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Abstract 

The aim of this research is to investigate the noticeable organ pipe flutter that may, under 

certain conditions, exist on a sounding organ pipe. The effectiveness of a pipe organ wind 

system is notoriously difficult to predict. For many years pipe organ builders have been 

aware of organ pipe flutter and several have tried to address the problem with little 

success. For pureness of tone it is important that the wind system is perfectly steady and 

without any imperfections that may cause organ pipe flutter. A survey of 83 UK pipe 

organs, was conducted by 8 organ tuners, confirms that 57% of the pipe organs surveyed 

had organ pipe flutter.   Organ pipe flutter is particularly noticeable when tuning pipework 

or playing single notes. During this condition there is “no flow” in the duct connecting the 

blower to the reservoir. Using a specially constructed test apparatus, built from pipe organ 

components, this research examines the conditions necessary to produce organ pipe flutter, 

and how organ pipe flutter may be eliminated. Employing a microphone to measure a 

sounding test organ pipe and an accelerometer to measure the vibration of a reservoir top, 

various pipe organ wind system elements are examined and correlated with the excitation 

and attenuation of the reservoir top vibration and organ pipe flutter. The reservoir acts as a 

mass spring system. For weighted wind systems the mechanical mass, which may exceed 

100kgs, is the dominant factor. For sprung reservoir wind systems, the mass is 

approximately 25% of that for a weighted system and is less dominant. Results indicate 

that under certain conditions, the blower excites the reservoir at its natural resonant 

frequency with sufficient amplitude to cause unwanted amplitude modulation on a 

sounding organ pipe. Results are systematically presented for weighted and sprung 

reservoir wind systems, organ blowers and the effects of blade frequencies, reservoir 

control valves, and attenuating devices inserted between the blower and the reservoir, to 

determine their effect on reservoir top vibration and the development of organ pipe flutter. 

With this knowledge, the pipe organ builder will be able to build pipe organs with 

improved wind systems and flutter free pipework.  
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1 Introduction 

 General introduction 

For many years Pipe Organ Builders have been aware of imperfections that exist in pipe 

organ wind systems. The purpose of this research is to examine in detail organ pipe flutter 

and determine how it is created and how it may be mitigated. A knowledge of the 

workings of a pipe organ is necessary to understand the phenomena of organ pipe flutter. 

There are three basic parts to most wind instruments: the control, the resonator and most 

important for this class of instrument, a supply of air. Most musical wind instruments are 

designed to play single notes and use a single resonator. The control is provided by a series 

of holes or valves to select different notes. Air is supplied by the player who develops a 

technique of winding, that best suits each instrument. There are several exceptions where 

the instrument is designed to play more than one note at a time and the air supply needed 

to play the instrument is beyond the means of a single person. In these instruments, some 

form of mechanical system is employed and normally takes the form of a simple bellows 

and feeder arrangement. 

This simple arrangement of pressurised air, held in an enclosure with some form of 

mechanism to admit air into the pipes under the control of a player, is the basis of all pipe 

organs. From early times, the pipe organ has continued to develop to reach the form that 

we find today. Much of the development has centred on the action that controls the pipes. 

It is now possible to have many thousands of pipes under the control of a single player. 

The largest pipe organ in the world contains over 33,000 pipes and is controlled by seven 

keyboards and a pedalboard Barnes [1]. It is not surprising that the pipe organ is often 

referred to as the “King of Instruments”. For comparison, the largest pipe organ in the 

United Kingdom is in Liverpool Anglican Cathedral and has 10,268 pipes controlled by 

five keyboards and a pedalboard. Fortunately, the vast number of organs are of a more 

modest size and contain two or three keyboards with substantially fewer pipes. A typical 

two manual pipe organ contains approximately 1,000 pipes. Each pipe produces a single 

note and the speaking length varies from 10mm to 10m. The case or display pipes conceal 

most of the pipework and represent only a small proportion of the total number of organ 

pipes. It is possible to play many pipes simultaneously, so it is important that all the pipes 

are in tune. The pipes are tuned in octaves until no beats are audible. This requires each 

organ pipe to “speak” without any imperfections so that the tuning beats can be clearly 
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heard. Any imperfections in the wind system that may cause one or both organ pipes to 

speak with a slight flutter makes fine tuning of the organ very difficult. 

Vital for the organ to function is a supply of air which is generated by a simple feeder 

arrangement or an electrically driven fan supplying a reservoir. The reservoir is pressurised 

using weights or springs applied to the reservoir top. 

This research examines the presence of organ pipe flutter in 83 pipe organs using 

information collected by 8 organ tuners. Also, using a specially constructed test apparatus, 

that represents a working pipe organ wind system, the cause of organ pipe flutter will be 

determined, together with methods for its control and elimination. 
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 Thesis outline 

Following this introductory Chapter, Chapter 2 covers briefly the evolution and 

development of pipe organ wind systems. 

Chapter 3 focuses on the extent of organ pipe flutter and the results of a Pipe Organ Survey 

conducted by 8 organ tuners on 83 pipe organs.  

Chapter 4 describes in detail the methodology and test apparatus necessary to determine 

the amount of organ pipe flutter on a test organ pipe. Some preliminary results and 

observations are presented.  

Chapter 5 defines frequency and amplitude modulation together with the psychoacoustics 

of organ pipe flutter.   

Chapter 6 examines blower and reservoir combinations. 

In Chapter 7, the theory of reservoir resonance is examined. 

Chapter 8 investigates how different blowers produce different levels of organ pipe flutter. 

Chapter 9 investigates the development of blade tone and its effect on organ pipe flutter. 

In Chapter 10, the effects of impeller inter-blades are examined with reference to organ 

pipe flutter.  

Chapter 11 examines the effects that different control valves have on reservoir top 

vibration and organ pipe flutter.   

In Chapter 12, having considered the cause of organ pipe flutter, possible methods and 

devices used by organ builders that limit or eliminate pipe organ flutter are examined.  

In Chapter 13 the salient points raised by the research are discussed and the areas for 

future research outlined. 

The Appendix A, B, C, D, E & F contain additional supporting material.   
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 Novelty of this research 

The following outcomes, which are presented throughout the thesis, are novel 

contributions to the field of pipe organ building to reduce reservoir top vibration and organ 

pipe flutter. 

 A logical examination of a pipe organ wind system with reference to its 

historic development and construction. 

 Demonstrating that reservoir top vibration causes organ pipe flutter. 

 Working in the frequency domain, the various elements of a pipe organ 

wind system are systematically examined and correlated with the excitation 

and attenuation of reservoir top vibration and organ pipe flutter. 

The results of this research will extend the knowledge base and allow pipe organ builders 

to better understand the generation and attenuation of organ pipe flutter and improve the 

design and construction of pipe organ wind systems.  
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2 The evolution and development of pipe organ wind 

systems 

In this Chapter the significance of the various components used in a pipe organ wind 

system and this research are examined.  

 Early Greek pipe organ  

As early as 250 B.C. Ctesibius, a Greek engineer, constructed an hydraulic or water pipe 

organ which is described in detail by Barnes [1]. Figure 1 shows the workings of the water 

organ. Air pressure is developed from a column of water to drive air through a set of tuned 

pipes. The operation of the two handles K & L moves the two pistons M & N in the 

cylinders F & G and pumps air into the chamber C. The air is pressurised by the water in 

the tank B and prevented from escaping back into the atmosphere by the two non-return 

valves Q & R. The pressurised air is held in the chamber E until the lever T moves a slide, 

allowing the air to pass into the chamber S. The player presses the spring loaded key V to 

allow air into the pipes mounted on the board U. 

 

Figure 1 The Hydraulic organ of Ctesibius Circa 250 BC (After Barnes [1])  
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 Wind systems of the 16 Century  

All organs use some form of reservoir to pressurise the wind supply Elvin [2] Audsley [3]. 

A simple arrangement of feeders and bellows from a sixteenth century organ in 

Halberstadt Cathedral is shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 Hand blown double rise weighted reservoir 

For smaller organs the arrangement of the reservoir and feeders is shown in Figure 3. The 

air pressure inside the reservoir is pressurised by placing weights on the top of the 

reservoir. 

The most important feature of any pipe organ wind system is that the air pressure in the 

reservoir must remain constant, otherwise the pitch and tuning of the pipes will vary. This 

is achieved by having two sets of ribs, one folding outwards the other folding inwards. The 

outward folding ribs pull the reservoir top down and the inward folding ribs push the 

reservoir top up, so that together, they compensate each other. This allows the top of the 

reservoir to move up and down without changing the outlet pressure of the reservoir. Two 

or more feeders are connected to some form of handle that can be operated by one person, 

also shown in Figure 3. 

In this application no control valve is needed, and the maximum height of the reservoir is 

restricted by the flap safety valve. A thin cord connects the top of the reservoir over a 

Figure 2 Feeders in Halberstadt Cathedral Circa 1500 (After Elvin [2]) 
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series of pulleys to a small brass weight in clear view of the person operating the blowing 

handle. The brass weight acts as an indicator to show the fullness of the reservoir and it is 

important that the blowing person keeps the indicator between two predetermined 

positions 

 

 

  

Figure 3 A double rise reservoir with feeder and a typical hand 

blowing arrangement (After Barnes [1] & Elvin [2]) 
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 Water engine operated feeders 

Technology very rarely stands still. With the advent of the Industrial Revolution, the 

power of water, steam and gas replaced muscle power as a prime mover. The use of a non- 

human power source allows greater flexibility and the construction of larger organs. 

However, it is still possible for new organs to be made with a traditional hand blowing 

wind system. A typical arrangement using a water engine to operate the feeder is shown in 

Figure 4. The flow of water into the valve is controlled by the vertical rod connected to the 

top of the reservoir. As the reservoir fills, the vertical stroke of the water engine slows. 

 

  

Figure 4 A set of bellows and feeder powered a water engine.  (After Elvin [2]) 
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 Gas engine driven feeders 

Not all areas had a copious supply of water or distribution system. The invention of the gas 

engine and its development in France during 1861 provided an alternative form of 

propulsion for areas poorly served by municipal water companies. In 1878 Crossley 

Brothers of Manchester, introduced a new Otto silent gas engine and offered sizes of 1, 2, 

31/2 and 8 horse power models. Figure 5 shows a typical Crossley Brothers Limited gas 

engine connected to a pipe organ wind system. In1884 a 31/2 H.P. engine was supplied to 

St Giles Cathedral, Edinburgh. Also at this time, several other major organs had gas 

engines fitted.  

 

  

Figure 5 Crossley Brothers gas engine connected to an organ wind system 

Circa 1880 (After Anson Engine Museum) 
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  Electrically driven feeders 

The development of municipal electricity supply companies, during the last decade of the 

nineteenth century, opened the flood gates to a plethora of electrically powered devices. 

The electric motor was one such device which provided a clean and more reliable form of 

propulsion than the water or gas engines. Figure 6 shows a double rise weighted reservoir 

supplied by three feeders, connected to a 3-crank shaft driven by an electric motor. The 

move from the reciprocating motion of the water and gas engines, to the rotational motion 

of the electric motor, proved a convenient power source to drive the crank mechanism. The 

speed of the motor was controlled by a simple feedback system that connected the top of 

the reservoir to a rheostat, that controlled the speed of the motor.  

Older organ builders and tuners considered the most stable wind was supplied by a large 

double rise reservoir supplied by a 3-crank feeder system similar to that shown in Figure 6. 

Such an arrangement is still giving good service supplying wind to the organ at Colne 

Parish Church in Lancashire England. 

 

  

Figure 6 A double rise reservoir with 3-crank feeders (After Barnes [1]) 
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 Electrically driven rotational fans 

A small hand operated fan designed to replace hand operated blacksmiths bellows is 

shown in Figure 7.  

 

 

 

 

 

 

 

 

 

 

Laycock and Bannister was an old family organ building company established in 1842. 

Using the rotational principal of the hand operated blacksmiths fan they produced a very 

primitive blower, shown in Photographs 1, with a cruciform impeller. The Layban impeller 

was 600mm in diameter and 175m wide. The outer case was 975 x 975 x 200mm internal 

width and constructed from solid pine with mild steel angle reinforcement.  This blower 

dates from the early 1900’s. 

 

Photograph 1 The Layban outer case and cruciform impeller   

Figure 7 Hand operated blacksmiths fan (After Elvin [2])  
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An early rotational blowing plant, that was designed especially for organ blowing 

applications, was introduced in 1902 by The Kinetic Company [4]. The unit, shown in 

Photograph 2, consisted of a series of metal impellers mounted on a common shaft to give 

the desired pressure and flow rate. The drawback with this design was that the early 8 pole 

motors ran at 750 rpm and each stage was only capable of raising the pressure by 50mm 

water gauge. 

 

Photograph 2 Kinetic company impeller arrangement 

 

Whilst all new technologies have some period during which reality fails to live up to 

expectations, the move from feeder driven blowing was relatively pain free, and the 

concerns of pulsating wind affecting the tone of the pipe work were not borne out [2]. 

From this first design of a special fan unit for organ blowing applications, further 

developments in fan design have continued and further details are contained in Appendix 

A. 

Backward curved centrifugal fans are now the norm in organ building applications and 

only in exceptional cases is a feeder arrangement employed. The use of feeders is usually 

exclusively limited to the restoration of old instruments; where it is important to keep 

historical correctness, or new historic copies and reconstructions.   
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Figure 8 shows an arrangement to feed low and high-pressure wind to an organ and is 

typical of most electrically driven blower systems. The system includes two single rise 

sprung reservoirs and two control valves which are examined in Chapter 11. 

Initially the noise from the large fan assemblies necessitated the blowing plants to be 

housed in a separate room. Typical locations were cellars or church towers. In some 

installations, the route taken by the ducting from the blowing plant to the organ chamber 

could approach 30m. To control and cut off the air supply to the reservoir, a control valve 

is fitted, either at the blower or at the reservoir.  

The first fans used large low speed motors that were directly attached to the impeller or 

alternatively, the fan was driven by a pulley and belt. To develop the required flow rates 

and pressure the impellers tended to be large with few blades. As fan and motor designs 

improved, the footprint of the units allowed inclusion within the organ chamber or close by 

in a noise reducing cabinet.  Key to this development was the development of smaller 

more powerful 1500 & 3000 rpm single and three phase electric motors.  

In a modern wind system, the basic function of the reservoir is no longer that of storage. 

The reservoir now acts to regulate the air pressure, and in this role, from a purely dynamic 

consideration, it can be made considerably smaller Norman [5] Moyes [6]. Modern 

installations tend to have short connecting trunks, typically less than 1m long and small 

reservoirs.  

  

Figure 8 A multi-stage low and high pressure Kinetic blowing plant 

 (After Whitworth [4]) 
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Recently, with the introduction of electronic inverters, the speed of the blower motor can 

be controlled to better meet the demand of the organ. Nothing is new, this is a modern 

version of how the early systems were controlled. In the bottom right hand corner of 

Figure 8, a control rheostat, which is operated from a single rise pneumatic motor, matches 

the motor speed with the wind demand. Whilst speed control solves some of the noise 

problems, it is not a complete fix. 

 Control valves 

The move from the feeder system to the use of electrically driven blowers, means that 

some form of control is needed to shut off the supply of air once the reservoir has reached 

the correct height and wind pressure. This is achieved using three basic types of control 

valve.  

2.8.1 The guillotine control valve 

The guillotine control valve is shown in Figure 8, labelled SV. It is the simplest form of 

control valve and comprises a vertical plate connected to the top of the reservoir by a thin 

cord. The cord allows the vertical plate to move up and down in synchronisation with the 

reservoir top. When the reservoir is empty, the valve is in the “up” position allowing air 

into the reservoir. As the reservoir rises the valve moves down and closes when the 

reservoir is full.  

2.8.2 The roller blind control valve 

The roller blind is shown in Figure 8 connected to the HP reservoir and is similar to the 

guillotine valve, but the flat vertical plate is replaced by an inclined flexible blind that rolls 

up and down as the reservoir rises and falls.  

2.8.3 The internal control valve 

The internal control valve can take several forms but its main difference to the other two 

valves is that it is located inside the reservoir. Its connection to the reservoir top can be by 

a strong cord or by a system of metal linkages. The valve is usually arranged to have some 

form of mechanical advantage so that the movement of the reservoir top is geared to give 

large valve opening for small reservoir top movements.   

Details of the control valves used in this research are detailed in Chapter 11. 

.  
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3 Pipe organ survey 

 Preamble  

Initially, a series of listening tests were considered to determine organ pipe flutter. Whilst 

this would provide useful information on the human perception of organ pipe flutter it 

would not address the fundamental question of which types of wind systems are more 

likely to cause organ pipe flutter. 

As an alternative to a series of listening tests, information regarding the occurrence of 

organ pipe flutter and wind system information could be obtained from actual pipe organs. 

The Pipe Organ Survey is structured to confirm the prevalence of organ pipe flutter and 

wind systems information. Using this approach, organ pipe flutter information is provided 

by organ tuners who are aware of organ pipe flutter and best placed to collect the 

information contained in the survey. The survey contains 31 questions spread over four 

sections, and each pipe organ was surveyed as part of a regular tuning visit without any 

cost. In the next section the survey is described in detail together with the rationale behind 

each question.  

The University of Salford Ethics panel approved the survey in January 2017 and the 

survey paperwork was sent to over 20 organ tuners in March 2017. During the course of 

2017, 8 organ tuners responded with details of 83 pipe organs. Further information is 

contained in appendix B. 
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   Questionnaire Details 

3.2.1 Section 1 Location and general information of the organ  

Should further general information be needed about the instrument the location can be 

used to access the National Pipe Organ Register.  

The original organ builder gives some indication about the style of the organ, particularly 

wind pressures and voicing style. Low wind pressures generally support classical voicing 

styles whilst higher wind pressures would indicate more romantic tendencies. 

The date gives some indication of the period of the organ. Organ building is no different to 

any other art form. There are good periods and periods that would be best “glossed over”. 

The number of stops gives some idea of the requirements of the wind system.  

The position of the organ is very important in the projection of the sound. In the United 

Kingdom, west end positions are not common. At the west end the pipework is allowed to 

speak unimpeded into the body of the church and tends to favour lower wind pressures. 

Often the organ is crammed into a chamber at floor level or elevated on a gallery in the 

north or south choir. The proximity of a large stone or brickwork pillar often impedes the 

passage of sound into the nave. To overcome this, the organ builder often needs to use 

higher wind pressures.   
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The size of the organ should be in scale to the size of the building. The size of the building 

will also have a great influence on the reverberation time. The reverberation time is a 

function of the volume and absorbent surfaces of the room and can be calculated using 

Sabine’s equation. Unlike the orchestra, the organ flourishes in a lively acoustic, and over 

three seconds adds grandeur to the instrument and absorbs some of the power that would 

otherwise be overpowering. It is always encouraging to hear the pipework answering back. 

Often the temperament is ignored. Generally, organs used for playing and accompanying a 

wide repertoire are tuned to equal temperament. It is only in certain applications that the 

repertoire will dictate that the organ will be tuned to some un-equal temperament. 

Normally these organs will be historic instruments or modern copies specifically used for 

early music making.  
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3.2.2  Section 2 Scale and organ pipe flutter on four selected organ pipes 

The scale of an organ pipe or its width is the main feature that gives the pipe its distinctive 

sound or timbre. A wide scale pipe reinforces the fundamental and low harmonics and has 

few if any high harmonics. Flute stops normally have wide scales. The other extreme is a 

narrow scale pipe which has little fundamental but is rich in high harmonics. String stops 

normally have narrow scales and fall into this category. Scales which are neither wide nor 

narrow give rise to the diapason tone which is regarded as the true pipe organ tone or 

timbre. The diapason stop is rich in fundamental and harmonics. Further information 

regarding pipe scales is contained in Appendix C  

The four pipes chosen all have the same frequency of approximately 1kHz but differ in 

scale and timbre. 

The first pipe is from the great 8ft open diapason rank 

The second pipe is from the great 4ft principal rank and is slightly smaller in scale than the 

8ft open diapason. 

The third pipe is from the great or swell 8ft stopped flute rank. The choice of the swell 

division has been given because often a stopped flute is not available on the great organ. 

The fourth pipe is from the great or swell 8ft string rank.  

The organ tuner is asked to listen to the pipe at the soundboard, near field, and use the four 

descriptors to describe the level of flutter. The procedure is repeated in the body of the 

church. Some tuners have reported that often pipe flutter is a problem at the soundboard 

yet is not apparent in the body of the church.   
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3.2.3  Section 3 Wind system details 

Just as it is unusual to find two pipe organs with identical specifications, so it is unusual to 

find two pipe organs with identical wind systems. This section of the survey seeks to detail 

the type of wind system, of which the major components are the blower and reservoir type. 

Some instruments may have a single reservoir, others may have a reservoir to each 

division. Generally, the pipe organ has a single blower supplying all divisions.  

The reservoir type and construction will have a direct effect on the resonant frequency of 

the wind system and this is examined in Chapter 7. For a weighted wind system, the wind 

pressure and the filled height of the reservoir will determine the resonant frequency of the 

reservoir. For a sprung reservoir system, the resonant frequency will be determined by the 

mass of the reservoir top and will not change if the reservoir wind pressure is changed. 

This portion of the survey will give a clear indication of the natural resonant frequency of 

the wind system. 

The influence of the cut-off valve is not fully understood. This question has been included 

to obtain more information and determine the significance of the various designs on 

reservoir top vibration and organ pipe flutter. 

The blower details and location provide the final information for this section.  

.  



20 

 

3.2.4  Section 4 Tremulant stop details 

 

The Tremulant is a device designed to create a vibrato effect on the sounding organ pipe 

and it is normal to control the depth and frequency by mechanical or electronic means. 

More detailed information about the tremulant can be found in Appendix D. Musically, the 

tremulant can, if correctly adjusted, add to the musical performance. Unfortunately, 

sometimes little care has been taken in the setting of the tremulant and in this situation, 

many are rendered ineffective and useless. 

It is unusual to find a tremulant on each division and if one is included it is more than 

likely to be located on the swell organ. The tremulant is designed to be used with a single 

stop normally an imitation reed or a flute. The ear is most sensitive to amplitude 

modulation of 4 Hz and it will be interesting to see how the frequencies obtained from the 

survey compare with this optimum frequency. 

Tremulants of the wind dumping type are the most common. These were originally 

pneumatically operated and are very difficult to adjust. The historic Dom Bedoes 

tremulant, that is designed to be mounted inside the connecting trunk, is very rarely found. 

The Austin Universal wind-chest produces flutter free pipework and requires a special 

tremulant to modulate the pipework. This takes the form a mechanism fitted above the 

pipework composed of a series of slowly rotating horizontal blades. More detailed 

information about the Austin Universal wind-chest can be found in Appendix E.  
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 Results 

The results for the four sections of the organ building survey are shown in Tables 1 to 10 

3.3.1 Section 1 Location and general information of the organ 

The results for section 1 are shown in Tables 1 & 2 and are grouped by each organ tuner. 

 

Table 1 Section 1 summary organs 1 to 40  
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Table 2 Section 1 summary organs 41 to 83  
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3.3.2 Section 2 Scale and organ pipe flutter on four selected organ pipes  

 Pipe scale results  

The results of the pipe scales for each of the four organ pipes are shown in Tables 3 & 4. 

 

Table 3 Pipe scales organs 1 to 40 

Ref open mm princ mm flute mm string mm

1 20 16 12 12

2 22 16 16 13

3 19 14 16 13

4 19 16 16 13

5 22 19 13 13

6 22 16 25 13

7 19 13 tri 13

8 16 19 13 13

9 16 13 19 13

10 19 16 sqr 10

11 19 19 19 19

12 19 13 19 13

13 19 16 sqr 10

14 17 17 sqr 11

15 17 13 13 13

16 17 16 sqr 10

17 19 16 sqr 10

18 17 13 sqr 11

19 19 22 sqr 13

20

21 19 19 17 13

22 18 17 20 9

23 11 10 12 8

24 21 20 17 9

25 10 9 8 7

26 10 9 6 7

27 10 9 sqr 7

28 8 7 10 7

29 10 9 sqr 7

30

31

32

33

34

35

36 30 21 30 19

37 34 23 30 20

38 33 21 23 17

39 29 23 23 19

40 30 25 30 19
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Table 4 Pipe scales organs 41 to 83 

  

Ref open mm princ mm flute mm string mm

41 19 16 16 13

42 19 16 19 13

43 19 16 16 13

44 19 16 19 11

45 19 16 16 11

46 19 16 19 13

47 22 19 sqr 16

48 16 13 13 13

49 17 17 16 16

50 19 16 19 16

51 16 16 13 13

52 13 13 10 8

53 13 16 10 10

54 13 13 16 13

55 16 13 13 13

56 13 13 16 16

57 13 16 16 16

58

59 13 13 19 13

60 13 16 16 13

61 16 13 13 13

62 13 13 13 16

63 13 13 16 13

64 16 16 13 10

65 16 16 13 8

66 13 16 19 13

67 16 13 16 13

68 13 13 13 16

69

70 16 16 16 16

71 13 16 16 13

72 16 13 13 13

73 16 16 13 13

74 19 16 16 16

75 16 13 13 16

76 16 13 13 13

77 19 16 19 16

78

79 19 19 16 13

80 28 25 25 20

81 24 sqr

82 30 28 22 20

83 28 25 sqr 21
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 Organ pipe flutter results 

The results for 652 sounding pipes are shown in Tables 5 & 6 and are grouped by each 

organ tuner. The first column for each stop is at the soundboard and the second is in the 

body of the church. Also included, fres Hz, is an approximation of the resonant frequency 

of the reservoir using equations 5&6 in Chapter 7.  

 
NF No Flutter SF Slight Flutter MF Moderate Flutter EF Extreme Flutter 

Table 5 Section 2 summary of organ pipe flutter results organs 1 to 40  

Ref 8ft open 8ft open 4ft princ 4ft princ 8ft stp fl 8ft stp fl 8ft string 8ft string fres Hz

1 SF NF NF NF SF SF MF SF 10.7

2 SF MF SF SF SF SF NF NF 11.0

3 NF NF NF NF SF SF NF NF 11.9

4 SF SF NF NF SF MF NF SF 12.3

5 MF MF MF SF SF SF SF NF 11.9

6 SF SF NF NF SF SF NF NF 15.1

7 MF MF MF SF MF SF EF MF -

8 SF SF SF NF SF SF NF NF 12.9

9 NF NF NF NF SF NF NF NF Schwim

10 SF SF SF SF NF NF NF NF 13.5

11 NF NF NF NF SF SF NF NF 13.0

12 NF SF NF NF SF SF NF NF SR W/S

-

13 SF SF SF SF SF SF SF SF 10.7

14 NF NF NF NF SF SF NF NF Comp

15 MF MF SF SF SF SF SF SF 12.4

16 SF SF SF SF MF MF SF SF 12.9

17 SF SF SF SF SF SF NF NF 12.3

18 MF MF SF SF SF SF SF SF 12.5

19 SF SF SF SF SF SF SF SF 14.1

-

20 SF NF SF NF MF NF SF NF 9.3

21 SF NF SF NF MF SF SF NF 11.0

22 NF NF NF NF SF NF NF NF 12.3

23 SF SF SF SF SF NF NF NF 12.9

24 NF NF NF NF SF SF SF NF 9.3

25 MF MF MF MF MF MF MF MF 10.6

26 SF NF SF SF SF NF SF SF 11.0

27 SF NF SF NF MF NF NF NF 12.3

28 EF SF EF SF MF SF MF NF 13.5

29 MF NF MF NF NF NF NF NF 12.3

30 MF MF MF MF MF MF SF SF 10.7

31 MF MF MF MF MF MF MF MF 10.1

32 MF MF MF MF MF MF SF SF 12.3

33 SF SF SF SF MF MF MF MF 10.7

34 SF SF NF NF SF SF NF NF 12.3

35 NF NF NF NF NF NF NF NF 10.7

36 NF NF NF NF NF NF NF NF 12.9

37 NF NF NF NF NF NF NF NF 11.8

38 NF NF NF NF NF NF NF NF 12.8

39 NF NF NF NF NF NF NF NF 14.3

40 NF NF NF NF NF NF NF NF 9.1
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NF No Flutter SF Slight Flutter MF Moderate Flutter EF Extreme Flutter 

Table 6 Section 2 summary of organ pipe flutter results organs 41 to 83  

Ref 8ft open 8ft open 4ft princ 4ft princ 8ft stp fl 8ft stp fl 8ft string 8ft string fres Hz

41 NF NF NF NF NF NF NF NF

42 NF NF NF NF NF NF NF NF 13.7

43 NF NF NF NF NF NF NF NF 12.9

44 NF NF NF NF NF NF NF NF

45 NF NF NF NF NF NF NF NF

46 NF NF NF NF NF NF NF NF 13.5

47 NF NF NF NF NF NF NF NF 13.2

48 NF NF NF NF NF NF NF NF 12.3

49 NF NF NF NF NF NF NF NF 13.5

50 NF NF SF NF NF NF NF NF 11.0

51 NF NF NF NF NF NF NF NF 11.4

52 NF NF NF NF NF NF NF NF 11.0

53 MF MF

54 NF NF NF NF NF NF NF NF 11.9

55 NF NF NF NF NF NF NF NF 11.9

56 SF SF SF NF SF NF SF NF 12.5

57 NF NF NF NF NF NF NF NF 12.9

58 NF NF NF NF NF NF NF NF 12.1

59 SF SF SF SF SF SF SF SF 13.5

60 NF NF NF NF NF NF NF NF 13.2

61 MF MF MF MF MF MF MF MF

62 NF NF NF NF NF NF NF NF 11.9

63 NF NF NF NF NF NF NF NF 12.9

64 NF NF NF NF NF NF NF NF 12.3

65 SF SF SF SF SF SF SF SF 12.9

66 SF NF SF NF SF NF

67 NF NF NF NF NF NF NF NF 12.9

68 NF NF NF NF NF NF NF NF 12.9

69 NF NF NF NF NF NF NF NF 13.5

70 NF NF NF NF NF NF NF NF 12.3

71 SF SF SF SF SF SF SF SF 13.5

72 MF MF MF MF MF MF MF MF 12.9

73 NF NF NF NF NF NF NF NF 12.9

74 NF NF NF NF NF NF NF NF 12.9

75 NF NF NF NF NF NF NF NF

76 SF SF SF SF SF SF SF SF

77 SF SF SF SF SF SF SF SF 12.9

78 NF NF NF NF NF NF NF NF 12.9

79 NF NF NF NF NF NF NF NF

80 NF NF NF NF NF NF NF NF 9.6

81 NF NF SF SF 13.5

82 NF NF NF NF NF NF NF NF 9.3

83 SF SF SF SF SF SF SF SF 10.7
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3.3.3 Section 3 Wind system  

The results for section 3 are shown in Tables 7 & 8 and are grouped by each organ tuner.  

 

 

Table 7 Section 3 summary organs 1to 40   
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Table 8 Section 3 summary organs 41to 83 
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3.3.4 Section 4 Tremulant stop 

The results for section 4 are shown in Tables 9 & 10 and are grouped by each organ tuner. 

 

Table 9 Section 4 tremulant summary organs 1to 40  

  

Ref stop Dump fan Pan slow fast good poor freq

1 8ft ged x x x 3

2 N>A

3 8ft ged x x x 5

4 V diap x x x 4

5 N/A

6 8ft st dia x x x 4

7 N/A

8 8ft st dia x x x 4

9 N/A

10 8ft R fl x x x 4

11 8ft L ged x x x 7

12 8ft fl x x x 5

13 N/A

14 x x x 2

15 N/A

16 N/A

17 N/A

18 N/A

19 8ft ged x x x -

20 N/A

21 8ft fl x x x 5

22 oboe x x x 8

23 N/A

24 N/A

25 fl 8 x x x 6

26 ged x x x 4

27 N/A

28 N/A

29 fl 8 x x x 7

30 N/A

31 N/A

32 x

33 N/A

34 N/A

35 N/A

36 st diap x x x 5

37 N/A

38 sw open x x 3

39 sw open x  x x 3

40 N/A
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Table 10 Section 4 tremulant summary organs 41to 83 

 

  

Ref stop Dump fan Pan slow fast good poor freq

41 8 fl x x x 2

42 8 fl x x x

43 8 ged x x x 3

44 8 fl x x x

45 8 ft x x x

46 N/A

47 8 fl x x x 3

48 N/A

49 N/A

50 NlA

51 N/A

52 8open x x

53 8 ged x

54 N/A

55 N/A

56 viola x x x

57 N/A

58 N/A

59 N/A

60 N/A

61 N/A

62 N/3

63 N/A

64 N/A

65 N/A

66 fl x x x

67 N/A

68 open x x x

69 N/A

70 N/A

71 N/A

72 open x x x

73 x x x

74 N/A

75 N/A

76 open x x x

77 N/A

78 N/A

79 x x x

80 N/A

81 N/A

82 N/A

83 N/A
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 Analysis 

3.4.1 Section 1 General information 

The oldest organ surveyed was built in 1858. 

The average number of stops was 16.5. 

70% of the organs were sited at the east end of the church in north or south organ 

chambers, the remainder were placed at the west end. 

Most of the buildings were deemed to be of medium size (75%) with a reverberation time 

of 1 to 3 seconds (67%). 

Only one organ had non-equal temperament.  

  



32 

 

3.4.2 Section 2 Organ pipe results 

 Organ pipe scale 

The scales of each organ pipe are shown in Figures 9, 10, 11 & 12 together with the 

average scale shown in red. The average scale of the various pipes: 

  8ft open diapason   18mm 

  4ft principal     16mm 

  8ft stopped flute    16.5mm (note this is a stopped pipe) 

  8ft string       13mm 

Figure 9 8ft open diapason pipe scale  

 

Figure 10 4ft principal pipe scale  
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Figure 11 8ft stopped flute pipe scale 

 

 

 

  

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

Sc
a

le
 m

m

Organ reference 

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

Sc
a

le
 m

m

Organ reference

Figure 12 8ft string pipe scale 
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  Organ pipe flutter on four selected pipes  

    

Figure 13 Organ pipe flutter at the soundboard and in the body of the church 

55%
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8 ft open diapason soundboard

No flutter Slight flutter Medium flutter Extreme flutter

59%
29%

11% 1%

4 ft principal soundboard
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68%

25%

7% 0%

4 ft pricipal body

No flutter Slight flutter Medium flutter Extreme flutter

47%

36%
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8 ft stopped flute soundboard
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55%33%
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25%
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8 ft string soundboard
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71%
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9% 0%

8 ft string body

No flutter Slight flutter Medium flutter Extreme flutter
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27%

12% 1%

8 ft open diapason body

No flutter Slight flutter Medium flutter Extreme flutter
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The details of Tables 5 & 6 are shown in Figure 13 for the degrees of flutter on the four 

organ pipes at the soundboard and in the body of the church. Figure 14 shows the total 

amount of flutter for each organ pipe by combining the soundboard and body of the church 

results. The total combined results for all pipes are shown in Figure 15. 

 

 

  

Figure 14 Organ pipe flutter for each organ pipe.  

Figure 15 Total organ pipe flutter for all pipes 
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The overall organ pipe flutter results for the four pipes are shown in Figure 16.  

 
 

Figure 16 Overall organ pipe flutter for each organ pipe 

 

3.4.3 Section 3 Wind system details 

The results for reservoir loading, reservoir height, wind pressure, control valves, blower 

speed and blower to reservoir distance are shown in Figures 17 to 22. 

 

Figure 17 Reservoir loading results 
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Figure 18 Reservoir height 

 

 

Figure 19 Reservoir wind pressure 

 

 

Figure 20 Control valve details 
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Figure 21 Blower speed 

 

Figure 22 Blower to reservoir distance 

3.4.4 Section 4 Tremulant details  

 The tremulant frequencies are shown in Figure 23. 

 

Figure 23 Tremulant frequency  
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 Discussion 

The survey is possibly the largest detailed pipe organ wind survey to have been conducted 

in the United Kingdom. Tables 1 & 2 show that the survey covered a fair representation of 

small two manual and pedal pipe organs found in the UK. The oldest organ surveyed was 

built in 1858 and the average number of stops was 16.5. 70% of the organs were sited at 

the east end of the church in north or south organ chambers. This is not surprising for 

many organs are located near the choir at the east end. The majority of the buildings (75%) 

were deemed to be of medium size with a reverberation time of 1 to 3 seconds (67%).  

Over one third (39%) of the sampled pipes had flutter and the tuners detected slightly more 

organ pipes with flutter at the soundboard than in the body of the church. The variation in 

the results of the 8 tuners is interesting. Two tuners (36-40 Table 5) & (41-47 Table 6) 

found no pipes with flutter. One tuner surveyed 32 organs (48-79 Table 6) and found 11 

organs (34%) had organ pipe flutter. This variation may be due to the random nature in 

which the organs were selected. Consideration needs to be given to quality of the selected 

pipework. Not all organs are regulated and tonally finished to the same standard. Also, 

some pipes may have gone off speech due to the accumulation of years of dust in the pipe 

mouths. The results also indicate that pipe scale may have some effect, with the least 

flutter associated with small scale pipes. Figures 9 to12 show the large divergence in pipe 

scales particularly for organs 36 to 40, 80 to 83, and no pipe scales were reported for 

organs 30 to 35. Some flute pipes were made from wood and no scale was recorded. 

Despite these unknown quantities, the survey confirmed the main objective that organ pipe 

flutter exists on 47 organs.   

The results for the wind system show that 85% of the organs have double rise weighted 

reservoirs. The most common reservoir height was 12 inches (300 mm) and approximately 

60% of the organs had a wind pressure of 3 inches (75mm) water gauge. The most popular 

cut-off device (53%) was the simple guillotine valve and 58% of the organs had a blower 

speed of 3000 rpm. Many of the blowers are placed inside the organ or very close to the 

organ case. 

Only 31 organs had a working tremulant and 80% had traditional wind dumping units. The 

most common speed was approximately 4Hz, which is the frequency that humans perceive  

amplitude modulation to be most sensitive Zwicker [7].  
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 Conclusion 

The survey shows that over one third (39%) of the organ pipes surveyed had some form of 

flutter. The survey also indicates that pipe scale may have some influence and further 

research is needed to confirm this.  
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4 Pipe Organ Wind Instability 

 Preamble 

This Chapter describes in detail the methodology and test apparatus necessary to determine 

the amount of organ pipe flutter on a test organ pipe. Some preliminary results and 

observations are also discussed. 

Chapter 2 described briefly the evolution of the pipe organ wind system, and many organ 

builders select a system of winding that best supports their style of pipe regulation and 

voicing. Also important is the ability for the wind system to handle large variations in 

wind demand. Some choose traditional wedge, others may use single or double rise 

reservoirs with the possible inclusion of some form of concussion unit. For new organs, 

some may choose a more compact design employing wind-chest regulation using a 

Schwimmer arrangement. 

Pipe organ wind systems have been considered, by some, to have some parallels with 

building ventilation systems. The main difference is that the pipe organ wind system 

terminates in free air at the pipe mouth, and the passage of air from the fan to the pipe is 

pressurised with many restrictions along its path. The air is pressurised by a weighted or 

sprung reservoir fitted with a variety of control valves, some more sensitive to pressure 

changes than others. The performance of a pipe organ wind system is notoriously difficult 

to predict. Identical wind systems do not always produce the same end results and often 

additional time is needed to make any necessary adjustments.  

Research by Carlsson[8] concentrated on the dynamic behaviour of pipe organ wind, in 

particular how pressure fluctuations during playing, affect the pitch and speech of flue 

pipes.  

The installation of a Turbulence Attenuator in the wind system immediately downstream 

of the blower was studied by Ngu[9] who also made changes to the blower impeller, 

increasing the number of blades from 12 to 24.   

Most of the research to-date has examined the changes in organ pipe wind pressure for 

various playing conditions in the time domain. Research by Steenbrugge [10] into the 

operating regimes, voicing practices and other work in this area of research, assumes a 

pure air supply similar to that produced by an orchestral player. The pipe organ survey 

shows that this condition is not always achieved, and organ pipe flutter exists.  



42 

 

 Methodology 

4.2.1 Introduction 

The pipe organ survey described in Chapter 3 confirms what organ builders and tuners 

have noticed for many years, that some organs have a slight unsteadiness in organ pipe 

tone that is particularly noticeable when tuning the organ pipes. The organ tuners call this 

unsteadiness “organ pipe flutter.”   

To investigate organ pipe flutter, it is necessary to have a wind system that is 

representative of a working pipe organ wind system and capable of producing both flutter 

and flutter-free pipework. Also, very important is that any measurements are taken under 

controlled conditions. 

The key elements of a pipe organ wind system are shown in Figure 24 and consists of: 

 Pipe organ blower  

 Single rise reservoir 

 Connecting pipe 

 Test organ pipe 

 Tremulant 

 Instrumentation.  

 

 

 

  

Figure 24 Test apparatus 
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4.2.2 Pipe organ blower 

Air is supplied to the reservoir from an organ blower located in an adjoining room. The 

siting of the blower in a separate room allows the use of different blowers, some of which 

radiate more noise. The principal test blower, blower 6 (Chapters 8), shown in Photograph 

3, is a modern 3000 rpm unit fitted with a .75kw electric motor controlled by a variable 

speed invertor. A 2m long 100mm diameter flexible plastic pipe connects the blower to a 

100mm diameter plastic pipe connected to the reservoir. 

 

 

Photograph 3 3000 rpm blower with flexible connecting pipe 
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4.2.3 Reservoir 

The test reservoir, shown in Photograph 4, consists of a 1200mm x1200mm single rise 

reservoir with a working height of 400mm. The reservoir is fitted with a simple internal 

control valve connected to the reservoir top. 

Normally a single rise reservoir would be sprung loaded. The use of a single rise test 

reservoir allows the use of weights or springs to pressurise the air inside the reservoir so 

that a comparison may be made between weighted and sprung loading.  

The blower is connected to the reservoir by a 100mm plastic pipe with flexible rubber 

connecting joints. 

 

Photograph 4 Single rise reservoir with measurement equipment 

 

4.2.4 Internal control valve 

The test reservoir is fitted with an internal control valve shown in Photograph 5. 

Photograph 5 Internal control valve 
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4.2.5 Reservoir springs 

Springs may be used as an alternative to weights, as a means of pressurising the air inside 

the reservoir and four springs are fitted, one at each corner. One of the springs is shown in 

Photograph 6. The pressure inside the reservoir can be varied by adjusting the spring 

tension using M8 threaded steel rods attached to each spring.  

 

Photograph 6 Reservoir springs 

4.2.6 Tremulant 

The test apparatus is fitted with a traditional wind dumping tremulant which is designed to 

deliberately create an amplitude modulated wind supply. The tremulant shown in 

Photograph 7 is typical of many fitted to Victorian and Edwardian pipe organs. The 

tremulant unit is controlled by a low voltage electronic controller that allows adjustment of 

the frequency and depth. Further information about the tremulant is contained in appendix 

D 

Photograph 7 Wind dumping tremulant 
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4.2.7 The test organ pipe 

The test organ pipe is arranged to stand vertically from one side of the reservoir using a 

small length of 12mm copper tube bent at a right-angle. The pipe is a six-inch treble c 

pipe, note 49, taken from an 8ft. great open diapason rank of pipes. The pipe is made from 

spotted metal and is fitted with a traditional tinplate tuning slide. A Photograph of the test 

pipe is shown in Photograph 8. 

Pipe details. 

Pipe diameter       22.5mm (scale) 

Mouth wide      15.7mm 

Windway     0.1mm 

Cut-up      4.6mm 

Toe hole diameter  6.4mm 

  

 

  

Photograph 8 The test organ pipe 
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4.2.8 Instrumentation 

 Pressure measurement  

The pressure in the reservoir and the connecting pipe from the blower to the reservoir is 

measured using two electronic pressure transducers connected to a data acquisition unit. 

The data acquisition unit is connected to the USB port of a laptop computer running 

Omega Daqview software. The pressure instrumentation is calibrated to measure the wind 

pressure in Pascals and mm water gauge. 

Data acquisition unit Omega OMB DAQ -55 USB data acquisition unit. 

Pressure transducer 1 Omega PX278-30DSV differential pressure transducer. 

Pressure transducer 2 Omega PX278-30DSV differential pressure transducer.  

 Noise and vibration measurement 

The sounding test organ pipe and reservoir top vibration are measured using a two- 

channel Class 1 pc-based noise and vibration measurement system running 01dB dBFA32 

Symphonie software. The interface between the computer and the microphone or 

accelerometer is by a 01dB Symphonie data acquisition unit which connects to the laptop 

computer PCMCIA port. The unit measures from dc to a maximum frequency of 20kHz.  

01dB Symphonie unit       SN 01009 

Both measurement systems are shown in Photograph 9. 

 

Photograph 9 Measurement equipment  



48 

 

 Organ pipe high frequency microphone measurement  

Channel 1 connects to a class 1 measurement microphone, shown in Photograph 10, 

placed 150mm from the pipe mouth. Alternatively, the microphone can be placed inside 

the reservoir. 

Microphone    B&K 2669 Microphone pre-amp   SN 1865497 

       01 dB Microphone MCE 212     SN 17989 

Microphone Calibrator  Cirrus CR511E class 1L    SN 038876 

 

Photograph 10 Measurement microphone 

 

 Reservoir top low frequency vibration accelerometer measurements 

Channel 2 connects to an icp accelerometer, shown in Photograph 11, mounted centrally 

on the reservoir top. All reservoir vibrations are acceleration re (dB 1.000e06m/s2PWR) 

Accelerometer 1  B&K 4507 -004          SN 32102  

Accelerometer 2  MTN 1800 -004          SN 358848 

  

Photograph 11 Accelerometer placed centrally on reservoir top 
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4.2.9 Other Applications 

The 01dB software provides a series of windowing and overlap options together with 

automatic anti-aliasing filters. The system also provides a comprehensive set of analysis 

tools but in some circumstances, other applications can provide a more convenient 

platform. Measurement data can be exported as a text or WAV file for importing into 

MATLAB, Audacity or Adobe Audition for post processing and analysis. The Adobe 

Audition software is particularly convenient for inspecting frequency spectra.  

  



50 

 

 Preliminary results 

4.3.1 Organ pipe microphone results 

 Time domain 

The fundamental frequency of the test organ pipe is just over 1kHz and generates both 

even and odd harmonics.  

Using the microphone, connected to channel 1, a 10 second period was recorded using the 

01dB dBFA software. The signal of the sounding test pipe in the time domain is shown in 

Figure 25 and it is significant that it gives little information about the level and character 

of any organ pipe flutter or modulation of the sounding pipe.  

 

 

 Frequency domain. 

Alternatively, the signal can be analysed in the frequency domain and the frequency 

spectrum, together with harmonics up to 20kHz are shown in Figure 26. 

Figure 26 Frequency spectrum of the test organ pipe 
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4.3.2  Frequency resolution 

The 01dB software allows the frequency resolution to be changed from 401 to 3201 lines 

of FFT. It is also possible to zoom in and examine in more detail a section of the frequency 

spectrum. Figures 27 & 28 show a zoomed portion of the frequency spectrum, centred on 

the fundamental frequency of 1020Hz, using 801 and 3201 lines of FFT. The frequency 

span is 190Hz (910 to 1100Hz) with corresponding frequency resolutions of 0.24Hz & 

0.06Hz. This means that 3201 lines of FFT must be used to see, in detail, the presence of 

any side-bands on each side of the fundamental frequency.  

 

 

Figure 27 Test pipe fundamental 801 lines FFT  

 

 

 

Figure 28 Test pipe fundamental 3201 lines FFT 
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Figure 28 shows two side-bands at approximately 10Hz on each side of the fundamental 

frequency. Figure 29 also shows a strong peak at 10Hz which, is the same frequency as the 

two side-bands. 

 

 

Figure 29 Test pipe low frequency spectrum 3201 lines FFT 

 

 

4.3.3 Reservoir top accelerometer vibration results 

The corresponding reservoir top vibration levels for frequencies below 100Hz are shown 

in Figure 30 for 3201 lines FFT. The maximum level occurs at a frequency of 10 & 39Hz.  
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 Background noise level results 

It is important that any signal must not be compromised by any background noise. Figure 

31 shows the frequency spectrum of the test organ pipe (blue) and the background noise 

with the blower switched off (red), and on (green).  

 

 

The corresponding reservoir top vibration levels, using the accelerometer connected to 

channel 2, are shown in Figure 32 for the sounding pipe (blue), background noise blower 

off (red), and blower on (green).  
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Figure 31 Frequency spectrum of sounding pipe and background noise 3201 lines FFT 

Figure 32 Reservoir top vibration levels for the sounding test pipe and background noise  
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  Conclusions 

Figures 27 & 28 show that 3201 lines of FFT must be used in all measurements.  

Figures 31 & 32 show that the background levels are well below the signal levels for both 

the microphone and accelerometer. 

The correlation between the side-band frequency (10Hz) using the organ pipe microphone 

and the 10Hz low frequency microphone level, together with the 10Hz frequency of 

reservoir vibration using the accelerometer is good. This indicates that the low frequency 

vibration of the reservoir is the cause of the flutter and amplitude modulation that we can 

hear on the sounding organ pipe. 
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5 Modulation 

 Preamble 

The sounds experienced in everyday living are constantly changing in frequency and 

amplitude giving rise to frequency and amplitude modulation. Figures 33 and 35 show 

frequency and amplitude modulated waves consisting of a carrier wave onto which another 

signal is super-imposed. 

Sustained sounds generated by a musical instrument or singer often contain small 

frequency fluctuations. These may be naturally occurring or deliberately engineered, and 

the vibrato is often used by musicians to enhance their own musical performance. 

In the laboratory, the perceptions of such variations are studied using either frequency or 

amplitude modulated sine waves, and a direct comparison between the sensations 

produced by frequency modulation and amplitude modulation was conducted by Zwicker 

[11] and Moore [12]   
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 Frequency Modulation   

In a frequency modulated signal the carrier’s frequency is varied in proportion to the 

modulating signal’s magnitude, but the amplitude of the signal does not vary. This 

relationship is shown in equation 1 and Figure 33. 

Frequency modulation = sin ( 2.π.fc. t – β.cos2.π.g.t )           (1) 

Where fc = carrier frequency. g = modulating frequency.   β = frequency modulation index  

 

Vibrato is often used by musicians to enhance their musical performance and was studied 

by Seashore [13]. Prame [14] measured the vibrato rate of ten singers and found that the 

average vibrato rate was 6 Hz. Frequency modulation was also studied by Rossing et al 

[15] Moore [16] Backus [17]  and Deutsch [18]. 

  

Figure 33 Frequency modulation 
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The just noticeable frequency modulation as a function of modulation frequency for a 

1kHz centre frequency is shown in Figure 34. This shows that the most sensitive frequency 

modulation occurs at a frequency of approximately 4Hz Zwicker [7]  

 

Early sound films had problems with sound quality due to the slight variation in the speed 

of the film transport mechanism. To overcome this, a standard was introduced by the 

Society of Motion Picture Engineers [19] .This included a series of test films, specifically 

made to test the level of frequency modulation, so that the mechanism could be adjusted to 

produce an acceptable level of sound clarity.    

Reel to reel tape recorders also suffer from the same problem. To overcome this, sound 

engineers used recording speeds of 7.5 or 15 inches per second. The unwanted frequency 

modulations, wow (0.5 to 6Hz) and flutter (6 to 100Hz), can now be removed using DSP 

techniques Maziewski [20] Czyzewski et al [21]. 

 

  

Figure 34 The just noticeable frequency modulation as a function of 

modulation frequency for a 1kHz centre frequency (After Zwicker [7]) 
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 Amplitude modulation 

In an amplitude modulated signal the carrier’s amplitude is varied to follow the magnitude 

of the modulating signal keeping the carrier frequency constant. This relationship is shown 

in equation 2 and Figure 35. 

Amplitude modulation = ( 1+m.sin2.π.g.t).sin(2.π.fc .t)         (2) 

Where fc = carrier frequency. g = modulating frequency.   m = amplitude modulation index  

 

The tremolo is the amplitude modulation version of the vibrato, Olson [22], and is 

designed to gently move the reservoir top and create a mildly undulating tone. The tremolo 

or tremulant pipe organ stop was first used in the 16th century and is specially designed to 

impart strong amplitude modulation, typically around 4Hz. More information regarding 

the tremulant stop is contained in Appendix D. 

The effects of amplitude modulation are well known, and soldiers are often asked to 

“break step” when crossing a bridge. Also, the collapse of the Tacoma Narrows bridge, 

caused by wind induced vibration, had a significant influence on modern bridge design.  

Figure 35 Amplitude modulation 
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The relationship between the just noticeable degree of amplitude modulation as a function 

of the modulating frequency for a 1kHz tone at 40dB & 80dB, and white noise (dotted 

line), is shown in Figure 36, Zwicker [7]. It shows that the ear is most sensitive to a 

modulating frequency of approximately 4Hz. 

 

The preliminary findings detailed in Chapter 4, show that the organ pipe flutter results 

from the reservoir vibrating at a frequency of approximately 10Hz. From Figure 36, the 

sensitive to low frequency amplitude modulation at this frequency is approximately 2% for 

a level of 80dB or 7.5% for a level of 40dB.  

Figure 26 (Chapter 4) shows the frequency spectrum of the sounding test pipe, at a 

distance of 150mm from the pipe mouth, with a level of 98dB for the first harmonic 

(1kHz) and 101dB for the second harmonic (2kHz). These levels represent the levels that 

would be experienced by the tuner at the soundboard. Generally, the output level of the 

pipework is regulated to produce the desired sound level in the body of the church. 

Dependent on the position of the organ and the acoustics of the church this may mean that 

the pipework needs to be driven hard with very high levels at the soundboard. Not all stops 

respond to this treatment and this is where the scale of the stop is of importance. Figure 13 

(Chapter 3) shows that the amount of flutter detected in the body of the church is less than 

that at the soundboard for each of the four organ pipes.   

Figure 36 The relationship between the just noticeable degree of amplitude modulation 

as a function of the modulating frequency for a 1kHz tone at 40dB & 80dB and white 

noise dotted line (After Zwicker [7]) 
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 Amplitude Modulation index  

The amplitude modulation index m = Vm/Vc             (3) 

Where Vm = the modulation voltage and Vc the carrier voltage 

  Percentage of modulation = modulation index x 100  

Alternatively, the level of the carrier and modulation frequency may be expressed in terms 

of Pascals. 

Frequency Hz. 

 

Figure 37 shows the spectrum of the fundamental frequency for a reservoir pressure of 60 

mm WG. The level of the fundamental is 80.6dB and the level of the lower and upper side-

bands are 40.4 and 45.3dB respectively. 

SPL = 20 Log10(P1/Pref).    P1 = pressure in Pa.    Pref = reference pressure = 0.00002 

P1 pressure = 0.00002 x 10(SPL/20) 

  80.6dB = 0.2140Pa.     40.4dB = 0.0021Pa.    45.3dB = 0.0037Pa. 

The modulation index of the lower side-band = 0.0021/0.214 = 0.0098 or 0.98% 

           the upper side-band = 0.0037/0.214 = 0.0173 or 1.73% 

Alternatively, the modulation index can be calculated using the difference between two 

SPL’s from Table 11. 

As an example, from Figure 37, Lower side-band diff = (80.6 - 40.4) = 40.2dB  

From Table 11 % modulation = 1.00 %. 
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Figure 37 Typical fundamental frequency spectrum showing amplitude modulation 

side-bands 
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SPL difference (dB) % modulation 
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Table 11 Percentage amplitude modulation Lookup Table 
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 Amplitude modulation simulation 

To understand the effect of amplitude modulation on a signal, a MATLAB script has been 

developed (am1dbtest) to display a defined modulated signal in both the time and 

frequency domain. Several carrier frequencies from 62 to 8000Hz can be selected, which 

correspond to the various stop pitches starting at the 8ft. In addition, modulating 

frequencies can be selected that are relevant to those experienced in an organ reservoir. 

The 10 to 20Hz is the typical modulation frequency produced by reservoir top vibration, 

10Hz for weighted reservoirs and 20Hz for sprung reservoirs. The level of modulation is 

adjustable from a very low level of 1 percent to a level of 10 percent. This range can then 

be increased tenfold to give a maximum modulation of 100 percent.  

The modulating frequencies below 10Hz are used for simulating the modulation produced 

by the tremulant stop. 

Carrier frequency.  62,125,250,500,1000,2000,4000,8000Hz. 

Modulation Frequency. 2,3,4,5,6,7,8,9,10,12.5,15,17.5,20,25,30Hz. 

Percentage Modulation. .01,.02.03,.04,.05,.06,.07,.08,.09,.1 

Modulation multiplier 1 or 10 

Figure 38 shows a carrier frequency of 1kHz, the same as the pipe fundamental frequency, 

and a modulation frequency of 10Hz, the same as the reservoir top frequency. A 1% level 

of amplitude modulation produces two distinct visible side-bands, that are not audible at 

10Hz on each side of the carrier frequency of 1kHz. A 2% level of amplitude modulation 

is shown in Figure 39 and is just audible.  

Figure 40 shows a modulating frequency of 4Hz with 10% modulation which is typical of 

a tremulant stop.  
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Figure 38  1% amplitude modulation  
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Figure 39 2% amplitude modulation 
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Figure 40 10% amplitude modulation  
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 Side-band modulation 

Condition monitoring of machinery often uses side-band modulation analysis [23]. Small 

defects in the rotational components of machines, such as gear and bearing wear, can be 

detected using an accelerometer and specially designed software that analyses the rotating 

components and produces a frequency spectrum. Any faults, such as cracked or broken 

teeth, appear on the frequency spectrum as a series of side-bands equally spaced on each 

side of the rotational speed of the gear train.  

Figure 41 shows a typical amplitude modulated signal and frequency spectrum with high 

amplitude side-bands around the tooth-meshing frequencies, for a gearbox with several 

defective teeth. This is very similar to the frequency spectrum of a sounding organ pipe 

with its many harmonics, each with side-bands at the reservoir resonant frequency. The 

organ pipe side-bands have very high energy levels, and so only one principal side-band is 

observed. 

 

Figure 41 Amplitude modulated and frequency components for a defective gearbox  

(After Angelo [23]) 
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 Alternative methods to determine % amplitude modulation 

Several methods can be employed to determine the percentage amplitude modulation of 

the sounding treble c open diapason test pipe. 

5.7.1 Method 1 

The 01dB measurement platform is a calibrated system. Calibration has been achieved 

using a 94dB microphone calibrator. Using the 01dB post analysis software, the frequency 

spectrum of the sounding pipe can be selected as shown in Figure 42. The Figure shows 

the selection of the 5th harmonic of 5kHz. The zoom feature allows the two side-bands to 

be clearly seen and measured. Figure 43 shows the zoom spectrum for the 5th harmonic 

with a level of 70.4dB with lower and upper side-band levels of 43.2 and 45.3dB 

respectively. This gives a difference of 27.2 and 25.1dB. From Table 11 the corresponding 

percentage modulation is approximately 4.5% and 5.5%.  

Frequency Hz. 

Figure 43 01dB 5th harmonic frequency spectrum 
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Figure 42 01dB measurement window 
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5.7.2 Method 2  

The signal can be exported from 01dB as a WAV or text file. Using MATLAB the 01dB 

WAV file, or any other recorded WAV file, can be imported and the time domain, general 

frequency spectrum, together with a zoom spectrum centred on each harmonic can be 

displayed. The three plots are shown in Figures 44, 45 and 46.  

 

Figure 46 5th harmonic frequency spectrum   

Figure 45 Frequency domain 

Figure 44 Time domain 
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5.7.3 Method 3  

Similar to method 2 a recorded WAV file can be imported into Adobe Audition and the 

frequency spectrum tool used. Figures 47, 48 & 49 show the time domain, frequency 

spectrum, and the 5th harmonic frequency spectrum showing the fundamental and side-

bands levels.  

 

Figure 47 Adobe Audition time domain 

 

 

Figure 48 Adobe Audition frequency spectrum 

 

Figure 49 Adobe Audition 5th harmonic frequency spectrum. 
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 Roughness 

At very low modulation frequencies, the loudness changes slowly and reaches a maximum 

at approximately 4Hz and then starts to decrease, as shown in Figure 36. 

At approximately 15Hz a second type of sensation starts to take over and reaches a 

maximum at a modulation frequency of approximately 70Hz and then decreases as the 

modulation frequency increases. This is shown in Figure 50 Zwicker [7]. This second type 

of sensation is termed “Roughness” and can be considered to cover the amplitude 

modulation frequency range of 15 to 300Hz. 

 

Figure 50 Roughness of 100% amplitude modulated tones for the given centre frequencies 

as a function of the frequency of modulation (After Zwicker [7]) 

 

It will be seen in Chapter 6 the effects of roughness are more relevant to sprung reservoir 

systems that have resonant frequencies at approximately 20Hz. However, with weighted 

reservoir systems, several harmonic frequencies below 100Hz are also present and may be 

at a sufficient level to modify the amplitude modulation of the sounding pipe.  
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 Discussion 

Most modulation research uses a single 1kHz carrier frequency which is far from the 

practical reality of a sounding organ pipe which may have over 20 harmonics. Also, sound 

pressure levels of approximately 100dB are experienced by the tuner at the soundboard.  

To understand the effect of amplitude modulation, various single carrier frequencies, 

modulation frequencies, percentage modulation and modulation indexes were simulated. 

The presence and development of side-bands giving a good indication of the modulation 

frequency and level. 

Modulation is used to good effect by some musicians to enhance their musical 

performance. However, in this organ building application the presence of any modulation 

on the sounding organ pipe is detrimental. The exception is the tremulant stop which is 

designed to impart extreme amplitude modulation on the sounding organ pipe.  

Several methods are presented in this Chapter but only method 3 is available to organ 

builders.  

The acoustic condition of “Roughness” is more relevant to sprung reservoirs which are 

examined in the next Chapter.  

  Conclusions 

The use of post analysis software is a good starting point and will give a good indication of 

the extent and level of any organ pipe flutter.  

Having established that the amplitude modulation of the sounding organ pipe is caused by 

reservoir vibrations, the use of an accelerometer fixed to the reservoir top is a convenient 

method to measure reservoir top vibration levels.     
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6 Blower and reservoir combinations 

 Preamble 

Chapter 4 examined an electrically blown, weighted, single rise reservoir wind system 

with a 3000 rpm blower. This Chapter examines other possible electric blower speeds and 

reservoir combinations. The pipe organ survey shows that some pipe organs, Figure 17,  

have single rise reservoirs that are normally pressurised using springs. In addition to a 

weighted reservoir and 3000 rpm blower, other basic combinations are possible: 

 1500 rpm weighted reservoir 

 1500 rpm sprung reservoir 

 3000 rpm weighted reservoir 

 3000 rpm sprung reservoir. 

 Methodology 

Using the apparatus and measuring equipment described in Chapter 4, the 4 basic blower 

and reservoir combinations are examined. The 1500 rpm results use blower 1 and the 3000 

rpm results use blower 6, detailed in Chapter 8. 
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 Results 

6.3.1 Organ pipe microphone results 

The results for the test organ pipe frequency spectra for the 4 combinations are shown in 

are shown in Figures 51 & 52.  

  

Frequency Hz 

A 1500 rpm sprung  

Frequency Hz 

B 3000 rpm sprung  

Figure 51 1500 & 3000 rpm sprung test pipe spectra 
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Frequency Hz 

A 1500 rpm weighted  

Frequency Hz 

B 3000 rpm weighted  

Figure 52 1500 & 3000 rpm weighted test pipe spectra 
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6.3.2 Reservoir top vibration accelerometer results 

The results for reservoir top vibration for the 4 combinations are shown in Figures 53 & 

54.   

Frequency Hz 

A 1500 rpm sprung 

 

Frequency Hz 

B 3000 rpm sprung 

Figure 53 1500 & 3000 rpm sprung reservoir top vibration spectra 
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A 1500 rpm weighted 

 

B 3000 rpm weighted 

 

Figure 54 1500 & 3000 rpm weighted reservoir top vibration spectra 
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6.3.3 Reservoir top vibration accelerometer results 1/3 octave bands 

An alternative method of analysing the vibration of the reservoir top is to use 1/3 octave 

frequency bands, as shown in Figures 55 & 56 for the 4 combinations. 

 

 

Figure 55 Weighted reservoir top vibration levels 

 

 

Figure 56 Sprung reservoir top vibration levels 
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 Discussions  

The frequency spectra for the test organ pipe, Figures 51 & 52, show the level of side-

bands. The highest side-band level is produced from the weighted 3000 rpm blower 

combination, and the lowest, for the sprung 1500 rpm blower combination. However, there 

is little difference between the weighted 1500 rpm and the sprung 3000 rpm combination. 

The corresponding results of reservoir top vibration, Figures 53 & 54, also show the 

maximum reservoir top vibration level (94dB) occurs with the weighted 3000 rpm blower 

combination. The minimum reservoir top vibration level (82dB) occurs with the sprung 

1500 rpm blower combination. The other two combinations give very similar reservoir top 

vibration levels (85dB). 

Figures 55 & 56, using 1/3 octave bands, give a clearer picture of reservoir top vibration 

and the difference between the 4 combinations is more apparent.  

 Conclusion 

These findings support the views held by many organ builders that slow speed blowers 

produce less reservoir disturbance than high speed blowers.  
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7 Reservoir Resonance  

 Preamble 

Chapter 6 outlined two basic ways of pressurising the reservoir. The first method was to 

apply cast iron bellows weights to the reservoir top. The second method was to fix tension 

springs to each corner of the reservoir. In this Chapter the resonant frequencies of each 

type of reservoir loading are investigated.  

7.1.1 Weighted reservoir 

The reservoir can be modelled as a mass spring system, and the resonant frequency of a 

weighted reservoir is determined by the following expression Barron [37]:  

fres = 
1

 2𝜋
 .

1

 √𝑀𝑎.𝐶𝑎
                            (4) 

     Where 𝑀𝑎 = Mechanical Mass (kg) / Area of the reservoir (m2) 

         𝐶𝑎  = Volume of retained air (m3) / density of air x (speed of sound)2 

Example: The mechanical mass of the test reservoir is approximately 75kgs 

    Area   = 1.2 x 1.2 = 1.44m2 

    Volume  = 1.2 x 1.2 x .4 = 0.576m3 

    𝑀𝑎   = 75/1.44 = 52.1kgs/m2 

    𝐶𝑎    = 0.576/(1.2 x (343)2) = 4.07x10-6 m5/N 

    fres   = (1/2π) x 1/(52.1 x 4.07x10-6)1/2 = 10.93Hz 

The acoustic mass = 0.7kg (This represents only 1% of the mechanical mass) 

The acoustics fres  = 95Hz 

A more convenient equation, expressed in organ building terms of wind pressure and 

reservoir height, was outlined by Vellecote [24]. 

fres  =  
1882

 √𝑝.ℎ
                     (5) 

Where  𝑝  = wind pressure (mm) water gauge     ℎ  = reservoir height (mm) 

In the above example 𝑝 = 75mm    ℎ = 400mm 

    fres  = 1882/(75 x 400)1/2 = 10.86Hz  
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Figure 57 shows both methods for wind pressures up to 200mm water gauge and a 

reservoir height of 400mm.  

Reservoir wind pressure (mm) water gauge  

 

Figure 58 shows reservoir resonant frequencies for a weighted reservoir and reservoir 

heights of 200, 300 & 400mm. 

Reservoir wind pressure (mm) water gauge 

  

Figure 57 Comparison of reservoir resonant frequency 

Equation 4 green & Equation 5 red. 

Figure 58 Weighted reservoir resonant frequency 
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7.1.2 Sprung reservoir 

The resonant frequency is a function of the reservoir height and the mass of the reservoir 

top, and is determined in organ building terms, by the following equation Vellecote [24]: 

     fres =  
1882

 √𝑀𝑡.ℎ
                    (6) 

Where  𝑀𝑡  =  mass of the reservoir top (kg)  

                 ℎ = reservoir height (mm) 

note: fres is not a function of the reservoir wind pressure.  

Example:  𝑀𝑡 = 25kg      ℎ = 400mm 

     fres = 1882 / (25 x 400)1/2 = 19Hz  

Using equation (4) fres = 18.9Hz 

Figure 59 shows the resonant frequency for a sprung reservoir for various reservoir top 

masses and reservoir heights. 

Mass of reservoir top (kg) 

 

  

Figure 59 Sprung reservoir resonant frequency 
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  Methodology 

Using the apparatus and measuring equipment described in Chapter 4, weighted and 

sprung reservoir combinations are examined.  

 Results 

7.3.1 Weighted Reservoir 

 Comparison of calculated and actual reservoir frequencies  

Calculated and actual reservoir frequency plots are shown in Figure 60.  

   
 

Figure 60 Comparison of actual and calculated reservoir vibration 

 

 The effects of reservoir height on reservoir wind pressure 

Figure 61 shows the relationship between reservoir height and reservoir wind pressure. 

The reservoir has a single set of inward folding ribs and a height of 400mm when full. 

 

 

Figure 61The relationship between reservoir height and reservoir wind pressure 
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 Variation in reservoir top vibration levels for various rib angles 

As the height of the reservoir changes so does the angle that the ribs make with each other. 

At 400mm, the rib angle is 83 degrees and corresponds with a reservoir wind pressure of 

78mm water gauge. The other rib angles are 57, 38 & 20 degrees for corresponding heights 

of 365, 330 & 295mm. Figure 62 shows the effect that changing the rib angle has on the 

reservoir top vibration levels.  

 

 Reservoir top vibration levels for various reservoir wind pressures 

The reservoir top vibration levels, together with the organ pipe spectra, were measured for 

wind pressures of 50mm to 120mm WG, and a reservoir height of 400mm. The results are 

shown in Figure 63 together with the corresponding frequency spectra, Figures 64 to 71, 

showing the fundamental frequency and side-band levels.  

 

Figure 63 Variation in reservoir vibration level for different wind pressures 
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Frequency Hz  

 

Frequency Hz  
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Figure 65 60mm reservoir wind pressure 
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Frequency Hz  

Frequency Hz 
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Frequency Hz 

 

Frequency Hz 
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7.3.2 Sprung Reservoir 

The weights were removed, and the reservoir pressurised using the four external springs. 

 Variation of reservoir top frequency with reservoir wind pressure 

The relationship between the reservoir top vibration levels and the three wind pressures 

(50, 57.7 & 62.5mm WG) is shown in Figure 72.  

Reservoir frequency Hz 

 Tuning a weighted single rise reservoir 

Results for varying the weight spring ratio are shown in Figure 72A. 

 

Figure 72A Tuning a weighted single rise reservoir.  
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Figure 72 Fundamental frequency of a sprung reservoir for  

 50mm (red) 57.5mm (green) & 62.5mm (blue) wind pressures 
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 Discussion 

Figure 17 shows that 85% of the organs surveyed in the pipe organ survey had weighted 

double rise reservoirs. For weighted reservoirs the mechanical mass will always be 

dominant. The survey also shows that the most common reservoir height was 300mm and 

the most common wind pressure was 3 inches or 75mm WG.  

The resonant frequency of a weighted reservoir is a function of the reservoir height and 

reservoir wind pressure. Normally, wind pressures vary between 50 and 120mm WG 

producing a resonant frequency of approximately 7.5 to 13Hz. Comparison between the 

theoretical and actual resonant frequency of a weighted reservoir shown in Figure 60 is 

good. The theoretical reservoir resonant frequency curves, shown in Figures 58 & 59, for 

weighted and sprung reservoirs for various reservoir heights, will be a valuable tool for 

many organ builders.    

The frequency spectra, Figures 64 to 71, clearly show the development of side-bands on 

each side of the fundamental as the wind pressure is varied, reaching a maximum at one 

wind pressure. The frequency spectra also show that the presence and magnitude of side-

bands on each side of the fundamental is a good indication of the amount of amplitude 

modulation or organ pipe flutter.  

Figure 62 shows that changing the geometry of the reservoir ribs by adjusting the reservoir 

height, has a dramatic effect on the vibration levels of the reservoir top.  

An important property of a sprung reservoir, shown in Figure 72, is that adding more 

spring force to increase the wind pressure, does not change the resonant frequency. 

 Conclusion 

Figure 72A shows that removing weights from the reservoir top, and adding springs to 

maintain the reservoir wind pressure, results in an optimum condition being reached for 

reservoir top vibration levels. 

Reservoir dimensions and geometry, together with reservoir wind pressure are important 

when considering reservoir resonance and organ pipe flutter. Armed with this information, 

pipe organ builders will be able to select reservoir dimensions and wind pressures that will 

give the most stable wind system with the minimum of pipe flutter. 
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8 Blower comparison tests 

 Preamble 

From the initial 1500 & 3000 rpm blower experiments it is clear that the reservoir is 

excited by the organ blower. In this Chapter a more comprehensive series of blower 

experiments are conducted to determine if all 1500 & 3000 rpm blowers behave in a 

similar manner, and to determine if one element of the blower design is responsible for 

organ pipe flutter.  

The blower comparison tests compare the effect of different blowers on the test single rise 

weighted wind system. Changing the blower should not produce different results in the 

wind system. By keeping the reservoir and connecting pipework constant and varying the 

blower, it should be possible to determine if one type of blower is more likely to induce 

unwanted reservoir top vibrations. 

The various blowers represent a good cross-section of blowers used in many small and 

medium sized pipe organs. From Table 12 it can be seen that they represent several 

manufacturers with 1500 & 3000 rpm motor configurations, static wind pressures and 

blade configurations. For the sake of completeness, I have included a garden leaf blower, 

which is not specifically designed for organ building applications, but produces a high 

output pressure, thus, a comparison can be made with the organ blowers.  
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1* Discus 1500 415 ac 4 95 12 rad 300 533 40 20 114 

2** BOB 

TOT 

1500 dc  95 8 BC 

72 

200 

1800 

533 42 22 89 

3 *** BOB 

Minor 

1500 415 ac 6 86 8 BC 

80 

172 

1720 

558 38 28 89 

4 Taylor 3000 240 ac 2 100 10 rad 500 260 41 15 80 

5 4214-1 3000 240 ac 2 150 12BC 

48 

600 

2400 

312 49 35 125 

6**** 4222-3 3000 240 ac 

inv 

2 180 12BC 

48 

600 

2400 

338 53 45 135 

7 K C 3000 240 ac 2 140 6Rad 

42 

300 

2100 

317 47 27 70 

8 Leaf 

blower 

 240 ac  350 5 FC  150 75   

 

Table 12 Blower details 

 

*    The blades of the impeller are set 25mm below the rim. 

**    This blower is controlled by a 230 volt ac dc controller  

*** This blower is belt driven and the motor runs at 1000 rpm. The pulley ratio 

gives a final drive speed of 1500 rpm  

****    This blower is controlled by a 240 volt ac speed inverter drive.  

 Methodology 

Using the apparatus and measuring equipment described in Chapter 4, with a reservoir 

wind pressure of 80mm WG, the eight blowers are examined.   
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 Blower details 

8.3.1 Blower 1 

This old Discus unit is the largest and heaviest unit tested. The unit has a very heavy cast  

iron case, a 12-blade radial steel impeller and large ½ hp three phase motor. 

 

Photograph 12 Blower 1 

8.3.2 Blower 2  

This blower was manufactured by British Organ Blowing Ltd. The unit has a steel plate 

fabricated case and steel impeller, and was originally fitted with a ¼ hp single phase motor 

running at 1500 rpm. The existing motor was time expired and replaced with a ½ hp dc 

motor and variable speed controller running at 1500 rpm.  

Photograph 13 Blower 2 
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8.3.3 Blower 3 

This blower was also manufactured by British Organ Blowing Ltd and designated as BOB 

Minor. The unit has a steel plate fabricated case and steel impeller. It was originally fitted 

with a ½ hp single phase motor running at 1500 rpm that was time expired. The existing 

motor was removed, and the impeller fitted to a shaft supported by two block bearings. 

The drive from the new 1000 rpm motor to the impeller is by two pulleys and a V belt. The 

ratio of the two pulleys is 1.5 to 1, giving a final drive speed of 1500 rpm.   

 

  

Photograph 14 Blower 3 
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8.3.4 Blower 4 

This blower, was made by Taylor’s of Leicester and is the oldest and most primitive 

design. The unit is constructed from wood with a steel impeller and a single phase 3000 

rpm ½ hp motor. The author has no connection with this company. 

8.3.5 Blower 5 

This is a new blower with a cast aluminium casings and light aluminium impeller. The unit 

is fitted with a 3000 rpm ¾ hp single phase motor, fitted with sleeved bearings for 

exceptionally quiet running 

 

Photograph 16 Blowers 5 & 6 

Photograph 15 Blower 4 
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8.3.6 Blower 6 

This blower is similar to blower 5, but is rated at 22m3 per minute, and is fitted with a 1hp 

single phase 3000 rpm motor. 

8.3.7 Blower 7 

The K C blower, manufactured by the Kinetic Company, is a small unit with a cast iron 

case and steel impeller, and is fitted with a single phase 3000 rpm 1/3hp motor. The 

Kinetic Company Lincoln was a subsidiary of the pipe organ builder J R Cousans, Lincoln. 

The patent for the design dates to 1903 and the first unit was installed in the pipe organ at 

Newland Congregational Church Lincoln to replace the failing hydraulic blower installed 

by Jardine & Co in 1891.  

8.3.8 Blower 8 

The garden leaf blower has a 240 Volt single phase motor with an outlet velocity of 180 

km/h. The 150mm diameter impeller is of open moulded plastic construction.  

  

Photograph 17 Blower 7 

Photograph 18 Blower 8 
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 Blower parameters  

The various parameters for each blower are shown in Figures 73 to 76.  

8.4.1 Blower static pressure 

 

Figure 73 Static blower pressure 

 

8.4.2 Number of blades 

 

Figure 74 Number of blades 
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8.4.3 Peripheral tip speed 

 

Figure 75 Peripheral speed 

 

8.4.4 Impeller width 

 

Figure 76 Impeller width 
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 Results 

8.5.1 Reservoir top vibration levels results.  

Reservoir top vibration levels for the 8 blowers, are shown in Figures 77 & 81. 

 

Figure 77 Reservoir top vibration levels for all 8 blowers 6.3Hz to 1kHz 

 

 

Figure 78 Reservoir top vibration levels for all 8 blowers 6.3Hz to 100Hz 
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Figure 79 Reservoir top vibration levels for blowers 1, 2, 4, & 5 6.3Hz to 1kHz 

 

 

Figure 80 Reservoir top vibration levels for blowers 3, 6, 7, & 8 6.3Hz to 1kHz 
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Figure 81 Reservoir top vibration levels for blowers 1 & 6 6.3Hz to 1kHz 
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8.5.2 Blower comparisons  

The measurements of the eight blowers have been exported from 01dB as WAV files and 

imported into a MATLAB script ( blowcompB) shown in Figure 82 & 83. By selecting the 

blower reference and a harmonic, it is possible to compare the effect that each blower has 

on the sounding pipe.  

The first window displays the sounding pipe in the time domain to show the amount of 

amplitude modulation. 

The second window shows the frequency spectrum of the sounding pipe for the first 10 

harmonics. 

The last window shows a zoom spectrum of a selected harmonic. It is this last window that 

is the most important and gives a good measure of the amount of amplitude modulation 

and organ pipe flutter. Blower 1 is shown in Figure 82 and blower 6 in Figure 83. 
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Figure 82 Blower 1 comparison  
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Figure 83 Blower 6 comparison 
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8.5.3 Percentage amplitude modulation results 

Percentage amplitude modulation for each of the 8 blowers are shown in Figures 84 to 91. 

 

 

 

  

Figure 84 Blower 1 percentage amplitude modulation  
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Figure 85 Blower 2 percentage amplitude modulation 
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Figure 86 Blower 3 percentage amplitude modulation 

 

 

 

Figure 87 Blower 4 percentage amplitude modulation 
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Figure 89 Blower 6 percentage amplitude modulation 
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Figure 88 Blower 5 percentage amplitude modulation 
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Figure 90 Blower 7 percentage amplitude modulation 

 

 

 

Figure 91 Blower 8 percentage amplitude modulation 
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 Discussion 

The pipe organ survey shows that all the organs had some form of electric blower with 

more having 3000 rpm (58%) than 1500 rpm blowers. Details of all the blowers are shown 

in Table 12 and various parameters are shown in Figures 73 to 76. Blower 6 produces the 

most organ pipe flutter which may be as a result of the peripheral speed, Figure 75, or the 

width of the impeller, Figure 76. For a given static pressure the peripheral speed is the 

same for low and high-speed units and is made possible by having different diameter 

impellers. Blowers 5 & 6 have the two widest impellers and produce the highest levels of 

amplitude modulation and organ pipe flutter. This may be coincidental and requires further 

investigation. Blower impeller design and cut-off details are investigated in the next 

Chapter.  

The results for reservoir top vibration levels for all 8 blowers are shown in Figures 77 to 

81. Generally, 1500 rpm units have lower levels of reservoir top vibration than 3000 rpm 

units. What is very surprising is the good performance of the high-speed blower 4 which 

has the most primitive and simplistic design of all the units tested and compares 

favourably with the 1500 rpm blower 1. This may be due to a Δr/R ratio of .23 which is 

examined in the next Chapter.  

Figure 81 compares two blowers that have been used in many of the experiments, blower 1 

(1500 rpm) and blower 6 (3000 rpm). Clearly the 1500 rpm unit produces substantially 

less disturbance of the reservoir.   

The comparison of each blower, Figures 82 & 83, shows that changing the blower changes 

the overall frequency spectrum, (window 2), to an extent that the change can be audibly 

detected. This script can also be used as a first step to determine the presence and level of 

any organ pipe flutter.  

The percentage of amplitude modulation for each of the 8 blowers is shown in Figures 84 

to 91. The Figures show that blower 1 and blower 4 produce the minimum amplitude 

modulation and blower 6, the maximum. Blowers 1 & 4 have very low levels of amplitude 

modulation up to the 5th harmonic, and blowers 6 & 7 are substantially higher from the 

3rd harmonic.  
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Blower 8, which is not designed for organ building applications, gave some very 

unexpected results and produced less 10Hz reservoir vibration than some of the other 

specially designed pipe organ blowers. Figure 77 shows the high reservoir vibration and 

noise levels in the 1/3 octave bands above 63Hz which makes this blower totally 

unsuitable for organ building applications. 

 Conclusions 

From the results, it appears that each blower has a unique acoustic finger print. Normally, 

for general industrial applications this is not a problem where capacity and pressure are the 

main design criteria.  

It is important for the pipe organ builder to be aware that the move to smaller 3000 rpm 

blowers from 1500 rpm units, that have time expired, may increase reservoir top vibration 

levels and organ pipe flutter. 
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9 Blower impeller and cut-off tests  

 Preamble 

In this Chapter, blower parameters that may excite reservoir resonance and organ pipe 

flutter, are investigated under “no flow” conditions, i.e. the only flow is due to any leakage 

from the reservoir and connecting duct. Under “no flow” conditions the mechanical 

efficiency of the fan is very low as shown in appendix A Figure 166  

Chapter 8 has shown that each blower produces different levels of amplitude modulation 

and organ pipe flutter. Blowers 5 & 6 produce the highest levels of amplitude modulation 

and blowers 1 & 4 produce the lowest.  

There are three basic sources of noise generated by centrifugal fans: 

 Aerodynamic  

 Electro-magnetic 

 Mechanical 

The electro-magnetic and mechanical noise have been addressed by pipe organ blower 

manufacturers by using special motors with sleeved bearings. 

The aerodynamic noise is produced by the rotating impeller and vortex action and was first 

examined by Lighthill  [25] [26]. The vortex component is due to the shedding of vortices 

from the trailing edge of the fan blades and has a broad band frequency spectrum.  

There is also a rotational component that produces a series of impulses given to the air by 

the blades as they pass a given point in the fan housing. This noise consists of discrete 

frequencies at the fundamental blade frequency and its harmonics. The level of the blade 

frequency is mainly determined by the impeller cut-off clearance. This is the minimum 

distance between the impeller and the case at the blower outlet and is shown in Figure 94.  

9.1.1 Blade tones 

The blade frequency is defined as: impeller speed (revs per second) x number of blades. 

For example, a 1500 rpm motor with a 12- blade impeller: 

     Blade frequency = 1500/60 x 12 = 300Hz 

The corresponding blade frequency for a 3000 rpm motor is 600Hz. 

Further information regarding fan types and designs is contained in Appendix A. 
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With the increasing use of air conditioning systems in private and public spaces, some 

method of determining the noise performance of fans used in these applications was 

necessary. This was initially addressed by Beranek et al [27] [28], who constructed an 

apparatus for predicting ventilation system noise. The apparatus used by Beranek, is 

shown in Figure 92. The main feature of the apparatus is that the test duct is terminated 

anechoically. 

 

Figure 93 compares the sound power levels for axial flow and centrifugal fans. The 

centrifugal fan is characterised by the relatively large amounts of low frequency noise and 

the spectrum slopes off towards the high frequencies at approximately 5dB per octave. The 

axial flow fan has an almost flat frequency spectrum. The centrifugal fan produces more 

noise in the low frequency bands, and the axial flow fan produces more noise in the high 

frequency bands.  

Figure 93 Comparison of axial and centrifugal fans (After Beranek [27]) 

Figure 92 Details of the apparatus used by Beranek et al (After Beranek [27]) 
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Centrifugal fans with 3 or 4 blades have higher blade frequency levels than fans with 10 or 

more blades. It is therefore normal, for centrifugal fans to have between 10 and 16 blades. 

Axial flow fans are not able to develop the air pressure needed for pipe organ building 

applications, so the needs of the pipe organ builder must be met by centrifugal fans. 

Embleton [29] and Neise [30] [31] showed that the cut-off clearance, shown in Figure 94, 

had a significant effect on the level of the passing blade frequency. The cut-off clearance 

should be made as large as practically possible without affecting the performance of the 

fan. The siren is an extreme case where the cut-off clearance is very small, so that an 

extremely high level of blade tone is produced. 

Leidel  [32] also showed that cut-off clearance strongly influenced the sound power level 

of the blade frequency. The influence of the cut-off radius on the level of the blade 

frequency was less significant than the cut-off clearance. The lowest sound power level 

was achieved for a cut-off clearance of Δr/R = 0.25 and a cut-off radius of.r/R = 0.2.   

 

Figure 94 Schematic of fan showing cut-off clearance and cut-off radius 

 (After Leidel [32]) 

 

The cut-off clearance (Δr) for blowers 1 to 7 is shown in Table 13 together with (Δr/R). 

The leaf blower has been omitted because the impeller is not of the closed design.  
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Blower ref Impeller radius R mm Cut-off clearance   Δr mm Δr/R 

1 533/2 115 0.43 

2 533/2 45 0.17 

3 558/2 50 0.18 

4 260/2 30 0.23 

5 312/2 65 0.42 

6 338/2 100 0.6 

7 317/2 50 0.31 

 

Table 13 Blower cut-off comparison details 

  Methodology  

Using the apparatus and measuring equipment described in Chapter 4, the presence and 

level of blade frequencies and their effect on reservoir top vibration under “no flow” 

conditions, is examined using the blowers listed in Tables 12 &13. 

The microphone is placed inside the single rise reservoir and two conditions are examined 

and measurements taken.   

Condition 1. Reservoir down. In this position there is a clear path from the blower to the 

microphone. 

Condition 2. Reservoir up.  This is the normal working position and the internal control 

valve interrupts the direct path of the blower and the microphone.  

The first measurements were taken using the fixed speed blowers 1, 2, 3, 4, 5, 6 & 7. A 

further set of measurements was taken using blower 6 fitted with a speed controller, which 

allows discrete motor speeds to be selected by varying the mains frequency. Mains 

frequencies of 35, 40 & 45Hz were selected with corresponding motor speeds of 2100, 

2400 & 2700 rpm. Blower 6 has 12 main blades and four inter-blades producing blade 

frequencies of 420, 480 & 540Hz for mains frequencies of 35, 40 & 45Hz. The 

corresponding inter-blade frequencies are: 1680, 1920 & 2160Hz. Finally, a further set of 

measurements was taken using blower 6 with a motor speed of 50Hz, a blade frequency of 

600Hz, but with the cut-off reduced from 100mm to 25mm, by inserting a wooden wedge.  
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  Results 

The microphone results for the fixed speed blowers 1, 2, 3, 4, 5, 6 & 7 with the reservoir 

“down” and “up” are shown in Figures 95 to 100. 

Frequency Hz (down red, up blue) 

Frequency Hz (down red, up blue) 
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Figure 95 Blower 1 blade frequency 300Hz  

[ID=14] Average G1 3201 (dB[2.000e-05 Pa], PWR)-Hz 0 59.1

[ID=12] Average G1 3201 (dB[2.000e-05 Pa], PWR)-Hz 0 48.4
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Frequency Hz (down red, up blue) 

 

Frequency Hz (down red, up blue) 

  

Figure 96 Blower 2 blade frequency 200Hz 
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[ID=6] Average G1 280617 (dB[2.000e-05 Pa], PWR)-Hz 0 68.7

[ID=8] Average G1 280617 (dB[2.000e-05 Pa], PWR)-Hz 0 48.1
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Frequency Hz (down red, up blue) 

 

Frequency Hz (down red, up blue) 
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Figure 97 Blower 3 blade frequency 172Hz  

[ID=10] Average G1 220617 (dB[2.000e-05 Pa], PWR)-Hz 0 67.6 402 47.7

[ID=12] Average G1 220617 (dB[2.000e-05 Pa], PWR)-Hz 0 48.1 402 41.5
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Frequency Hz (down red, up blue) 

 

Frequency Hz (down red, up blue) 
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Figure 98 Blower 4 blade frequency 500Hz  

[ID=6] Average G1 Taylor 220517 (dB[2.000e-05 Pa], PWR)-Hz 0.0 48.3

[ID=8] Average G1 Taylor 220517 (dB[2.000e-05 Pa], PWR)-Hz 0.0 48.1
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Frequency Hz (down red, up blue) 

 

Frequency Hz (down red, up blue) 
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Figure 99 Blower 5 blade frequency 600Hz 

[ID=2] Average G1 280617 (dB[2.000e-05 Pa], PWR)-Hz 0 62.2

[ID=0] Average G1 280617 (dB[2.000e-05 Pa], PWR)-Hz 0 48.0
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Frequency Hz (down red, up blue) 

 

Frequency Hz (down red, up blue) 

Figure 99A Blower 6 blade frequency 600Hz 

 

  

[ID=0] Average G1 3201 (dB[2.000e-05 Pa], PWR)-Hz 0 70.3
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Frequency Hz (down red, up blue) 

 

Frequency Hz (down red, up blue) 
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Figure 100 Blower 7 blade frequency 300Hz  

[ID=0] Average G1 220617 (dB[2.000e-05 Pa], PWR)-Hz 0 69.2

[ID=2] Average G1 220617 (dB[2.000e-05 Pa], PWR)-Hz 0 49.3
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The microphone results for blower 6 and motor speeds with blade frequencies of 420, 480 

& 540Hz, with the reservoir up and down, are shown in Figures 101 to 106. 

Frequency Hz (420 red, 480 green & 540 blue)  

Figure 101 Blower 6 microphone frequency spectrum reservoir “down” 

 

Frequency Hz (420 red, 480 green & 540 blue) 

Figure 102 Blower 6 microphone frequency spectrum reservoir “up”   
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Frequency Hz (420 red, 480 green & 540 blue) 

Figure 103 Blower 6 zoom frequency spectrum reservoir “down” 400 to 600Hz 

 

Frequency Hz (420 red, 480 green & 540 blue) 

Figure 104 Blower 6 zoom frequency spectrum reservoir “up” 400 to 600Hz 
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Frequency Hz (1680 red, 1920 green & 2160 blue) 

Figure 105 Blower 6 zoom frequency spectrum reservoir “down” 1600 to 2200Hz 

 

Frequency Hz (1680 red, 1920 green & 2160 blue) 

Figure 106 Blower 6 zoom frequency spectrum reservoir “up” 1600 to 2200Hz. 
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The corresponding reservoir top vibration levels for blower 6 are shown in Figures 107 & 

108.   

Frequency Hz (420 red, 480 green & 540 blue) 

Figure 107 Blower 6 frequency spectrum of reservoir top vibration, reservoir “down” 

 

Frequency Hz (420 red, 480 green & 540 blue) 

Figure 108 blower 6 frequency spectrum of reservoir top vibration, reservoir “up” 
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The reservoir top vibration and side-band levels for cut-off distances of 100 & 25mm are 

shown Figures 109 &110 

 

Frequency Hz 100mm red 25mm blue cut-off 

 

 

Frequency Hz 100mm red 25mm blue cut-off  

 

Figure 109 Blower 6 reservoir top vibration levels for 100 & 25mm cut-off 

[ID=5] Average G2 271117 (dB[1.000e-06 m/s²], PWR)-Hz 0.0 64.5 699.2 42.4

[ID=13] Average G2 271117 (dB[1.000e-06 m/s²], PWR)-Hz 0.0 69.9 699.2 41.6

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650

[ID=5] Average G2 271117 (dB[1.000e-06 m/s²], PWR)-Hz 0.0 64.5 199.2 54.3

[ID=13] Average G2 271117 (dB[1.000e-06 m/s²], PWR)-Hz 0.0 69.9 199.2 60.2

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120 140 160 180

R
es

er
v
o
ir

 v
ib

ra
ti

o
n
 l

ev
el

 d
B

 
R

es
er

v
o
ir

 v
ib

ra
ti

o
n
 l

ev
el

 d
B

 



126 

 

 

 

Frequency Hz 100mm red 25mm blue cut-off 

 

  

Figure 110 Blower 6 side-band levels for 100 & 25mm cut-off 
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0

10

20

30

40

50

60

70

80

90

100

110

980 990 1000 1010 1020 1030 1040 1050

S
P

L
 d

B
 



127 

 

The passing blade SPL results for blowers 1 to 7 are shown in Table 14, together with the 

comparison for Δr/R in Figure 111. 

Blower ref Δr/R SPL dB 

res down 

SPL dB 

res up 

Blade 

Freq Hz 

Figure  

1 0.43 54  32.5 300 95 

2 0.17 70 56.5 200 96 

3 0.18 70 47 172 97 

4 0.23 76 48 500 98 

5 0.42 56 42 600 99 

6 0.6 60 45 600 99A 

6a (35 Hz mains freq) 0.6 53.5 35 420 101- 106 

6b (40 Hz mains freq) 0.6 58.5 35 480 101-106 

6c (45 Hz mains freq) 0.6 46 30 540 101-106 

7 0.31 78.5 57 300 100 

 

Table 14 Blade tone levels 

 

 

Figure 111 Δr/R for various blowers 
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The results for blowers 1 to 7 blade frequency levels are shown in Figure 112. 

 

Figure 112 Blade frequency results for reservoir down and up. 

 

The results for blowers 1 to 7 reservoir resonant frequency levels are shown in Table 15 

and Figure 112A. 

Ref 
F down 

Hz 
SPL 

down 
F up Hz SPL up 

1 17 80.2 10 91.6 

2 16 91.3 10 90.3 

3 3 91.1 10 99.8 

4 13.3 84.9 10 89.4 

5 13 91 10 92.8 

6 9.5 100.6 10 106.2 

7 14 91.5 10 98 

 

Table 15 Reservoir resonant frequency SPL  

 

Figure 112A Blowers 1 to 7 resonant frequencies and SPL    
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 Discussion 

The use of a standard test arrangement, as described by Beranek et al, assumes that the 

outlet of the fan is terminated anechoically. Clearly this is not the case for organ blowing 

applications where the outlet is under pressure and the blower may be subjected to 

reflections from the reservoir control valve and other parts of the wind system. 

Osborne[33] and his team, found that when the fan exit was pressurised, there appeared to 

be an absence of the passing blade frequency. Figures 103 & 104 show, that blade 

frequencies exist in a pressurised pipe organ wind system, but the levels are low due to the 

cut-off distance. The shift in blade frequency for the three motor speeds are shown in 

Figures 103 & 104.  

From Table 14 the cut-off clearance varies from 45mm (Δr/R= 0.17) blower 2, to 100mm 

(Δr/R= 0.6) blower 6. Blower 4 has a (Δr/R= 0.23) which is very close to the optimum 

value of 0.25. 

The level of blade frequencies for the 7 blowers is shown in Figure 112 for both reservoir 

“down” and “up” positions. In the active “up” position, the levels are attenuated by 

approximately 20dB. The maximum SPL (78.5dB) occurs with blower 7.  Figures 98 & 

100 show that blowers 4 & 7 produce very noticeable blade frequencies at 500Hz & 

300Hz. with the reservoir “down” and “up”. The results of adding a wooden wedge to 

reduce the cut-off distance of blower 6 from 100 to 25mm, are shown in Figure 109. 

Adding the wedge, increases the reservoir top vibration levels at 600Hz by 25dB and the 

blade frequency can now be heard. Figure 110 shows that there is no difference in the level 

of side-bands on the sounding test pipe, indicating that blade frequencies are not 

responsible for the amplitude modulation. This is supported by blowers 4, which has a cut-

off distance of 30mm and produces a very strong blade frequency and one of the least 

amounts of amplitude modulation and organ pipe flutter. 

Blower 6 has the largest cut-off clearance of 100mm (Δr/R= 0.6) and produces very low 

blade frequency levels, (60dB down) & (45dB up). Despite these very low levels of blade 

frequencies, this blower produces the greatest amount of amplitude modulation and organ 

pipe flutter. Figure 76 shows that blowers 5 & 6 have the widest impellers and are made by 

the same blower manufacturer with different outputs and pressure characteristics. This 

suggests, that impeller width may be a factor in the development of organ pipe flutter and 

needs further investigation. This can best be determined by the blower manufacturer using 
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CFD, followed by testing. Fans are normally made to geometrical similar designs Francis 

[34] Massey [35] and the Fan Laws are used to calculate volume flow and pressure.   

Results showing the reservoir resonant frequency levels of blowers 1 to 7 are shown in 

Table 15 and Figure 112A. For blower 6, the frequency of the blower and connecting duct 

exactly match the resonant frequency of the reservoir and produce the maximum reservoir 

top vibration. Effectively, the system is tuned to produce the maximum amplitude 

modulation of the test apparatus.  

Figures 105 & 106 show no blade frequencies at the inter-blade frequencies of 1680, 1920 

& 2160Hz. The effects of inter-blades on organ pipe flutter are examined in the following 

Chapter.  

 Conclusion 

The system can be de-tuned by changing the wind pressure (Figure 63) or by removing 

weights and adding springs (Figure 72A). Alternatively, the reservoir height can be 

changed (Figure 58). 

The presence of blade frequencies has little effect on both the amplitude modulation of the 

organ pipe and organ pipe flutter. However, further research is needed to understand how 

impeller geometry can be improved to limit reservoir top vibration levels under “no flow” 

conditions.    
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10 Impeller Inter-blades 

  Preamble 

In Chapter 8 the number of main blades and inter-blades for each blower is shown in Table 

12 and Figure 74. The number of main blades range from 6 to 12 and the total number of 

blades including inter-blades varies from 10 to 80.  

The design of the impeller is closely guarded by fan manufacturers and there are few firms 

that make fans specifically for pipe organ blowing applications. Furthermore, there is very 

little technical information to support their designs. The inclusion of inter-blades is 

common in most modern organ blowers but rarely found in older units. The practice of 

adding inter-blades to the impellers of organ blowers seems to have started with the Swiss 

firm, Meidinger AG, and then copied by other manufacturers. 

Fortunately, blower 4 has 10 main blades and no inter-blades. Its simple construction 

allows the inclusion of inter-blades between the 10 main blades. The blower housing and 

impeller are shown in Photograph 19. Photograph 20 shows the blower with the impeller 

removed.  

 

  

Photograph 19 Blower 4 with side panel removed showing the impeller 
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The additional inter-blades, shown in Photograph 21, were 3D printed and held in place 

with two 12 BA screws. The impeller with the inter-blades fitted, making the total number 

of blades 40, is shown in Photograph22. 

 

 

 

  

Photograph 20 Blower 4 with the impeller removed 

Photograph 21 New 3D printed inter-blade 

Photograph 22 Existing impeller with the new inter-blades 
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  Methodology 

Using Blower 4, with and without inter-blades fitted, and the apparatus and measuring 

equipment described in Chapter 4, a comparison can be made, and the organ pipe 

amplitude modulation calculated in accordance with Chapter 5. 

  Results 

The percentage amplitude modulation results for blower 4 without inter-blades is shown in 

Figure 113. The results for blower 4 with the new inter-blades is shown in Figure 114. 

Figure 113 Percentage amplitude modulation without inter-blades  

 

Figure 114 Percentage amplitude modulation with inter-blades 
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   Discussion. 

The percentage modulation for various harmonics shown in Figures 113 & 114 reveals that 

the addition of inter-blades has a slightly detrimental effect on the higher harmonics.  

In main-stream fan manufacture, inter-blades are normally only used to increase the output 

of the fan. In this application, the air flow and pressure characteristics are of primary 

importance. No attempt has been made to determine if the inclusion of inter-blades has 

changed the air flow performance of the blower in accordance with BS848 using a 

standard air way.  

  Conclusion 

Results show that the addition of inter-blades is found to be counter-productive. Further 

research using CFD is required to determine how blade geometry, number of blades, 

general impeller and case design can be improved to produce blowers that produce 

minimal organ pipe flutter, under “no flow” conditions.  
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11 Control valves 

11.1.1  Preamble 

The purpose of this Chapter is to determine if the type of control valve has any influence 

on the development and level of organ pipe flutter. Also, the air supply from the blower is 

selectively reduced, to simulate the reservoir top vibration levels that would be achieved 

using a feeder system of air generation. 

Chapter 2 describes how a system of feeders was the only method of producing sufficient 

air for the organ, until the introduction of the centrifugal blower. The use of a centrifugal 

blower necessitates the use of some form of control valve to shut off the air supply from 

the blower, once the reservoir reaches its working height. 

Figure 8 shows a multi-stage Kinetic blowing plant with low and high-pressure reservoirs. 

A guillotine valve is used to control the air supply to the low-pressure reservoir and a 

roller blind valve controls the air supply to the high-pressure reservoir.  

The pipe organ survey, Figure 20, shows that the most popular control valve was the 

simple guillotine valve (53%) followed by the roller blind (36%) and the internal valve 

(11%). 

Tables 5 & 6 show 36 organs surveyed have no flutter. Tables 16 & 17 show the 

distribution for the three valves for organs with no flutter (NF) -  guillotine 12, roller blind 

17 and internal 2.  

These results indicate that the type of control valve has a significant role to play in the 

generation of organ pipe flutter. The measurements and analysis of this Chapter examine 

this hypothesis. 
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Tables 16 &17 show details of the control valves shown in Figure 20.  

 

 

NF indicates the organs with No Flutter. 

Table 16 Control valves with no flutter organs 1 to 40 

  

Ref Guillotine Internal Roller B

1 x

2 x

3 x

4 x

5

6 x

7 x

8 x

9 x

10 x

11 x

12 x

13 x

14 x

15 x

16 x

17 x

18 x

19 x

20 -

21 x

22 x

23

24 x

25 x

26 x

27 x  

28 x

29 x

30 x

31 x

32 x

33 x

34 x

35 NF

36 NF

37 NF

38 NF

39 NF

40 NF
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NF indicates the organs with No Flutter. 

Table 17 Control valves with no flutter organs 41 to 83 

  

Ref Guillotine Internal Roller B

41 x NF

42 NF

43 NF

44 NF

45

46 NF

47 NF

48 NF

49 NF

50 x

51

52 NF

53

54 NF

55

56

57 NF

58 NF

59 x

60 NF

61 x

62 NF

63 NF

64 NF

65 x

66 x

67 NF

68 x

69 NF

70 NF

71 x

72 x

73 NF

74 NF

75 NF

76 x

77 x

78 NF

79

80 NF

81

82 NF

83 x
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  Methodology 

Using the test apparatus described in Chapter 4, the air supply from the blower is 

controlled by the internal control valve. The internal valve is then replaced by an external 

guillotine valve, and then an external roller blind valve. Finally, the air from the blower is 

restricted by two 22mm gate valves. 

11.2.1  Internal control valve 

The single rise test reservoir internal control valve is shown in Photograph 5.  

11.2.2   Guillotine valve 

The external guillotine control valve is shown in Photograph 23 and the profile of the 

valve opening is shown in Photograph 24.  

 

  

Photograph 23External guillotine valve 

Photograph 24 Guillotine valve opening profile 
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11.2.3  Roller blind valve 

The external roller-blind control valve is shown in Photograph 25 and the profile of the 

valve opening is shown in Photograph 26. 

 

 

 

 

  

Photograph 25 External Roller-blind valve 

Photograph 26 Roller-blind valve opening profile 
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11.2.4  Gate vales  

Two, 22mm isolating gate valves, shown in Photograph 27, replace the control valve and 

control the flow of air from the blower. Measurements were taken for two valves open, one 

valve open and one valve partially open to balance any air leakage.  

 

 

Photograph 27 Two isolating gate valves 

 

  Results 

11.3.1  Guillotine, roller-blind and internal valve results 

The reservoir top vibration levels for the three control valves are shown in Figure 115. 
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11.3.2  Gate valve results  

  Organ pipe fundamental side-band results  

Frequency spectra for the fundamental of the sounding test pipe are shown in Figures 117 

to 120 for the various gate valve openings.  

Frequency Hz 

 

Frequency Hz  

[ID=2] Average G1 06042018 (dB[2.000e-05 Pa], PWR)-Hz 941.80 17.2
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[ID=4] Average G1 06042018 (dB[2.000e-05 Pa], PWR)-Hz 941.80 17.1
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Figure 116 Internal control valve  

Figure 117 Both gate valves open  
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Frequency Hz  

 

Frequency Hz  

  

[ID=6] Average G1 06042018 (dB[2.000e-05 Pa], PWR)-Hz 941.80 17.8
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Figure 119  One gate valve closed and one gate valve partially open  

Figure 118 One gate valve open  
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Frequency Hz  

Figure 120 Both valves closed and the reservoir allowed to fall 
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  Reservoir top vibration results 

The corresponding reservoir top vibration levels are shown in Figures 121 to 125 

Frequency Hz  

Figure 121 Internal control valve direct connection to the blower 

 

Frequency Hz  

Figure 122 Both gate valves open  
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Frequency Hz  

Figure 123 One gate valve closed one gate valve open  

 

Frequency Hz  

 

 

  

[ID=7] Average G2 09022018 (dB[1.000e-06 m/s²], PWR)-Hz 0.0 73.7
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Figure 124 One gate valve closed one gate valve partially open  
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Frequency Hz  

Figure 125 Both gate valves closed and the reservoir allowed to fall 

Results for the various gate valve conditions are shown in Figure 126. 
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Figure 126 Reservoir top vibration levels for the various gate valve conditions. 
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  Discussion 

11.4.1  Control valves 

The results of the reservoir top vibration levels for the three control valves shown in Figure 

115 are quite striking. The external control valves have substantially less, almost 20dB, 

reservoir top vibration in the 10Hz 1/3 octave band and even more in the 40 & 80Hz 1/3 

octave bands than the internal valve. The superior performance of the external control 

valves may be due to the profile of the opening and the effective mass of the moving part 

of the valve. The guillotine valve needs a heavy plate to overcome friction on the face of 

the valve produced by the wind pressure from the blower acting on the back of the valve. 

The roller-blind valve is made from leather and has substantially less mass than the 

guillotine valve.  

11.4.2  Gate valves 

Isolating the blower, using the two gate valves, substantially reduces side-bands and 

reservoir top vibration levels, effectively producing a wind system similar to a feeder 

system described in Chapter 2 - flutter free.      

  Conclusion  

The type and construction of the control valve is significant in the control and elimination 

of organ pipe flutter. The guillotine valve produces lower reservoir top vibration levels 

than the roller-blind valve. 
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12  Attenuating Devices 

  Preamble 

Previous Chapters examined the effects the reservoir, control valve and the blower have on 

organ pipe flutter. In this Chapter, the last element of the wind system, the connecting duct 

between the blower and the reservoir, will be examined from an organ building perspective 

with reference to the inclusion of some form of attenuating device. 

The primary consideration when designing the wind system, is to ensure that a sufficient 

area of duct is provided to satisfy full organ demand without any pressure drop, that may 

cause pitch changes. Any breakout noise radiating from the wind system must be kept to 

an absolute minimum. The blower is one source of noise and many blowing plants are 

sited in cellars or towers. Today, pipe organ blowers are much quieter and placed within 

the organ case inside an acoustic enclosure. Occasionally, breakout noise from the duct 

connecting the blower to the reservoir is a problem - normally solved by adding carpet 

underlay or carpet tiles to the inside of the duct. Sometimes, more “drastic” remedies are 

necessary and a plenum chamber or a splitter silencer is fitted. Some organ builders have 

incorporated a wind straightening or anti-turbulent device immediately after the blower, as 

shown in Photographs 31 & 32. 

Most acoustic attenuating devices are dimension sensitive, and if optimal performance is to 

be achieved both the frequency range and degree of attenuation need to be considered.   
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  Noise attenuators 

Noise attenuating devices are generally referred to as “silencers” or “mufflers”. A silencer 

may be “reactive”, (the acoustic energy is attenuated by “reflection”), or, “absorptive” (the 

acoustic energy is attenuated by “absorption”). Many silencers use a combination of both 

to achieve the required attenuation. Reactive silencers are most effective at low 

frequencies, and absorptive silencers at high frequencies. 

The most common silencing devices are used in automobiles and air conditioning systems. 

Harmonic analysis of the air flow in the exhaust pipe or air conditioning duct, reveals a 

pulsating flow superimposed on a constant flow of the gas or air. To be effective, the 

silencer needs to attenuate the periodic frequencies, without unduly affecting the constant 

air flow.  

12.2.1  Acoustic requirements 

The noise reducing properties of silencers are covered by Anderson [36], Barron [37], Bies 

[38], Beranek [39], Evensen [40], Harris [41] & Smith [42] , and attenuation levels are 

normally specified as a function of frequency in octave or 1/3 octave bands. Several 

parameters are used to define the performance: 

 Insertion loss IL - the difference in sound pressure level for the surroundings 

due to the inclusion of the silencer. 

 Noise reduction NR - the difference in sound pressure level between the point 

immediately up-stream and the point immediately down-stream of the silencer. 

 Transmission loss TL - the change in sound power level across the silencer if 

no energy is reflected back to the silencer from the tail pipe.  

12.2.2  General requirements 

Acoustic requirements are often compromised by other considerations. In organ building 

applications it is important that the pressure drop across the silencer is kept to a minimum. 

The pipe organ survey shows that space is limited, and the inclusion of a silencer may have 

to be incorporated into the connecting duct. Commercial silencers are generally 

manufactured from galvanised or stainless steel. In organ building the material of choice is 

wood so that steel is very rarely found in pipe organs. Finally, the cost of including a 

silencer may be a reason why they are not more commonly found.   
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12.2.3  Reactive or reflective silencers 

Reactive or reflective silencers are characterised by large variations in maxima and 

minima in the transmission loss curves, as shown in Figure 128, and are generally used 

where contamination of the unit may take place. The simplest form of reactive silencer, is 

an expansion of the duct using a chamber with dimensions greater than the inlet duct. The 

sudden expansion provides a change of acoustic impedance, caused by the change in the 

cross-section of the duct and reflects sound energy back to the source. The amount of 

attenuation is a function of the area of the inlet pipe and the area of the expansion 

chamber. A single expansion chamber is shown in Figure 127.   

 

The transmission loss, Ltl for a simple expansion chamber shown in Figure 127 is given in 

equation 7 Davis [43]. 

     Ltl  = 10 𝑙𝑜𝑔10 [1 +
1

4
(𝑚 −

1

𝑚
)

2

𝑠𝑖𝑛2 𝑘. 𝐿] dB         (7)  

 

 Where   S   =   Cross-sectional area of duct    

S1   =  Cross-sectional area of chamber 

     𝐿    =  Length of chamber 

m   =  The expansion ratio S1/S  

     𝑘    =   2.𝜋. f/c  

     c    =    The speed of sound 

The expansion ratio m is the main parameter for determining the attenuation and the 

transmission loss increases as the expansion ratio increases. Figure 128 shows the 

transmission loss for expansion ratios 4, 8 & 12.   

Figure 127 Single expansion chamber (After Davis [43]) 
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Figure 128 Transmission loss for a single expansion chamber  

 

Minimum attenuation occurs at 0, π, 2π etc and maximum attenuation at π/2, 3π/2 etc. The 

maximum attenuation occurs for the frequency at which the length of the chamber is a 

quarter of the wavelength. The attenuation drops off and is at a minimum when the 

chamber length corresponds to half a wavelength. Other maxima occur at odd numbers of 

quarter wavelengths, and minima at even numbers of quarter wavelengths.  

The transmission loss for a typical device that may be used in organ building with 100 & 

150mm inlet and outlet pipes and a chamber length of 0.6, 1.2 & 2.4m together with 

chamber diameters of 300, 400 & 500mm is shown in Figures 129 to 134. 
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 Figure 129 Inlet pipe 100mm dia Length 0.6m Chamber dia 300, 400 & 500mm 

Figure 130 Inlet pipe 100mm dia Length 1.2m Chamber dia 300, 400 & 500mm 

Figure 131 Inlet pipe 100mm dia Length 2.4m Chamber dia 300, 400 & 500mm 
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Figure 132 Inlet pipe 150mm dia length 0.6m Chamber dia 300, 400 & 500mm 

Figure 133 Inlet pipe 150mm dia length 1.2m Chamber dia 300, 400 & 500mm 

Figure 134 Inlet pipe 150mm dia length 2.4m Chamber dia 300, 400 & 500mm 
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By analyzing the frequency plots, the relationship between the various parameters 

becomes clear. Increasing the inlet and outlet pipes from 100 to 150mm, reduces the 

attenuation by approximately, 7dB. The length of the chamber determines the minimum 

attenuation frequency. A 600mm long chamber has a minimum attenuation frequency of 

140Hz. A 2400mm long chamber has minimum attenuation frequency of 35Hz. The length 

and expansion ratio are critical for low frequency attenuation. For general attenuation of 

breakout wind noise, the dimensions are less critical. 

From this single expansion chamber, it is possible to develop more complex arrangements 

with multi-chambers and corresponding transmission loss curves Davis [43].  

The transmission losses derived from Equation 7 assumes that the silencer is anechoically 

terminated. If the silencer is terminated with a length of open ended outlet pipe, this will 

influence the transmission loss at certain frequencies. In organ building applications, the 

duct is normally terminated with a control valve. When there is no demand, the reservoir is 

full, and the control valve closed, and most of the wave energy is reflected back along the 

duct to the blower.    
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12.2.4  Dissipative or absorptive silencers 

Dissipative or absorptive silencers usually have relatively wide-band noise reduction 

characteristics, as shown in Figure 136, and do not have the periodic maxima and minima 

found with reactive silencers. This type of device is much more effective at attenuating 

medium and high frequencies. Acoustic energy is converted to heat by the sound absorbing 

process taking place in the fibrous material.  

A duct lined with sound absorbing material behaves like a simple absorptive silencer. The 

amount of attenuation per unit length of run, is dependent on the sound absorption 

coefficient of the lining material and the ratio of the cross-sectional area of the duct to its 

perimeter. To achieve the maximum attenuation, it important to have the greatest possible 

surface area of absorbing material exposed. If space is restricted, then a splitter silencer 

can be used to split the airway into smaller airways, each lined with absorbing material. 

Attenuation produced by splitter silencers, tends to be greatest at medium frequencies with 

less attenuation at the higher and lower frequencies. This poor high frequency performance 

is because the high frequency sound energy tends to be beamed down the centre of the 

duct and is unaffected by the absorbing material. This occurs where the wavelength is 

smaller than the airway width, thus, reducing the airway width increases high frequency 

performance. The depth of the absorbing material is also important for low frequency 

performance. The transmission loss, Ltl for a simple lined expansion chamber, is given in 

Equation 8 Davis [43] and shown in Figure 135. 
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 Where   S   =   Cross-sectional area of duct    

S1  =   Cross-sectional area of chamber 

     L   =   The length of chamber 

m   =  The expansion ratio S1/S  

     k    =   2.𝜋. f/c  

     c    =    The speed of sound 

     𝜎   =    The attenuation per unit length of duct dB/m 
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The attenuation levels of unlined and lined chambers with a constant expansion ratio of 8 

and attenuation coefficients of 0.1, 1, 2, 4, & 8dB/m, are shown in Figures 135 & 136.  

 Figure 136 Lined chamber k.L (radians) m=8 σ=1dB/m blue 2dB/m red 4dB/m green 

8dB/m black 

 

An attenuation coefficient of 0.1dB/m gives very little attenuation - the silencer effectively 

behaves like an unlined chamber. As the attenuation coefficient increases from 1 to 8dB/m, 

the attenuation performance of the silencer increases, particularly at the points of minimum 

attenuation 0, π, 2π etc. 

  

Figure 135 Lined chamber k.L (radians) m=8    σ=0.1dB/m 
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The transmission loss for a 400 x 400 x 1200mm long lined silencer with 100mm inlet and 

outlet pipes is shown in Figure 137. This is similar to that described in section 12.5.4 but 

without the perforated metal central pipe.   

 

Figure 137 400 x 400 x 1200mm long lined silencer with 100mm inlet pipe  

 

The transmission loss for a 300mm diameter x 525mm long lined silencer with 100mm 

inlet and outlet pipes is shown in Figure 138. This is similar to the silencer described in 

Section 12.5.5 but without the perforated metal pipe. 

 

Figure 138 300mm diameter x 525mm long lined silencer with 100mm inlet pipe  
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12.2.5  The Helmholtz Resonator 

A Helmholtz Resonator is shown in Figure 139 and consists of an enclosed volume with a 

connecting pipe. The most common example is a wine or beer bottle that has a body and a 

reduced diameter for the neck  

 

The Helmholtz Resonator is useful for giving high attenuation to specific frequencies, like 

passing blade frequencies. Where blade frequencies are a problem, one solution is to fit a 

quarter-length resonator, attached to the fan at the cut-off, tuned to the passing blade 

frequency Neise [44]. Alternatively, a small length of closed pipe fitted at right angles to 

the main duct as a side-branch, will also attenuate certain discrete frequencies and 

maximum attenuation occurs for odd numbers of quarter wavelengths of the pipe.  

The resonant frequency of a Helmholtz Resonator is given in equation 9 Kinsler [45]. 

      f = c/2π. (S/Le.V)1/2                    (9)  

Where  c = speed of sound  S = area of neck Le = effective length of neck including 

end corrections V = volume of body  

The single rise test reservoir used in Section 4 is connected to the blower with a 100mm 

diameter duct 4m long. Figure 140 shows the relationship between the resonant frequency 

and duct length. 

Figure 140 Resonant frequency of a single rise reservoir and connecting duct 

Figure 139 General features of a Helmholtz resonator (After Kinsler [45])   
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12.2.6  Plenum Chamber 

The general features of a plenum chamber are shown in Figure 141. The main difference, 

compared with the lined expansion chamber, is that the inlet and outlet openings are not 

positioned in line but are usually opposite with an offset. A plenum chamber may be a 

purely reactive device and have none of the internal surfaces covered. At low frequencies, 

attenuation is produced by the expansion chamber principle. The overall performance is 

greatly improved by the addition of an absorbent lining to the internal surfaces of the 

chamber Wells [46] Cummings [47] [48] Li [49]. The performance can also be improved 

by including internal baffles which may also be covered with some form of acoustic 

absorbent material. 

 

The general expression for the transmission loss of a single plenum chamber is given in 

equation 10 Barron [37]. 

     TL= 10log10(1/άt) dB                (10) 

  Where   άt  = (So .Q cosθ/4πd2) + So /R 

     So  =  Area of inlet and outlet openings 

     Q = Directivity factor assumed to be 4 for this geometry 

     R = S.ά/(1-ά) 

     ά = (άL.SL+2. So)/S 

     S = Total surface area  

     SL = Total lined surface area  

Figure 141 General features of a plenum chamber (After Barron [37]) 
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The transmission loss for a plenum chamber described in Section 12.5.2, lined with four 

thicknesses of mineral wool, is shown in Figure 142. No data for surface absorption 

coefficients is available for octave bands lower than 63Hz.  

 

Figure 142 Plenum chamber with different fill thicknesses 

 

In organ building applications, it is not possible to terminate the plenum chamber 

anechoically - if the control valve is placed at the reservoir, most of the sound wave is 

reflected back to the chamber. For this reason, the attenuation of any reservoir top 

vibration and organ pipe flutter is examined in Section 12.5.   
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  Commercial Silencers 

A range of commercial silencers are available for general heating and ventilation 

applications. Photographs 28 & 29 show typical circular and rectangular units. A Splitter 

Silencer is shown in Photograph 30. 

 

Photograph 28 Commercial circular silencer (After Lindab) 

 

 

Photograph 29 Commercial rectangular silencer (After Lindab) 

 

  

Photograph 30 Commercial splitter silencer (After Lindab) 



162 

 

The performance of silencers is determined in accordance with ISO 7235:2003 (en) 

“Acoustics – Laboratory measurement procedure for ducted silencers – insertion loss, flow 

noise and total pressure loss”.   

The main variables that determine the acoustic performance are: 

 Inlet and outlet diameters 

 Overall body diameter, fill thickness and material 

 Length 

The attenuation curves for six commercial silencers each having 100mm diameter inlet and 

outlet pipes are shown in Figure 143 for fill thickness of 50mm &100mm. The four 

circular units, 50/600, 100/600, 50/1200 & 100/1200, are imperial units and the lengths of 

600mm & 1200mm correspond to 2 & 4 feet. Also shown in Figure 143, are performance 

curves for a metric rectangular silencer, 210mm wide and 158mm high, with 100mm 

diameter inlet and outlet pipes, 500mm and 1000mm long 

 

Figure 143 Performance details of six commercial silencers 

 

The longer units, 1000mm & 1200mm, with the greatest fill material, produce the greatest 

attenuation. It is significant that, no data is available below the 63Hz 1/3 octave band level. 

The above information was also used in the design and construction of the devices detailed 

in Section 12.5.   
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  Organ building attenuating devices  

Most of the organs surveyed, Figure 22, had the blower positioned within 1.5m of the 

reservoir. Many organs have the control valve fitted as part of the blower enclosure to 

reduce the level of breakout noise from the main connecting wind duct. Therefore, it is not 

surprising that attenuating devices are rarely used and none of the organs surveyed had 

attenuating devices.  

With no technical acoustic data available for the various devices when used in an organ 

building application, further experiments were conducted to determine the effectiveness of 

the various attenuating devices, and their effect on reducing reservoir top vibration levels 

and organ pipe flutter.  

  Methodology 

Using the apparatus and measuring equipment described in Chapter 4, measurements were 

taken for various silencer constructions inserted in the duct between the blower and the 

reservoir. The baseline condition, blower 6 with no silencer, is used to compare the 

performance of each attenuating device. Blower 1 was also used without any attenuating 

device, for comparison. 
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12.5.1  Anti-turbulent device or flow straightener   

The purpose of this device is to reduce or eliminate any turbulent air created by the blower 

and is rarely used by organ builders. Photographs 31 & 32 show a typical anti-turbulent or 

flow straightening device, fitted immediately after the blower. The device has an inlet 

section that expands into a central section which contains a series of small diameter tubes. 

It is this central section that is responsible for reducing any turbulent air. The outlet section 

is similar to the inlet section and provides a gentle reduction in the cross-sectional area and 

connects to the main wind duct. No technical data is available regarding the effectiveness 

of this device in reducing organ pipe flutter.   

 

Photograph 31 Typical anti-turbulent device 

 

 

Photograph 32 Central section tube array 
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12.5.2  Plenum chamber  

The plenum chamber is 600mm wide, 600mm high, 700mm long and constructed from 

12mm thick plywood. A 100mm diameter, plastic inlet pipe is located 125mm from the 

bottom. A 100mm diameter, plastic outlet pipe is located 125mm from the top of the 

opposite side. The inside of the chamber can be lined with mineral wool and perforated 

metal or wood to improve low frequency performance Davern [50] Lee [51].  

Photograph 33 shows a lining of 100mm mineral wool and a 3mm thick perforated 

hardboard face. 

  

Photograph 33 Plenum chamber with 100mm mineral wool and perforated hardboard 

lining 
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12.5.3  Duct silencer 

The duct silencer is 315mm wide, 530mm high, 1200mm long and constructed from 

12mm & 18mm plywood. The 12mm top is removable so that various lining 

configurations can be assessed. 100mm diameter, plastic inlet and outlet pipes are located 

in the centre of opposite sides. The duct silencer is shown in Photographs 34 & 35 with 

100mm thick mineral wool and perforated metal lining. 

 

 

 

  

Photograph 35 Duct silencer with 100mm mineral wool and perforated metal lining 

Photograph 34 Duct silencer with 100mm mineral wool and perforated metal lining 
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12.5.4  Pepper-Pot silencer 

The pepper-pot silencer shown in Photograph 36 is 400mm wide, 400mm high, 1200mm 

long and made from 6mm plywood. A 100mm diameter galvanised perforated steel pipe is 

placed centrally in the silencer and the cavity is filled with mineral wool.  

 

 

Normally, any silencing device would be placed immediately after the blower. In this 

position the silencer substantially reduces the amount of breakout noise radiated by the 

duct between the blower and the reservoir. The purpose of this device, as with the duct 

silencer, is not primarily as a silencing device, but as a flutter reducing device so low 

frequency attenuation is important. Measurements were also taken with the silencer fitted 

immediately before the reservoir. In this position, the length of duct from the blower to the 

silencer radiates any breakout noise and is not as effective as when placed next to the 

blower. Finally, measurements were taken with the silencer half way between the blower 

and the reservoir. In this position, the section of duct between the silencer and the reservoir 

benefits from the silencing effect.   

Photograph 36 1200mm long pepper-pot silencer 
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12.5.5  Small circular silencer 

The small circular silencer is 300mm diameter, 525mm long and constructed from 1.5mm 

thick galvanised mild steel. A 100mm diameter perforated metal pipe is placed centrally. 

The silencer is shown in Photographs 37 & 38. The void between the outer wrapper and 

the perforated metal pipe is relatively small, which is particularly useful when considering 

other, more expensive, fill materials such as Activated Carbon. Activated Carbon is known 

for its low frequency properties and is used by some loudspeaker manufacturers to 

improve the bass response of loudspeaker enclosures Wheeler [52] Bechwati [53] Venegas 

[54].  

The 100mm cavity is filled with mineral wool and then with activated carbon contained in 

0.85Kg cloth bags.  

 

Photograph 37 Small 300mm x 525mm long circular silencer 

 

  

Photograph 38 Activated carbon filling 
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  Results 

For clarity the frequency spectra are shown in 1/3 octave bands.  

12.6.1  Plenum chamber results 

The reservoir top vibration level results are shown in Figures 144 & 145 for direct no 

silencer (blue), plenum chamber only (red), 40mm mineral wool and perforated hardboard 

(green), 100mm mineral wool and perforated hardboard (yellow).  

  

 

 

Figure 145 Plenum chamber results 0 to 200Hz 
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12.6.2  Duct silencer results 

The reservoir top vibration levels are shown in Figures 146 & 147 for direct no silencer 

(blue), duct silencer only (red), 50mm mineral wool (purple), 50mm mineral wool and 

perforated hardboard (green) 100mm mineral wool and perforated hardboard (yellow). 

100mm mineral wool and perforated metal (grey).   

  

 

 

Figure 147 Duct silencer results 0 to 200Hz. 
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12.6.3  Pepper-Pot silencer results 

The reservoir top vibration levels are shown in Figures 148 & 149 for direct no silencer 

(blue), silencer at the blower (purple), silencer in the middle (green) and at the reservoir 

(red).  

 
 

Figure 148 Pepper-pot silencer results 0 to 1kHz. 

 

 

Figure 149 Pepper-pot silencer results 0 to 200Hz. 
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The percentage amplitude modulation using blower 6, without the silencer, is shown in 

Figure 150. The percentage amplitude modulation with the silencer in the mid position, is 

shown in Figure 151. Figure 152 shows the percentage amplitude modulation for blower 1 

without the silencer.  

 

Figure 150 Percentage amplitude modulation blower 6 without silencer  
 

 

Figure 151 Percentage amplitude modulation blower 6 with silencer in mid position 

 

Figure 152 Percentage modulation blower 1 without silencer  
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12.6.4  Small circular silencer results 

The reservoir top vibration levels are shown in Figures 153 & 154 for direct no silencer 

(blue), silencer with 100mm mineral wool filling (red), silencer with 100mm Activated 

Carbon filling. (green).  

 

Figure 153 Silencer results for mineral wool and Activated Carbon 0 to 1kHz 

 

 

Figure 154 Silencer results for mineral wool and Activated Carbon 0 to 200Hz 
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  Discussion 

12.7.1  General 

The inclusion of an attenuating device in the wind system is very rare, and is normally 

included to address excessive breakout noise from the main duct. Commercially available 

splitter silencers, positioned next to the blower, have been used for the control of breakout 

noise in the connecting duct between the blower and reservoir. Most manufacturers 

specifications stop at the 63Hz 1/3 octave band level, so no data is available in the primary 

organ pipe flutter region of 10Hz to 20Hz. To my knowledge, no silencing device has been 

fitted to overcome organ pipe flutter. 

The theoretical performance curves for reactive and dissipative silencers, give an insight 

into how these devices perform in traditional air conditioning applications, where the 

assumption that the outlet is terminated anechoically may be true. In organ building 

applications the inclusion of a control valve in the duct means that the sound is reflected 

back to the blower. This condition necessitated the experiments described in Section 12.5 

to determine the effectiveness of these devices in reducing reservoir top vibration levels 

and organ pipe flutter.  

12.7.2 Helmholtz resonator 

Figure 51 shows side-bands at approximately 3Hz on each side of the fundamental 

frequency of the test pipe. Figure 140 shows that this frequency is the Helmoltz frequency 

of the test reservoir and the 4m long 100mm diameter connecting duct. This is less of a 

problem for weighted systems, where the mechanical mass dominates.  

12.7.3  Plenum chamber 

Figures 144 & 145 show reservoir top vibration levels for the plenum chamber. The device 

acts as a silencer and reduces breakout noise from the connecting duct but has only limited 

effect in the principal area of organ pipe flutter of 10Hz. Adding various lining materials 

has some additional effect in the 20Hz 1/3 octave band, but only limited effect reducing 

reservoir top vibrations in the 10Hz region, reducing the reservoir top vibration level by 

approximately 4dB.   
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12.7.4  Duct silencer 

Figures 146 & 147 show reservoir top vibration levels for the duct silencer. The device 

gives good attenuation of duct breakout noise but has little effect on the principal area of 

organ pipe flutter of 10Hz. Adding various lining materials reduces the levels of duct 

breakout noise, but makes no improvements to the reservoir top vibration levels in the 

10Hz region. 

12.7.5  Pepper-pot silencer 

Figures 148 & 149 show reservoir top vibration levels for the pepper-pot silencer. The 

device gives good attenuation of duct breakout noise and has significant effect in the 

principal area of organ pipe flutter of 10Hz. Frequency spectra are shown for three 

positions – blower, middle and reservoir. Results show that the attenuation of reservoir top 

vibration levels is position sensitive. The lowest levels of reservoir top vibration occur 

with the silencer located in the mid position. In this position, the device drastically reduces 

the reservoir top vibration level by approximately 15dB in the 10Hz 1/3 octave band and 

25dB in the 40Hz 1/3 octave band. With the silencer placed next to the reservoir, similar 

results are obtained to those obtained with the silencer in a central position, but the 

attenuation in the 40Hz 1/3 octave band level is only 10dB. The poorest results occur with 

the silencer placed next to the blower. In this position, the reduction in the 10Hz 1/3 octave 

band level is approximately 7.5dB, half the attenuation of the other two positions, with 

further reduction in performance in the 12.5Hz and 40Hz 1/3 octave bands. 

The results are significant in showing that the effectiveness of the device is position 

sensitive. This indicates that, in this particular application, the connecting duct may be 

behaving like a transmission line and termination is critical in achieving the best 

performance Harris [41] Morse [55]. Further research is needed to verify this. 

The reduction of 15dB shown in Figures 148 & 149 in the 10Hz 1/3 octave band, is also 

reflected in Figures 150 & 151 which show the percentage amplitude modulation of the 

sounding test pipe with no silencer and then with the silencer in the mid position. These 

results clearly show the benefit of including a pepper-pot silencer to dampen reservoir top 

vibration levels and reduce any amplitude modulation of the organ pipe. For comparison, 

Figure 152 shows the level of percentage amplitude modulation for blower 1 that produced 

one of the lowest levels of amplitude modulation.  
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12.7.6  Small circular silencer 

The small circular silencer results are shown in Figures 153 & 154. The main purpose of 

these measurements was to determine what effect the fill material has on attenuating 

reservoir top vibration levels. The use of Activated Carbon as a fill material produced 

disappointing results with only a 2dB lower level than using mineral wool. Better results 

were expected.  

The overall performance of the device in reducing wind breakout noise is less effective 

than the other devices particularly in the 31.5 to 125Hz 1/3 octave bands. Reductions in 

reservoir top vibration levels in the 10Hz 1/3 octave band of 5 & 7.5dB were achieved 

with mineral wool and Activated Carbon fill, respectively. These results are better than 

those achieved from the plenum chamber and the duct silencer in the 10Hz 1/3 octave 

band. 

  Conclusions 

The inclusion of some form of attenuating device sited next to the blower, can 

substantially reduce break-out wind noise from the connecting wind trunk and the amount 

of attenuation is dependent on the type of device selected. Generally, these devices have 

little effect on reducing reservoir top vibration levels in the 10Hz 1/3 octave band and so 

have little, if any, effect on reducing organ pipe flutter.  

For basic duct breakout noise attenuation, the wood duct, that connects the blower to the 

reservoir could be modified to include a section of absorbent material in the duct walls. 

From a practical point of view, this may be the best organ building solution. The longer the 

duct, the better the low frequency attenuation.  

The small silencer gave reasonable results in attenuating unwanted duct breakout wind 

noise and had some effect on reducing low frequency, reservoir top vibration levels.  

The pepper-pot design, which is effectively twice the length of the small silencer, 

produced good attenuation of duct breakout noise, together with significantly less reservoir 

top vibration levels. This was particularly noticeable in the 10Hz 1/3 octave band, where 

reservoir top vibration levels are significantly reduced.  
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13  Summary, Conclusions and Further Work   

In this final Chapter the main outcomes and conclusions of the research are summarised 

and potential avenues for further research are presented. 

  Summary  

13.1.1  Pipe organ wind systems 

Pipe organ wind systems have evolved over centuries, and the introduction of the electric 

motor as a prime mover changed the way in which the air supplying the organ pipes was 

generated. The simple feeder system was replaced by a blower and control valve.   

The use of an electrically driven blower to replace the feeder system of generation, may 

seem a logical progression, but what is not obvious is that the simple mass spring resonant 

system of the reservoir is compromised by the addition of a control valve, a length of 

connecting duct and a blower.  

Many organ tuners, active in the 1950s & 1960s, preferred the 3-crank electric driven 

feeder system. It is surprising that the Austin Universal Wind Chest, described in appendix 

E, is not found in instruments made by other pipe organ builders. The large volume of air, 

which may approach 120m3, and control system, provides a good flutter free wind supply. 

13.1.2  Pipe organ survey 

The survey was conducted by 8 experienced UK organ tuners collecting over 2000 pieces 

of data in answer to 31 questions. The tuners were asked to determine four, possible 

degrees of flutter on the sounding pipes. Over 1/3 (39%) of the sounding test pipes had 

flutter. Only slightly less flutter was detected in the body of the church than at the 

soundboard. A key finding of the survey was that pipework scale is a contributing factor. 

Wide scale flute pipes having more flutter than narrow scale string pipes. 

Further information about pipework is detailed in Appendix C, including the mechanism 

for making the pipe speak. Wide jets of air are less stable than narrow jets, so it is not 

surprising that the wide scale flute pipes with wide mouths, have more organ pipe flutter 

than narrow scale string pipes.  

The limited results relating to tremulants, show that those pipe organs with a working 

tremulant had a frequency of approximately 4Hz, which is the frequency that the ear is 

most sensitive to amplitude modulation.  
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13.1.3  Reservoir resonance  

The most important feature of any pipe organ wind system, is that the air pressure in the 

reservoir must remain constant, otherwise the pitch and tuning of the pipes will vary. The 

simplest form of pipe organ hand blown wind system, consists of a reservoir containing a 

volume of air fed by a set of hand operated feeders. The air inside the reservoir acts as a 

spring and is pressurised by the weight of the reservoir top. The reservoir top and any 

additional weights provide the mass. A hand blown reservoir behaves like a simple, 

mechanical mass spring system and the comparison of theoretical and actual resonant 

frequencies of a weighted reservoir was excellent.  

The resonant frequency and vibration levels of the reservoir vary as the reservoir wind 

pressure is changed, with one wind pressure producing a maximum level. At higher and 

lower wind pressures, the level diminishes as the resonant frequency changes. This is 

confirmed by the frequency spectra of the sounding test pipe which shows the presence of 

side-bands on each side of the fundamental, reaching a maximum at the resonant 

frequency of the reservoir. The magnitude of side-bands on each side of the fundamental, 

is a good measure of the amount of amplitude modulation. Results for the reservoir top 

vibration levels correlate with the level of side-bands found on the sounding test pipe. 

Also, reservoir top vibration levels show a distinct low frequency maximum at the side-

band frequency, indicating that the modulation of the sounding pipe is reservoir driven.  

With a single rise reservoir, it is also possible to pressurise the reservoir using only 

external springs. In this situation, the resonant frequency of the reservoir does not change 

with increasing wind pressure but assumes the resonant frequency of the mass of the un-

sprung reservoir top.  

Pressurising the reservoir using weights, produces different resonant frequencies and 

frequency spectra than pressurising the reservoir using springs. Weighted wind systems, 

have a resonant frequency around 8 to 15 Hz whilst sprung wind systems have a higher 

natural resonant frequency of 15 to 20 Hz. The combined use of weights and springs is an 

effective way of tuning the reservoir to reduce reservoir vibration. 

The system can be de-tuned by changing the wind pressure (Figure 63) or by removing 

weights and adding springs (Figure 72A). Alternatively, the reservoir height can be 

changed (Figure 58). 
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13.1.4  Blower comparisons 

The pipe organ survey shows that all the organs had an electric blower with more 3000 

rpm (58%) than 1500 rpm. The 8 blowers tested, represent only a very small sample of the 

many different blowers commercially available for organ building applications. 

Construction details are slightly different for each blower. The main difference is impeller 

geometry and motor speed.  

The results for 1500 & 3000 rpm blowers, show a clear difference in reservoir top 

vibration levels for weighted and sprung systems. The weighted reservoir and 3000 rpm 

blower combination producing considerably more reservoir top vibration at 10Hz (94dB) 

than the weighted 1500 rpm sprung combination (82dB). The results also show that 

reservoir top vibration levels for 1500 rpm blowers, are typically 10dB lower than 3000 

rpm blowers at critical frequencies  

Blower performance, particularly under no flow conditions, is of great importance in 

reducing or eliminating organ pipe flutter.  Comparison of the 8 blowers, clearly shows 

that some units excite the reservoir at its resonant frequency more than others and cause 

levels of reservoir top vibration, sufficient to produce organ pipe flutter. Blower 6, with a 

very wide impeller, large cut-off, 3000 rpm motor, produces the highest reservoir top 

vibration levels and organ pipe flutter.  

There is a significant difference of almost 20dB in reservoir top vibration levels at a 

frequency of 10Hz and this variance is confirmed by the levels of side-bands and 

percentage amplitude modulation for each blower. Examination of the harmonic content of 

the sounding test organ pipe, shows that each blower produces a slightly different 

frequency spectrum. The pipe organ builder should be aware that the installation of a new 

blower to replace a time expired unit, may give rise to small changes in the harmonic 

content of the pipework. In addition, any new blower may give rise to higher levels of 

reservoir top vibration sufficient in magnitude to cause unwanted, organ pipe flutter. 
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13.1.5  Blower blade frequencies and inter-blades 

Blade frequencies are produced by all centrifugal fans. Some of the blowers tested 

produced large blade frequency levels and the variation can be attributed to the cut-off 

distance, which is small for blowers with high levels of blade frequency and large for 

blowers with low levels of blade frequency. This was particularly noticeable when a 

wooden wedge was used to reduce the cut-off distance of blower 6. Adding the wedge 

increased the blade frequency level by 10dB to an audible level. The siren is an example of 

a very small cut-off distance that produces a very strong blade frequency. 

Despite the very low levels of blade frequencies produced by blower 6, this blower 

produces the greatest amount of reservoir top vibration and organ pipe flutter. In 

comparison, blower 4 produces a very noticeable blade frequency at 500Hz yet one of the 

least amounts of reservoir top vibration and organ pipe flutter.  

Five of the blowers have small inter-blades fitted between the main blades. The inclusion 

of these small inter-blades in an impeller design, is normally to increase output 

performance. The addition of inter-blades was shown to be slightly counter-productive and 

of no benefit in reducing organ pipe flutter. 

Fans are normally made to standard geometrically similar designs and the Fan Laws are 

used to calculate volume flow and pressure for different size fans. The results do not 

determine precisely how improvements to reduce reservoir top vibration can be made to 

blower design. Improved blower design requires specialist knowledge of Computational 

Fluid Dynamics (CFD) and is beyond the scope of this research.  
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13.1.6  Control valves 

An important and surprising result concerns the effect that the control valve has on 

reservoir top vibration and organ pipe flutter. The type and construction of the control 

valve is significant, with the simple guillotine valve producing the least reservoir top 

vibration. Using two gate valves to gradually isolate the blower, effectively simulating the 

feeder system of air generation, the level of reservoir top vibration and the presence of 

organ pipe flutter is reduced and ultimately, removed. This is clearly shown on the side-

band levels on each side of the fundamental frequency spectrum of the sounding organ 

pipe, and the amplitude of the reservoir top vibrations. The results show conclusively, that 

organ pipe flutter is generated by reservoir top vibration.  

13.1.7  Attenuating devices 

Noise radiating from the blower is normally contained by a silencing enclosure. The main 

source of wind noise in the organ is breakout noise radiating from the duct connecting the 

blower and the reservoir. To limit this, the control valve is normally fitted at the outlet of 

the blower silencing cabinet. In this position, the wind pressure in the wind duct is at 

reservoir pressure. Occasionally, a simple plenum chamber or, more rarely, a commercial 

splitter silencer is fitted immediately after the blower, to reduce any excessive breakout 

noise.  

The purpose of the experiments with the various attenuation devices was not to determine 

their noise attenuating properties, but to determine their effect on reducing reservoir top 

vibration levels and organ pipe flutter. The frequencies of interest are below 50Hz, 

typically 10 to 20Hz, and very little data is available for commercial silencing devices at 

these frequencies. More importantly, no data is available relating to how they perform in 

an organ building application at reducing reservoir top vibration levels and organ pipe 

flutter. Results show that the amount of attenuation is dependent on the type of device 

selected. All the devices tested had good noise reduction properties above 25Hz.  

For basic duct breakout noise attenuation, the wood duct connecting the blower and the 

reservoir could include a section of absorbent material in the duct walls. The thicker the 

absorbent material: the greater the attenuation. The longer the duct: the better the low 

frequency attenuation.  
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The small silencer gives reasonable results in attenuating unwanted duct breakout wind 

noise and has some effect on reducing any low frequency 10Hz reservoir top vibration 

levels.  

The pepper-pot silencer, which is effectively twice the length of the small silencer, 

produces good attenuation of duct breakout noise, and significantly less reservoir top 

vibration levels. This was particularly noticeable in the 10Hz region with reservoir top 

vibration levels reduced by 15dB. Results also show that the device is position sensitive, 

with the best results obtained in the “mid” position.  

The results of the various attenuating devices must be compared with those obtained for 

the three different control valves, the two external control valves showing reductions in 

reservoir top vibration levels of 20dB compared with the internal valve. This is not 

surprising, for the external control valves in the “no flow” condition, effectively isolate the 

reservoir from the blower and approaches the feeder generated wind system. 

13.1.8  The tremulant 

The pipe organ survey reported details of only 31 organs with working tremulants and 

80% had traditional wind dumper type units. Most of the tremulants had a frequency of 

approximately 4Hz, which is the frequency that people are most sensitive to amplitude 

modulation.  

The operation of the tremulant can sometimes be problematic. Many of the wind dumping 

tremulants were designed for use with reservoirs supplied by a feeder system where the 

only connection to the reservoir is the connecting duct to the soundboard. With blower 

generated wind systems the control valve, connecting trunk between the blower and the 

reservoir, and the blower must also be considered. Preliminary experiments with a wind 

dumping tremulant, outlined in appendix D, show that weighted reservoirs have different 

response characteristics to sprung reservoirs.  
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  Conclusions 

The pipe organ survey clearly shows the prevalence of organ pipe flutter and the 

association with organ pipe scale.  

This research shows that a pipe organ wind system cannot be regarded as a simple constant 

wind source but must be considered as also having frequency components that can cause 

unwanted reservoir top vibration and organ pipe flutter. 

Weighted and sprung reservoir systems have different reservoir resonant characteristics 

and the mechanical mass will always have a dominant effect for weighted reservoirs. 

Acoustic attenuating devices will be more effective in reducing reservoir vibration for 

sprung reservoirs, where the mechanical mass is less dominant. Also of significance is the 

type of control valve and its effects on reservoir vibration.    

Blowers are normally selected for static wind pressure and discharge characteristics. Under 

“no flow” conditions, each pipe organ blower produces different levels of reservoir 

vibration, which may be of sufficient magnitude to cause organ pipe flutter. 

The implication of this research is that the various wind system elements interact and 

influence the resonant frequency and vibration levels of the reservoir. With this 

knowledge, the organ builder is more able to understand the significance of each part of 

the wind system. Using this understanding the organ builder is better equipped to design 

and construct a wind system that will minimise reservoir resonance and produce flutter 

free sounding pipework.  
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  Further Work 

13.3.1 The dynamic behaviour of pipe organ wind systems 

Many subjective pronouncements have been made by organ builders regarding the “best” 

type of wind system.  Is it a weighted or sprung, double or single rise reservoir 

combination that provides the “best” wind system?  

This question can only be answered by conducting further research to make direct 

comparisons between the various types of wind systems. Using a series of listening tests, 

based on a short piece of music played on a single set of pipes, it may be possible to 

determine the dynamic characteristics of weighted and sprung wind systems to see any 

discernible differences. The difference between single and double rise reservoirs and the 

effects of internal and external control valves also need to be considered. 

13.3.2  Mechanical and acoustic model 

The hand-blown reservoir behaves like a simple mechanical mass spring system. The mass 

of the test reservoir top is approximately 75kg.  

Adding a blower transforms this simple mechanical system into one that has both, 

mechanical and acoustic, properties. The acoustic mass of the air inside the test reservoir is 

approximately 0.7kg, which is a factor of 100 less than the mechanical mass. This means 

that for a weighted reservoir wind system, the mechanical mass will always have a 

dominant effect. For a sprung reservoir wind system, the mass of the reservoir top is 

approximately 15 to 20kg, and possibly even smaller for chest regulated wind systems, in 

this application the mechanical system is less dominant. 

In addition, the inclusion of an electrically driven blower necessitates the addition of a 

control valve which is controlled by a connection to the reservoir top. The feedback of this 

secondary vibration system is very difficult to determine, with each type of control valve 

having a different response. 

Further research is needed to analysis the wind system from both a mechanical and 

acoustic perspective and a model that satisfies both conditions developed. 
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13.3.3  Blower improvements 

Most fans are designed using the Fan Laws and the principal of geometrically similar 

modelling. 

Further research using CFD computer software could develop new impeller and case 

designs with improved “no flow” characteristics. The improved designs could then be 

tested to verify that reservoir top vibration levels are improved.   

13.3.4  Improved silencer and attenuator designs   

Commercial silencers are designed for the suppression and control of air generated noise. 

Further research, using computer modelling techniques, could investigate how existing 

designs could be improved to reduce low frequency reservoir top vibration levels. The 

research also needs to consider the use of alternative fill materials, such as meta-materials. 

From this work, a new design that best suits organ building applications and the reduction 

of reservoir top vibration and organ pipe flutter may evolve.  

13.3.5  System resonance using an impact hammer  

The resonance and modal response of a vibrating system can be determined using an 

impact hammer, several accelerometers and computer analysis software. 

Further work could use this technique to determine the resonant response of the reservoir 

and wind system for weighted and sprung wind systems including various control valves. 

Also, to be considered is the effect that various attenuating devices have on improving the 

dynamics and damping properties of the wind system.    
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13.3.6  Tremulants and system resonances 

The pipe organ survey shows that only 31 of the 83 organs surveyed had working 

tremulants. For the tremulant to work effectively it must be able to excite the natural 

resonant frequency of the reservoir and other parts of the wind system. For a feeder system 

this involves only the reservoir, connecting duct to the soundboard and the soundboard bar. 

For the blower generated wind system, the dynamic response of the control valve, the 

connecting duct to the blower and the blower inlet flap must also be considered.  

Further research is needed to investigate the effectiveness of various types of tremulant 

and their effect on weighted and sprung wind systems including Schwimmers and modern 

wind chest regulation.  

13.3.7  Control valves 

This research shows a significant difference between internal and external control valves. 

Further research is needed to understand more fully the relationship between the control 

valve and the dynamic behaviour of the reservoir top. From this research a new type of 

control valve may evolve that suppresses reservoir top vibrations to a level obtained by 

hand blowing. The “butterfly valve” used by Austin on their universal wind chest may be a 

good starting point. 
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14   Appendix A Fan Design 

  Early Fan Designs 

Mine ventilation machines are described in De Re Metallica [56], but one of the earliest 

publications detailing the mathematical relationships between the various elements of a 

centrifugal fan was published in 1905 Kinealy [57]. These early fans replaced the 

traditional use of maintaining a fire at the bottom of the mine shaft to produce an updraft. 

This type of fan very rarely had a casing unless it was necessary to protect the wheel from 

inclement weather.  

 

Figure 155 A typical early ventilation fan (After Kinealy [57]) 

 

 

Figure 155 shows a typical arrangement. C is connected to the top of the mine shaft and 

rotating the wheel A, creates a flow of air through the blades B, which ventilates the 

workings. The wheel had to be a close fit to the wall and it was not uncommon to be 25 

feet or more in diameter. 

Figure 156 shows the next stage in the development of the fan, attributed to a Frenchman 

named Guibal. The wheel is now enclosed between two solid sides. Air is drawn in the 

inlet A by the rotating blades B and passes through the outlet D. A blind E moves in the 

slot F, allowing regulation of the air though the fan. Again, it is very important that the 

sides of the housing fit very close to the wheel so that the air is forced through the outlet 

H. It was found that for every fan there was a particular outlet opening H which gave the 

greatest efficiency.  
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 Figure 156 Section through Guibal fan (After Kinealy [57]) 

 

The Guibal fan was improved by mounting the wheel off the centre of the casing creating a 

scroll with the wheel closer at one point, gradually increasing the distance. Figure 157 

shows a fan of this design. The object of the spiral casing is to enable the air to be 

discharged from all points on the periphery of the wheel allowing the use of smaller fans 

and increased speeds. This type of fan is still the basis of today’s centrifugal fan.  

 

Figure 157 Section through scroll fan (After Kinealy [57]) 
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  Modern fan design 

Since Kinealy’s publication in 1905 other textbooks relating to the design of fans have 

been written. In England the subject was very comprehensively covered in 1952 by Woods 

of Colchester Ltd [58]. After many editions in German, the standard work on Fan Design 

by Eck [59] was translated in 1972 into English. Other texts by Osborne [60], Jorgensen 

[61], Mcpherson [62], Bleier[63] and Cory[64] have continued to expand the knowledge 

base. The greatest influence on fan performance has no doubt been the development of the 

electric motor as a prime mover. The early fans running at slow speeds had to be big. More 

power from smaller motors together with the introduction of motor speeds of 3000 rpm has 

made for smaller and quieter fan units. 
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  Basic fan types. 

The maximum flow rate and pressure usually dictates the type of fan to be used. Organ 

building fans, which are usually called “blowers”, need to supply a range of flow rates and 

wind pressures from 50 to 200mm water gauge. Higher pressures are sometimes needed to 

supply high pressure reeds. 

There are two basic fan classifications: 

 Axial flow  

 Centrifugal flow 

In an axial flow fan, the movement of air is in an axial direction. Axial flow fans are 

mainly for low wind pressure applications and not suitable for organ blowing applications. 

In a centrifugal fan the air is moved from the centre of the fan to the outside of the 

impeller, the centrifugal force causing the moving air to compress. Centrifugal fans are 

capable of producing higher wind pressures which make them suitable for organ blowing 

applications. 

There are six basic centrifugal fan designs with different blade geometries. Each type of 

blade has advantages and disadvantages and is generally suited to a particular application. 

Figure 158 shows the various blade geometries together with the maximum efficiency that 

is attainable by each blade type. It is not surprising that aerofoil blades produce the lowest 

noise levels and have the highest efficiency of all centrifugal fans compared to the more 

primitive and brutal simple radial blade fan. 

 

                       Aerofoil blades (AF).                                Radial tip blades (RT). 

              Backward curved blades (BC).                  Forward curved blades (FC). 

             Backward inclined blades (BI).                          Radial blades (RB).  

Figure 158 Fan impeller types (After Bleier [63])   
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  Fan performance Curves 

The corresponding performance curves for each type of fan are shown in Figure 159, 160 

&161 

Figure 159 Performance curves for forward curved blades 

Figure 160 Performance curves for radial curved blades 

Figure 161 Performance curves for backward curved blades (After Bleier [63])  
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  Fan outlet velocity diagrams 

 

Figure 162 Fan outlet velocity diagrams (After Bleier [63]) 

 

 

Figure 162 shows outlet velocity diagrams for the three basic fan types. The forward 

curved blade fan produces the highest absolute velocity V2. Generally, this type of fan for 

a given capacity runs at a lower speed and occupies less space than the other two types. 

The trade-off is higher turbulence and noise. Care must be taken to ensure that the electric 

motor is of a sufficient size to cope with the rise in horse power with the rise in output 

flow rate. The backward curved blade fan has the smallest absolute velocity V2 but for a 

given airflow and pressure the motor speed needs to be twice that of a comparable forward 

curved bladed fan. The advantage is that the aerodynamic noise is lower in frequency and 

intensity than that of the forward curved blade fan, because the relative air velocity 

between the blade and the fan housing is reduced. The noise characteristics of the radial 

blade fan lie between the other two types of fan. It is very important that fans used for 

organ blowing applications are as quiet as possible and are best served by the backward 

curved blade design. 
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  Fan losses  

The theoretical performance of a fan does not take account of any losses that occur in the 

real world. The losses are such that the theoretical pressure volume curves are not 

achieved. This under performance is due mainly to friction and shock losses. Figure 163 

shows the actual pressure and flow rate relationship for a backward bladed fan. The 

maximum flow rate occurs at zero pressure when the outlet is open circuit with no external 

resistance. Friction losses occur on the faces of each blade and this is a good reason for 

using aerofoil blades to limit such effects. Shock and separation losses occur at the inlet 

where the air makes a 90 degree change in direction. Other losses associated with the 

turbulent flow at the inlet can be partially overcome by using inlet guide vanes. 

 

Figure 163 Pressure and flow rate for backward bladed fan (After McPherson [62]) 
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  Duty cycle 

Duty cycle is an important consideration when selecting a fan. Figure 164 shows the power 

consumed by the three types of fan for varying airflow. The forward blade is normally 

only used for a fixed duty cycle so that the motor is not overloaded as the airflow 

increases. The radial blade has a less pronounced increase in power for increasing airflow. 

The backward blade consumes almost constant power for wide variations in airflow. This 

safeguard against motor overload for varying airflows is an important characteristic of the 

backward blade fan. This is necessary for pipe organ blowing applications, where for long 

periods of time the wind control valve is closed, and when the demand for full organ is 

needed the motor is not overloaded. It cannot be over emphasised, that for large 

installations, the non-overloading power characteristics and the steepness of the pressure 

curve at high flow rates, are a major factor for using backward bladed fans. 

 

Figure 164 Power consumption for forward, radial and backward bladed fans 

(After McPherson [62]) 
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  Aerofoil impeller fans 

Figure 165 shows a typical aerofoil impeller with inlet and outlet velocity diagrams. The 

associated performance curves are shown in Figure 166 for a 27 inch diameter impeller 

with a direct drive from a 5hp 1160 rpm motor. Significant is that the minimum noise level 

of 76dB occurs at a point of maximum mechanical efficiency of 88%. Aerofoil fans are 

expensive to manufacture and often fans with backward curved blades or backward 

inclined blades are used as a cost-effective alternative with associated loss in efficiency 

and increased noise levels. 

 

 

                 

 

 

 

 

Figure 165 Typical airfoil inlet and outlet velocity diagrams (After Bleier [63]) 

 

 

 

 

 

 

 

 

 

 

 

Figure 166 Aerofoil performance curve (After Bleier [63])  
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  The Fan Laws 

Pump and fan manufacturers use dimensional analysis to design a range of pumps and fans 

which are geometrically similar. 

It is not always possible to find a pump or fan that exactly satisfies the requirements of a 

particular application. The volume or pressure output of the fan may be just too small. In 

this situation knowing the relationship between the output volume, pressure and speed of 

the fan, it is possible to adjust the speed to achieve the extra performance. The relationship 

between volume, pressure and speed is shown below. 

Air volume varies directly with speed. 

𝑐𝑓𝑚2

𝑐𝑓𝑚1
 = 

𝑟𝑝𝑚2

𝑟𝑝𝑚1
 

 

Pressure varies as the square of the speed 

 

𝑠𝑝2

𝑠𝑝1
= (

𝑟𝑝𝑚2

𝑟𝑝𝑚1
)

2

 

In addition to the volume and pressure relationship it is important that the power 

requirement of the modified unit does not exceed the capacity of the motor. 

Brake horse power varies as the cube of the speed 

𝑏ℎ𝑝2

𝑏ℎ𝑝1
= ( 

𝑟𝑝𝑚2

𝑟𝑝𝑚1
)

3

 

Example 

A blower has a 1hp motor running at 3000 rpm and a maximum pressure of 130mm WG 

for a volume of 22m3. The organ builder wishes to increase the pressure to 140mm WG. 

140

130
= (

𝑟𝑝𝑚2

3000
)

2

 

The new speed is 3113 rpm or an increase from 50Hz to 51.9Hz and the power 

requirement is increased to 1.12hp. 
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15  Appendix B Pipe organ survey 

The pipe organ survey was subject to the approval of the University of Salford Ethics 

Panel. The paperwork was submitted on 14.10.2016 and conditional approval was given on 

13.12.2016. The conditions were implemented, and the pipe organ survey packs sent to 23 

selected pipe organ builders on 17.03.2017 by first class post together with a stamp 

address envelope to return the completed survey forms.    

The pack consisted of: 

An invitation letter.       AJT4 V3 17.03.17 

An information sheet.     AJT5 V2 13.12.16 

A consent form.       AJT2 V1 29.09.16 

A pipe organ survey questionnaire. AJT6 V4 17.03.17 

The survey was returned by 8 organ builders 
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  Pipe organ survey invitation letter 

 

School of Computing, Science and Engineering 

 

The Effects of Centrifugal Blowers and Reservoir Resonance on Organ Pipe Flutter 

 

Pipe Organ Survey Invitation  

 

Dear  

You are probably aware of my research into an area of organ building that has been talked 

about for many years. This is an opportunity for you to participate in assisting in 

understanding more fully the effect of organ pipe flutter by taking part in a pipe organ 

survey of approximately 100 instruments of varying sizes and locations. 

If you decide to support the research you will be asked to provide details of 5 or 6 two 

manual and pedal organs in your care of varying size and location. I have tried to keep the 

attached questionnaire simple yet contain sufficient information to be useful in determine 

the extent of organ pipe flutter. 

No special arrangements need to be made. I anticipate that the questionnaire will be 

completed as part of a planned tuning visit. Space has been left for any comments which 

should be completed to highlight any specific irregularities. 

Finally, I would be grateful if you would return the completed survey forms together with 

the informed consent declaration in the self-addressed envelope as soon as you have 

completed the survey. 

Yours sincerely 

 

Alan Taylor 

 

AJT4 V3 17.03.17  
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  Information sheet 

 

School of Computing, Science and Engineering 

 

The Effects of Centrifugal Blowers and Reservoir Resonance on Organ Pipe Flutter 

Pipe Organ Survey Information Sheet 

 

What is this survey about? 

The survey is to investigate the occurrence of organ pipe flutter in 100 pipe organ 

installations. 

You will be asked to fill in a questionnaire providing information on the presence of organ 

pipe flutter on selected organ pipes. Further information will be recorded relating to the 

type of wind system, blower type and general information relevant to each specific 

instrument. 

What will happen to my data? 

Your data will be stored electronically and anonymously without any identifying 

information. The data will be archived for up to three years from the submission of my 

thesis and held on password protected media.  If you withdraw from the study, all your 

data will be destroyed. 

Can I stop at any time? 

Yes. You are under no obligation to complete the study. You are free to stop at any time 

for any reason and you need give no explanation. 

What if I have any questions? 

You are free to ask questions before, during or after the session. If you need to contact me 

afterwards regarding the session, I can be contacted at a.taylor22@edu.salford.ac.uk 

 

AJT5 V2 13.12.16  

mailto:a.taylor22@edu.salford.ac.uk
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  Consent form 
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  Pipe Organ Survey Questionnaire  
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  Ethical Approval 
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16  Appendix C Pipework 

  Pipework materials. 

Organ pipes are made from a variety of materials. 

16.1.1  Pipe metal.  

Pipe metal is an alloy of lead and tin and is used for most metal organ pipes. The minimum 

amount of tin is 12% which makes for pipes that are easily deformed. To give additional 

strength, particularly on larger pipes, 30% or 40% of tin is added. This gives a mottled or 

spotted appearance and is referred to as spotted metal. For more prestige organs, the case 

pipes may be made from 99% tin which gives a bright silver appearance. Pipe metal is the 

material of choice because it is easily worked and jointed. Any offcuts are saved and added 

to the melting pot for reuse. Pipe metal is cast into sheets 600 to 900mm wide and 3m long 

on a casting bed. The rough cast sheets can be used without any further operations or the 

sheets can be planed to thickness by hand or machine. In some instances, the sheets are 

hammered to work harden the material. Terry Shires[65] recalls a project to restore some 

organ pipes originally made in 1653 by a Germany Organ Builder. It was important that 

any new material was compatible with the original so a small sample was sent for analysis. 

The results surprised the client. The material had the same analysis as lead flashing and 

included many impurities that gave the pipes their strength.  

16.1.2  Zinc. 

Zinc is used as a replacement for pipe metal for larger pipes where strength is of primary 

importance. Zinc is generally too hard to use for the mouth area of the pipe, so this area is 

made from pipe metal. Zinc is normally left with its natural dull finish. Alternatively, if 

zinc is used for case pipes the surface is polished and lacquered to give a bright finish. 

This is a poor man’s substitute for pure tin case pipes. Often zinc case pipes are painted 

and, in some applications stencilled. 

16.1.3  Copper. 

Copper, particularly flamed copper, is used to make case pipes. This is used mainly for 

artistic and decorative reasons to give interest to what may be a rather uninteresting case. 

Sometimes copper or brass is used for reed resonators, particularly the resonators of en-

charmade reeds, where appearance is of prime importance. 
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16.1.4  Wood. 

Many species of wood are used to make organ pipes. Wood is used for large pedal organ 

pipes where strength and self-supporting properties are important. The bottom C of a large 

32ft pedal open wood is approximately 10m long and weighs of over 1 tonne. The pipe is 

made from 75mm thick timber with a plan size of 700 x 750mm. Organ builders have their 

own preference and use a selection of soft and hardwoods for different stops. Softwoods 

include various species of pine. Hardwoods include oak and mahogany. Small wood pipes 

are either left natural or polished. 

16.1.5  Paper 

Mark Wicks[66] describes in detail how to make organ pipes from paper. His book was 

intended for amateur organ builders who wished to construct a pipe organ with a limited 

budget. 
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  Classes of pipes 

There are two main types of pipes. 

Flues 

Reeds 

16.2.1  Flue Pipes 

Most organ pipes are classified as flue pipes and are relatively easy to make from pipe 

metal or wood. Figure 167 shows the main parts of a typical metal and wood pipe.  

Figure 167 The main parts of a flue pipe (After Barnes [1]) 
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Flue pipes can be open or closed: 

Open - half wavelength body 

Closed (stopped) - quarter wavelength body 

Using λ=c/f  

where  λ = wavelength.  c= speed of sound. f = frequency. 

An 8ft open pipe has a fundamental frequency of 65Hz. 

Wavelength of 343/65 = 5.3m or 17.39ft. 

The speaking length is approximately 8.7ft (8ft) neglecting end correction. 

An 8ft closed pipe with a fundamental frequency of 65Hz has a speaking length of 

approximately 4ft. 

Table 18 shows the fundamental frequency of the bottom note of an 8ft stop (65 Hz) and 

the top note (note 61 2080Hz). The highest fundamental frequency of the top note of a 2ft 

open stop is 8320Hz and has a speaking length of approximately 10mm. 

Note number          ft   frequency Hz 

1 8 65 

13 1 4 130 

25 13 1 2 260 

37 25 13 1 520 

49 37 25 1
2⁄ 1040 

61 49 37 1
4⁄ 2080 

61 49 1
8⁄ 4160 

61 1
16⁄ 8320 

Harmonically, open pipes support all harmonics, whilst closed pipes only support odd 

harmonics. Going down in frequency the lowest note of a 32ft open wood is approximately 

16Hz and is more of a rumble than a distinctive fundamental sound.  

Table 18 Pipework frequencies 



208 

16.2.2  Tuning 

Tuning of organ pipes is necessary at periodic intervals. The purpose of tuning is to adjust 

the body length so that the pipe sounds the correct frequency. Small pipes have very little 

leeway and take more skill to tune than larger pipes which have more latitude. There are 

two main methods of tuning organ pipes, cone tuning and tuning slides. Case or front pipes 

use a tuning flap on the rear of the pipe to adjust the length. Stopped or closed pipes use 

adjustable stoppers to adjust the length of the pipe. The various methods of tuning are 

shown in Figure 168 

Figure 168 Methods for tuning organ pipes (After Audsley [3]) 

16.2.3  Pitch 

The pitch of the organ is set by cone tuning the pitch pipe which is normally the 1ft c of 

the 4ft principal stop. The next step is to tune each note in the 1ft octave by reference to 

some scale and temperament. Modern instruments use equal temperament. Older 

instruments use a mixture of temperaments. Once the first octave has been tuned to 

satisfaction the rest of the stop is tuned in octaves until all the pipes of the stop are in tune. 

Each other rank is tuned to single notes of the 4ft principal starting at middle c and 

finishing at treble b. Once this middle octave of the stop has been tuned the rest of the stop 

is tuned in octaves until the whole stop is tuned. Many pipe organs were built with a pitch 

higher than standard A =440 Hz. The organ in Peterborough Cathedral, A =451 Hz, has 

recently been rebuilt and the pitch lowered to A=440 Hz so that the organ can play with 

instrumental players.  



209 

16.2.4  Temperament   

The pipe organ is one of the very few instruments where the sound is continuous. 

Benade[67] addresses this point and the systematic beats that arise between certain 

intervals on an instrument that produces sustained tones. This is not a problem when 

octave related notes are played because they are tuned perfect. The problem arises when 

other intervals are played. Pre-Bach temperaments allow a limited number of keys, (c, g, d, 

a, f & b flat), to be used before “wolf” notes occur. Bach had his organs tuned in a 

different way that allowed more key signatures to be used without the occurrence of 

“wolf” notes. This is achieved by flattening the fifths and sharpening the fourths. This 

produces a slight beating when an interval of a fifth or fourth is played and is further 

exaggerated if the third is added.  

Bach composed his famous 48 preludes and fugues for the well-tempered clavichord to 

demonstrate the advantages of this method of tuning Czerny [68]. They were written in 

two sets, each contains 24 pairs of preludes and fugues.  

This question of temperament and angry thirds is examined by Berg[69], Backus[70] and 

John Norman[71].  Figure 169 shows John Norman’s results for four different 

temperaments. Berg also describes how composers used ornaments and trills to mask the 

out-of-tune-ness.  The question of which temperament will best suit the room is becoming 

more relevant. Equal temperament is favoured by organ tuners who mostly tune organs in 

reverberant buildings where the treble filter caused by air absorption tends to blunt the 

aggressiveness of the upper work. The tuners of Westminster Abbey and St Paul’s 

Cathedral favour equal temperament.  Alternatively, in a more intimate and non-

reverberant building the problems with angry thirds in common keys is intolerable. In such 

a situation Young’s tuning was used for the organ in St Paul’s Cathedral crypt. 
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Figure 169 Angry Thirds (After Norman [71]) 

16.2.5  Siting  

No room has the same acoustic properties, and this is one of the reasons why it is difficult 

to find identical sounding organs. The siting of the organ is import if the pipework is to 

speak freely into the room. The question of matching organs to acoustics is considered by 

Norman [71]. West End positions with small case depths are to be preferred. The use of 

tone cabinets to house the pipes also assists projection of the sound. From this perfect 

solution any other design is a compromise. Many modern concert halls can be problematic 

when the main design criterion is to achieve the best possible conditions for orchestral 

music with a reverberation time approaching 2 seconds. The question of making an organ 

that will live up to expectations is far from an easy task. To overcome site conditions 

normal scales may need to be increased or decreased by a few pipes. Pipe organs sound 

better in cavernous cathedral spaces with large reverberation times.  
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16.2.6  Harmonic content, quality and frequency spectrum 

The acoustic spectra of organ pipes was first described in some detail by Boner[72], using 

what may be considered today as very primitive measuring equipment. Boner placed the 

organ pipes under test on a 24 ft high outdoor tower. Using acoustical instruments 

described by Went [73], and techniques developed by Hall [74] and Saunders [75] used for 

analysing violins. Boner analysed 21 open organ pipes which included diapason, string and 

chorus reed pipes. He was able to achieve repeatable measurements with a 3dB degree of 

accuracy. Four American organ builders loaned the pipes and assisted with the tests. Pipe 

details recorded pipe length, cross section, cut-up, mouth width, nicking, shape, wind 

pressure, reed tongue and shallot details.  

The subject of organ pipe analysis was further advanced by Jones [76] who reviewed work 

by Boner and Mokhtar [77]. Jones also mentions work carried out by the psychologist Carl 

Stumpt [78] who investigated how the starting and ending transients of musical tones are 

important in distinguishing various musical instruments. More specific related work was 

carried out by Trendelenburg, Franz and Thienhaus [79] who studied the initial effects in 

organ pipes. In the case of a Trumpet reed pipe it was found that the sound developed very 

quickly, typically less than 0.1 seconds. Conversely, the development of sound for a 

principal flue pipe, with a similar frequency of 61Hz, took 0.5 seconds to fully develop. 

Frequency spectra for six common organ pipes are shown in Figure 170. 
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8ft stopped metal flute 8ft stopped wood flute 

8ft gemshorn 4ft principal 

8ft string 8ft trumpet 

Figure 170 Frequency spectra for six common organ pipes 
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16.2.7  The organ pipe drive mechanism. 

Brown [80] showed how the organ pipe vortex action and frequency depended on the 

distance from the slit (flue) to the wedge (cut-up). Figure 171 shows as the wedge moves 

farther from the slit, the pitch falls gradually except at certain points where it jumps 

upward. He found that there are four "stages" in each of which the change in pitch is 

continuous. Photographs of the four stages are shown in Figure 172. The edge tone of a 

stage appears to depend on the number of vortices between the slit and the wedge. As the 

wedge moves away from the slit the distance from one vortex to the next increases and the 

pitch of the sound falls.  

Figure 171 The four stages in pitch of an edge tone (After Brown [80]) 

  Stage 1 h =0.81 cm Stage 2 h = 1.73 cm Stage 3 h =2.65 cm   Stage 4 h =3.5 cm 

Figure 172 The four stages of vortex formation at an edge, h is the distance from slit to 

edge (After Brown [80]) 
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Klug [81] conducted an experiment that brought in from the side a "disturbing wedge". 

The wedge was set at some chosen level and was then caused to move inward from the 

side until it affects the sound. Details of the apparatus are shown in Figure 173.  

 

Figure 173 The disturbing wedge (After Klug [81]) 

 

Figure 174 shows one set of results. A jump in pitch occurs when the wedge has a distance 

between those shown in c and d, and another between g and h. For the distances shown in f 

and g either of two tones may be obtained. Further studies of the curves of disturbance led 

to the remarkable result that they are symmetrical about the plane through the slit and 

wedge. 

 

Figure 174 Curves showing disturbing wedge position at which the disturbing wedge 

produced an effect on the sound for a distance of slit from wedge of 6.7,8.0,8.8 & 9.5 mm. 

(After Klug [81])  
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Figure 175 was produced by Bonavia-Hunt [82] in 1947 and is the organ builders 

understanding of the edge producing mechanism. 

 

Figure 175 Organ flue pipe vortex diagram (After Bonavia-Hunt [82]) 

 

Since these early experiments, the vortex action that occurs at the organ pipe mouth has 

occupied many researchers. It should not be forgotten that the voicer intuitively 

manipulated the various parts of the pipe mouth, not only to make the pipe speak, but more 

importantly, make it speak with the correct timbre. 
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16.2.8  Scaling. 

Scaling is the art of matching the power of the organ to the room acoustics. The scale of a 

pipe or its width is the main feature that gives the pipe its distinctive sound or timbre. A 

wide scale pipe reinforces the fundamental and low harmonics and has few if any high 

harmonics. Flute stops normally have wide scales.  

The other extreme is a narrow scale pipe which has little fundamental but is rich in high 

harmonics. String stops normally have narrow scales and fall into this category. Scales 

which are neither wide nor narrow give rise to the diapason tone which is regarded as the 

true pipe organ tone or timbre. The diapason stop is both rich in fundamental and 

harmonics, vital for supporting singing and the playing of contrapuntal music. 

Figure 176 shows the variation in the three main scales. 

Figure 176 Pipework Scales (After Audsley [3]) 

It is the primary function of the Tonal Director to determine the diameter for each pipe and 

how this progresses throughout the set of pipes. In addition, he must determine mouth 

widths, cut-up and wind pressures. The general principals of scaling are described by 

Barnes [1], Audsley [3], Norman[83], and a more theoretical treatment is provided by 

Fletcher[84]. 
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Up to the middle ages pipe organs had only two octaves of pipes. Fletcher [84] describes 

how these early organ pipes all had the same diameter irrespective of the length of the 

pipe. The diameter of the pipes was the size of a “Pidgeon’s” egg, approximately 25 to 

30mm, with the longest pipe having a length to diameter ratio of 8 to 1. This uniform scale 

was difficult to extend downwards without the bass pipes becoming too narrow and with a 

stringy tone. Extending the treble pipes caused the opposite and produced a dull fluty 

sounding tone.  

Progress was made in the thirteenth century to overcome this problem, and a new method 

of determining the scale of the pipes was introduced by making the diameter of the pipe 

proportional to its length. This new method gave a length to diameter ratio of 2 to 1 and 

produced a workable rank of pipes. Unfortunately, now the bass pipes were too wide, 

producing a dull sound, and the treble pipes too narrow giving a soft stringy sound. Work 

by Dom Bedoes and Topfer in 1833 evolved the principle of halving the diameter of the 

pipe on the 15 to 19 note. It is this principle that is universally used by pipe organ builders. 

Normally flute pipes would halve on the 15th pipe and strings on the 19th pipe. Diapason 

pipes normally halve on the 17th pipe. 

The diameter of the pipe is not the only key dimension. Also important is the width of the 

mouth and the cut-up. Normal practice is to specify the mouth width as a fraction of the 

pipe circumference. In general, the wider the mouth, the more powerful and less refined 

the tone of the pipe. The opposite exists for narrow mouth widths. Powerful diapason pipes 

would have a 2/9 mouth with a normal diapason having a 1/4 mouth. String pipes normally 

have a 1/5 mouth. The associated cutup is normally a proportion of the pipe mouth 

dimension and is set using proportional dividers. A large cutup reduces the harmonic 

content and a typical value for a diapason rank would be 1/4.  Flutes would be more 

typically 2/3 or 1, and in some stops the upper lip would be arched. The cut-up for a string 

stop would be 1/4 or 1/3. Adjustment of the cutup is very important in creating the right 

conditions in the mouth area to produce the edge tone drive mechanism. The degree of 

latitude in some pipes is very small; too much and the pipe will be scrap. Fortunately, the 

pipe can be melted down and remade.   
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16.2.9  Voicing 

The pipes are made by the pipe-maker and it is the task of the voicer to make the pipes 

speak. The voicer works intuitively adjusting the cut-up, windway, languid and toe hole to 

obtain the correct timbre for the pipe and the complete stop. It is very important that the 

passage from one note to the next should be smooth. The general principles of voicing are 

described by Barnes [1], Audsley [3], and Norman [83] . A more theoretical treatment is 

given by Steenbrugge[10] and Rioux[85]. At the heart of voicing is the maximisation of 

the vortex action that occurs at the mouth of the pipe by the jet drive mechanism.  

There are two basic methods of voicing. The Classical style uses open toe voicing with no 

nicking on the windway, producing a sound with a distinctive chiff. The Romantic style 

allows nicking of the windway to break up the air jet, and the sound has less of an initial 

transient. The voicer makes a number of nicks uniformly across the windway as part of the 

voicing of the pipe. Some pipes require few nicks, others may need to be heavily nicked.   

The cutup together with the width of the windway and size of the toe hole, are the main 

parts of the pipe that the voicer intuitively manipulates to give the organ pipe the desired 

sound. The pipes are pre-voiced in the workshop on a voicing machine, which is a small 

organ that can accommodate several ranks of pipes. Once voiced, the pipes are delivered to 

site for final regulation in the building. 

Bonavia-Hunt gives the following factors which influence the speech and tone of flue 

pipes: 

 The scale of the pipe

 The area of the mouth

 The shape of the languid

 The adjustment of the relative positions of the upper and lower lips, and the

position of the languid

 The amount and style of nicking

 The pressure and the volume of the wind supplied from the windchest

 The size of the pipe foot hole

 The material used to make the pipe and any slotting or treatment of the end of the

pipe
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From a practical point of view, it is important that the pipe should not only make the 

correct tone, but it must not be slow or fast in speaking. The adjustment of the languid and 

position of the upper lip are the two parts of the pipe that control this area of voicing. The 

idea is to make the pipe speak as slow as possible without it actually being slow. If the 

height of the languid is too low the pipe will be quick to speak. Alternatively, if too high 

the speech will be too slow. Unfortunately, most pipes have the languid made from pipe 

metal which tends to sag with time and results in making the pipes speak more quickly 

with time. Often when a pipe organ is restored or rebuilt, it is this area of the organ pipe 

that needs the greatest attention. In addition, the position of the upper lip is important if the 

pipe is to speak promptly. If the pipe is fast pushing out the upper lip will generally slow 

the speech.  
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16.2.10  Reed pipes 

Reed pipes form the other group of organ pipes and are used to add richness and “fire” to 

the sound and assist sound projection. Figure 177 shows a typical reed pipe with boot, 

block, reed and resonator. The sound is produced by a vibrating brass reed held in place by 

a wooden wedge and tuning wire. The resonator is tuned to the vibrating reed. The shape 

of the resonator, Figure 178, is the main influence on the tone and timbre of the pipe [82]. 

Wide scales are rich in the fundamental and lower harmonics like the Trumpet stop. Thin 

scaled resonators, like the orchestral oboe, produce a thin tone. The parallel resonator of 

the clarinet produces a rich and woody tone.  

Figure 177 The various parts of a reed pipe (After Norman [83]) 
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Figure 178 The many possible variations in resonator styles (After Bonavia-Hunt [82]) 
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16.2.11  Choir organ soundboard  

A small 7 stop choir organ soundboard is shown in Photograph 39. The soundboard 

contains open and stopped flue pipes made from wood and pipe metal.  Also included is a 

single rank of metal clarinet reed pipes. 

Photograph 39 Seven stop choir organ 
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  Pipe organ control system 

Unlike small orchestral wind instruments, where the keying system is compact and 

immediate, there are several possible ways of operating the pipes.  

The normal keyboard compass ranges from 54 to 61 notes. Pedal keyboards normally have 

30 or 32 notes. This means that for each key there is a single pipe that varies in pitch with 

the adjacent key. The pipework is arranged into departments or divisions associated with 

each keyboard. Each department contains several sets of 54 or 61 pipes and each set is 

called a rank or stop. The keyboards may be connected by couplers so that the whole organ 

may be played from a single keyboard.  

16.3.1  Mechanical action.  

The first pipe organs used a simple system of levers to connect the keys to the pipe valves. 

A further system of levers was also employed to operate the stop mechanism.  

16.3.2  Pneumatic action 

The use of mechanical action is suitable for small pipe organs, but for larger instruments 

some form of mechanical assistance is necessary. The first form of assistance was 

pneumatic, using air contained in small lead tubes to connect the keys and stop knobs to 

the pipe valves stop machines. The success of this form of action requires stable climatic 

conditions and can prove troublesome in damp conditions. 

16.3.3  Electric action 

The availability of reliable low voltage solenoids, power sources and multi-contact 

switches was a natural progression that made the construction of very large pipe organs 

possible. With the development of transistors and microprocessor software control systems 

it is now possible to produce a control system with no moving parts other than the action 

solenoids, greatly improving reliability. 
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17 Appendix D the tremulant. 

The Tremulant is a device designed to create a vibrato effect on the sounding organ pipe. It 

is normal to control the depth and frequency of the amplitude modulation by mechanical or 

electronic means. There are four basic methods of producing a tremulant effect. The first, 

and most popular method shown in Figure 179, is to use a device that dumps air from the 

wind system in a periodic way. A second is the use of the Dom Bedos style tremulant 

which is mounted inside the wind duct and is designed to cause perturbations to the wind. 

A third and less popular method is to mount a device that has an eccentric rotating weight 

on the top of the reservoir. The eccentric weight imparts a periodic motion to the top of the 

reservoir. For pipe organs with no reservoirs, similar to pipe organs made by Austin using 

their universal wind-chest, a fan type of tremulant must be employed. This is achieved by 

placing a set of large rotating blades over the organ pipes. The slow movement of the 

blades gives a gentle vibrato effect.  

Samuel Scheidt (1587-1654) described the stop as “a dignified stop and one of importance 

on the organ” Sumner [86]. In the accounts for the organ of King’s College Chapel, 

Cambridge, made by Thomas Dallam in 1601, an item is listed “For  brasse for the shaking 

stoppe”Audsley [87]. The popularity of the tremulant in the sixteenth century waned a 

little in the seventeen century. In 1666 Mertel commented that the device should be 

confined to sad and penitential songs and during the Sanctus Sumner [86]. At the 

Halberstadt Convocation in 1693 it was decreed that the tremulant must not be used with 

full organ “as its beating will shake up the instrument and send it out of tune”. Perhaps the 

most notable mention of the tremulant is by Dom Bedos [88] who describes its 

construction and how it could be used to cover up irregularities in reed tone.  

The early tremulants were designed to work with weighted double rise or wedged shaped 

reservoirs and wind pressures less than 50mm WG. This compares with their use in cinema 

organs where the wind pressures tend to be over 150mm WG supplied from single rise 

sprung reservoirs. Today, some organ builders still prefer to use a Dom Bedos style 

tremulant, particularly with low reservoir pressures. 
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Figure 179 Traditional wind dumping tremulant (After Audsley [3]) 

Photograph 40 Wind dumping tremulant 
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  Methodology 

Using the apparatus and measuring equipment described in Chapter 4, weighted and 

sprung combinations are examined with the tremulant shown in Photograph 40. The wind 

pressure was set at 62.5mm WG and the frequency of the tremulant set at 2Hz. The 

resonant frequency of the weighted reservoir is 13Hz and the sprung reservoir 19Hz. 

  Results 

The frequency spectra for weighted (blue) and sprung (red) are shown in Figure 180 

Frequency Hz. 

  Conclusions 

It is significant that there is a difference between weighted and sprung reservoir systems. 

Each frequency plot shows the strong multiple side-bands at 2Hz intervals on each side of 

the fundamental. 
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18  Appendix E The Austin Universal Wind Chest. 

The Austin Universal wind chest does not exhibit the resonance found with weighted or 

sprung reservoirs Barnes [1]. The Universal Wind Chest was devised in the late 1880s by 

the Austin brothers during their time at Farrand & Votey in Detroit. They had become 

concerned at the difficulties of servicing the actions of the multi-pallet chests used by 

Farrand &Votey. Access to the action was achieved by removing the bottom board or, 

after pipes had been removed, by removing the top board. The Austin brothers were 

principally engineers, who devised a system that allowed the serviceman to enter the chest 

to service any action faults. The new style of chest was a combination of pneumatic with 

interlinking trackers. A drawing of the Austin Universal wind-chest is shown in Figure 

181. 

The system used three types of chest; the walk-in, the crawl-in and the panel chest. The 

crawl-in and panel chests were devised for installations in spaces that did not allow a walk- 

in chest to be fitted. Until 1936, most of installations had a single walk in chest.  

The method of winding the walk-in chests was relatively simple. The trunk from the 

blower usually entered through the chamber floor. In the side of the chest was a 2000 x 

1200mm single rise regulator C, sprung to the open position with springs B. When the 

wind entered, the chest pressure rose and pushed against the regulator fold, which moved 

back, taking the control valve cord with it, thereby closing a trap over the trunk entry point 

A. This was a very crude, but very effective method of controlling the air supply from the 

blower. The standard wind pressure was 100mm WG with higher pressures in larger 

rooms. 

Originally, and for the most part, the whole organ was planted on a single air chest, the 

manual departments side by side and the pedal divided at each end. Entry to the chest 

interior was through an air-lock, an outer door leading to the vestibule and a second door 

giving access to the chest interior. Both doors had small holes bored at shoulder height 

with a non-return valve behind so that the pressure could be equalized in the vestibule by 

poking one’s finger in to open the valve.  
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The enormous volume of air in the chest and the relatively small flexible volume, the 

regulator fold, made the wind very steady, so steady that a conventional tremulant was not 

effective. This necessitated the use of a fan tremulant, driven first by an air motor, then by 

a dc electric motor. The tremulant was placed over the pipes and consisted of two vanes 

made from card, about 1200mm long, fitted to a spindle turned by the motor. 

One of Austin’s largest installations was at City Hall, Portland ME. Here the chest ran the 

entire width of the hall and had a volume of approximately 120m3. 

Figure 181 The Austin Universal wind-chest (After Bonavia-Hunt [82]) 
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19 Appendix F Glossary of organ terms 

Action. The mechanism that connects the keyboards to the pipes. 

Blower. The pipe organ building term for centrifugal fan. 

Choir Organ. A secondary division to the great organ. 

Compass. The number of keys on each keyboard. 

Console. The part of the pipe organ where the player sits. 

Coupler A device that allows keyboards to be joined together. 

Cut-up. The height of the mouth as a fraction of the pipe width. 

Division. The name given to a section of the pipe organ, ie Great Organ. 

Duct. Organ building term used for a connecting pipe or trunk. 

Flue. The windway of an organ pipe. 

Flute. A metal or wood organ pipe with a more fundamental tone. 

Great Organ. The principal division of an English pipe organ. 

Keyboard. The part that the player uses to play the organ. 

Manual. The name given to a keyboard played with the hands. 

Pallet. The valve below the organ pipe that controls the flow of air into the organ pipe. 

Pedalboard. The name given to a keyboard played with the feet. 

Pedal Organ. The division connected to the pedalboard and played with the feet. 

Principal. The main pipe organ tone rich in fundamental and harmonics. 

Rank. The term given to a complete set of organ pipes, ie 8ft Trumpet. 

Reed. The vibrating part of a reed organ pipe. 

Reservoir. A box with flexible sides to hold air under pressure. 

Scale. The variation in size of the diameter of an organ pipe in a predetermined ratio. 

Stop. A device for selecting the individual ranks of organ pipes. 

Swell. A division that is enclosed in a box with louvres that can be open and closed to give 

expression to the sounding pipework.  
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Trunk. Organ building term used for a connecting pipe or duct. 

Windchest. The box that stores the wind on which the organ pipes sit. 

Wind pressure. The pressure of air used to sound the pipes usually measured by the 

height of a column of water. 
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