTAACTGTGTCGTTGAT 

Capsid B forward B_Capsid_F2_AH CAAGACAACTTGCTCAGCAT 

RdRp B reverse B_RdRp_R_AH CTCATTAACTGAGTTGTTGTC 
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Figure 2. Example of a gel image used to identify the DWV fragments, which were amplified 

using the new recombinant PCR method. The position of the >5 kb fragment is indicated by 

the blue arrows, the 1 kb hyper ladder is shown to the left of the gel and primer 

combinations listed underneath the gel (AA, AB, AC, BA, BB, BA, BC, CA, CB, CC).  
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Table 2. Nine primer combinations used to identify DWV master variants and recombinant 

genomes.  

 

 

 

 

 

 

 

 

Capsid standard curve 

 A capsid RT-qPCR protocol for the structural genes (cp) of each DWV master variant (A, B, 

and C) were also designed by A. Highfield (paper in prep). For the creation of a standard, 

capsid RT-PCR was performed using the primers detailed in Table 3. The results were 

visualised on a 2% agarose gel containing ethidium bromide. Positive bands were excised 

from the gel and purified before sanger sequencing to confirm target genes for each of the 

DWV master variants (VP1 region). Plasmid vectors containing the target genes were 

created (Biomatik, Table 4) and reconstituted as per the manufacturer’s guidelines. Heat 

shock transformation was performed using One Shot® TOP10 chemically-competent 

Escherichia coli following the manufacturer’s instructions (Life technologies). The 

transformants were selected on LB agar plates, containing kanamycin and left to incubate at 

37 °C overnight. A single colony for each master variant was propagated in LB medium 

containing kanamycin and a Qiaprep® spin mini prep kit (Qiagen) was used per the 

manufacturer’s instructions to extract plasmid DNA. Plasmid DNA was then synthesized in to 

Capsid RdRp 
A A 

A B 

A C 

B A 

B B 

B C 

C A 

C B 

C C 
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RNA using a mMessage machine T7 kit (ThermoFisher) as per the manufacturer's guidelines. 

This part of the work was conducted by A. Highfield, who supplied the capsid standards 

used in this study.  

 

Table 3. Primers used in this study for DWV capsid RT-qPCR.  

 

Primer Name Sequence (5′–3′) Size of product 

(bp) 

Capsid A forward A_capsidF_AH GGTACTAATTTAGTTGAACCATT 214 

Capsid A Reverse A_capsidR_AH TCAATTCTTTGCTCCACAAA  

Capsid B Forward B_capsidF_AH CTCGAGGAGAGTTGGCATTC 160 

Capsid B Reverse B_capsidR_AH ATGCTGAGCAAGTTGTCTTG  

Capsid C Forward C_capsidF_AH GTTAGTATTTAGATGGGGCACG 101 

Capsid C Reverse C_CapsidR_AH CATCTTTTATACGCAAATATGC  
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Table 4. DWV master variant (A, B, C) structural (cp) insert used in the plasmids. Primer 

sequences are underlined and reverse primer sequences are highlighted in bold. 

 

 

 

To create the standard curve, a ten-fold dilution series was made for each DWV master 

variant, the standard curve ranged from 15 – 30 Ct (critical threshold) values. The following 

equation was used to determine the copy number as per Kevill et al., (2017): 

 

 

 

 

 

 

 

 

Target Insert 

DWV type 

A 

GGTACTAATTTAGTTGAACCATTACATGCATTACGTTTGGATGCAGCCGGTACGA

CACAACATCCTGTAGGTTGTGCTCCTGATGAAGATATGACTGTATCCTCCATTGC

ATCTCGATATGGACTAATTAGACGGGTACAATGGAAGAAAGATCATGCTAAAGG

ATCACTTTTGTTACAGTTAGATGCCGATCCATTTGTGGAGCAAAGAATTGAA 

DWV type 

B 

CTCGAGGAGAGTTGGCATTCCTGCGTATCCGCGATGCTAAGCAAGCTGCTGTAG

GAACGCAACCTTGGCGTACTATGGTCGTTTGGCCTTCAGGTCATGGATATAATAT

TGGAATACCAACTTATAATGCTGAACGAGCAAGACAACTTGCTCAGCATA 

DWV type 

C 

GTTAGTATTTAGATGGGGCACGTTAGCAGACCAGATAGCGCAATGGCCCTCTATT

AATGTTCCACGCGGTGAATATGCATATTTGCGTATAAAAGATGAA 

Copy number RNA = (Concentration RNA (ng/µL) × 6.022 × 1023) / 

(Fragment length base pairs × 109 × 325) 
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RT-qPCR  

RT-qPCR was performed on the 1 μl total RNA (50 ng/μl) extracted from the adult worker 

bees using a SensiFAST™ SYBR® No-Rox One Step kit (Bioline). Each 20 μL reaction contained 

10 μL SensiFAST™ SYBR® No-ROX One-Step mix (2×), 1 μL DWV capsid forward primer, 1 μL 

capsid reverse primer (A, B or C; Table 3), 0.2 μL reverse transcriptase, 0.4 μL RiboSafe 

RNase Inhibitor, 5.4 μL RNAse free H2O. The Reverse transcriptase step occurred at 45 °C for 

10 min and denaturation at 95 °C for 10 min, followed by 35 cycles of denature 95 °C 15 s, 

annealing at 52 °C (type-A and C) or 62 °C (type-B) for 15 s and extension at 72 °C for 15 s. A 

melt curve analysis was performed between 72 °C and 95 °C, at 0.1 °C increments, each with 

a 5 s hold period.  RT-qPCR’s also contained a no template control (NTC) where 1 μl RNAse 

free water was used instead of total RNA. Both the amplification plot and melt curve were 

used to assess if contamination occurred in the controls. RT-qPCR was conducted in 

duplicate. A total of 112 UK samples and 79 USA samples were screened for DWV variants at 

the VP1 region of the genome. This data was then compared to the RT-qPCR data of the 

RdRp genes as per Chapters two and three.  

 

Analysis of the data 

DWV master variant and recombinant PCR  

 

The percentage of honey bee colonies positive for DWV master variants (type-A, B, and C) 

and recombinant variants (Table 2) were established from the number of gel confirmed 

positive samples. The gel confirmed DWV recombinant positive (AB, BA, BC, CA, CB) samples 

were then selected for further analysis using RT-qPCR.   
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Capsid and RdRp RT-qPCR 

 

RT-qPCR was performed on the capsid VP1 region (cp) for this study, which was analysed 

alongside the RdRp RT-qPCR data obtained in Chapters two and three.  

 

Capsid RT-qPCR data for each DWV master variant was imported from the Rotor gene q 

series software® into Microsoft excel. Here the DWV genome equivalents per bee (DWV 

load), per variant were calculated as follows as per Kevill et al., (2017): 

 

Genome equivalents = (average copy number) × (RNA dilution factor) × (elution volume of 

RNA) × (proportion of bee material)  

 

 

The corresponding genome equivalent data (viral load) for each variant and fragment 

(capsid or RdRp) were then transformed using the log 10 function allowing the data to 

become more manageable. Samples were removed from the analysis that returned a RT-

qPCR negative result for both capsid (cp) and RdRp genes, and when more than 3 Ct (critical 

threshold) value deviation occurred, as a 3 Ct values is representative of a ten-fold change in 

viral load. Samples which were positive but below the quantifiable limit of detection were 

given an arbitrary value of 100 genome equivalents per bee (i.e. a log 10 value of 2). Samples 

which tested positive for just the capsid (cp) or RdRp were included in the analysis as these 

partial fragments either represent partially transcribed RNA or RNA which is involved in 

other DWV recombinant pairings.  
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Comparisons were made between the capsid (cp) and RdRp genes of the type-A and B RT-

qPCR data. Recombinant viral loads were calculated by comparing the capsid (cp) and RdRp 

RT-qPCR data, this was performed upon the recombinant positive samples which had 

previously been confirmed via the recombinant PCR.  Therefore, the total number of 

samples which had the RT-qPCR data analysed varies between the nine DWV viral 

recombinants. The mean and standard deviation (± 1 SD) of the structural (cp) and non-

structural (RdRp) genes were calculated for RT-qPCR quantifiable samples. The total number 

of samples analysed are displayed in Figures 4, 5, and 6.   

 

As the data were not normally distributed, Spearman’s Rho were obtained for the capsid 

and RdRp genes from the RT-qPCR data. Spearman Rho closer to one suggest a strong 

correlation between capsid and RdRp genes forming either parent DWV sequences or 

recombinants. A Z score test of two population proportions was also conducted upon the 

colonies which died and those which survived in the USA. This test allows for significant 

differences between two groups of categorical data to be established and was used to test if 

the proportion of DWV master variants and recombinants differed between dead and 

surviving colonies. This test was not performed on the UK data as too few colonies died. 

 

Results  

Identification of DWV recombinants in honey bees from England, Wales, and USA 

 

The results of the PCR reveal that 68% (n = 112) of English and Welsh colonies and 49% (n = 

73) of USA colonies were positive for at least one DWV master variant (Figure 3).  Both DWV 
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type-A and B master variants were detected in the honey bee colonies, however a higher 

prevalence of type-A was witnessed in the USA than in England and Wales (44%, and 13%, 

respectively) (Figure 4). Conversely, type-B had a higher prevalence in English and Welsh 

colonies than those from the USA (51% and 8%, respectively). Master variant type-C was 

detected in 1.6% of the English and Welsh colonies screened and in none of the USA 

colonies (Figures 3 & 4). 

 

 

The majority of positive samples contained a DWV recombinant for the English and Welsh 

(65% of positive samples) and USA data sets (58% of positive samples) (Figure 3). When only 

one positive result was returned it was often the dominating master variant rather than a 

recombinant; this occurred in 11 colonies out of 15 for type-A in the USA (Figure 3), and 13 

out of 15 colonies for type-B in England and Wales (Figure 3).   

 

 

 The prevalence of recombinant DWV variants varied between England and Wales, and the 

USA samples and appear to be determined by which master variant is dominant (Figure 3). 

The English and Welsh honey bee colonies are mainly comprised of type-B and 

recombinants of type-B, whereas the USA is dominated by type-A and recombinants of type-

A (Figure 3). Interestingly master variant type-C was rare; however, recombinants of type-C 

were detected. 
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Figure 3. (A) Bar charts show the percentage of English/Welsh and USA honey bee samples 

which retuned a positive result using the DWV new PCR method. The tables show DWV 

master variants and recombinant positive samples confirmed using gel electrophoresis for 

English/Welsh (B) and USA (C) honey bee colonies. Negative samples are indicated as a -.  

DWV mater variants are shown as AA, BB, and CC, and recombinants between the capsid 

and RdRp region are displayed as AB, AC, BA, BC, CA, and CB. (D) shows the percentage and 

sample size of each recombinant in England/Wales (UK) and USA.  

 

 

 

Sa
m

p
le

A
A

A
B

A
C

B
A

B
B

B
C

C
A

C
B

C
C

1
 U

SA
 

+
+

-
-

-
-

-
-

-
-

2
 U

SA
 

+
+

-
-

-
-

-
-

-
-

3
 U

SA
 

+
-

-
-

-
-

-
-

-

4
 U

SA
 

+
-

-
-

-
-

-
-

-

5
 U

SA
 

+
-

-
-

-
-

-
-

-

6
 U

SA
 

+
-

-
-

-
-

-
-

-

7
 U

SA
 

+
-

-
-

-
-

-
-

-

8
 U

SA
 

+
-

-
-

-
-

-
-

9
 U

SA
 

+
+

-
-

-
-

-
-

-
-

1
0

 U
SA

 
+

+
-

-
-

-
-

-
-

-

1
1

 U
SA

 
+

+
-

-
-

-
-

-
-

-

1
2

 U
SA

 
+

+
+

+
-

-
-

-
-

-
-

1
3

 U
SA

 
+

+
+

+
-

-
-

-
-

-
-

1
4

 U
SA

 
+

+
+

+
-

-
-

-
-

-
-

1
5

 U
SA

 
+

+
+

-
-

-
-

-
-

-

1
6

 U
SA

 
+

+
+

+
-

-
-

-
-

-
-

1
7

 U
SA

 
+

+
+

+
-

-
-

-
-

-
-

1
8

 U
SA

 
+

+
+

+
-

-
-

-
-

-
-

1
9

 U
SA

 
+

+
+

+
-

-
-

-
-

-
-

2
0

 U
SA

 
+

+
+

-
-

-
-

-
-

-

2
1

 U
SA

 
+

+
-

-
+

-
-

+
+

-
-

2
2

 U
SA

 
+

+
-

-
+

+
-

-
+

+
-

-

2
3

 U
SA

 
+

+
-

-
-

+
+

-
+

+
-

-

2
4

 U
SA

 
+

-
-

-
+

+
-

-
-

-

2
5

 U
SA

 
+

-
-

+
+

+
+

+
+

+
+

-
-

2
6

 U
SA

 
-

-
-

-
+

+
-

-
-

-

2
7

 U
SA

 
+

+
+

-
-

+
-

+
+

-
-

2
8

 U
SA

 
+

+
+

-
-

+
+

-
+

+
-

-

2
9

 U
SA

 
-

-
-

-
-

-
+

+
-

-

3
0

 U
SA

 
+

+
+

+
-

-
-

-
+

+
-

-

3
1

 U
SA

 
-

-
-

-
-

-
+

-
-

3
2

 U
SA

 
+

+
-

-
-

-
-

+
-

-

3
3

 U
SA

 
+

+
-

-
-

-
-

+
+

-
-

3
4

 U
SA

 
+

+
+

-
-

-
+

-
-

3
5

 U
SA

 
-

-
-

-
-

-
+

+
-

-

3
6

 U
SA

 
+

+
+

+
-

-
-

-
+

+
-

-

C
B

C
A

B
B

B
A

A
C

A
B

A
A

D
W

V
 C

o
m

b
in

at
io

n
Sa

m
pl

e
A

A
A

B
A

C
B

A
B

B
B

C
C

A
C

B
C

C

1 
U

K
++

++
-

++
++

++
++

++
-

2 
U

K
++

++
-

++
-

-
++

-
-

3 
U

K
++

++
-

-
++

-
++

-
-

4 
U

K
-

-
-

++
++

-
-

+
-

5 
U

K
-

-
-

++
++

-
-

+
-

6 
U

K
+

-
-

++
++

-
-

-
-

7 
U

K
-

-
-

++
-

-
-

-
-

8 
U

K
+

-
-

++
++

-
-

-
-

9 
U

K
++

-
-

++
++

-
-

-
-

10
 U

K
-

-
-

++
-

-
-

-
-

11
 U

K
-

-
-

++
+

-
-

-
-

12
 U

K
+

-
-

++
++

-
-

-
-

13
 U

K
-

-
-

+
++

-
-

-
-

14
 U

K
-

+
-

+
++

-
-

+
-

15
 U

K
-

-
-

++
-

-
-

-
-

16
 U

K
-

-
-

+
-

+
-

-
-

17
 U

K
-

++
-

+
-

++
-

++
-

18
 U

K
-

++
-

++
++

++
-

+
-

19
 U

K
++

-
-

++
-

-
++

-
-

20
 U

K
-

-
-

+
-

-
-

-
-

21
 U

K
-

-
-

+
++

+
-

-
-

22
 U

K
-

-
-

+
+

-
-

-
-

23
 U

K
+

-
-

+
++

+
+

-
-

24
 U

K
++

-
-

-
++

-
-

+
-

25
 U

K
-

-
-

-
++

-
-

-
-

26
 U

K
-

-
-

-
++

-
-

-
-

27
 U

K
-

-
-

-
++

-
-

+
-

28
 U

K
-

-
-

-
++

-
-

-
-

29
 U

K
++

-
-

-
++

-
-

-
-

30
 U

K
-

-
-

-
++

-
-

-
-

31
 U

K
-

-
-

-
++

-
-

-
-

32
 U

K
-

++
-

-
++

++
-

++
-

33
 U

K
-

+
-

-
++

-
-

-
-

34
 U

K
-

+
-

-
++

++
-

-
-

35
 U

K
-

++
-

-
++

++
-

++
-

36
 U

K
-

-
-

-
+

-
-

-
-

37
 U

K
-

-
-

-
++

++
-

-
-

38
 U

K
-

-
-

-
++

-
-

+
-

39
 U

K
-

-
-

-
+

-
-

+
-

40
 U

K
-

-
-

-
++

-
-

-
-

41
 U

K
-

-
-

-
++

-
-

-
-

42
 U

K
-

-
-

-
+

-
-

-
-

43
 U

K
++

-
-

-
++

-
-

-
-

44
 U

K
-

-
-

-
++

-
-

-
-

45
 U

K
-

-
-

-
+

-
-

+
-

46
 U

K
-

-
-

-
+

-
-

-
-

47
 U

K
-

-
-

-
+

-
-

-
-

48
 U

K
-

-
-

-
++

+
-

-
-

49
 U

K
-

-
-

-
+

-
-

-
+

50
 U

K
-

+
-

-
++

+
-

-
-

51
 U

K
-

-
-

-
++

-
-

-
-

52
 U

K
-

-
-

-
++

-
-

++
-

53
 U

K
-

-
-

-
++

-
-

+
-

54
 U

K
-

+
-

-
+

-
-

-
-

55
 U

K
-

+
-

-
++

+
-

+
-

56
 U

K
-

-
-

-
-

++
-

-
-

57
 U

K
-

++
-

-
-

-
-

-
-

58
 U

K
-

++
-

-
-

++
-

+
-

59
 U

K
-

-
-

-
-

-
-

-
-

60
 U

K
-

++
-

-
-

++
-

++
-

61
 U

K
-

++
-

-
++

++
-

+
-

62
 U

K
-

-
-

-
-

+
-

-
-C

C
C

B
C

A
B

C
B

B
B

A
A

C
A

B
A

A

D
W

V
 C

o
m

b
in

at
io

n

0 10 20 30 40 50 60

AA

AB

AC

BA

BB

BC

CA

CB

CC

% of positive samples

D
W

V
 r

ec
o

m
b

in
an

t

England and Wales

n = 93

0 10 20 30 40 50 60

AA

AB

AC

BA

BB

BC

CA

CB

CC

% of positive samples

D
W

V
 r

ec
o

m
b

in
an

t

USA

n = 73

A

Capsid/RdRp UK % USA %

AA 12.9 (n = 12) 43.8 (n = 32)

AB 16.1 (n = 15) 19.1 (n = 14)

AC 0 0

BA 23.6 (n = 22) 4.1 (n = 3)

BB 50.5 (n = 47) 8.2 (n = 6)

BC 18.2 (n = 17) 1.3 (n = 1)

CA 5.3 (n = 5) 19.1 (n = 14)

CB 19.3 (n = 18) 0

CC 1.1 (n = 1) 0

D

B

c



196 

 

 A comparison of DWV structural and non-structural genes  

 

 DWV RNA from the structural (cp) and non-structural (RdRp) genes were quantified against 

strain specific standard curves using RT-qPCR for the English and Welsh, and USA samples. 

Both the structural (cp) and non-structural (RdRp) RT-qPCR results were compared for type-

A and type-B DWV master variants, as type-C was only found in one English sample. Samples 

which had gel confirmed DWV recombinants also had the structural (cp) and non-structural 

(RdRp) genes quantified. The results reveal a significant correlation in structural (cp) and 

non-structural (RdRp) genes for master variant type-A and the type-A (cp) / B (RdRp) 

recombinant in USA honey bee colonies (Spearman’s Rho – rs = 0.83, p = <0.001 and rs = 

0.57, p = <0.03, respectively) (Figure 4).  Out of all the possible recombinant pairs involving 

the type-A (cp), only the USA type-A (cp) / B (RdRp) result returned a significant correlation.  

 

A significant correlation was witnessed for type-B cp and RdRp genes in England and Wales, 

and the USA (Spearman’s Rho – rs = 0.76, p = <0.001 and rs = 0.66, p = <0.001 respectively) 

(Figure 5).  Type-B structural (cp) recombinants were more commonly detected in the 

English/Welsh data set when compared to the USA, however none of the positive samples 

from either data set had a significant correlation between the structural (cp) and non-

structural (RdRp) genes quantified (Figure 5). Therefore, whilst samples were confirmed as 

positive, these recombinants are likely to be present in low viral loads (Figure 5). Type-C (cp) 

/ type-A (RdRp) recombinants were detected in the English and Welsh, and USA colonies, 

whilst type-C (cp) / type-B (RdRp) were detected in England and Wales only. Type-C 

structural genes (cp) were unquantifiable in England and Wales and were not detected in 

the USA, therefore a comparison could not be made for the type-C data.  
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In addition, the mean DWV load for the type-A structural (cp) and non-structural (RdRp) 

genes were similar in the USA data set at 7.17 ± 2.84 and 7.62 ± 3.01 viral load per bee, 

respectively. Whereas in England and Wales the mean type-A structural (cp) and non-

structural (RdRp) loads differed at 3.44 ± 2.50 and 7.97 ± 2.54 (Figure 6), further confirming 

that the majority of the USA is master variant type-A, and that DWV type-A loads in England 

and Wales are low. It is also expected that surplus type-A non-structural (RdRp) genes in 

both data sets would belong to the remaining recombinant pairs type-B (cp) / type-A (RdRp) 

and type-C (cp) / type-A (RdRp). A different situation occurs for type-B, as mean structural 

loads (cp) loads exceed those of the non-structural (RdRp) for both the English/Welsh (11.3 

± 3.20 and 9.85 ± 2.58 viral loads per bee, respectively) and USA data sets (10.98 ± 1.89 and 

7.68 ± 2.87 viral loads per bee, respectively) (Figure 6). In addition, all three type-B 

structural (cp) recombinants were detected in both England and Wales, and the USA (Figure 

3), suggesting that type-B has a competitive edge over type-A and C.  

 

Overall these results confirm that DWV master variants, type-A (USA) and type-B 

(England/Wales) are better adapted for survival and replication in the honey bee host than 

any recombinant form (Figures 4 and 5) and that type-C is mostly likely to present as a 

recombinant rather than as a master variant.  
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Figure 4. A comparison of the RT-qPCR data for the type-A structural (cp) and type-A and B 

non-structural (RdRp) genes quantified (log10) in English/Welsh and USA colonies. Samples 

which are below the quantifiable limit fall below the dashed lines (BL). Samples which tested 

positive for only one gene (cp or RdRp) fall within the grey bars. A significant correlation * 

between the structural (cp) and non-structural (RdRp) genes of type-A was witnessed in the 

USA data sets (Spearman Rho – AA; rs = 0.83, p = < 0.001, AB; rs = 0.57, p = 0.03).  
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Figure 5. A comparison of the RT-qPCR data for the type-B structural (cp) and type-A, B, C 

non-structural (RdRp) genes quantified (log10) in the English and Welsh, and USA colonies.  

Samples which are below the quantifiable limit fall below the dashed lines (BL). Samples 

which tested positive for only one gene (cp or RdRp) fall within the grey bars. A significant 

correlation * between type-B structural (cp) and non-structural (RdRp) genes was witnessed 

in the USA and English/Welsh data sets (Spearman Rho – UK; rs = 0.76, p = <0.001, USA; rs = 

0.66, p = <0.001). 
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Figure 6. Bar charts comparing the mean (± 1 SD) DWV structural (cp) and non-structural 

(RdRp) genes (log10) obtained via RT-qPCR, for DWV variants detected in England and Wales 

(UK) and USA honey bee colonies.  

 

DWV recombinants in Varroa tolerant and susceptible honey bee colonies 

 

Dominating master variants were prevalent (Type-B England/Wales; Type-A USA), DWV in 

Varroa tolerant and susceptible colonies follows the overall trend seen in Figure 3. The 

Varroa tolerant colonies in England and Wales have a higher prevalence of DWV; both 

master variants and recombinants (excluding the recombinant of type-A [cp] / type-C 
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prevalence of DWV master variants and recombinant forms than tolerant colonies (Figure 

7). The majority (>84%) of USA tolerant colonies where negative for any of the DWV master 

variants and recombinants.  
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A comparison of DWV variants in English/Welsh and USA colonies that died and survived 

Samples in which mortality data exists were categorised in to those which died 

unexpectedly during the overwinter period and those that survived. The prevalence data 

show that USA colonies which died had a higher prevalence of DWV type-A and 

recombinant type-A (cp) / type-B (RdRp) (Figure 8). Furthermore, the Z test for two 

population proportions reveals that proportional amount of DWV type-A and the A (cp) and 

B (RdRp) recombinant were significantly higher in the colonies that died when compare to 

those that survived in the USA (Z test - p = <0.001) (Figure 8). Due to the low number of 

overwinter colony losses seen in 2016 (Chapter two) in England, only four colonies which 

died were tested in. Two of the dead colonies were negative of DWV and the remaining two 

colonies had both type-B and a recombinant of type-B (Cp) / type-A (RdRp) (Figure 8). The 

English and Welsh surviving colonies had a high type-B prevalence and a diverse range of 

recombinants (Figure 8).  
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Figure 8. Shows the prevalence of DWV variants in England and Wales, and the USA colonies 

which survived or died the overwintering period of 2016/17.  

 

Discussion  

Six DWV recombinants along with the three master genomes were screened for using the 

new PCR primer combinations. The detection of at least one DWV recombinant occurred in 

the majority of DWV positive colonies screened (74% of English/Welsh colonies; 64% of USA 

colonies) (Figure 3). Diverse DWV populations were common in English/Welsh colonies, 

which had multiple master variants and recombinants. However, the six DWV recombinants 

were present in honey bee colonies at levels of < 25% prevalence (Figure 3), whilst viral 

loads were often detected <1E+03 for four of the recombinant pairs, for the majority of 

positive samples. Furthermore, the type-A and B master variants were shown to dominate 
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the colonies screened, confirming the results of Chapters two and three. It is possible that 

other DWV recombinants were present but not detected in the assay, such as those which 

have three recombinant breakpoints (Dalmon et al., 2017).  

 

Recombinant forms of RNA viruses are considered less fit than the parental genomes 

(Desbiez et al., 2011; Garcia-Arenal et al., 2003), the results of this study show that the 

majority of DWV recombinants are no exception. Only in the USA data set were there a 

significant correlation between the structural (cp) and non-structural (RdRp) genes in 

samples which had gel confirmed positive recombinants of type-A (cp) / type-B (RdRp), 

furthermore these were detected in high loads, showing that this recombinant is virulent 

(Figure 4).  The remaining recombinant pairs were not shown to be present in high loads. 

However, the prevalence data (Figure 3) shows that recombinants variants are present in 

honey bee colonies despite the detection of only one of the master variants, these results 

suggest that viral recombinants are capable of replicating in honey bees, but cannot 

compete with the fitter master genomes of type-A and type-B.  

 

Type-B structural (cp) genes were shown to be present at levels ten-fold greater than the 

non-structural (RdRp) genes in both the English/Welsh and USA honey bee colonies, whilst 

the reverse was seen for type-A and C which had RdRp genes far exceeding the cp genes 

(Figure 6).  These surplus genes could possibly be degraded RNA due to a host immune 

response such as RNA silencing, which occurs in a vast range of organisms as a result of viral 

infection (Ding & Voinnet, 2007). Alternately, they could reflect recombinant pairings of the 

type-B structural genes (cp) with non-structural (RdRp) genes of the type-A and C variants. It 
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has been evidenced that type-B can out-compete other DWV variants as a result of being 

able to replicate at a higher rate (McMahon et al., 2017) and its regular detection in high 

loads in Chapter two further confirms this. Therefore, it is suspected that when co-infection 

occurs in a host cell between type-B and the A or C master variants, the opportunity for 

replicative recombination via template switching is increased and occurs at random, giving 

rise to the diverse DWV population in English and Welsh colonies. This is an important 

aspect of viral evolution and eventually leads to the emergence of new viruses (Domingo & 

Perales, 2016), of which the impact upon a honey bee colony will be unknown.  

 

No one overall mechanism for Varroa tolerance was found in the data. English/Welsh 

Varroa tolerant colonies had the highest prevalence of DWV recombinants and master 

variants whilst the USA tolerant colonies had few, with only the recombinants of type-A (cp) 

/ type-B (RdRp) and type-C (cp) / type-B (RdRp) being detected in one colony each. The 

absence of more than one DWV master variant in the majority of USA Varroa tolerant 

colonies (11 out of 13 colonies) is attributed to this result. As the Varroa tolerant bees have 

previously been shown to have comparable DWV loads as susceptible colonies (Chapter two 

& three), it is suspected that the tolerant bees exhibit a behaviour which keeps Varroa 

numbers at levels similar to the treated (susceptible colonies), which then limits the 

opportunity for Varroa to act as a vector.  

 

The prevalence of DWV recombinants and master variants in colonies which died 

unexpectedly overwinter were also investigated (Figure 8). The colonies which died in the 

USA were type-A dominated with an increased prevalence of the type-A (cp) / type-B (RdRp) 
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recombinant and viral loads 10-fold higher than those which survived. The opposite was 

seen in England and Wales where surviving colonies were type-B dominated, with diverse 

recombinant populations and viral loads 10-fold higher than dead colonies. Only four dead 

UK colonies were included in the data however in Chapter two it was concluded that the 

death of these colonies was not solely due to DWV infection due to a large number of 

colonies that survived with high type-B viral loads. The same conclusion is drawn here, 

however as the sample size is limited it is recognised that further sampling is required.  UK 

colony losses for the winter of 2016-17 were lower (13% overwinter colony loss in 2016) 

(BBKA, 2017) than those seen in the USA (21% overwinter colony loss in 2016) (Bee 

informed partnership, 2017). Type-A prevalence and viral loads exceeding 1E+09 were 

evidenced in USA colonies that died overwinter (Chapter three) and the same result was 

also seen here, however the type-A (cp) / type-B (RdRp) recombinant was also prevalent in 

these colonies and provides new evidence that not only is this recombinant able to replicate 

in high loads (Figure 4), it was also prevalent in colonies which failed to successfully 

overwinter.  In addition, other studies have previously raised concerns over increased 

virulence of recombinants of master variants type-A and B (Moore et al., 2011; Zioni et al., 

2011; Ryabov et al., 2014). The result produced here suggests that the recombinant of type-

A (cp) / type-B (RdRp) are virulent.  

 

Master variant type-C was almost absent in both data sets, the type-A (cp) / type-C (RdRp) 

recombinant was totally absent in all the colonies screened. Whilst the type-C (cp) / type-A 

(RdRp) recombinant was found in higher prevalence in colonies that died over the winter 

period in the USA. The recombinant of type-A (cp) / type-C (RdRp) was previously found in 
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colonies which died unexpectedly during the winter period (Mordecai et al., 2016a). Our 

results suggest that this variant is implicated in colony losses, however more studies of this 

nature are required to confirm this result.  

 

Conclusion 

Overall, the results in this study imply that the majority of DWV recombinants are not as fit 

as their parent genotypes, as viral loads and prevalence were lower than those of master 

variants type-A and B. The results confirm pervious findings that England and Wales are 

mainly comprised of DWV master variant type-B, the USA is mainly type-A and type-C is rare 

(Chapters two and three). The type of recombinants present in a colony and the prevalence 

of these is driven by co-infection and also by the dominating master variant. No one overall 

mechanism aiding in Varroa resistance were found and the situation varies between the 

England/Wales and USA honey bee colonies.  

 

References 

Bailey, L. & Ball, B.V. (1991). Viruses of honey bees. Atlas of Invertebrate Viruses, 525-55. 

Berthoud, H., Imdorf, A., Haueter, M., Radloff, S. & Neumann, P. (2010). Virus infections and 
 winter losses of honey bee colonies (Apis mellifera). Journal of Apicultural Research, 
 49(1), 60-65. 

Carreck, N.L., Ball, B.V. & Martin, S.J. (2010). Honey bee colony collapse and changes in viral 
 prevalence associated with Varroa destructor. Journal of Apicultural Research, 49, 
 93–94. 

Cooper, P.D., Steiner-Pryor, A., Scotti, P.D. & Delong, D. (1974). On the nature of  poliovirus 
 genetic recombinants. Journal of General Virology, 23(1), 41-49. 

Cornman, R.S., Tarpy, D.R., Chen, Y., Jeffreys, L., Lopez, D., Pettis, J.S. & Evans, J.D. (2012). 
 Pathogen webs in collapsing honey bee colonies. PLoS One, 7(8), 43562. 



208 

 

Dainat, B., Evans, J.D., Chen, Y.P., Gauthier, L. & Neumann, P. (2012). Dead or alive: 
 Deformed wing virus and Varroa destructor reduce the life span of winter 
 honeybees. Applied and Environmental Microbiology, 78(4), 981-987. 

Dalmon, A., Desbiez, C., Coulon, M., Thomasson, M., Le Conte, Y., Alaux, C., Vallon, J., & 
 Moury, B. (2017). Evidence for positive selection and recombination hotspots in 
 Deformed wing virus (DWV). Scientific Reports, 7, 41045. 

Delviks-Frankenberry, K., Galli, A., Nikolaitchik, O., Mens, H., Pathak, V.K. & Hu, W.S. (2011). 
 Mechanisms and factors that influence high frequency retroviral recombination. 
 Viruses, 3(9), 1650-1680. 

Desbiez, C., Joannon, B., Wipf-Scheibel, C., Chandeysson, C. & Lecoq, H. (2011). 
 Recombination in natural populations of watermelon mosaic virus: new agronomic 
 threat or damp squib?. Journal of General Virology, 92(8), 1939-1948. 

Ding, S.W. & Voinnet, O. (2007). Antiviral immunity directed by small RNAs. Cell, 130(3), 
 413-426. 

Domingo, E. & Holland, J.J. (1997). RNA virus mutations and fitness for survival. Annual 
 Reviews in Microbiology, 51, 151–178. 

Domingo, E., Sheldon, J. &  Perales, C. (2012). Viral quasispecies evolution. Microbiology and 
 Molecular Biology Reviews, 76, 159–216. 

Domingo, E. (2016). Virus as Populations. Composition, Complexity, Dynamics, and Biological 
 Implications. London. Elsevier Academic press. 

Francis, R.M., Nielsen, S.L., & Kryger, P. (2013). Varroa-virus interaction in collapsing honey 
 bee colonies. PLoS One, 8(3). 

Galli, A. & Bukh, J. (2014). Comparative analysis of the molecular mechanisms of 
 recombination in hepatitis C virus. Trends in Microbiology, 22(6), 354-364. 

García-Arenal, F., Fraile, A. & Malpica, J.M. (2003). Variation and evolution of plant virus 
 populations. International Microbiology, 6(4), 225-232. 

Hoshino, H., Hino, K., Miyakawa, H., Takahashi, K., Akbar, S.M.F. & Mishiro, S. (2012). Inter‐
 genotypic recombinant hepatitis C virus strains in Japan noted by discrepancies 
 between immunoassay and sequencing. Journal of Medical Virology, 84(7),1018-
 1024. 

Highfield, A.C., El Nagar, A., Mackinder, L.C., Laure, M.L.N., Hall, M.J., Martin, S.J. & 
 Schroeder, D.C. (2009). Deformed wing virus implicated in overwintering honeybee 
 colony losses. Applied and Environmental Microbiology, 75(22), 7212-7220. 

Kalinina, O., Norder, H., Mukomolov, S. & Magnius, L.O., 2002. A natural intergenotypic 
 recombinant of hepatitis C virus identified in St. Petersburg. Journal of Virology, 
 76(8), 4034-4043. 

Kevill, J.L., Highfield, A., Mordecai, G.J., Martin, S.J. & Schroeder, D.C. (2017). ABC assay: 
 method development and application to quantify the role of three DWV master 
 variants in overwinter colony losses of European honey bees. Viruses, 9(11), 314. 



209 

 

King, A.M., McCahon, D., Saunders, K., Newman, J.W. & Slade, W.R. (1985). Multiple sites of 
 recombination within the RNA genome of foot-and-mouth disease virus. Virus 
 Research, 3(4),373-384. 

Lanzi, G., de Miranda, J.R., Boniotti, M.B., Cameron, C.E., Lavazza, A., Capucci, L., Camazine, 
 S.M. & Rossi, C. (2006). Molecular and biological characterization of Deformed wing 
 virus of honeybees (Apis mellifera L.). Journal of Virology, 80, 4998–5009. 

Lauring, A.S. & Andino, R. (2010). Quasispecies theory and the behaviour of RNA viruses. 
 PLoS Pathogens, 6(7). 

Lee, Y.M., Lin, H.J., Chen, Y.J., Lee, C.M., Wang, S.F., Chang, K.Y., Chen, T.L., Liu, H.F. & Chen, 
 Y.M.A. (2010). Molecular epidemiology of HCV genotypes among injection drug users
 in Taiwan: Full‐length sequences of two new subtype 6w strains and a recombinant 
 form_2b6w. Journal of Medical Virology, 82(1), 57-68. 

Martin, S.J., Ball, B.V. & Carreck, N.L. (2010). Prevalence and persistence of Deformed wing 
 virus (DWV) in untreated or acaricide-treated Varroa destructor infested honey bee 
 (Apis mellifera) colonies. Journal of Apicultural Research, 49(1),72-79. 

Martin, S.J., Highfield, A.C., Brettell, L., Villalobos, E.M., Budge, G.E., Powell, M., Nikaido, S. 
 & Schroeder, D.C. (2012). Global honey bee viral landscape altered by a parasitic 
 mite. Science, 336(6086), 1304-1306. 

Martin, S.J., Ball, B.V. & Carreck, N.L. (2013). The role of Deformed wing virus in the initial 
 collapse of Varroa infested honey bee colonies in the UK. Journal of Apicultural 
 Research, 52(5), 251-258. 

Maori, E., Lavi, S., Mozes-Koch, R., Gantman, Y., Peretz, Y., Edelbaum, O., Tanne, E. and Sela, 
 I. (2007). Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus 
 affecting honeybees in Israel: evidence for diversity due to intra-and inter-species 
 recombination. Journal of General Virology, 88(12), 3428-3438. 

McMahon, D.P., Natsopoulou, M.E., Doublet, V., Fürst, M., Weging, S., Brown, M.J., Gogol-
 Döring, A. & Paxton, R.J. (2016). Elevated virulence of an emerging viral genotype as 
 a driver of honeybee loss. Proceedings of the Royal Society of London B: Biological 
 Sciences, 283(1833), 20160811. 

Moore, J., Jironkin, A., Chandler, D., Burroughs, N., Evans, D.J., & Ryabov, E.V. (2011). 
 Recombinants between Deformed wing virus and Varroa destructor virus-1 may 
 prevail in Varroa destructor-infested honeybee colonies. Journal of General of
 Virology, 92, 156–161. 

Mordecai, G.J., Wilfert, L., Martin, S.J., Jones, I.M. & Schroeder, D.C. (2016a). Diversity in a 
 honey bee pathogen: First report of a third master variant of the Deformed Wing 
 Virus quasispecies. ISME Journal, 10, 1264–1273. 

Mordecai, G.J., Brettell, L.E., Martin, S.J., Dixon, D., Jones, I.M. & Schroeder, D.C. (2015b). 
 Superinfection exclusion and the long-term survival of honey bees in Varroa-infested 
 colonies. The ISME journal, 10(5), 1182. 

Morel, V., Descamps, V., François, C., Fournier, C., Brochot, E., Capron, D., Duverlie, G. & 
 Castelain, S. (2010). Emergence of a genomic variant of the recombinant 2k/1b strain 



210 

 

 during a mixed Hepatitis C infection: a case report. Journal of Clinical Virology, 47(4), 
 382-386. 

Moutouh, L., Corbeil, J. & Richman, D.D. (1996). Recombination leads to the rapid 
 emergence of HIV-1 dually resistant mutants under selective drug pressure. 
 Proceedings of the National Academy of Sciences, 93(12), 6106-6111. 

Nazzi, F., Brown, S.P., Annoscia, D., Del Piccolo, F., Di Prisco, G., Varricchio, P., Della Vedova, 
 G., Cattonaro, F., Caprio, E. & Pennacchio, F. (2012). Synergistic parasite-pathogen 
 interactions mediated by host immunity can drive the collapse of honeybee colonies. 
 PLoS Pathogens, 8(6), 1002735. 

Ongus, J.R., Peters, D., Bonmatin, J.M., Bengsch, E., Vlak, J.M. & van Oers, M.M. (2004) 
 Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the 
 mite Varroa destructor. Journal of General Virology, 85, 3747–3755. 

Palacios, G., Hui, J., Quan, P.L., Kalkstein, A., Honkavuori, K.S., Bussetti, A.V., Conlan, S., 
 Evans, J., Chen, Y.P., Efrat, H. & Pettis, J. (2008). Genetic analysis of Israel acute 
 paralysis virus: distinct clusters are circulating in the United States. Journal of 
 Virology, 82(13), 6209-6217. 

Ryabov, E.V., Wood, G.R., Fannon, J.M., Moore, J.D., Bull, J.C., Chandler, D., Mead, A., 
 Burroughs, N. & Evans, D.J. (2014). A virulent strain of Deformed wing virus (DWV) of 
 honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, 
 transmission. PLoS Pathogens, 10(6). 

Ryabov, E.V., Childers, A.K., Chen, Y., Madella, S., Nessa, A. & Evans, J.D. (2017). Recent 
 spread of Varroa destructor virus-1, a honey bee pathogen, in the United States. 
 Scientific Reports, 7(1). 

Schroeder, D.C., & Martin, S.J. (2012). Deformed wing virus: The main suspect in 
 unexplained honeybee deaths worldwide. Virulence, 3, 589–591. 

Shapka, N. & Nagy, P.D. (2004) The AU-rich RNA recombination hot spot sequence of Brome 
 mosaic virus is functional in tombusviruses: implications for the mechanism of RNA 
 recombination. Journal of Virology. 78(5), 2288-2300. 

Thomson, M.M. & Nájera, R. (2005). Molecular epidemiology of HIV-1 variants in the 
 global AIDS pandemic: an update. AIDS Review, 7(4), 210-224. 

Vos, M. (2009). Why do bacteria engage in homologous recombination?. Trends in 
 Microbiology, 17(6), 226-232. 

White, K.A. & Morris, T.J. (1994). Recombination between defective tombusvirus RNAs 
 generates functional hybrid genomes. Proceedings of the National Academy of 
 Sciences of the United States of America. 91, 3642–3646 

Zioni, N., Soroker, V. and Chejanovsky, N. (2011). Replication of Varroa destructor virus 1 
 (VDV-1) and a Varroa destructor virus 1–Deformed wing virus recombinant (VDV-1–
 DWV) in the head of the honey bee. Virology, 417(1),106-112. 

 



211 

 

GENERAL DISCUSSION 

The unacceptable percentage of honey bee colonies that die in the northern hemisphere 

during the overwinter months has led to a huge amount of concern amongst beekeepers 

and the scientific community (Aizen et al., 2009). The cause of overwinter colony losses has 

now been linked to the association between the Varroa mite and Deformed Wing virus 

(DWV) which the mite vectors with lethal consequences (Highfield et al., 2009; Martin et al., 

2012; Schroeder & Martin, 2012; Nazzi et al., 2012; Francis et al., 2013). The recent 

discovery of three DWV master variants; Type-A (Lanzi et al., 2006), B (Ongus et al., 2004) 

and C (Mordecai et al., 2016a) has provided researchers with the opportunity to assess the 

impact of each variant on the honey bee host and also host tolerance, both of which have 

been a major focus of this PhD. 

 

I have shown that DWV is a prevalent pathogen in English, Welsh and USA honey bee 

populations. In the English and Welsh data set every colony tested positive for DWV, whilst 

95% of USA colonies tested positive. These results were not surprising since DWV is 

commonly detected in colonies with Varroa infestations (Carreck, Ball, & Martin, 2010; 

Martin et al., 2013; Martin et al., 2012; Mondet et al., 2014). However, there was a striking 

difference between the DWV variants present in both the English, Welsh and USA colonies. 

The English and Welsh DWV population was dominated by type-B, type-A was detected in 

99% of colonies but 84% of these had type-A proportional viral loads of <10%. The reverse 

was seen in the USA where 78% of colonies were dominated by type-A and 24% by type-B. 

DWV type-C was rare in both data sets (Chapters two and three).  
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Multiple DWV infections were often detected in honey bee colonies with either type-A or B 

achieving dominance (Chapter five). DWV co-infection allows for DWV viral recombinants to 

form, some of which have previously been identified between the structural and non-

structural genes of type-A and B (Moore et al., 2011; Ryabov et al., 2014, Dalmon et al., 

2017) and also type-A and C (Mordecai et al., 2016a). Therefore, I decided to screen colonies 

for the prevalence of DWV recombinants between the structural and non-structural genes. I 

found that DWV recombinants are commonly detected in colonies, however these are not 

as dominant as the master genomes. Viral recombinants are often considered less fit than 

the parent genomes (Desbiez et al, 2011; Garcia-Arenal et al, 2003), and for the majority of 

DWV recombinants this appears to be true.  An increased virulence was previously reported 

for recombinants of type-A and B (Moore et al., 2011; Ryabov et al., 2014) and these 

recombinants were detected in high loads (1E+10) in the English, Welsh and USA data sets. 

The impact of these recombinants on colony health is still unknown.  

 

The analysis of historic samples reveals that type-B prevalence has risen in the last decade in 

England. Samples collected in Devon in 2007 had DWV infections primarily comprised of 

type-A and C, whilst type-B was detected in low prevalence in my assay it was evidenced to 

be absent in works conducted by Baker & Schroeder (2008). In 2010 type-A dominated 33% 

of English colonies with viral loads exceeding 1E+08 in the majority (85%) of positive 

colonies, whilst type-B dominated 77% of colonies and viral loads were greater than 1E+10 

in over half (54%) of the data. Only 7% of UK colonies were type-A dominated in 2016, the 

remaining 93% were dominated by type-B. Both Mordecai et al (2016b) and McMahon et al. 
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(2017) show that DWV type-B outcompetes type-A and their results explain why DWV type 

B prevalence increased overtime in the data presented in Chapter two. 

 

A similar situation is currently occurring in the USA where Ryabov et al. (2017) reported only 

two type-B positive colonies in 2010, a number which increased to 121 colonies in 2016. The 

data presented in Chapter three confirms the result produced by Ryabov et al. (2017), but 

shows that DWV type-A is still the dominating master variant. The ability of type-B to 

dominate was shown in 24% of the colonies screened. Sequence data provided by Ryabov et 

al. (2017) found that type-B infections present in Florida colonies from 2016 were identical 

to European strains of the virus, furthermore Wilfert et al. (2016), show DWV fragments 

migrating from European populations of bees into the USA. Thus, allowing for the potential 

of European DWV type-B to exclude DWV type-A in USA colonies. The gradual increase in 

type-B dominated colonies suggests that type-B is a newly emerging or remerging variant in 

the USA (Ryabov et al., 2017). The gradual increase in the UK over the decade and the 

recent detection of type-B in the USA suggests that over time the USA may become 

dominated by type-B. I predict that this will occur in the next decade, however the situation 

will require monitoring.   

 

Varroa tolerant and susceptible colonies were selected for analysis and careful 

consideration as to when a colony can be termed tolerant was taken. I deemed a Varroa 

tolerant colony as any colony which has been Varroa unmanaged for longer than 4 years. 

This is because susceptible colonies have been shown to die beyond this point (Korpela et 

al., 1982). The susceptible colonies were those managed for Varroa by receiving regular 
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Varroa treatments throughout the beekeeping year. These treatments involve a variety of 

methods, with the common goal of reducing mite numbers and in-turn DWV viral load 

(Martin et al., 2010; Locke et al., 2012). Varroa tolerant colonies were sampled from English, 

Welsh and USA apiaries, along with a long-term Varroa tolerant population of bees from the 

Arnot forest (Chapters two, three and four). The Arnot forest bees have survived with 

Varroa for over 20 years. All the data sets show that Varroa tolerant colonies have pre-

winter DWV loads similar to the susceptible bees. In the English and Welsh populations 

colonies were dominated by type-B and in the USA type-A was dominant, therefore the 

variant present in a colony did not aid in the colonies long-term survival. It is more likely 

that it is the tolerant colonies ability to maintain pre-winter DWV viral loads which enables 

their survival. Early works by Martin et al. (2010), show an increase in DWV prevalence prior 

to the overwinter period in colonies that were not treated for Varroa which later went on to 

die. Highlighting the importance of Varroa control in managed colonies however, this no-

longer appears to be the case as an increasing number of beekeepers have stopped 

managing for Varroa and colonies appear to survive despite this decision. I have shown that 

DWV loads did not increase prior to the overwintering period despite the lack of Varroa 

management in tolerant colonies. Recent work shows DWV infections are maintained in 

honey bee colonies despite the removal of Varroa (Locke et al., 2017) due to the feeding 

activities of bees, and could explain why no significant difference in viral load occurred 

between the Varroa susceptible and tolerant colonies sampled. However, this is not 

suspected to be the case for the late summer susceptible samples, as beekeepers were 

asked to provide these prior to applying pre-winter Varroa treatments.  

 



215 

 

Information about the role of Varroa tolerance and the DWV master variants present in a 

tolerant colony is almost non-existent, only two papers report on specific DWV master 

variants and their role in Varroa tolerance (Mordecai et al., 2016b; Brettell & Martin, 2017). 

Superinfection exclusion via type-B was proposed by Mordecai et al. (2016b) to be enabling 

the survival of a tolerant population of UK bees, whilst Brettell and Martin (2017) found 

avirulent DWV variants to be present in a Brazilian tolerant population of honey bees. This 

situation appears very rarely, and may have arisen due to the isolated nature of the 

population. Neither of these situations were evidenced when investigating DWV variants 

and viral load present in the tolerant colonies sampled in Chapters two, three and four. 

Another study involving tolerant bees located in Sweden found DWV loads in Varroa 

susceptible colonies and tolerant colonies were comparable between the two (Locke et al., 

2014). The Swedish tolerant bees were later evidenced to exhibit a Varroa reducing trait. 

Oddie et al. (2018), discovered the parallel evolution of a Varroa reducing recapping trait in 

long-term Varroa surviving colonies from France, Sweden and Norway. Here, adult worker 

bees were shown to detect and recap Varroa infested brood which reduced mite 

reproductive success. The exact mechanism which keeps DWV loads at levels seen in Varroa 

tolerant bees similar to susceptible colonies in this Ph.D. remains unclear, however it is 

considered that tolerant populations mitigate Varroa infestations thereby hampering the 

DWV-Varroa vectoring cycle. It is possible that the Varroa tolerant colonies sampled may 

have also developed Varroa reducing traits such as the recapping trait, yet this needs to be 

evidenced further.  
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I also explored the role of DWV variants and how they influence colony survivorship 

(Chapters two and three). The UK mortality data revealed that only 4% of the colonies died, 

this result is also supported by the BBKA overwinter colony loss survey who reported a 

13.2% loss, which was lower than the previous year (16%). Prior to my undertaking of this 

work DWV was suggested to offer a level of protection to tolerant colonies via 

superinfection exclusion (SIE), where less lethal variants of a virus out-compete more lethal 

variants and become established in a population (Mordecai et al., 2016b). The results in 

Chapter two show that this phenomenon is widespread across the England and Wales, and 

was prevalent prior to my research and also at the time of the Mordecai et al. (2016b) 

study. Furthermore, there are no reports in the literature of DWV type-B infection prevailing 

in colonies which failed to successfully overwinter; type-B has only been shown to kill 

worker bees when loads exceeded 1E+12 (McMahon et al., 2017). In addition, type-B was 

detected in mid-high loads (1E+09) in a honey bee population sampled in autumn which was 

sampled again in spring (Natsopoulou et al.,2017). Viral loads in spring were low (<1E+08) 

leading the authors to suggest that type-B is lethal to adult worker bees (Natsopoulou et al., 

2017). I believe this result can be explained by the seasonal prevalence of DWV in colonies, 

as load and prevalence is generally lower in spring than it is in pre-wintering bees (Martin et 

al., 2010, Gleeny et al., 2017). The low number of losses witnessed in the Chapter two 

further provide evidence that below the host threshold of tolerance (which I suspect is > 

1E+12) type-B offers a level of protection by inhibiting the replication of type-A, however 

this protective factor comes at a cost as long-term chronic infections have been evidenced 

to reduce the life span of bees (Dainat et al., 2012a; Benaets et al., 2018). All variants of the 

disease have negative consequences; however, the results indicate that these are reduced 

in type-B dominated colonies. Due to the competitive nature of RNA viruses of the same 
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species complex, it is possible that one of the DWV variants may evolve to out-compete 

type-B and this situation will need to be monitored. Additional monitoring should also focus 

on colony losses to further confirm that DWV type-B is less lethal to honey bee colonies 

than type-A or C.  

 

The USA overwinter colony mortality data revealed 40% of apiaries experience unexpected 

overwinter colony losses, whilst the Bee informed partnership colony loss survey reported a 

21% loss for the winter of 2016/17, however colony losses for the winter of 2017/18 

increased to 31%. The losses reported in the UK could not be linked to DWV due to the high 

number of colonies surviving with similar DWV variants and viral loads, whereas in the USA 

an association between overwinter colony death and DWV type-A was witnessed. Type-A 

and the loss of over half the Varroa untreated colonies were also evidenced after the arrival 

of Varroa in Hawaii (Martin et al., 2012). Furthermore, Highfield et al., (2009) reported the 

loss of colonies that had high type-A loads in 2007. These colonies were rescreened using 

the ABC assay detailed in Chapter one, DWV type-A and C were found to be present in 

colonies that died. In addition, previous research shows overwinter losses of colonies with 

high type-A viral loads (Berthoud et al., 2010, Dainat et al, 2012a; 2012b; Francis et al., 

2013). Therefore, the association between type-A, Varroa and colony death has already 

been evidenced and is a likely explanation as to why USA colony losses are periodically 

higher than those reported in the UK.   

 

A link between type-B and Varroa has been established (Hawkins et al., appendix one) as 

Varroa infested larvae have significantly higher type-B loads than type-A and non-infested 
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larvae. Therefore, it is suspected that the type-B variant present in UK colonies is 

preferentially vectored by Varroa mites to honey bees. This also supports the theory that 

DWV type-B has evolved in the DWV-Varroa vectoring cycle (Mordecai et al., 2016b) and a 

trade-off between virulence (ability to replicate in a host) and pathogenicity (ability to cause 

disease symptoms) has been achieved, therefore it is suspected that DWV type-B is less 

virulent than other DWV variants at the colony level. Varroa mites require honey bee larvae 

to complete their reproductive cycle, during this time they will feed on developing larvae. It 

is the feeding activity of the mites that has been evidenced as an effective DWV 

transmission route (Ball, 1989; Bowen-Walker et al., 1999; Carreck, Ball & Martin, 2010). If a 

virulent virus is transmitted the larvae will die along with the mite, preventing the 

transmission of the virus. This is seen in colonies infected with Acute bee paralysis virus 

(ABPV) which can kill a host in as little as 3 days (Maori et al., 2007). Therefore, the viruses 

that the mite’s vector must not kill the host. I suspect a trade-off has occurred where a less 

virulent has been selected for in the DWV-Varroa vectoring cycle and explains the low 

percentage of English and Welsh colonies lost in chapter two. Vector borne virulence trade-

offs are hard to evidence in the field as the viral load of the vector has to be established and 

the virulence to the host monitored (Froissart et al., 2010). The spread of type-B across the 

USA provides the perfect opportunity to further evidence the Varroa-DWV virulence trade-

off in the field, whilst lab assays can be used in conjunction to mimic what is happening in 

the wider environment.  

 

All these findings were only made possible by establishing a new method (Chapter 1) which 

enabled the quantification of all three DWV variants. Since publication this method has now 
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been used in studies concentrating upon the Varroa- DWV vectoring cycle (Hawkins et al., 

paper in prep; Appendix one), viral spill-over from honey bees into colonies of stingless bees 

from Brazil (De Souza et al., 2018; Appendix two), and also in research involving DWV naïve 

bees found in Australia (Amanda Norton personal communication). Furthermore, the 

importance of using an RNA standard when quantifying RNA viruses was highlighted in this 

study to encourage it’s use in the wider community. 

 

Conclusion and future works  

Overall, I set out to address the role, prevalence and viral load of each of the DWV variants 

and how these are implicated in Varroa tolerance and overwinter colony losses. I have 

provided evidence of the widespread prevalence and dominance of DWV master variants in 

honey bee colonies from England, Wales and the USA. This data shows type-A is prevalent in 

the USA and linked to overwinter colony losses. Type-B is prevalent in the UK and could not 

be linked to colony losses as colonies survived with type B infections. In addition, I have 

shown SIE via type-B is currently an English and Welsh phenomenon. I also provided 

evidence that honey bees will develop Varroa and disease tolerance if left untreated for 

greater than 4 years in the English, Welsh and USA populations however the exact 

mechanism for this tolerance remains unclear and is most likely linked to a Varroa reducing 

behaviours.   

 

Further research is required to establish when DWV type-B infections become lethal at the 

colony level via both field and lab experiments. This work is important as DWV type-B has 
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not been shown to cause the death of overwintering colonies and currently appears to be 

less lethal than DWV type-A or C. If the protective factor of DWV type-B is continually 

evidenced than it could have the potential to hamper colony losses.  I predict that type-B 

will gradually replace type-A in the USA and this will also coincide with a reduction in 

overwinter colony losses. This situation will require constant monitoring and will enable us 

to further understand type-B SIE. Further experiments are also required in the Varroa 

tolerant colonies to establish the exact mechanism which maintained seasonal DWV loads, a 

behavioural trait is suspected to be the cause. 
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APPENDICES 

Appendix 1: Effect of Varroa on the variation of transmission of DWV strains 

in honey bee pupae 

Hawkins George, Kevill Jessica, Chambers Lucy, Martin Stephen J  

Abstract 

When transmitted by the ectoparasitic mite Varroa destructor, Deformed wing virus (DWV) 

is strongly associated with the death of colonies. Currently three master variants of DWV 

exist (A, B, and C), however little is known about the impact or dynamics of each variant. 

This study found that natural viral loads of type-B are increased by Varroa more consistently 

than type-A. This could lead type B becoming dominant variant in the population and helps 

support for the notions that type-B is the faster replicator and is becoming the dominant 

genetic variant of DWV in the USA and UK. 

 

Introduction 

The mite Varroa destructor is responsible for the collapse of millions of colonies via the 

transmission of Deformed wing virus (DWV) (Dainat et al., 2012; Martin et al., 2012). In its 

natural state, DWV is transmitted vertically via sexual reproduction (Yue et al., 2007) and 

horizontally via oral ingestion (Yue & Genersch, 2005). Infection via these pathways has 

been generally characterised by low prevalence, low viral loads (Ryabov et al., 2014), and 

high strain diversity (Martin et al., 2012). The nature of DWV in A. mellifera has however 

been drastically altered since exposure to Varroa (Martin et al., 2012), with elevated viral 

loads, reduction in strain diversity and high prevalence leading to reduced longevity and 
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eventually death of the host colonies (De Miranda & Genersch, 2010). The interrelations 

between DWV, the mites and colony health remain complex and dynamic. If the 

phenomena described above were absolute, the removal of Varroa would reduce viral 

prevalence as was originally demonstrated (Martin et al., 2010). However, now the viral 

landscape has been permanently altered by the spread of Varroa, an increasing number of 

studies are indicating the importance of viral transmission in the absence of Varroa, and 

have shown that high levels of DWV can persist even following treatment (Locke et al., 

2017).  

To date, three of these master variants of DWV have been described: type-A (Martin et al., 

2012), type-B (formerly Varroa destructor virus-1, or VDV-1) (Ongus et al., 2004), and type-C 

(Mordecai et al., 2016b). Although the effects of natural and Varroa mite transmission on 

DWV have been extensively studied, no studies have compared whether Varroa 

transmission differentially affects any one of the three master variants. This preliminary 

study investigated whether natural and Varroa transmitted viral loads differed between the 

master variants present.  

 

Materials and Methods 

Eight honey bee colonies were sampled in total from the North West region of England, UK; 

three in September 2016 from Manchester, and five in September 2017 from Merseyside. 

As the sampling took place prior to winter treatment Varroa infestation was present in all. 

One frame containing all brood stages was removed from each colony and freeze-killed at -

20°C. Individual brood were removed and pooled (up to 10 per sample) according to their 

colony, developmental stage (egg, larvae, and pupae [pink-eyed or older]), and presence or 
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absence of Varroa on the pupae. Each pooled sample was frozen in liquid N2, crushed to a 

powder-like consistency using autoclaved pestle and mortars, and stored at -80°C. RNA 

extraction was preformed using a RNeasy mini kit and quantified via NanoDrop and diluted 

to obtain 50ng/ul. RT-qPCR was performed on a Rotor-Gene 6000 (Qiagen) using SensiFast 

SYBR No-Rox One-Step kit (Bioline) and primers developed by Kevill et al. (2017) (to detect 

types A, B and C). Each sample was run in triplicate to increase reliability. Any samples that 

generated readings below the standard detection threshold (Ct value >30), were not 

included in the analysis to rule out the possibility of quantifying false positives or 

contamination. If a difference greater than three was generated between any Ct values, the 

outlier was removed before calculating the mean. From these averages, the genome 

equivalents (G/E) were calculated to produce copy numbers that were the equivalent to an 

individual bee; the calculation used is as follows: (average copy number) x (RNA dilution 

factor) x (elusion volume of RNA) x (proportion of bee material) (Kevill et al., 2017). 

As the G/E data did not fit normal distribution even following log10 transformation a series 

of nonparametric Mann-Whitney U tests were performed to ascertain significant 

differences. 

 

Results & Discussion  

In all 64 samples DWV types-A and B were detected and 28 tested positive for type-C. 

Within the 64 samples, one or more of the three master-variants were quantifiable in 35 

samples (4 eggs, 8 larvae, 11 pupae and 12 mite-infested pupae). Type-C was only 

quantifiable in four sample, all low (median = 1.04E+08) amounting for <0.1% of all the 

copies. Types A and B were quantifiable in all brood stages, indicating an increasing viral 
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load as the brood developed (Fig. 1). This confirmed transmission via sexual reproduction 

(Yue et al., 2007; Amiri et al., 2016) for both A and B and that both variants (type-B in 

particular) can persist at high levels in the absence of Varroa (Highfield et al., 2009; Locke et 

al., 2017), implying that treatments that simply remove the mites are not sufficient in 

eradicating these variants from a population.  

 

Fig. 1 The average DWV load measured in genome equivalents, in various developmental 

stages of worker brood of Apis mellifera, indicating that Varroa has a significant (w=610, 

p=0.01) effect on DWV viral load. The error bars indicate one S.D. 

 

When the effect of Varroa on DWV transmission of the A and B variants were analysed the 

median average viral loads of the B-type were consistently higher when transmitted by 

Varroa (w=203, p=0.004) than when naturally transmitted (Fig. 2); a similar outcome was 

not generated for type-A (w=101, p=0.170) (Fig. 2).  
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Fig. 2. DWV viral load in Varroa infested and non-infested larvae. (a) shows total DWV load. 

(b) Shows viral load for type-A (red) and type-B (blue) 

 

Thus, the impact of Varroa mite transmission is more profound on Deformed wing virus 

(DWV) type-B in comparison to the classic type-A. This preferential selection during Varroa-

mediated transmission provides evidence in support for type-B having a higher replication 

rate (McMahon et al., 2016), which can subsequently lead to the dominance over and 

exclusion of type-A from a population (Mordecai et al., 2016a). This may also help explain 

the recent discovery that type-B is widespread in Germany (Natsopoulou et al., 2017) and 

becoming the dominant variant of in USA (Ryabov et al., 2017) and UK (McMahon et al, 

2016). 

Given the significant increase in type-B viral loads in association with Varroa mite 

transmission, this master variant could now be outcompeting types-A and C. What this 
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means for the future of honey bees however is largely unknown. The danger that type-B 

poses has been demonstrated (McMahon et al., 2016; Benaets et al., 2017), yet colonies 

exist that paradoxically survive harbouring high loads of this variant (Mordecai et al 2016a). 
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Abstract 

 

Due the association with the parasitic honey bee Varroa mite, Deformed wing virus (DWV) 

has become one of the world’s most widespread and studied insect viral pathogens.  In Brazil, 

stingless bees (Meliponini) are a diverse and widespread group with many species being 

managed for honey production, often in close proximity to honey bees. The aim of this study 

was to investigate the prevalence and viral load of DWV in the stingless bee (Melipona 

subnitida) and honey bee (Apis mellifera) from NE Brazil. DWV prevalence was 100% in both 

species with the A and C-variants dominating in M. subnitida and the A-variant in A. mellifera. 

The average viral loads were 8.83E+07 and 7.19E+07 in M. subnitida and A. mellifera 

respectively. However, on the remote island of Fernando de Noronha DWV a previous study 

showed DWV very low (<1E+03) is the honey bees, but 1.6E+08 in the neighbouring nine M. 

mailto:s.j.martin@salford.ac.uk
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subnitida colonies, indicating that no spill-over of DWV from M. subnitida to A. mellifera has 

occurred during the past 34 years when these two species were introduced to the island and 

maintained in close proximity. Again, the ubiquitous present of the DWV-C variant in M. 

subnitida colonies, and rarity in A. mellifera, suggests limited viral exchange between these 

two species.   

 

Introduction  

 

The stingless bees (Apidae: Meliponini) are the most diverse group of eusocial bees, 

comprising of more than 400 species contained within 60 genera (Rasmussen and Cameron 

2010). The majority of species occur in the Neo-tropics with colonies typically containing 

200-700 adults and a perennial life-cycle (Wille 1983). Many species, particularly the large 

Melipona species have a long association with humans that harvest their highly prized 

honey (Jaffé et al. 2015), but they are also responsible for pollinating 40-90% of the native 

flora in some regions of Brazil (Nascimento et al. 2000). Relative to the honey bees (Apis 

spp), very little is known about the pests and pathogens of stingless bees despite their 

importance.  

Brazil has a long history of managing honey bees (Apis mellifera) originally imported 

from Europe, but in 1957, 26 colonies of imported African A. m. scutellata escaped 

quarantine and spread throughout Brazil, hybridising with existing honeybees to form the 

Africanised honey bee (Winston 1992). However, when in 1971 the parasitic Varroa (Varroa 

destructor) mite arrived in Brazil, the Africanised honey bees were natural tolerance to the 

mite, whereas, the European honeybees suffered large scale losses. These losses are caused 
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by a viral pathogen called Deformed Wing Virus (DWV) that is transmitted by the Varroa 

mite (Rosenkranz et al., 2010).  

Although Varroa can only survive on honey bees, Santamaria et al (2018) showed 

that the raised DWV levels in the honey bee population, initiated by the mite, has resulted 

in viral the spill-over into other species of bees and wasps. This may explain why DWV has 

been detected in a wide range of non-Apis insects (Singh et al. 2010, Evison et al., 2012; 

Levitt et al., 2013; Manley et al. 2015) and has even been detected in pollen (Mazzei et al 

2014). The impact of DWV on these hosts remains unknown (Tehel et al. 2016), although 

there is growing concern (Li et al., 20011; Fürst et al. 2014,; Graystock et al. 2015, Manley et 

al. 2015).  

 In Brazil, the Africanised honey bee, Varroa mite and DWV have been present for 

decades so there have been ample opportunities for cross-species infections to occur, 

especially since both honey bees and stingless bees are often managed in close proximity, 

i.e. in nearby apiaries.  Therefore, the aim of this study was to evaluate both the prevalence 

and viral load of the three described DWV master-variants (A, B and C) across a population 

of stingless bee (Melipona subnitida) and Africanised honey bees from North-Eastern Brazil. 

The stingless bee M. subnitida is swarm founding species, brood development takes around 

40 days, and workers survive for a few months. This species is endemic to the dryland-shrub 

forest ‘Caatinga biome’ found in NE Brazil and is the typical stingless bee maintained by 

beekeepers throughout the region. These meliponiparies help towards the conservation of 

local biodiversity, as well as provide extra income to the beekeepers (Jaffé et al. 2015).  
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Materials and Methods 

Samples 

Pools of 30 M. subnitida workers were collected using a pooter directly at the entrance 

of 24 colonies from meliponiparies at ten mainland locations across NE Brazil. Samples from 

Fortaleza and Mossoro were collected in 2016 with all other samples collected in 2013. In 

addition, pools of ten M. subnitida workers from nine colonies located on the remote oceanic 

island of Fernando de Noronha were collected in 2013 using the same method. These samples 

are interesting since this population was originally established by 30 colonies brought to the 

island in 1983 from the mainland states of Ceara and Rio Grande do Norte (Kerr and Cabeda 

1985). In 1984 Kerr also established a small population of European honey bees on Fernando 

de Noronha that were accidentally infested by the Varroa mite, although the typically high 

levels of DWV were not present in either the honey bees or Varroa (Brettell and Martin 2017).  

During the same period pools of 30 healthy adult worker Africanised honey bees 

where collected from the brood area of 12 colonies from six states across NE Brazil.  All 

samples were collected into absolute ethanol and stored at -20° C before transportation to 

the UK under license to be analysed.  

Detection and quantification of DWV variants 

Total RNA was extracted from a pool of 10 heads per colony for both stingless and 

honey bees. Heads were used to avoids possible viral contamination from the gut and DWV 

may have a greater impact if present in the head (Fujiyuki, et al 2004). The heads were ground 

in liquid Nitrogen into a fine homogeneous powder, a 30mg sub-sample had its RNA extracted 

using a Qiagen RNeasy mini kit, which was enhanced by using a QIAshredder kit for the M. 
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subnitida samples (Forsgren et al. 2017). Nanodrop (8000 series) quantification was used to 

standardise the amounts of total RNA to 50 ng/μl using RNase free water, before been stored 

at -80° C. 

In order to quantify the viral load of each variant we used a recently developed 

method (Kevill et al., 2017). Briefly, cDNA was synthesised using one-step SensiFAST SYBR No 

ROX One-step kit (Bioline, London, UK), the reactions contained 1ul 50ng/µl RNA  10ul Senifast 

mix, 0.2ul Reverse transcriptase, 0.4ul RNase inhibitor, 0.75 pmol of each primer (DWV F and 

R-Type-A, B and C [Table 1]) and 7.5ul of H20. Reactions were run on a Rotor-Gene Q 

Thermocycler (Qiagen) with an initial reverse transcription stage at 45° C for 10 min and a 

denaturation step of 95° C for 10 min, followed by 35 cycles of denaturation for 15 s at 95° C, 

annealing for 15 s at 58° C for primers  A  and  B,  and  61.5  °C  for  primer  C, and extension 

for 15 s at 72° C.  A final dissociation melt curve was performed between 72° C and 90° C, at 

0.5° C increments, each with a 90 s hold. The melt curve was used to ensure that a single 

targeted product was amplified, and that no contamination was present in the reverse 

transcription negative controls or in the no-template controls. The threshold cycle (Ct) value 

was determined for each sample using the QIAGEN Rotor—Gene Q Series Analysis software 

and viral quantification was done by using serial dilutions of the standard DWV RNA, ranging 

from 1E+02 to 1E+07 copies of DWV per reaction. All samples were run in triplicate and the 

average taken. Those samples which had a standard deviation of ≥3 Ct were re-run. 

Furthermore, PCR products were run on a 2% agarose gel stained with 0.001% GelRed to 

confirm the correct sized band had been amplified. A control housekeeping gene β-actin 

(Highfield et al. 2009) was also run to ensure no degradation of the samples had occurred, 

due to large distances these samples were transported both within and between countries. 

Genome equivalents were calculated per sample using the following equation:  
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Genome equivalents = (average copy number) x (RNA dilution factor) x (elution of 

RNA) x (proportion of bee material) 

 

Table 1. Primers used in this study were developed by Kevill et al. (2017).  

 

 

 

 

 

Results  

Prevalence of DWV 

We detected DWV in every M. subnitida and A. mellifera colony. Negative controls 

indicated no contamination had occurred in any of the runs. Furthermore, the housekeeping 

gene indicated all samples contain intact RNA (Fig. 1). The average Ct values indicated more 

β-actin in the A. mellifera samples (19.7Ct ± 1.91 S.D.) relative to the M. subnitida samples 

(23.5Ct ± 0.70 S.D.).  

 

 

Figure 1. Typical gel showing the presence of β-actin in all samples of Melipona subnitida, Apis 

mellifera and positive controls, confirming that the samples contained intact RNA. 

Target Primer Name Sequence (5' - 3') Size of product (bp) 

DWV Forward DWVnew-F1 TACTAGTGCTGGTTTTCCTTT  

DWV Type A DWVA-R1 CTCATTAACTGTGTCGTTGAT 155 

DWV Type B DWVB-R1 CTCATTAACTGAGTTGTTGTC 155 

DWV Type C DWVC-R1 ATAAGTTGCGTGGTTGAC 152 



237 

 

DWV viral loads 

The DWV in the M. subnitida population, only the A and C master-variants were 

detected (Fig. 2). The DWV-A variant was dominate in 78% of the colonies (Fig. 2) and the C-

variant dominating the remaining 22% of colonies. Whereas, in the honey bee colonies, 92% 

were dominated by the A-variant and only one colony (8%) was dominated by the C-variant. 

The DWV-B variant was quantifiable only in a single A. mellifera colony (Table 2) and detected 

on the gel but below the qPCR detection limit in three other A. mellifera colonies (Mossoro, 

Garanhus and Cruz das Almas). The viral loads detected in both species of bee averaged 

8.8E+07 and 7.2E+07 in M. subnitida and A. mellifera respectively.  On the remote Fernando 

de Noronha island, the M. subnitida colonies all colonies were dominated by the A-variant, 

and C-variant was widespread. However, the viral load was an order of magnitude higher on 

the island (1.6E+08) relative to the mainland (3.6E+07).  

 

Table. 2. The mean viral load of each DWV master variant detected in the 21 Melipona 

subnitida and 12 Apis mellifera samples collected from across NE Brazil. 

 

 Melipona subnitida 

Average viral load 

Apis mellifera 

Average viral load 

DWV-A 8.10E+07 6.96E+07  

DWV-B n.d. 2.35E+05  

DWV-C 7.31E+06  2.06E+06  

All 8.83E+07 7.19E+07  
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Figura 2. Proportions and viral loads DWV-A (red), B (blue) and C (green) variants detected in 

A) Melipona subnitida stingless bees and B) Apis mellifera from across NE Brazil. The sample 

locations are 1. Cumaru, 2. Exu, 3. Fortaleza, 4. Fernando de Noronha, 5. Mata Grande, 6. 

Mossoró, 7. Passira, 8. Paulo Afosnso, 9. Riacho das Almas, 10. Taquaritinga do Norte, 11. 

Água Branca, 12. Piranhas, 13. Cruz das Almas, 14. Seabra, 15. Garanhuns 16. Mossoró, 17. 

São Cristóvão, 18. Areial. The states are CE= Ceara, RN= Rio Grande Do Norte, PB= Paraiba, 

PE= Pernambuco, AL= Alagoas, SE= Sergipe and BA= Bahia. 
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Discussion 

This study provides the first report of DWV in the Meliponini stingless bees, since DWV 

was not detected previously in the stingless bees Melipona quadrifasciata quadrifasciata and 

M. torrida (Alvarez et al. 2017), although they did detect the DWV-A variant in the Argentinian 

stingless bee (Tetragonisca fiebrigi). Furthermore, although M. scutellaris tested negative for 

six bee-associated viruses including DWV, but did test positive for the honey bee associated 

acute bee paralysis virus (Ueira-Vieira et al. 2005). The high prevalence of DWV in A. mellifera 

was expected since DWV is consistently the most prevalent viral pathogen of European and 

Africanised honey bees (Wilfert et al., 2016). 

The dominance of the DWV-A variant found in this study reflects the situation found 

in honey bees in the USA in 2010 (Ryabov et al. 2017). Although the B-variant is replacing the 

A-variant in the USA (Ryabov et al., 2017) and appears common in Europe (McMahon, et al., 

2016), it was only detected in any quantity in a single Africanised colony (Fig. 2). This is despite 

the likely long-term infection of both stingless and honey bees in Brazil. The rarely detected 

C-variant (Kevill et al., 2017,  Ryabov et al. 2017) was presence in almost all the M. subnitida 

colonies.  

 Interestingly on the remote island of Fernando de Noronha where both M. subnitida 

and A. mellifera have been maintain in close proximity over the past 34 years, the DWV-A 

variant dominated all nine colonies with a mean viral load of 1.6E+08. Whereas in the 

European honey bees on this island have a low (~1E+03) viral load, and diverse range of DWV 

variants (Brettell & Martin 2017). This provides further evidence that DWV may be a general 

hymenopteran or insect virus rather than a honey bee pathogen that has spilled over into the 

pollinator community. Again, the ubiquitous presence of the DWV-C variant in M. subnitida 
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colonies, and rarity in A. mellifera colonies on the mainland again suggests limited viral 

exchange between these two species.  The chance of spill-over may be reduced due to the 

low (8E+07) DWV viral loads present in both the stingless and honey bees of NE Brazil, relative 

to those found in asymptomatic (2.4E+09) and symptomatic (6.9E+11) European honey bees 

(Highfield et al. 2009). Whereas, when these high DWV loads are present in honey bees, DWV 

appears to spill-over into the neighbouring wasps and solitary bees (Santamaria et al., 2018). 

These low viral loads of DWV in Brazil may be attributed to hygienic habit of stingless bees 

(De Jesus et al. 2017), and Varroa-tolerance in Africanised bees, both which will reduce the 

viral load in a colony. 
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