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Abstract

In sport, order-statistics-based models such as Henery’s gamma

model and the Thurstone-Mosteller type V model are useful in esti-

mating competitor strengths from observed performance of players in

competitions between 2 or more players. They can also be applied in

many other areas, such as analysis of consumer preference data, which

would be useful to marketing management. Two new families of such

models derived from the exponentiated exponential and Pareto dis-

tributions are introduced. Use of order statistics-based models when

there are more than 2 competitors has been hampered by lack of an

efficient method of computation of outcome probabilities as a function

of competitor strengths, and a fast method of computation of outcome

probabilities is presented, that exploits the fact that the integral to be

evaluated is an iterated integral.

1



Keywords

Ranking model; Plackett-Luce model; Thurstone model; Numerical integra-

tion; exponentiated exponential distribution; Pareto distribution.

1 Introduction

Rating and ranking are ubiquitous human activities, occurring everywhere

from the daily life of the individual who must prioritize many possible under-

takings and consumer products, to organizations, who must rank opportuni-

ties and threats, and rate available resources, including ‘human resources’.

Ranking models can thus be applied in many areas, such as sport, mar-

keting, computing (ranking web pages for search engines), voting etc. (e.g.

Alvo and Yu, 2014). The focus is on sport here, but the results are generally

applicable.

In statistically-based models of sporting performance, each competitor

or team has an (unknown) rating or strength. Similarly, in marketing, con-

sumer preference data can be used to assign a rating to each brand. This

article is concerned with the situation where results of competitions are

available only as ranks, and not as ratings. Each possible ranking (ordering

of scores) of competitors then occurs with a probability that is a function

of the competitor strengths, as specified by the ranking model. By fitting

the model to data from all available contests, the competitor strengths can

be estimated, e.g. by using likelihood-based inference. Thus competitor

strengths or ratings can be estimated from whatever performance data are

available, and can then be used to predict future results, or to give an overall

ranking for the competitors.
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This article addresses the problem of calculating the probability of par-

ticular rankings in this situation, where ratings or strengths must be deduced

from the results of contests. The contribution of the new methodology intro-

duced here is twofold: some new order-statistics-based ranking models are

presented, and a faster method of computing the probability of an observed

ranking given the competitor ratings is also presented. The two aims of this

article are related: the fast method of computation paves the way for the

introduction of new ranking models, which would otherwise be unusable.

Faster computation is badly needed, as existing methods for evaluating the

integral that arises with this class of models, such as Monte-Carlo integra-

tion, are far too slow to be usable. Figure 1 shows this graphically: integra-

tion beats Monte-Carlo computations for up to about 10 competitors, and

then Monte-Carlo methods are faster, but the new method of computation

is the only one that is feasible for more than very few players.
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Figure 1: Approximate time in milliseconds on a desktop computer needed

for multivariate integration, Monte-Carlo integration, and the new integra-

tion method against number of competitors. The x-scale starts at 2.
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The relevance to management is obvious for sports managers, who can

use this type of methodology to rate players. Sport is indeed the main area

where this type of work is being done, partly because a lot of data is avail-

able, and also because the model predictions are of interest to bookmakers

and bettors (see e.g. Barnett and Clarke, 2005).

Outside sport, marketing managers could use this methodology to rate

their own and competitors’ products using consumer preference data. One

example could be combining product rankings done by various groups. Here

for example mobile ’phones might be ranked by several different consumer

groups, and the rankings might well not be complete. What rating for one’s

own and rival products could be deduced from such data? In general, as

more and more data become available to decision-makers, the methodology

described here will become increasingly relevant to management in general.

The next section introduces the useful class of order-statistics-based

ranking models, after which the literature on the topic of ranking mod-

els is cited. Next individual models in this class are discussed, the improved

method of computation is described, and some examples are given.

1.1 Order-statistics models

A useful class of models is that of order-statistics models, where one could

think of a race of runners or horses, the probability of a ranking being the

probability of a particular order of finishing times. There is a pdf fi(xi|αi)

for the ith player to finish at time xi, where αi is the corresponding strength

parameter. Equivalently, in golf the lowest score wins, in shot-putting the

longest distance wins, so the negative of the distance putted would be used

in the model. The variable is referred to as ‘time’ in this article.
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Omitting the strength parameter for simplicity, the probability of the

ranking 1, 2, 3 · · · n is the iterated integral

p123···n =

∫
∞

0
f1(x1) dx1

∫
∞

x1

f2(x2) dx2 · · ·
∫

∞

xn−1

fn(xn) dxn. (1)

As (1) shows, an iterated integral is one in which the integrand can be

integrated over each of the n variables in turn.

This type of model is (naturally) applicable to all kinds of races, also to

other types of competitive sport such as stroke play golf, target archery, and

esports, and to consumer preference and election data. It can accommodate

player/team covariates zi, e.g. αi ∝ exp(λT zi), where λ is a vector of

parameters.

The probability is invariant under any monotonic transformation of the

time scale or score. This means that several distributions of finishing time

vcould be equivalent, e.g. if using an exponential distribution, the Weibull

or Gumbel distributions give identical probabilities. Thus a transformation

x → xβ for β > 0 gives the Weibull distribution, and x → ln(x) gives the

Gumbel.

Because the time scale can be rescaled without changing p123···n, it also

follows that only the ratios of the strengths of competitors determine p123···n.

1.2 The range of available models

When the pdf f(x) is exponential, a closed-form solution can be derived;

this is the Plackett-Luce (PL) model (see e.g. Alvo and Yu, 2014). For a

normal pdf, we have the Thurstone-Mosteller (TM) model, and a gamma

model due to Henery (1983) interpolates between the PL and TM models.

Note that for the TM model, the lower limit of integration in (1) is −∞.
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This reverts to zero on using the exponential of the random variable, which

follows a lognormal distribution.

Any survival distribution can be used in (1). Hence in this work two

other survival distributions were also used, the exponentiated exponential

(EE) distribution (e.g. Gupta and Kundu, 2007 and Nadarajah, 2011), and

the generalized Pareto (Lomax) distribution (Lomax, 1954). Both of these

generalize the PL model.

1.3 Computing the probabilities

Developing and evaluating new models was one purpose of this article. The

other was the development of faster methods of evaluating the probability

(1).

The probability of a particular ranking of n competitors can be very

small: with equal strengths it would be 1/n!. Hence with 50 competitors,

the probability is ≃ 3.3 × 10−65. Such tiny probabilities could never be

computed by näıve Monte-Carlo methods (e.g. Christian and Casella, 2010),

as one would need to generate more than ≃ 1065 realizations of the ranking.

Even our (unpublished) attempts to devise ‘clever’ Monte Carlo methods

proved agonizingly slow. Multivariate integration is also very slow. Hence

the type of integral evaluation described here is very useful in fitting ranking

models to data where there are more than very few competitors. Figure 1

shows this situation, where a relative error of 10−8 is aimed for.

The basis of a fast new method is that because (1) is an iterated integral,

it does not suffer (much) from the ‘curse of dimensionality’. This ‘curse’

is the fact that, with N function evaluations per variable, an integral of

dimension n requires Nn function evaluations. With an iterated integral
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like (1) only nN evaluations are required, but we shall see that the number

N needs to increase slowly with n to preserve accuracy. Hence the curse

of dimensionality survives in a milder form. It was found on using the new

method that good results could be obtained up to n ≃ 70 or 80.

The next section discusses some old and new survival models. Next,

after a more detailed discussion of the integration methodology and the

analysis of errors, several order-statistics models are fitted to some golf data

previously analysed by Baker and McHale (2015), who used the PL model,

and some women’s tennis data (Baker and McHale, 2017) and the article

concludes with a brief discussion.

2 Survival distribution models

2.1 Current models

The popular Plackett-Luce (PL) model can be derived analytically from (1)

on using the exponential distribution and so setting f(xi) = αi exp(−αixi).

Henery (1983) and Stern (1990) have proposed a useful generalization of the

PL model, where f is a gamma pdf. Writing the gamma pdf as

fi(xi) = αi(αix)
βi−1 exp(−αixi)/Γ(βi), (2)

we would usually want to set all the shape parameters βi to a common value,

when the strength parameter would be αi. Otherwise the inverse of the

expected finishing time, αi/βi would be a good strength measure. However,

in sport there tend to be many players and not always many matches per

player, and so it is usually best to have few parameters per competitor.

The methodology here does however allow more parameters per competitor,

which might well be useful outside sport, e.g. in marketing.
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There is no analytic solution for general values of β for n > 2. For 2-

player games, Stern (1990b) derived and used a closed-form solution, and

Baker and McHale (2014) derived a closed-form solution as the incomplete

(regularised) beta function, which is widely available.

As β → ∞ the distribution becomes lognormal, so that ln(X) is normally

distributed and we obtain the Thurstone-Mosteller type V model (Thur-

stone, 1927), where

f(xi) = exp(−(xi − ψi)
2/2)/

√
2π,

where ψi = − lnαi. This also has no closed-form solution for n > 2; for n = 2

it is p12 = Φ(ln(α1/α2)/
√
2), where Φ is the normal distribution function.

The type IV Thurstone model can also be used, where X ∼ N [ψi, σ
2
i ].

The gamma model probabilities for more than two competitors have to

date been evaluated only for integer values of β, and summation formulae

are given in Henery (1983) and Stern (1990a). Stern (1990a) fitted the β = 2

model to data on horse-races, and claimed a better fit than for the β = 1

(PL) model. In particular, the β = 2 model copes better with horses that

often win, but which fall a long way behind unless they are in the forefront.

In general, good competitors sometimes perform quite badly.

One can see why the β > 1 model works better in this case by rewriting

the pdf using y = xβ and γ = αβ
i . Then fi(yi) = γi exp(−(γiyi)

1/β)/Γ(β+1).

In this form, the longer tail of poor performance than for the exponential

distribution can be discerned.

Stern (1990b) fitted gamma models to a variety of 2-player/team sports

data, but found little difference in fit with β. Baker and McHale (2017) with

a much larger dataset on women’s tennis found the optimum value of β to

be above 2.
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The TM model has been fitted using Monte-Carlo integration (e.g. Alvo

and Yu, 2014). Lack of a fast method of computation has limited the use of

both models.

2.2 New models

The exponentiated exponential distribution has distribution function F (x) =

(1− exp(−αx))β , where β > 0. Thus the pdf is

f(x) = αβ(1 − exp(−αx))β−1 exp(−αx).

This pdf reduces to the exponential pdf when β = 1, so we regain the

PL model. The pdf looks roughly like the gamma pdf, and for small x,

f(x) ≃ αβ(αx)β−1. It has mode xm = ln(β). Its properties are broadly

similar to the gamma distribution. The survival function can be written

down explicitly, which is useful in computing win probabilities when there

are only 2 competitors. The exponentiated exponential can be transformed

into a monotonically decreasing distribution that is longer tailed than the

exponential as using the same transformation for the gamma, i.e. with

y = xβ. This distribution can be shown to have a monotonically decreasing

pdf and behaves like exp(−αx1/β) in the tail.

One can also generalize the PL model by using the generalized Pareto

distribution, so that Si(xi) = (1 + αixi)
−ν , where ν > 0. This is also the

Lomax distribution; it becomes the full generalized Pareto on applying an

affine transformation to xi, which would be redundant in this case. Then

fi(xi) =
ναi

(1 + αixi)ν+1
.

This pdf is longer-tailed than the exponential. The case ν = 1 is interesting,

as this is a special case of the log-logistic distribution, and can be regarded
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as analogous to the normal limit of the gamma model. In this case, the

distribution is logistic rather than normal. This is not of course a true limit,

which occurs when ν → 0.

2.3 Two-player games and other special cases

When there are 2 players, the PL model reduces to the Bradley-Terry (BT)

model; see e.g. Dewart and Gillard (2018). The computation of the gamma

probability p12 as an incomplete beta function has been mentioned, and the

fact that the model is computable for integer β.

The EE model gives

p12 = α2β

∫
∞

0
exp(−α2x)(1− exp(−α2x))

β−1(1− exp(−α1x)
β dx,

or on changing variable to z = exp(−α2x)

p12 = β

∫ 1

0
(1− zr)β(1− z)β−1 dz,

where r = α1/α2. For β = 1 this reduces to p12 = r/(1 + r) = α1/(α1 +α2)

as it must. When β = 2,

p12 = 1− 5

r + 1
+

2

2r + 1
+

4

r + 2
,

or

p12 =
r2(2r + 7)

(r + 1)(r + 2)(2r + 1)
.

For arbitrary β, the integral can be evaluated by standard methods, but

cannot be reduced to a special function. Some fortran code is available in

the online supplement for evaluating p12 and its first two derivatives. This

uses the transformed integral

p12 = βγ

∫ 1

0
(1− xrγ)β(1− xγ)β−1xγ−1 dx,

10



which with γ ≃ 3 is zero at both limits. The program does trapezoidal

integration, followed by two Richardson extrapolations. Good accuracy is

obtained with 40 points.

The derivatives are computed by differentiating under the integral sign.

As β → ∞ there is a limiting form of the EE distribution. Using the

product-limit form of the exponential, we obtain the distribution function

F (x) = exp(−β exp(−αx)).

This is the log-Fréchet distribution, defined on the whole real line. Computa-

tions for this distribution can be done, but suffer from numerical difficulties

and are not discussed further.

Clearly, for integer β, equation (1) can be solved analytically, as the

integrand is a sum of exponentials.

For the Pareto model, the probability (1) is given for n = 2 by

p12 = α1ν

∫
∞

0
(1 + α1x)

−ν−1(1 + α2x)
−ν dx,

which after a change of variable gives

p12 =
rν

(r − 1)2ν

∫ r

1

(y − r)2ν−1

yν+1
dy.

If r < 1 the formula is still valid, and is equal to

p12 =
rν

(1− r)2ν

∫ 1

r

(r − y)2ν−1

yν+1
dy.

In this form one can see that when ν is a multiple of 1/2, the integral can

be evaluated analytically by expanding the numerator of the integrand in a

power series.

It seems that an analytic expression for p is not possible for more than

3 competitors.
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When using integral expressions for win probabilities with 2 competi-

tors, it is sufficient to compute ∂p/∂α1, and ∂2p/∂α2
1, from which the

corresponding derivatives w.r.t. α2 can be found: writing p(α1/α2) =

g{ln(α1)− ln(α2)}, clearly

∂p/∂ ln(α2) = −∂p/∂ ln(α1)

and

∂2p/∂ ln(α2)
2 = ∂2p/∂ ln(α1)

2.

From this we have that

∂p/∂α2 = −(α1/α2)∂p/∂α1,

∂2p/∂α2
2 = (α1/α2)

2∂2p/∂α2
1 + 2(α1/α

2
2)∂p/∂α1.

Finally, from ∂2p/∂ ln(α1)∂ ln(α2) = −∂2p/∂ ln(α1)
2, it follows that

∂2p/∂α1∂α2 = −α−1
2 ∂p/∂α1 − (α1/α2)∂

2p/∂α2
1.

The next topic is the computation of probabilities for these models in

the general case.

3 Integration Method for the general n-player case

An algorithm for computing the probability of a ranking will be presented. It

has been adapted to cope with some generalizations of the ranking problem,

where for example the lower-placed competitors are not ranked. It must

be stated at the outset that bookmakers and bettors usually only need to

compute odds for various events that occur with a probability much higher

than that of a particular ranking. For example, in golf, that a player wins,

is in the first 10, or ‘makes the cut’. In this case, Monte Carlo simulation

will be adequate.
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3.1 The algorithm

We can rewrite (1) as:

Sn(x) =

∫
∞

x
fn(u) du,

where S denotes a survival function. For i from n− 1 to 1,

Si(x) =

∫
∞

x
fi(u)Si+1(u) du,

and finally

p123···n = S1(0).

Then an algorithm for computing p123···n is as follows:

1. Compute Sn(x) ∀x;

2. for i from n− 1 down to 1 compute Si(x) =
∫
∞

x fi(u)Si+1(u) du ∀x;

3. read off p123···n = S1(0).

The extended trapezoidal rule was used to approximate this procedure nu-

merically, using a transformed distribution gi(x) defined on the range 0 <

X < 1, exploiting the fact that monotonic transformations of timescale do

not change the value of the integral. The rule is

∫ 1

0
g(x) dx ≃ S(0) = h{g(0)/2 + g(h) + g(2h) + · · · g(N − 1)h) + g(Nh)/2},

and of course

∫ 1

mh
g(x) dx ≃ S(mh) = h{g(mh)/2+g((m+1)h)+g((m+2)h)+· · · g(N−1)h)+g(Nh)/2},

where hN = 1. The algorithm proceeds by computing Sn at transformed

times Nh down to 0, then Sn−1 and so on. At time mh, the sum T ((m +
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1)h) = h{∑N−1
m+1 S(mh) + S(1)/2} is used with the just computed S(mh),

and T (mh) cumulated.

The whole procedure takes Nn operations, so computing time is linear

in the number of competitors; we shall see however that N needs to increase

with n to preserve accuracy.

Although the algorithm is simple, a consideration of errors is necessary

to achieve accurate results. The Euler-Maclaurin summation formula (e.g.

Press et al, 2007) gives the error of the approximation as an asymptotic

series: to second order this is

∫ 1

mh
g(x) dx−S(mh) ≃ −(h2/12)(g′(1)−g′(mh))+(h4/720)(g′′′(1)−g′′′(mh)),

where primes denote derivatives. Thus the error of a single integration is

O(h2) if f is transformed so that g(0) and g(1) have finite first derivatives.

This order of error is preserved through the n multiple (iterated) integra-

tions, because if Si+1(mh) is accurate to O(h2), a further error of O(h2)

is incurred in evaluating the integrand at each grid point, and so the total

further error incurred is O(Nh3) = O(h2). Apart from roundoff error, there

is an additional error arising from the impossibility of adding very small

numbers to large numbers in a computer, resulting from the finite size of

the mantissa (e.g. Press et al 2007). This last error increases with N .

The procedure is then to compute the required probability, to obtain

a result with error O(h2). Repeating the procedure with 2N grid values

enables a Richardson extrapolation to be carried out, which reduces the

error to O(h4). All this methodology is quite standard, but has not been

applied to iterated integrals.
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3.2 Variable transformation

The transformation of the random variable, carried out to keep the deriva-

tives of the pdf finite, must map it into [0, 1]. For the gamma distribu-

tion pdf (2) a finite pdf at zero and unity is required. The transformation

z = (1− exp(−α0x))
1/γ was used, so that x = − ln(1− zγ)/α0. The pdf (2)

becomes

f(z) = Γ(β)−1γ(α/α0)
βzγ−1(− ln(1− zγ))β−1(1− zγ)α/α0−1. (3)

This is shown in figure 2. This has the required properties; f(z) → 0 as
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Figure 2: The transformed gamma pdf from (3) with α = 1, γ = 3, α0 = 1/2

for β = 1/2 and β = 2.

z → 1 if α > α0, and for z ≪ 1, f(z) ∼ zγβ−1. Thus we require α0 to be

(say) half the minimum value of α, and γ > 1/β.

For the TM model, the distribution is N [− ln(αi), 1)]. The logistic trans-

formation z = 1/(1 + exp(−x)) gives a distribution with support on [0, 1],
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Figure 3: The transformed normal pdf from (4) with δ = 1, and ln(α) = 0,

ln(α) = 1.

so that

f(z) =
1√
2π

exp(−(ln(z/(1 − z)) + lnαi)
2/2)

z(1− z)
. (4)

This is shown in figure 3. For the exponentiated exponential distribution, the

transformation x = − ln(1 − zγ)/α0 is used as for the gamma distribution.

The pdf is then

f(z) = βγ(α/α0)z
γ−1(1− z)α/α0−1(1− (1− zγ)α/α0)β−1.

For the Pareto distribution, we take the transformation x = α−1
0 zγ/(1−

z)δ . The pdf becomes

f(z) = να/α0)
{δzγ + γ(1− z)zγ−1}(1− z)δν−1

{(1 − z)δ + (α/α0)zγ}ν+1
.

3.3 Reducing errors

3.4 Logic errors

There are two kinds of computational error: logical/programming errors,

and numerical errors arising from roundoff, etc. Programming errors are

dealt with first. The error can be studied for the case where all αi are equal,
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when p = 1/n!, or when β = 1 for the gamma and EE models, when the PL

model probability can be computed from the analytic solution. For integer

values of β, Henery (1983) and Stern (1990a) give summation formulae for

the gamma model. In this work a program was written that kept track

of the coefficients of powers of x in the integrand, as the iterative integral

was done symbolically. Finally, the required probability is the coefficient of

x0. This enabled the gamma model computation accuracy to be checked for

integer values of β. Log-Likelihood differentials were checked for all models

by also computing them numerically as differences.

3.5 Numerical errors

Turning to numerical errors, for the gamma and exponentiated exponential

models, suitable parameter values are α0 half the minimum of the αi, γ =

3/β. For the Pareto model, γ ≃ 3, α0 is as before, and δ ≃ 3/ν. These give

low errors; the pdf is zero at z = 0, z = 1, and its derivative df(z)/dz is

zero when possible.

We use the integral with Richardson extrapolation, to further reduce

error. After Richardson extrapolation, the error should be O(h4). A second

extrapolation based on this often works, but sometimes gives no improve-

ment. Hence for reliable accuracy, further extrapolations are not currently

recommended. An additional source of error is the rounding error arising

from adding a very small number to a much larger number, caused by the

finite size of the mantissa. This error gets larger when N increases, and

may be a contributory reason why further extrapolations cannot be usefully

done.

The proportional error σp on the probability p, i.e. σp = |p−ptrue|/ptrue,
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was a useful measure of error. A constant relative error of course is desir-

able in giving a constant error for the log-likelihood, since ℓ = ln(p), and

δℓ = δp/p, so var(ℓ) ≃ σ2p. The proportional error was found to decrease

to on average 0.006% of its original value on Richardson extrapolation, so

this is definitely worthwhile. The ratio of Richardson-extrapolated error to

original error increases slowly with sample size n. The proportional error

afrer extrapolation itself increases with n, so that N must be increased to

keep this error constant. The rule of thumb N = 200 exp(n/18) (strictly

N = 2[100 exp(n/18)], where [] denotes nearest integer) gives an acceptable

error up to n ∼ 70 or 80, and was arrived at by regressing logged relative

error on n.

Figure 4 shows the results of applying this to some golf data (discussed

later). Each point represents a match. The golf dataset is used because it

has a spread of numbers of players and has estimated strengths from the

PL model, so it gave a realistic dataset for computing errors. However,

randomly generated strengths and rankings could have been used instead

with similar results. A test of error can be done using the PL model. Here

the probabilities p in (1) can be computed exactly, as the integral can be

evaluated analytically.

With this rule of thumb, computation time ∝ Nn on a typical desktop

computer was 1.4 milliseconds for n = 20. For n = 80, it has risen to 157

milliseconds. It must be noted that for n much higher than 80 computation

time becomes large, and the golf example given later is at the limit of what

is feasible on a desktop computer.

Although the ‘curse of dimensionality’, the exploding number of inte-

grand evaluations needed for a given accuracy, does not apply to iterative

integral evaluation, it does still appear in a weakened form, in that the
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number of points used N must increase with the sample size n to attain the

same relative error on the probability. Also, Richardson extrapolation only

reliably worked once; if this problem could be removed, computation could

be speeded up further.
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Figure 4: Logarithm of absolute relative error against sample size using the

rule of thumb N = 200 exp(n/18) for the PL model, with fitted line.

3.6 Related computations

3.6.1 When some competitors are not ranked

The m competitors who performed worst may not be ranked. This happens

in golf, where a number of players may not ‘make the cut’. In consumer pref-

erence studies, one might also ask consumers to rank only their n favourite

brands. This situation is easy to cope with, because the probability that

players 1 · · ·m all have score ≥ x is simply
∏m

i=1 Si(x), where Si is the ith
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survival function. The integral required is

p =

∫
∞

0

m∏
i=1

Si(x) dx

∫
∞

x
fm+1(xm+1) dxm+1 · · ·

∫
∞

xn−1

fn(xn) dxn.

The computer program requires only an extra array of dimension m.

3.6.2 Computing log-likelihood differentials

Differentials are readily obtained by differentiating (1) outside and under

the integral sign. For the gamma model, differentiating the log-likelihood

ℓ = ln(p) with respect to αi yields

∂ℓ/∂αi =
β

αi
(1− p(1)/p),

where p denotes the required probability, and p(1) the probability when

the ith competitor has a gamma distribution with shape parameter β + 1.

In practice, it is easier to work with q(1), the value of p computed when

β → β + 1 in the integral for the ith competitor, the multiplying constant

being unchanged. Then ∂ℓ/∂αi = β/αi − q(1)/α0. For the TM model, q(m)

is the value of p computed with a factor of (xi −ψi)
m in the integrand. The

∂ℓ/αi = −q(1)/αip.

Higher derivatives may be found similarly, the computation of n partial

derivatives thus requiring n + 1 evaluations of iterated integrals. It is of

course possible to code this more tightly by reusing function values where

possible; this would greatly reduce computing time.

3.6.3 Tied observations

When the worst-performing competitors are not ranked, we have the situ-

ation described in section 3.6.1 which is easily dealt with. However, when

there are ties among competitors but not at the bottom of the list, this
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is a difficult computational problem. One can take a tie as meaning that

we do not know the ordering of the m tied competitors. The probabil-

ity that m finishing times for competitors s to s + m − 1 are ∈ (x, u) is

G(x, u) =
∏s+m−1

i=s {Fi(u) − Fi(x)}, where F denotes distribution function,

and hence with scores s to s+m− 1 tied, the probability integral is

p =

∫
∞

0
f1(x1) dx1 · · ·

∫
∞

xs

{dG(u, xs)/du}du
∫

∞

u
fs+m+1(xs+m+1) dxs+m+1 · · ·

∫
∞

xn−1

fn(xn) dxn.

Because one of these factors contains xs and u and so is bivariate, the

iterated integral approach cannot be used.

One can instead compute p for each of the m! orderings and sum. When

there are many tied observations,this is computationally expensive and the

best that can be suggested is to use ‘maximum simulated likelihood’, i.e.

to generate a large number M of realizations of the ordering of the tied

observations, and give each resulting contribution to the log-likelihood a

weight of 1/M .

It is also possible to use a simple approximation. When applied to the PL

model, it is an approximation of Efron (1977). Here we replace each of the

tied αi by their average. With this approximation, each possible breaking of

the tie yields the same probability p, so for m ties the probability is simply

m!p. Note that the formula for log-likelihood derivatives will then change.

This approximation makes it possible to treat games like golf, where the

discrete score causes many ties.

3.6.4 Code available

Probabilities for the 4 models (PL, gamma, EE and Pareto) are computed in

a prototype program effprog.f90, a fortran program, available in the online

materials. This program elicits model type and parameter values from the
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user, and computes probabilities for a dataset of competitor strengths. The

computation is done by calling organize ints, which organizes the com-

putation, and calls prelim calcs to set up parameters and arrays that are

used n times but need only be computed once. Routine getint is called to

compute the integral, and it calls function eff to compute the pdf. Finally,

organize ints calls getint again n times, to compute quantities needed

for the first and second log-likelihood derivatives for each competitor, and

calls get diffs to compute them. These are computed by differentiating

under the integral sign, and the differentials are compared with the (less ac-

curate) differentials derived by differencing. Many users will not require the

log-likelihood differentials, and this section of code is easily omitted. The

program keeps widely-used variables and arrays in a module that is invoked

by all routines.

Routine organize ints also calls getpl for the Plackett-Luce probabil-

ity if the model reduces to the PL model, and prints out errors.

4 Examples

The speeding up of computation has already been demonstrated, and this

section explores the fitting of different models to sports data. One model, the

gamma model, is an old model that could not hitherto be fitted when there

are many competitors, and the EE and Pareto models are new. The aim

was to assess the various models in realistic situations, a task impossible

before, when there was no feasible way of fitting them to large datasets.

Readers may wonder what effect fitting a more flexible model has on the

actual results of the exercise, i.e. the player rankings, but it is not feasible

for many reasons (e.g., of space) to present such results. Many small changes
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in rankings, mainly of middle-rank players, follow from changing the ranking

model.

Baker and McHale (2015) rated male golf players using data from the

four major competitions (the US masters, the US Open, the British Open

and the USPGA Championship). The PL model was used to model the

probabilities of the observed rankings, using time-dependent strengths; there

was no computationally-feasible alternative. There were in all 279 competi-

tions and 822 players. The maximum number of players per match was 46.

The data were refitted, using the gamma, EE and Lomax models instead

of the PL model. Computations had to be somewhat chopped down, even

so taking hours of computer time. Ties were dealt with using the simple

approximation from Efron (1977) discussed in section 3.6.3.

The aim here was to see how the model fit changed as the extra parameter

varied, for the gamma, EE and Pareto models. A subsidiary aim was to test

the computation methodology by using it in a real application, and it was

improved and speeded up as a result.

The new programming required was to change the routine that deliv-

ered the log-likelihood and its derivatives. The data-fitting program max-

imises the log-likelihood for player strength parameters using first and sec-

ond derivatives of the log-likelihood with respect to each of the strength

parameters. The formulae mentioned in section 3.6.2 enable these to be

computed. Some players ‘fail the cut’ and effectively tie at the bottom of

the rankings. This was dealt with as described in section 3.6.1. The op-

timum profile log-likelihood was computed at several values of the model

parameter, from which the curves in figure 5 showing the profile likelihood

were drawn. For the gamma model curve, the TM model was also fitted;

this corresponds to infinite β. In figure 5 the ‘inverse parameter’ is used as
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Figure 5: The profile log-likelihood for the golf data example, showing points

where the log-likelihood was evaluated for the gamma, exponentiated expo-

nential and Pareto models, linked with a smooth curve.

the abscissa. This is 1/β for the gamma and EE distributions, and 1− 1/ν

for the Lomax model. This ensures that the PL model, where β → 1 or

ν → ∞ has unit abscissa. The roughness of the curves arises from the huge

amount of iterative computation required to maximise likelihood functions

when there are hundreds of parameters to be estimated.

The profile log-likelihood of the model fits plotted against 1/β are shown

in figure 5, along with an interpolatory curve. When β = 1, the gamma, EE

and Pareto models all reduce to the PL model. The statistical significance

of ‘floating’ β can be judged because twice the increase in log-likelihood

at maximum likelihood be distributed as a chi-squared with 1 degree of

freedom.

From this argument it can be seen that all three models can significantly

improve the fit to the data. Thus the Lomax model increases log-likelihood
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Figure 6: The profile log-likelihood for the women’s tennis data example,

showing points where the log-likelihood was evaluated for the gamma, ex-

ponentiated exponential and Lomax models, linked with a smooth curve.

by 28 at maximum, so that a chi-squared test would give a chi-squared of

56 with one degree of freedom—7.5 standard deviations.

For this example, the gamma model did well, but the EE model even

better. The parameter β certainly becomes very large. As discussed in

section 2.3, the limit of the EE model is the log-Fréchet distribution, which

is difficult to compute.

Baker and McHale, (2017) obtained data on the results of womens tennis

matches in the four Grand Slams: the Australian Open, the French Open,

Wimbledon and the US Open, for the Open Era of tennis, from 1968 to the

Australian Open in 2016. The results of a reanalysis are shown in figure 6.

Again, the inverse β parameter is used, and the point at zero for the gamma

model is the fit from the normal (Thurstone type V) model. The EE line is

slightly below the gamma line, while the Lomax curve is the small peak on
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the right.

It can be seen that the gamma and EE models give very similar fits, with

the best fit coming from the Thurstone model. However, the improvement in

log-likelihood from the BT model is only 65.5. The chi-squared improvement

would be 131 with 1 degree of freedom, so there is no doubt that increasing β

leads to better fits. However, there are 20552 matches and 85132 sets, so the

improvement in player win probability per set is tiny. A crude calculation

shows the increase in predicted probability when there is a win to be 0.0004.

These results in fact bear out Stern’s finding (Stern, 1992) that all paired

comparison models behave similarly. With a large dataset, one can now see

that for tennis, the TM model is slightly better than the BT model.

The Lomax distribution performs poorly, giving only a very modest im-

provement over the BT model for β around 25.

5 Conclusions

Two new order statistics-based models have been introduced, and a fast

method of accurate computation has been given for order-statistics-based

ranking models. Code to compute the probability of a ranking for these

models is available online in the supplementary materials for this paper.

The two innovations together make a substantial advance in the state of

the art of ranking in sport. The latter should certainly prove useful to prac-

titioners, because in estimating player strengths from rank data, the gamma

model with general shape parameter has hardly been used, and the TM type

V model has been used only via Markov-chain Monte-Carlo (MCMC). Fu-

ture work on the fast computation method could include a more detailed

error analysis, that might enable further Richardson extrapolations to be
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done for the case of more than 2 players, so speeding up the computation.

The provision of an R package would of course also be useful.

The new models and the method of computation would be of only aca-

demic interest if the Plackett-Luce model were always the best-fitting one,

because the PL model computations can be done explicitly without evaluat-

ing an integral. However, it has been shown here that in golf tournaments,

the TM model fits the data better than the PL model, and the exponentiated

exponential model with high β fits best of all. The reanalysis of women’s

tennis data from Baker and McHale (2017) shows that the gamma model

and the exponentiated exponential models perform very similarly, both fit-

ting better than the Bradley-Terry model (the 2-player version of the PL

model), with the TM model giving the best fit of all. These results confirm

those of Stern (1990a), that because usually good players can sometimes

perform quite poorly, the gamma model with β > 1 or the TM model fit

the data better. Of course, what really matters is the accuracy of the pre-

dicted ranking, not how well the model fits, but as ever in Statistics, the

best-fitting model, allowing for the number of fitted parameters, is expected

to give the most accurate predictions.

The model based on the exponentiated exponential distribution offers a

useful alternative to the gamma model, which could be used for sensitivity

analysis etc.. The Lomax model performed poorly for both tennis and golf

data, but cannot be completely ruled out as a potentially useful model.

Much further work on such models could be done.
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