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Abstract

A general method for deriving new survival distributions from old is pre-
sented. This yields a class of useful mixture distributions. Fitting such
distributions to failure-time data allows estimation of the improvement in
reliability that could be gained from eliminating ‘frail’ components. One
model parameter is the proportional increase of expected survival time that
could be achieved. Some 2 and 3 parameter distributions in this class are
described, which are extensions of the Weibull, exponential, gamma and
lognormal distributions. The methodology is illustrated by fitting some well-
travelled datasets.
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1. Introduction

For many years, there has been considerable interest in how components
and systems age, with the development of many lifetime distributions and
of related concepts such as the hazard function (failure rate) and the mean
residual life. Lai and Xie (2006) give an excellent account of the field.

Failure rate can be constant, increasing (IFR), or decreasing (DFR). All
this can be modelled using the 2-parameter Weibull distribution (e.g. John-
son et al 1995). However, more complicated behaviours are often found in
component failure distributions, such as the bathtub shape (BT) and even oc-
casionally the upside-down bathtub (UBT) and the modified bathtub (MTB),
where failure rate initially increases before the bathtub shape proper. Roller-
coaster shapes are the ultimate in age-related failure-rate fluctuations.
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Modelling such failure data has fascinated statisticians and probabilists,
and a plethora of failure distributions has been created over the last decades,
to add to the longer-known gamma, lognormal and log-logistic distributions.

However, as fascinating as modelling bathtub and roller-coaster hazard
functions can be, we must enquire as to the practical purpose of analysing
failure data. One aim of course is to obtain an estimate of mean component
lifetime and its variability, and here a flexible model that can cope with
censored data is certainly useful. Another practical problem with DFR and
BT distributions is to decide whether burn-in is needed to reduce the failure
rate to an acceptable level, and to find the optimal burn-in period (e.g. Yuan
et al, 2016). For example, this could be chosen to maximise the mean residual
life (MRL). This also usually relies on parametric modelling.

Wang et al (2002) discuss the reasons for the bathtub shape in detail, as do
Klutke et al (2003). There are possible mechanisms that can cause a decreas-
ing failure rate, such as work-hardening, although this and the strengthening
of concrete through drying out are the only examples that appear in the liter-
ature. Rather, DFR distributions must nearly always be due to a mixture of
stronger and weaker components, where the weaker ones fail quickly, and so
failure rate progressively decreases, until eventually wearout may cause it to
rise again, giving a BT shape. This explanation was first given by Proschan
(1963). The discovery of an initial DFR curve might therefore lead to tighter
quality-control in manufacturing, or to the identification of the major design
flaws and efforts to engineer them out.

Besides the usual modeller’s aim of creating new survival distributions to
fit failure data better, the methodology presented here aims to estimate the
benefit of removing flawed items, and so to provide better decision-support to
reliability engineers. A measure ξ can be estimated that gives the potential
for reliability growth.

To describe the methodology: techniques originally developed by mathe-
maticians for evaluating integrals have already been used to generate new dis-
tributions from old, for example transformation of variables has been widely
used. To generate some new survival distributions with the potential to be
DFR or BT, the method of integration by parts (IBP) was applied to the pdf
of a ‘parent’ distribution, such as the Weibull. Generating new distributions
in this way has apparently not been done before.

This was a mathematical exercise, which although leading to a vast array
of new distributions, might have yielded nothing of particular interest for
Reliability. However, it led to a useful class of mixture (frailty) distribu-
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tions, with one parameter (λ) more than the parent distribution. Statistical
inference is straightforward, as the parent distribution is nested inside the
class of ‘descendant’ distributions and is regained as λ → ∞. Large-sample
theory or bootstrap methods then allow one to test the null hypothesis that
the extra parameter does not improve the fit to data.

Further, one can reparameterize in terms of a parameter ξ, zero for the
parent distribution, and such that ξ is the proportional increase in expected
lifetime on eliminating the mixture of flawed components, and retaining only
the most durable. Thus one can for example fit the modified Weibull model
to failure-time data and have an estimate of the gain from eliminating flawed
components, under the assumptions that the parent distribution applies, and
that the observed high initial failure rate is caused by flawed components.

It must be stressed that it is not claimed here that every dataset can
be fitted better by one of the new distributions to be described than by
existing distributions. Rather, a methodology for deriving new distributions
is described, and a vast number of new possibilities now exist. Further,
potential reliability gain can be quantified.

There are of course many distributions that already allow flexible hazard
functions, at the cost of adding one or more additional parameters, and a brief
literature review follows. A useful 2-parameter distribution due to Dhillon
(1981) has survival function F̄ (t) = exp{1−exp(αt)β)}, and is IFR for β > 1,
or BT if β < 1. This distribution can never be purely DFR.

A mixture of two Weibull distributions with up to 5 parameters can gen-
erate 8 shapes of failure rate, but not a bathtub (Jiang and Murthy, 1998).

Chen (2000) described an intriguing 2-parameter distribution with sur-
vival function F̄ (t) = exp{λ(1− exp(tβ))} where λ > 0, β > 0, that can have
an IFR, DFR or BT failure rate. This distribution would however have 3
parameters if the scale of t is made arbitrary; the author means to say that
the distribution has 2 shape parameters. It generalizes Dhillon’s distribution.

Yan and Leemis (2008) present the 2-parameter logistic-exponential dis-
tribution, where F̄ (t) = {1 + (exp(λt) − 1)κ}−1, where λ > 0, κ > 0. This
interesting distribution can be UBT, BT, or exponential. In the tail, the
hazard function tends to a constant, so the 2-parameter BT distribution
cannot model wearout; however, on adding more parameters, a more flexible
distribution is obtained.

The q-Weibull distribution with 3 parameters can give IFR, DFR and
BT curves (Assis et al, 2013). Here the exponential function is replaced by
expq(x) = (1 + (1 − q)x)(1−q)−1

if 1 + (1 − q)x ≥ 0, else zero. The finite
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range of expq(−x) for q < 1 is the reason why this model can be initially
DFR and later IFR; with a finite range, if an event has not yet occurred near
the end of the range, it must occur in the remaining interval, giving a large
hazard. It is also probably the reason for numerical difficulties in fitting the
model by maximum-likelihood described by Xu et al (2017). The generalized
gamma or Stacy distribution (e.g. Cox et al, 2007) generalizes the Weibull
distribution with an extra parameter, and can have IFR, DFR, BT or UBT
failure rates. It includes the gamma, Weibull and lognormal distributions as
special cases.

Recently, many more Weibull-like distributions have been produced. Méndez-
González et al (2017) used the 4-parameter beta-Weibull distribution to
model failures of electronic equipment. Bo et al (2016) studied the addi-
tive modified Weibull distribution, and Prataviera et al (2018) studied a
4-parameter extension to the Weibull distribution.

This account is of course incomplete; turning to reviews, Pham and
Lai (2007) describe generalizations of the Weibull distribution, Nadarajah
(2009) describes 17 distributions with bathtub-shaped hazards, and Almiki
and Nadarajah (2014) give a comprehensive account of modifications to the
Weibull distribution to achieve a more flexible hazard function. Regarding
methodology, Lai (2012) gives a comprehensive account of ways to modify
survival distributions.

The methodology for generating new distributions is described next, then
some new distributions derived from the Weibull, gamma and lognormal
distributions are given, and finally some well-used reliability datasets are
fitted to exemplify the methodology. The article ends with some conclusions.

The general method for generating new distributions is described first,
followed by a useful special case.

2. A general method for constructing new survival distributions

Let u(t) be a monotonically increasing function of time t, and v(t) a
monotonically decreasing one, and write the pdf f(t) as a product f(t) =
−u(t)v′(t),where v(∞) = 0, v′(t) ≤ 0, and u(0) = 0, u′(t) ≥ 0, and where
primes denote derivatives. Then by the method of parts,

∫

∞

0

f(t) dt = −
∫

∞

0

u(t)v′(t) dt = −[uv]∞0 +

∫

∞

0

v(t)u′(t) dt.
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The first term is zero, and v(t)u′(t) > 0, so

g(t) = v(t)u′(t) (1)

is a pdf. For example, one could take u(t) = t1/2, v′(t) = − exp(−t)/t1/2, so
that f(t) is the exponential pdf, to generate a new distribution.

If the survival function of the original distribution is F̄ (t), applying the
method of parts to (1), the survival function corresponding to g(t) is

Ḡ(t) = F̄ (t)− u(t)v(t), (2)

showing that the probability mass has moved to the left. More precisely,
the old distribution stochastically dominates the new one; this is first-order
stochastic dominance.

If the original mean is Ef (T ), the mean of the new distribution is

Eg(T ) =

∫

∞

0

tv(t)u(t)′ dt = Ef(T )−
∫

∞

0

u(t)v(t) dt, (3)

from the pdf g(t) on integrating by parts or directly by integrating (2).
One can of course transform the integrand by going L → R from the

parent distribution instead of R → L as shown above, to obtain f(t) from g(t)
by integrating u′ and differentiating v. In this case, the new R distribution
stochastically dominates the parent.

The shifting of probability mass can be better understood by tagging the
mass at t0 using a Dirac delta-function. Then we apply IBP to−u(x)v′(x)δ(t−
t0), to obtain −u′(x)v′(t0) for t ≤ t0, else zero. Hence a unit probability mass
at t0 has been smeared out onto the range (0, t0) with pdf u′(t)/u(t0), dis-
tribution function u(t)/u(t0). Going from the L to the R distribution, the
probability mass is smeared out over (t0,∞) with survival function v(t)/v(t0).

On letting R → L, because probability mass has been shifted left, and
the lower limit of zero is fixed, applying IBP can give a distribution that is
similar in the right tail to the old one, but has much more probability mass
at low t. Hence it is easy to generate distributions that are initially DFR
and are still IFR/DFR in the tail. From an IFR parent distribution, one can
generate distributions that are IFR, BT or modified BT.

The choice of u(t) is wide, and so this is a fertile way of creating new
distributions. A function that is zero at t = 0 and never decreases is required.
Obvious choices are u = tλ for λ > 0, or u = exp(λt) − 1. Another choice
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would be to take u(t) as a monotone function of any distribution function,
not necessarily that of the parent distribution. With u = F (t)λ the integral
can be done analytically. In this case, the new pdf is given by

g(t) =
λ

λ− 1
(1− F (t)λ−1)f(t) (4)

and the distribution function G(t) is given by

G(t) =
λF (t)− F λ(t)

λ− 1
. (5)

This is a negative mixture of the original pdf with weight λ/(λ− 1) and the
top λ-th order statistic with weight −1/(λ− 1). When λ = 1,

G(t) = {1− ln(F (t))}F (t), g(t) = ln(1/F (t))f(t). (6)

As λ → ∞, G(t) → F (t) because F λ → 0. A tractable example of this case
is given briefly in the appendix.

Going L → R, set v(t) = Ḡλ(t), so u′ = gḠ−λ and u = Ḡλ−1
−1

λ−1
and

F̄ = λḠ−Ḡλ

λ−1
. This is a negative mixture that is longer-tailed than was the

L-distribution. When λ = 1, F̄ = (1− ln(Ḡ))Ḡ.
The case where u is a power of t is particularly tractable and so the

method is now specialised to this case.

3. A useful special case

When u is a power of time, much further progress can be made. First,
let the original pdf have increasing and decreasing factors u, v′(t) given by
u0(t), v

′

0(t). Define u(t) = tλu0(t), v
′(t) = v′0(t)/t

λ to obtain a general distri-
bution; the new distribution is conveniently named after the ‘parent’ distri-
bution, e.g. the lambda or λ−Weibull distribution.

All lifetime distributions must have a scale factor α. Without loss of
generality, we set α = 1, and put the scale back in later if necessary; this
simply means that t → αt, dt → α dt.

Thus u = tβ−1+λ, where β−1 is the power of t in an original distribution.
The parameter β is positive for Weibull and gamma distributions, and β = 1
for the lognormal distribution. Then

g(t) = (β + λ− 1)tβ+λ−2v(t). (7)

We must have that β+λ−1 > 0 so that the pdf is positive, hence λ > 1−β.
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3.1. Moments

The moments can now be written more simply than (3).

Eg(T
n) = −(β + λ− 1)

∫

∞

0

tβ−2+λ+nv(t) dt,

and applying the method of parts,

Eg(T
n) =

β − 1 + λ

β − 1 + λ+ n

∫

∞

0

tβ−1+λ+nv(t)′ dt =
β − 1 + λ

β − 1 + λ+ n
Ef(T

n). (8)

The mean residual life (MRL) at time t is given by

MRLg(t) =

∫

∞

t
g(x)(x− t) dx

Ḡ(t)
=

∫

∞

t
Ḡ(x) dx

Ḡ(t)
.

From (2) after some manipulation, we have that

MRLg(t) =
β + λ− 1

β + λ

(

F̄ (t)

Ḡ(t)

)

MRLf(t)− t/(β + λ). (9)

This give the MRL in terms of Ḡ and quantities pertaining to the parent
distribution.

3.2. Status as a mixture distribution

To see that g(t) is the pdf of a a mixture distribution, we can write

g(t) = −(β + λ− 1)tβ+λ−2

∫

∞

t

v′0(x)/x
λ dx,

and set x = t/ω, where ω < 1. Then

g(t) = −
∫ 1

0

(β + λ− 1)(t/ω)β−1{v′0(t/ω)/ω}ωβ+λ−2 dω. (10)

This is a mixture of the original pdfs, i.e. g(t) =
∫ 1

0
{f(t/ω)/ω} dF (ω),

where F (ω) = ωβ+λ−1, so that the mixing distribution is the power-function
distribution.

Hence the integration by parts gives a mixture of the original pdfs, where
the scale factor α is greater than the original. This is a model for early
failures, in that the population of items is heterogeneous, with frail or flawed
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components. This mixing can be extended to the case where there are n
components in a batch with a random frailty, but that is not considered
further here. Frailty models are discussed in e.g. Duchateau and Janssen
(2008).

This representation allows the generation of random numbers from the
pdf g(t). Generate a random value Ω from a uniformly-distributed random
number U as Ω = U1/(β+λ−1), and a random number X from the parent
distribution. Then a r.v. from g(t) is ΩX .

As λ → ∞, the mixing distribution tends to a delta function at Ω = 1,
and the new distribution reduces to the parent distribution. In the tail for
t ≫ 1, the items with ω < 1 will have failed leaving only the ω ≃ 1 items,
and thus the hazard function and MRL should reduce to those of the original
distribution in the tail. This will be true if v′(t) goes to zero quickly enough
so that F̄ (t;ω)/F̄ (t; 1) → 0 as t → ∞. It may well happen however that this
extreme tail behaviour is irrelevant in practice, because nearly all components
will have failed by then.

To see more formally that the new distribution reduces to the parent
distribution as λ → ∞, from (2) we have that

Ḡ(t)− F̄ (t) = tβ+λ−1

∫

∞

t

x−λv′(x) dx.

Expanding v′ in a Taylor series about t, v′(x) = v′(t) + (x − t)v′′(t) + · · · ,
and the integral is

∫

∞

t

x−λv′(x) dx = −t1−λv′(t)

λ− 1
+

v′′(t)t2−λ

(λ− 1)(λ− 2)
+ · · ·

Thus

Ḡ(t)− F̄ (t) = −tβ{v′(t)/(λ− 1) + v′′(t)/(λ− 1)(λ− 2) + · · · },

from which Ḡ → F̄ as λ → ∞.
The ‘descendant’ distribution pdf can have the mode at zero or be uni-

modal if the parent distribution is unimodal. We do not have a proof that it
cannot be bimodal, although none of the distributions examined has been.

3.3. Hazard function

The hazard for small t is now discussed. The initial hazard is ∝ tβ+λ−2 for
λ < 1 if v′(0) is nonzero and finite, because the integral v(t) = −

∫

∞

t
v′0(x)/x

λ dx
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converges. However, for λ > 1 the integral tends to infinity as t → 0. Ex-
panding v0 in a Taylor series, for small t, v(t) ≃ (λ−1)−1v′0(0)t

1−λ, and hence
the initial hazard is ∝ tβ−1 as for the parent distribution, so the descendant
distribution is not BT if the parent is not. However, the hazard for small t
is still greater than for the parent distribution, being ≃ −β+λ−1

λ−1
tβ−1v′0(0).

For distributions such as the lognormal, v′(t) tends to zero faster than
any power of t. In this case, v(0) is finite, and the initial hazard is tβ+λ−1

for all λ. When v is finite at zero time, the initial hazard function goes as
tβ−2+λ. Thus if β + λ < 2 the distribution is DFR. If the parent distribution
was IFR, the new distribution is BT.

4. Bathtub distributions and implications for reliability engineers

With a mixture distribution, equation (8) can yield a formula for the
gain in lifetime on eliminating inferior items with mean lifetime reduced to a
factor ω < 1 of the lifetime of strong components, where ω is defined in (10).

Define ξ = 1/(β+λ−1) as the potential for reliability growth. The mean
lifetime is Eg(T ) = β−1+λ

β+λ
Ef(T ), so the proportional increase in expected

lifetime on eliminating inferior components is

PI =
Ef (T )− Eg(T )

Eg(T )
=

1

β + λ− 1
= ξ,

and the proportional decrease in lifetime caused by inferior items is 1/(β +
λ) = ξ/(ξ + 1). The lambda-distribution can be fitted to failure-time data,
λ and β estimated, and PI and its standard error computed. As λ increases
and the parent distribution is regained, PI goes to zero.

A BT failure rate shows that there are indeed flawed components, but
for small values of ξ the hazard function can still be IFR. Reliability gain is
thus possible not just for BT curves but also for IFR curves, and conversely
a curve can be DFR so that burn-in might be done, but if ξ = 0 no gain is
possible from elimination weak units.

A mixture of flawed units with resulting high ‘infant mortality’ is thought
to occur most often with electronic components, such as micro-electro-mechanical
systems. Naturally, this is a problem in areas where technology is advancing
rapidly. The reliability engineer must design an optimal burn-in program,
perhaps with accelerated or stress testing, that can weed out the weakest
components, or may decide that the production line or the product must be
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re-engineered. Nowadays, degradation-based burn-in is often used because
units take too long to fail completely (e.g. Yuan et al, 2016).

The first step in solving a problem is often to quantify it, and fitting
e.g. the λ-Weibull distribution to failure data allows this to be done. The
reliability gain that could be achieved on eliminating weak units can be
estimated. The engineer could use the fitted λ-distribution to help design an
efficient burn-in program, or might decide that the gain is great enough to
justify improving the manufacturing process instead.

When the distribution is IFR, and ξ is small, the model fit may still
indicate that there are weak units and reliability growth is possible. Here
burn-in will not help, but knowing that there are weak units, the engineer
may be able to investigate the cause and improve the manufacturing process.
The examples section illustrates these ideas, and some caveats are given in
the conclusions.

5. New distributions

The next sections give specific examples of the new distributions. Here
the scale factor α has been put back in, to make the results immediately
usable. The properties are described only briefly, because moments, MRL
and random number generation have already been dealt with for the general
case. Note that a λ-GG distribution can be derived, where GG denotes the
generalized gamma distribution. This includes gamma, Weibull, and even
lognormal, but it is simpler to derive these 3 lambda-distributions separately.
The methodology could be applied to any survival distribution, but only the
most widely-used are considered here.

In integrating v′(t), the incomplete gamma function will sometimes be
needed, defined as

Γ(a; t) =

∫

∞

t

xa−1 exp(−x) dx,

where a > 0. If a ≤ 0 Γ(a; t) is still defined, but is not computable using soft-
ware that computes the incomplete gamma function. The gamma function
itself is Γ(a) = Γ(a; 0).
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Figure 1: Hazard functions for a λ-Weibull distribution with β = 2.5 for varying values of
ξ. The curves end when the survival function becomes less than 0.001.

5.1. The λ-Weibull distribution

Here v′(t) = −α exp(−(αt)β)/(αt)λ and u(t) = β(αt)β+λ−1. Hence on
setting y = (αx)β ,

v(t) = β−1

∫

∞

(αt)β
y

1−λ
β

−1 exp(−y) dy = β−1Γ(
1− λ

β
; (αt)β).

The pdf is

g(t) = α(β + 1− λ)(αt)β+λ−2Γ(
1− λ

β
; (αt)β).

From (2) the survival function is

Ḡ(t) = exp(−(αt)β)− (αt)β+λ−1Γ(
1− λ

β
; (αt)β).

Figure 1 shows the hazard function for β = 2.5 as ξ increases from zero, with
the BT shape for ξ > 1.
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5.2. The λ-exponential distribution

This is the special case of the λ-gamma and λ-Weibull distributions when
β = 1. The parameter ξ = λ−1. The pdf is g(t) = αλ(αt)λ−1Γ(1−λ;αt) and
the survival function is

Ḡ(t) = exp(−αt)− (αt)λΓ(1− λ;αt).

Since the moments of the exponential distribution are Ef(T
n) = α−nn!, from

(8) we have that
Eg(T

n) = α−nλn!/(λ+ n),

so that Eg(T ) = α−1λ/(λ+ 1),

var(T ) = α−2λ{λ2 + 2λ+ 2}
(λ + 1)2(λ+ 2)

.

This simple form means that the parameters α, λ can be estimated from
the sample mean and variance by the method of moments. Solving,

λ̂ =
2/(A− 1)

1 +
√

1 + 2/(A− 1)
,

and

α̂ =
λ̂

(λ̂+ 1)t̄
,

where A = s2/t̄2, t̄ is the sample mean and s2 the sample variance. If the
coefficient of variation A1/2 ≤ 1 then the exponential distribution would be
fitted as λ could not be estimated.

Figure 2 shows the hazard function for several values of ξ. The initial
hazard is a constant for ξ < 1, in fact it is 1/(1 − ξ), and the distribution
is always DFR. When ξ = 1, then Γ(0;αt) is the exponential integral, and
the initial hazard is infinite. In fact, the hazard ≃ −α ln(αt) for small t. For
ξ > 1 the initial hazard is infinite.

Random numbers from this distribution are particularly simple and a
random number T = −α−1U ξ ln(V ), where U, V are uniformly distributed
random numbers.

This could be a useful 2-parameter distribution for modelling failure data
where there may be some flawed components giving a DFR distribution, but
no wearout so the failure rate is expected to be constant in the tail. Unlike
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Figure 2: Hazard functions for a λ-exponential distribution for varying values of ξ. The
curves end when the survival function becomes less than 0.001.

the gamma distribution, which also has this property, the initial failure rate
can be finite for a DFR distribution. This distribution is thus comparable to
the exponential-geometric distribution (e.g. Lai and Xie, 2006) which is also
a mixture of exponentials. The λ-exponential distribution has more tractable
moments but a less tractable hazard function.

An interesting special case occurs when λ = 1/2. Then Γ(1/2;αt) =
2
√
πΦ(−

√
2αt), where Φ is the normal distribution function, and the pdf is

g(t) = α
√
π(αt)−1/2Φ(−

√
2αt).

5.3. The λ-gamma distribution

Here

v(t) =

∫

∞

t

α exp(−αx)

Γ(β)(αx)λ
dx = Γ(1− λ;αt)/Γ(β).

Hence the pdf is

g(t) = α(β + λ− 1)(αt)β+λ−2Γ(1− λ;αt)/Γ(β),
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Figure 3: Hazard functions for a λ-gamma distribution with β = 1.5 for varying values of
ξ. The curves end when the survival function becomes less than 0.001.

and
Ḡ(t) = Γ(β;αt)/Γ(β)− (αt)β+λ−1Γ(1− λ;αt)/Γ(β).

Figure 3 shows the hazard function for β = 1.5 as ξ increases from zero, with
IFR shape for ξ < 1, DFR for ξ > 1 and a unimodal hazard for ξ = 0.9.

5.4. The λ-lognormal distribution

The lognormal pdf is

f(t) =
1

x

exp(−(ln(t)− µ)2/2σ2)√
2πσ2

.

Setting u(t) = tλ and

v(t) =

∫

∞

t

1

xλ+1

exp(−(ln(t)− µ)2/2σ2)√
2πσ2

dx,

and on changing variable to y = exp(x),

v(t) =
1√
2πσ2

∫

∞

ln(t)

exp(−(y − µ)2/2σ2 − λy) dy.
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Finally, on completing the square in the exponent,

v(t) = exp(−µλ+ λ2σ2/2)Φ(−(ln(t)− µ+ λσ2)/σ),

where Φ is the normal distribution function.
This yields the new pdf

g(t) = λtλ−1 exp(−µλ + λ2σ2/2)Φ(−(ln(t)− µ+ λσ2)/σ).

From (2) the survival function is

Ḡ(t) = Φ(−(ln(t)− µ)/σ)− tλ exp(−µλ+ λ2σ2/2)Φ(−(ln(t)− µ+ λσ2)/σ),

or more elegantly

Ḡ(t) = Φ(−(ln(t)−µ)/σ)−exp(λ(ln(t)−µ+λσ2/2))Φ(−(ln(t)−µ+λσ2)/σ).

The distribution is initially either IFR like its parent if ξ = 1/λ ≤ 1,
so is UBT, and is DFR if ξ > 1. When λ = 1 it is UBT, with initial
hazard function exp(−µ + σ2/2). Hence it can be a useful long-tailed DFR
distribution. The failure rate is shown in figure 4.

5.5. Discrete distributions

Discrete distributions are sometimes used for failure data. Here summa-
tion by parts can yield new distributions in the same way that integration by
parts did for continuous distributions. The mathematics is not very tractable,
but when λ = 1 the class of Bissinger distributions (Johnson et al 2005, p.
509) is obtained. Here given a parent distribution with probability mass
function (pmf) pi, the probabilities qi are

qi = (1− p0)
−1

∞
∑

j=i+1

pj/j.

The distributions clearly have their mode at zero, and have moments related
to those of the parent distribution.
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Figure 4: Hazard functions for a λ-lognormal distribution for varying values of ξ.
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6. Model fitting and inference

Prototype fortran programs were written to check the mathematics shown
here, and to fit the models to data. It is easiest but not essential to use a
function minimiser that does not require derivatives to maximise the log-
likelihood function. From the estimated Hessian matrix, large-sample stan-
dard errors on fitted model parameters and 95% confidence intervals were
calculated. The computation of the incomplete gamma function was done
using a standard function from the NAG (Numerical Algorithms Group) li-
brary. However, for non-positive arguments numerical quadrature was used.
Currently, there is not much software available to evaluate these functions
explicitly.

The gain from re-engineering out inferior items is (β + λ − 1)−1. To
estimate this, one can reparameterize the model so that the parameter λ is
replaced by ξ = (β+λ−1)−1. Then simply λ = 1−β+ ξ−1. The likelihood-
maximisation routine will deliver an estimate of ξ and its standard error.
When β > 1 the IFR distribution will be initially DFR if β + λ − 2 < 0 or
ξ > 1.

Maximum-likelihood estimation can give biased estimates for small sam-
ples. To correct the estimate of ξ, the parametric bootstrap can be used
to resample from the fitted distribution. If the average of the bootstrapped

replicate estimates is
ˆ̂
ξ, the correction is ξ̂ → ξ̂ − (

ˆ̂
ξ − ξ̂) or ξ̂ → 2ξ̂ − ˆ̂

ξ. The
nonparametric bootstrap can be used to generate resampled values, which
are then corrected, and so to generate standard errors and a 95% confidence
interval.

This can be used for a statistical test, using the equivalence between tests
and confidence intervals, but a perhaps better method to test for the presence
of a mixture of components is as follows: fit a parent-distribution model,
e.g. Weibull, and record the increase ∆ℓ in log-likelihood on floating the ξ
parameter from zero. Then use the fitted Weibull model in the parametric
bootstrap to generate samples conforming with H0. The distribution of ∆ℓ
is found by floating ξ for these parametric-bootstrap resamples. The p-value
of the test is the proportion of resamples for which ∆ℓ exceeds the observed
value.
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7. Examples

The lambda-Weibull model was fitted to 3 datasets listed in Bebbington
et al (2006). The first comprised 60 failure times (thousands of cycles) for
electrical appliances. The data are originally from Lawless (2003). The
second is time to first failure in thousands of hours for 36 500 MW generators,
originally from Dhillon (1981). Finally, the third comprises 128 interfailure
times (in thousands of hours) for a 180-ton rear dump truck, originally from
Coetzee (1996). One should by the way probably not be analysing this
dataset ignoring the age of the truck at failure.

The model was fitted by maximum-likelihood for the scale and shape
parameters and ξ, with standard errors computed from the Hessian matrix,
and näıve confidence intervals for ξ from assuming that ξ̂ has a log-normal
distribution. This means that ln ξ̂, which can take any value on the real line,
is normally distributed. The parametric bootstrap was run 1000 times to
generate an accurate bias correction for ξ̂, and the 95% confidence interval
found by generating the nonparametric (regular) bootstrap 1000 times. The
bias correction was applied to the confidence interval limits.

Table 1 shows the results. All three datasets show that the bootstrap
confidence interval is considerably smaller than the näıve interval, so using
the bootstrap to improve inference is worthwhile.

The electrical appliance dataset has an estimated ξ value that suggests
a large improvement in expected lifetime if the weaker components could
be removed. The lower confidence limit exceeds unity, so a test of the BT
property would reject H0 at 2.5%. The distribution is clearly IFR in the tail,
so is clearly BT, although our pragmatic approach focuses more on the gain
that could be achieved by ‘getting out of the bathtub’.

The generator dataset again shows a high value for ξ̂, in fact higher than
the previous example, but here the smaller sample size of 36 means that one
cannot reject H0 that the distribution is not BT.

Finally, the dump truck dataset is DFR in the tail, although the upper
95% confidence limit (not shown) for β is 1.116, so the distribution could be
IFR in the tail. The distribution must be initially DFR. It may or may not
be BT, depending on whether it is IFR in the tail or not. However, although
it cannot be claimed as a BT distribution, from the bias-corrected estimate
.788− .264 = .524, the gain from removing weaker components ξ looks to be
at least 50% increase in expected lifetime.

Comparing with the generalized gamma model, the λ-Weibull fitted slightly
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better for the generator data, and slightly worse for the electrical components
and the dump truck data, as shown by the log-likelihood function; the im-
provements in log-likelihood were 0.09. -0.8 and -0.505 respectively. The
important message is that the fits are comparable to other models, but here
there is also information to help in the quest for reliability growth.

To see what happens when the model is fitted to an IFR distribution, it
was fitted to the dataset of failure times of 101 aluminium coupons given in
Lie and Xie (2006), and originally from Birnbaum and Saunders (1958). The
Weibull shape parameter was β̂ = 4.047, showing a strongly IFR distribution
of failure times. On fitting the λ-Weibull model, ξ̂ fitted as 0.0018 and the
log-likelihood was only increased by a tiny amount (the same to 5 decimal
places) on adding the third parameter. Thus, this model did not find a
mixture distribution when it was absent in this example.

In general, large-sample inference for ξ must respect the fact that this is
a parameter that can only be non-negative, and is at the edge of its range
under the null hypothesis that it is zero. How to do this is discussed in
e.g. Feng and McCulloch (1992). A bootstrap procedure was given in the
previous section.

Figure 5 shows the fitted hazard functions for the 3 datasets. The scale
factors have all been set to 1 to put the curves onto the same timescale. This
plot confirms what was deduced from the fitted parameter values.

To summarise, the procedure that reliability engineers might follow is:

1. Fit a model, e.g. the λ-Weibull model to failure data for new units.
These models are accelerated-time models, so stress-testing results can
easily be transformed back to the real time-scale;

2. Do some checks to be satisfied that the model fits the data, and compute
errors or confidence intervals on the reliability-growth parameter ξ as
described above;

3. Study the cost benefit of the reliability gain that the model suggests is
possible, and so decide whether to burn-in the existing product, or to
re-engineer the production process;

4. If using burn-in, the mean residual life formula (9) can be helpful in
computing the optimum period.

8. Conclusions

A large class of new lifetime distributions has been introduced, with the
λ distributions a useful special case. A crucial issue for manufacturers is how
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Figure 5: Estimated hazard functions for the 3 datasets studied. The curves end when
the survival function becomes less than 0.001.
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Dataset β̂ λ̂ ξ̂ Bias näıve CI Boot CI
Electrical 2.488 (.741) -.76 1.374 (.251) -.035 (.008) (.961, 1.965) (1.016, 1.744)
Generators 1.519 (1.073) .179 1.433 (.723) -.085 (.014) (.535, 3.834) (.880, 2.136)
Dump truck 0.794 (.138) 1.474 .788 (.526) .264 (.012) (.213, 2.914) (.548, 1.261)

Table 1: The λ-Weibull model fitted to the 3 datasets from Bebbington et al (2006)
mentioned in the text. The bracketed numbers are standard errors. CI denotes 95%
confidence interval, and Boot CI is the bias-corrected 95% bootstrap confidence interval
for ξ.

serious the problem of early failure due to flawed components is, so-called
‘infant mortality’. The new distributions allow this to be quantified and
estimated as the proportionate or percentage increase in mean lifetime that
could be achieved (reliability growth).

Estimation of the increase ξ is perhaps more useful than testing for the BT
property. Indeed, a small admixture of flawed components will not produce a
BT distribution, but as shown in figure 1 the failure rate can still be initially
higher than the Weibull distribution would give. The gain ξ can be computed
even in these situations.

The estimation of the gain from eliminating flawed components must of
course be hedged about with caveats. The statistical error on the parameter
ξ is fairly well quantifiable as a 95% confidence interval, where the bootstrap
can be used to improve on the näıve large-sample estimate. However, there
are other non-statistical causes of uncertainty. An admixture of frail compo-
nents is not the only possible cause of an initially DFR distribution of failure
time although the most likely, as mentioned in the introduction.

We have also to assume that the parent distribution, e.g. Weibull, would
be a good fit in the absence of frail components. All this comes under the
heading of ‘model risk’. Still, ξ̂ could at least be taken as an upper bound
on what could be achieved by tighter quality control in manufacturing or
engineering out defects.

Further work could include the derivation of more survival distributions
using the general method, as illustrated in the appendix, and exploration of
the discrete case in more detail. A vast number of new distributions can be
generated, of which some should be useful.
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Appendix: applying the F
λ method to the exponentiated exponen-

tial and Weibull distributions

To illustrate the general method of generating new survival distribu-
tions, it is applied to the exponentiated-exponential distribution of Gupta
and Kundu (2001), which has distribution function Fκ(t) = (1− exp(−αt))κ

for α > 0, κ > 0, and pdf fκ(t) = ακ exp(−αt)(1 − exp(−αt))κ−1. The pdf
fκ(t) could be transformed using u(t) = F λ

κ (t). In this case from (5) the
distribution function is

G(t) =
λ(1− exp(−αt))κ − (1− exp(−αt))λκ

λ− 1
,

and from (4) the pdf g(t) follows. This can be written as a negative mixture
of exponentiated exponential distributions

g(t) =
λ

λ− 1
fκ(t)−

1

λ− 1
fκλ(t),
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from which most of its properties such as moments can be derived from those
of the parent distribution. For all values of λ the pdf is a negative weight
mixture, and if λ = 1, L’Hospital’s rule or (4) gives the distribution with pdf

g(t) = −ακ2 exp(−αt)(1− exp(−αt))κ−1 ln(1− exp(−αt)),

and distribution function

G(t) = (1− exp(−αt))κ + κ(1− exp(−αt))κ ln(1− exp(−αt)).

As λ increases, g(t) resembles f(t) more closely, and as λ → ∞, g(t) →
f(t).

The new distributions have hazard 2α in the tail, rather than α as do the
parent distributions. Whereas the exponentiated exponential distribution
resembles the gamma distribution in having a hazard function that increases
or decreases to a constant, the new distributions have a bathtub shape if
κ > 1 and λκ < 1, i.e. if the original distribution is IFR and λ is small
enough.

When the parent distribution is Weibull, with scale α > 0 and shape
parameter β > 0, from (5) we have that

G(t) =
λ(1− exp(−(αt)β))− (1− exp(−(αt)β))λ

λ− 1
,

g(t) =
αβλ{1− (1− exp(−(αt)β))λ−1}(αt)β−1 exp(−(αt)β)

λ− 1
.

The moments of this distribution cannot be easily expressed. On expanding
out the exponentials for αt ≪ 1, it can be seen that the distribution is initially
DFR if βλ < 1, hence it is BT if βλ < 1, β > 1. The hazard function in the
tail is 2αβ(αt)β−1, twice that of the parent Weibull distribution.
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