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ABSTRACT 

2D steady incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar 

collector geometry is considered. The ANSYS FLUENT finite volume code (version 17.2) is employed to 

simulate the thermo-fluid characteristics. Extensive details of  computational methodology are given to provide 

engineers with a framework for simulating radiative-convection in enclosures. Mesh-independence tests and 

validation  are conducted. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative 

flux model on temperature, isotherms, velocity, pressure is evaluated and visualized in colour plots.  Additionally, 

local convective heat flux is computed, and solutions are compared with the MAC solver for various buoyancy 

effects achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar 

radiative flux on thermal fluid behaviour compared with the limited Rosseland model. With increasing Ra, the hot 

zone emanating from the base of the collector is found to penetrate deeper into the collector and rises 

symmetrically dividing into two vortex regions with very high buoyancy effect. With increasing Pr there is a 

progressive incursion of the hot zone at the solar collector base higher into the solar collector space and 

simultaneously a greater asymmetric behaviour of the dual isothermal zones. 

 

Key words: Solar collector enclosure; thermal convection; radiative heat transfer; aspect ratio, ANSYS 

FLUENT; finite volume; MAC computational algorithm. 

 

 
1. INTRODUCTION  

The interest in sustainable and renewable energy systems has witnessed significant expansion in the 21st century. 

Both land-based (terrestrial) and space-based (astronautical) types of solar collector have attracted considerable 

attention. Solar thermal collectors utilize the incoming radiation by converting it directly into heat whereas 
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photovoltaics convert the radiation into electricity. Solar thermal systems therefore offer many desirable 

characteristics for propulsion, water and space heating. 

  

Space solar power (SSP) collectors have multiple advantages over earth-based solar power plants. They receive 

more sun light, are unaffected by weather, free from the day-night cycle and expensive storage can be avoided [1-

2]. The types of geometric designs which have been developed for spacecraft solar collectors are generally similar 

to those of terrestrial systems. They invariably feature an enclosure (cavity) in which the solar radiation initiates 

and sustains a circulation flow field. The thermo-physics inevitably involves all three modes of heat transfer 

(conduction, convection and radiation) although the individual contributions may vary with the particular design 

adopted, as elaborated by Kreith [3]. Several studies have confined attention to thermal conduction and radiation 

in spacecraft solar collectors including Yang et al., [4] who studied three-dimensional anisotropic conduction and 

a simple radiation network model for collectors in deep cold space. The key mechanism in fluid-based solar 

collector space power systems is however thermal convection and since gravitational forces near the earth and 

planetary bodies may still be significant, natural convection is of great interest in both gases or liquids. 

Fundamental studies of thermal convection in enclosures have been reported by many investigators. Many 

different geometries and boundary conditions have been considered. Although originally experimental studies 

were more popular, in recent years with the improved computer hardware and sophistication of numerical 

methods, computational simulation of enclosure thermal fluid dynamics has developed immensely. Motivation 

for these studies is not restricted to solar collectors only. Natural convection within closed square cavities with 

differentially heated isothermal walls feature prominently in nuclear reactors, energy efficient rooms, electronic 

cooling, crystal fabrication and also medical processing technologies. The buoyancy flows are considered 

complex due to the combination of transport properties of flow and the thermal fields. External flows are less 

complicated in comparison with internal flows. As a result of a large Rayleigh number (product of Prandtl and 

Grashof numbers), traditional boundary layer theory is used to make a simplified assumption for external flow 

problems, particularly in the region outside the boundary layer. In terms of natural convection, boundary layers 

form near the walls, however the region external to that is enclosed by the boundary layers and creates a core 

region. As the core is fully/partially surrounded by boundary layers, the core flow is yet to be determined from 

the boundary conditions which depends upon the boundary layer and in turn, is influenced by the core flow. There 

are major complexities associated with the interactions between boundary layer and the core flow since the 

intricacies at play tend to be due to the addition of more than one global core flow or the flow of sub regions like 

cells and layers which can be embedded into the core. A comprehensive review of many classical works in this 
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field has been presented by the premier researcher in this area, Ostrach [5]. In recent years many elaborate 

numerical simulations have been conducted. Aydm [6] conducted numerical investigations into the natural 

convection of rectangular enclosures heated from a single side and cooled from the ceiling using a stream function-

vorticity formulation. A study into the influence of thermal boundary conditions on natural convection flows of a 

square cavity was presented by Basak et al., [7] who considered both uniformly and non-uniformly heated base 

wall and upper adiabatic wall conditions for (Rayleigh numbers between 103 and 105 and Prandtl numbers between 

0.7 (air) and 10 (water).  This choice of parameters is appropriate for the low gravity range which can be applied 

to a space solar collector. Bhargava et al., [8] employed both variational finite element and optimized finite 

difference methods to simulate thermo-solutal natural convection in a porous medium enclosure saturated with 

micropolar non-Newtonian fluid.  

 

The above studies neglected radiative heat transfer. Solar energy is an important example of thermal radiation. 

To simulate radiative transfer, generally the integro-differential radiative transfer equation (RTE) is required. 

However, this is very challenging even with numerical methods and virtually intractable when other modes of 

heat transfer are considered simultaneously for complex geometries. Several studies of radiative, radiative-

conduction and radiative-convective-conduction flows in solar collector enclosures have however been 

communicated. These include Su et al.,  [9] who used a ray tracing model to determine thermal efficiency of a 

compound parabolic collector. Khouki et al., [10] used the Radiation Element Method by Ray Emission Model 

(REM by REM) to simulate combined non-gray convective, conductive and radiative heat transfer in a glass solar 

collector glazing. Lee et al., [11] used a Monte Carlo algorithm and finite element analysis to simulate the 

radiative-conductive heat transfer in a direct solar thermal collector utilizing localized surface plasmon of metallic 

nanoparticles suspended in water. The effects of natural convection and radiation are present within the absorbing-

emitting-scattering media, which is a detrimental problem for solar collector systems. Due to a range of industrial 

applications of heat transfer, the combination of radiation and natural convection has developed immense interest 

through numerous wide-spread research. Radiative heat transfer makes a significant contribution to CFD 

simulations. Hence, research into the numerical solution of fluid flow phenomena and heat transfer is essential. 

The numerical solutions generally employ some version of the Navier-Stokes equations (for Newtonian working 

liquids/gases) and an algebraic flux model for the radiative transfer equations (RTE). Many of these flux models 

which include the P1 flux model, Schuster-Schwartzchild two-flux model and Hamaker six-flux model have been 

reviewed in detail by Anwar Bég et al., [12-13]. Moufekkira et al., [14] were able to produce a study into the 

volumetric radiation and natural convection inside an isotropic scattering medium within a heated square cavity 
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using the hybrid thermal lattice Boltzmann method. They were able to discover that when modelling the surfaces 

of the enclosure walls as blackbodies, the maximum heat transfer rate was achieved. Mondal and Li [15] 

theoretically studied the effect of volumetric radiation on natural convection in a square cavity using a non-

uniform lattice Boltzmann method (LBM) and a finite volume method (FVM) for the radiative term of the energy 

equation. Liu et al., [16] developed a two-dimensional numerical model with the Chandrasekhar discrete ordinate 

radiative method to compute the combined radiation and natural convection heat transfer in a grey, absorbing-

emitting-scattering square cavity. For combined heat transfer, they were able to further evaluate the influences of 

Rayleigh number scattering phase function, aspect ratio of square cavity, scattering ratio and optical thickness. 

Rabhi et al., [17] used the Patankar SIMPLER algorithm and a Monte Carlo method to study the influence of 

surface radiation and number of partitions on the heat transfer and flow structures in an inclined rectangular 

enclosure, of aspect ratio of 4. They observed that net heat transfer in the enclosure is boosted with strong thermal 

radiation heat flux and reduced significantly with increasing the number of partitions. Anwar Bég et al., [18]  

implemented forward time central space (FTCS) finite difference and network electrothermal algorithms to 

investigate the combined radiation-convection-conduction in a porous medium annulus solar collector geometry. 

They deployed the Traugott P1-differential radiative transfer model and observed that increasing aspect ratio 

accelerates the axial and radial flow and furthermore enhances radiative moment of intensity, whereas greater 

optical thickness elevates the temperature and depresses radial radiative moment of intensity. Bouali et al., [19] 

used a boundary element approximation and a Monte Carlo method to analyze numerically the impact of surface 

radiation and inclination angle on thermal fluid characteristics in an inclined rectangular enclosure. Further studies 

include [20-23]. 

 

An inspection of the literature has identified that relatively few investigations have considered simultaneously the 

influence of different radiative flux models, fluid properties and enclosure aspect ratio on solar collector heat 

transfer. This is the motivation for the present study. We employ the SIMPLE algorithm available in the ANSYS 

FLUENT CFD code [24] and two radiative flux models, namely the Rosseland diffusion model [25] and the 

Traugott P1-differential radiative transfer model [26] to simulate radiative-convective two-dimensional steady 

flow in a rectangular enclosure. Excellent details of both radiative models (and numerous other models) are also 

available in [27-28]. Further details of applications of the Rosseland model in nonlinear thermal convection flows 

with radiation are provided in [29-30]. Numerical validation is performed with a Harlow-Welch marker and cell 
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code [31]. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on 

temperature, isotherms, velocity, pressure and streamline distribution is evaluated.  

 

2. MATHEMATICAL MODEL  

A square cavity containing a Newtonian viscous fluid (gas) is considered. The enclosure has a heated bottom wall 

of temperature ‘T’ at 413 Kelvin, unheated left and right walls at temperature ‘T’ at 385 Kelvin and an adiabatic 

top wall. Since gravity acts downwards, a buoyant flow develops as a result of thermally-induced density 

gradients. 

  

There is no heat transfer though the top wall (adiabatic). No slip boundary conditions are assumed on all the walls 

of the cavity which are considered to be impermeable. The physical properties of the fluid are assumed to be 

constant. The physical model is visualized in Figure 1. The conservation equations for 2-D, steady, viscous, 

incompressible, laminar flow can be written in terms of primitive variables, u, v, T, and p as follows, including 

thermal buoyancy and radiative terms, as follows: 

D’Alembert mass conservation (2-D continuity) 

0
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x-direction momentum conservation 
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y-direction momentum conservation 
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Energy conservation 
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Here u, v denote x- and y-direction velocity components, x is the horizontal coordinate (aligned with base line of 

the enclosure), y is the transverse coordinate (aligned with the height of the enclosure), T is temperature, p is 

pressure, α is the thermal diffusivity and represents a measure of thermal inertia (=
𝐾

𝜌𝐶𝑝
) where K is thermal 

conductivity of the working gas (W/mK),  is density kg/m3) and cp is the isobaric specific heat (J/kg K). When 

α is high, the heat moves fast as a fluid conducts heat quickly. Implicit in the secondary momentum equation (3) 

is the assumption of the so-called Boussinesq approximation of "weak" thermal convection i.e. density deviation 

from a mean value is only non-trivial in the equation of motion where it is incorporated in the buoyancy force 
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term which effectively couples the energy equation (4) with the secondary momentum equation (3). For small 

temperature drops in a flow the relation ρ (T) may be considered linear. The Boussinesq approximation correlates 

the coefficient of volumetric expansion of a medium β with the gravity acceleration g. Numerical values of β are 

usually small (water: β = 1.5 × 10−4, air: β = 3.5 × 10−3 at T = 273 K), therefore the density variation is taken into 

account only in those cases where it affects the gravitational forces. The term qrad denotes the uni-directional 

radiative flux (W/m2) which is imposed from the base of the enclosure acting vertically upwards.  This is based 

on a flux model approach which circumvents having to solve the full equation of radiative transfer. ANSYS 

FLUENT provides five radiation models which enable radiative heat transfer simulation with or without a 

participating medium. These include the Chandrasekhar Discrete Ordinates (CDO) radiation model, surface-to-

surface(S2S) radiation model, Rosseland radiation model, P-1 radiation model and Discrete Transfer Radiation 

Model (DTRM). Here we implement two different flux models, namely the Rosseland and P1 differential flux 

models. These both permit the propagation of radiation through the gaseous medium to be affected 

by absorption, emission and scattering processes, although they perform differently depending on the optical 

thickness of the gas. Radiative equilibrium is assumed in the simulations and the gas is also assumed to be gray 

[32]. We consider each model in turn: 

P-1 Model  

The general P-N model can be simplified as the P-1 radiation model [33]. The following equation is used for the 

radiation flux radq  (if there are four terms used in the series): 

1

3( +  )-cs s

q Gr
  

= −                                                                                                                                       (5)  

After introducing the parameter: 

( )
1

3( +  )-cs s  
 =                                                                                                                                             (6) 

Equation (6) simplifies to: 

q Gr = −                                                                                                                                                          (7) 

The transport equation for G is therefore: 

( ) 2 44 GG aG an T S  − + =                                                                                                                   (8) 

This equation is solved in order to determine the local radiation intensity when the P-1 model is active. The 

following equation is a combination of Equations (7) and (8): 

2 44q aG an Tr − = −                                                                                                                                  (9) 

Due to the presence of radiation as a heat source (or sinks), the equation for rq−  can be substituted into the  
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 energy equation. DTRM (Discrete Transfer Radiation Model) is considered to be less accurate and commonly 

used in comparison to the P-1 model, which has several advantages. For the P-1 model, the general radiative 

energy equation can be approximated as the diffusion flux equation, allowing for a simpler calculation demanding 

less computational power from the CPU. The effect of scattering is included in the model. The P-1 model also 

works moderately well, even for high temperature-based applications, where optical thickness is large. 

Furthermore, the P-1 model can also be applicable for complex geometrical shapes of curvilinear coordinates. 

Nevertheless, there are some limitations where the P-1 model makes the assumption that all surfaces can diffuse. 

In this case, at the surface of the reflection of incident radiation is isotropic with respect to the solid angle. Hence 

the implementation makes the assumption of grey radiation. If the optical thickness is small, there may be a loss 

of accuracy, depending on the complicated geometrical shape. The P-1 model can also be observed to over-predict 

radiative fluxes near localised sinks or heat sources. 

 

Rosseland Model Equation 

Similar to the P-1 model, Equation (7) can be used to approximate the radiative heat flux vector inside a grey 

medium: 

rq G= −                                                                                                                                                         (10) 

The Rosseland radiation model makes the assumption that the intensity is the black-body intensity at gas 

temperature, which differs from the P-1 model. The transport equation for G is computed by the P-1 model. Where, 

2 44G n T= and n is known as the refractive index. By substituting this expression for G in Equation (10), 

gives: 

2 316rq n T T= −                                                                                                                                       (11) 

Since the radiative heat flux has the same form as the Fourier conduction law, it is possible to write: 

q q qc r= +                                                                                                                                                         (12) 

( )rq K K T= − +                                                                                                                                            (13) 

2 316rK n T=                                                                                                                                                 (14) 

In order to compute the temperature field, Equation (13) is used in the energy equation. The Rosseland model has 

great advantages over the P-1 model as the Rosseland model is able to develop a solution faster than the P-1 

model. This is a due to the Rosseland model neglecting the incident radiation from the extra transport equation, 

which saves on the solving time and uses less memory. Regarding optically thick media, of an optical thickness 

exceeding 3, the model can be considered fairly accurate [34]. However, the Rosseland model is confined to 
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incompressible flow simulation i.e. cannot be used with the FLUENT density-based solver as it is being used and 

is only activated for the pressure-based solver. 

 

Boundary conditions 

The following primary and secondary velocity and temperature conditions are imposed at the four walls of the 

enclosure, in accordance with a number of published studies [19]-[21]: 

( ,1) 1, ( ,0) (0, ) (1, ) 0,

( ,1) ( ,0) (0, ) (1, ) 0,

(0, ) 1, (1, ) 0, ( ,0) ( ,1) 0

u x u x u u y u y

v x v x v y v y

T T T T
y y x x

x x y y

= = = = =

= = = =

   
= − = = =

   

                                 (15) 

3. ANSYS FLUENT FINITE VOLUME SIMULATIONS  

Simulations of the heat transfer inside the solar collector cavity are separated into two cases: I) natural convection, 

(II) natural convection with radiation.  

 

Case I: Natural convection 

For the natural convection study, the problem considered is shown schematically in Figure 1Error! Reference 

source not found.. A square cavity has a heated bottom wall of temperature ‘T’ at 413 Kelvin, unheated left and 

right walls at temperature ‘T’ at 385 Kelvin and an adiabatic top wall. Since gravity acts downwards, a buoyant 

flow develops as a result of thermally-induced density gradients. The working fluid has a Prandtl number of 

approximately 0.71, and a Rayleigh number based on ‘L’ is 5x105. To validate the solution, the test case from 

Basak et al., [7] is used.  The values of physical properties and operating conditions (e.g. gravitational 

acceleration) have been adjusted to yield the desired Prandtl, Rayleigh and Planck radiative-conductive numbers. 

The fluid properties are adjusted (fluid thermal conductivity) in order to vary the Pr number to 0.3, 0.7 and 1.4, 

whilst the Rayleigh number is kept constant at 1000. The main fluid properties inside the square cavity are shown 

in Table 1. In order to vary gravity, the Rayleigh number can be adjusted from 100 - 10,000,000 whilst keeping 

Prandtl number constant at 0.7. 

 

The last case is conducted by changing the aspect ratio of the geometry to aspect ratios ‘AR’ equal to 0.5, 1 and 

2 as shown in Figure 2. With regard to the enclosure (cavity) top wall, the classical no slip boundary conditions 

are assumed and furthermore the wall is solid i.e. no mass flux possible (impermeable). There is no heat transfer 

through this wall since adiabatic conditions are imposed. Obviously in this case the radiative flux term in the 

energy conservation equation (4) vanishes. 
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Case II: Natural convection with radiation  

The study involving natural convection with the inclusion of radiation, considers a working fluid in a square cavity 

with a Prandtl number of approximately 0.71 and a Rayleigh number based on ‘L’ of 5x105. Natural convection 

is similar to the natural convection with radiation, however the only difference is the medium contained within 

the cavity, which is assumed to be absorbing and emitting. In this case therefore the radiant exchange between the 

walls can be attenuated by absorption and augmented by emission in the medium where all walls are black. The 

Planck number ( )3

0/ 4k LT is 0.02 and measures the relative importance of conduction to radiation; here T0 = (Th 

+ Tc) = 2. 

 

 

3.1 ANSYS Methodology 

As with general purpose commercial CFD packages, ANSYS FLUENT provides a sophisticated user interfaces 

to input parameters and to examine the results. It operates with three distinct phases- pre-processor (geometry), 

Solver (numerical solution of the conservation equation) and post-processor (visualization of the results). An 

overview of the FLUENT CFD process is shown in Figure 3 below: 

 

3.1.1 Pre-processing-Geometry and Meshing 

Two-dimensional, single-phase laminar flow is considered. The physical model is first simulated as a square 

cavity with aspect ratio of 1. The geometry model was produced by using the sketching tool which was then 

dimensioned to the specification’s ratio of 0.5, 1 and 2. The 2D "Surface Body" was created from the sketch as 

shown in Figure 4. The software allows for a multitude of mesh techniques using structured grids, unstructured 

grids or a combination. In addition, meshed models can consist of quadrilateral cells (used in 2D), triangular cells 

(used in 2D) and hexahedral, tetrahedral, polyhedral, wedge cells, or pyramid (or a combination of these are used 

in 3D). The meshing process for this study of laminar flow inside the cavity is performed using structured meshes. 

The structured meshes used quadrilaterals as this type of element is commonly used in a simple geometry to save 

on the setup time.  In term of computational expense, a characteristic of quadrilateral elements is greater economy 

for situations that permit a much larger aspect ratio than triangular/tetrahedral cells. A large aspect ratio in a 

triangular/tetrahedral cell will invariably affect the skewness of the cell, which is undesirable as it may impede 

accuracy and convergence.  The mesh convergent study is an additional method of analysing ways of improving 

the accuracy of the simulation, therefore the number of elements used in the simulation is increased until it reaches 

convergence. The numbers of nodes and elements of each mesh (grid) numerical experiment case are shown in 
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Table 2. Meshes are depicted in Figure 5. Table 3 provides the details for the five cases of mesh grids studied with 

element numbers and nodes and discretization characteristics in the x and y directions. 

 

3.1.2 Physical boundary condition specification 

The boundary conditions are specified on each edge of the computational domain (2-D flows). Appropriate 

boundary conditions are required to obtain an accurate CFD solution. The cavity is heated from the bottom wall 

to a constant temperature and the unheated cold walls on both sides will be of a constant temperature. The 

temperature difference between the hot and cold walls are kept constant at 20 Celsius. There is no heat transfer 

through the top wall since the top wall is adiabatic. No slip boundary conditions are assumed on all the walls of 

the cavity and considered to be impermeable.  After validating the result, the fluid properties are varied according 

to the different case of investigation which is explained in more detail subsequently.  

3.1.3 Solving 

To conduct natural convective heat transfer simulation in the enclosure, the double-precision versions of the CFD 

code were carefully chosen. This is due to the conjugate problems involving high thermal-conductivity ratios, 

convergence and accuracy which are impaired with the use of the single precision solver due to the inefficient 

transfer of boundary information. As the name suggests, the double precision tool selects the double-precision 

solver. To note, double-precision solver contains floating-point numbers that are referenced using 64-bits whereas, 

the single-precision solver uses only 32-bits for every floating-point number. With the addition of the extra bits, 

this has a strong effect on the range of magnitudes represented and the precision of the tool. Using double precision 

also takes a toll on the computer memory resources available as elaborated by Koenig [35]. To begin the 

discretisation process, the Navier-Stokes equations, heat transport forced convection equations and Radiative 

Intensity Transport Equations (P1 model, Surface to Surface model) must be turned on in the software. To enable 

the function of natural convection in the simulation, the Boussinesq model must be activated within the ‘define 

material’ function which will aid in calculating the density. Upon the activation of the Boussinesq model, the 

thermal expansion parameter can be inputted as shown in Figure 22. Gravity can be enabled to allow for the effect 

of gravity on the simulation, this can be accessed in the operating condition. This is a very crucial step to enable 

the effect of natural convection. If the Boussinesq model is not active, then the simulation will act under pure 

forced convection. Next all the conservation equations mentioned above are solved using the SIMPLE algorithm. 

This can also be referred as the projection method. The ‘u’, ’v’, ‘p’ and “T” fields must be solved separately. The 

constraint of the mass conservation of the velocity field can be solved in the projection method using a 

pressure/pressure-correction equation. The pressure equation is a derivation of the momentum and continuity 
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equations, corrected using the pressure for the velocity field to satisfy the continuity. As a result of the coupled 

nature and non-linearity of the governing equations, developing a solution includes iterations where complete 

governing equations can be solved continually until reaching a converged solution. Coupled and segregated 

algorithms are two pressure-based solver algorithms used in FLUENT [36]. This algorithm is able to obtain the 

pressure field by developing a relationship between the pressure and velocity corrections in which enforces the 

mass conservation. By substituting the flux equation into the discrete continuity equation, the SIMPLE algorithm 

can be developed to acquire a discrete equation to allow pressure correction in the cell. Using algebraic multigrid 

(AMG) method, the pressure-correction equation may be solved. Upon achieving a solution, the cell pressure and 

the face flux are then corrected. The sum of a CFD solution will decrease through progressive iterations, however 

it will never reach an identical value of zero. And the residual is one of the measurements of how much a solution 

to a given transport equation deviates from. The average residual associated with each transport equation is 

monitored in order to help determine when the solution has converged. For this simulation, large numbers of 

iterations are required to meet the final solution, in addition the residuals can be reduced by numerous orders of 

magnitude. The robust SIMPLE methodology is summarized in Figure 6. The general methodology is given in 

Figure 7. SIMPLE also employs a second order upwind numerical method. When the computational domain has 

a non-unity aspect ratio this will require a very high degree of accuracy. Hence, the second order upwind method 

is used for velocity and pressure calculations. To apply second-order accuracy, the multidimensional linear 

reconstruction approach to compute the quantities at the cell faces are explained by Barth and Jespersen [37]. 

Thus, the cell faces accuracy is achieved through the use of Taylor series expansion of the cell-centred solution 

about the cell centroid. The following expression is used to compute the face value ‘φf’ for a second-order upwind 

method. 

, .f SOU r  = +                                                                                                                                          (16) 

The gradient ‘∇φ’ eventually reaches a limit so that no new maxima or minima are introduced. Second-order 

upwind is available in the pressure-based and density-based solvers Barth and Jespersen [36] (Barth and Jespersen, 

1989). 

  

There are numerous factors that can prevent a simulation from reaching convergence i.e. complexity of the flow 

physics, a geometry requiring a large number of computational cells and excessive conservative under-relaxation. 

On certain occasions, it is difficult to judge whether a result has achieved convergence. There are a variety of 

modelling techniques and numerical controls to maintain stability and to improve convergence other than 

conducting a mesh convergence study. Using the residual definitions is very useful for certain problems, on the 
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other hand it can also be misleading for other types of problems. It is recommended to examine residual levels 

along with related integrated quantities and hence for this case, the heat transfer coefficient. However, for non-

complex problems the default convergence criterion should be sufficient. 

 

The minimum scaled residuals are required to decrease to 10-3 for most equations excluding the P-1 and energy 

equations, which are used in this simulation where the criterion is 10−6 in this case. Figure 8 shows the residual 

monitoring output in the present computations. 

 

3.1.3 Post-Processing 

Once the solution has converged, flow field variables such as velocity stream line function and temperature are 

automatically plotted and analysed graphically. Since a fixed temperature condition is applied at the wall for this 

study, the wall heat flux (q) is directly computed as follows: 

( )f w f rq h T T q= − +                                                                                                                                          (17) 

The fluid-side heat transfer coefficient computed is based on the local flow-field conditions i.e. temperature and 

velocity profiles. The fluid side heat transfer at walls is computed using Fourier's law applied at the walls. The 

following discrete form is used: 

f

wall

T
q k

n

 
=  

 
                                                                                                                                                 (18) 

Heat transfer to the wall boundary from a solid cell is computed as: 

( ) qw s r

ks
q T T

n
= − +


                                                                                                                                        (19) 

Here ks designates the thermal conductivity of the solid, Ts  is the local solid temperature and n  denotes the 

distance between wall surface and the solid cell centre. 

 

3.1.4 Grid Sensitivity Analysis  

For the grid sensitivity analysis, the wall heat flux is compared for different grid density at x=0.5, y=0. The details 

of different meshes are represented in the  

. The notation h is adopted for the solution of the finest mesh. The subsequent meshes are all denoted with respect 

to the finest mesh. The next grid size has cell dimension doubled in both directions, hence the notation 2h . 

It can be shown that the grid is approximately defined by: 

2

2 1

d h h
h a

 


−


−
                                                                                                                                                    (20) 

Here a is the order of the scheme and given by: 



13 

 

( )

2 4

2

log

log 2

h h

h h
a

 

 

 −
 

− =                                                                                                                                             (21) 

In both equations (20), (21) the 2 refers to the increase in dimension of the mesh. Eqn. (20) indicates that a 

minimum of three meshes are required to determine the discretization error. In order to prevent a calculation error 

from the logarithm of a negative number, the three solutions must be monotonically converging. The theory of 

Richardson extrapolation implies that solutions from the finest mesh can be added to the discretization error found 

in equation (21) to attain an approximate grid independent solution. In equation from this can be states as: 

d

h h  = −                                                                                                                                                         (22) 

The results from the grid sensitivity analysis are shown in Table 4 and Figure 9 below. Figure 9 illustrates the grid 

sensitivity analysis. The largest elements used in case one can be considered as a coarse mesh with 525 elements. 

When the size of the elements is reduced by half, the graph shows a significant decline indicating that the 

simulation is not convergent. Even though the difference between these two results is very small, nevertheless the 

natural convection is very sensitive to heat flux and cannot be ignored. The next part of the grid dependence study 

covers cases three, four and five. Upon observation of cases four (22110 elements) and five (33750 elements), 

these cases used finer meshes, where the difference between the two values are infinitesimal and hence considered 

negligible. This shows that the simulation is convergent by case four with 22110 elements. This grid dependent 

study provided an appropriate grid size, used in case four, to be selected for the proceeding part of the study to 

achieve the most accurate result with minimum number of elements. 

  

3.1.5 Validation with study of Basak et al., [7] (Basak et al., 2006) 

As mentioned in the literature review Basak et al., [7](Basak et al., 2006) investigated the steady laminar natural 

convection flow inside a square cavity, which was uniformly and non-uniformly heated on the bottom side of the 

wall. However, it is possible to compare with streamline function and temperature patterns. The comparisons are 

given in Figures 10-11. Very good correlation is clearly observed. This analysis was selected as a benchmark from 

the published literature for validation and corresponds to an aspect ratio of unity, Pr = 0.7 and Ra=103 as shown 

in Figure 12. Since [17] (Basak et al., 2006) employed dimensionless variables, it is not feasible to verify against 

their normalized solutions. 

 
4.  VALIDATION WITH MARKER AND CELL METHOD 

The primitive governing partial differential equations (1) -(4) subject to the imposed dimensionless boundary 

conditions (15) have also been solved with a MAC (marker and cell) method which is an implicit scheme using a 
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staggered grid. The velocity–pressure gradient causes strong coupling in the continuity and the projection method 

is implemented for the primary and secondary momentum equations. The special finite difference scheme 

introduced by Harlow and Welch [31] is implemented to minimize the numerical diffusion for the advection terms. 

In the MAC approach although we consider viscous flow, viscosity is not actually required for numerical stability. 

Cell boundaries are labelled with half-integer values in the finite difference discretization. The marker particles 

do not participate in the calculation. Here we elaborate on the numerical discretization procedure. Based on the 

weak conservative form of the steady-state two-dimensional Navier-Stokes equations and heat conservation 

equation as defined by equations (1) -(4), we implement a grid meshing procedure using the following notation at 

the centre of a cell (see Figure 13). 

1/ 2, 1, ,

1

2
i j i j i ju u u− −= +                                                                                 (23) 

 

Applying to the x-direction momentum conservation eqn. (2) we have:  

x-momentum Discretized Advection term: 

( ) 1 2uu uu uu

x x

 −
=

 
                                                   (24) 

where  

( )
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, 1,

2
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1
1

2

1
2

2

i j i j

i j i j

uu u u

uu u u
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−
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= + 
 

                                                  (25) 

x-momentum Discretized Advection term: 

Similarly, we have:  

( ) 1 2uv uv uv

y y

 −
=

 
                                     (26) 

where 

( ) ( )

( ) ( )

, , 1 , 1,

, , 1 , 1 1, 1

1 1
1 .

2 2

1 1
2 .

2 2

i j i j i j i j

i j i j i j i j

uv u u v v

uv u u v v

+ +

− − + −

= + +

= + +

                                                (27) 

The following central difference formula are used for the second order derivatives: 

2 2
2

2 2

u u
u

x y

 
 = +

 
 

1, , 1, , 1 , , 12

2 2

2 2i j i j i j i j i j i ju u u u u u
u

x y

− + − +− + − +
 = +

 
                                            (28) 

Applying to the y-direction momentum conservation eqn. (3) we have: 
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y-momentum Advection term: 

( ) 1 2vu vu vu

x x

 −
=

 
                                                (29) 

Here the following notation applies: 
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                                                                             (30) 

The central difference formula for the Laplacian operator is given by: 

 

2 2
2

2 2

1, , 1, , 1 , , 12

2 2

2 2i j i j i j i j i j i j

v v
v

x y

v v v v v v
v

x y

− + − +

 
 = +
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                                 (31)  

There is a slight modification needed in the y-momentum equation due to the addition of a new term. Therefore, 

this term must be included in the discretized equation. It is further noteworthy that the temperature term T  is co-

located such that it coincides with velocity before using it in the above equation to account for the staggered grid. 

Modern variants of the MAC method utilize the conjugate gradient schemes which solve the Poisson equation. 

Further details are provided in Basak et al., [7]. Extensive comparisons have been conducted and visualized in 

Figure 14 for the local convective heat flux along the base wall (i.e. heated wall) in the enclosure Excellent 

correlation was achieved for the test case of Ra = 107 (uppermost curve) corresponding to air (Pr =0.7) and an 

aspect ratio of 1. Confidence in the ANSYS simulations is therefore very high. With increasing Rayleigh number 

there is a substantial elevation in convective heat flux along the heated wall surface. The flux is minimized at the 

mid-way point which agrees with the findings of Taoufik et al. [38] who used a lattice Boltzmann method. 

Generally symmetric distributions are achieved about this minimal point (trough) with flux climbing 

symmetrically from this point with axial distance (x) and peaking at the walls of the enclosure. This concurs with 

the cooling effect observed in the temperature plots (blue zones) as reported by Taoufik and Ridha [39]. 

  
5. CFD SIMULATION RESULTS   

We now present detailed simulations obtained by ANSYS FLUENT for different thermal fluid characteristics in 

the solar collector enclosure. All computations are visualized in Figures 15-25. We consider both Case I and Case 
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II as explained earlier in section 3. In each Case we consider first the influence of Rayleigh and Prandtl numbers, 

then aspect ratio. 

 

Case I:  Natural Convection of Varying Rayleigh Numbers 

Computations are plotted in Figures 15-16. The computations show that with increasing Rayleigh number i.e. 

buoyancy effect there is a distortion in the temperature fields. Moving from Ra =100 to Ra = 1000 (ten times 

greater thermal buoyancy force) the lower heated zone near the base wall is expanded significantly. Heat flux 

penetrating the solar cell is enhanced. 

 

High temperatures spread upwards and there is a contraction in the coolest zones in the vicinity of the upper wall. 

With subsequent enhancement in Rayleigh number the parabolic profiles which dominate the regime at lower 

Rayleigh numbers (Ra = 100, 1000) are eliminated and a sand-glass thermal field structure emerges. The highest 

temperature zone grows from the centre of the base wall extending deeper into the cell. The warmer zones (green) 

expand laterally to span most of the solar cell space, demonstrating more homogenous energy distribution in the 

regime. The cooler zones (blue) clearly contract and are restricted to the lateral walls. The strongest buoyancy 

case therefore achieves the desired effect, a more even allocation of heat through the body of the cell. Evidently 

there is a critical Rayleigh number between 1000 and 10,000 where the temperature field topology is dramatically 

altered. At Ra = 10,000 the dual structure is synthesized and begins to emerge symmetrically. However, it does 

not form completely. As Rayleigh number is increased, the dual thermal field structure computed in the solar cell 

evolves considerably although it is only truly formed at the highest Rayleigh number (Ra =10,000,0000). The 

temperature hot zone at the base of the wall is progressively dwindled as heat is circulated through the enclosure. 

The thin blue slices at the lateral walls contract significantly indicating that heat is dispersed much more evenly 

through the enclosure. Buoyancy therefore is a substantial factor influencing the transport of heat within the 

enclosure. The isotherm plots corresponding to the temperature plots are presented. The dual circulation structures 

are largely unchanged from Ra =1000 to 100,000. At these lower Rayleigh numbers stronger intensity is observed 

at the core of the left circulation zone compared with the right one. The magnitudes of the two zones are also 

approximately the same. However, with further increase in Rayleigh number, as greater buoyancy effect is 

imposed, the two circulation zones move initially upwards strongly and then eventually strongly dissimilar trends 

are observed at Rayleigh number of 10,000,000. At this maximum value the left zone becomes skewed to the top 

left and lower half. Conversely the right zone is split into two smaller zones. The impact of buoyancy on isotherms 

is similar to the results reported by Oh et al., [40] and Paroncini and Corvaro [41]. 
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Case II:  Natural convection with varying Prandtl numbers 

Now we discuss the impact of Prandtl number which is illustrated in Figures 17-18. Prandtl number is the heart 

of all thermal convection heat transfer analysis and design. It is not merely a scaling parameter but in fact a 

property of a fluid at a given temperature and pressure. It expresses the ratio of momentum diffusivity to energy 

diffusivity i.e. how fast momentum is conveyed compared to how fast heat is transported in a fluid. An increase 

in Pr from 0.3 (Nobel gases) through 0.7 (air) to 1.4 (gaseous ammonia) allows different solar collector fluids to 

be studied. The temperature also decays quickly for large values of Prandtl number. The thermal boundary layer 

thickness is similarly the distance from the body at which the temperature is 99% of the temperature found from 

an inviscid solution. The ratio of the two thicknesses is dictated by the Prandtl number. For Prandtl number of 

unity, both boundary layers are of the same thickness i.e. order of magnitude. However, when Prandtl number 

exceeds unity, the thermal boundary layer is thinner than the velocity boundary layer. Generally, higher Pr fluids 

will have relatively low thermal conductivities which will suppress thermal conduction heat transfer from the wall 

and reduce thermal boundary layer thickness, resulting in lower temperatures in the regime. Smaller values of Pr

are equivalent to increasing thermal conductivities, and therefore heat is able to diffuse away from the walls more 

rapidly than for higher values of Pr . Hence in the case of smaller Pr  the boundary layer is thicker and the rate of 

heat transfer to the wall i.e. Nusselt number is reduced. This creates a deeper red zone with greater thermal energy 

localized at the base of the solar cell for Pr =1.4 compared with Pr = 0.3. The exploration of these fluids is 

noteworthy. Nobel gases are less likely to ignite i.e. explode. On remote missions this is a critical factor to be 

noted, which has important implications in solar collector performance. The noble gases show extremely low 

chemical reactivity. Noble gases are commonly used in lighting because of their lack of chemical reactivity. 

Argon, mixed with nitrogen, is used as a filler gas for incandescent light bulbs. Krypton is used in high-

performance light bulbs, which have higher color temperatures and greater efficiency, because it reduces the rate 

of evaporation of the filament more than argon. Since thermal radiation and light are obviously produced by the 

sun, avoiding reactivity is essential in deep space operations where solar flux is tremendous. However, a weaker 

performance for dispersing thermal energy results with the Nobel gas compared with a more reactive gas 

(ammonia, Pr =1.4). Hence the solar collector designer must select the working fluid very carefully. In terrestrial 

applications Ammonia being an environmentally friendly gas reduces the effect of ozone layer depletion. In space 

applications ammonia is typically doped with non-reactive particles which stabilize it to light effects avoiding 

ignition, sparking etc. In spacecraft applications, Ammonia (NH3) can be decomposed and later recombined in a 

repeating thermochemical energy storage cycle which allows selective storage of energy and the excellent facility 

for storing it for longer periods until required. Ammonia therefore has several advantages over other working 
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fluids in direct absorber solar collectors. Significantly deeper penetration of the solar flux into the entire cavity is 

achieved with higher Prandtl number fluids. A more symmetric and stable dual bolus structure is also computed 

for the isotherms with largest Prandtl number.  Local convective flux at the wall is also plotted in Figure 19. It is 

observed to be decreased with greater Prandtl number. Again, this has implications for the Nusselt number. Higher 

Pr implies greater thermal conductivity of the fluid and this encourages heat transport from the wall into the solar 

collector. This results in decreasing Nusselt number and local convective flux at the wall. 

 

Case III: Natural convection with aspect ratio variation  

To complete the evaluation of Case I we examine the influence of the geometric parameter i.e. aspect ratio. 

Visualizations are depicted in Figures 20-21. Significant modification arises in the temperature distributions with 

a decrease in aspect ratio. 

 

When the solar collector has AR = 2 (width is twice the height) the higher temperature ascends throughout the 

solar collector and reaches much higher than for lower aspect ratio (AR = 1 corresponds to a square and AR = 2 

to a slender rectangle with double the height compared to the width). The allocation of heat through the solar 

collector is therefore strongly modified by a simple change in the relative dimensions of the walls. Colder zones 

are progressively enlarged and dominate the upper half space of the solar collector when AR = 1 and more so for 

AR = ½. The isotherms are also significantly altered. The symmetric dual structure which covers the entire solar 

collector space for AR = 2 is progressively displaced towards the lower hot wall as AR is increased. There is 

therefore a bias in heat transferred to the lower wall with greater aspect ratio, an undesirable characteristic of solar 

collectors - see Duffie and Beckman [42]. Of course, these simulations are all restricted to air and a relatively low 

Rayleigh number (100). Local convective flux as shown in Figure 22, is modified with AR but less dramatically 

than via the Rayleigh or Prandtl number. Convective flux (and therefore Nusselt number) is weakly suppressed in 

the central zone of the lower wall with a four-fold change in AR. The effect is weak but non-trivial. Further 

calculations may be required which examine a wider range of AR values and also different types of geometry 

(triangular, elliptic, and circular) for different fluids also. Overall however good results have been obtained which 

provide a solid insight into the performance of the collector. 

  

Case IV: Natural convection with radiation 

The P1 flux model incorporates optical thickness (0), a key radiative property, on thermofluid characteristics. In 

the vast majority of radiative-convective studies, optical thickness is assumed to be either very small (optically 

thin approximation) or very large (optically thick approximation). The latter results in a Rosseland-type diffusive 
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flux model. These extreme values of optical thickness are not representative of real media in solar collectors.  

More robust values correlating with solar cell design fall between 0.1 and 1, and these are implemented in the 

present computations in Figure 23-24. As optical thickness (optical depth) increases, i.e. greater absorption 

coefficient, thermal radiation is better attenuated in the medium and this induces heating. Higher temperatures 

result at the base wall for the P1 model compared with the Rosseland model.  

 

Optical thickness and absorption coefficient are dimensionless quantifications of how much a given medium 

retards the passage of thermal radiation. Radiative intensity falls by an exponential factor when optical thickness 

is unity. Physically optical thickness will be a function of absorption coefficient, medium density and propagation 

distance. 

  

The P1 model better predicts the actual influence of solar radiative flux than the limited Rosseland model. Figure 

25 shows that with increasing absorption coefficient the local convective heat flux decreases for the P1 model 

whereas it increases for the S2S (Rosseland) flux model.  

 

6. CONCLUSIONS  

Computational fluid dynamic simulations of two-dimensional laminar natural thermal convection and radiative 

heat transfer in solar collector enclosures have been presented using CFD software based on the finite volume 

method. Validation of the computations has also been included with a Marker-and-Cell finite difference algorithm. 

The accuracy of the CFD computations with a detailed mesh independence (grid dependence) study has also been 

conducted and comparisons made with published simulations. Important observations were made including the 

fact that different gases (air, ammonia) perform significantly differently in terms of localization or distribution of 

thermal energy in the base-wall heated solar collector. The simulations have shown that: 

• As Rayleigh number is increased from Ra=100 to Ra=1000 the lower heated zone near the base wall is 

expanded significantly. Heat flux penetrating the solar cell is enhanced. 

• As Rayleigh number is increased, the dual thermal field structure computed in the solar cell evolves 

considerably although it is only truly formed at the highest Rayleigh number (Ra =10,000,0000). 

• Higher temperatures result at the base wall for the P1 model compared with the Rosseland model.  

• The P1 model generates more accurate results for the actual influence of solar radiative flux than the limited 

Rosseland model.  
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• As radiative absorption coefficient is increased the local convective heat flux increases for the S2S 

(Rosseland) flux model whereas it is reduced for the P1 model.  

• Local convective flux is less influenced with aspect ratio than with the Rayleigh or Prandtl number.  

• At higher Prandtl number (lower thermal conductivity of the solar collector fluid), a demonstrably more 

symmetric and stable dual bolus structure is observed; however local convective flux at the wall is suppressed 

as Prandtl number is elevated indicating that the choice of working gas is critical for sustaining high 

efficiency. 

 

The present study has been restricted to single-phase transport phenomena. However recent developments in 

doping working fluids with nano-particles have shown considerable thermal enhancement. A logical extension to 

the current work is therefore the utilization of nanofluids as the working solar collector fluid [43].  
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TABLES 

Table 1: Thermophysical properties adopted in ANSYS simulation 

Prandtl number (Pr) 0.7 

Rayleigh number (Ra) 1000 

Density (ρ) kg/m3 0.89754 

Thermal expansion coefficient 1/K 2.00E-03 

Gravity (g) m/s2 9.81 

Kinematic viscosity (v) m2/s 2.52E-05 

Conductivity (K) 0.0326 

Specific Heat (Cp) 1.01E+03 

 
Table 2: Mesh numerical experiments  

 Case 1 Case 2 Case 3 Case 4 Case 5 

Number of Element 525 1785 6060 12835 22110 

Number of Node 572 1700 5900 12600 21800 

 

Table 3: ANSYS FLUENT Mesh dependency information  
Case 1 Case 2 Case 3 Case 4 Case 5 

Number of divisions in y 

direction 
25 50 100 200 250 

Number of divisions in x 

direction 
12 25 50 100 125 

number of elements 525 1785 6060 22110 33750 

number of node 572 1700 5900 21800 34136 

 

Table 4: Grid Sensitivity Analysis 

Order of the 

Scheme a 

Discretization Error 𝜀ℎ
𝑑 

W m^-2 

Finest mesh Solution ∅ℎ 

W m^-2 

Richardson Solution Φ 

W m^-2 

0.3141 0.01 1.6551 1.6491 
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FIGURES 

 

Figure 1: Solar collector geometrical model 

 

Figure 2. Enclosure geometries for various aspect ratios 
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Figure 3. ANSYS FLUENT simulation methodology 

 
Figure 4. ANSYS geometry definition 

 
Figure 5. Mesh Structures 
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Figure 6. Methodology of ANSYS FLUENT Simple algorithm  

 
Figure 7. ANSYS FLUENT simulation approach 
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Figure 8. Residual monitoring 

 

 

Figure 9. Grid Dependency 

 
Figure 10 (left) : Streamline solutions of Basak et al. [7] (Pr=0.7, Ra = 103) and Figure 11 (right) : Temperature 

contour solutions of Basak et al. [7] (Pr=0.7, Ra = 103) 
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Figure 12 : ANSYS FLUENT CFD simulation results (Pr=0.7 Ra=103) 

 

Figure 13: Marker and Cell (MAC) discretization method 

 

Figure 14: ANSYS FLUENT and MAC Comparison  
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Figure 15: Temperature contours for different Rayleigh numbers 

 

 
Figure 16: Stream Function (Ψ) for different Rayleigh numbers 
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Figure 17: Stream Function (Ψ) variation with varying Prandtl numbers 

 
Figure 18: Temperature contours with varying Prandtl numbers 

 

 

Figure 19: Local convective heat flux along heated wall surface with Prandtl numbers 
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Figure 20: Temperature contours for different aspect ratios 

 

Figure 21: Stream function (Ψ) plots for different aspect ratios 

 
Figure 22: Local convective heat flux along heated wall surface with aspect ratio 
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Figure 23: Temperature and isotherm plots with different radiative flux models (low absorption) 

 

 
Figure 24: Temperature and isotherm plots with different radiative flux models (high absorption) 
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Figure 25:  Local convective heat flux along heated wall surface (varying absorptions) 

3.50E+02

3.70E+02

3.90E+02

4.10E+02

4.30E+02

4.50E+02

4.70E+02

4.90E+02

5.10E+02

5.30E+02

5.50E+02

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00

Lo
ca

l c
o

n
ve

ct
iv

e 
h

ea
t 

fl
u

x 
W

/m
^2

Distance in X direction m

local convective heat flux along the heated 
wall surface

P1 0.2 S2S 0.2 P1 0.5 S2S 0.5


