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Abstract 

Application of machine learning in the field of malware analysis is not a new concept, there 

have been lots of researches done on the classification of malware in android and windows 

environments. However, when it comes to malware analysis in the internet of things (IoT), it 

still requires work to be done. IoT was not designed to keeping security/privacy under 

consideration. Therefore, this area is full of research challenges. This study seeks to evaluate 

important machine learning classifiers like Support Vector Machines, Neural Network, 

Random Forest, Decision Trees, Naive Bayes, Bayesian Network, etc. and proposes a 

framework to utilize static feature extraction and selection processes highlight issues like over-

fitting and generalization of classifiers to get an optimized algorithm with better 

performance.  For background study, we used systematic literature review to find out research 

gaps in IoT, presented malware as a big challenge for IoT and the reasons for applying malware 

analysis targeting IoT devices and finally perform classification on malware dataset. The 

classification process used was applied on three different datasets containing file header, 

program header and section headers as features. Preliminary results show the accuracy of over 

90% on file header, program header, and section headers. The scope of this document just 

discusses these results as initial results and still require some issues to be addressed which may 

effect on the performance measures. 
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Chapter 1: Introduction 

In the last few years, the internet has started playing a vital role in everyone’s life when the 

concept of “Internet of Things” (IoT) emerged. IoT has fundamentally changed the paradigm 

of traditional information technology (IT) to a new era of innovation involving sensor chips. In 

a concise time, the current conceptualization of IoT led to deploying over 9 billion 

interconnected devices in the market; this figure is expected to rise to 24 billion in 2020, it 

seems like nearly everything will become connected in future for effective communication 

(Gubbi et al., 2013). With the increased connectivity of the internet with all the luxuries, IoT 

devices bring the concept of security to the consumer (e.g., controlling home automation). This 

development of technology makes their hectic life enjoyable and under controlled. For 

instances, the idea of the customized theme in smart-lights is a best example of  an IoT device, 

another concept of smart fridges with content management not only gives the consumer a useful 

real-time experience, but it also provides a flexible solution for this busy generation. Ease of 

life made IoT as an inevitable reality of life what we could only think in the early 80's. Now 

researchers claim that IoT devices are the first choice of the consumers. Therefore, an enormous 

number of IoT devices are getting developed, according to a survey the total number of smart 

IoT devices are expected to reach the figure of approximately 50 billion in 2020 and an estimate 

of over 75 billion in 2025. With the rise of IoT associated insecurities have also evolved rapidly 

in the form of malware, denial of service attacks (DoS) and botnets. Figure 1 shows the 

evolution of famous malicious attempts (Nordrum, Aug 2016, IHS, 2016).  

In recent years,  cybercriminals have developed malware targeting these IoT devices. Imagine! 

Your smart fridge sends fake content update requests to your local Tesco, you receive a bill that 

you were not supposed to pay, or your smart home meter has been infected by malware which 

is sending wrong meter reading, it would cause insecurity to the users and lack of trust to the 

product or service provider. Different kind of malware targeting IoT device, Figure 2 

summarises some common malware attacks. 
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Figure 1: History of malware 

 

Figure 2: Common malware attacks 

Mirai is a recent example of IoT malware which converts its target into a Botnet. Mirai got the 

focus of researcher’s attention for targeting more than 148k IoT devices, making CCTV 

cameras and DVR recorders running on ports 23 and 2323 particularly and turning them into 

Botnets to cause Distributed Denial of Service Attack (Angrishi, 2017). To complicate the 

situation, malware authors used techniques to camouflage the primary activity of a malware 

causing more damage to the infected devices. Therefore, there is a significant need to employ 

malware detection techniques which incorporate Data Mining and Machine Learning 

Algorithms to enhance the detection capability.  

Over the last one decade, plenty of research has been conducted in the field of malware analysis; 

all proposed techniques had some limitations leaving billions of devices still vulnerable to new 
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malware. Therefore, we need research which predominantly focuses on enhancing automated 

malware analysis using potentially malicious IoT executables that detect their malicious 

activities with the help of classification and prediction for better performance. 

1.1 - Problem statement 

Malware have been threatening the privacy of internet users for a very long time, with every 

day passing cybercriminals are using advanced programming skills to create more destructive 

malware. A malware of any class contributes to the revenue loss to the society. Recently, in a 

study, it was claimed that in 2016 the famous attack on Dyn (Oracle’s infrastructure service 

provider company specializing in DNS and Email related services) by Mirai Botnet caused a 

revenue loss of $110 million (Kochetkova, 2016). The damage did not stop here, author of the 

malware released its source code on GitHub leaving the doors open for more powerful attacks.  

IoT malwares have special features that enable them to run on huge range of architectures and 

target multiple platforms. Of course, this special feature makes the IoT malware a smarter form 

of malware, however, IoT malwares also take the advantage of weaknesses present in IoT 

devices such as firmware loopholes, no encryption mechanism etc. and exploit these weakness 

in a clever way. These malwares have an ability to scan heterogeneous devices using open ports, 

hostile these devices by applying various commands /or saved default usernames / or passwords 

in their database. Furthermore, another feature that contribute to make it different from other 

malwares is the instruction set to avoid IPs of Government Agencies.  

 

Billions of IoT devices are already present in the market on vast number of architectures. Main 

weak point of these devices is their resource constrained nature. Due to rapid growth in their 

importance and the weaknesses present, these devices soon became a prime target of malware 

attacks. It has also been noted from published work that there have been numerous ongoing 

studies done in Windows and Mobile devices related malware mainly involving Android. 

Unfortunately, this area did not get much attention and till this date there is no published 

literature available to analyse malware with respect to IoT. This research work attempts to 

systematically review the literature to study the vulnerabilities reported in IoT and how these 

are related to malware attacks. This work also aims to analyse IoT malware and work focused 

on various distinct directions of malware analysis. First such direction was the collection of IoT 

malware/goodware. Second was extraction of meta-information, headers, strings, and symbols 

etc. Another direction was classification of malware with the help of machine learning.  The 
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study gives us insight useful information about the patterns of IoT malware/goodware, 

classification and prediction. 

Furthermore, there is no optimum framework for the classification of IoT application. 

Additionally, no work has been done to observe generalization of classifiers, hyper tuning the 

parameters (to figure out best parameter for a chosen algorithm) and analyze whether a 

particular classifier is overfitting or not? These factors motivate us to carry out work in this 

domain.  

1.2 - Research aims and objectives 

Based on the literature reviewed it is clear that further studies into IoT malware are needed. The 

proposed project will investigate the published literature through the bibliometric approach and 

summarize the gaps reported in the previous section of the problem statement, IoT 

environments suffer malware detection, classification, prediction and pattern recognition. 

Meanwhile, we can also observe the lack of application of feature scoring algorithms which can 

be used for feature selection. Here, I will not discuss the individual status of static or dynamic 

features of IoT malware; both require comprehensive research. In the light of this, the 

dissertation has three overriding objectives: 

1. Malware as a severe threat to IoT: To review the literature to identify what kind of threats 

and vulnerabilities being faced by IoT devices. And how it becomes security, privacy, and 

trust related concern. 

2. Systematically review the literature: To capitalize on public available malware detection 

tools and libraries of machine learning algorithms for data mining to support annotation of 

critical malware in IoT for which no information is available.  

3. IoT malware analysis: To conduct IoT malware analysis using selected classifiers (shown 

in figure 3) and by observing optimum parameters. Sub-objectives are following: 

a) To study the results using a minimum number of features determined with the help of 

feature reduction/scoring techniques.  

b) To evaluation different feature scoring techniques and choosing best feature 

selection/reduction method for our datasets. 

c) To analyze the performance of the algorithms using false positive rates, overfitting issues 

and most importantly analyze the generalization of the algorithms. 
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Figure 3: Showing how we reached at the stage of static malware analysis 
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1.3 - Research contribution 

This section discusses the research contributions; figure 4 shows the representation of our 

research contributions. Supervised learning-based machine learning algorithms help to 

predict/determine relevant IoT malware features (only static features). These relevant features 

also help to detect different patterns of the applications being analyzed and create a logical 

linking between good or bad, predicting the ability of the malware attack on the basis of feature 

ranking and provide a coherent framework to classify the differences between malware and 

goodware.   

 

 

 

 

 

 

Figure 4: Proposed research stages for static malware analysis with machine learning 
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This section presents the research contribution and personal commitment. In addition to this, 

these contributions also help to perform the comparative analysis between IoT malware and 

goodware (malware belonging to UNIX System V malware family and clean ELF executables 

collected from Raspberry Pi based Qemu emulator) and also to differentiate between them by 

a minimum set of features. Therefore, we propose providing an optimum framework for 

malware classification and evaluation using selected classifiers. In other words, the 

recommended tool to help better prediction by involving a comparative analysis of various 

feature selection methods as well. I would explain these research contributions in more detail 

in later sections.  

The rest of the document can be structured as follows: Chapter 2 contains information about 

malware analysis primarily static malware analysis and background literature review of static 

malware analysis. Chapter 3 (Data Collection and The Proposed Approach) describes research 

methodology to achieve research aims and objectives, while CHAPTER FOUR: Research 

Planning.  

  



18 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2: LITERATURE REVIEW 

  



19 | P a g e  

 

Chapter 2. Literature review 

The overall aim of the literature review is to perform background study of existing literature 

related to the internet of things, its related challenges, identify the research gaps to understand 

the theoretical and conceptual framework of the research in question. The presentation of 

literature being reviewed in chronological order helps to observe the quality of work, its growth, 

current gaps in the knowledge and future progress. Therefore, a literature review can be treated 

as an essential part of the research used to remodel the elements of the work done and create 

the basis of future work (Webster and Watson, 2002). 

2.1 - Internet of Things 

In simple words internet of things (IoT) consists of two important elements “internet” and 

“things.” The name IoT was first used in 1999 in which radio frequency (RF) application 

extension took place forming the basis of IoT infrastructure (Khodadadi et al., 2017). During 

early days of the introduction of IoT, RF chips used to be the force behind IoT but later on 

replaced by wireless sensor chips. There are various definitions of IoT in the literature as shown 

in table 1.  
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Table 1: Showing some definitions of IoT 

Definition Ref 

“A network of objects which revolves around three pillars of the internet, 

sensors, and knowledge in such a way that there is always an intersection in the 

applicability.” 

(Atzori et 

al., 2010) 

“A network of things, interconnecting with the help of sensors, actuators, data 

analytics and cloud computing to exchange the information and bring 

innovative solutions via unified frameworks.” 

(Gubbi et 

al., 2013) 

“An environment that utilizes the information and enabling technologies to 

make infrastructure, its components and makes various services interactive, 

more aware and efficient.” 

(Bélissent, 

2010) 

A network of actively interacting, communicating, exchanging information and 

anonymously behaving things in information and social environments. 

(Al-Fuqaha 

et al., 2015) 

A network in which things with unique identities and virtual personalities 

operating with the help of intelligent interfaces and network protocols to enable 

them to interconnect and communicate with each other. 

(Vermesan 

et al., 2011, 

Singh et al., 

2014) 

IoT can also be defined as a self-configuring global network which is based on 

protocols that are standard and interoperable. Furthermore, the connected 

objects have identities/physical attributes and consist of intelligent interfaces 

incorporated to form an information network. 

(Van 

Kranenburg, 

2008, Ray, 

2016) 

Based on above-mentioned definitions, IoT can be considered as a complex cyber-physical 

ecosystem with following six characteristics: (i) Dynamic infrastructure; (ii) Self-configuring; 

(iii) Well integrated; (iv) Interoperable; (v) Identities and physical attributes; (vi) Intelligent 

Interfaces. 

These six characteristics make a “smart device” that is considered as a significant part of the 

scientific revolution. The tremendous growth in smart IoT devices and their innovative features 

is self-evident of their importance. IoT technology became more promising when researchers 

claimed that in the future every ordinary device will be transformed into a smart device and IoT 

will turn into Internet of Everything (IoE).  
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Along with the rise of IoT, top technology giants have also started focusing towards it for 

example Google acquired Nest to step into smart home automation business, Apple introduced 

HomeKit and Cisco launched various products in the areas of network connectivity, data 

analytics, embedded systems, security and digital transformation (DevNet) and made a bold 

statement that IoT market worth at least 14 trillion dollars (Dijkman et al., 2015).  This is the 

beginning as numerous European companies are making their products in the areas of health 

care, energy and in the vehicle industry, etc. Furthermore, the good thing about IoT is that 

researchers have started performing quality research in it and trying to address associated 

challenges of security, privacy and in particular malware threats. As of now, research scientists 

continue to produce high-quality technical approaches including Robotics, Cloud Computing, 

Big Data and development of IoT machine learning frameworks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Illustrating the characteristics of IoT 

 

 

Internet 

of things 

Dynamic 

infrastructure 

Id
en

tities 

a
n

d
 p

h
y
sica

l 

a
ttrib

u
tes 



22 | P a g e  

 

2.2 – Architecture of IoT 

Due to billions of heterogeneous IoT devices, all proposed IoT architectures in the literature 

have considerable variations. There is no single consensus on IoT architecture, and everyone is 

agree with this statement (Sethi and Sarangi, 2017). Consequently, researchers often described 

the architecture based on their study purpose.  

Generic architecture 

The most basic architecture of IoT devices consists of three layers (Figure 1): 

(i) Physical or Perceptive layer or remote sensing layer: this layer is responsible for 

sensing and collecting information about the environment. It has the ability to sense the 

physical parameters or identify the other objects present in the environment.  

(ii) Network or communication layer: this layer is responsible for the communication by 

connecting with other smart things, network devices, and servers. This layer provides 

the means of data transmission by processing the sensor data.  

(iii) Application layer or software layer: this layer is responsible for communicating with 

the end-user to deliver various application-specific services and defines various IoT 

applications that can be deployed.  

This underlying architecture was introduced in the early stage of research in the field of IoT 

(Jammes and Smit, 2005, Yan and Huang, 2009), but this kind of architecture is not sufficient 

to provide in-depth aspects of IoT for the advanced research (Sethi and Sarangi, 2017). 

Therefore, detailed, layered architecture has been proposed in the literature where some 

researchers have also included some additional layers (Figure 1): (i) physical layer; (ii) transport 

layer: (iii) processing layer; (iv) application layer; and (v) business layer. The roles of physical 

layer, network layer, and application layer are same as the three-layer architecture, and other 

layers have been described below (Rayes and Salam, 2017, Sethi and Sarangi, 2017, Bozdogan 

and Kara, 2015).   

(iv) Transport layer: transport layer is responsible for transferring the sensor data from the 

physical layer to the processing layer through networks (such as wireless, 3G, LAN, 

Bluetooth, RFID, and NFC) to perform network operations and identify the connected 

devices.  
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(v) Processing layers: processing layer is the middle layer that is responsible for 

performing multiple functions such as storing data, analyzing data and processing data 

that comes from the transport layer.  Many enabling technologies such as cloud 

computing, big data processing modules and database management, etc. are 

incorporated to provide a diverse set of services.  

(vi) Business layers: business layer is responsible for managing whole IoT system including 

user details, applications, etc.  

 

Figure 6: IoT architectural layers 

Advanced architecture 

In a recent article, another architecture has been proposed which is a somewhat advanced form 

of IoT. This architecture consists of seven layers, e.g. (i) application layer; (ii) application 

support and management layer; (iii) service layer; (iv) communication layer; (v) network layer; 

(vi) hardware layer; (vii) environment layer, etc.  

Advanced architecture 

In a recent article, another architecture has been proposed which is a somewhat advanced form 

of IoT. This architecture consists of seven layers, e.g. (i) application layer; (ii) application 

support and management layer; (iii) service layer; (iv) communication layer; (v) network layer; 

(vi) hardware layer; (vii) environment layer, etc.  

2.3 – IoT environment 

The key objectives of IoT devices are (i) To exchange secure and reliable information between 

connected devices; (ii) To identify the relevant objects; and (iii) To take part as an essential 

element in ubiquitous/mobile communication. These three objectives collectively form an IoT 
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environment (IE). The IoT devices with multiple architectural layers, associated protocols and 

enabling technologies to increase the heterogeneity in the IoT environment. It creates a model 

where numerous smart things or objects connected with each other by using compatible 

wired/wireless networks. The multiple interactions bring interoperability to the environment 

and help to reach common objectives for various IoT user-specific applications (Figure 7). 

IoT environment typically consists of six important features (Al-Fuqaha et al., 2015): 

(a) Identification: Identification is an essential feature of IoT. There are various techniques to 

identify a smart thing/object within the IE such as unique object code (present at the hardware 

level) (Koshizuka and Sakamura, 2010) and unique addresses, e.g. IPv4or IPv6 present at 

network layers (Al-Fuqaha et al., 2015).  

(b) Sensing: In the IoT, sensing feature means communicating with IoT device, gathering data 

and report it back to the data handling or storing mechanism. Example of sensors/communicator 

is smart sensors, actuators, and radio frequency tags. 

(c) Communication services: These features help IoT devices to connect with each other and 

provide various services while working in a low power mode and establishing a communication 

channel to send or receive the information to the sensor. Typical examples of communication 

services include Zigbee, Z-wave, WIFI etc.  

(d) Hardware/software: IoT environment uses various hardware platforms and operating 

systems software to manage individual IoT devices, the combination of both these referes to as 

a computation platform or a controller. There are various examples of IoT hardware platforms 

like Intel Edison, Intel Galileo and Raspberry Pi etc, while Contiki OS, TinyOS etc are the 

examples of operating systems or softwares. 

(e) Services: IoT devices, protocols and enabling technologies work on interoperability 

framework for providing various services explained in following section. 

(f) Semantic: This feature creates an ability to extract information from an IoT device and 

apply knowledge representation techniques to bring sense into a raw data delivered by the 

sensor. Semantic services bring intelligence into IoT by using data analytics. Example of IoT 

semantic is Semantic Web Ontology (SWO) 
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Figure 7: IoT Environment containing architectural layers and protocols for bringing interoperability among IoT devices and applications where 

various IE features facilitate this 

process. 
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2.4 – IoT ecosystem and the world of connected services 

The world of IoT is redefining the relationship between the machines and humans; it allows 

the automation of everything around us. IoT devices and its enabling technologies are working 

on interoperability framework where they exchange information with each other and coordinate 

decisions and making a smart “cyber-physical ecosystem” (ENISA, 2017). This is an 

innovative ecosystem with billions of heterogeneous physical devices manufactured around the 

world to improve quality of life, efficiency, productivity, profitability, effectiveness, and 

decision-making. The application of the IoT devices is diverse, distributed into various services 

and benefitting ordinary people, industrialists, governments, health professionals, energy 

providers in simple words everyone. Pictorial view in Figure 8 illustrates the proliferation of 

devices and most exciting applications within different services.  

2.4.1. Smart Energy 

Smart energy is the conversion of a traditional energy distribution system that consists of some 

distribution lines, substations, transformers and Supervisory Control and Data Acquisition 

(SCADA) field devices and converts into modern networks that are not only smart, intelligent 

but also having the default capabilities of information exchange, maintainability and easy 

interoperability of individual components (Sajid et al., 2016). The examples of smart energy 

include UPS, batteries, generators, fuel cells, ambient energy harvesting, telemetry, power 

stations, smart grid and power controls, etc. (Fraga-Lamas et al., 2016). Among these smart 

grid is a popular application of IoT which consists of devices such as meters (gas, electric and 

water) and other energy appliances. Traditional energy transmission/distribution systems used 

to be unidirectional, smart grid makes them intelligent to sense the transmission requirements 

to avoid the congestion, effective communication between the utility services and the customer. 

Moreover, there are specific advantages smart grid gives to the users, for example, the efficient 

transmission, congestion control, smarter restoration of energy, less hassle to maintain, 

controlled peak hour energy supply and better integration of various controls (Min et al., 2014). 

Smart grid consists of four major components including power plants (source), transmission 

(energy transfer in bulk from power source generators and the sub-station), distribution (a 

connection between power source and the customer), customer area to generate store power at 

home or anywhere and service provider to deliver the energy products to end-users (Min and 

Varadharajan, 2015). 
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Figure 8: The Internet of Things (IoT) - The World of Connected Services

 



28 | P a g e  

 

2.4.2. Smart Home 

Smart home or smart living is often referred to as Home Area Network (HAN) is the 

incorporation of communication techniques to form a network that connects the essential home 

appliances and services like lighting, heating, air conditioning and security in such a way that 

they can control and monitor these appliances anytime anywhere. These devices often use 

twisted pair cables and RF/IR sensor chips. Most importantly many of the device use mains 

power and use a gateway or controller to manage (connection and authentication) for all the 

devices associated with the home network (Jiang et al., 2004). 

There have been numerous smart home devices in the market these days; prominent “smart” 

home devices include pen, wardrobes, table, lamp, picture frame, fridges/freezers, bed, pillow, 

digital cameras, power system, dishwasher, e-readers, smart utility meters, greenhouses and 

home surveillance system (Alvarez et al., 2017). 

2.4.3. Smart Buildings 

Incorporating energy management system (EMS) and security/safety systems within the 

building is the key aspect of smart building. It is useful for competitive management of 

resources, improve building visibility and manageability. It provides tools to reduce the 

operational cost and provide cost-effective benefits to the consumers, employees, and tenants. 

It also brings intelligent IoT ecosystem that includes sensor and gateway vendors, system 

integrators and application developers (Shenoy, 2016).    

2.4.4. Smart Health 

IoT being a game-changer in every industry playing its role in the healthcare sector as well by 

transforming healthcare into smart healthcare or connected health in which all medical 

appliances are always connected to give more useful and important information about patients. 

The healthcare market is going to hit 117 billion USD in 2020. With the help of connected 

health we may get the benefit of efficient risk analysis and healthcare asset management, drug 

management, monitoring for patients and hospitals e.g., smart pills a major contribution 

towards smart healthcare in which patient’s clinical trials, activity monitoring, and self-

reporting is performed and finally early medical intervention for critically ill patients (Patel et 

al., 2017, Weinberg et al., 2015). 
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2.4.5. Smart Wearables 

Smart wearables include medical appliances, fitness equipment, and smartwatches help to 

monitor not only the health of the patients but also lets the athletes to maintain their routine 

fitness chart. According to Cisco till 2020, there will be at least 600 million smart-wearables 

used around the globe (Sun et al., 2017a). Smart wearables play an essential role in IoT world, 

according to the researchers, the reliance of people-centric aspect of IoT is heavily on these 

wearables to handle remote objects (Liu and Sun, 2016). There have been various products in 

the market, e.g., Samsung Gear and Fitbit, etc. are the widely used products. These intelligent 

devices have low-constrained architecture particularly the sensors.  

2.4.6. Smart Security and defense 

Various IoT devices are getting deployed throughout the cities that are undeniably transforming 

the public safety aspects. Wherever unplanned, emergency events and catastrophic disasters 

occur in the cities, these devices enable the interoperability and transform the critical 

information to the organization who deals with scenarios in which defense and public safety 

could influence and respond to emergency events (Fraga-Lamas et al., 2016).  

2.4.7. Smart Retail 

Another implementation of IoT concepts where analytical abilities, predicted outcomes and 

efficient results help retail industry. Smart retail includes supply chain, in-store applications, 

and customer specific applications as well. It helps to identify when the certainty customer 

needs help. Furthermore, smart retail also helps (i) identifying when there a maintenance 

required on a retail machine, (ii)  transportation of merchandise by intelligently optimizing the 

route, tracking and temperature control, (iii) making retail warehouses automated by 

monitoring sales, stock levels and smart pallets which automatically report missing stock, (iv) 

proactive customer focus to identify when a customer needs an incentive as a highly valued 

customer retention scheme or autonomous doorstep product delivery and (v) to help to monitor 

automatic foot count for retail stores, analyse that information with other stores and re-

modelling store to maintain customers (SAS). 

2.4.8. Smart Industries 

The concept of smart industries or industrial internet (II) was introduced by a company called 

GE, according to this concept complex machinery is used along with RF sensors and software 

forming a specialized IoT environment (Greenough and Camhi, 2015). II is a complex 

environment which widely uses machine learning, big data, and both homogeneous and 
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heterogeneous device communication as enabling technologies giving high-performance 

analytics to the users (Kevin, 2009, Jeff Kelly, 2013). With the evolution in IoT, data from the 

government is getting readily available to relevant people and with the help of industrial 

internet and big data analytics people can handle raw information and transform into more 

structured and valuable form of knowledge (Lohr, 2012). The examples of industrial devices 

ready for transformation into II include Pumps, Valves, Conveyors, Pipelines, Motors, and RF 

Sensors, etc. 

2.4.9. Smart Transportations 

In recent years, some cities have become more crowded, and millions of people commute 

through public transports on a daily basis. Integration of IoT into transportation system helps 

to optimize public transportation routes, assess congestions and plan safer roads for the journey 

by avoiding traffic congestions and reduce infrastructure costs (Gubbi et al., 2013) 

Connected cars are another important IoT applications, vehicles connected with their gateways 

with the help of WLANs providing drivers benefits, e.g. automatic breakdown support, location 

services, driver assistance, entertainment, eHealth and fitness and advanced road traffic 

assistance in case of an incident (Kirk, 2015).  Recently the CEO of Apple Tim Cook confirmed 

about the work on self-driving cars and the ability of Apple mobile devices to control the 

vehicles (Harris, 2015) which may give IoT another dimension to enable car to car 

communications, interaction with smart traffic lights, and most important connection with 

external access points (Bonomi et al., 2012). By 2020, it has been reported that approximately 

75% of cars worldwide will be IoT enabled (Javed et al., 2018). For the public transportation, 

the concept of smart taxi system has also been introduced. Furthermore, another use of smart 

transportation system can be in train services by providing smart ticket for data collection & 

analytics, the management of public safety/security and the inclusion of smart tablets with the 

drivers (Zanella et al., 2014).  

2.4.10. Smart IT & Network 

IoT is constantly offering new devices and tools that helps to interact and connect IT and 

network professionals to perform network administration, monitoring network traffic, status of 

nodes connected and software updates etc. to assess the status of working and delivering better 

solutions. Furthermore, IoT also helps network support teams to perform better network fault 

finding and tolerance, handle cloud services, effective network usage and manage 

organizational assets (Fraga-Lamas et al., 2016).   
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2.4.11. Smart Cities 

A smart city is a new vision of the technology that incorporates all infrastructures of a city into 

a controllable network. The infrastructure of a smart city may include almost everything for 

example homes, schools, streets (lights), hospitals, transportation system, gas/electric/water 

supplies and much more (Zanella et al., 2014). All of these technologies use different sort of 

gateways depending on the scope and use, but one thing in the smart city in comparison with 

other application is the use of cloud services for information exchange. With the advancement 

of IoT smart city has been emerged as an essential concept to bring comfort to the lives of 

residents of the town. Not only this, this idea has become a hub of other emerging technologies 

as well like data science (big data, malware threat analysis, and information governance) but 

also a complex challenge of heterogeneous and scalable computing challenges (Zhang et al., 

2017, Schaffers et al., 2011, Hernández-Muñoz et al., 2011). 

2.4.12. Smart Supply Chain 

IoT is bringing revolutionary advancements into supply chains and not only shaping up the 

industry but also solving the majority of the problems consumers face. With the rapid 

expansion in the business everyday organizations require smart solutions that make companies 

connect their systems efficiently, communicate with different businesses, share information 

and reinforce their sales/supply chains departments. Not only this, it can help customers in 

placement, delivery, and tracking of orders.  In addition to this, IoT can help consumers of 

supply chain products by introducing smart labeling system to give total control of the products. 

Therefore, with the help of IoT sensor chips, every aspect of supply chains can be controlled 

to provide efficient service (Javed et al., 2018, Kärkkäinen, 2003, McFarlane and Sheffi, 2003).  

2.4.13. Smart Agriculture 

In the last few decades, climate has been changed drastically that brings various challenges for 

local and global food security. Agricultural commodities are highly sensitive to climatic 

conditions such as temperature, rain, and humidity. These changes are likely to affect 

agriculture production (crops, fruits and vegetables, etc.) and livestock (fisheries, poultry 

farming, etc.). In this situation, it is prerequisite to monitor the climate change and utilize all 

available resources for sustainable agriculture production by monitoring and better resource 

utilization effectively which is only possible with the help of smart IoT devices (Javed et al., 

2018, Na and Isaac, 2016, Nukala et al., 2016). Smart agriculture system is an automated 

concept that has been recently introduced and getting worldwide attention. Thanks to IoT that 
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is making a significant contribution towards a better agriculture system people were looking 

for (Patil and Kale, 2016). 

2.5 –  Security and privacy challenges related to the IoT 

IoT is connecting more and more devices every day; this emerging technology promises to 

provide access to the devices anywhere to carry out everyday tasks using different IoT 

applications discussed in the previous section. This advancement offers undoubtedly several 

benefits to the humanity. Although IoT is playing a transformational role in the lives of people, 

on the other hand, it also brings a large number of challenges. Security, privacy, and trust are 

probably the most challenging issues in IoT, and various authors have extensively discussed 

them in published literature. In this section, we tried to collate a list of most important 

challenges reported in the literature; these challenges were divided into 24 key groups defined. 

This grouped taxonomy is depicted in figure 9, table 2 summarising the challenges and 

followed by an overview of each group defined.  
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Figure 9: Summary of IoT security, privacy and trust challenges 
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2.5.1. Access control:  

Access control let only authorized users to access a resource. It enables to control the software 

update, data sharing, maintenance and protection of sensitive data. Access control usually 

consists of three important building blocks: (i) access control mechanism; (ii) access control 

rules and (iii) access control management (Ouaddah et al., 2017). Due to the low power 

requirements and low constrained environment, access control is one of the major challenges 

in IoT (Alrawais et al., 2017a, Lin and Bergmann, 2016, Roman et al., 2013, Sicari et al., 2015, 

Pirbhulal et al., 2017, Yu et al., 2017, Tiburski et al., 2015, Ouaddah et al., 2017). 

Rules/policies/privileges for the access control are not well defined for most of the IoT devices. 

These rules are usually implemented on a high-level architecture which is ineffective due to 

resource constraints in most of the IoT devices. Without clear access control rules, access to 

the IoT devices get compromised that leads to more sophisticated attacks (Yaqoob et al., 2017, 

Ouaddah et al., 2017).  
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Table 2: Showing security, privacy and trust challenges: 

Group Challenge Finding and comments References 

Access control 

Access control rules 

Effective implementation of access control is only possible with 

the help of predefined rules, policies or privileges that are not well 

defined for IoT devices. Without clear access control rules, access 

to the IoT devices may get compromised. 

(Yaqoob et al., 2017, 

Zarpelão et al., 2017, 

Ouaddah et al., 2017) 

Access control mechanism and 

management 

Application of adequate access control is a critical element of 

information security that requires comprehensive work on its 

mechanisms and management system. Due to the low power and 

low constrained environment, access control is one of the major 

challenges in IoT. 

(Du and Chen, 2008, 

Zarpelão et al., 2017, 

Sicari et al., 2015, 

Ouaddah et al., 2017, 

Miorandi et al., 2012, 

Alrawais et al., 2017a, 

Pirbhulal et al., 2017) 

Authentication 
Lack of authentication 

protocols 

A large number of heterogeneous IoT devices being 

manufactured, their diverse protocols, poor architecture, and 

complex configuration makes implementation of authentication 

protocols a challenge. This deficiency causes more complex 

security and privacy issues. 

(Alrawais et al., 2017a, 

Amadeo et al., 2016, 

Zhang et al., 2013, Al-

Fuqaha et al., 2015, 

Tiburski et al., 2015, 

Venckauskas et al., 

2016b, Pirbhulal et al., 

2017, Sicari et al., 2015) 
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Anonymity and untraceability 

Heterogenous IoT devices are developed and distributed in the 

dynamic environment. The big challenge lies in the design and 

development of secure and privacy-preserving services that are 

not well-defined. Personally identifiable information has 

maximum disclosure due to anything, 

anytime and anywhere nature of the IoT that raises issues of 

anonymity and untraceability. Here anonymity refers to something 

that nobody knows about yourself or your real identity, while the 

untraceability refers that no one can predict your actions. 

(Gope and Hwang, 

2015, Challa et al., 

2017) 

CIA 

Confidentiality 

Confidentiality or privacy is a severe issue in IoT because of many 

reasons, e.g. the massive amount of data/traffic being generated, 

and the ineffectiveness of security controls, etc. The design and 

build of these devices have a limited sense of hiding the sensitive 

information from unauthorized people to view it.  

(Mendez et al., 2017, 

Tiburski et al., 2015, Liu 

and Sun, 2016, Lin and 

Bergmann, 2016, 

Pirbhulal et al., 2017, 

Maple, 2017, Sicari et 

al., 2015) 

Integrity 

The issues of IoT like fault tolerance, malware attacks and 

untrusted communication effect integrity of devices resulting in 

physical damage or unavailability of the resources. 

(Mendez et al., 2017, 

Tiburski et al., 2015, Liu 

and Sun, 2016, Lin and 

Bergmann, 2016, 

Pirbhulal et al., 2017, 
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Maple, 2017, Sicari et 

al., 2015, Juma et al., 

2008, Kwon et al., 2016) 

Availability 

Availability makes sure that resources are available for the use 

when needed. The availability of IoT resources becomes an issue 

when confidentiality and integrity of objects are compromised 

(e.g., malicious attacks etc.). It directly or indirectly affects CIA 

where availability of resources becomes a big challenge. 

(Mendez et al., 2017, 

Pirbhulal et al., 2017, 

Maple, 2017, Sicari et 

al., 2015) 

CIA of data being sensed and 

exchanged by ‘things.' 

CIA of data being sensed and exchanged means (i) a node is free 

from malware; (ii) no unconcerned party has access to data 

generated or stored; (iii) maintain the reliability and privacy of 

communication where sometimes both relevant and irrelevant 

information is kept as well. maintaining (i), (ii) and (iii) 

simultaneously without compromising CIA is a serious challenge. 

(Mayer, 2009, Liu and 

Sun, 2016, Juma et al., 

2008) 

Crisis 

management 

Response to security breaches 

unendurable business 

disruption. 

Maintaining uninterrupted and safe operation, even when the 

system is compromised is the highest priority target for the IoT 

industry.  

(Chiang and Zhang, 

2016) 

Cryptography IoT device message encryption 

A massive number of IoT devices increase network vulnerability. 

A process of encoding a message/information in a way that only 

authorized parties can access is a big challenge. 

(Al-Fuqaha et al., 2015) 
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Flexibility in a cryptographic 

algorithm 

Most of the IoT devices were designed without considering 

security and privacy. Moreover, IoT lacks flexibility in hardware 

operations and only support limited operations. The flexible 

cryptographic operations can give more support to hardware and 

offer better protection. These algorithms have not been 

implemented so far and require many efforts. 

(Amadeo et al., 2016, 

Ambrosin et al., 2016) 

Expensive cryptographic 

operations 

Cryptographic operations often require much more resources and 

computation power to implement which is a challenge in IoT. 

(Li et al., 2014a, Zhou et 

al., 2017) 

Implementation of 

cryptographic 

algorithms/protocols 

Cryptography techniques of storing/transmitting the data are 

concerned due to the architectural limitation of IoT.  IoT devices 

are based on either 8 or 16-bit architectures, and implementation 

of cryptographic algorithms for getting the right security is a 

challenge. 

(Ning et al., 2015, 

Venckauskas et al., 

2016a, Roman et al., 

2013) 

Key distribution and 

management 

The distribution and management of cryptographic keys is a 

critical issue when integrating cryptographic algorithms. If these 

keys are compromised then entire communication process may be 

disturbed. So there is a need to store keys at a safe/centralized 

location and distribute them when needed. 

(Xiao et al., 2017, 

Alrawais et al., 2017a, 

Bu et al., 2017, Ciccozzi 

et al., 2017, 

Venckauskas et al., 

2016a, Chandramouli et 

al., 2014) 
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Key revocation management 

Cryptographic key management becomes an issue in IoT due to 

the lack of key revocation techniques that may allow 

cybercriminals to utilize the keys obtained in the process of a 

system breach.  

(Ambrosin et al., 2016, 

Touati and Challal, 

2015, Chandramouli et 

al., 2014, Sawand et al., 

2015) 

Data privacy 

and protection 

Privacy 

(General, attacks, preservation, 

and privacy-preserving data 

mining) 

Data privacy is a major concern for the people which always 

requires preservation. The unrestricted access to the data poses 

significant security and privacy risks to consumers. The critical 

data privacy-challenges are: (i) most IoT devices fail to encrypt 

data that are being transferred; (ii) user sensitive information can 

be compromised due to unencrypted data. 

(Barki et al., 2016b, 

Mayer, 2009, Sicari et 

al., 2015, Wang et al., 

2014, Liu and Sun, 

2016, Ning et al., 2015, 

Pirbhulal et al., 2017) 

 

Data processing 

and computation 

 

Verification and computation 

of the outsourced data 

The process of outsourced data (a data produced or governed by 

another company) to the cloud to perform computational 

operations, and then request results may lead to security problems, 

e.g., password crack and DoS/DDoS attacks. Non-verified 

outsourced data in IoT lead to duplication of data or opens up 

doors for further complexities. 

(Yu et al., 2017, Liu et 

al., 2015) 

Data aggregation 

One of the biggest challenges in IoT is the gathering of 

unprecedented data generated from a multitude of devices every 

second. Due to multiple related issues with IoT like heterogeneity, 

complexity, an ever-increasing number of devices, data 

(Pandey et al., 2010, 

Sawand et al., 2015, 

Luong et al., 2016) 
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aggregation is an issue where both active and passive attacks, 

eavesdropping, lack of confidentiality/integrity/trust, etc. play an 

essential role to degrade the value of the precious data collected. 

Moreover, computation is more difficult when noisy or duplicated 

data is also present in the collection. 

Data processing 

A huge amount of unprecedented IoT data processing (i.e., 

acquiring and managing) is a challenge for the data analytics 

particularly when data is coming from multiple sensors, devices 

of complex configurations and various vendors, from outsourced 

companies, etc. The processing of massive data, elimination of 

ambiguities, noise and deduplication for processing without 

violating/harming data confidentiality and integrity is a very tough 

job. Processing or manipulation of data in this complex 

environment becomes an issue when data comes from edge 

devices in which computation and handling is a very tough 

challenge. 

(Mineraud et al., 2016, 

Alrawais et al., 2017a, 

Gaona-Garcia et al., 

2017, Luong et al., 

2016) 

Data retention 

IoT devices generate a massive amount of data every day and 

preservation of that data for continued storage,  for compliance or 

business reasons is a nightmare for organizations. Due to 

undefined/agreed governance laws defined by the government to 

(Kumarage et al., 2016, 

Rose et al., 2015) 
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help legal matters related to IoT, it is a challenge for the businesses 

to maintain a set standard for data retention. 

Data integrity because of 

malicious software 

Data integrity is a fundamental aspect of IoT security and 

reliability; a malware may cause issues related to data integrity in 

which an attacker may gain administrative permissions to make 

changes in the environment. 

(Kwon et al., 2016, 

Mendez et al., 2017) 

Data freshness 

Dealing with massive amount of data is a big challenge not only 

to store recent /relevant data without any adversaries replayed old 

messages but also manage the uncertainties in the data as well. 

(Pirbhulal et al., 2017, 

Jing et al., 2014, Islam 

et al., 2015, Chen et al., 

2009) 

False and noisy data collection 

Malicious attacks may cause issues (such as hardware failures or 

unreliable communication etc.). As a result IoT sensors may give 

noisy/false data. The resolution of this problem is an open issue. 

(Sawand et al., 2015, 

Mavromoustakis et al., 

2016, Chen et al., 2015) 

Insufficient computing 

resources 

IoT devices have limited computing resources especially when 

considering IoT enabled medical devices where authentication 

schemes employ complex algorithms that require more 

computational resources. The techniques that focus on the need to 

do any computation of data with limited resources are challenging 

to apply. 

(Yasin et al., 2017) 
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Secure data fusion 

The process of combining or synthesizing multiple data sources to 

produce more reliable information that is consistent and accurate 

as compared to the information provided by any individual data 

source is known as data fusion. The archival of data that is being 

generated in every second from in IoT and managing the 

dimension of uncertainty associated with data fusion is a big 

challenge.   

(Venckauskas et al., 

2016a, Chen et al., 

2009) 

Computational costs of the 

encryption and decryption 

In IoT environment, many copies of encrypted data get generated 

which requires a computational cost. This issue is also linked with 

the resource-constrained environment. 

(Xiao et al., 2017, 

Usman et al., 2017, Yu 

et al., 2017) 

Computation in mobile devices 

and cloud 

IoT devices are unable to deal with big size databases; these 

devices share their data with cloud environment get the advantage 

of computing. But due to the limitations of power, storage, and 

computation capabilities results obtained from cloud may get 

compromised. Therefore, there is a need for IoT devices to have 

onboard computing capabilities. 

(Yu et al., 2017) 

Verification of data 

deduplication 

In the cloud, there exist a lot of highly redundant data, which 

wastes the storage and bandwidth of the cloud servers. The 

correctness and verification of this redundant data is a significant 

challenge. 

(Yu et al., 2017, Yan et 

al., 2016a, Yan et al., 

2016b) 
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Secure information processing 

Processing of information in such a way that is only detectable by 

the analyst and provides a secure mechanism to avoid information 

mishandling when data is coming from numerous sources is a 

serious issue that may lead to privacy breaches. 

(Zhang et al., 2017) 

Digital forensics 

Diversity of devices 

IoT devices have a high diversity/heterogeneity (i.e., different 

operating systems, vendors, and methods of communication) 

making it difficult for traditional forensic tools to work. There is a 

continuous need to update these tools to support varied 

architecture of IoT to conduct the examination effectively. 

(Zulkipli et al., 2017) 

Lack of standardization 

Various authors have reviewed IoT challenges and proposed their 

solutions, yet they do not provide implementation guidelines that 

fit almost every scenario and their possible frameworks for future 

development in the area. 

(Harbawi and Varol, 

2017, Zulkipli et al., 

2017) 

Improper evidence handling 

IoT evidence has some important characteristics (i.e., they are 

volatile, fragile and with short lifespan) that make forensic 

examination difficult. These evidence can be easily tampered or 

even overwritten. Another issue is that, to collect/preserve 

evidence, IoT devices needed to be switched off to avoid change 

in metadata (i.e., accessed time), but it is not possible to shut down 

these devices. Therefore, investigators need to equip themselves 

with techniques to cope with these situations. 

(Zulkipli et al., 2017) 
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Evidence identification 

In IoT where data is coming from a variety of different sources 

(i.e., from different vendors, data centers, clouds or even from 

different countries), an important forensic challenge is not only to 

identify the potential sources of evidence but make them 

accessible as well which at the moment is impossible. This 

challenge becomes more complicated when we consider it in a 

relationship with interoperability, heterogeneity and scalability 

issues of IoT. 

(Harbawi and Varol, 

2017, Brown et al., 

2005, Quick and Choo, 

2014, Taylor et al., 

2010, Zulkipli et al., 

2017, Liu, 2015) 

Seizure or disposal of evidence 

IoT environments are full of both reliable and unreliable 

information in which seizure or disposal of crime scene evidence 

may also take place either by forensic experts or by cybercriminals 

to hinder the investigation process. Orientation and location of 

digital evidence at such places where the collection, disposal or 

seizure of the evidence may not possible makes forensic 

examination a challenging task. 

(Yakubu et al., 2016, 

Conlan et al., 2016, Liu, 

2015) 

Admissibility of evidence 

Researchers claim that the ever-increasing number of IoT devices 

and volume of data generated by them required more time to 

conduct the forensic investigation. On the other hand, the 

vulnerability of IoT creates doubts on the admissibility of 

evidence that is an open challenge. 

(Vlachopoulos et al., 

2013, Quick and Choo, 

2014, Sheldon, 2005) 
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Computing and traditional 

forensic tools 

Current forensic tools/techniques available for computation are 

not capable of dealing with IoT environment. 

(Zawoad and Hasan, 

2015) 

Evidence jurisdiction 

An important challenge in evidence collection is to handle 

jurisdiction issues where evidence is beyond the scope/reach of an 

investigator. In IoT environment, data roaming/ traveling is 

usually possible particularly when cloud computing is involved 

which makes it impossible for an investigator to identify, collect, 

seize, or dispose of evidence (i.e., a country having ownership of 

specific evidence may refuse to handover it to the investigator 

from another country). 

(Oriwoh and Sant, 2013, 

Zulkipli et al., 2017, 

Liu, 2015) 

Application of forensic 

procedures 

There are six steps involved in digital forensics examination with 

clear guideline to apply but when it comes to IoT, there are a lot 

of factors that make the forensic investigation tough challenge to 

use (i.e., massive amount of data generated/exchanged between 

devices, volume of the heterogeneous devices in the network and 

various other factors). In this scenario, evidence finding 

(identification, preservation, and collection) requires extra 

research efforts to apply whole forensic framework under 

extraordinary constrained environment of IoT. 

(Zulkipli et al., 2017) 
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Heterogeneous 

interactions 

Diverse protocols, technologies 

that create a complex 

configuration 

Usage of various protocols and mixture of heterogeneous 

technology cause configuration issues requiring considerable 

attention. Furthermore, cybersystems have various kinds of 

interactions between entities, these interactions are not limited to 

cyber and physical characteristics but also include social 

attributes, which are particularly crucial for across-space 

interactions. 

(Kim, 2017, Gubbi et 

al., 2013, Ning et al., 

2013) 

Identity and 

access 

management 

(IAM) 

Cooperative authentication 

In mentioned literature cooperative authentication has been 

reported as a network security challenge in a smart community 

environment to filter false data traffic in the community network. 

(Ning et al., 2015, Li et 

al., 2011) 

Identity Fabrication (IF) 

An attacker may fabricate and create a fake identity, RFID identity 

can be duplicated or spoofed, and the existence of multiple 

identities is an issue. There is a need to differentiate between 

fake/fabricated or duplicated identities vs. original identities 

which is a very challenging task. 

(Ning et al., 2015, 

Roman et al., 2013, 

Babar et al., 2010, 

Meghanathan, 2010) 

Identity ownership 

Things or objects in the IoT often have a relationship to real 

persons and in many cases to other objects. These objects can be 

the owners, manufacturers, users, administrators, or many other 

functions. Ownership of objects and their identities becomes a 

critical challenge when they move from one network to another, 

(Ning et al., 2015, Lam 

and Chi, 2016) 



47 | P a g e  

 

in this case, the same object gets another owner. If this issue is not 

handled properly, the device can be compromised. 

Identity and authentication 

Mutual authentication is a critical issue in IoT when it comes to 

managing a large number of objects having a variety of data 

sources. For a trustworthy communication between devices, there 

should be a centralized authentication system which deals with 

object identities and provides the right level of authentication. 

(Roman et al., 2013, 

Mahalle et al., 2010) 

ID tracking 

In a heterogeneous environment where numerous smart devices 

are communicating, the process of tracing an object with the help 

of their identifiers is a crucial process. If handled, ID tracking may 

help in better asset handling, verification and audit process. 

Currently, this challenge is in debates. 

(Wang et al., 2014) 

Inadequate 

infrastructure or 

bad design 

Traditional centralized time-

synchronization protocols 

cannot be easily extended 

Application of traditional time synchronization protocols, e.g., 

network time protocol (NTP) centrally in the low constrained 

environment is difficult because of a diverse range of devices, and 

their extension to adopt security features is even harder. 

(Dong and Liu, 2015) 

Devices with low energy 

constraints 

IoT devices come with low-resources and limited battery power; 

this energy constraint becomes a challenge when applying security 

and privacy controls. 

(Venckauskas et al., 

2016b) 

Insecure booting process 
Boot process requires sensitive, trusted or verified and secure 

protection to avoid the device getting compromised or corrupted 
(Yaqoob et al., 2017) 
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while booting. Management of integrity metrics such as software 

and firmware in the boot process is not well designed at the 

developmental stage of IoT devices. It becomes a big challenge of 

the developmental process that leads to insecure booting process 

and may result in problems with device integrity metrics. 

Verifiable computing 

A challenge of fast-paced environment to develop security 

systems as a part of the architecture that verifies the computation 

performed. A significant problem in IoT is the lack of trust while 

performing data processing and computation when dealing with 

heterogeneous devices with a complex configuration. Under these 

circumstances verifiability while performing computation 

becomes a serious issue which requires immediate attention. 

(Alrawais et al., 2017a) 

Inadequate or 

limited support 

Lack of mature IoT 

technologies and business 

process 

Despite rapid growth in IoT based technologies, still, there is a 

lacking of maturity in the technologies and the business processes. (Kim, 2017) 

Lack of technical support 

IoT organizations consider the shortage of staff experienced in 

cybersecurity, hardware/software and data science, etc. to run IoT 

related projects efficiently. 

(Lin and Bergmann, 

2016) 

Lack of device authentication 

procedures 

IoT lacks device authentication procedures so that anonymous 

devices can be added by the attackers and 

scalability/heterogeneity makes it more challenging. 

(Yaqoob et al., 2017) 
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IoT malware  

Malware targeting different 

operating systems 

IoT devices support a variety of operating systems (i.e., ARM 

Mbed OS, Contiki and Windows 10 for IoT, etc.) and it has been 

noticed through published literature that majority of malware 

target Windows and Android operating systems. It is important to 

consider which operating system is being targeted by most of the 

attackers. To study malware targeting each IoT device, it is 

important to consider: (i) device architecture; (ii) firmware and 

(iii) operating system.  Unfortunately, there is not enough 

literature to cover this aspect.  

(Karanja et al., 2017) 

Tools for malware synthesis 

Synthesis of IoT malware is still in early days, real-time data for 

malware analysis is usually not available, and therefore, the usage 

of emulators/simulators comes into the picture. There are various 

tools in the market to synthesize the IoT malware (i.e., emulators, 

honeypots, testbeds, etc.) but all of these tools have some 

limitations when it comes to the resource-constrained nature of 

IoT. Moreover, no research has been performed yet focusing on 

tools for malware synthesis. 

(Karanja et al., 2017) 

Detection of obfuscated 

malware 

Detection of malware is challenging in IoT due to:  

(i) Author’s ability to write complex obfuscation techniques; (ii) 

Use of polymorphic/metamorphic malware; (iii)higher latency of 

IoT devices being online 24/7;(iv) weak security mechanism to 

(Karanja et al., 2017) 
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discourage malware; (v) and no support of the anti-malware 

system. 

Malware analysis 

Researchers claim that malware are becoming increasingly 

complex and adaptive, malware authors are continuously 

changing their strategies for infection and distribution. Along with 

the complexities of IoT, it is becoming more and more challenging 

to analyse malware targeting IoT environment efficiently. 

Malware analysis is very important to understand different 

perspective of malware that helps in correct identification and 

classification.  

(Dulaunoy et al., 2017, 

Suarez-Tangil et al., 

2014) 

Heavy network traffic analysis 

One of the major problem in IoT is the massive volume of traffic 

generated by billions of devices communicating together. 

Analysis of network traffic plays an important role in 

cybersecurity, it helps in anomaly detection and building up a 

better defense. In case of malicious attacks detection of malicious 

traffic becomes a challenging task. 

(Conti et al., 2018) 

Physical and 

environmental 

security 

Protecting resource constrained 

devices 

IoT environment consists of limited resource devices where 

implementing protective measures is a key challenge. 

(Chiang and Zhang, 

2016) 

Adoption of network layer 

security 

Resource-constrained IoT environment is making the adoption of 

network layer security approaches (such as IPSec and IKE in 

6LoWPAN environments) a challenge in IoT. 

(Granjal et al., 2015) 
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Synchronization of multiple 

RF tags 

To handle (identify, verify) multiple RF tags centrally to secure 

IoT environment against attacks has been reported as a challenge. 
(Liu et al., 2016) 

Application of physical layer 

security 

IoT has multiple practical constraints due to which the application 

of physical layer security becomes a challenge as reported. 
(Mukherjee, 2015) 

Dynamic activity role 

Cyber entities might be simultaneously idle in some scenarios and 

active in others, this activity has been reported as one of the 

obstacles for the network and application security in IoT. 

(Ning et al., 2013) 

Target tracking 

Target tracking deals with finding/tracking the objects in IoT 

environment, and the capability to track their movements has been 

reported as a security obstacle. 

(Ning et al., 2015) 

Secure localization 

Wireless network sensors are deployed in IoT devices. Secure 

localization in wireless sensor networks is an unattended area that 

can give passage for the malicious attacks.  

(Pirbhulal et al., 2017, 

Chen et al., 2017, Sen, 

2010) 

Implementation of protocols 

and network security 

Heterogenous, resource-constrained devices influence 

significantly on protocols and network security of IoT devices 

during device interaction making the implementation of 

cryptographic protocols for network security a tough challenge. 

(Roman et al., 2013) 

Compromised or malicious 

sensors 

A situation is reported in which a legitimate sensing device gets 

compromised; the adversary usually makes the clones or replicas 

to cause more damage. This kind of compromise is a serious issue 

which requires addressing. 

(Sawand et al., 2015, 

Qiu and Ma, 2016) 
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Mobile node security 

IoT nodes are usually mobile and frequently move from one 

cluster to another.  During this process, there is a possibility of 

potential exploitation, so there is a need to efficiently handle node 

mobility using effective cryptographic mechanisms to provide 

rapid identification, authentication, and privacy protection. 

Because of unavailability of these services mobile node security is 

an issue. 

(Sicari et al., 2015) 

Secure middleware 

Many IoT systems have been derived using middleware 

frameworks that increase the need for the application of security 

matrix to protect middleware from getting compromised. This 

issue has been addressed by researchers, but still, this issue is 

getting reported. 

(Sicari et al., 2015) 

Security of resource-

constrained sensor devices or 

nodes 

The security of resource-constrained IoT sensor nodes is a serious 

security challenge due to resource-constrained sensor nodes. In 

this situation application of traditional security measures is not 

practical because these security measures put enormous 

computation/communication overhead on the devices. 

(Dong and Liu, 2015, 

Mineraud et al., 2016, 

Sen, 2010) 

Secure authentication 

Application of security during the process of authentication, 

while IoT devices are communicating with each other, has been 

reported as an important challenge in various literature. 

(Mineraud et al., 2016, 

Liu et al., 2016, Mendez 

et al., 2017, Borgia, 

2014) 
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Risk treatment 

countermeasures 

and strategies 

Secure location 

A process to implement, detect and maintain the security of node 

locations around the wireless network environment has been 

reported as a challenge. 

(Venckauskas et al., 

2016a) 

Intrusion Detection 

Intrusion detection techniques detect misbehavior or malicious 

IoT devices and notify others in the network to take appropriate 

actions. The nature of IoT environments with limited resource 

makes it challenging to detect the insider and outsider attacks. 

(Ning et al., 2015, 

Alrawais et al., 2017a) 

Cryptographic key 

management issues and their 

solutions 

In a cryptosystem, key management ensures to provide data 

confidentiality in IoT, distributed/diverse nature of IoT raises this 

issue as a security challenge. 

(Tiburski et al., 2015, 

Sen, 2010) 

Firewalling 

Application of right kind of firewalls on IoT is an issue because 

most of the traditional firewalls do not perform efficiently on the 

network traffic generated by IoT environment. 

(Yaqoob et al., 2017) 

Attack detection and 

prevention 

Detection and prevention of malicious attacks (predominantly 

DoS/DDoS) attacks is one of the most serious challenge ever 

reported. 

(Alrawais et al., 2017a, 

Venckauskas et al., 

2016a) 

Safety and 

compliance 
Data Protection 

Data generated by IoT devices is huge, and it is not preserved at 

any level of communication/computation. Due to resource 

constraints, lack of encryption/decryption of data of IoT devices 

is an open challenge where breaches of data protection may occur 

particularly in the cloud and distributed IoT environment. 

(Alrawais et al., 2017a, 

Ziegeldorf et al., 2014) 
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Assessing the status of the 

security of large distributed 

systems in a trustworthy 

manner 

IoT supports large-scale network environments including cloud-

based, large-scale distributed environments and complex 

interconnected networks, i.e. smart cities that includes hospitals, 

transports, logistics and many more. An ability of a system to tell 

in a trustworthy way whether it will operate securely or not is a 

challenge in IoT. 

(Chiang and Zhang, 

2016) 

Security laws and regulations 

The adoption and harmonization of security laws and regulations 

in the presence of contradicting stakeholders, viewpoints, and 

complex devices is a real challenge that requires continuous 

attention.  

(Ciccozzi et al., 2017, 

Suo et al., 2012, Hu, 

2011) 

No defined audit and logging 

standards 

Audit standards make sure that security controls have been 

effectively placed in the environment, while logging standards 

make sure that data being logged is complying with specific 

standards and access standards, this is something not present at the 

moment. The implementation of audit/logging standards without 

any conflict is a complex challenge  

(Kim, 2017, CSA, 2015) 

No security standards for 

platform configurations 

supporting multi-tenancy 

It is a complex challenge to integrate security standards to 

harmonize multi-tenancy platforms. It has been reported that IoT 

systems were designed without consideration of security 

standards. Furthermore, when it comes to the multi-tenancy data 

(Kim, 2017, CSA, 2015) 
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centers, the IoT devices associated with them and their 

configurations make this issue more complicated to resolve.  

Standards required for the 

authentication and 

authorization of the devices are 

lacking 

Implementation of standards for the authorization and 

authentication still lacks in IoT devices/environment. 
(Kim, 2017, CSA, 2015) 

Policy enforcement 

Policy enforcement refers to the mechanisms used to force the 

application of a set of defined actions in a system. When an entity 

or a user is authenticated to access an IoT resource, it becomes 

crucial to enforce the security policy to restrict the user to perform 

only the actions they are allowed to do, which is missing in IoT at 

the moment. 

(Sicari et al., 2015) 

Secure and 

trusted 

communication 

Manipulating routing 

information 

Routing protocols and a mechanism to secure IoT are not well 

defined. Therefore, route manipulation is possible in most of the 

IoT devices. It has been reported in the literature that route 

modification towards a malicious node or to an illegitimate 

destination can lead to information manipulation where the 

security and privacy can be compromised. 

(Du and Chen, 2008) 

Remote attestation (RA) for a 

large number of devices 

Attestation services allow a user or application to authenticate an 

IoT node. In IoT devices, remote attestation is possible at the 

individual device level to prove trustworthiness. It has been 

(Chiang and Zhang, 

2016) 
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reported, RA for a large number of devices require high cost and 

management complexity. Attestation is also challenging in case of 

malware attacks. 

System-level-trust (SLT) 

(Ciccozzi et al., 2017) States SLT as an important challenge in 

IoT, they did not discuss this in detail either the reference they 

quoted explained anything about it. However, in general, SLT is 

an important feature that refers to the trustworthiness of system. 

When considering SLT concerning IoT, it means it should give 

some level of security, reliability, privacy, and trust and keeps the 

IoT device and the environment secure from compromises.    

(Ciccozzi et al., 2017) 

Expanding domains (ED) 

ED is one of the main obstacles to securing the cyber entities in 

IoT; ED has been described as the mapping of objects in IoT with 

networking and communication of cyber entities.  

(Ning et al., 2013) 

Secure transmission of data 

How to securely transmit the collected data from the sensor nodes 

to the destination that remain insecure due to low power and small 

size IoT nodes has been reported as a major challenge. 

(Pirbhulal et al., 2017) 

Mobility capabilities 

In IoT mobility capabilities have been  reported as one of the 

important challenges when users are on the move, it may cause 

one of the following: (i)  service interruption; (ii) service 

continuity; (iii) mobility management of the components 

(Venckauskas et al., 

2016b, Fraga-Lamas et 

al., 2016) 
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Gateway address exposure 

IoT devices send data to the local gateway on a daily basis 

especially in the healthcare sector. IoT connected devices have 

only been bound to HTTP for the interactions with the gateway. 

HTTP is insufficiently insecure for many of the interactions in the 

IoT while sending the data; attackers may guess gateway address 

and manipulate the data for harmful purposes and cause issues 

related to authorization, authentication, and accounting. 

(Fantacci et al., 2014) 

Restricted interfaces available 

to interact with IoT devices, 

security devices, and the 

applications 

IoT environments face challenges when an organization needs to 

integrate an IoT device into existing infrastructure. Unfortunately, 

there are no interfaces available to do this work. 

(Kim, 2017, CSA, 2015) 

Security 

considerations 

Manage/administer the 

ownership of devices in a 

complex ecosystem 

IoT is a single complex ecosystem where various infrastructures 

are condensed to form a dynamic and interactive environment.  

Where the main challenges are: (i) tracking of multiple devices; 

(ii) identify malicious identities; (iii) bad manufacturer; (iv) 

identify a malicious attacker. In this situation,  

(Furfaro et al., 2017) 

Local and remote software 

update 

IoT devices are vulnerable,  to keep them secure there is a need to 

design software: (i) to update remote software that handles 

security updates; (ii) track firmware updates.  

(Alrawais et al., 2017a) 
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IoT software, security 

credential and firmware 

updates 

Fixed firmware is an open issue; there are very few appliances that 

keep updating the firmware/software regularly. Many 

vulnerabilities may occur because of outdated software, so the 

best approach is to secure profiles/roles/access, etc. And related 

software up to date. 

(Lin and Bergmann, 

2016, Chiang and 

Zhang, 2016) 

Maintain low-cost 

authentication encryption 

To implement and maintain cost effectiveness of encryption 

mechanism in the authentication process has been reported as a 

challenge. 

(Mazumder et al., 2017) 

Non-Repudiation (NR) 

NR is referred to as the ability to ensure that a person cannot deny 

something. Nonrepudiation becomes an issue in case of malware 

attacks or when the security controls are not properly 

implemented. Although people have tried to address this challenge 

but still the weak areas in IoT environment may trigger this issue 

at any time. 

(Pirbhulal et al., 2017) 

Security 

measures and 

good practices 

Trustworthiness 

Security in IoT is the most important consideration where 

maintaining trust is a key challenge whether it is required in 

cryptographic systems, device firmware or other at any stage of 

IoT environment. 

(Ambrosin et al., 2016, 

Alrawais et al., 2017a, 

Chiang and Zhang, 

2016, Roman et al., 

2013, Pirbhulal et al., 

2017, Sicari et al., 2015, 

Pan et al., 2011) 
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Introducing physical security 

concerns 

Deployed IoT devices often remain exposed to various threats and 

vulnerabilities. Mostly used software-based solutions to protect 

sensitive information. The key challenge is attackers with efficient 

solutions can reverse the software solutions. In this situation, it is 

important to introducing the physical security instead of a software 

solution to protect the IoT asset. With the evolution of IoT, the 

domain of physical security is changing, in particular, with the 

emergence of malware threats, vulnerabilities, and other 

destructive activities. Thus,  IoT is showing considerable potential 

implications in this regard and requiring comprehensive research. 

(Kim, 2017, CSA, 2015) 

Improve authentication 

protocols 

IoT devices confront various security challenges, and 

authentication protocols are required to improve performance, 

security, and effectiveness in IoT environment. 

(Liu et al., 2016) 

Governance in IoT 

Governance guidelines are unclear for IoT, but no one has 

described it in detail. However, it has been reported that there are 

at least two important aspects of governance that need to be 

addressed:  

(i) Information Governance in IoT: IoT creates enormous amount 

of information that requires management by the 

implementation of governance practices. 

(Roman et al., 2013, 

Roman et al., 2011, 

Ning et al., 2015, 

Hoepman, 2011) 
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(ii) Trust governance framework: Governance frameworks 

consist of record management, risk analysis, asset management, 

etc. these are badly missing elements in IoT. There is a serious 

need to implement governance frameworks in IoT that brings 

trustworthiness in this business. 

Maintain the level of security 

To attain/maintain the right level of protection and continuous 

improvement to bring resilience to it has been reported as a 

challenge, although authors of these literature have proposed some 

solution but full security is still an issue. 

(Mazumder et al., 2017) 

QoS 

QoS in IoT is an area which is yet to be explored, the 

heterogeneity, limited resource constraints, mixed network traffic, 

and complex network topologies, etc. make implementation of 

QoS a tough task to do. 

Few other authors have also reported QoS needs at different levels 

within the IoT. 

(Venckauskas et al., 

2016b, Atzori et al., 

2010) 

Risk analysis 

In the IoT environments comprising of numerous smart devices, 

it’s important to effectively evaluate the security,  measure the 

amount of risk involved in order to present a holistic view of the 

whole system. 

(Wen et al., 2017, Riahi 

et al., 2013) 

Patch solutions for IoT 
One of the apparent research gaps in IoT is the inability of the 

devices to upgrade the software (security related) and patch them 

(Yaqoob et al., 2017, 

Min et al., 2014, 
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in a non-disruptive way. It has been reported that IoT devices must 

be able to accept updates and patches of security software. 

Kuusijärvi et al., 2016, 

Sicari et al., 2015) 

Security 

mechanism 

Fault tolerance 

Fault tolerance is the process that enables a system to continue 

operating smoothly/adequately in the event of the failure. This 

feature is lacking and reported as a tight constraint in IoT.  

(Ning et al., 2015, 

Roman et al., 2011, Pan 

et al., 2011) 

Security structures that 

combine control and 

information access 

It has been reported that IoT needs the implementation of security 

structures that combine control and information access but no 

further detail has been specified. 

(Ciccozzi et al., 2017) 

Implementation of 

cryptographic identifier 

Asymmetric keys (based on large numbers) are extensively used 

as cryptographic identifiers, have a significant overhead as 

compare to symmetric keys, therefore, require substantial 

computational resources that is a current challenge in IoT due to 

architectural limitations. 

(Mayer, 2009) 

Architectural security 

weakness 

IoT device manufacturers have been showing little or no focus on 

the implementation of security mechanisms at architectural level 

that gives rise to architectural security concerns and associated 

threats and vulnerabilities. 

(Anantharaman et al., 

2017) 

Limited sense of intrusion 

detection 

The architectural design of IoT doesn’t allow it to be easily 

extended to adopt security mechanisms. Therefore, the ability to 

deal with the intrusion detection to deter malicious attacks is 

insufficient and has been reported as a challenge.  

(Pajouh et al., 2016) 
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Security of 

cryptography/cryptographic 

algorithms 

Application of security measures to protect cryptographic 

algorithms and the keys remains a significant challenge. 
(Xiao et al., 2017, 

Continella et al., 2017) 

System safety 

and reliability 

Location Verification 

A challenge to design secure system for the verification of the 

locations of IoT devices in harsh environments such as transport 

systems. Some authors attribute the presence of location 

verification to better security improvement, but still, this area 

requires considerable work. 

(Alrawais et al., 2017a, 

Chen et al., 2009) 

Mechanisms for self-diagnosis 

and self-repair 

It has been reported that the dependability of IoT can be increased 

when it has the mechanism of self-diagnosis and self-repair in 

order to provide better fault tolerance and smooth operations. It is 

easier to provide this facility at application/device level, but when 

it comes to the whole system, it is considered as one of the hardest 

problems. 

(Garlan et al., 2003) 

Cyber-physical infrastructure 

With the boost of urbanization, smart city concepts is on the rise. 

In which multiple IoT applications are getting deployed. There is 

a major concern of handling physical damage or undesirable risk 

of injury to the infrastructure and their components in case of 

cyber attacks. Moreover, there is need to make whole 

infrastructure (such as electricity supply, water distribution, 

(AlDairi, 2017) 
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streets, buildings, etc.) safe and reliable to provide a better way of 

life. 

Measurement of reliability 

Reliability is one of the important elements to attain the quality of 

service a user expects from the manufacturer of a product. It can 

be interpreted as a measurement of unreliability at which failure 

may occur. Authors have reported this challenge concerning QoS.  

(Venckauskas et al., 

2016b, Venckauskas et 

al., 2016a) 

Threats and 

vulnerabilities 

Destruction or theft of the 

M2M device 

Being deployed in reachable locations, M2M devices or their cards 

can be easily stolen. 
(Barki et al., 2016a) 

Leakage of cryptographic key 
Cryptographic key leakage occurs in public-key systems when the 

system gets attacked by inside or outside attackers. 

(Chiang and Zhang, 

2016) 

Vulnerabilities in IoT devices 

With the rapid advancements in IoT technologies, every day new 

vulnerabilities are getting discovered, some of the vulnerabilities 

are inter-related to existing ones, but the complexity in IoT 

environment allows room for newer ones and makes this challenge 

more difficult to handle. 

(Kim, 2017, CSA, 2015) 

Threats to multitenancy data 

centers 

Multi-tenancy is a system building block in which a single 

instance of an application serves multiple customers. The 

information may be leaked from the main data centers that are 

dealing with different client services that leads to security/privacy 

breaches. 

(Kumarage et al., 2016) 
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Leakage of security-critical 

information 

Problems faced during the transmission of data is the leakage of 

critical information, this may be due to malware as well. 
(Kwon et al., 2016) 

Heavy communication traffic 
IoT devices generate heavy communication traffic that is difficult 

to handle.  
(Li et al., 2014a) 

Physical damage 

In malware attacks, an attacker can destroy physical device or 

important hardware modules of targeted devices. Keeping various 

architectural weaknesses of IoT, it’s a challenging task to keep IoT 

devices safe and secure. 

(Roman et al., 2013, 

Challa et al., 2017) 

Dependability in control 

With the advancement of IoT, the applications like smart cities 

have been thriving where heterogeneous network infrastructure 

exists with multiple sensoring devices, information processing, 

and control systems interact with each other. It has been reported 

that dependability in control is considered as the topmost priority 

challenge in this kind of IoT application where it can be a prime 

target for attackers and terrorists etc. an active attacker can try to 

gain partial or full control over an IoT entity or a system. 

(Roman et al., 2013, 

Challa et al., 2017, 

Zhang et al., 2017) 

Node related issues 

A malicious IoT node could pretend to be legitimate to exchange 

and collect the data generated by other IoT devices for malicious 

purposes. With ever-increasing volume of nodes can cause (i) 

node capture issues; (ii) detection of captured, rogue or unreliable 

nodes is a serious challenge. 

(Roman et al., 2013, 

Challa et al., 2017, 

Alrawais et al., 2017a, 

Ning et al., 2015) 
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Individual or group privacy 

information thefts 

Privacy related thefts are a nightmare for any user. It was always 

a big challenge and will still be a serious issue whether a privacy 

theft occurs at an individual or group level resulting in disclosure 

of sensitive information. 

(Ning et al., 2013) 

Visible gaps in 

IoT 

Limited incident response 

paradigms 

Authors have reported that there are limited best practices 

available for incident response and existing incident response 

mechanisms will not be adequate for emerging IoT infrastructures. 

(Chiang and Zhang, 

2016, CSA, 2015) 

Limited guidance present for 

lifecycle 

maintenance/management of 

IoT devices 

IoT usually has limited capability operating systems in which 

guidance on secure configuration of these devices is either limited 

or not present. 

(CSA, 2015) 

Limitations of cryptographic 

algorithms 

The applicability of cryptographic algorithms in IoT is limited and 

requires further analysis to ensure that algorithms can be 

successfully implemented given the constrained memory and 

processor speed expected in the IoT. 

(Trappe et al., 2015) 

Self-storage 

Self-storage is an open issue in IoT that is linked with limited 

resource-constrained environment. The problem occurs when 

alternative storage is needed, in which handling of data ownership 

and access control management is difficult. 

(Mineraud et al., 2016) 

No data cataloging 
The need of addressing modern data processing is readily 

becoming essential that is only possible if data catalogs are 
(Mineraud et al., 2016) 
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available, unfortunately, this feature is unavailable in IoT and the 

author mentions resource limitations as the reason for this 

unavailability. 

Gap analysis 

ENISA performed gap analysis and identified following research 

areas requiring attention: 

• Fragmentation in existing security approaches and regulations. 

• Lack of awareness and knowledge. 

• Insecure design and/or development. 

• Lack of interoperability across different IoT devices, 

platforms, and Frameworks. 

• Lack of economic incentives. 

• Lack of proper product lifecycle management. 

(ENISA, 2017) 

Vulnerable to 

attacks 

Attack detection and 

prevention 

Nowadays manufacturers have been rapidly introducing new 

products in the market, throwing more and more devices in which 

security and privacy are already questionable, the need to detect 

and prevent cyber security attacks particularly malicious attacks is 

increasing every day. All sorts of vulnerabilities targeting physical 

interfaces, hardware profiles, wired/wireless communication 

protocols, user interfaces, ports, etc. are posing the most 

significant challenge for IoT in which there is a need to develop 

approaches to detect and prevent the maximum number of threats. 

(Chen et al., 2009, 

Alrawais et al., 2017b, 

Venckauskas et al., 

2016a, Venckauskas et 

al., 2016b, Kliarsky, 

2017) 
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Malware issues 

The reported cases of malware targetting IoT rising significantly. 

Authors of various literature have reported numerous reasons for 

malware attacks (i.e., architectural limitations or design 

implications, deficiencies in security mechanisms, 

Internal/external threats, software vulnerabilities, software 

modification and many more). The varied possibilities of malware 

related issue in IoT making this one of the most significant 

challenges. 

(Yu et al., 2017, Chiang 

and Zhang, 2016, Ning 

et al., 2013, Kumarage 

et al., 2016, Alrawais et 

al., 2017a, Liu and Sun, 

2016, Sawand et al., 

2015, Barki et al., 

2016b) 

Attacks on IoT devices/ or 

environments 

Various attacks discussed in literature have been summarised in 

table 3 
Table 3 
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2.5.2. Authentication:  

Every day a large number of IoT devices are getting manufactured based on diverse protocols 

where the heterogeneity and ad-hoc nature of agents create complex configurations. IoT 

technology aims to provide accessibility (anytime, anything and anywhere), better services and 

seamless communication to connected smart devices, where authentication is prerequisite. The 

big challenge lies in the design and development of IoT infrastructure where security and 

privacy were not considered. Rigorous authentication is based on efficient, user-friendly and 

scalable procedures/protocols requires resources such as storage and computation which are 

lacking in IoT due to poor architecture. In this scenario, identifiable device/user information 

have maximum disclosure giving criminals access to resources and raising further complex 

issues of anonymity and untraceability. This deficiency of authentication procedures also cause 

more complex security and privacy issues (Alrawais et al., 2017a, Amadeo et al., 2016, Zhang 

et al., 2013, Al-Fuqaha et al., 2015, Tiburski et al., 2015, Venckauskas et al., 2016b, Pirbhulal 

et al., 2017, Sicari et al., 2015). 

2.5.3. Confidentiality, Integrity, and Availability (CIA):  

The design and build of IoT devices have a limited sense of hiding the information from 

unauthorized people to view it. Data sensed and exchanged by things, and the privacy of 

humans/things must be ensured to prevent unauthorized identification and tracking (Liu and 

Sun, 2016, Tiburski et al., 2015, Lin and Bergmann, 2016, Pirbhulal et al., 2017, Sicari et al., 

2015). Confidentiality (privacy), integrity and availability are the true aspects of security. CIA 

is a model, guide and a complementary requirement for information security, if ignored or not 

followed correctly may raise very complex security and privacy issues. Unfortunately, CIA 

model was not given much attention in IoT. This model should be enforced at every level of 

IoT infrastructure, i.e. access control, data sensed or exchanged, and authentication, etc. 

2.5.4. Crisis management:  

Due to immense popularity, IoT environments/devices have been a target of malicious attacks 

(in particular botnets and ransomware) resulting in a denial of service. Moreover, it’s a part of 

an effective governance plan to devise strategies to respond to the crisis situations that may 

cause intolerable business disruption to resume to the state of smooth operations (Chiang and 

Zhang, 2016). Effective brute-force solutions cannot be applied in crisis situations. Therefore, 

there is need to address the associated challenges comprehensively. 
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2.5.5. Cryptography:  

IoT devices usually come with 8 or 16-bit chips, the constraint of limited energy (small 

batteries), storage and onboard memory that prevents the implementation of efficient, flexible 

and inexpensive cryptographic algorithms (Ning et al., 2015, Roman et al., 2013, Venckauskas 

et al., 2016b). There is a need to design efficient cryptographic algorithms which can be applied 

throughout the device to offer an end-to-end secure communication channel. In this regard, 

lightweight security protocols are the best choice for 8-bit or 16-bit devices. The 

implementation of these security protocols is widely influenced by the heterogeneity and 

scalability issues of IoT. Along with this, a competent algorithm requires storage and energy 

in the devices which is a very challenging task in IoT (Riahi Sfar et al., 2017). Moreover, the 

revocation of old/useless keys (public/private) is another issue in IoT, and various authors have 

proposed their approaches to address this issue, but this challenge is still a nightmare because 

of several other inter-related problems.  

2.5.6. Data privacy and protection:  

A tremendous amount of data is generated by IoT devices every day. The unrestricted access 

to that information poses a significant security and privacy risks to the consumers due to the 

fact that devices not only connected with cloud but also forming local intranets to exchange 

data between them (Barki et al., 2016b, Mayer, 2009, Sicari et al., 2015, Wang et al., 2014, Liu 

and Sun, 2016, Ning et al., 2015, Pirbhulal et al., 2017). The key data privacy-challenges are:  

• Most IoT devices fail to encrypt data that are being transferred.  

• User sensitive information can be compromised due to unencrypted data.  

2.5.7. Data processing and computation 

One of the most important aspects of IoT is “data,” which poses very complex challenges due 

to the presence of 3Vs, i.e. “Volume,” “Velocity” and “Variety.”  The process of analyzing or 

computing the huge amount of data (volume) being generated at a rapid pace (velocity) from 

various sources (variety) that sometimes includes outsourced data is a serious problem. Issues 

related to data processing and computation include aggregation, retention, integrity, freshness, 

handling of false or noisy data, secure fusion, computational cost, verification of outsourced 

data, verification of de-duplication data in mobile and cloud-based IoT. Various researchers 

are using different techniques for the processing and computation, but still it’s an open research 

challenge in IoT (Alrawais et al., 2017a, Kumarage et al., 2016, Kwon et al., 2016, Pirbhulal 
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et al., 2017, Sawand et al., 2015, Tiburski et al., 2015, Venckauskas et al., 2016b, Xiao et al., 

2017, Yasin et al., 2017, Yu et al., 2017, Zhang et al., 2017). 

2.5.8. Digital forensics:  

Digital forensics is an important discipline that helps to identify illicit activities from the digital 

world for a variety of matters, e.g. criminal cases and cyber malware attacks (inside/outside), 

etc. There are six important pillars of the forensic investigation, but when it comes to the 

application of these six elements in IoT, forensic examiners face numerous issues. Many of 

these issues have been reported in the literature, but the solution to these issues still requires 

work. For example, a traditional forensic tool like ENCASE works well with conventional 

technologies like laptops, desktop computers or mobile devices but when it comes to IoT 

devices (home appliances, i.e. smart fridge), we have no answer. IoT is a fast-moving 

technology concerning the ever increasing number of devices and massive volume of data. It 

means IoT digital forensics needs to constantly develop IoT-specific forensic tools by 

addressing the challenges reported in the literature also summarised in the table (Attwood et 

al., 2011, Brown et al., 2005, Caviglione et al., 2017, Conlan et al., 2016, D’Orazio et al., 2017, 

Harbawi and Varol, 2017, Liu, 2015, Oriwoh and Sant, 2013, Quick and Choo, 2014, Sheldon, 

2005, Taylor et al., 2010, Vlachopoulos et al., 2013, Yakubu et al., 2016, Zawoad and Hasan, 

2015, Zulkipli et al., 2017).  

2.5.9. Heavy network traffic:  

Despite all the benefits of IoT, the weaknesses of one-time, low cost, resource-constrained 

and unsecured sensors generating a massive amount of network traffic gives birth to 

another challenge of how to analyze network traffic particularly if that traffic is malicious 

to understand the pattern of clean and malicious behaviors. There is not one possible answer 

to this situation because the volume of the data requires more hardware/software resources 

and highly analytical techniques and continuous improvement in them to cope with the 

ever-increasing amount of information and cope with newer threats (Gan et al., 2011). 

2.5.10. Heterogeneous interactions:  

IoT technology inherent the complexity due to a considerable number of heterogeneous devices 

associated with interoperability system to exchange the information with each other. 

Constrained entities share internet with non-constrained devices, either directly or through the 

gateways. In this situation, security and privacy of IoT devices are compromised due to their 
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lack of support of heterogeneity and incompetent architectural model (Gubbi et al., 2013, Kim, 

2017).   

2.5.11. Identity and access management (IAM) 

In our daily lives, we remain occupied in billions of IoT devices, and there is a continuous 

growth in numbers which is a challenging task regarding identity and access management. IAM 

refers to the process of representing/recognizing entities as digital identities in virtual networks. 

It enables (right) people to access only concerned objects only when needed. The functions of 

IAM are increasing rapidly where it is important to identify not only the authorized people, 

tracking of their object, and handling of their privileges towards a variety of different data 

sources. From the perspective of cyber security identity management of IoT devices is the most 

critical and vital area towards securing the environment (i.e., identify people, devices, 

monitors, sensors and secure data access, etc.). Without IAM an attacker may fabricate and 

create a fake identity, RFID identity can be duplicated or spoofed, and finally, the existence of 

multiple identities is an issue as well (Mayer, 2009, Roman et al., 2013). Furthermore, an object 

may have either multiple or fake owners as well which may cause some serious issues unless 

we have a right defense in place (Babar et al., 2010, Lam and Chi, 2016, Li et al., 2011, Mahalle 

et al., 2010, Meghanathan, 2010). There is a need to identify between fake/fabricated or 

duplicated identities vs. original identities which is a very challenging task. 

2.5.12. Inadequate infrastructure or bad design:  

IoT is a hot favorite topic for the researchers because of its bright future perspective, being a 

consumer’s first choice, and extraordinary long list of security issues that cause massive service 

outage worldwide. IoT devices were designed to improve lives of the people, but because of 

lack of incentives for the vendors, security features were entirely ignored from 

hardware/software infrastructure making IoT device or environmental design a “Bad design.” 

It has been noticed that in the event of any DoS attack, the attackers utilize weaknesses of the 

target system in which IoT is full. At first place, if the prototype of IoT device was not made 

considering security as a part of its build, it may be considered unfit to be placed in the list of 

safe devices. Moreover, if the same prototype with weak or no security features is adopted, 

then it may be regarded as “inadequate infrastructure” or “bad design.” With this critical 

infrastructure, IoT is facing many challenges described in the table (Alrawais et al., 2017a, 

Dong and Liu, 2015, Venckauskas et al., 2016a, Yaqoob et al., 2017). 

2.5.13. Inadequate or limited support:  
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Provision of support is one of a most important factor related to customer satisfaction. With 

the rapid increase in a number of devices with heterogeneous/complex configuration, support 

process has become more challenging. IoT industry will require a change in support process; 

this includes staff competencies to reflect strong IT/cyber security skills (i.e., knowledge about 

IoT devices and environment), management guidelines, cyber security skills, maturity in 

technical/business processes, and authentication processes within an organization. (Kim, 2017, 

Lin and Bergmann, 2016, Yaqoob et al., 2017) 

2.5.14. Physical and environmental security 

The fundamental issue in IoT is not only to protect its intrinsic elements (i.e., object or entities), 

but also to protect the information assets from malicious threats. Physical and environmental 

security is not a new concept, but its implementation in IoT is a challenging task that focuses 

on detection/prevention of unauthorized entities from gaining access to a resource and steal 

valuable assets. However, diverse nature of IoT devices, immature build and frequent changes 

in infrastructural design creates obstacles in this regard (Sen, 2010, Mendez et al., 2017, 

Borgia, 2014, Chen et al., 2017, Luong et al., 2016, Trappe et al., 2015, Liu et al., 2016).  

2.5.15. Risk treatment, countermeasures, and strategies (RTCS):  

Various authors have reported challenges i.e. the development of intrusion detection 

mechanism, firewalls, attack detection/prevention system and devising strategies for the secure 

management of cryptographic keys in order to save them from unauthorised access (Alrawais 

et al., 2017a, Ning et al., 2015, Tiburski et al., 2015, Trappe et al., 2015, Venckauskas et al., 

2016b, Yaqoob et al., 2017). We grouped these challenges under RTCS. Risk management is 

considered as a most critical part of the organizational governance; if ignored, it’s not possible 

for the organizations to survive for long. Therefore, it would not be wrong to consider it as a 

crucial challenge for an IoT environment to have risk treatment, countermeasures and their 

strategies as a part of their ongoing process. It is not a one-time process but rather an ongoing 

process, important phases in risk management include: (i) “Plan” (identification and evaluation 

of risks); (ii) “Do” (risk treatment, make strategies to overcome future risks); (iii) “Check” 

(analyse changes) and (iv) “Act” (plan for future events).  All of these phases are recursive and 

help the analysts to discover all associated risks and develop strategies to act accordingly to 

effectively treat them. When we talked about IoT environment RTCS should come in top 

priority list (which at the moment it is not).  
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2.5.16. Safety and compliance (SAC):  

Safety and compliance are considered as important driving forces of IoT since IoT devices 

have been a favorite target of cybercriminals who may steal or destroy important confidential 

information. This is why the need for safety and compliance becomes crucial and likely to grow 

in importance in IoT. By nature, IoT brings various security risks directly to the organizations, 

every organization must follow specific compliance standards to avoid substantial payouts in 

terms of fines and loss of reputation.  

Unfortunately, this is the area in IoT where organizations did not pay much attention which 

may cause potential implications. IoT industry needs practices for recognizing the safety 

requirements while designing the products, delivering them to the broader markets and 

customers. IoT devices without safety, compliance, and conformity may rise safety-related 

compliance issues (Alrawais et al., 2017a, Chiang and Zhang, 2016, Ciccozzi et al., 2017, CSA, 

2015, Gubbi et al., 2013, Hu, 2011, Kim, 2017, Sicari et al., 2015, Suo et al., 2012, Trappe et 

al., 2015, Ziegeldorf et al., 2014).   

2.5.17. Secure and trusted communication (SATC) 

SATC helps to improve availability/accessibility of IoT resources. Network communication is 

an integral part of IoT, where security and privacy are the indispensable but neglected tools. 

IoT relies on various communication channels such as sensing nodes, routing systems, etc. 

When a user or a sensor node share or exchange their data through a communication channel, 

in this process authentication and authorization play an important role, if communication 

channel(s) is insecure attacks like a man in the middle are possible. It’s a challenging task to 

discover, verify, identify, and authenticate the devices/data in an IoT network to preserve 

privacy and whole CIA-triad. There is a need to establish a framework or set of rules to bring 

trust and security in entire communication process instead of at a particular level.  

2.5.18. Security considerations 

It is a known fact that in this scientific age people are increasingly relying on IoT devices 

facilitating them in every walk of life. Literally, we have billions of interconnected devices, 

and this figure is likely to be increased in the near future.  As stated previously these devices 

are a favorite target of malware, intrusions of various kinds and interfaces to steal/expose 

personal information and jeopardize the safety of the people. Therefore, it’s a major concern 

of security to address: (i) how to manage/administer the ownership of these devices in a 

complex ecosystem; (ii) how to update local/remote security credentials and other related 
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software or firmware; (iii) how to maintain low-cost features for implementing encryption for 

authentication roles;(iv) and finally how to provide non-repudiation while considering the 

limitations of them like heterogeneity, complexity, scalability and volume etc. 

2.5.19. Security measures and good practices (SMAGP) 

It is a known problem with IoT that most of the vendors have been developing their products 

without sufficient inclusion of security-related features in them. The lack of important features 

results in serious issues for not only the organizations but also for the public intending to use 

them. To provide consumers security & privacy concerning their data, and trustworthiness in 

the communication, government policy agencies should enforce vendors to implement proper 

security measures and good practices as a part of their hardware and software design. At this 

stage of IoT progress, due to various complex factors, it is not possible to govern a set of rules 

that are applicable universally on all sorts of devices, but it is possible to define a list of top 

most important security measures and a list of good practices to benefit the whole environment. 

In this regard, it is important to identify the gaps and then merge the technical solutions for 

security measures and good practices. 

2.5.20. Security mechanisms:  

Security of IoT has become a ubiquitous issue in which all traditional concepts have become 

upside down. One of the fundamental elements of securing IoT device is to implement strong 

security mechanisms. However, the architectural model of IoT devices doesn’t allow to be 

easily extended to adopt security mechanisms. Therefore, the ability to deal with the intrusion 

detection is limited. Various challenges in this regard have been reported in the literature, we 

have listed few of the challenges in the table. The presented challenges indicate that there is a 

need for robust IoT security mechanisms to acquire a secure IoT infrastructure that penetrates 

well in all IoT applications.  

2.5.21. System safety and reliability (SSaR) 

It is known the fact that there is no dependability in IoT, dependability comes from the 

pursuance of two components, i.e. safety and reliability which are prerequisite of a better 

quality of service (Zin et al., 2016). These two components form the basis of failure-free 

communication environment.  

With the urbanization, a smart city is the revolutionary concept where different IoT 

technologies are being deployed (such as IoT objects, cloud computing, real-world user 

interfaces, semantic web, etc.) and forming a smart system. These systems remain incomplete 
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without considering the safety and reliability. The “safety” and “reliability” should be assessed 

and measured at various levels (i.e., sensor level and communication level etc.) to provide a 

secure system (Li et al., 2014b, Li et al., 2015, Zheng et al., 2014, Kharchenko et al., 2016).  

2.5.22. Threats and vulnerabilities 

There is no doubt about it that IoT technologies contain serious vulnerabilities that are 

undeniable. Along with this, the rapid expansion of devices inherits same or sometimes even 

more complex vulnerabilities exponentially expanding the possibility of various threats. It 

would be highly dangerous for an IoT infrastructure if we ignore or misjudge the importance 

of vulnerability management and threat detection solution. Therefore, we need to put it into our 

priority list to identify the existing threats and vulnerabilities before they compromise 

security/privacy/trustworthiness of a system. 

2.5.23. Visible gaps in IoT:  

A solid understanding of a domain is only possible when we perform technology gap analysis. 

Purpose of this group is to provide a summary of few of the most prominent gaps in IoT that 

are co-related with security/privacy/trust challenges. Another reason to include this group is to 

highlight important aspects of modern technology that are clearly lacking in IoT, and their 

solution may bring resilience to IoT by making the technology mature. 

2.5.24. Vulnerable to attacks:  

Protecting the IoT devices or infrastructures from threats is a complex and challenging task. 

Security experts believe that global connectivity (access anywhere), accessibility (access 

anyhow, anytime) are the fundamental tenets for numerous types of attacks. However, there 

is no uniformity in the attacks and hard to expect where and when the attack may target. 

Attackers may focus on various communication channels, sensors, hardware profiles, 

information exchanged, etc. causing either fabrication, denial of service, jamming, identity 

theft, etc. In addition to this, the co-inherent complexity of IoT networks, highly scalable 

nature, heterogeneity of the entities located at various locations attract more attacks to give 

an attacker enough room to break in the system.  

2.5.25. Attack detection and prevention:  

Nowadays manufacturers have been rapidly introducing new products in the market, throwing 

more and more devices in which security and privacy are already questionable, the need to 

detect and prevent cyber security attacks particularly malicious attacks is increasing every day. 

All sorts of vulnerabilities targeting physical interfaces, hardware profiles, wired/wireless 
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communication protocols, user interfaces, ports, etc. are posing a significant challenge in 

which there is a need to develop approaches to detect and prevent a maximum number of 

threats (Alrawais et al., 2017a, Venckauskas et al., 2016a, Kliarsky, 2017). 

2.6–  Malware attacks as a big security/privacy risk and related work 

The benefits of IoT are undoubtedly most attractive. Therefore, this technology has been 

adopted by various big organizations.  On the other hand, security and privacy challenges of 

IoT is creating a global impression that “Internet of Things is the new Windows XP-malware’s 

favorite target!” (Kuusijärvi et al., 2016). This statement is quite convincing when you see the 

published literature about IoT attacks. The table 3 shows 45 different IoT attacks reported in 

the literature; these attacks are directly or indirectly related to malware.  
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Table 3: The summary of IoT attacks reported in literature related directly or indirectly with 

malware 

Attack Description Reference Target References 

Availability 

attacks 

Availability attacks mainly 

utilize the limitations of 

bandwidth and transmission 

power resulting in 

communication failure in 

IoT setup. 

(Sun et al., 

2017b) 

Network 

Layer 

Transport 

Layer 

Our 

contribution 

Camouflage 

attacks 

A camouflage node hides 

itself under a false identity 

and utilizes this appearance 

from a legitimately 

authenticated node, and 

spreads fake and harmful 

messages, or executes 

blackhole attacks, or other 

fatal attacks 

(Sun et al., 

2017b) 

Network 

layer 

(El 

Mouaatamid 

et al., 2016) 

Chosen 

ciphertext 

attack 

A CCA is an attack model 

for cryptanalysis in which 

the cryptanalyst gathers 

information, at least in part, 

by selecting a ciphertext and 

obtaining its decryption 

under an unknown key. 

(Li et al., 

2014a) 

Transport 

Layer 

Our 

contribution 

Clone attack 

In these kinds of attacks, the 

attacker captures and 

compromises legitimate 

node usually makes the 

clones. 

(Du and 

Chen, 

2008, 

Gope and 

Hwang, 

2015) 

Application 

Layer 

Network 

Layer 

Transport 

Layer 

(El 

Mouaatamid 

et al., 2016) 
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Collision 

attacks 

An attack on 

a cryptographic hash which 

tries to find two inputs 

producing the same hash 

value. 

(Du and 

Chen, 

2008) 

Data Link 

layer, 

Network 

Layer 

(El 

Mouaatamid 

et al., 2016, 

Borgohain et 

al., 2015, 

Ghildiyal et 

al., 2014, 

Karlof and 

Wagner, 

2003) 

Cryptographic 

overhead and 

WSN attacks 

Security in IOT and WSN 

requires further research,  

although security elements 

exit in many protocols but 

the still specific type of 

security analysis is needed 

which causes crypto 

overhead and related cyber 

attacks. 

(Fantacci 

et al., 

2014) 

Network 

Layer 

Transport 

Layer 

Our 

contribution 

Data Attacks 

(Modification 

and Injection) 

Data can be compromised 

during its transmission as 

well as at rest on a device or 

an application’s server. 

(Barki et 

al., 2016b) 

Application 

Layer 

(El 

Mouaatamid 

et al., 2016) 

Delay attack 

In these kinds of attacks, an 

attacker intentionally puts a 

delay in sending or receive 

messages for some time to 

fail the time synchronization 

process. 

(Du and 

Chen, 

2008) 

Physical 

Layer /Data 

Link Layer 

MINE 

DoS and DDoS 

A denial of service attack 

occurs when one or multiple 

systems gets flooded with 

bandwidth or services 

(Barki et 

al., 2016b, 

Challa et 

al., 2017, 

Physical 

Layer 

Data link 

Layer 

(El 

Mouaatamid 

et al., 2016, 

Ghildiyal et 
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intentionally or 

unintentionally by an 

attacker. 

Ning et al., 

2013, 

Luong et 

al., 2016, 

Qiu and 

Ma, 2016, 

Roman et 

al., 2013, 

Du and 

Chen, 

2008, Liu 

and Sun, 

2016, Sun 

et al., 

2017b, 

Giuliano et 

al., 2017) 

Network 

Layer 

Transport 

Layer 

al., 2014, 

Jing et al., 

2014) 

Eavesdropping 

Eavesdropping is an 

unethical process of 

listening to the private 

conversation between 

people without their consent 

(Challa et 

al., 2017, 

Ning et al., 

2013, 

Roman et 

al., 2013, 

Wang et 

al., 2014, 

Sun et al., 

2017b, 

Barki et 

al., 2016b) 

Network 

Layer 

Transport 

Layer 

(El 

Mouaatamid 

et al., 2016, 

Jing et al., 

2014) 

Exhaustion 

The exhaustion attacks are 

computer security threats 

capable of crashing, 

hanging, or other sorts of 

(Du and 

Chen, 

2008) 

Data Link 

layer 

(El 

Mouaatamid 

et al., 2016, 

Borgohain et 
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interferences with the 

victim. 

al., 2015, 

Ghildiyal et 

al., 2014) 

Fake sensing 

attacks 

Crowdsensing networks are 

vulnerable to faked sensing 

attacks by users causes 

sensing costs and privacy 

leakage 

(Luong et 

al., 2016) 
  

Firmware 

attack 

Flaws in a firmware of IoT 

devices leading an attacker 

to modify the firmware and 

replace it with his malicious 

one to achieve his goals. 

(Liu and 

Sun, 2016) 

Data link 

Physical 

layer 

 

Flooding (incl. 

ICMP & Hello 

flooding) 

To bring down the entire 

network or the services by 

flooding it with enormous 

amounts of traffic. 

(Du and 

Chen, 

2008) 

Network 

Layer 

Transport 

Layer 

(El 

Mouaatamid 

et al., 2016, 

Borgohain et 

al., 2015, 

Ghildiyal et 

al., 2014, 

Karlof and 

Wagner, 

2003) 

GPS deception 

In this kind of attack, an 

adversary can provide a 

node with fake information 

about its location. 

(Sun et al., 

2017b) 
  

Hardware-

Based Attacks 

Various hardware-based 

attacks have emerged for 

example stealth backdoor 

circuits or trojans to steal 

precious patient 

information. 

(Yasin et 

al., 2017) 

Physical 

layer 
 



81 | P a g e  

 

Illusion attacks 

In this kind of attacks, some 

voluntary sensors that 

generate false or 

meaningless information in 

the network will be placed. 

These malicious sensors are 

always properly 

authenticated and identified 

in some way or other. 

(Sun et al., 

2017b) 
  

Impersonation 

attacks 

An attack in which an 

attacker successfully 

assumes the identity of one 

of the legitimate parties in a 

system or in a 

communications protocol. 

(Wang et 

al., 2014, 

Barki et 

al., 2016b, 

Gope and 

Hwang, 

2015, 

Challa et 

al., 2017) 

Network 

Layer 

Transport 

Layer 

(El 

Mouaatamid 

et al., 2016) 

Insider attacks 

Malicious attacks executed 

(intentionally or 

unintentionally) on a 

network or computer system 

by a person with authorized 

system access. This attack 

has also been named as 

“privileged insider attack.” 

(Kumarage 

et al., 

2016, 

Challa et 

al., 2017) 

Physical 

layer, 

Application 

layer 

Link Layer 

(Karlof and 

Wagner, 

2003) 

Internal attacks, 

vulnerabilities 

caused, 

software 

vulnerabilities 

and software 

A negative use of 

programming to harm 

people or network 

environments. 

(Yu et al., 

2017, 

Chiang and 

Zhang, 

2016, Ning 

et al., 

2013, 
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modification, 

etc. 

Kumarage 

et al., 

2016, 

Alrawais et 

al., 2017a, 

Liu and 

Sun, 2016, 

Sawand et 

al., 2015, 

Barki et 

al., 2016b) 

Jamming 

Jamming attacks prevent 

nodes from using the 

channel to communicate by 

occupying the channel that 

they are communicating. 

(Du and 

Chen, 

2008, Ning 

et al., 

2013) 

Physical 

Layer 

Data link 

layer 

(El 

Mouaatamid 

et al., 2016, 

Borgohain et 

al., 2015, 

Ghildiyal et 

al., 2014, 

Karlof and 

Wagner, 

2003) 

Logical Attacks 

Targeting the proper 

functioning of a system 

without making any changes 

to the device’s software 

(Barki et 

al., 2016b) 
  

Man-in-the-

Middle attacks 

In MIMA, the attacker 

secretly relays and possibly 

alters the communication 

between two parties who 

believe they are directly 

communicating with each 

other. 

(Liu and 

Sun, 2016, 

Challa et 

al., 2017, 

Giuliano et 

al., 2017, 

Qiu and 

Ma, 2016) 

Network 

Layer 

Transport 

Layer 

(Jing et al., 

2014) 
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Masquerading 
Pretending to be something 

or someone it's not. 

(Giuliano 

et al., 

2017, Sun 

et al., 

2017b, Du 

and Chen, 

2008) 

Application 

Layer 
 

Message 

manipulation 

attack (MMA) 

A MMA is an attack to 

manipulate a 

communication message 

sent by the devices. 

(Du and 

Chen, 

2008) 

Application 

Layer 

(Borgohain 

et al., 2015) 

Mole attacks 

Motion sensors in a 

smartwatch could leak 

personal information when a 

user types on a laptop 

keyboard, which is referred 

to as a mole attack 

(Liu and 

Sun, 2016) 
  

Mule attacks 

Adversaries may manipulate 

the local environment to fool 

sensors to record activities 

to achieve credits 

(Liu and 

Sun, 2016) 
  

Network traffic 

analysis 

Analysis of network traffic 

behavior/patterns by a 

passive attacker to steal 

information. 

(Giuliano 

et al., 

2017, Ning 

et al., 

2013) 

Network 

Layer 
 

Offline 

password 

guessing attack 

An offline attack attempts to 

emulate the password and 

requires a known output of 

that process. 

(Challa et 

al., 2017) 
  

Physical attacks 

targeting 

physical layer 

Any malicious attack 

focusing on the physical 

layer 

(Barki et 

al., 2016b) 

Physical 

layer 

(Borgohain 

et al., 2015) 
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Physical-level 

malicious 

attacks 

Attacks targeting physical 

layer for example data 

slurping in which an attacker 

can steal data using even an 

iPod. 

(Ciccozzi 

et al., 

2017) 

Physical 

layer 

(Borgohain 

et al., 2015) 

Relay attacks 

An adversary may conduct a 

relay attack 

to make an entity believe 

that it is in the vicinity of the 

sender or receiver 

(Barki et 

al., 2016b) 

Physical 

Layer 

Data link 

Layer 

(El 

Mouaatamid 

et al., 2016) 

The release of 

Message 

Content attack 

A passive attack in which a 

mail message, phone call or 

important messages would 

be intercepted or listened to 

is called the RoMCA. 

(Giuliano 

et al., 

2017) 

  

Replay attacks 

Replay attacks have a 

unique feature, i.e., it can be 

conducted 

by illegitimate nodes. A lot 

of message replays increase 

the cost of precious 

bandwidth, resulting in the 

dropping of priority 

messages from the queue. 

(Ning et 

al., 2013, 

Du and 

Chen, 

2008, 

Wang et 

al., 2016c, 

Sun et al., 

2017b, 

Giuliano et 

al., 2017, 

Gope and 

Hwang, 

2015, 

Challa et 

al., 2017) 

MultiLayer 

Attacks 

Transport 

layer 

(El 

Mouaatamid 

et al., 2016, 

Borgohain et 

al., 2015, 

Jing et al., 

2014, Karlof 

and Wagner, 

2003) 
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Route attacks 

including 

Denial of 

services 

Malicious nodes in the 

network modify the routing 

information or change the 

number of hops in 

forwarding routing request 

packets causing a denial of 

service 

(Sun et al., 

2017b) 

Network 

Layer 

Transport 

Layer 

(El 

Mouaatamid 

et al., 2016) 

Secrecy attack 

The secrecy attacks steal 

data by eavesdropping or 

interception. 

(Sun et al., 

2017b) 

Network 

Layer 

Transport 

Layer 

 

Selective 

forwarding 

attack 

Where compromised node 

drops packets selectively 

(Du and 

Chen, 

2008) 

Application 

Layer, 

Network 

Layer, 

Routing 

layer 

(El 

Mouaatamid 

et al., 2016, 

Pongle and 

Chavan, 

2015, 

Borgohain et 

al., 2015, 

Ghildiyal et 

al., 2014, 

Karlof and 

Wagner, 

2003) 

Side channel 

attack 

These attacks could be based 

on either power 

consumption, timing 

information, fault or 

electromagnetic leaks and 

enable the retrieval of the 

“used” secret keys. 

(Barki et 

al., 2016b) 

MultiLayer 

Attacks 

(El 

Mouaatamid 

et al., 2016) 
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Sinkhole (black 

hole) attack 

where compromised node 

tries to attract network 

traffic by advertising its fake 

routing update and attract 

more attacks 

(Du and 

Chen, 

2008) 

Network 

Layer 

Transport 

Layer 

Application 

Layer 

(El 

Mouaatamid 

et al., 2016, 

Pongle and 

Chavan, 

2015, 

Borgohain et 

al., 2015, 

Ghildiyal et 

al., 2014, 

Jing et al., 

2014) 

Skimming 

attack 

The wireless interception of 

information extracted from 

RFID chip-based debit, 

credit and ID cards and other 

documents, such as 

passports. 

(Ning et 

al., 2013) 

Network 

Layer 

Transport 

Layer 

 

Spoofing attack 

Emulate/Imitate/Reproduce 

something while 

exaggerating its 

characteristic features for 

comic effect. 

(Barki et 

al., 2016b, 

Ning et al., 

2013) 

Network 

Layer 

Transport 

Layer 

(El 

Mouaatamid 

et al., 2016, 

Borgohain et 

al., 2015, 

Ghildiyal et 

al., 2014, 

Karlof and 

Wagner, 

2003) 

Stolen smart 

card attack 

An attack to steal 

information about smart 

card 

(Challa et 

al., 2017) 
  

Surface attacks 
Attacks on a physical 

surface layer of an IoT 

(Minoli et 

al., 2017) 
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device to steal private 

information. 

Sybil attack 

A Sybil attack is an attack 

that the adversary forges one 

or multiple identities. 

(Du and 

Chen, 

2008, Sun 

et al., 

2017b, Qiu 

and Ma, 

2016, 

Dong and 

Liu, 2015) 

Physical 

Layer 

Data link 

Layer 

Network 

Layer 

(El 

Mouaatamid 

et al., 2016, 

Pongle and 

Chavan, 

2015, 

Borgohain et 

al., 2015, 

Ghildiyal et 

al., 2014, 

Karlof and 

Wagner, 

2003) 

Tampering 

Interfere with a system or 

process to cause damage or 

make unauthorized 

alterations. 

(Ning et 

al., 2013, 

Du and 

Chen, 

2008) 

Physical 

layer 

(El 

Mouaatamid 

et al., 2016, 

Borgohain et 

al., 2015, 

Ghildiyal et 

al., 2014, 

Karlof and 

Wagner, 

2003) 

Target tracking  
(Ning et 

al., 2015) 
  

Traceability 

attack 

Traceability attacks pose a 

threat to the privacy of users 

carrying the compromised 

IoT device. 

(Bu et al., 

2017) 
  

Unavailability 

of 

Privacy-preserving methods 

are open issues in IoT 

(Mayer, 

2009) 

Physical 

Layer 
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communication 

caused by 

botnets and 

Distributed 

Denial of 

services attacks 

causing communication 

between devices disturbed. 

This often results in Denial 

of Services. 

Data link 

Layer 

Network 

Layer 

Transport 

Layer 

User account 

injection attack 

Attack similar to SQL 

injection but with the user 

account to compromise a 

device. 

(Liu and 

Sun, 2016) 

Application 

layer, 

Presentation, 

Session layer 

(El 

Mouaatamid 

et al., 2016) 

Wormhole 

attack 

The fundamental idea of 

wormhole attack is that two 

or more malicious nodes 

hide the true distances 

among them entice other 

normal nodes to route across 

these dangerous nodes to 

absorb data flow and cause 

network conjunction or 

cooperate with other 

attackers. 

(Sun et al., 

2017b, Du 

and Chen, 

2008) 

Physical 

Layer 

Data link 

layer 

Network 

Layer 

(El 

Mouaatamid 

et al., 2016, 

Pongle and 

Chavan, 

2015, 

Borgohain et 

al., 2015, 

Ghildiyal et 

al., 2014, 

Karlof and 

Wagner, 

2003) 
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The table mentioned above is self-explanatory that series of malicious attacks are targeting IoT.  

Now a day’s most of the security professionals have to defend their organizations from cyber 

criminals trying continuously to steal the wealth of public or private information. This 

information can be passwords, financial information, health records or anything valuable. 

Attackers reap the benefits of their malicious intent by trying and infecting more and more 

resources, for example, email servers, databases, surveillance camera, search engines, 

corporate servers and use them as sources to cause more damage. No matter, what’s the intent, 

cybercrime cannot be started or completed without a malware. Nowadays, malware 

development is an industry where the author’s contribution is only to write the code and get 

their share, a team of criminal marketers does rest of the job.  

There is no such thing like 100% security or safety, as soon as billions of interconnected IoT 

devices join the network, they get a gift of associated challenges. These challenges can be of 

any type described in above tables (X, X). Solution to these challenges requires not only human 

efforts but also involve massive investment of resources to mitigate. It is understood that 

malware plays a vital role in the breach of security, privacy, and trust. Therefore, it is necessary 

to study the various aspects of IoT malware to prevent future attacks.  

2.7 –  Overview of malware 

The purpose of this section is to introduce malware analysis, detection approaches and various 

studies aiming to perform the proposed research, i.e. malware analysis, detection and 

classification.  

2.7.1 What is malware?  

Malware is a menace to the society, in other words, an adverse use of application development 

aiming to harm the general public and organization. There are various definitions of malware, 

but in simple words, it is a negative programming force that is being used for destructive 

purposes by cybercriminals. Software developed by certain individuals and spread by one or 

many with intentions to cause loss of money, reputation and grievance to the people or 

organizations.  

2.7.2 Characteristics of malware and its variants 

Malware has various characteristics could be referred as deception/destruction capabilities, but 

following four features make them more harmful: (i) Stealthy behavior; (ii) poly/metamorphic 

nature; (iii) armor capabilities; (iv) obfuscation of code (Chen et al., 2012). 
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Stealthy behavior: This characteristic makes it capable of hiding the system activities 

while during infection and later stages.  During stealth, process attacker tries to control 

by occupying registry and user/system files, etc. Furthermore, once it holds the system 

entirely, it hides itself from system processes to avoid discovery by anti-malware 

software.  

Poly/metamorphic nature of malware:  A perfect implementation of object-oriented 

programming to implement malware code in such a way that a malware automatically 

creates multiple variants without changing core functionality but targeting different 

victims. In metamorphic malware not only code sequence may be altered dynamically 

but also changes functionalities as well. 

Armor capabilities: A modern-day malware is capable of detecting that someone is 

trying to debug or reverse engineer (a standard function used for this called 

“IsDebuggerPresent” it and automatically goes into an isolation state, this capability 

comes from the fact that they can find whether they are being run in a virtual 

environment like VMWare based virtual machine. Therefore, they hide their actual 

functions, imports, exports and sometimes system calls as well. That makes a malware 

analyst’s job even harder. 

Obfuscation of code: Refers to confuse, mislead, compress, encrypt or decode various 

coding elements of malware to hide their actual functionality and avoid presence in the 

system. 

2.7.3 Malware variants  

Malware has various forms classed into a Botnet, Worm, Ransomware, Rootkit, and Trojan 

(shown in table), each of these families is dangerous enough to cause too much financial loss 

particularly if we talk about Botnets and Ransomware, they are alarmingly dangerous. In 

chapter 1 we discussed the severity of IoT Botnet Mirai which caused above 1TB distributed 

denial of service attack on Dyn and caused over $110 million to the company. Furthermore, 

ransomware can be considered as modern-day kidnaps, kidnapping of highly valuable system 

information and ask for money to release them. 
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Different types of malware 

Malware type Description 

Botnet 
Bots have the ability to compromise one or more machines, use 

them as attack source to target more victim machines. 

Worm 
Worms replicate themselves in a compromised machine by 

disabling security features. 

Ransomware 
Modern-day form of kidnapping and compromising data by 

encrypting it and getting the money to release. 

Rootkit Compromise machines without getting detected. 

Trojan Disguised as a good application to gain access. 

Table 4: Different types of a malware 

 

2.7.4 Malware analysis techniques 

Malware analysis techniques are used to read the patterns of malware by either reading their 

code statically or getting information by executing them (whether it is an isolated/artificial 

environment on live). In general malware analysis techniques can be divided into two 

categories, i.e. (i) static malware analysis; (ii) dynamic malware analysis techniques, but we 

will be dividing dynamic malware analysis into the third one of network traffic analysis 

technique as shown in figure 9 (Damodaran et al., 2017). In static analysis, researchers use two 

approaches to reading the code either by de-compilation /reverse engineering or just with the 

help of some text reading parsers developed using scripting languages like Python, C++ or 

Java. It’s relatively faster and less time-consuming. While dynamic analysis deals with the 

study of malware behavior while executed (Ravula et al., 2011).  
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Figure 10: A structural explanation of malware analysis 

 

Both static and dynamic methods are cost-effective and accurate like others both of these 

techniques have their pros and cons. For example, when researchers started analyzing malware, 

malware authors began obfuscating the malware to hide malicious intentions and making static 

analysis hard to perform (Borello and Mé, 2008). Nowadays, polymorphism and 

metamorphism are the familiar concepts those used in malware creation with the purpose of 

deception, code reuse, and faster penetration. Table 8 shows some features of static malware. 

Malware investigation is always performed in a controlled environment either with the help of 

some specialized sandboxes or some virtual machines to avoid infection to other machines 

(Wrench and Irwin, 2015). For the scope of this document, we will be focusing on only static 

malware analysis. 
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2.8- Machine Learning 

In the field of computer sciences machine learning is a sub-branch of artificial intelligence that 

uses the algorithms to automate the analytics. Application of machine learning is everywhere 

and there is a possibility that you have been using it without knowing anything about it, e.g. to 

find out daily trends of stock in the stock market, another example is biomedical research where 

expression of some medical concept can be studied, etc. Mostly machine learning is applied in 

those research areas where future prediction is required by previously held information to 

improve the performance of existing software solutions.   

The used algorithms in machine learning can be either supervised or unsupervised. When the 

dataset is labeled then supervised learning is used. In supervised learning dataset, each 

algorithm has a common principal, i.e. “predictive modeling” that model the data to find the 

trends or structure of the data to make predictions. Algorithms used in supervised learning are 

also known as classifiers or classification algorithms. Whereas, in unsupervised learning, the 

dataset is unlabeled and there is no target class defined that helps to discover the unknown 

classes. Algorithms used in unsupervised learning are known as regression algorithms.  

For data analysis where a target class is present classification algorithms are mainly used. The 

following table shows the most commonly used classification algorithms. 
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Table 5: Machine learning algorithms and their purpose 

Algorithm Purpose 

Bayesian Network 

Probabilistic/statistical modeling in complex or uncertain 

cases, fast analytical response, support best decision 

analysis, possibility to use information from different 

sources for analysis (Uusitalo, 2007).  

Decision tree (C4.5) 

Builds decisions like a tree, feature selection, 

classification (with minimum effort), easy interpretation 

of results, handles both continuous and discrete 

attributes, handles missing values, Prunes tree once 

created (Ali et al., 2012). 

Chi-square Automatic 

Interaction Detector 

Classification/prediction, interaction between variables, 

easy implementation/interpretation, non-parametric, 

powerful/quicker and cost effective (Rygielski et al., 

2002). 

Classification and 

Regression Trees 

Good for both classification and regression analysis 

avoid data exhaustion 

Decision Stump 
One level decision tree, discriminates between two of 

three classes, help ensembles 

Gradient Boosting 
Good for both classification and regression, used for 

ensemble learning, boost weaker models. 

High-Performance 

Neural 

High-performance analytical procedure, runs on 

single/distributed modes, utilizes all available system 

cores and threads. 

K-Nearest Neighbor 

Pattern recognition, used for both classification and 

regression, from multiple points of multiple classes 

separate a new class. 

Least Absolute 

Shrinkage and 

Selection Operator 

Variable selection, regularization, enhance prediction 

accuracy, interpretable results and to reduce overfitting 

(Tibshirani, 1996). 
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Least Angle Regression 

Fast forward feature selection, stepwise regression 

model, computationally fast, simple, cross-validation, 

identify possible correlation (EFRON et al., 2004). 

Linear Regression 

Prediction/forecasting, error reduction, to explain data, 

its relationship between a dependent variable and 

multiple independent variables. 

Logistic Regression 

To describe data, the relationship between one binary 

target and one or more other variables including 

categorical variables. 

Naive Bayes 
A family of classifiers, provide high scalability, so simple 

to implement, statistically independent classification. 

Neural Network 

Multilayer Perception 

Three layer neural network, helps to distinguish from 

inseparable data, capable to stochastically solve machine 

learning problems. 

Neural Network 

Multilayer Perception 

Back Propagation 

Most general, to calculate gradients, simplest, for non-

linear approximation, the minimum value of error 

function is looked. 

Partial Least Squares 
Predicted modeling, help overfitting, feature reduction 

(Tobias, 1995). 

Random Forest 

The ensemble of classification and regression, form 

multiple trees, flexible, best results, no need to tune 

parameters, select the best feature, overfitting, outlier 

detection and variable priority (Ali et al., 2012). 

Stepwise Regression 

Automatic independent feature selection, stepwise 

removal of predictors to build regression model (Lewis, 

2007). 

Support Vector 

Machine 

Work well in high dimensional spaces, risk minimization, 

handle overfitting, the margin of separation, where no. of 

dimensions > samples, memory efficiency (Schwarm and 

Ostendorf, 2005). 
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Malware detection and role of machine learning 

Tradional malwares are a history, it is a time in which highly-sophisticated malware attacks 

are happening specially when the importance of IoT devices is growing day by day, various 

research studies have been conducted on malware analysis, but still, continuous threats were 

coming up every day. So, researchers started involving machine learning to study the different 

aspects of malware. It is important to note that till this date there has been no evidence of 

research on IoT malware analysis with the help of machine learning. The behaviour of both 

IoT and non-IoT malware is still un-tested.  

With the help of machine learning algorithms, it is possible to learn the pattern of new and old 

malware, prediction of further attacks and enhancing the malware detection systems.   

Traditional malware detection systems and intrusion detection systems used both signature-

based analysis and anomaly-based malware detection. Anomaly-based detection uses behavior 

patterns from network traffic. Both of these methods again have strengths and weaknesses 

covered in the dynamic analysis. Dynamic malware investigation is time-consuming and slow. 

Besides weaknesses of both static and dynamic, they are effectively used along with supervised 

and unsupervised learning models. Machine learning in malware detection helps in predicting 

abnormal patterns in an efficient way which saves computational overheads. It also describes 

the quality of the classifier on given circumstances and its ability to detect outliers (Srndic and 

Laskov, 2016). Most popular classification methods include Neural Network, Support Vector 

Machine, Decision Tree, and Random Forest, also shown in our classifier selection in the figure 

and table 6 shows a summary of the literature of malware analysis with machine learning.  
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Table 6: Overview of literature concerning different platforms, their features extracted, 

classifiers and accuracies about static malware analysis 

Reference Platform 
No. of  

Malware 

No. of 

Benign 
Feature Extracted Classifier Accuracy 

(Wang et al., 

2016a) 
Android 20045 20023 Meta data 1,2,3,4,5 94 

(Lo et al., 2016b) Windows 7630 1818 

Static (File Info, version, 

properties, 

PE Info, metadata, 

behavioral info) 

1,5,6 99.6 

(Kühnel and 

Meyer, 2016) 
Mobile 2441 4539 Character set 5, 7, 4,1,2 90+ 

(Kang et al., 2015) Android 4554 51179 
APIs, Permissions, serial 

number of certificate 
2 90 

(Ding et al., 2016) Windows 2000 2000 Opcode (n-grams) 5, 7, 4 96.2 

(Cepeda et al., 

2016) 
Windows 7630 1818 

Static (File Info, version, 

properties, 

PE Info, metadata, 

behavioral info) 

1,5,6 99.6 

(Baldangombo et 

al., 2013) 
Windows 236756 10592 Header, DLLs, API calls, 5, 8, 2 99.6 

(Santos et al., 

2013a) 
Windows 13189 13000 Opcodes 

7,8,5 

1, 2,9 
95.90 

(Islam et al., 

2013a) 
Windows 2398 2008 

Function length frequency 

vectors, Printable Strings 
5, 4,1,10 87.81 

(Kolter and 

Maloof, 2004) 
Windows 1651 1971 Byte sequences 

2,4,5,11,12,13, 

14,15 
- 

(Milosevic et al.) Android 200 200 
Permissions and source 

code 
1,2,5,16,17,18 95.6 

(Nath and Mehtre, 

2014b) 
Windows 9458 123 Image Visualisation 7 98.08 

(Yuan et al., 2016) Android 1760 20000 
Permissions, file contents, 

API 
6 96.76 

(Adebayo et al., 

2014) 
Android 1000 500 Byte code 19 97.20 

(Fereidooni et al., 

2016) 
Android 18677 11187 

Intents, used permissions, 

APIs, IMEI 
1,2,3,4,5,6,7,8 97.30 

Key: 1= Random Forest, 2=Naïve Bayes, 3=Logistic Regression, 4=Decision Tree, 5=Support Vector Machine, 6=Neural Network, 7=K-

Nearest Neighbour, 8=Decision Tree (J48), 9= Bayesian Network, 10=IB1, 11=IBK, 12=Boosted naive Bayes, 13=boosted SVM, 

14=Boosted decision trees, 15=TFIDF, 16=C4.5 Decision Tree, 17=JRip, 18=AdaBoost, 19=Association rule 
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Static malware analysis 

Since smart devices have emerged in the industry particularly mobile phones, their security 

issues increased as well. People use these devices to store historical data, passwords, contacts, 

picture, videos, account information and much more valuable information (Arzt et al., 2014). 

To understand the threats related to mobile devices, their analysis (static) and application of 

machine learning. We selected papers from ISI Web of Science database from 2010-2017. 

Table 9 presents information about various static features related to mobile research. Our 

chosen articles were consisting of Android mobile devices which is one of the most extensive 

mobile operating system in the market (Atwal). 

In addition to the growing importance of Android devices, people tend to analyze loopholes 

behind these devices. Malware authors create malware targeting weaknesses of these devices 

and steal sensitive information from these devices. Recent studies show that mobile devices 

mainly android platform are the prime targets of attackers (Symantec, 2017). An example of a 

simplest everyday attack, if someone’s mobile gets compromised and gets charged for sending 

premium rate messages then this becomes a serious issue, malware detection is a serious 

concern for not only the general public but for organizations as well using Android devices to 

control IoT devices. 

Further to our current discussion, Table 9 illustrates a list of some important static features and 

few relevant articles in which these features have been used. These selected articles also apply 

machine learning classifiers to them and explain various performance measure which we will 

explain later on. Here we will discuss two important papers regarding static feature extraction, 

classification, and efficient detection mechanism. One article is ANASTASIA, a framework 

which analyses various static features including API calls, IMEI addresses, malicious 

intentions and user permissions. ANASTASIA performs classification using important 

classifiers, e.g. SVM, KNN, DT, NB, Boosting techniques and Deep Learning as well. Along 

with this author also handle imbalanced dataset which now a day’s researchers ignore to 

analyze. As a result of classification, we can get the accuracy of 97.3%, the reason to choose 

this paper is that it performs various performance measures include Accuracy, TPR, FPR, 

Precision, Recall, and F1-score, etc.   

Another example of an excellent paper, Droid Api Miner (Aafer et al., 2013) performed static 

malware analysis using features like API calls, Opcodes extracted from Byte Code, etc. and 

uses DT, C4.5 DT, KNN, and linear SVM as classifiers resulting in an accuracy of 99%. These 
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continuously growing research trends are because of its enormous importance in IoT domain, 

and the majority of Android apps are free of charge.   

Feature extraction and current literature 

Feature 

extracted 
Reference 

API 

(Cho et al., 2017, Kang et al., 2015, Dhaya et al., 2014, 

Fereidooni et al., 2016, Geneiatakis et al., 2015, Yerima et al., 

2015b) 

Strings (Cho et al., 2017, Sanz et al., 2013) 

Bytes (Santos et al., 2011, Adebayo et al., 2014) 

URL (Thomas et al., 2011) 

Permissions 

(Xu et al., 2013, Kim et al., 2015, Kang et al., 2015, Fereidooni 

et al., 2016, Geneiatakis et al., 2015, Su et al., 2016b, Su et al., 

2016a, Feizollah et al., 2017, Lopez and Cadavid, 2016, 

Akhuseyinoglu and Akhuseyinoglu, 2016, Yerima et al., 2015b) 

Java code (Feizollah et al., 2017) 

Network address (Feizollah et al., 2017) 

Hardware components (Feizollah et al., 2017) 

Intent filters 
(Fereidooni et al., 2016, Su et al., 2016b, Su et al., 2016a, 

Feizollah et al., 2017, Yerima et al., 2015b) 

User flow (Brown et al., 2016) 

Opcode (Damodaran et al., 2017) 

Table 7: Showing static features extracted in various literature 

Feature selection methods in machine learning 

The discussion on machine learning and classification algorithms will be incomplete without 

discussion of feature selection methods. Therefore, for our research as well, this is an important 

step. When performing malware analysis and feature list is too big, it is important to reduce the 

features to a minimum set without compromising the performance of classification algorithms 

being used and making analysis process smooth. It will not be wrong if we say that in majority 

of instances least the features are higher will be the detection rate, and overall accuracy of the 
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algorithms. Furthermore, it is also important for forensic experts to put more focus on important 

features filtered out during process of feature selection. 

For background knowledge of feature selection methods, we used comprehensive literature 

review on feature selection methods being used in the literature and summarised our findings 

in the tables below. Table 8 shows various feature selection methods used in diverse literature. 

This table can used to compare the methods used in the literature and our contribution towards 

feature selection methods.  

Feature selection methods used in literature 

Method Reference 

Information Gain (Akhuseyinoglu and Akhuseyinoglu, 2016) 

Gain ratio (Yerima et al., 2015b, Yerima et al., 2015a) 

Chi-square 
(Feng et al., 2017, Lopez and Cadavid, 2016) 

(Akhuseyinoglu and Akhuseyinoglu, 2016) 

Association rule with apriori algorithm (Adebayo et al., 2014) 

Ensemble of randomized decision tree (Fereidooni et al., 2016) 

Fischer score (Cohen et al., 2016) 

Top feature (Cohen et al., 2016) 

Deep belief network (Yuan et al., 2016) 

Table 8: Showing various feature selection method 
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Performance measures of Static malware analysis 

In this section, we will discuss various performance measures widely used in the literature by 

the researchers to predict the performance of classification algorithms, for example, better the 

accuracy of an algorithm, better would be the power of differentiation between malware and 

benign application. We are listing standard performance measures and their formulas in table 

10 below. In Table 10 and 11, some recent papers have been mentioned with their performance 

measures and formulas to calculate them. TP represents a malware correctly identified, FP 

represents a goodware correctly identified, TN and FN are the false alarms of both malware 

and goodware wrongly identified. To conclude the discussion on performance measures, we 

can say that these measures play an important role in evaluating the work. 

Performance Measure Formula 

TPR or Sensitivity TP/(TP+FN) 

FPR or (1-TNR) TN/(TN+FP) 

TNR or Specificity FP/(FP+TN) 

FNR FN/(FN+TP) 

Accuracy (TP+TN)/(TP+TN+FP+FN) 

Precision TP/(TP+FP) 

Recall TP/(TP+FN) 

F1-score (2 x TPR x Precision) / (TPR + Precision) 

Table 9: Showing performance evaluation measures used in this study 
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Important classifiers employed in the literature 

Reference Classifier TPR FPR AUC ACC 

(Wang et al., 2016a, 

Wang et al., 2016d) 

 

Naïve Bayes 0.77 0.07 0.92 85 

Bayesian Network 0.87 0.08 0.96 89 

Support Vector Machine 0.92 0.07 0.92 92 

Logistic Regression 0.90 0.07 0.97 91 

Decision Tree with J48 0.92 0.06 0.96 93 

Random Forest 0.94 0.05 0.98 94 

(Santos et al., 2013a, 

Santos et al., 2013b) 

Support Vector Machine x 0.02 0.95 95.90 

K-Nearest Neighbour 0.95 0.05 0.95 94.83 

Decision Tree 0.93 0.08 0.93 92.61 

Random Forest 0.96 0.06 0.99 95.26 

Naïve Bayes 0.90 0.10 0.93 90.02 

Bayesian Network 0.91 0.04 0.98 93.40 

(Feng et al., 2017) V-SVM 0.91 18.21 0.9643 91.29 

(Yerima et al., 2015a) 

Decision Trees 0.95 0.04 0.964 95.4 

Random Trees 0.96 0.04 0.960 95.9 

Naïve Bayes 0.82 0.08 0.88 91.5 

Random Forest 0.97 0.02 0.992 97.4 

(Cohen et al., 2016) Random Forest 0.97 0.05 0.9927 97 

Table 10: Recent papers and their performance measures 
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Preventive approaches to cope with malware attacks on IoT 

Possible prevention is to know what kind of malware attacking, knowing the characteristics 

Due to the scope of this report, we will only be discussing one static malware analysis. Future 

works may involve addressing other challenges as well. 

The conclusion of literature review 

The literature review showed us that in static malware analysis sufficient work in being done 

in Windows and Android-based environments but there is no work done in the field of IoT 

malware analysis (Please note: with IoT malware analysis we mean malware analysis of 

information obtained from IoT). Further to this, there is a need to address efficient malware 

detection system by calculating misclassification cost, class imbalance, and optimization of 

used classifiers, we aim to cover these issues with the help of cost-sensitive learning. Various 

classifiers and feature selection methods have been used for malware classification and 

prediction using WEKA and Matlab. However, we opted to use SAS Enterprise Miner 14.2 

(latest version) for the classification and feature selection. Because of being a licensed 

software, researchers usually do not often use this software but still an excellent software. This 

research will be giving us a chance to evaluate this software and pinpoint pros and cons of this 

software.  
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Chapter 3: Research methodology 

3.1 - The proposed research stages 

A pilot study has been performed and proposed research stages consist of six main activities 

of data collection, feature extraction, feature selection and evaluation, classification, test and 

generalization check. The figure below represents all of these stages.  

 

Figure 11: Research proposed framework 

3.2.  Data collection 

This section presents the process of data collection and feature extraction. Collected a sample 

dataset of 1102 IoT ELF malware downloaded from VXHeaven, having a class of UNIX 

System V and platforms. A total of 1083 clean application (ARM) collected using Qemu 

emulator from the Raspbian operating system. Figure 12 shows both malware and goodware 

samples. 

In total, there are 2085 files, these malware from various platform help us to test issues like 

class imbalance and generalization of the algorithms. Using a controlled environment, all clean 

applications were analyzed via VT to check the possibility of being infectious, ignored some 

so-called clean applications downloaded from Contigo website found infected while scanning 

through VT. Some of the malware were found to be packed with UPX packer while analyzing 

them VT (Cross checked using our selected DE complier-IDA Pro 6.9), unpacked them with 

the corresponding unpacker downloaded from UPX website. 



106 | P a g e  

 

 

Figure 12: Data collection process 

3.3. Feature extraction 

After malwares get checked up for packing/unpacking issues, next step is feature extraction. 

“ReadELF” a python script (A static feature extraction script) was used to extract features from 

each malware and goodware, and the data was cross-checked with three static feature extraction 

tools in Linux called “ReadELF,” “ObjDump” and “ELFParser.” Table 12 shows datasets 

created after features extraction. 

3.3.1.  Datasets created 

During data collection process, following datasets were generated, some of these datasets are 

complete and operational, and some are requiring further processing for example segment 

headers, functions, imports, and exports. Table 12 shows the list of datasets created in this 

research. 

  

VT Scanning for Infectious Entries 

Sample Dataset 

IoT ELF malware (1102) 

 

 

 

Class: UNIX system V 

 

VXHeaven 

Downloaded 

 

Sample Dataset 

IoT ELF goodware (1083) 

 

 

 

Class: UNIX system V 

 

Raspbian operating system 

Downloaded 
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Datasets created  

Feature set Disassembled? features Stage 

File header No 33 Done 

Program header No 10 Done 

Section header No 18 Done 

Segment header Yes 15 Future work 

Symbol table No 7 Future work 

Strings No 5 Future work 

Function Yes 10 Future work 

Process names Yes 5 Future work 

Imports Yes 5 Future work 

Exports Yes 5 Future work 

Table 11: Datasets created 

3.4 - Feature selection and evaluation 

During our discussion about Machine learning in section 2.8, we discussed about feature 

selection and evaluation and presented a table in which various feature selection methods were 

introduced in almost all studies related to malware analysis. As stated previously, our purpose 

is to give readers an overview of some of the existing feature selection methods and use some 

additional methods which were never used in any of the research related to malware analysis 

which gives approximately zero percent possibility of use in IoT research. 

The process of feature selection is used to perform dimension reduction of malware dataset and 

makes data easier to analyse.  Data analysis with a vast amount of data requires more 

computational resources and a considerable amount of time. So, feature selection lets us 

remove noisy/useless features without losing efficiency and improves results. In our research 

we aim to select best feature selection methods to support our framework. 

Our feature selection process includes the application of principal component analysis, using 

linear/logistic regression, decision trees, variable selection, variable clustering, statistics 

explorer methods backed by some additional feature selection methods applied using SAS 

Enterprise Miner 14.2 shown in table 14. Furthermore, our aim to use these feature selection 

methods as an input to our classifiers using same binary target variable and compare the list of 

selected features and find out best selector. In section 3.5- Figure 13 shows the proposed 

process of feature selection. 
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Figure 13: Feature selection process used in this dissertation 
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Our proposed feature selection methods 

Feature selection method Process 

R-square Statistics explorer 

Chi-square Statistics explorer 

R-square and Chi-square-both  Statistics explorer 

Fast Selection  Variable selection 

Least angle regression (LAR) Variable selection 

LASSO Variable selection 

Variable correlation PCA 

Full feature selection Regression 

Stepwise feature selection Regression 

Backward feature selection Regression 

Forward feature selection Regression 

Fast backward feature selection Regression 

Decision tree Decision trees 

Table 12: Feature selection methods  
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3.5.  Classification 

Data classification is supervised learning technique in which there is a predefined target 

variable (In our case we have binary target also known as a positive class, represented by 0 for 

goodware and 1 for malware), in classification the original dataset was subdivided into training, 

test and validate having size 40%, 30%, and 30%.  It helped us to determine the performance 

measures by calculating Accuracy of Classification Rate, the Area Under the Curve, Precision, 

Recall, and F1-score. For classification, the approach used contains process of importing a file, 

impute variables, pass variables to feature selection algorithms, apply classification algorithms 

and compare results. Figure 14 shows a list of our selected classifiers. During the classification 

process our aim was to apply classification/feature selection methods that have been used in 

the recent literature and available in SAS enterprise miner.   

In machine learning we use multiple algorithms to perform spot checking on the dataset. The 

purpose of spot checking is to not only perform which algorithms performs well in the dataset 

which you do not know beforehand. To achieve better spot checking results, researchers use 

various kinds of algorithms with various implementations like trees, instances, linear or non-

linear etc (Brownlee, 2016). Because datasets were created with the information extracted from 

malware full categorical values that is why we had to do spot checking for each dataset. 
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Figure 14: Machine learning classifiers used in our approach 
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3.6. Further experiments on the algorithms 

During the process of classification, there are two important checks to be considered, to see 

whether (1) classifier is generalized? (2) Not overfitting? If overfitting, consider hyper tuning 

the parameters and find an optimized parameter. To check generalization, another dataset is 

being created which will contain malware samples to be checked for generalization. For 

example, our malware dataset consists of malware from advanced micro devices, INTEL 

80386, X86-64, SPARC, MIPS and MC63000, same malware in a fraction present in primary 

dataset as well to train the classifiers.  
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CHAPTER 4: PRELIMINARY RESULTS AND 

DISCUSSION 
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Chapter 4: Results and discussion 

This chapter presents the results of the current analysis. In section 3.4 we discussed the feature 

selection methods and classifiers used in our investigation. This chapter aims to present a quick 

look at feature selection results of the main header, program header, and section header 

features.  

Feature worth 

Figure 15 shows feature worth for the main header about the binary target variable category 

(category “1” represents malware and “0” represents benign app). As shown in the figure, the 

variables from sh4 onwards (includes many flag variables) can be ignored and may have next 

to none impact on the classification process. 

Figure 16, shows variable worth for program header and indicates that only three flag variables 

containing malware or goodware access permissions have the least importance. These variables 

(Read, Write and Execute) can be dropped. 
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Figure 15: Main header variable worth 
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Figure 16: Program header variable worth 
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Similar kind of information can be seen in figure 15 for section headers. All binary flag 

variables have least worth. The variable of sh_size (size of current section header) and all 

flag variables can be ignored. In future investigations as shown in previous sections, we will 

try comparing various feature selection methods, group the results obtained from those 

methods using parameters in table 15 and feed them to the classifiers.  

Feature combining rules 

Any Any variable rejected by any of the feature selection methods will be ignored. 

All Variables rejected by all feature selection methods will be ignored. 

Majority Variable rejected by the majority of the feature selection methods will be ignored. 

Table 13: Feature combining rules 

In each dataset, Roc chart, output, and fit statistics were calculated for training, validation and 

test datasets with partitioning size of 40%, 30%, and 30% respectively. 
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Figure 17: Section header variable worth 
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Malware classification and discussion of results. 

For IoT malware classification, we used 20 classifiers on 3 datasets i.e. program header, main 

header and section header. Our results shown that each classifier gives different attributes of 

performance accuracies for the malware classification and prediction. Some of them performed 

very well and some of them did not. This situation prompts us to categories these classifiers in 

to 4 groups on the basis of their percentage of accuracy i.e. Group A (>=94%),  

Group B (>=90%), Group C (>=80%) and Group D (<80%). In chapter-2 section 2.8, we 

summarized 15 published studies in Table 6, where classification was performed on Windows 

and Android based malware and goodware. Although there is no study published on IoT 

malware classification but it will be useful to compare our results with previously published 

studies.  

There are five key findings from our research and key issues it raises for future malware 

analysis. First key finding by comparison of 20 different classifiers for IoT malware analysis 

was noted that Random forest outclassed all results with maximum performance in all datasets. 

This finding when comparing with previous studies, it has been noted that (Lo et al., 2016a, 

Baldangombo et al., 2013) and (Cepeda et al., 2016)  also identified the highest performance 

(99.6%) with Random forest, although that classification was for Windows based malware. 

This finding justifies that Random Forest gives the best performance on IoT malware 

classification. However, an interesting thing was noted that (Lo et al., 2016b) and (Cepeda et 

al., 2016) used imbalanced dataset and did not specify the sampling method used for the 

classification, therefore, their accuracies may be overestimated. The same finding was 

observed in all the previous studies (Baldangombo et al., 2013, Nath and Mehtre, 2014a, Yuan 

et al., 2016) i.e. imbalanced dataset and their accuracies were over 98%.  This indicates an 

unaddressed issue in these published articles. However, our datasets were balanced datasets 

with higher accuracies. 

Second finding from our results is that hyper parameter tuning also effect the accuracy of 

classifiers. It was achieved by changing parameter and with the help of different kernels.  For 

example, classification was performed by changing the attributes of the classifiers. In our study 

neural network was used with three different kernels: (i) High performance neural, (ii) 

Multilayer perception, and (iii) Multilayer perception back propagation. High performance 

neural shown slightly better performance for main header dataset of 99.85%, in section headers 

and program header, this classifier showed decrease in performance to 93.37% and 90.79%.  
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Figure 18: Main header ROC Chart 
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Figure 19: Program header ROC Chart 
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Figure 20: Section header ROC Chart  
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Multilayer perception and Back propagation shown better performance in program header. No 

published article specified this attribute to address performance related issues to help malware 

analysis. In main header all three of these variants of neural network were placed in Group A. 

In comparison to this Neural Network was used with default parameters in (Fereidooni et al., 

2016, Lo et al., 2016a) but parameters or kernels were not specified. Three variants of tree 

algorithms were used and as predicted they performed well in all datasets.  

In Group A, main header and section header datasets had Chi-Square Automatic Interaction 

Detection, C4.5, CART and Decision Stump (A tree with MAX Depth=1) but in program 

header decision stump was the least performing classifier and we placed it in Group D. In 

comparison to this, in reviewed articles (Wang et al., 2016b, Kuhnel et al., 2016, Baldangombo 

et al., 2013, Santos et al., 2011, Islam et al., 2013b, Milosevic et al., 2017, Fereidooni et al., 

2016) decision tree was used along with two different tree variants i.e. J48, C4.5. C4.5.  

Furthermore, in terms of future research, it was observed in this study that in training, test and 

validations all three datasets had similar behavior and had a similar ROC chart a straight line 

(in main header due to accuracies 100%) but a curve in program and section header. Our model 

comparison process shown that all algorithms had a closer performance except decision stump. 

Our ROC chart was a plot between True Positive Rate (TPR) and False Positive Rate (FPR) 

which we derived from Table 9 showing performance measures. Figures 19, 20, and 21 show 

the charts showing the positive likelihood of predicting a malware. Our classifiers had a 

positive prediction power of 100% using Group A classifier in main header and in over 94% 

in case of program header and section header. We can predict another thing from our ROC 

curve that closer the chart from left hand corner higher would be the accuracy which is apparent 

from these three figures. When this curve passes through top left corner then we can also 

conclude that both percentages of specificity and sensitivity are equal to 100%.    
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Dataset Classifier Accuracy AUC Precision Recall 
F1-

score 

Program 

header 
Random Forest 94.36 0.988 0.96 0.76 0.85 

Main 

header 

Least Angle Regression 100.00 1 1.00 1.00 1.00 

Least Absolute Shrinkage and 

Selection Operator 
100.00 1 1.00 1.00 1.00 

C4.5 100.00 0.997 1.00 1.00 1.00 

Chi-square automatic interaction 

detection 
100.00 0.997 0.98 1.00 0.99 

Decision Stump 100.00 0.997 1.00 1.00 1.00 

Random Forest 100.00 1 1.00 1.00 1.00 

Partial Least Squares 100.00 1 1.00 1.00 1.00 

SVM Activeset RBF 100.00 1 1.00 1.00 1.00 

SVM Activeset Polynomial 100.00 1 1.00 1.00 1.00 

Gradient Boosting 100.00 0.997 1.00 1.00 1.00 

Classification and Regression 

Trees 
99.85 1 1.00 1.00 1.00 

HP Neural 99.85 1 1.00 1.00 1.00 

KNN 99.85 1 1.00 1.00 1.00 

Bayesian Network 99.85 1 0.98 1.00 0.99 

Naive Bayes 99.85 1 1.00 1.00 1.00 

Linear Regression 99.69 1 1.00 1.00 1.00 

Logistic Regression 99.69 1 1.00 1.00 1.00 

NN Multilayer Perception 99.08 1 1.00 1.00 1.00 

NN Multilayer Perception Back 

Propagation 
99.08 1 1.00 1.00 1.00 

Section 

header 

Random Forest 98.34 0.999 0.98 0.98 0.98 

KNN 97.84 0.999 0.96 0.98 0.97 

Gradient Boosting 96.96 0.997 0.98 0.93 0.96 

Classification and Regression 

Trees 
96.9 0.99 0.97 0.94 0.96 

Chi-square automatic interaction 

detection 
96.89 0.995 0.95 0.94 0.94 

C4.5 96.47 0.995 0.95 0.95 0.95 

NN Multilayer Perception 95.87 0.994 0.81 0.99 0.89 

NN MLP BK Propagation 94.05 0.988 0.85 0.97 0.90 

Table 14: Shows the performance measures of different classifiers belong to Group A 

Another finding from our results was that in program headers three classifiers C4.5, CHAID, 

and CART had best performance of 93.08%, 92.84% and 92.49% respectively. Comparing this 

to our results reviewed articles used just simple Decision Tree and C4.5 and in terms of 

performance, we seen slightly better performance, but in the articles where performance was 

better (97.30%, 95.6%, 96.2%, and 94%) the feature set were entirely different in nature and it 

was not even closer. One result was 87.81% but majority of these literature used Random Forest 
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as well which has been observed to give best results. Therefore, we had a chance of getting 

better performance in Group B as well with our tree-based classifiers.   

Table 15: Shows the performance measures of different classifiers belong to Group B 

 

  

Dataset Classifier Accuracy AUC Precision Recall 
F1-

score 

Program 

header 

C4.5 93.08 0.966 0.96 0.76 0.85 

Chi-square Automatic 

Interaction Detection 
92.84 0.972 0.93 0.81 0.86 

Classification and Regression 

Trees 
92.49 0.971 0.94 0.81 0.87 

NN MLP BK Propagation 92.41 0.958 0.99 0.66 0.79 

NN Multi-Layer Perception 92.17 0.963 0.99 0.68 0.81 

SVM active set RBF 91.03 0.949 0.96 0.83 0.89 

SVM active set Polynomial 90.97 0.934 0.99 0.68 0.81 

HP Neural 90.79 0.921 0.98 0.51 0.67 

Stepwise Regression 90.79 0.92 0.99 0.68 0.81 

Linear Regression 90.79 0.92 0.98 0.67 0.80 

Logistic Regression 90.79 0.92 0.99 0.68 0.81 

LARS 90.54 0.914 0.99 0.69 0.81 

LASSO 90.54 0.914 0.62 0.93 0.74 

Partial Least Squares 90.20 0.913 0.98 0.67 0.80 

Section 

header 

SVM Active set 

POLYNOMIAL 
93.61 0.987 0.94 0.89 0.91 

Linear Regression 93.46 0.988 0.93 0.91 0.92 

Logistic Regression 93.46 0.988 0.95 0.96 0.96 

HP Neural 93.37 0.988 0.92 0.90 0.91 

Stepwise Regression 93.31 0.987 0.92 0.90 0.91 

Bayesian Network 92.45 0.986 0.92 0.90 0.91 

SVM Active set RBF 92.36 0.982 0.91 0.88 0.90 

LASSO 92.26 0.984 0.90 0.89 0.89 

Least Angle Regression 92.25 0.984 0.90 0.89 0.89 

Partial Least Squares 92.17 0.984 0.91 0.88 0.89 

Naive Bayes 90.73 0.985 0.92 0.90 0.91 
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Stepwise regression was the only one classifier in main header was the worst performing 

classifier with 50% accuracy, which may be due to nature of the data and opens doors for 

further studies. We could clearly see the curve was away from upper left corner and the Point 

of Compromise (POC) between sensitivity and specificity was smaller. Our worst-case 

scenario was too far away from POC and could be seen as a straight line in ROC curve near 

baseline. 

Dataset Classifier Accuracy AUC Precision Recall F1-score 

Program header 

Gradient Boosting 88.84 0.951 0.93 0.66 0.77 

Bayesian Network 86.16 0.96 0.70 0.89 0.78 

Decision Stump 86.00 0.756 0.94 0.77 0.85 

Naive Bayes 83.71 0.935 0.66 0.85 0.75 

KNN 81.97 0.952 0.99 0.69 0.81 

Section Header Decision Stump 87.35 0.823 0.98 0.67 0.80 

Table 16: Shows the performance measures of different classifiers belong to Group C 

Dataset Classifier Accuracy AUC Precision Recall F1-score 

Main header Stepwise regression 50.38 0.5 0.50 1.00 0.67 

Table 17: Shows the performance measures of different classifiers belong to Group D 

Furthermore, our feature selection methods outclassed reviewed articles as in all three of our 

datasets the majority of our classifiers were in Group A or B in fact more in Group A. Keeping 

feature scoring in views, features with least weightage were dropped from analysis to observe 

the classifier performance and we noticed that there was no difference in performance of 

classifiers. Our research was first research to combine feature selection methods to experience 

difference in results. 

Overall finding from published literature shown that majority of the articles did not explain 

individual accuracies including our list of performance measures and just specified overall 

accuracy which is insufficient to compare with our results. 
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Chapter 5: Future work and achievements 

In the future, our research will be expanded to develop further a robust IoT security framework 

based on analysis of malware attacking IoT networks. In this regard, efforts would be made to 

propose a preventive approach to cope with future security, privacy, and trust related threats. 

 

We identify a few open research directions listed below to help us extend the research in this 

dissertation. 

 

1. To perform further experiments on datasets created. 

2. Application of machine learning on following data sets. 

Feature set features 

Segment header 15 

Symbol table 7 

Strings 5 

Function 10 

Process names 5 

Imports 5 

Exports 5 

 

3. Text mining of malware string, symbols, functions, imports, and exports. 

4. The creation of physical IoT network and analysis of network traffic with/without 

malicious activities. 

5. The creation of network simulation of IoT network and comparison of network traffic 

data analysis with physical network data analysis and propose a preventive framework. 

6. To perform more in-depth research on identified security, privacy and trust challenges 

and malware attacks. 
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Achievements 

The purpose of this section is to explain work done till the time of assessment. 

Table 11 illustrates datasets created to support our static malware analysis process. In addition 

to this table 14 shows sample strings to give an idea about the string dataset. Following are the 

achievements at this stage. 

1. Datasets including file header, program header and section header, strings and symbol table 

are 100% complete.  

2. Paper for malware classification using file header, program header, and section header has 

been written. Results have been compiled as well, and I am currently addressing some 

questions raised by the supervisors.  

3. Another paper that includes only symbol table and possibly strings as well is under 

classification phase, for this dataset as a test experiment TF/IDF and PCA were applied size 

of the dataset includes one million symbols from 2185 malware and goodware. Removed 

symbols with 0% frequency to avoid level limitation constraint of the analysis tools. 

(Missing values have been checked as well, need to address some issues with this dataset 

to avoid imbalanced dataset and increase generalization). 

4. Applied text mining on malware/goodware strings and planning to apply sentiment analysis 

to observe some useful insights from strings. During feature extraction process, I 

experienced that there are important strings present in malware like IP Addresses, Ports, 

Linux directory access commands, error messages, abusive words as passwords, default 

passwords, etc. and in goodware nature of the strings present are entirely different. 

Following table 3 represents some strings from malware and goodware datasets. 

5. Other datasets of functions, process names, imports, exports and segment headers were 

extracted using IDA Pro 6.9 Decompiler, requiring some preprocessing and data cleansing. 

(70% work done in those) 
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Table showing sample strings extracted from malware and goodware 

Malware Goodware 

142.54.191.34:23 @Fld 

root $%s, 

admin $Fld%d, 

user $%s) 

login $Fld%d) 

guest = split(/[%c\\n]/, $_, -1);\n 

support = split($FS, $_, -1);\n 

toor = split(' , $_, -1);\n 

changeme 

$FS = 

*+?.[]()|^$\\ 

;\t\t# field separator from -F switch\n 

$FS =  ;\t\t# set field separator\n 

1234 Could not parse message from stdin\n; 

12345 
Show forms dialog options; misc; Miscellaneous 

options; Show miscellaneous options; 

123456 
Zenity;version;3.4.0;copyright;Copyright Â© 

2003 Sun Microsystems; 

default Error showing notification: %s;tooltip;visible; 

password Display;notification;Set the notification text; 

(null) Set dialog timeout in seconds 

buf: %s\n Set step size 
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/bin/sh $, =  ;\t\t# set output field separator\n 

/proc/cpuinfo $\\ = \"\\n\";\t\t# set output record separator\n 

cd /tmp || cd /var/run || cd /mnt || cd 

/root cd /; 

wget http://142.54.191.34/bins.sh; 

chmod 777 bins.sh; 

sh bins.sh; tftp 142.54.191.34 -c get 

tftp1.sh; 

chmod 777 tftp1.sh; sh tftp1.sh; 

tftp -r tftp2.sh -g 142.54.191.34; 

chmod 777 tftp2.sh; sh tftp2.sh; 

ftpget -v -u anonymous -p 

anonymous 

-P 21 142.54.191.34 ftp1.sh ftp1.sh; 

sh ftp1.sh; rm -rf bins.sh tftp1.sh 

tftp2.sh ftp1.sh; 

rm -rf *; exit\r\n 

program is distributed in the hope that it will be 

useful, but WITHOUT ANY WARRANTY; 

Table 18: Showing sample malware/goodware strings 

Conclusion 

Reaching the final step of this research, many interesting facts were presented not only 

concerning Internet of Things but also with about Malware Analysis and Machine Learning. 

Initially, during comprehensive literature review, it was identified that IoT is a favorite target 

of malware due to the presence of various security, privacy and trust challenges associated with 

IoT ecosystem. We recognized that all of the difficulties discovered contain great possibilities 

for future research. Furthermore, by literature review, it was found that the reason behind the 

statement that “IoT has been a favorite target of malware attacks” was our extracted list of 

malware attacks reported in the literature. Reported evidence states malware analysis a vital 

research area. 
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Talking about research objectives of the thesis, we aimed to discuss IoT with the perspective 

of malware. Therefore, the first objective was to perform a comprehensive literature review on 

IoT to build foundations for conducting the malware analysis on IoT devices. This successfully 

lead us to collect IoT malware and clean samples and perform malware analysis. Our research 

also has shown that due to complex nature of IoT devices, traditional antivirus mechanisms are 

not feasible on IoT and it was needed to conduct malware analysis focusing solely on IoT. Due 

to time constraints, we performed static malware analysis only and results shown that our 

machine learning process returned promising results with above 90% accuracy. Feature 

selection process showed that by removing unnecessary features, we could improve efficiency 

and reduce system overhead. These fewer features also help forensic experts to focus on 

available features as top priority features and investigate further. 

 

Also, best classification results were obtained by using Random Forest. Least performance in 

all three datasets was given by Decision Stump (Decision tree with MAXDEPTH=1), KNN 

and Stepwise Regression. To mention our final suggestion for future research, further analysis 

is required to select best features that can be extracted in a faster manner; it would help to build 

a lightweight embedded program for monitoring suspicious behavior along with 

experimentation on sampling methods on datasets. 
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