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Abstract 

Global warming and elevated temperatures in the Netherlands will increase the energy 

demand for cooling. Studying passive strategies to cope with the consequences of climate 

change is inevitable. This paper investigates the thermal performance of courtyard dwellings 

in the Netherlands. The effects of different orientations and elongations, cool roofs and 

pavements on indoor thermal comfort are studied through simulations and field 

measurements. The results show that North-South and East-West orientations provide the 

least and most comfortable indoor environments. Regarding materials, the use of green on 

roofs and as courtyard pavement is the most effective heat mitigation strategy. It was 

observed that the effects of wet cool roofs are much higher than of dry roofs. Cool roofs did 

not show a specific negative effect (heat loss) as compared to conventional asphalt roofs in 

winter. Some simulation results were validated through field measurement with a 0.91°C root 

mean square deviation.  
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1. Introduction 

Global warming is affecting human thermal comfort [1], and it is estimated that by 2050, the 

air temperature in the Netherlands could be up to 2.3°C warmer than in the period from 1981 

to 2014 [2]. The built environment can intensify or moderate the environment. One of the 

most commonly used building archetypes in hot climates is the courtyard form. Courtyards 

provide shading and consequently a cool microclimate within a building block. It may also 

ease ventilation through the stack effect. The thermal behaviour of courtyard buildings has 

extensively been studied in hot and arid climates, but rarely in temperate regions such as 

West Europe. Courtyards exist in the Netherlands; rarely as single family houses, but mainly 

as urban blocks. With the warmer future climate estimated for the Netherlands, this study 

tries to make this archetype climate proof. Therefore, this paper explores the effect of 

different courtyard geometries and orientations on the thermal comfort of dwellers in the 

Netherlands. Heat mitigation strategies such as greenery or high albedo materials on roofs 

and within courtyards are investigated through simulations. An experiment on a scale model 

of a courtyard with different roofs and courtyard pavements is done to support the results of 

the simulations. At the end, a one-month field measurement in an actual courtyard house in 

Delft is done as a validation of the simulation program used in this paper.  

 

1.1. Thermal behaviour of courtyard buildings  

Courtyards have been used mostly in harsh climates in order to provide more shading in hot 

climates, more ventilation in humid climates and more protection against cold winds in 

temperate and cold climates. In a comparison between different building forms, Okeil 

[3] generated Residential Solar Blocks (RSB) based on the courtyard form and showed that it 

is more energy efficient than slabs and pavilions in the hot and humid climate of UAE.  

Ratti, et al. [4], based on the six archetypal forms of Martin and March [5], made three 

“realistic” block layouts for a hot and arid climate. They concluded that the courtyard 

configuration led to a more favourable micro-climate because of more favourable 

environmental variables (surface to volume ratio, shadow density, daylight distribution, and 

sky view factor) as compared to two different pavilion types.  

In the temperate climate of the Netherlands, Taleghani, et al. [6] compared courtyard 

buildings with different urban layouts (linear and singular blocks with the same floor area). 

They showed this typology has the least summer discomfort hours. This was because of the 

lower surface-to-volume ratio of the courtyard, and it’s shading on the surrounding buildings.  

 

1.2. Highly reflective materials and cool roofs 

Dark surfaces used in urban environments and the lack of vegetation increase the ambient 

air temperature in cities. This phenomenon is called the urban heat island (UHI) which is 

more sensible in summer [7, 8]. Akbari, et al. [9] in a study on American metropolises 

showed that peak urban electric demand rises by 2-4% for each 1°C increase in air 

temperature. This is an indirect effect of dark materials; but, the direct effect is their higher 

absorption of solar energy. With a low albedo, dark materials reflect less solar radiation 



increasing their surface temperature and as a result increasing the energy use for the cooling 

of buildings, especially during the peak periods of energy demand. 

There is a large body of literature on highly reflective materials and vegetated (green) 

surfaces studied in the hot climates of the USA [10-13] and southern Europe [14-16]; and 

recently in colder climates such as in Moscow (Russia) [17, 18], Toronto (Canada) [19, 20], 

and Gothenburg (Sweden) [21]. Vegetation and highly reflective materials are becoming ever 

more studied and used; however, there are challenges in the use of green roofs. First, the 

installation and maintenance costs of these roofs are relatively problematic. Sproul, et al. [22] 

with an economic perspective on 22 case studies with different roof colours showed that 

relative to black roofs white roofs provide a 50-year positive net savings and green roofs a 

negative net savings. Second, the behaviour of these roofs (known as cool roofs) is not 

always beneficial in winter. This could be due to the shading effect of vegetation on the roof 

but also due to the higher thermal conductivity of water in wet green roofs and the 

evapotranspiration of vegetation [23]. Liu and Minor [24] showed that with a proper drainage 

and insulation layer this problem could be solved for a cold climate like Toronto (Canada).  

Reviewing the literature, what has been less studied is the effect of cool materials on the 

microclimate of urban courtyards, and also its effect on the indoor comfort of the dwellers. 

The other missing (and important) research in the literature is the thermal behaviour of cool 

materials and green roofs in winter (in dry and wet modes). Therefore, in this paper the effect 

of highly reflective materials and vegetation on the roof and on the ground of the courtyard is 

investigated; in summer and winter, and in dry and wet modes. This will be done through 

simulations and actual experiments. 

 

2. Methodology 

This paper consists of three phases. Phase 1 is done through computer simulation. Phase 2 

shows the results of a scale model, and phase 3 is a validation of the simulation model using 

field measurements in an actual courtyard house.  

In phase 1, eighteen courtyard buildings are studied for their indoor thermal comfort in the 

hottest summer week in a reference year (between 16th and 23rd of June). The development 

of the weather data file for the reference year is explained by Taleghani, et al. [25].These 

buildings are modelled in DesignBuilder and the thermal properties of the walls, roofs and 

windows are described in Table 1. The roofs are conventional bitumen. The facades are 

brick cavity walls with 10 cm expanded polystyrene standard (EPS) insulation inside the 

cavity. The type of windows is Double LoE (e2=.2) Clr 6mm/6mm Air. The window to wall 

ratio is 30%. The constant rate for the airtightness is 0.1 (ac/h). The width of the buildings 

surrounding a courtyard is 10 meters. This means that the dimension of the building 

surrounding the 10m*10m courtyard is 30m*30m. The houses are naturally ventilated by 

opened windows if the indoor air temperature has risen to above 22°C. The models are not 

equipped with a cooling system since most of Dutch dwellings are in free running mode 

during summer. 

 

 



Table 1: The properties used in the simulations. 

 U-value 
W/(m2K) 

Thickness 
(m) 

Roof 0.31 0.210 

Wall 0.33 0.350 

Glazing 2.55 0.018 

 

 

 

 

Figure 1: The courtyards simulated with different orientations and lengths. 

 

Next, the models with the highest and lowest amount of discomfort hours (as reference 

models) were then selected for further simulations. These two models were also simulated 

for the W+ 2050 climate scenario showing how thermal comfort in these dwellings changes 

with climate change. The weather data file used for the future climate scenario simulations is 

also explained in [25]. Furthermore, four heat mitigation strategies are applied to the 

reference models. These strategies include: increasing the albedo (or reflection coefficient) 

of surfaces, using vegetation on the roof and on the ground of the courtyards, and finally 

using gravel on the roofs and within the courtyards.  



In the next step, the thermal behaviour of the zones located on different positions (North, 

South, East and West) of the reference models will be analysed (Figure 2). Then, the effect 

of different roofs on the Southern zone in summer (16th-23rd of June) and winter (16th- 23rd of 

December) will be addressed in one of the reference models. 

 

Figure 2: The studied reference models (N-S and E-W), and the interior plan of the Southern 

zone/dwelling.  

 

In phase 2, a 1/100 scale model of one of the reference courtyards (10*50 EW) was made. 

This was mainly to test the effect of different materials on the roof and on courtyard ground in 

a controlled situation. The only variable in this step is the materials used for paving the roof 

and the ground of the model. The results of the scale model measurements cannot be 

directly compared to real situations but can only be used for comparing the effects of 

different surface materials. A 1000 Watt halogen light was used as the heat source, and a 22 

Watt desk fan was used to generate wind (Figure 3). The position of the lamp was similar to 

the position of the sun on 21st of June in Delft, the Netherlands. The fan blew air to the model 

from the south-west to simulate the prevailing wind in the Netherlands. Four materials were 

used to cover the roof and the ground of the courtyard model: black cardboard, white 

cardboard, white gravel and grass (with soil). The gravel and grass were tested two times: 

dry and wet. Each experiment took 12 hours; 6 hours with the lamp and fan on, and 6 hours 

with the fan on only. The air temperature was recorded within the courtyard and inside the 

model (on the North, South, East and West side) with iButtons type DS1923-F5+ 

temperature sensors. The accuracy of this type of data logger is ±0.5°C. The experiments 

were done in April 2014 in a free running mode lab; and therefore, not influenced by heating 

or cooling systems. The spectral reflectivity and albedo of the materials were also measured 

with a spectrophotometer (Perkin Elmer Lambda 950- UV/Vis/NIR).  

 



 

Figure 3: Up left: the scale model experiment with the halogen light and fan. Up right: the sensors 

placed in the four sides of the model. Down from left to right: black cardboard, gravel, grass and white 

cardboard. 

 

In phase 3, an actual courtyard house in Delft (the Netherlands) was monitored from April 

19th till May 31st. The aim of this monitoring was to validate DesignBuilder as the simulation 

software used in this paper (phase 1). The monitoring was done when the courtyard house 

was in free running mode (with only full mechanical ventilation with heat recovery operating). 

Thus, no heating or cooling system affected the indoor temperature. The measured house is 

11.5m * 7.7m. The air temperature was measured with Plugwise Sense data loggers with a 

measurement interval of one hour in four rooms (living room, kitchen, master bedroom and 

small bedroom) and inside the courtyard. The accuracy of these data loggers is ±0.3°C. The 

measurement results were, then, compared with the simulation results of the house in 

DesignBuilder.  

The U-values of the walls and glass are 0.28 and 1.7 W/m2K, respectively. The window to 

wall ratio is 63%. Figure 4 shows the location and a view of the courtyard. 

 



 

Figure 4: Up left: An aerial view of the field measurement. The measured courtyard house is 

highlighted with a star. Up right: The courtyard view. Down left: The whole model of the residential 

complex in DesignBuilder. Down right: The same view of the courtyard in the computer model. 

 

2.1. Energy modelling 

DesignBuilder as a graphical interface for EnergyPlus was selected for the simulations. 

Developed by US Department of Energy, EnergyPlus relies on key elements of both the 

DOE-2 and BLAST programs. Some key features that this research needed (and EnergyPlus 

is capable of doing) are: text based weather input files, ground heat transfer modelling and 

green roof modelling. The green roof model for EnergyPlus was developed by Sailor [26] 

based on preliminary sets of parametric tests in Florida, Chicago and Houston. This model 

considers long and short wave radiative exchanges, plant canopy effects on convective heat 

transfer, evapotranspiration from the soil and plants, and heat conduction (and storage) in 

the soil layer. Table 2 shows the data for the green roof model used in the simulations.  

  

Table 2: The data used for the simulation of the green roof in this research. 

Height of plants (m) 0.10 
Leaf area index (LAI) 5.00  
Leaf reflectivity 0.22 
Leaf emissivity 0.95 
Minimum stomata resistance (s/m) 100 
Max volumetric moisture content of the soil layer 
(saturation) 

0.50 

Min (residual) volumetric moisture content of the 
soil layer 

0.01 

Initial volumetric moisture content of the soil layer 0.15 



2.2. Thermal comfort model  

 

In this paper, thermal comfort is calculated based on the ASHRAE 55-2010 standard [27]. 

This standard is based on the largest database with measured results (21,000 

measurements) from Australia to Canada. According to this standard, the thermal comfort 

temperature is calculated as: 

𝑇𝐶𝑂 = 0.31 × 𝑇𝑟𝑒𝑓 + 17.8 

Where 𝑇𝐶𝑂 [oC] is comfort temperature; and 𝑇𝑟𝑒𝑓 [oC] is the prevailing mean outdoor air 

temperature (for a time period between the last 7 to 30 days before the day in question). The 

range of thermal comfort bounds is 3.5°C upper and lower of 𝑇𝐶𝑂. The measurements and 

surveys that were done to create the database that resulted in this standard were done 

mostly in office buildings. Due to the lack of a standard for dwellings, the mentioned 

standards were used [28].  

 

 

2.3. Climate of the Netherlands 

The climate of the Netherlands is known as a temperate climate based on the climatic 

classification of Köppen-Geiger [29]. The prevailing wind is South-West, and the mean 

annual dry bulb temperature is 10.5°C. For the simulations, the hourly weather data of De Bilt 

(52°N, 4°E) that represents for the Netherlands is used [25]. 

The Royal Dutch Meteorological Institute (KNMI) has translated the IPCC climate scenarios 

for the Netherlands in 2050 [30]. Taleghani, et al. [25] has explained the KNMI ’06 climate 

scenarios and how from these scenario’s future weather data files can be created. The 

severest scenario, W+ (warm scenario with an average +2°C temperature increase), was 

selected in this paper to study thermal comfort in the future2. 

For phase 3, the simulation of the real courtyard house in Delft, the weather data was taken 

from a KNMI weather station located at Rotterdam - The Hague Airport about 8 km south-

east of the courtyard house. 

 

 

 

 

 

                                                           
2 Recently, in May 2014, KNMI published new climate scenarios for the Netherlands, the so-called KNMI ’14 
climate scenarios. Because this study was undertaken before these new scenarios were published, the previous 
scenarios from 2006 were used.  



3. Results 

3.1. Phase 1: Parametric simulations 

3.1.1. Courtyards with different orientations 

In this phase of the study, 18 urban courtyard blocks were simulated for a summer week. 

The courtyard models vary in length and width from 10 to 50 m with steps of 10 m; and have 

four main orientations N–S, E–W, NW–SE, and NE–SW. In Figure 5, the amount of achieved 

solar radiation is illustrated for the N-S and E-W models (a) and for NW-SE and NE-SW 

models (b). The corresponding average indoor ventilation rates (c and d), average indoor 

operative temperatures (e and f), and numbers of discomfort hours are shown respectively 

with the same axis scale for the same models (g and h).  

The simulated week contains the longest days in a year. On 21st of June, the sun rises at 

5:18h and sets at 22:03h (17:45 hours in total) in De Bilt in the Netherlands. During these 

long days, the sun rises from the North-East and sets in the North-West. The maximum sun 

angle is 61° on 21st of June at 12 o’clock solar time (around 13:41 h De Bilt local time). This 

sun path affects mostly eastern façades (in the morning), roofs and southern façades (at 

noon) and western façades (in the afternoon and evening). With this principle, buildings with 

long orientations through N-S have higher solar heat gains, and E-W orientation lower. This 

phenomenon is visible in Figure 5- a) and b). Among the simulated models, the maximum 

total solar gain is received by the 50*10 N-S block (289 Wh/m2), and the minimum by 

the10*50 E-W block (231 Wh/m2). 

Figure 5- c) and d) show the average indoor ventilation rate of the models. The prevailing 

wind in the Netherlands is South-West (from the North Sea). This direction makes the 

models with NW-SE direction more suitable for natural ventilation. Having a look at the 

figure, the highest average ventilation rate is achieved by the 10*50 NW-SE model (0.82 

ac/h), and the lowest by the 10*50 NE-SW model (0.70 ac/h). 

To calculate thermal (dis)comfort, the operative temperature of the models is needed. 

Figures 5- e) and f) summarise the average operative temperature of the models during the 

simulated week. The warmest model corresponds to the model that receives the most solar 

radiation, which is the 50*10 N-S model. In contrast, the coolest model is the 10*50 E-W 

model corresponding with the least solar radiation entry. 

Based on the simulations, the percentage of discomfort hours are calculated for each model. 

The 50*10 N-S model shows the most discomfort hours (with 90% of the time 

uncomfortable), and the 10*50 E-W model the least (with 50% of the time uncomfortable). 

The rotated models 10*50 NW-SE and NE-SW also have a high percentage of discomfort 

hours (74% and 85%, respectively). This shows that NW-SE orientation is more comfortable 

among the rotated courtyards. 

 



 

Figure 5: a,b) Solar radiation received through the windows; c,d) Indoor ventilation; e,f) Operative 

temperature; and g,h) Percentage of thermal discomfort during the summer week. 

 

 

 



3.1.2. Future climate scenario and heat mitigation strategies  

Climate change is likely to have a significant effect on the cooling demand of buildings. The 

severest climate scenario (W+) for the Netherlands in 2050 according to the KNMI ’06 

climate scenario’s is used to estimate thermal comfort in dwellings alongside an urban 

courtyard in the future. First, simulations are run based on the reference models selected 

from the previous simulations (50*10 N-S and 10*50 E-W, respectively). These reference 

models are selected based on the maximum and minimum percentage of thermal discomfort 

found in the previous section. Then, heat mitigation strategies are applied to the reference 

models to test their effects on thermal comfort. The heat mitigation strategies include: 

increasing the albedo (or reflection coefficient) of surfaces, using vegetation on the roof and 

on the ground of the courtyards and finally using gravel on the roofs and within the 

courtyards (Table 3 and 4). 

According to the future climate scenario W+ for 2050, the outdoor air temperature will 

increase and as a consequence leading to more discomfort hours. Although the solar 

radiation in 2050 is assumed to be the same as in the current climate3, the operative 

temperature in the reference models 10*50 E-W and 50*10 N-S increased by 2.2°C and 

2.0°C on average, respectively. This increase leads to a situation in which 79% and 100% of 

the time is thermally uncomfortable in the corresponding models.  

Application of the heat mitigation strategies leads to a lower number of discomfort hours. The 

first strategy tested is increasing the albedo of the outer surfaces (roof and facades). The 

albedo of the facades and roof in the reference models is 0.20 and 0.10 respectively, and 

both of them are increased to 0.93, which corresponds to an added layer of white plaster. 

The increased albedo leads to more solar radiation being reflected and less being absorbed. 

This change decreases the discomfort hours by 6 (E-W) and 14 percent points (N-S).  

The second strategy is using vegetation on the roof as a green roof. Green roofs may cool 

the indoor environment due to their higher albedo (than conventional bituminous roofs) and 

their evapotranspiration effect. The use of this strategy leads to 9 (E-W) and 13 percent point 

(N-S) reduction of discomfort. The other similar strategy is using vegetation on the ground of 

the courtyard. Vegetation only on the ground reduces discomfort by 7 (E-W) and 5 percent 

points (N-S). This strategy seems to be less effective than the green roof because the 

vegetation on the roof directly affects the surface temperature of the roof, but on the ground 

only influences the reflected solar radiation. Combining vegetation on the roof and on the 

ground of the courtyard leads to a 9 (E-W) and 19 percent point (N-S) reduction in 

discomfort. This reduction is more than the separate strategies but not the sum of them. 

The last strategy is using gravel on the roof and on the ground of the courtyard. Gravel has 

high reflectivity and higher thermal mass than bituminous roofs. This strategy showed a 7 (N-

S) and 18 percent point (E-W) discomfort reduction.  

 

 

                                                           
3 Because of changes in wind patterns, cloud cover may be different in 2050 as compared to 1981-2010. 
However, because of a lack of future projections cloud cover and solar radiation intensities are assumed the 
same in the future scenario. 



Table 3: Operative temperatures and percentage of discomfort hours in the N-S model. 

 Max (°C) Mean (°C) Min (°C) Discomfort (%) 

Reference N-S model 35.9 30.4 25.8 90 

Roof 

Green 35.3 29.8 25.1 77 

Gravel 36.7 30.1 24.5 71 

Plaster 35.3 29.8 25.2 76 

Ground 
Green 35.6 30.2 25.5 85 

Gravel 37.2 30.5 24.7 79 

Roof & 
ground 

Green 35.1 29.6 25.0 71 

Gravel 36.7 30.2 24.6 72 

 

 

Table 4: Operative temperatures and percentage of discomfort hours in the E-W model. 

 Max (°C) Mean (°C) Min (°C) Discomfort (%) 

Reference E-W model 33.8 28.8 24.5 50 

Roof 

Green 33.3 28.2 24.0 41 

Gravel 34.6 28.6 23.4 43 

Plaster 34.8 28.8 23.5 44 

Ground 
Green 34.6 28.7 23.5 43 

Gravel 35.3 29.0 23.6 48 

Roof & 
ground 

Green 34.1 28.1 23.0 41 

Gravel 34.6 28.7 23.5 43 

 

 

Table 5 shows the reductions of discomfort hours (in percentage points) by means of the 

aforementioned heat mitigation strategies as average of the two models. The reductions are 

calculated based on the differences with the corresponding reference models. The results 

show that the effect of the roof is stronger than of the courtyard pavement. Moreover, the 

maximum cooling effect happens when the roof and the courtyard are vegetated.  

 

Table 5: The average reductions of discomfort hours in the two models. 

 Discomfort reduction (%) 

Roof 

Green 11 
Gravel 13 
Plaster 10 

Ground 
Green 6 
Gravel 6.5 

Roof & 
ground 

Green 14 
Gravel 12.5 

 

 

 

 



3.1.3. The position effect 

In this part of the study, thermal comfort is studied in dwellings with different 

position/orientation and floor inside the urban courtyard blocks (E-W and N-S). First 

dwellings in four main orientations, North, South, East and West, are compared, and then the 

average of all dwellings on each of the three floors (1st, 2nd and 3rd storey).  

Figure 6 (a and c) shows how dwellings with different orientation inside the urban courtyard 

blocks behave differently during the summer week. The dwellings on the Western side of the 

blocks are the hottest because they are warmed from the early morning (≈5:20), and receive 

direct sun during the before noon till evening (till ≈22:00 during the simulated summer week). 

The dwellings on the Eastern side of the blocks also receive a long period of direct sun from 

the early morning till evening. The dwellings located on the North and South side have the 

lowest indoor operative temperature because the sun angle is high during this week. 

Analysis of the results shows that the Northern, Southern, Eastern and Western dwellings in 

the E-W model have 31%, 31%, 91% and 99% of discomfort hours, respectively. 

Corresponding amounts for the dwellings in the N-S model are 44%, 51%, 94% and 100%.  

The zones located on different levels have different thermal behaviour. Figure 6 (b and d) 

shows a comparison of dwellings on the Southern side of the urban courtyard blocks on the 

three different stories of the courtyard models. The ground floors of the models are the 

coolest and the 2nd floor the warmest. The ground floors of the models are in touch with the 

ground. The average annual temperature of the ground is around 10°C in the Netherlands. 

This makes the ground floors of the models cooler than the upper floors. In contrast, the 2nd 

floors of the models are right below the roof. This roof surface heats the 2nd floors making 

them warmer than the others. Likewise, the number of discomfort hours during the simulated 

week is higher on the upper levels. The calculated discomfort hours for the dwellings on the 

Southern side of the building on the ground, 1st and 2nd floor of the E-W model are 21%, 32% 

and 42% respectively. These amounts for the N-S model are 35%, 52% and 62%, 

respectively. This shows that by increasing one level in the model, the number of thermal 

comfort hours decreases by almost 10 percent points.  



 

Figure 6: The operative temperature in zones/dwellings with different position and height in the 10*50 

E-W model (a and b); and in the 50*10 N-S model (c and d). 



3.1.4. Detailed analysis of a single family house with different roofs 

In this part of the study, the effect of different roofs on thermal comfort is studied. To do this, 

a dwelling on the Southern side of the urban courtyard block located on top floor of the 10*50 

E-W model is selected for simulations. The building is simulated with 4 different roofs: a 

black (conventional), a white, a green (vegetated) and a grey (gravel) roof. The black roof is 

a typical roof with bituminous top layer. The white roof is finished with white plaster. The 

green roof is a vegetated roof with grass. The grey roof is covered with gravel. The 

simulations are run for the summer week (16th till 23rd of June), and also for a winter week 

(16th till 23rd of December). The winter week is simulated to check the effect of the roof during 

the winter. Several studies have shown that cool roofs (such as white and green roofs) can 

lead to additional heat loss and increased heating demand [23, 31, 32]. The simulations are 

done in a free running mode in winter (same as in summer) to not being influenced by the 

heating system. The zone as a home, is divided into different sub-zones and activities; two 

bedrooms, a kitchen, a toilet and bathroom, a living room and corridors.  

The results show that the black roof (with the highest solar absorption) causes the highest 

indoor operative temperature among the models (Figure 7- a)). The white and green roofs 

have similar behaviour, and the gravel roof provides the lowest operative temperature. This 

could be due to the high albedo of the gravel and also its higher heat capacity. The average 

operative temperature of the model with these four roofs during the summer week is 28.4°C, 

27.7°C, 27.6°C and 27.3°C for the black, white, green and gravel roofs, respectively. The 

calculated amount of discomfort hours with these four roofs is 43%, 33%, 29% and 27%, 

respectively. The operative temperature in the model during the winter week is illustrated in 

Figure 7- b). In winter, the roofs have very small differences with each other; nevertheless, 

the black roof leads to the higher operative temperature. The average operative temperature 

in the models is 12.2°C, 12.1°C, 12.1°C and 12.0°C for the black, the green, the white and 

the gravel roof, respectively.  

To sum up, the gravel roof leads to the minimum indoor operative temperature in summer, 

whereas the black roof leads to the highest in winter (Table 6). 



 

Figure 7: The average operative temperatures of the house in summer (top), and winter (down).  

 

 

Table 6: The operative temperatures of the model with different roofs. 

 R Value 
(m2K/W) 

Summer week Winter week 

Max (°C) Mean (°C) Min (°C) Max (°C) Mean (°C) Min (°C) 

Black roof 3.014 32.9 28.4 24.4 13.7 12.2 11.1 

Green roof 2.057 32.1 27.6 23.8 13.9 12.1 10.9 

White roof 3.039 32.1 27.7 23.9 13.5 12.1 11.0 

Gravel roof 3.042 31.6 27.3 23.6 13.5 12.0 10.9 

 

 

3.2. Phase 2: Scale model experiment 

The results of phase 1 were based on the computer simulations. To validate parts of the 

results, an experiment on a scale model was done. The experiment focused on the effect of 

the different materials used in the simulations (black, green, white and gravel surfaces). 

Thus, this complementary phase was added to the research. First, the albedo of the 

materials used in the scale model experiment was measured. The albedo of the black 

cardboard is 0.054, of the white cardboard 0.832 and of the grass in dry mode 0.387. The 



albedo of the gravel could not be measured; but based on Santamouris [33] it should be 

around 0.72. 

Figure 8 shows the normalised air temperature within the courtyard model and inside the 

model after 6 hours (heating process with 1000 W lamp and 22 W fan) and after 12 hours 

(cooling down process with 22 W fan only). To get these normalised values, the ambient air 

temperature of the lab was subtracted from the measured air temperatures. A value above 

zero thus means that the air above the surface is warmer than the lab air. The temperatures 

are plotted after 6 and 12 hours. The lamp (representing the sun) was turned off after 6 

hours, and the fan (as the wind source) was turned off after 12 hours, at the end of each 

experiment. 

Considering the indoor environment, the average indoor temperature of the four sides of the 

scale model (subtracted from the measured lab air temperatures) is illustrated in Figure 8-a. 

After 6 hours, the indoor environment below the black roof has the highest normalised air 

temperature (+2.0°C), and the indoor environment below the wet grass roof the lowest (-

1.1°C). The wet gravel provides the second coolest indoor environment. This experiment on 

dry and wet gravel shows that the dry gravel roof has 0.4°C higher temperature than the 

white roof; however, the wet gravel roof provides a 1.4°C cooler indoor environment than the 

white roof. This shows that the effect of evaporation is stronger than the effect of albedo. 

After 12h, the wet grass led to the coolest indoor environment (-2.5°C) while the other 

models had a more or less similar temperature which was close to or just below the ambient 

air temperature. 

Regarding the courtyard temperatures (Figure 8-b), the dry gravel and the black pavement 

have the highest normalised air temperature after 6h (+1.9°C and +1.7°C, respectively). 

Comparing the dry gravel and grass with their wet counterpart, the dry pavements lead to a 

higher temperature after both 6 and 12 hours. When the gravel pavement is irrigated, the air 

temperature inside the courtyard decreases with +4.2°C; if the grass is irrigated, this 

decrease is +2.9°C. After 12 hours, the wet grass pavement results in the lowest courtyard 

temperature (-3.2°C) among the others. The other cool pavement material was the wet 

gravel with -2.9°C. The experiment on the microclimate of the courtyard also shows that the 

gravel and the white cardboard (with highest albedos) do not necessarily provide the coolest 

environment. The evaporative cooling effect of water made the courtyard with wet grass and 

wet gravel the coolest microclimates. 

It should be noted that this phase of the study was based on the experiment on a cardboard 

scale model. Although these results should be taken with some caution, this study showed 

that the albedo of the materials directly affect the indoor temperature. The added value of 

this study was to show that an irrigated cool roof (covered with gravel or grass) has a much 

higher cooling effect than the dry equivalent. 



 

Figure 8: Temperature differences inside the scale model (average of four data loggers on the North, 

South, East and West side of the model) (a), and within the courtyard (b).  

 

 

3.3. Phase 3: An actual courtyard house experiment 

In this third phase, the thermal behaviour of an actual courtyard house in Delft (the 

Netherlands) is studied. Four data loggers recorded the air temperature of the living room, 

the kitchen, the master bedroom and a small bedroom from 1st till 31st of May. Another data 

logger measured the air temperature of the courtyard from 19th of April till 31st of May. The 

courtyard house is also modelled and simulated in DesignBuilder. The measured and 

simulated results are compared and plotted in Figure 9. The aim of this third phase is to 

validate the results of DesignBuilder, and see how well it predicts air temperature.  

As shown, the simulated indoor temperatures have more fluctuations than the measured 

data. This is expected to be due to the higher thermal mass in the actual house that keeps 

the temperature more stable. The root mean square deviations (RMSD) between the 

measured and simulated temperatures in the living room, kitchen, master bedroom and small 

bedroom are: 0.80°C, 0.88°C, 0.85°C and 1.12°C, respectively; and 0.91°C on average. 

Considering that the data loggers had an inaccuracy of ±0.3°C, this small difference is 

acceptable for the comparative studies done in phase 1 of this study. 

The courtyard temperature is also compared to the nearest available KNMI weather station 

(Rotterdam-The Hague Airport) in Figure 9-e left. The maximum temperature that happened 

in the Delft courtyard was 26.8°C and at the airport 26.0°C, both at 14:00 h. The minimum 

temperatures were 6.8°C (at 04:00 h) and 1.5°C (at 03:00 h) in the courtyard and at the 

airport, respectively. This shows that the courtyard in general has a warmer microclimate 

than the airport. This could be due to the urban heat island effect because the courtyard is in 

the city centre, and the airport is located in the suburbs. Moreover, the courtyard has a 

higher thermal mass and lower openness to the sky than the airport. Figure 9-e right also 

shows the average (averaged for all 31 days of May) temperature difference for each hour 

during a 24 hour period between the courtyard and the airport. Based on this graph, the 



courtyard in general has a higher temperature than the airport except during a few hours 

around sunrise. The higher thermal mass accumulates the heat during the day and releases 

it at night. As a result the highest temperature difference occurs in the evening about 2 hours 

before sunset (19:00 h). To sum up, the average air temperature in the courtyard is 1.5°C 

higher than at the airport. 

  



 

 

Figure 9: Compared temperatures of measurement and simulation in four rooms (a-d left) with their 

corresponding error plot (a-d right). The air temperatures of the courtyard and the airport are also 

compared (e left), and the average (averaged for all 31 days of May) temperature difference for each 

hour during a 24 hour period between the courtyard and the airport is illustrated in a graph (e right). 

 



4. Conclusions 

This paper investigated the thermal behaviour of courtyard buildings with different 

orientations and elongations (sizes) in the Netherlands. The effect of different roofs and 

courtyard ground pavements were also tested in summer (and in a few cases in winter). The 

whole study was divided into three main phases: 

In phase 1, eighteen courtyard buildings were simulated with DesignBuilder for a summer 

week. It was found that North-South and East-West orientations provide the least and most 

comfortable indoor environments, respectively. To optimise the thermal performance of these 

two models, different cool and highly reflective materials were simulated on the roof and as 

courtyard pavement. The results showed that the maximum reduction (14%) in the number of 

discomfort hours happens when the roof and the courtyard ground are vegetated. Regarding 

the different thermal zones located in a courtyard, this paper showed that the number of 

discomfort hours is three times higher in dwellings on the eastern and western sides of an 

urban courtyard block rather than on the northern and southern sides, mainly because of the 

high sun angle in summer at 12 o’clock solar time. The number of discomfort hours in 

dwellings alongside an urban courtyard is higher on the higher floors than on the lower floors; 

by moving one floor up, the number of discomfort hours increases by 10 percent points. The 

warmest zones were found to be on the top level because the roof receives more sun in 

summer (than vertical surfaces). The coolest zones were on the ground floor, where the 

building is adjacent to the earth. In this phase, the effects of the different cool roofs were also 

tested in winter (as well as summer). Although the gravel provided an almost 1°C cooler 

indoor environment in summer, no significant difference with the other roofs was observed in 

winter.  

It should be noted that these results were based on the computer simulations. To validate 

parts of the results, an experiment on a scale model and a field measurement were done. 

The experiment focused on the effect of the different materials (used in the simulations), and 

the field measurement assessed the simulation software results. Thus, two complementary 

phases were added to the research: 

In phase 2, the effects of the mentioned roofs were tested using a 1/100 scale model of an 

urban courtyard block. The experiment confirmed that cool roofs provide cooler indoor 

environments. The added value of this study was to show that an irrigated cool roof (covered 

with gravel or grass) has a much higher cooling effect than the dry equivalent.  

In phase 3, the accuracy of DesignBuilder as the simulation program used in this paper was 

tested through a one-month (May 2014) field measurement of an actual courtyard house. 

The simulation and measurement results of four rooms inside this house were compared. 

The average root mean square deviation of all rooms combined was 0.91°C. The air 

temperature of the courtyard was also compared to the air temperature at a nearby airport. 

On average, the courtyard had a +1.5°C higher air temperature than the airport.  

Returning back to the aims of this paper, different parameters for designing a courtyard (such 

as orientations and roof types) were discussed. The findings help to design courtyard 

buildings more efficiently for the warmer future of the Netherlands. Results on the effect of 

the different cool roofs could be used for greening and retrofitting existing buildings and 

making them climate proof. 
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