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Abstract 

Entropy generation is an important aspect of modern thermal polymer processing optimization. 

Many polymers exhibit strongly non-Newtonian effects and dissipation effects in thermal 

processing. Motivated by these aspects in this article a numerical analysis of the entropy 

generation with viscous dissipation effect in an unsteady flow of viscoelastic fluid from a 

vertical cylinder is presented. The Reiner-Rivlin physical model of grade two (second grade 

fluid) is employed which can envisage normal stress variations in polymeric flow-fields. 

Viscosity variation is included. The obtained governing equations are resolved using implicit 

finite difference method of Crank-Nicolson type with well imposed initial and boundary 

conditions. Key control parameters are the second-grade viscoelastic fluid parameter (𝛽), 

viscosity variation parameter (𝛾) and viscous dissipation parameter (𝜀). Also, group parameter 

(𝐵𝑟Ω−1), Grashof number (Gr) and Prandtl number (Pr) are examined. Numerical solutions 

are presented for steady-state flow variables, temperature, time histories of friction, wall heat 

transfer rate, entropy and Bejan curves for distinct values of control parameters. The results 

specify that entropy generation decreases with augmenting values of 𝛽, 𝛾 and Gr. The converse 

trend is noticed with increasing Pr and 𝐵𝑟Ω−1. Furthermore, the computations reveal that 

entropy and Bejan lines only occur close to the hot cylinder wall.     

Keywords: vertical cylinder; second-grade fluid; buoyancy-driven flow; entropy generation; 

finite difference method; viscous dissipation. 
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1. Introduction  

Exterior boundary layer flows with heat transfer are fundamental to numerous processes arising 

in the process chemical industry and manufacturing systems. In many systems, the surface is 

curved and typical examples include conical bodies, spheres, ellipses and cylinders. The last of 

these configurations i.e. the cylinder features in numerous convective flow operations including 

heat exchangers, clarifying suspensions using filtration screens, to handle hot wire, steam pipe, 

polymer fiber spinning, a coating of wires, mixing processes, nanotechnology etc. Free 

convection i.e. wherein buoyancy forces are prominent is also of great interest in such systems 

[1]. The effects induced by the body curvature are more pronounced at small and moderate 

Grashof numbers. In the layer neighbouring to the surface, the dominant mechanism of heat 

transfer is thermal conduction. Furthermore, heat transfer rates at the surface of curved bodies 

strongly influence the cooling rate which can impact significantly on the constitution of 

manufactured materials (e.g. plastics, powder). Although many excellent studies of external 

free (natural) convection to Newtonian fluids have been communicated, there is an extensive 

spectrum of industrial working fluids which differ from the Newtonian (Navier-Stokes) model. 

Examples of non-Newtonian fluids in thermal processing include plastics, gels, paints, 

biotechnological products, powder type creams, medicines, adhesives etc. In the thermally-

assisted polymeric coating of pipes and other cylindrical configurations, the boundary layer 

flow of non-Newtonian from a vertical cylinder becomes an essential problem for engineering 

analysis. This case (among others) has been reviewed lucidly and quite recently by Chhabra 

[2] in which a diverse range of non-Newtonian models are considered including power-law 

fluids, yield stress fluids, thixotropic fluids etc. Non-Newtonian boundary layer flows from 

cylindrical bodies with and without heat transfer have also been addressed in some detail by a 

number of other researchers. The inherently nonlinear nature of the transport equations in these 

studies generally necessitates a numerical solution methodology. Mitsoulis and Galazoulas [3] 

used a modified Herschel–Bulkley model and a finite element method to compute viscoplastic 

flows from a cylinder. Chhabra et al. [4] used a second-order precise finite difference method 

to compute iso-vorticity patterns and drag coefficients for both dilatant and pseudoplastic 

power-law flow from a circular cylinder. Prasad et al. [5] premeditated numerically the free 

convection boundary layer flow from a cylinder to a Jeffreys viscoelastic fluid with Keller’s 

box scheme. Rao et al. [6] analysed computationally the laminar thermal magneto-convection 

with strong buoyancy forces from a cylinder to a Williamson shear-thinning viscoelastic fluid. 

Bég et al. [7] presented numerical solutions for surface characteristics (skin friction, Nusselt 
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number) of an electro-conductive viscoplastic nanofluid in natural convection from a cylinder 

under a magnetic field.  

In many polymeric heat transfer processes, whether laminar or turbulent, viscous heating 

effects can become significant. Viscous dissipation produces an appreciable elevation in the 

fluid temperatures as a result of the conversion of kinetic energy to thermal energy. Polymeric 

flows are highly viscous and therefore considerable heat can be produced even at relatively low 

speeds encountered in, for example, the extrusion of polymeric melts and solutions, the 

production of emulsions and pastes, and the process heating or cooling of viscous gels. Heat 

transfer results may, therefore, be significantly modified due to viscous dissipation. Viscous 

dissipation in non-Newtonian flows has been extensively investigated in the literature. Kairi et 

al. [8] considered variable-viscosity rheological flows in porous media. They presumed that 

the fluid viscosity is followed by the Reynolds viscosity model.  Ragueb and Mansouri [9] 

analysed computationally the viscous heating in laminar heat transfer of power-law fluids 

inside elliptical cross-section ducts with uniform wall temperature through dADI technique. 

Their study addresses Nusselt number modification with various values of Brinkman number 

(viscous dissipation parameter) and the aspect ratio of the duct. Manglik and Prusa [10] 

presented asymptotic boundary-layer-scaled finite difference solutions for viscous dissipation 

impacts on thermal convection in power-law fluid flows in constant wall temperature tubes. 

They concluded that Brinkman number effects are vital predominantly in a transition region. 

Further studies of dissipative thermal convection include Shamshuddin et al. [11] for 

micropolar fluids on inclined surfaces, Ali et al. [12] for Giesekus viscoelastic fluids in wire 

coating, Zaib et al. [13] and Barletta [14] for power-law fluids. These studies have generally 

shown that omission of viscous heating effects tends to under-predict temperatures and over-

predict velocity distributions and therefore furnishes unrealistic information on thermal/fluid 

characteristics which may be detrimental to polymer processing design. 

In the above studies, many different rheological formulations have been implemented. 

However, another group of nonlinear models is available, namely differential fluids. Introduced 

initially by Coleman and Noll [15], this subclass of viscoelastic fluids includes the Rivlin-

Ericksen fluid of grade two or second-grade fluid and also the third grade and fourth grade 

fluid models. Among those second-grade fluid model is capable of describing the effects of 

normal stress in polymeric flow-fields (McTigue et al. [16]). This model has received 

considerable attention among applied mathematicians and engineers. It has been deployed to 

simulate slurry flows, molten plastics, dilute polymer solutions, polymer melts like 



4 
 

manufacturing oils and high-viscosity silicone oils. Numerous well-posed boundary value 

problems are analysed with the second-grade fluid model. The influence of viscous dissipation 

on hydromagnetic second-grade fluid flow with convective heat and mass transfer over a sheet 

was considered by Das [17]. Nadeem et al. [18] analysed the second-grade fluid flow problem 

in a cylinder by considering viscous dissipation effect and obtained the analytical solution using 

boundary layer approximation. Hayat et al. [19] scrutinized the second-grade fluid flow with 

MHD from a permeable stretching cylinder. Their investigation has been conceded for heat 

and mass transfer with viscous dissipation and Joule effects.  Nayak and Panda [20] examined 

the hydromagnetic second-grade fluid flow with the effect of viscous dissipation and Joule 

heating over a vertical plate. They showed that flow-field variables are enhanced with higher 

Eckert number. Bikash Sahoo [21] examined the heat transfer of a second-grade MHD fluid 

flow from a stretching sheet with the effect of viscous dissipation, slip and Joule heating. 

Recently, Majeed et al. [22] evaluated cross-diffusion i.e. Soret and Dufour impact on 2-D 

second-grade fluid flow from stretching cylinder by elaborating the impact of radiation effects 

through an effective Prandtl number.   

Thermodynamic optimization of engineering systems has emerged as a significant area of 

recent investigation, primarily motivated by increasing efficiency and sustainability of 21st 

century technologies. The designs of flow and heat transfer systems are based on 

thermodynamics laws. First law of thermodynamics which dictates that energy in a system is 

not lost, but it is transmitted from one medium to another or it is transferred from one form to 

another. However, first law doesn’t account for irreversibilities (entropy generation). Second 

law analysis enumerates the collection and useful consumption of available energy and 

identifies the unrecoverable losses, leading the way to enlightening the thermodynamic 

performance system. It can be used together with energy analysis and minimizes the available 

energy loss. Bejan [23] described the entropy generation concept as a new analysis for the 

thermodynamics which consists of taking into account the first and second law. The entropy 

heat generation has been used in the study of cryogenics, turbo-machinery, porous media, 

combustion, electronic cooling, and rotating disk reactors. Remarkable recent works deploying 

thermodynamic second law include modelling of  solar heat exchangers (Giangaspero and 

Sciubba [24]), lost exergy during heat transfer processes (Badescu [25]), multi-field flows 

(Kockum and Jernqvist [26]), nuclear swirl electromagnetic propulsion (Rashidi et al. [27]), 

hydromagnetic annular non-Newtonian flows (Jangili et al. [28]), analysing reactive polar 

fluids for channel flow (Adesanya et al. [29]) and carbon nanotube-nanofluid dynamic via cilia-
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assisted porous medium (Akbar et al. [30]). Further articles considering entropy generation of 

non-Newtonian fluids include Aksoy [31], Galanis and Rashidi [32], Kahraman [33] and 

Sajjad-ur et al. [34]). Further, several simulations have been conducted for entropy generation 

with viscoelastic fluids. Butt et al. [35] discussed the consequence of entropy generation for 

second-grade from a plate in a porous medium. Yilbas and Pakdemirli [36] analysed the 

entropy generation for non-Newtonian fluid flow in a circular pipe. Also, the entropy concept 

for third grade fluid flow in an annular pipe was studied by Yurusoy et al. [37]. Other recent 

studies can be found in Ref. [38-39]. 

From aforesaid data, it is apparent that limited number of work has been afforded thus far to 

entropy generation in time-dependent viscoelastic flows external to curved geometries. 

Motivated by applications to the polymer processing industry, in the current research work a 

numerical study is conducted for second-grade elastico-viscous free convection flow from a 

uniformly heated vertical cylinder. Other important characteristics of polymers are viscous 

heating and temperature-dependent viscosity. Viscous dissipation has also been shown to be 

very prominent in thermo-polymeric synthesis as highlighted in Xu et al. [40]. Both viscous 

dissipation and temperature-dependent viscosity are therefore considered in the present study. 

Thus, in general, recourse must be made to efficient numerical methods. In this work, the 

Crank-Nicolson implicit finite difference method is utilized to solve the transformed, 

dimensionless, unsteady second-grade boundary layer equations and computations are 

corroborated with previously published results available in the literature. Furthermore, the 

results obtained for second-grade fluids are compared with the Newtonian fluid case.  

 

2. Problem description   

The time-dependent 2-D laminar free convection flow of a polymeric second-grade viscoelastic 

fluid from a heated vertical cylinder of radius 𝑟0 has been considered and illustrated in Fig. 1. 

The considered coordinate structure is in rectangular form, in which the axial (x) and radial (r) 

coordinate axes are selected from the base edge and normal to the cylinder respectively. The 

adjacent fluid temperature is taken to be stationary i.e. constant (fixed) temperature and similar 

to that of ambient temperature, 𝑇′∞ . At the outset, i.e. 𝑡′ = 0, the temperature 𝑇′∞ is uniform 

for the cylinder and the fluid. Later (𝑡′ > 0), the cylinder temperature is augmented to 𝑇′
𝑤(>

𝑇′
∞) and conserved consistently there afterward.   
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The Cauchy stress tensor 𝐓 for a second-grade viscoelastic fluid (Fosdick and Rajagopal [41], 

Rajagopal and Gupta [42]) is given by: 

               𝐓 = −𝑃𝐈 + 𝜇𝑩1 + 𝛼1𝑩2 + 𝛼2𝑩1
2 ,                                                                          (1) 

where P, I, 𝜇 and 𝛼𝑖
′𝑠 (𝑖 = 1, 2) characterise the pressure, identity tensor, material constants 

and dynamic viscosity, respectively. Also 𝑩1, 𝑩2 are the Rivlin–Ericksen tensors and are given 

by 𝑩1 = (grad 𝑽) + (grad 𝑽)T, 𝑩2 =
d𝑩1

dt
+ 𝑩1(grad 𝑽) + (grad 𝑽)T𝑩1 , in which 𝑔𝑟𝑎𝑑 is 

the gradient operator, 
d𝑩1

dt
 is the material time derivative and V is the velocity vector. The 

constants α1, α2 represent normal stress moduli. Eq. (1) is to be consistent with 

thermodynamics in the sense that all the fluid motions satisfy Clausius-Duhem inequality and 

the hypothesis that the specific Helmholtz free energy of the fluid is a minimum in equilibrium, 

then (Dunn and Rajagopal [43]). 

                                 𝜇 ≥ 0,   𝛼1 ≥ 0,   𝛼1 + 𝛼2 = 0.                                                             (2)                                                                    

Using the inequality and restrictions in Eqn. (2), the governing time-dependent equations with 

assumptions made by Boussinesq’s are as follows: 

                            
  𝜕(𝑟 𝑢)

𝜕𝑥
+

𝜕(𝑟 𝑣)

𝜕𝑟
 = 0,                                                                                        (3) 

 𝜕𝑢

𝜕𝑡′ + 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑟
 =   𝑔𝛽𝑇(𝑇′ − 𝑇∞

′ ) +
1

𝜌

𝜕

𝜕𝑟

1

𝑟
(𝜇𝑟

𝜕𝑢

𝜕𝑟
)                                                                                                  

                     +
𝛼1

𝜌
(

𝜕3𝑢

𝜕𝑟2𝜕𝑡′ +
1

𝑟

𝜕2𝑢

𝜕𝑟𝜕𝑡′ +
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑟2 + 𝑢
𝜕3𝑢

𝜕𝑥𝜕𝑟2 + 𝑣
𝜕3𝑢

𝜕𝑟3 −
𝜕𝑢

𝜕𝑟

𝜕2𝑣

𝜕𝑟2 +
𝜕𝑢

𝜕𝑟

𝜕2𝑢

𝜕𝑥𝜕𝑟

+
1

𝑟
(𝑣

𝜕2𝑢

𝜕𝑟2 + 𝑢
𝜕2𝑢

𝜕𝑥𝜕𝑟
−

𝜕𝑣

𝜕𝑟

𝜕𝑢

𝜕𝑟
+

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑟
) 

),            (4)       

 𝜕𝑇′

𝜕𝑡′ + 𝑢
𝜕𝑇′

𝜕𝑥
+ 𝑣

𝜕𝑇′

𝜕𝑟
=

𝛼

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇′

𝜕𝑟
) +

𝜇

𝜌𝑐𝑝
(

𝜕𝑢

𝜕𝑟
)

2

+
𝛼1

𝜌𝑐𝑝
(

𝜕2𝑢

𝜕𝑟𝜕𝑡′

𝜕𝑢

𝜕𝑟
+ 𝑢

𝜕𝑢

𝜕𝑟

𝜕2𝑢

𝜕𝑥𝜕𝑟
+ 𝑣

𝜕𝑢

𝜕𝑟

𝜕2𝑢

𝜕𝑟2).        (5)     

where 𝑢, 𝑣 are the velocity constituents along axial (x) and radial (r) coordinate systems, 

respectively, 𝜌 is the fluid density  𝛽𝑇 - volumetric thermal expansion coefficient, 𝑐𝑝 is the 

specific heat at constant pressure, 𝑇′ - temperature, g - acceleration due to gravity, 𝑇∞
′  - free 

stream temperature.   

The related initial and boundary conditions are given by: 

𝑡′ ≤ 0:    𝑇′ =  𝑇∞
′  , 𝑣 = 0, 𝑢 = 0                   for all x and r 

 𝑡′ > 0:   𝑇′ = 𝑇𝑤   
′ , 𝑣 = 0, 𝑢 = 0                  at  𝑟 =  𝑟0 
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                𝑇′ = 𝑇∞ 
′  , 𝑣 = 0, 𝑢 = 0                    at  𝑥 = 0               (6)                                                                             

               𝑇′ → 𝑇∞
′  , 𝑣 → 0, 𝑢 → 0,

 𝜕𝑢

𝜕𝑟
→ 0         as  𝑟 → ∞ .                                                                          

Invoking the following non-dimensional quantities: 

X = 𝐺𝑟−1 𝑥

𝑟0
 , 𝑇 =

𝑇′−𝑇∞
′

𝑇𝑤
′ −𝑇∞

′ ,   𝑅 =
𝑟

𝑟0
 , 𝑈 = 𝐺𝑟−1 𝑢𝑟0

𝜐
,  𝑉 =

𝑣𝑟0

𝜐
,   𝑡 =

𝜐𝑡′

𝑟0
2 , 𝐺𝑟 =

𝑔𝛽𝑇𝑟0
3(𝑇𝑤

′ −𝑇∞
′ )

𝜐2 ,      

𝑃𝑟 =  
𝜐

𝛼
 ,  β =

𝛼1

𝜌𝑟0
2,  𝜐 = 

 𝜇∞

𝜌
 , 𝐵𝑟 =  

 𝜇∞𝜐2

𝑘(𝑇𝑤
′ −𝑇∞

′ )𝑟0
2 ,  Ω =

(𝑇𝑤
′ −𝑇∞

′ ) 

𝑇∞
′   , ε =  

𝜐2

𝑐𝑝(𝑇𝑤
′ −𝑇∞

′ )𝑟0
2 .     (7) 

where 𝑈, 𝑉 are the dimensionless velocity components along X and R direction, respectively, 

α - thermal diffusivity, ε - viscous dissipation parameter, k - thermal conductivity,  𝜇 - viscosity 

of the fluid,  𝜈 - kinematic viscosity, Br - Brinkman number, Gr - Grashof number, Ω - 

dimensionless temperature difference, Pr - Prandtl number,  β – viscoelastic parameter, BrΩ−1 

- group parameter.      

There are several types of viscosity variations exist in the nature, among those we have 

considered one of the form proposed by Cengel [44] and Touloukian et al. [45]): 

                                           𝜇(𝑇′) ≅ 𝜇∞(1 + 𝜆(𝑇 
′ − 𝑇∞

′ )),      (8) 

 where 𝜇 is the fluid viscosity subject to temperature 𝑇′ and 𝜇∞ denotes fluid viscosity at the 

temperature 𝑇∞
′ .  Let 𝛾 represent the non-dimensional viscosity variation parameter defined by 

γ = 𝜆(𝑇𝑤
′ − 𝑇∞

′ ). Here 𝜆 dimensional viscosity variation parameter. It follows that the viscosity 

of the second-grade fluid as a function of dimensionless temperature can be written as:    

                                      𝜇(𝑇) = 𝜇∞(1 + γ𝑇) .       (9) 

 

Invoking the above cited non-dimensional numbers in Eqns. (3) - (5) and also in the conditions 

defined in Eqn. (6), the transport equations contract to the following form:  

 

 𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑅
+

𝑉

𝑅
= 0 ,                                                                                                                 (10)  

 

 𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑅
 = T+(1 + γ𝑇) (

𝜕2𝑈

𝜕𝑅2 +
1

𝑅

𝜕𝑈

𝜕𝑅
) + γ

𝜕𝑇

𝜕𝑅

𝜕𝑈

𝜕𝑅
 

                             +β (

𝜕3𝑈

𝜕𝑅2𝜕𝑡
+

1

𝑅

𝜕2𝑈

𝜕𝑅𝜕𝑡
+

𝜕𝑈

𝜕𝑋

𝜕2𝑈

𝜕𝑅2 + 𝑈
𝜕3𝑈

𝜕𝑋𝜕𝑅2 + 𝑉
𝜕3𝑈

𝜕𝑅3 −
𝜕𝑈

𝜕𝑅

𝜕2𝑉

𝜕𝑅2 +
𝜕𝑈

𝜕𝑅

𝜕2𝑈

𝜕𝑋𝜕𝑅

+
1

𝑅
(𝑉

𝜕2𝑈

𝜕𝑅2 + 𝑈
𝜕2𝑈

𝜕𝑋𝜕𝑅
−

𝜕𝑉

𝜕𝑅

𝜕𝑈

𝜕𝑅
+

𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑅
) 

),   (11) 
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 𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑅
=

1

𝑃𝑟
(

𝜕2𝑇

𝜕𝑅2 +
1

𝑅

𝜕𝑇

𝜕𝑅
) + (𝐺𝑟)2ε(1 + γ𝑇) (

𝜕𝑈

𝜕𝑅
)

2

  

                                       +(𝐺𝑟)2εβ (
𝜕2𝑈

𝜕𝑅𝜕𝑡

𝜕𝑈

𝜕𝑅
+ 𝑈

𝜕𝑈

𝜕𝑅

𝜕2𝑈

𝜕𝑋𝜕𝑅
+ 𝑉

𝜕𝑈

𝜕𝑅

𝜕2𝑈

𝜕𝑅2),                                 (12) 

 

  𝑡 ≤ 0:    𝑇 = 0 , 𝑉 = 0, 𝑈 = 0                    for all X and R  

  𝑡 > 0:    𝑇 = 1 , 𝑉 = 0 , 𝑈 = 0                   at   𝑅 =  1 

                𝑇 = 0 , 𝑉 = 0, 𝑈 = 0                   at   𝑋 = 0 

                  𝑇 → 0 , 𝑉 → 0, 𝑈 → 0,
 𝜕𝑼

𝜕𝑅
→ 0    as   𝑅 → ∞ .                                                       (13)  

 

3. Finite difference numerical solution  

To solve the time-dependent mathematical flow model defined by Eqns. (10) - (12) along with 

initial and boundary conditions (13), the popular finite difference Crank-Nicolson method is 

applied which is described in [46]. It has been applied in analysis of viscoelastic flows 

(Walters-B liquids) by Mohiddin et al. [47] for transient double-diffusive convection from a 

cone and Prasad et al. [48] for time-dependent free convective flow from plate. More recently 

this method has been used in computing magnetic nanofluid flows from translating cylindrical 

bodies with periodic temperature variation (Rajesh et al. [49]) and radiative-convective 

nanofluid flow from a cylinder (Rajesh et al. [50]). The zone of integration formed as a 

rectangular with sides 𝑋𝑚𝑎𝑥 = 1, 𝑋𝑚𝑖𝑛 = 0, 𝑅𝑚𝑎𝑥 = 20 and 𝑅𝑚𝑖𝑛 = 1, where 𝑅𝑚𝑎𝑥 relates to 

R = ∞ which lies distant from the energy and momentum boundary layers. Also, the accuracy 

of the present computational results are compared with the erstwhile studies (Newtonian fluid) 

of Lee et al. [51] for Pr = 0.7, β = 0, γ = 0 and  ε = 0, and it is found to be in good agreement 

which is shown in Figure 2.  Further, to validate the Crank-Nicolson method for the present 

study on non-Newtonian second-grade fluid model, the authors considered different physical 

model on second-grade fluid [52] and implemented the same Crank-Nicolson method to get 

the numerical results for their study. These results are well agreed with Mustafa et al. [52] and 

shown in Figure 3. Therefore, it is concluded that confidence in the present Crank-Nicolson 

code is justifiably high and that the present numerical results demonstrate sufficiently high 

accuracy.  

 

4. Grid independence study for numerical code 
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To achieve an economical and stable grid structure for computation, a grid independency 

assessment is done over the values of the 𝑁𝑢 for different grid sizes with fixed time step size 

Δ𝑡 = 0.01 and for distinct time step sizes with fixed grid 100 x 500, which are documented in 

Table 1 and Table 2, respectively.  

 

5. Results and discussion 

The description of governing flow-field results are plotted with fixed value of Grashof number 

(𝐺𝑟 = 1),  various physical parameter values namely second-grade fluid parameter (β), 

viscosity variation parameter (γ), viscous dissipation parameter (ε), group parameter (𝐵𝑟Ω−1) 

and Prandtl number (Pr) in succeeding Figures.  

 

5.1   Velocity and temperature variables  

Figure 4(a) describe the unsteady velocity distribution at the spatial coordinate (1, 3.2) which 

plotted U against t for individual β, γ and ε values.  Evidently, the fluid velocity is augmented 

with t, attains its peak, then slightly declines and finally attains the time-independent (steady) 

state value. For instance, when β = 1.0, γ = 0.2 and ε = 1.0 the velocity monotonically 

augments with time and accomplishes the temporal peak (𝑈 = 0.439) at 𝑡 = 5.35 then 

marginally reduces and finally turn out to be asymptotically steady (𝑈 = 0.39). At the outset 

when t ≪ 1, describes the conduction dominates over the convection. Also, overshoots of the 

velocities are noticed in this figure. This is due to particular values of dimensionless viscosity 

(1 + γ𝑇) and dimensionless thermal diffusivity 1/Pr is possibly the reason for the overshoot 

of the velocity. The transient velocity, U, profile increases with increasing β values, the flow 

is accelerated since higher elastic impacts are generated as per the delineation of this 

viscoelastic parameter =
𝛼1

𝜌𝑟0
2). This strengthens the flow and assists momentum development. 

Also, this transient U, profile at the outset decreases with increasing γ. Fluid viscosity is 

increased with higher γ and this enhances viscous forces in the momentum boundary layer 

which deaccelerates the flow (viscous i.e. momentum diffusion is strongly affected at a given 

Prandtl number). Similarly, there is a boost in velocity with increasing dissipation parameter 

(ε). It is also noteworthy that the required time to accomplish the temporal peak rises as γ 

increases whereas for increasing β and ε values the trend is reversed. Very different responses 

in time are therefore computed with variation in these three viscosity-related parameters.  
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Figure 4(b) portrays the distribution of unsteady temperature profile (T) plotted at the spatial 

coordinate (1, 1.15) for the values of β, γ and ε. Temperature clearly is emphasized initially 

with time, achieves an extreme value and thereafter is weakly reduced; finally, attain the 

steady-state. Initially, temperature curves coincide with each other for all values of control 

parameters and deviated after some intervals. Temperature is clearly enhanced with superior 

values of γ and β. The effect of viscoelastic parameter β is less as compared to viscosity 

variation parameter γ.  The reason is that as γ upsurges the fluid viscosity increases which 

allow higher temperature profile. The increase in the fluid temperature is being caused by 

stronger elastic forces in the medium and also a change in viscosity which boosts motion of the 

fluid particle. Increasing viscous dissipation parameter (ε), as anticipated, strongly elevates the 

temperature. This is due to a boost in the thermal energy generated by kinetic energy dissipation 

as a result of flow against resistance forces, and is an observation confirmed in many other 

studies, notably Gebhart [53]. The inclusion of viscous dissipation effects is therefore 

important since it avoids under-prediction of temperatures associated with non-dissipative 

models. This has implications for wall cooling rates also which are critical in polymer (and 

other) materials processing operations.  

Figure 5(a) reveals the response in dimensionless steady-state axial velocity profiles for 

various governing parameters (β, γ and ε) against radial coordinate, R. The velocity, U 

commences with zero value, accomplishes its maximum and then decays to zero with 

increasing R coordinate sustaining the far-field (free stream) boundary conditions. Besides, in 

the vicinity of the cylindrical wall, the magnitude of U profile is augmented with greater R 

values, achieving a peak near to the cylindrical surface into the boundary layer. The peak is 

displaced away from the cylinder surface with increasing γ. Also, the required time to complete 

the steady-state decreases for increasing γ or β and the opposite behaviour is computed with 

increasing dissipation parameter, ε. Further, it is also noted that, as β and γ increase, the peak 

velocity magnitude is diminished. Additionally, for the higher viscosity case, the motion of the 

fluid occurs slowly near the hot wall while the fluid with lesser viscosity, the fluid motion is 

speed up nearby wall. Hence it is obvious that in the environs of the cylinder the velocity 

magnitude is high for γ compared to β and ε i.e. γ has a more reflective accelerating impact on 

axial velocity. 

Figure 5(b) Illustrates the steady-state temperature (T) distributions versus R for distinct values 

of  β, γ and ε. These outlines initiate with the boundary value of T = 1 and then reduce to zero 
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as R increases. It is noted that, with greater viscosity parameter (γ), there is a significant 

eventual elevation in temperature i.e. the regime is energized and the thermal boundary layer 

thickness is also increased. A similar pattern is induced with augmenting values of viscous 

dissipation parameter (𝜀) which again implies thicker the thermal boundary layer development. 

It is also pertinent to highlight that the time-independent state T curves demonstrate a very little 

deviation from each other indicating that viscoelastic parameter (β) exerts a trivial influence 

on thermal field. The viscoelastic effect is primarily confined to velocity field. There are no 

viscoelastic terms in the momentum eqn. (11) for the second-grade model. However, in higher 

models of the differential type (e.g. third grade model), viscoelastic terms do feature in the 

momentum equation, and as such impart a significant effect on temperatures, as elaborated by 

Bég et al. [54].  

5.2 Friction and heat transport coefficients 

From the velocity and temperature flow-fields, the mathematical expressions for skin friction 

and Nusselt number are determined easily. They are used to measure of the wall shear stress 

heat transfer rate at the boundary. The skin-friction  𝐶𝑓  and Nusselt number 𝑁𝑢 can be written 

as:   

 

 𝐶𝑓 = (1 + γ) ∫ (
𝜕𝑈

𝜕𝑅
)

𝑅=1
𝑑𝑋

1

0
     and    𝑁𝑢 = − ∫ (

𝜕𝑇

𝜕𝑅
)

𝑅=1
𝑑𝑋

1

0
.                   (14) 

 

Figures 6(a) - 6(b) elucidate the average momentum and wall heat transfer which are plotted 

against time (t) with a variation in β, γ and ε parameters. Figure 6(a) displays that  𝐶𝑓 increases 

considerably with t and after a certain lapse of a period it attains the steady-state region. Also, 

there is a substantial reduction in   𝐶𝑓 with γ as a result of slowing down in the flow with effects 

higher viscosity. This is also consistent with the time-dependent U graph as described earlier 

in Fig. 4(a). Also, boosting values of β and ε both evident in a marked lessening in  𝐶𝑓  𝑖. 𝑒. a 

strong deceleration at the wall is induced with stronger viscoelastic and dissipative effects.          

Figure 6(b) illustrates that initially, the magnitude of wall heat transfer gradient i.e. 𝑁𝑢 

decreases drastically, a tendency which is pursued by a trivial escalation in magnitudes and 

eventual accomplishment of the time-independent state. Also, it is noted that initially, the 𝑁𝑢 

curves coincide with each other and only deviated from each other after some elapse in time. 
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It is also obvious that  𝑁𝑢 decreases with accumulative values of β, γ and ε, which is physically 

consistent with an increase in temperatures in the boundary layer (computed earlier).  

                                                                                      

5.3 Computation of entropy heat generation and Bejan number  

The entropy generation expression for an incompressible second-grade fluid is given by:     

               𝑆𝑔𝑒𝑛 =
𝑘

𝑇∞
′2 (

𝜕𝑇′

𝜕𝑟
)

2

+ {
𝜇̅

𝑇∞
′ (

𝜕𝑢

𝜕𝑟
)

2

+
𝛼1

𝑇∞
′ [

𝜕2𝑢

𝜕𝑟𝜕𝑡′

𝜕𝑢

𝜕𝑟
+ 𝑣

𝜕𝑢

𝜕𝑟

𝜕2𝑢

𝜕𝑟2 + 𝑢
𝜕𝑢

𝜕𝑟

𝜕2𝑢

𝜕𝑥𝜕𝑟
]}            (15)  

Eqn. (15) can be re-written as:    

                                       𝑆𝑔𝑒𝑛 = 𝑆1 + 𝑆2            (16)  

Here: 

   𝑆1 =
𝑘

𝑇∞
′2 (

𝜕𝑇′

𝜕𝑟
)

2

,     𝑆2 =
𝜇̅

𝑇∞
′ (

𝜕𝑢

𝜕𝑟
)

2

+
𝛼1

𝑇∞
′ [

𝜕2𝑢

𝜕𝑟𝜕𝑡′

𝜕𝑢

𝜕𝑟
+ 𝑣

𝜕𝑢

𝜕𝑟

𝜕2𝑢

𝜕𝑟2 + 𝑢
𝜕𝑢

𝜕𝑟

𝜕2𝑢

𝜕𝑥𝜕𝑟
]          (17)  

Here  𝑆1 and  𝑆2 signifies the entropy generation due to by heat flow, and viscous dissipation 

for incompressible second-grade fluid respectively.  

The dimensionless entropy heat generation parameter Ns is defined as (Bejan [55]):  

𝑁𝑠 =
𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒
 

Thus the entropy generation number for the considered problem can be written as 

𝑁𝑠 = (
𝜕𝑇

𝜕𝑅
)

2

+
𝐵𝑟(𝐺𝑟)2

Ω
{(1 + γ𝑇) (

𝜕𝑈

𝜕𝑅
)

2

+ β (
𝜕2𝑈

𝜕𝑅𝜕𝑡

𝜕𝑈

𝜕𝑅
+ 𝑉

𝜕𝑈

𝜕𝑅

𝜕2𝑈

𝜕𝑅2 + 𝑈
𝜕𝑈

𝜕𝑅

𝜕2𝑈

𝜕𝑋𝜕𝑅
)}                  (18) 

where characteristic entropy heat generation is  
𝑘(𝑇𝑤

′ −𝑇∞
′ )2

𝑇∞
′2𝑟0

2  . The equation (18) can be rephrased 

in the subsequent form as: 

 

                                            𝑁𝑠 = 𝑁1+𝑁2                                                                             (19) 

 

Here 

 𝑁1 = (
𝜕𝑇

𝜕𝑅
)

2

 and 𝑁2 =
𝐵𝑟(𝐺𝑟)2

Ω
{(1 + γ𝑇) (

𝜕𝑈

𝜕𝑅
)

2

+ β (
𝜕2𝑈

𝜕𝑅𝜕𝑡

𝜕𝑈

𝜕𝑅
+ 𝑉

𝜕𝑈

𝜕𝑅

𝜕2𝑈

𝜕𝑅2 + 𝑈
𝜕𝑈

𝜕𝑅

𝜕2𝑈

𝜕𝑋𝜕𝑅
)}     (20) 

 

N1 and N2 symbolizes the heat transfer irreversibility and fluid friction (viscous dissipation), 

respectively.   
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To estimate distribution of the irreversibility [56], the parameter Be (Bejan number) is given 

by: 

          𝐵𝑒 =  
𝑁1

𝑁1+𝑁2
                                                                                                               (21) 

From Eqn. (21), 0 ≤ 𝐵𝑒 ≤ 1. Subsequently, 𝐵𝑒 = 0 implies that the parameter 𝑁2 leads the 

parameter  𝑁1, whereas 𝐵𝑒 = 1 implies that the parameter 𝑁1 dominates the parameter  𝑁2. It 

follows that at 𝐵𝑒 = 0.5, the contribution of fluid friction is equal to heat transfer irreversibility 

i.e. 𝑁2 =  𝑁1.  

Figure 7 presents the effect of distinct flow-field control parameters on transient Ns which is 

drawn against t at the spatial coordinate (1, 1.72). The variation of β, γ and ε over transient Ns 

is depicted in Fig. 7(a).  From this plot, it is noticed at first, the Ns curves overlap with each 

other and split afterward for all physical parameters values. This states that in the initial period 

(i.e., t < 1.35) thermal conduction is further dominant than the thermal convection heat transfer. 

Also the eminent remark from Fig. 7(a) is that Ns decreases with augmenting γ and β. However, 

Ns is enhanced with greater values of dissipation parameter, 𝜀. This is due to as viscous heating 

upsurges with augmenting  𝜀 , and as a result the fluid particles disorderness  increases and 

hence which leads to higher Ns. Fig. 7(a) further indicates that the time to accomplish temporal 

peak increases for all values of parameters, 𝐵𝑟Ω−1, 𝐺𝑟 and 𝑃𝑟. The influence of these 

parameters is significant. Brinkman number expresses the contribution of viscous heat 

generation by shear to the direct heat conduction from the cylinder surface. Grashof number 

expresses the contribution of thermal buoyancy force to viscous force. Prandtl number 

summarizes the ratio of momentum diffusion rate to thermal (energy) diffusion rate.  All these 

parameters enhance the Ns magnitudes as shown in Fig. 7(b). Here the Ns profile trend is almost 

similar as explained in Fig. 7(a). Hence, from Fig. 7(b) is remarked that amplifying the values 

of physical parameter shows more entropy production, particularly with boosting group 

parameter, 𝐵𝑟Ω−1.  

Figs. 8(a) - 8(b), depict the time-independent Ns profiles for distinct control parameters along 

the R axis at X = 1.0. As the R position rises, the Ns magnitudes markedly upsurge, achieve a 

peak value, then decrease monotonically to zero. Figure 8(a) signifies the variations of β, γ and 

ε on the time-independent Ns profiles. The Ns curve peak values are sharpened in the vicinity 

of the hot cylindrical wall for cumulative values of γ and β. However, the Ns curves are 

smoother at the maximum value of the dissipation parameter, ε. Further, the viscous dissipation 

parameter plays a prominent role in the entropy generation effects [Refer Eq. (18)]. Due to this 
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effect, in Fig. 8(a), the local maximum is observed for the entropy generation.  From this graph, 

it is apparent that for increasing values of γ and β, the steady-state Ns curves decrease nearby 

the cylindrical surface (i.e., in the interval 𝑅 ∈ [1, 2.15]), then increase when 𝑅 > 2.15. For 

escalating values of ε, the curves inter-twine with each other. It is seen that Ns is increased by 

increasing the values of ε. Additionally, the distribution of Ns is essential in the region nearby 

the hot cylinder. The cylinder wall has a strong impact on entropy generation due to sudden 

changes in the temperature difference. Also, the term (1 + γ𝑇) is appeared in the equation (18), 

in which γ is a temperature dependent viscosity. Due to this temperature difference effect, 

entropy generation shrinkages sharply with increasing radial coordinate R. Similar trend can 

be observed in the available literature for Ns [57-59]. Figure 8(b) depicts that, in the environs 

of a cylinder surface, the entropy escalates rapidly, then decreases drastically, finally vanishing 

with large radial coordinate. Further, it is remarked that by boosting values of the control 

parameter (i.e 𝐵𝑟Ω−1, Gr and Pr ), all the Ns curves increase. For larger values of these control 

parameters, the entropy production due to the fluid friction increases.  

The analysis of entropy contours in a given two-dimensional domain using dimensionless Ns 

is called as entropy visualization (entropy contours). Figures 9(a) and 9(b) illustrate the 

entropy lines with respect to various β and γ values. The deviation of entropy lines very close 

the hot surface of the cylinder for the variation (viscosity parameter) γ compared to 

(viscoelastic parameter) β. From both Fig. 9(a) and 9(b) it is seen that, at any spatial coordinate 

(X, R), the entropy contour value decreases for increasing values of γ and β. Also, entropy 

contours display lower values for β and higher values for γ. This is true since the entropy 

production is higher for γ compared to β as demonstrated in Fig. 9(a). Further, entropy contours 

are not smooth near the cylinder wall. The reason is as explained in the earlier Fig. 8(a); the Ns 

is not smooth near the hot wall due to the sudden change in the temperature difference. Hence, 

the entropy contours are also not smooth near the cylinder wall. The essential remark from 

these figures is that the entropy production occurs in the neighbourhood of the hot cylinder 

wall only. 

Fig. 10a-b illustrates the evolution of Be with against time (t), for various non-dimensional 

parameters. These results show that at first Be start with negative value, rises with time, and 

reaches the peak value, then lastly turn out to be independent of time after a slight oscillation. 

At the beginning of the flow, the heat transfer irreversibility controls the entropy and when t > 

1.3 entropy is dominated by fluid friction. From Fig. 10(a) generally, it is seen that as γ or ε 
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are increased, the Bejan number is enhanced markedly. Also, it is remarked that cumulative β 

causes a reduction in values in Be. From Fig. 10(b) it is noted that as 𝐵𝑟Ω−1 or Gr rises, the 

Bejan number upsurges i.e. viscous heating and thermal buoyancy both augment the Bejan 

number. The opposite trend is induced with increasing Pr (i.e. decreasing thermal conductivity 

of the fluid). Again the taken to attain a time-independent state and temporal peak is almost 

indistinguishable with increasing values of the combined parameter, 𝐵𝑟Ω−1.   

Figs. 11a-b visualize the steady-state Be variation with R coordinate at X = 1.0 for several 

values of governing parameter (β, γ, ε, 𝐵𝑟Ω−1, Gr and Pr). In these entire plots, the steady-

state features of Bejan number are invariably similar to the steady-state entropy generation (Ns) 

depicted earlier in Figs. 7(a) - 7(b). Particularly, it is noticed that heat transfer irreversibility 

ensues in the radial direction, i.e., 𝑅 ∈ [2.5, 3.5] which reasons negative values in Be. 

Generally, it is seen from Fig. 11(a), that the time-independent state Be magnitudes decrease 

as γ increases and the converse trend is attained with escalating values of β or 𝜀. Also from 

Fig. 11(b), it is apparent that Be is enhanced with superior values of 𝐵𝑟Ω−1 and Gr. The 

converse response is computed for increasing Prandtl number, Pr. The essential observation is 

made from these figures is that the time-independent state Ns production outstrips the Be 

nearby cylinder surface. This endorses that smaller Be yields an increase in 𝑁2, i.e., 𝑁1 ≤, 𝑁2, 

and thus irreversibility due to heat transfer is dominated by fluid friction which gives more 

entropy production in the neighbourhood of the hot cylinder surface (wall).  

Figures 12(a)-12(b) illustrate Bejan lines for considered values of γ and β. The variation of 

Bejan lines occurs closer to the hot wall for values of γ values as compared to β. Also in the 

neighbourhood of the hot wall, it is pinpointed that, for all values of γ and β the Bejan lines 

having sharpened vertex point towards the leading edge of the cylinder and move away from 

the wall as R increases. Bejan contour value shrinkages for cumulative values of γ and β. Also, 

Bejan lines give higher values for γ and lower values for β. With increasing values β, the Bejan 

lines tend to depart from the hot wall as compared to γ but there is no such variation in the case 

of entropy lines. Further, the Bejan number (Be) follows the same trend as that of entropy 

generation (Ns) this is due to the definition of the parameter Be [Refer Eq. (21)]. Also, as 

explained in the earlier paragraph (Figs. 8 & 9), the entropy generation (Ns) and its contours 

are not smooth near the cylinder wall. Therefore, in a similar way, the Bejan number (Be) 

curves are also not smooth near the wall which is observed in the Figs. 11 and 12.    
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5.4 Comparison between Second-grade Viscoelastic and Newtonian Fluid Flows 

Figure 13 explains the flow-field (U &T) variable contours for second-grade and Newtonian 

fluid flows. Fig. 13(a) denotes second-grade fluid and Fig. 13(b) corresponds to a Newtonian 

fluid. Here the flow of second-grade fluid velocity is perceived to be less compared to the 

Newtonian fluid. However, a greater temperature is attained by the second-grade fluid than the 

Newtonian fluid. In addition, the time-independent temperature contours for the second-grade 

fluid are rather dissimilar and a thicker thermal boundary layer is attained related with the 

Newtonian fluid. 

6. Concluding remarks   

The entropy generation in time-dependent buoyancy-driven thermal convection boundary layer 

flow of a second-grade fluid from a vertical cylinder with viscosity variation and viscous 

dissipation has been analysed numerically. A stable Crank-Nicolson implicit finite difference 

scheme is used to elucidate governing conservation equations under well-posed initial and 

boundary conditions. The results obtained from this research may be summarized as follows: 

• The required time to complete the steady-state decreases as viscoelastic parameter (𝛽) 

or temperature-dependent viscosity (𝛾) are enhanced, and the opposed behaviour is 

induced with augmenting viscous dissipation parameter (ε).  

• Both velocity and temperature increases with escalating values of viscoelastic 

parameter (𝛽) or temperature-dependent viscosity (𝛾) and the opposite response is 

noticed with an increase in dissipation parameter (ε).   

• Skin friction ( 𝐶𝑓) and wall heat transfer rate (𝑁𝑢) are reduced with increasing values 

of all values of the control parameters.  

• Entropy heat generation number decreases for increasing values of temperature-

dependent viscosity and viscoelastic parameter. The opposite trend is induced with 

increasing Grashof number, group parameter and Prandlt number.   

• Bejan number increases for all the cumulative values of control parameter except 

Prandtl number, Pr. 

The current study has revealed important thermodynamic and heat transfer features associated 

with external thermal convection boundary layer flows of viscoelastic dilute polymer 

suspensions. Future studies will explore other non-Newtonian models e.g. the Oldroyd-B 

viscoelastic model and will be communicated imminently.  
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Table 1. Grid independence test for selecting mesh size with fixed ∆𝑡 = 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grid size 
Average Nusselt number ( 𝑁𝑢) for 

Pr = 0.71, 𝛾 = 1.0, β = 1.0, ε = 1.0 

 
25 x 125 

 
0.708685 

 
50 x 250 

 
0.688729 

 
100 x 500 

 
0.677087 

 
200 x 1000 

 
0.677041 
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Table 2. Time independence test for selecting time step size with fixed 100 x 500 grid. 

 

 

 

 

 

 

Time 

step size      

(∆𝑡 ) 

   

Average Nusselt number ( 𝑁𝑢 ) for 
   Pr = 0.71, 𝛾 = 1.0, β = 1.0, ε = 1.0  

 
0.5 

 
0.677375 

 
0.1 

 
0.677375 

 
0.08 

 
0.677374 

 
0.05 

 
0.677303 

 
0.02 

 
0.677221 

 
0.01 

 
0.677087 
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FIGURES 

 

Fig. 1. Physical model of the analysis. 
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Fig. 2. Comparison of the flow-field variables with existing available results Lee et al. [51]. 
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                                                                               3(a)                                                                                                                

                                                                               3(b) 

 

Fig 3. Validation of Crank-Nicolson code for second-grade fluid model (Mustafa et al. [52]) 

with respect to (a) velocity profile; (b) temperature profile. 
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                                                                             4(a) 

                                                                         4(b) 

Fig. 4. Time-dependent (a) velocity profile (U) at the location (1, 3.2); and (b) temperature 

profile (𝑇) at the location (1,1.15) versus time (t) for various values of β, γ and ε. 
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    5(a) 

 

   5(b) 

Fig. 5. Simulated time-independent state (a) velocity (U); and (b) temperature (T) profiles 

versus R at X = 1.0 for various values of 𝛽, 𝛾 and 𝜀.  
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   6(a)  

  6(b) 

Fig. 6. Average (a) skin-friction (𝐶𝑓); and (b) heat transport (𝑁𝑢 ) coefficients for distinct 

values of β, γ and ε. 
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                                                                        7(a) 

7(b) 

Fig. 7. The transient entropy generation number (Ns) against time (t) for different values of 

(a) β, γ and ε; & (b) 𝐵𝑟Ω−1, Gr and Pr. 
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8(a) 

8(b) 

Fig. 8. The steady-state entropy generation number (Ns) against R at X = 1.0 for different values 

of (a) β, γ and ε; & (b) 𝐵𝑟Ω−1, Gr and Pr. 
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9(a) 

  9(b) 

             Fig. 9. The steady-state entropy contours (Ns) for different values of (a) γ; and (b) β. 
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             10(a) 

10(b) 

Fig. 10. The transient Bejan number (Be) against time (t) for different values of (a) β, γ and ε; 

& (b) 𝐵𝑟Ω−1, Gr and Pr.   
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11(a) 

11(b) 

Fig. 11. The steady-state entropy Bejan number (Be) versus R at X = 1.0 for various values of 

(a) β, γ and ε; & (b) 𝐵𝑟Ω−1, Gr and Pr.  
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12(a) 

12(b) 

 

Fig. 12. The steady-state Bejan contours (Be) for different values of (a) γ; and (b) β.     
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Fig.  13. The steady-state velocity (U) and temperature (T) contours for different values of 

(a) second-grade fluid (β = 1.0); and (b) Newtonian fluid (β = 0.0). 

 

 


