

i

 `

i i

Classifying Advanced Malware into Families

based on Instruction Link Analysis

Alsa Tabatabaei

School of Computing, Science, and Engineering

University of Salford

Manchester, UK

Submitted in Partial Fulfilment of the Requirements

of the Degree Master of Philosophy, 2018

i

 `

i i

Table of Contents

Table of Contents ... i

Acknowledgement.. xi

Declaration .. xii

Abstract .. xiii

Chapter One .. 1

1 Overview .. 1

1.1 Background .. 1

1.2 Research Problem .. 3

1.3 Research Hypothesis.. 4

1.4 Research Questions.. 5

1.5 Research Motivation .. 6

1.6 Research Challenges .. 6

1.7 Justification, Aims, and Objectives ... 6

1.8 Research Aims ... 7

1.9 Research Objectives .. 7

1.10 Significant of the Study ... 8

1.11 Research Scope and Limitations .. 8

1.12 Research Methodology and Research Methods... 8

1.12.1 Research Methodology ... 8

ii

 `

i i

1.12.2 Research Methods .. 10

1.13 Research Overview and Structure ... 11

Chapter Two .. 12

Related Literature Review... 12

2 Overview .. 12

2.1 Characterisation of Malware ... 12

2.2 Understanding Advanced Malware ... 13

2.2.1 Understanding Advanced Persistent Threats (APTs) ... 14

2.3 An Overview of Static and Dynamic Analysis .. 15

2.4 Machine Learning (ML) .. 17

2.4.1 Supervised Machine Learning .. 20

2.4.2 Unsupervised Machine Learning ... 21

2.5 Data Mining ... 23

2.5.1 Association Rule in Data Mining ... 25

2.5.2 Mining Opcode Relevance ... 26

2.6 Analysis to Detect Malware .. 28

2.7 Techniques over Malware Detection ... 32

2.7.1 Classification of Malware .. 34

2.7.2 Clustering of Malware .. 35

2.8 Dealing with Advanced Persistent Threats (APT) .. 36

iii

 `

i i

2.8.1 Common Techniques to Detect Advanced Persistent Threats (APT) 36

2.9 Summary and Remarks .. 37

Chapter Three .. 39

Methodology ... 39

3 Overview .. 39

3.1 Fundamental Techniques and the Proposed Models ... 39

3.2 Expectation Maximization (EM) Clustering ... 42

3.3 K-means and K-medoids Clustering.. 42

3.4 Hierarchical Clustering .. 43

3.5 Why EM? ... 44

3.6 Obtaining and Dealing with Data .. 44

3.6.1 Data Collection ... 45

3.6.2 Data Preparation ... 46

3.6.3 Feature Extraction .. 46

3.6.4 Data Cleaning ... 47

3.6.5 Feature Construction .. 49

3.6.6 Feature Selection .. 53

Chapter Four ... 54

Design and Implementation of Research Case Studies ... 54

4 Overview .. 54

iv

 `

i i

4.1 Opcode Mining .. 54

4.2 Kaggle Case Study... 55

4.2.1 Dataset Characteristics and Pre-processing.. 55

4.2.2 Experimental Set up and Reports ... 56

4.3 APTs Case Study ... 67

4.3.1 Dataset Characteristics and Pre-processing.. 68

4.3.2 Experimental set up and Reports .. 68

4.4 Summary .. 72

Chapter Five .. 73

Models Assessment for Feature Engineering .. 73

5 Overview .. 73

5.1 Validity of the Feature Construction Model .. 73

5.2 Validity of the Feature Selection Model.. 83

5.3 Discussion .. 91

Chapter Six .. 92

6 Overview .. 92

6.1 Research objectives revisited ... 92

6.2 Recommendation and Future Work ... 93

7 Reference ... 94

Appendices .. 102

v

 `

i i

Appendix A: Segmentation Profile Node Report-Kaggle .. 102

Appendix B: Segmentation Profile Node Report-APTs ... 105

vi

 `

i i

List of Figures

Figure 1-1Research Architecture .. 9

Figure 1-1-2Research Methodology Flow .. 10

Figure 2-1Data Mining Process .. 24

Figure 2-2 Assembly code example generated by IDA-pro.. 26

Figure 2-3 Illustration of N-gram Structure (O’Kane, Sezer and McLaughlin, 2014) 27

Figure 2-4 Malware Analysis Scheme .. 30

Figure 2-5 Taxonoly of Malware Detection Techniques .. 31

Figure 2-6 Overview of the proposed system by(Hu et al., 2013) .. 33

Figure 3-1Architecture of the malicious code detector ... 40

Figure 3-2 Clustering Distance ... 41

Figure 3-3Malware samples for clustering ... 42

Figure 3-4Download process by Virsutotal Intelligence .. 45

Figure 3-5 Examine malware file .. 46

Figure 3-6 Example Disassembly opcode ... 47

Figure 3-7Static Analysis-IDA Pro ... 47

Figure 3-8 Procedure of Data Cleaning .. 48

Figure 3-9Shame of Link Analysis process diagram .. 49

Figure 3-10 Link Analysis process diagram ... 50

Figure 3-11Sample Link Analysis output ... 51

vii

 `

i i

Figure 3-12Items Constellation Plot-Gatak sample Group ... 52

Figure 4-1Assembly code example generated by IDA-pro... 54

Figure 4-2Link Analysis Windows Output -Kaggle Dataset .. 58

Figure 4-3Gatak windows output .. 59

Figure 4-4 Gatak distribution Opcode weight ... 60

Figure 4-5 KelihosV-1 distribution Opcode weight ... 61

Figure 4-6 Lolipop Opcode Network .. 62

Figure 4-7 KelihosV-1 Opcode Network .. 63

Figure 4-8 Links among selection, Constellation ‘cmp’ ... 64

Figure 4-9Rule statistics-Gatak family ... 65

Figure 4-10 Opcode constellation plot for ‘cmp’ .. 66

Figure 4-11 Relationship between cmp and other opcode based on rules .. 66

Figure 4-12Kaggle Primarily dataset in RStudio .. 67

Figure 4-13APT1 hash dataset .. 68

Figure 4-14APTs Link Analysis process diagram-APTs .. 68

Figure 4-15Link Analysis windows output- APTs dataset ... 69

Figure 4-16 opcode Network -APT1 .. 70

Figure 4-17 Opcode Network-APT28 ... 70

Figure 4-18Opcode Network-APT29 .. 71

Figure 4-19 Opcode Network-APT30 ... 71

viii

 `

i i

Figure 4-20Opcode Network-APT33 .. 72

Figure 5-1Segmentation process diagram for both case studies ... 74

Figure 5-2 Segment Size: Cluster window generated by Segment Profile Node 74

Figure 5-3 Segment Profile Distribution ... 77

Figure 5-4Segment Profile Outputs -Kaggle Segment.. 78

Figure 5-5 Segment Profile Outputs - Kaggle Segment.. 79

Figure 5-6 Segment Value-APT29 ... 80

Figure 5-7 Segment Value-APT1 ... 80

Figure 5-8 Segment Value-APT33 ... 81

Figure 5-9 Segment Value-APT28 ... 81

Figure 5-10Segment Value-APT30 .. 82

Figure 5-11 Number of Observation of Kaggle dataset .. 83

Figure 5-12 Classification Model on Primary Kaggle Dataset ... 84

Figure 5-13 Classification model on final Kaggle dataset .. 85

Figure 5-14 BIC values and plot for models fitted to Kaggle data ... 86

Figure 5-15 Extracted VEV from BIC .. 88

Figure 5-16 Classification of Kaggle Dataset ... 89

Figure 5-17Error Distribution ... 90

Figure 5-18 Optimal number of Kaggle Clusters .. 91

ix

 `

i i

List of Tables

Table 2-1Malware Variant .. 13

Table 2-2 Comparison of Static and Dynamic Analysis ... 16

Table 2-3Machine Learning Techniques .. 18

Table 2-4 Malware Evaluation .. 20

Table 2-5 Comparison of Clustering Techniques ... 22

Table 2-6Malware Detection Methods ... 28

Table 2-7 Comparison of opcode in Malware Detection .. 33

Table 3-1 R-packages .. 41

Table 3-2 K-means algorithm key points .. 43

Table 3-3 Clustering comparison .. 44

Table 3-4 Opcode Sequence -Gatak Family ... 49

Table 3-5 Featuers names.. 52

Table 4-1Kaggle raw dataset ... 56

Table 4-2 Variables in the Kaggle dataset .. 59

Table 4-3 Sample rules from Gatak family analysis ... 64

Table 4-4.APTs raw dataset .. 68

Table 5-1 Kaggle cluster metrics ... 76

Table 5-2 Class Distribution in Secondary Kaggle Dataset .. 82

Table 5-3 Class Distribution in Actual Kaggle Dataset .. 83

x

 `

i i

This thesis is dedicated to the memory of my parents. I wish they could see this process through to its

completion. I miss them every day and but I am glad to have their support to make this journey possible,

as well as plenty of hearty encouragement. To them with love and eternal appreciation.

xi

 `

i i

Acknowledgement

My two research journeys have been one of the most challenging and unforgettable times of my life.

Fortunately, I met many people along the way. They have appeared in my life like a blessing, just at the

right time and with purpose. I would like to take this opportunity to extend my sincere gratitude.

 I am also grateful to the members of my committee for their patience and support in overcoming

numerous obstacles I have been facing through my research. I am very grateful to Dr.Ali Dehghantanha

for bringing me into the field of cybersecurity. He has taught me not just how to do research, but more

importantly, the passion, the enthusiasm, the diligence, and the discipline of being a world-class researcher.

Dr.Mohammad Saraee thank you for sharing your insights in Machine Learning. You have my immense

gratitude. I am grateful to Dr.Tooska Darghahi for helping with the correction and renew access

VirusTotalInteligence.

I would like to thank all my friends at the University of Salford, for their enjoyable company and

discussions, both technical and non-technical. Thank you for accepting nothing less than excellence from

me.

A very special gratitude goes out to the staff of PGR and school of computing for the last –minute favour

and consideration.

I would like to acknowledge the support provided by the University of Salford. I am very grateful for

their patience and support in overcoming numerous obstacles. Without their precious and continuous

support, it would not be possible to finish my research journey.

I would like to thank my family for supporting me spiritually, mentally throughout my study and my life

in general.

Last but not least, I am grateful to VirusTotal for being generous and supportive towards my research

and providing their private key to help me build the datasets.

Thanks for all your encouragement!

xii

 `

i i

Declaration

As the author of this thesis, I thereby confirm that no portion of the work presented in this thesis is

submitted in support of an application for another degree or qualification at Salford or any other university.

xiii

 `

i i

Abstract

With the ever-increasing growth of network resources, a great number of organizations are extremely

dependent on the internet for operational activities as such, exposing their sensitive and confidential

information to intrusion or invasion by saboteurs and corporate theft leaving them exposed and vulnerable.

This revolution has led to the fast and emerging growth of malware with high complexity which

circumnavigates a lot of security asset to keep safe sensitive organizational data. The development of these

complex malware has become a big threat in today’s computing world such as Advanced Persistent Threats

(APTs). APTs is customized for a specific target and can be subtly altered to avoid detection. In that, APTs

attack is considered as a serious problem whose devastating effects cannot be overemphasized.

To combat this propagate, malware analysers have been deployed in Machine Learning and Data Mining

techniques or the combination of both techniques to automatically spot malicious file. A lot of feature

engineering approaches are explored to improve the performance of detection/classification system if

feature engineering approach provides sufficient information of malware type for clustering purposes, then

this indicates the possibility of developing learning method which performs better. In fact, there are

motivations for incorporating feature selection in data classification employed on data from a machine

learning perspective. The main focus of this research is on static analysis approach. To find the dominated

features in one malware family, an experimentation with the association, link analysis, and segmentation

algorithms are employed. The model performs on a publicly available dataset on Kaggle and GitHub. The

experimental data gave supportive validation of the proposed feature selection model by Gaussian Mixer

Model in R environment.

1

 `

i i

 Chapter One

INTRODUCTION

1 Overview

This chapter presents the introductory part of the research which includes the background of the study and

the other important keys pathways to give a general overview of the research work. It is categorised into

various sub-section presented sequentially as follow:

1.1 Background

Malware is a malicious program that is intentionally developed to harm computer systems(Sharma and

Sahay, 2016).The emerging growth of malware with high complexity has opened doors to a confidential

and sensitive data breach by hackers on a daily bases. This can circumnavigate a lot of security asset set

up to mask or keep safe sensitive organisational data. A big threat in today’s cybersecurity era, the variant

of complicated malware mutates their code by crafting to look different from each other even from the

same malicious family to evade detection system. Finding samples of all the new advanced malware from

different groups created every day is a big challenge. Although, creating new signatures and getting them

deployed effectively is an even bigger one.

Cyberspace is a highly dynamic man-made domain with a high degree of uncertainty and incomplete data

which must be transformed into knowledge to support precise and predictable cyber risk. Therefore, to

combat malware effectively, it is desirable to identify the type of malware with strong structural similarities

or dissimilarities. Technically, if an unseen malware crafted by some of the examined patterns; it is possible

to detect suspicious file on the host in the real-time. As a result, this type of detectability can formalize

cyber asset.

2

 `

i i

A sophisticated malicious program, like APTs campaign, generates a unique, new instance of a malware

family for each victim, to create a new way of attack. One challenge faced by IT security teams is how to

spot signs of an advanced malware. Static, dynamic analysis or combination of both techniques equip

them to spot data exfiltration occurrence. APTs are particularly dangerous for enterprises, as hackers have

ongoing access to sensitive company data. To skip pattern matching detection technique, malware creators

employ several sophisticated obfuscation mechanisms to ensure they can break into systems. Obfuscation

techniques preserve the program‘s semantic and functionality while, at the same time, make it harder to

understand or read the program’s structure such as packing, polymorphism, and metamorphism. In which

case, the signature-based detection techniques fail while dynamic-based detections are mainly time-

consuming according to (Fraley, 2016) (Gandotra, Bansal and Sofat, 2016). One possible solution to this

is to automatically classify malware types and assign those families in relation to opcodes similarities or

dissimilarities factors. In this case, feature selection techniques will come to the picture. Feature selection

is widely used so that a set of relevant features can be chosen without searching for all possible subsets

according to certain relevance evaluation criteria.

By considering the fact that malware writers change malware appearance on each infection, though; they

design functionally equivalent (Kaur and Singh, 2014) (Mathur, 2013). Matching instruction syllable into

pre-exciting groups and identify their respective malware families becomes a potential solution. Thereby,

the concept pattern discovery techniques have been utilized by cybersecurity researchers likewise in the

health system for cancer detection and prediction. Discovering frequent sequential patterns and measuring

the dissimilarity and similarity between discovered patterns have been studied by researchers (Ding et al.,

2014) (Fan et al., 2016). Monitoring the opcode instructions of different malware groups and present opcode

relationships by segment analysis is examined in this research.

In order to create an abstract description of each malware family; there is a need for a comprehensive study

which consists of several stages. The first stage is data preparation. Data preparation in current research

includes: collecting malware sample files, reversing the samples code, creating raw opcode dataset. To

create the virus code extracted from variants of the same malware family as a raw dataset. To complete

data preparation, the network between extracted instruction syllables from each individual malware type

is generated. The generated graphs present features in the secondary datasets. The feature is an individual

measurable property of a malware opcode being observed. The number of features will be used is called

the dimension. Assessment of link Analysis results is done by data segmentation. Data segmentation

captured the commonalities of all features within a group. It also explains how the variable and variable

3

 `

i i

levels contribute to the formation of clusters. Important variables are identified by segmentation analysis

and the performance of its clustering will be evaluated by Expectation-Maximization algorithm.

On this assumption and motivation, a new feature selection model is developed. The proposed model not

only to discover relationship and links between code instructions but also effectively regroup malware

types to the respective family. The experimental evaluation in this research was designed to be much more

thorough to pave the way toward deployment of the approach for use by cyber-security analysts.

As far as this research is concerned, this study is the first to establish a model based on link analysis and

clustering to categorize malicious families. While there have been promising results on the usage of data

mining and unsupervised learning techniques on data classification problems (Siddequi, Wang and Lee,

2008) (Ucci, Aniello and Baldoni, 2017) (Das et al., 2016) (Liu, Li and Zhao, 2003) (Bernardi et al.,

2017)(V.SHARMILA, I.VASUDEVAN and 1ASSOCIATE, 2014)(Ding et al., 2014)(Ge, Wang and Xu,

2016) (Mohaisen, Alrawi and Mohaisen, 2015)(Pai et al., 2016).

1.2 Research Problem

There is a large amount of variously complicated malware and it is insufficient to compare them only as

a single class against the signature repository. The intention of crackers is to reuse the previous chunk of

codes, for instance, well-known loop performing infection. Therefore, while the main functionality of a

malware sample remains immutable during its mutation. Malware types can be merged into groups of

malware family with common functionality which is called malware families.

 By knowing that ,frequent functions are used, the probability to trace the previous family based on the

instruction parcel commonalities have been studied by security researchers (Le, Zincir-Heywood and

Heywood, 2017)(Yewale and Singh, 2017)(Scott, Fellow and Technology, 2017)(Ye, 2017)(Deka, Sarma

and Panicker, 2017)(Mohammadi and Hamzeh, 2017). However, code instruction commonalities come at

the cost of an exponential increase in the dimensionality of the resulting feature vectors, required storage

and computation time. Hence, previous work that uses opcode mining approach commonly chose small

instruction parcel.

Part of the challenge in finding commonalities among samples is feature extraction/construction. The

process of finding the most relevant features for each malware family is feature selection. Further yet

which ones belong together as part of an attack is akin to finding needles in a huge haystack let alone to

figure out which ones belong to the same knitting set.

4

 `

i i

The art of evaluating which subsets of codes is significant for detection purpose is still under

investigation. Besides, which feature selection methods perform better on prediction model while

alleviating dimensionality is another challenge to be addressed. Finding the most effective features and

decreasing the computational load in cluttered scenes is another area that needs further perusal. The results

of an efficient feature selection system could mean a substantial saving in terms of time for data collection

and space for future data storage. There are many advantages of feature selection for malware detection;

however, little effort has been devoted, until now, to apply feature selection methods of machine learning

to deal with malware redundant and irrelevant features.

To remedy this situation, extracted feature compress by feature selection methods to produce a more

normal distribution prior to clustering. Feature selection and classification accuracy for malware detection

vastly have been investigated (Ahmadi and Giacinto, 2015)(Deepa, Radhamani and Vinod,

2015)(Zolotukhin and Hämäläinen, 2014). Classification analysis will both describe the separation

between groups and assign new malware to a known group based on a list of selected features (Poulsen,

2013).

This will result in models that will produce a better fit. For clustering malware family’s samples, many

approaches are published. Different similarity measures are examined but without thoroughly discussing

their choice on dissimilarity or link of structure code. For the purpose of identifying malicious families, it

is needed to extract the pattern necessary for its detection. The complex malware samples that are similar

to each other are grouped into the same cluster (Canfora et al., 2015). Each cluster is characterized by a

membership function with statistical mean and deviation. The extracted feature, corresponding to a cluster,

is weighted and contained in the cluster. The dataset is grouped into clusters, based on similarity of the

opcode. Reactions to cyber threats based on what has already been found are limited by the victim of APT

attacks(Thomson, 2011).

1.3 Research Hypothesis

On this assumption and motivation, a new model in this thesis will be developed to combine static

analysis, association rules and a clustering method. The outcome could be used to train a classifier over a

decent size dataset to provide robustness against new unseen malware. If an unknown complex malware

uses all or some of the same functionalities as are used by the training dataset then it is possible to detect

5

 `

i i

this unseen malware. Based on the investigation, the following questions are considered in the research to

figure out an effective method to a group known malware samples.

1.4 Research Questions

In this research, data mining method was used to identify groups of opcode patterns that are highly

correlated with each other in a family. The following three research questions that reflect the main topics

of the research have identified.

1. How can advanced malware opcode structures be characterized based on similarity?

It is logical to assume that different malware families will contain a different kind of functions code.

The majority of current methods for measuring opcode similarity collect only frequency and sequential

patterns. This may be a great way to classify malware, but it doesn’t tell much about significant patterns.

This would be comprehensive enough to identify a malware sample into the respective family. Thus,

methods of feature engineering for providing the most informative features is needed to be explore.

2. How can link analysis and segmentation techniques be utilized for malware classification?

The second research question is focused on research into analyse opcode link for segmentation. By

selecting rules with higher lift value and significant odds ratios, and considered individual each

observation matched these rules will form a malware group. Our study adds to the growing body of

research exploring the association between malware samples in a family.

3. How to select a smaller number of variables from a large pool of opcode structures as input variables,

reducing the dimensionality of data for building better mode?

To define groups of malware samples with similar opcode links, the segmentation results in present

similarity, distance, and distance metrics.

2. What possibilities does the similarity opcode analysis have for detecting advance malware?

The main goal of the third research question is to explore the benefits of the proposed method for

feature engineering in detecting advanced malware. We will pay attention to the verification of different

characteristics of similarity opcodes and to the various representation of malware families. Specifically,

we will focus on different functions to measure the pattern distances and the identification of each group

6

 `

i i

based on the opcode graph. To build a predictive model for malware detection, segmentation results can

be utilized.

1.5 Research Motivation

The present study designed to investigate the prevalence and patterns of opcode structures discriminate

the similarity of each frame to malware groups in a cluster. Unsupervised learning techniques are applied

to the execution traces, with the aim being to create a predictive model which can accurately and speedily

differentiate between malware families. The motivation behind this research is shaped based on the

proposed method by (Liu et al., 2017)and (Hu et al., 2013) for detecting variants malware with an opcode-

based feature into clusters. Authors proposed a fast density-based clustering technique. Their experiment

tackled feature selection and data dimension reduction, computational power, and storage required to find.

Besides, the limitation that only convex decision regions are allowed is considered in their proposed

method. Conversely from the research carried out during the course of this work, there is relatively limited

research in literature concerned with the similarity between two groups of advanced malware. Therefore,

this study aims to experimentally investigate the advance malware similarities and differences for attack

indication purpose based on association rule mining.

1.6 Research Challenges

The potential challenge collated from the extensive literature review and preliminary investigations is

classifying the various given potential advanced malware binary codes into various pattern features for

clustering purpose. Thus, the challenge is to select a relevant set of features, so that, the classification model

can be built in less time with high accuracy. Tackling this challenge will involve discovering malware

signature by analysing and observing the patterns in the assembly level instructions of various x86 binary

malware executables. Prioritize limited APTs malware resources is consider another difficult task of this

research.

1.7 Justification, Aims, and Objectives

In this research, a comprehensive and robust approach will be used to understand and assess the

mechanisms and factors that affect the efficiency of clustering.

7

 `

i i

1.8 Research Aims

• The primary goal of this research is performing similarity measures between different malware

families for the same variant utilizing data mining concepts in conjunction with unsupervised algorithms.

• The secondary goal of this research is to evaluate unsupervised algorithms towards automated

clustering of advanced malware into various groups accordingly.

1.9 Research Objectives

Through experimental and numerical simulation, the key objectives are listed below:

I. Study the evolution and current state of classification methods for advanced, as well as

recent progress made to analyse and detect sophisticated obfuscated malwares families.

II. Develop static analysis to enable the detection of sophisticated obfuscated malwares

III. Data exploration using association mining, sequential pattern mining, relevance feature

discovery on clustering

IV. Enhance the unknown pattern discovery to reduce the side effects of noisy patterns, low

frequency problem.

V. Develop a technique aiming at better analysing malware opcode with particular emphasis

on evaluating features to reduce the dimensionality of high dimensional opcode vector.

VI. Facilitate the categorization of complex malware by measuring the link instructions in

order to improve the previous detection coverage.

To meet the research objectives: detectable patterns of opcode instructions firstly are discovered and then

the most relevant of them within each family is uncovered. Afterwards, a collection of the most important

predictor variables is ready for training purpose in classification technique. Specifically, objective III and

IV can be achieved by usage of association rules mining and examining clustering techniques. Link

analysis is the data mining technique that addresses this need. This model is used to generate data for future

data-driven decision making on the multinomial dataset. The models are designed in SAS® Enterprise

Miner. When all variables generated by link analysis have been fed into the segmentation node a desired

number of clusters are formed automatically. As a result, important variables for each cluster will be

retrieved. The validation partition is set aside and is used to test the accuracy and fine tune model.

8

 `

i i

1.10 Significant of the Study

The uniqueness of this study exists in dealing with uncertain labels and a reduction in the volume of

features to mitigate misclassification. Hence it enables the introduction of link analysis in malware features

construction for clustering purpose. This is in line with multiple interpretations conveyed by frequent

sequential opcode patterns, which help to indicate zero-day attacks on the whole systems. Such a combined

approach could leverage the relative strengths of classification to yield a stronger overall detector in terms

of detection rate and speed. The strategy of considering multiple aspects to compare samples can leverage

different facets of the malware, improve the overall classification rate, and potentially improve the

robustness of performance.

1.11 Research Scope and Limitations

The proposed approach is presented under the following limitations:

 Due to time constraints, the ability to collect large datasets of malware samples from APTs groups

was somewhat limited. However, the number of malware samples selected was arbitrary and the

final 250 files were fully populated from a data completeness perspective.

 Fast-paced malware sample, will the datasets being used for the experiment will be questioned.

 Last resort, stick to the existing database, to free from any specific malware family to make sure

the method will/could work with incoming, new malware.

Needless to say, for research purposed these issues are always wondered.

1.12 Research Methodology and Research Methods

Academic research is defined as the art of scientific investigation which aims to investigate the unknown

knowledge. This chapter provides a detailed description of how the research is to be carried out.

1.12.1 Research Methodology

Research methodology is a systematic way to solve a problem. The nature of academic research requires

a different kind of steps which is listed below:

 Problem discovery and research questions

9

 `

i i

 Formulation research problems and objectives

 Research design

 Literature survey and reference collection

 Assessment of the current status of the topic chosen

 Sampling plan and data analysis

 Interpretation of results

 Experiment report

These steps are depicted in Figure 1-1-2 and research architecture is illustrated in Figure 1-1.

Figure 1-1Research Architecture

10

 `

i i

1.12.2 Research Methods

In order to get a solution to a problem research methods is concreated. The results are presented in tables

and graphs. Once data of each case study are collected. Association rule mining applied to analyse patterns

of malware family based on opcode graph.

In this case, a proper representation of each malware family will be pulled out. Hereafter, link analysis

measurement will be run. Building segmentation analysis places observations into groups according to the

natural association between the observations. The overview of the methodology is demonstrated in chapter

3 section 3.2.

Figure 1-1-2Research Methodology Flow

Meet the Research

Objectives

No

Yes

Problem Discovery Research Questions

Literature review

Formulate problems Research Objectives

Selection of suitable

methods for the chosen

problem

Obtaining and dealing with data

Applying chosen methods Results evaluation and interpretation

Report the effectiveness and

efficiency of work

Design Research Method

11

 `

i i

1.13 Research Overview and Structure

This research presents a three-stage method to cluster malware into a group by comparing their opcode

similarities to existing static traces and assigning it to the most similar group. First creating a shortlist of

samples malware from different families. The second stage opcode extraction in order to estimate their

similarity/dissimilarity distance between opcode. Finally k-means, hieratical, and pam clustering is run

base on the combination of opcode interaction to find out which sample belongs to which family. A set of

code influencers and aggregates them based on how close they are to each other is filtered. The results

demonstrate that the proposed model provides useful clustering variables by segment analysis technique.

This research is organized as follow chapter one provide an introduction to the research gap and problem.

An overview of the most important previous works based on machine learning and data mining discusses

in chapter two. The proposed method in more detail and stating the detect mechanism is described in

chapter three. The details the techniques discussed in this chapter too. Chapter four provided more

information about research case studies and experiment. Chapter five presents the examination of results.

Finally, chapter six wraps the whole thesis up by giving a conclusion. The recommendation and future

work stated in the same chapter.

12

 `

i i

Chapter Two

Related Literature Review

2 Overview

As was mentioned in the previous chapter, this research presented malware classification that integrated

the static analysis of malware with a data mining system using association rule and clustering techniques.

Relevant background material related to malware classification and detection techniques specific to

distinguish malware families is studied extensively. Furthermore, several existing zero-day sophisticated

malware detection techniques are surveyed. In this section, a brief overview of the several topics that are

relevant to the research aims is discussed. First, malware definition followed by APTs is considered. Then,

malware analysis and ML in general, with emphasis on data mining techniques. It is followed by the

discussion on Link Analysis and its potential role in malware detection, summarized by key findings.

Consequently, the purpose of this chapter is to review the state of the art literature on the above-mentioned

topics in such a way that rationalise their connections to the proposed research hypothesis.

2.1 Characterisation of Malware

Maliciousness is defined as the risks exposed to users, computers, networks or infrastructures -such as

viruses, worms, Trojan horses, rootkits, (Yewale and Singh, 2017). Evidently, a malicious code scans for

vulnerabilities of a host or network target. Once the malware finds a way to enter the system, takes control

of it and it performs silently some unauthorized action, gathering sensitive information and etc. Sometimes

the tension of a virus is not to cause damage, but to clone itself onto another host. The virus causes damage

it is more likely to be detected. On the other hand, advanced malware with a very small footprint could

remain undetected for a very long time (Shenwen, Yingbo, and Xiongjie, 2015).

There is unstoppable growth in the number and variant of attacks that lies on the continuous generation of

refined and aggressive malicious code (Azmoodeh et al., 2018). Malware can be classified into different

categories based on their intent. Table 2-1 presents their capabilities as stated by (Gharacheh et al., 2016)

(Deka, Sarma and Panicker, 2017) (Sharma and K. Sahay, 2014) (Fraley, 2016) (Thunga and Neelisetti,

2015).

13

 `

i i

Table 2-1Malware Variant

 Capabilities Way of Defence

Malware

variant

 Able to replicates by inserting itself into other programs

 Able to gain access to the private system

 Able to disrupt a computer system

 Able to gather sensitive information

 Anti-virus

 Able to skip traditional signature-based defences

 Able to bypass inefficient security solutions.

 Able to detects a VM environment and to hide and not

perform malicious behaviour

 Sandbox

 Firewall

Although any specific malware has its own capability; the internal state of malicious software remains the

same. Since it is difficult to create a new virus from scratch; usually, malware writers reuse old virus.

However, to hide detection the hacktivists they tend to change the obfuscations (syntax) more than the

behaviour (semantic) of any specific malware. To be seen, malware creators simply modify internal

components while preserving the code’s functionality and behaviour. Therefore, the comparison of the

functional blocks of code structure to each known malware might accommodate a zero-day malware (Kaur

and Singh, 2014) (Ucci, Aniello, and Baldoni, 2017). Note that throughout this research, the term virus and

malware are used interchangeably.

2.2 Understanding Advanced Malware

The evaluation of malware can morph and mutate like an infectious virus to bypass signature present in

the antivirus database without leaving a footprint (Rathnayaka and Jamdagni, 2017). There are multiple

transformation techniques, including code permutation, register renaming, expanding and shrinking code,

and the insertion of garbage code or other constructs (Cosovan, Benchea and Gavrilut, 2015). Such a case

every time the malicious file presents itself, it looks different as it can change itself or evolve according to

the theory of Darwin that is considered as a self-propagate feature. Some advanced malware samples

employ two or three of these techniques together. Therefore, the complexity of detection and remediation

in hosts and networks will increase significantly. Notably, determined attackers target misconfigured and

unpatched systems to withdraw confidential information. They also aim regulated data eventually by

14

 `

i i

evading security defence systems such as a virtual sandbox that many organizations rely on today (Ling,

Putra, and Ling, 2017). In other words, the attack data is able to travel across the network in the form of

packets. When the characteristics of a certain malware are analysed, it is the fact that the evolution goes

on and there are other species like that threat, live and somewhere compromising the system in a manner

that’s not visible at all. That being the case, the APTs attack was found to live long and evade detecting in

hosts and networks for more than a year (Shenwen, Yingbo, and Xiongjie, 2015).

2.2.1 Understanding Advanced Persistent Threats (APTs)

In 2006, the United States Air Force (USAF) (https://www.airforce.com) analysts introduced the term of

Advanced Persistent Threats (APTs) to describe attacks on governments and commercial organizations.

Though, APTs also often target the valuable information found in smaller organizations. Frequently, due

to lack of security technologies and expertise, these types of network infection have remained uncovered,

so APTs coders never get caught. The largest APTs groups, fifteen of the most active APTs families, is

classified by FireEye (https://www.fireeye.com/current-threats/APTs-groups.html), all of which are still

active across the cyber threat landscape. In practice, APTs can be based on software, hardware, social

engineering or some combination of the three(Nissim et al., 2015). For this, cybercriminals can coordinate

their attacks among various delivery venues, including email, the Web, social media, legitimate files, etc.

(Ostrowski, 2014). APTs generally do not cause damage to company networks or local machines. Instead,

the goal of it is most often data theft. This research is based on software only which effectively hide the

attack from traditional malware detection analysis.

APTs or multistage attack defines typically a more sophisticated and complicated threat vector that

targeted a business by developing a custom exploit towards specific goals. The consequences of these

incursions can be severe, and in some extreme cases cause a business to go bankrupt. On top of that, an

anti-APTs solution does not exist at the time of this review (Shenwen, Yingbo, and Xiongjie, 2015). More

advance sophisticated components are actively adapted by APTs writers to hide malicious software from

inspection efforts. Nearly every new APTs attack includes features which are able to regulate its activities,

to self-propagate, to strategically deliver other malware, and to maximize its damage while minimizing its

footprint (Shenwen, Yingbo, and Xiongjie, 2015). The evasion techniques will easily escape security

filters. Originally, this leads to a need of a comprehensive analysis which consists of several stages such

as adding detection for known modules, collecting samples, reversing the samples, decrypting

sophisticated encryption and compression schemes, understanding lateral movement, etc. To put

everything together and reconstruct how the APT acted, what were its habits, what species it attacked, and

15

 `

i i

how these attacks were coordinated (Vert, Gonen and Brown, 2014). Simply put, this requires time and

patience which is not practical and desirable. On the other hand, APT attacks are difficult to uncover as

specifically, they expect to encounter a Virtual Machine (VM) environment and develop their attacks

accordingly. As it explained earlier, like a biological virus this generation is designed in multi-state and

multi-vector attacks (Bolton and Anderson-Cook, 2017). To combat the complex malicious programs,

security community will require sharpening their skills to discern and block advanced malware-free attacks

before attackers can compromise the network environment.

2.3 An Overview of Static and Dynamic Analysis

For the purpose of malware classification and detection, traditional analyses could be further divided into

two main categories: static analysis and dynamic analysis. Static features are extracted without executing

the file under analysis, while dynamic ones are just the opposite. Dynamic features are obtained by

watching the behaviours of a program during the run-time while static features are obtained by decompiling

the byte code of a suspicious program. To give an overall view of these approaches , pros and cons of each

of them are presented in Table 2-2(Gandotra, Bansal and Sofat, 2016)(Rezaei and Afraz, 2016)(Ahmadi

et al., 2013)(Shabtai et al., 2012)(Damshenas, Dehghantanha and Mahmoud, 2013)(Gandotra, Bansal and

Sofat, 2016)(Shijo and Salim, 2015)(Shalaginov, 2017)(Fraley, 2016)(Mohaisen, Alrawi and Mohaisen,

2015).

Static analysis just looks at the file itself and tries to extract information about the structure and data in the

file. A case in point, the source code is one of static analysis method to understand the program behaviour

without actually executing it. Dissemblers like IDA-Pro is used to decompile the source code, variables,

pose functions and recognize the operations, etc. This analysis can be slow and exhaustive, but the result

gained is very detailed(Ding et al., 2014). Moreover, it fails to detect threats with evolving capabilities

such as metamorphic and polymorphic malware. Over and above that, it is incapable of defending against

unknown or zero-day exploits (Thunga and Neelisetti, 2015), (Gandotra, Bansal and Sofat, 2016).

16

 `

i i

Table 2-2 Comparison of Static and Dynamic Analysis

Static Dynamic

Advantage Disadvantage Advantage Disadvantage

 A straightforward

analysis

 The higher speed

of analysis and

detection thereby

providing rapid

classification

 Face obfuscation

or in-memory

mutation

 Miss evasive

malware and

zero-day attacks

 Require expert

manual

intervention

 Not a fully

automated

solution

 Newly released

forms of malware

can be

distinguished

 Verifying that a new file

is malicious can be

complex

 Collection information

requires a contained

environment

 Require expert manual

intervention

 The required period of

time needed for

observation is not clear

hence is time exhaustive

and resource consuming

 Not a fully automated

solution

On the other hand, a technique known as dynamic is monitored and collection information during the

interaction of Operating System with a suspicious program at runtime. All requests to access specific files,

processes, connections, or services will be analysed and collected. This collection can be a list of system

calls, network access or memory modification (Rathnayaka and Jamdagni, 2017) (Xu et al., 2017)

(Ghezelbigloo and Vafaeijahan, 2015). Depending on the methods used the behaviour of live malware is

observed and learned in order to record every single step and intention at a real time. The complexity

associated with this technique is to deal with well-designed metamorphic codes as they may behave

differently in a control simulated environment in order to trick the analysts, resulting in the malicious

verdict. Technically, the essential indicators of new threats will be cAPTsured if the malicious programs

interact with real victim machine. It means to wait for potential harm to the system before it is identified

as threats. Thus, the pitfalls would be losing harmless or useful files. Besides, the approaches based on this

technique suffer from low false positives because they can easily be fooled once the behavioural analysis

method is known (Shijo and Salim, 2015), (Afonso et al., 2015).

17

 `

i i

The effectiveness of the dynamic approach as compared to static one is doubtful because it is time and

resource consuming, resulting hindering early detection(Islam et al., 2013)(Fraley, 2016). To address the

weaknesses of these, an approaches hybrid analysis is studied. This is a combination of static and dynamic

analysis regardless of execution in order to enrich its analysis results using data flow tracking and

instruction tracing(Shijo and Salim, 2015).

Authors of (Liu et al., 2013) (Tong and Yan, 2017) (Narouei et al., 2015), and (Gandotra, Bansal and

Sofat, 2016) proposed the hybrid techniques which include features from both static and dynamic analysis

of malware that can detect different types of malware effectively. They presented more accurate results as

compared to the systems using features from static analysis or dynamic analysis alone.

 (Tong and Yan, 2017) built up different pattern set of malicious and benign app based on their structure,

profile, or through certain string patterns encoded in them. Although accurate, this method of analysis is

expensive and slow. The above finding is consistent with the study by authors(Idrees et al., 2017).

However, their framework relies on the information access to vital hardware and software resources. As

the authors (Tong and Yan, 2017) noted the drawback of the hybrid approach is applicable to their research

approach. Due to the dynamic nature of attack profiles, the detection techniques fail to adjust to the

temporal changes in real time. Specifically, for any change in the malicious pattern, the detection model

will involve an updated profile with constant training. The quality of detection performance to judge new

observation will wane drastically according to the model requirement. Therefore, the performance will

often be exceeded resulting in a high rate of false positive alarms (Nauman, Azam, and Yao, 2016).

2.4 Machine Learning (ML)

The classification decisions or a result of prediction model depend on analysing the result of static or

dynamic behavioural features (Alazab, 2015) (Milosevic, Dehghantanha and Choo, 2017).

In general, ML is associated with the Artificial Intelligence (AI) in which mimicking human (brain) learning

and learning through the experience. It is frequently overlapping or somehow originated with data mining,

and pattern recognition to automatically deal with known and unknown patterns. As analysing pattern is

involved with feature extraction in which non-important features will be phased out. ML has been practically

applied in many fields covering domains including speech recognition, text categorization, source code

plagiarism, metamorphic virus detection, and many others. By outlining, ML approaches offer, the

predictive quality can give malware analysts to discover the breaches and initiate an incident response.

18

 `

i i

 In addition, ML is designed and oriented towards new malware acquisition. By considering the ongoing

“arms race” between malware creators and malware detectors; attempts at practicing ML algorithms to

cybersecurity began in the 2000s to conquer the need to be automated in handling detection potential

malicious files (Scott, Fellow, and Technology, 2017). Needless to say, it is practically impossible to

manually detect and analyse such a huge number of suspicious file daily.

Primarily, ML algorithms are grouped into three subgroups: supervised, unsupervised and semi-supervised.

Table 1.3 presented aside-by-side comparison of these methods in agreement with (Kaur and Singh, 2014),

(Ucci, Aniello and Baldoni, 2017)(Comar et al., 2013)(Firdausi et al., 2010)(Mohaisen, Alrawi and

Mohaisen, 2015).

Several research proposals have been exhibited one or more detection techniques on the basis of robustness,

efficiency, accuracy, computational overhead and noise tolerant parameter by applying ML methods (Ling,

Putra and Ling, 2017)(Alam et al., 2015)(Shijo and Salim, 2015). The comparison between them is indicated

in Table 2-3.

Algorithm Advantage Disadvantage Popular algorithms includes

Supervised Work with known

data

Require labelled data

Misclassifications are

all caused by very fuzzy

data.

SVM

Decision Trees

Random Forest

K-Nearest Neighbour

Unsupervised Work with

unlabelled data

Work well with

uncertain data

Time consuming K-means

Fuzzy C means (C-means)

Gaussian means (G-means)

Hieratical clustering

Semi-supervised Worked with mixed

labelled and

unlabelled data

Table 2-3Machine Learning Techniques

19

 `

i i

Setting a goal at the outset great greatly improves the chance of a successful ML application. When

considering the use of ML within security viewpoints each of below goals would require different

algorithms and different approaches:

 To have some malware samples and want to find malware families. In this way, it is possible to

associate unknown samples to already known families, and by consequence provide an added-value

information for further analyses(Mastjik and Varol, 2015)(Canfora et al., 2015)(Ahmadi et al.,

2015)(Cheng, Tsai and Yang, 2013)(Bot, 2017)(Fan et al., 2016)(Sharma and Sahay, 2016).

 Want to classify some network logs into malicious vs. benign to reduce the workload for human

analysts(Zhao et al., 2015)(Bhatt, Yano and Gustavsson, 2014).

 Want to make an early prediction on network traffic(Le, Zincir-Heywood and Heywood,

2017)(Bekerman et al., 2015)(D. Liu et al., 2014).

Malware analysis can be divided into two phases - malware detection and malware classification.

Classification is a data mining function that assigns observations in a collection to target categories or

classes. The goal of classification is to accurately predict the target class for each observation in

the dataset. For instance, a classification model could be used to identify a suspicious file as malware or

benign(Wang et al., 2013)(Baldangombo, Jambaljav, and Horng, 2013)(Fraley, 2016)(Yewale and Singh,

2017). Commonly at the first step, an executable is detected if it is malicious, and if it contains a harmful

part, then at the second step it is classified into some malware families for further research(Canfora et al.,

2015). However, in practice, a suspicious file may be categorized into a certain malware family first, which

is considered to be an advantage in early malware detection(Ahmadi et al., 2015). Rule evaluation

measures can be used in discovery of high quality rules; thereby, classification can be made based on these

unexpectedness or usefulness rules (Liangboonprakong and Sornil, 2013).

In an extension of approaches based on ML classification are fallen into two different evaluation; it is

given in Table 2-4 (Comar et al., 2013).

20

 `

i i

Table 2-4 Malware Evaluation

Malware

Analysis

Further categorize the malicious flows

into one of the pre-existing malware

or new malware.

(Azab et al., 2015)(Ahmadi et al.,

2015)(Ahmadi et al., 2015)

 Used to isolate malicious flows from

the non-malicious ones.

(Nissim et al., 2014)(Cosovan,

Benchea and Gavrilut, 2015)(Liu et

al., 2013)(Narouei et al., 2015)

The first evaluation is based on single rules. Most existing detection frameworks are proposed based on

this evaluation. They have been used to determine the stopping criteria for the rule generation and extract

interesting rules for classification purpose. However, evaluation based on single rules might generate

biased classification or overfitting results since it relies on user’s judgements or domain specific(Ahmadi

et al., 2015)(Nissim et al., 2014). Building classifier rule based on link analysis can fall into this category.

For the overall rule induction system performance, one also needs to consider the evaluation based on a

rule set. The second evaluation is based on rule sets. It is more complicated than the other evaluation since

there is more than one rule involved in making a decision. In this evolution, the relationships between rules

in a set will analysis which is an essential step for this evaluation (Khazaee and Faez, 2014)(Nissim et al.,

2014).

2.4.1 Supervised Machine Learning

Supervised learning based approach is chosen to deal with known corpus but incomplete data. The

classification accuracy depends on the features quality and the effectiveness of the classifier. Whereas

clustering (unsupervised) chosen to deal with new inputs(Epishkina and Zapechnikov, 2016).

A good example of Supervised Learning is a classification for malicious file detection. Due to the diversity

of malware classes, imbalanced distribution and data imperfection issues, malware classifier model are

challenging. The classification algorithm would be supplied a large dataset of files as well as the labels

‘malicious’ or ‘benign’(Nissim et al., 2014). This is known as a training set; a dataset used to train the

algorithm. The algorithm would produce a model which would correctly classify the training set(Nissim

et al., 2014). Any new, unlabelled files are then passed against the model and mapped to ‘malicious’ or

‘benign’, based on the trained model. Leaving a large fraction of samples unlabelled and hence delaying

the signature distribution and abnormal behaviour in the system is accorded the greatest weakness of

21

 `

i i

supervised method (Pai et al., 2016). Hence, in line with the nature of the supervised algorithm, it difficult

to detect new malware. Furthermore, poor performance on new and evolving malware is considered one

of the limitations of this approach. Therefore, research into more robust detection mechanisms is

warranted by unsupervised algorithms (Mohammadi and Hamzeh, 2017). While Vector Machine and

Hidden Markov Model was largely explored (Gharacheh et al., 2016)

Therefore, a security solution must be put in place to ensure that such attacks with unknown patterns will

be captured. This motivated academics and researchers have been employed unsupervised learning to

address these challenges and identify flows of existing and novel malwares(Comar et al., 2013)(Wei,

Sprague, and Warner, 2009)(Lin, Jiang and Lee, 2014)(Bot, 2017).

2.4.2 Unsupervised Machine Learning

Clustering algorithms are deployed in unsupervised learning problem. The process of organizing data

points into groups whose members are similar in some way is defined as a clustering approach. Thereby,

a cluster is a collection of unlabelled data which are similar between them and are dissimilar to the data

belonging to other clusters. Empirically, regardless of its similarity measurement, the effectiveness of this

approach is affected heavily by extracted key features. For each pair of points that share at least one cluster

in the overlapping clustering results. Therefore, the only thing which potentially tricky is that a given point

may appear in multiple clusters(Khazaee and Faez, 2014).

In the overall picture, some advanced malwares are able to overcome the traditional methods based on

supervised machine learning. Though, detecting advanced malware is a challenge and requires and

innovative learning approach. Recent research has depicted that clustering as a persuasive option for

malware detection (Comar et al., 2013) (Wei, Sprague, and Warner, 2009) (Bot, 2017)(Wang et al.,

2013)(Pandeeswari and Kumar, 2016)(Liu et al., 2017). This type of unsupervised ML approach can be

further divided into two categories: Hard-Clustering and Soft-Clustering (Mohammed, Mohammed, and

Saraee, 2016).

Hard Clustering: In hard clustering, each data point either belongs to a cluster completely or not. For

example, the malicious file is put into one group out of the 10 groups.

Soft Clustering: In soft clustering, instead of putting each data point into a separate cluster, a probability

or likelihood of that data point to be in those clusters is assigned. For example, from the research scenario,

22

 `

i i

each APT group is assigned a probability to be in either of five clusters of the families. Furthermore, this

method does not require prior information to learn from the data.

As indicated, limitation of hard clustering forms ill boundaries that leads into the data space often

overlapping the perimeters of the surrounding cluster. The inherent limitation of hard clustering persuaded

researchers to apply soft clustering to fulfil the research objectives.

Table 2-5 Comparison of Clustering Techniques

Type Reference Limitation Advantage Sample

Hard/Crisp (Zolotukhin and

Hämäläinen, 2014)

(Narra et al.,

2016)(Mohammadi

and Hamzeh,

2017)(Sarvani,

2017)

High probability of ill-defined

boundaries

No capable of dealing with

over-lapping

No capable of handling

extreme outlier points

Work well with

highly structure

data

Provides

efficient results

in case of large

datasets

Easy to

implement

k-means

Soft /Fuzzy (Huang et al.,

2012)(Khazaee

and Faez,

2014)(Khazaee

and Sharifi Rad,

2013)

Time consuming

The probability of looping in

local optimum

largely depends on

initialization values

Highly dimensionality

Work well with

vagueness,

uncertainty,

loosely

structured data

Flexible and

robust toward

new data point

Improve the

detection over

the time

C-means

23

 `

i i

The current lack of automatic and labelling of a large number of complicated malware samples led to a

possible solution to automatically cluster malware sample. Additionally, efficient process this huge influx

of new malware samples and accurately label them is another theme of concern. Furthermore, avoid

analysing samples that have already been analysed and label new incoming samples by soft clustering rather

than crisp clustering to avoid producing sharp partitioning is providing a scope for further investigation.

Invariably, using a new form of a fuzzy-based clustering algorithm for grouping close malicious code

together in the same cluster will repetitive analyses(Khazaee and Sharifi Rad, 2013)(Bernardi et al.,

2017).C-Means clustering is a well-known approach and works very efficiently for most of the cases. Fuzzy

C Means clustering is based on fuzzy logic and is used when data is to be divided through fuzzy partitions.

Fuzzy clustering, offers further advantages in a way that an instance may belong to more than one cluster

as the membership degrees is between zero and one(Shalaginov, Grini and Franke, 2016)(Huang et al.,

2013)(Pandeeswari and Kumar, 2016)(Shalaginov, 2017). However, Fuzzy-C means will tend to run slower

than K means, since it's actually doing more work. Each point is evaluated with each cluster, and more

operations are involved in each evaluation. K-Means just needs to do a distance calculation, whereas fuzzy

c means needs to do a full inverse-distance weighting(Narra et al., 2016).

In hierarchical clustering, smaller clusters can be combined and larger clusters can be divided into smaller

clusters. This hierarchy of clusters is also called dendrogram which displays a tree diagram.There are two

types of approaches, top down and bottom up. In top down approach, larger clusters get divided in to smaller

clusters, where as in bottom up approach small clusters are merged into larger ones(Sarvani, 2017).

2.5 Data Mining

Data mining is the core of knowledge discover process. Data is mined to identify associations and also to

anticipate behaviour pattern. Data mining evolved from simple taking out of raw data to an analytical

process from a large amount of data in order to discover knowledge, see Figure 2-1. The process of

knowledge discovery includes: selecting, exploring, modifying, modelling and rating large of amounts of

data. In general, the benefits of data mining come from the ability to uncover hidden patterns and

relationships in data that can be used to make predictions that impact prediction or

classification(Mohammed, Mohammed, and Saraee, 2016). What information is mined depend on the

specific objective to achieve? It assists automation with important keywords, strong features as input for

ML algorithms(Epishkina and Zapechnikov, 2016). By that it has been extensively applied as a suitable

framework in many areas such from modelling to predict weather pattern, recognize imagine especially at

decision-making level (Bist and Campus, 2014)(Mendel, John, and Liu, 2006).

24

 `

i i

Figure 2-1Data Mining Process

 Previous works have shown that data mining is the process of studying sample files with the aim of

acquiring knowledge about its pattern to spot each instant (malware) via pattern matching techniques is a

promising approach (Siddequi, Wang and Lee, 2008)(Azab et al., 2015)(Homayoun et al., 2017)(Islamic

and Minna, no date). Solutions to this problem will facilitate initial triage of new samples into existing

families or as potential new families. As (Zolotukhin and Hämäläinen, 2014) have also indicated, this study

is improve the efficiency of the detection process. Besides, it has been incorporated into methods of

classification and clustering to empower handling levels of uncertainty in real-world complex problems

such as malware detection (Souri and Hosseini, 2018). Moreover, this approach is broadly used in different

types: pattern recognition, fault detection, medical diagnosis reasoning, etc.

As claimed by (Ye, 2017)(Azab et al., 2015), data mining is a convincing method for malware detection.

In the current research, data are a list of the opcode sequence from each malware family. Hence, the

discovered knowledge will be opcode patterns, associations, or relationships among all opcode in one

family. The process of pattern detection and understanding logical relationships accrue after

standardization of raw dataset. The better clustering segmentation wold appeared when the data mining

technique does not tolerate minor difference of code structure (Wang, 2014). In order to extract some rules

to evaluate pattern matching process association rule mining is used in this study.

25

 `

i i

Schultz et al. (Schultz et al., 2001) were the first to present the idea of data mining for malware detection.

They use the static features such as strings, byte sequence and features from PE and used the Naïve Bayes

method for classification purpose. Their results were upgraded by (Zolotukhin and Hämäläinen, 2014)who

make use of n-gram and various classification methods to detect new malicious. Detection system using

iterative SVM clustering to provide the best accuracy.

2.5.1 Association Rule in Data Mining

Association rule mining is the data mining process of finding the rules that may govern associations,

correlations, or causal structures from data sets. It can be done in both scenarios, supervised and

unsupervised learning. However, it is not a classification technique, it is used for frequent pattern and

sequence pattern or a combination of both to obtain data model. Initially, association rule mining was used

in unsupervised scenarios to discover interesting or novel patterns. It is originally designed to work with

discrete (categorical) data(Epishkina and Zapechnikov, 2016). Link Analysis is chosen to apply among the

many different techniques used for data mining such as sequential pattern mining or frequent mining. Link

analysis is based on a branch of mathematics called graph theory, which represents relationships between

different objects as edges in a graph. This relation-oriented methodology displays nodes and links based

on their weighted values; node size and link width represent the relative size of the node and link values.

Scores the nodes and edges, therefore, the edge thickness representing the strength of association and

differing node sizes representing qualitative properties of the node. In general the higher the weight, the

higher the contribution to the influence metric. For instance, one of the macros calculates influence

centrality in addition to degree centrality(Y. Liu et al., 2014).SAS® software packages provide the link

analysis node and Profile Segment node inside Enterprise Miner™ 14.3. SAS® Enterprise Miner™ is a

state of the art predictive analytic and data mining software package that enables organisations to analyse

complex data, find useful insights and act confidentially to make fact based decisions. It contains the link

analysis macros which is easy to generate and interpret.

This associative graph has been successfully adopted for various information and social networks

(Thompson, 2008).This sort of analysis aims to discover patterns of activity that can be used to derive

useful conclusions and business information about a subject for example malware sample. Give such

insight, this research presents a novel feature construction model based on link analysis, which is effective

to derived shared similarity in malware family instructions.

26

 `

i i

The research is equipped with Link Analysis to discover unknown opcodes links patterns. As the name

suggests, this technique would help analyse the association rules between two or more items in large data

sets. In the current scenario, Link Analysis has demonstrated the similarity of opcode fragments the

similarity of two malicious based on measuring which is generated by Link Analysis macros. The formula

for similarity comparison of code sequences is deduced through association rule mining analysis. Based

upon the generated values ,the probability of each malware group belong to is calculated (Ban et al.,

2015).

2.5.2 Mining Opcode Relevance

Opcode (Operational Code) are machine language instruction that performs CPU operations on operands

such as logical, arithmetic, data manipulation and program control(Zolotukhin and Hämäläinen, 2014).

Part of source code is visible in Figure 2-2.Identifying similar or identical code fragment among program

is valuable in some applications such as, code theft detection. As malware program contains the various

sequence of opcode by usage of obfuscated techniques to hinder detection procedure(Gharacheh et al.,

2016). Code obfuscated methods are often employed by malicious intention to lessen the effectiveness of

the detection system. This mechanism is achieved by dead code insertion, variable renaming, statement

reordering, expression reshaping, break transformation or join transformation and so on. Thereby, malware

analysis mechanism requires the knowledge of source code or structure of the program to determine the

monopoly of functions. To find inherent regularities in the opcode, algorithms of association discovery are

employed. Different type pf association mining algorithms such as frequent , sequential patterns, cyclic

association, cluster analysis introduced in malware analysis by (Mooney and Roddick, 2013)(O’Kane,

Sezer and McLaughlin,2014)(Zolotukhin and Hämäläinen, 2014)(Liangboonprakong and Sornil,

2013)(Mastjik and Varol, 2015)(Yewale and Singh, 2017)(Ding et al., 2014).

 Figure 2-2 Assembly code example generated by IDA-pro

https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Association_rule_learning

27

 `

i i

A very first framework based on N-gram and K-Nearest was presented by Abou-assaleh (2004) in the n-

gram method, based upon some length sequences. The model requires substrings of a larger string with a

length, for example, the string “MALWARE”, can be segmented into several 4-grams: “MALW”,

“ALWA”. “LWAR”, ”WARE” and so on. Once the set is chosen, n-grams for every file extracted in that

set that acts as the file signature. Figure 2-3 is illustrated N-gram 2 and 3. As authors (O’Kane, Sezer and

McLaughlin, 2014) and (Liangboonprakong and Sornil, 2013) the detection system can classify any

unknown instance as malware or benign software based on N-gram concept. The assignment of a new

executable file was based on the most similarity of the representative profile of each malware and clean in

the dataset. However, as Fraley (2016) highlighted this technique practically useless for polymorphic and

metamorphic malware samples.

Figure 2-3 Illustration of N-gram Structure (O’Kane, Sezer and McLaughlin, 2014)

Over the past has seen the different models by observing opcode pattern to detect and eliminate new

unknown malware in a prompt manner(Wang et al., 2016)(Runwal, Low and Stamp, 2012)(Canfora et al.,

2015) (Ding et al., 2014)(Santos et al., 2013)(Santos et al., no date)(Yewale and Singh, 2017)(Sharma and

Sahay, 2016)(O’Kane, Sezer and McLaughlin, 2014)(Hu and Tan, 2017). The methodology for malware

categorization by implementation concepts from text categorization is used by (Shabtai et al.,

2012)(Suarez-tangil et al., 2014). By considering the fact that, in real time setting, patterns within the

words change over time just like the malware characteristic(Nissim et al., 2014). However the drawback

of supervised models is training sets should be designed accordingly otherwise misclassification will

appear(Nissim et al., 2014)(Zolotukhin and Hämäläinen, 2014)(Gandotra, Bansal and Sofat, 2016).

28

 `

i i

For this reason, the authors (Suarez-tangil et al., 2014) observed and measured the similarity between

malware samples by using clustering techniques in which it succeeded in dealing with supervised learning

problems.

2.6 Analysis to Detect Malware

The amount of unknown malware is growing at a staggering rate. Computer users often download malware

to their computer by unknowingly visiting a malicious web-page hosting a drive-by download attack, by

clicking on a malicious link included in an email, or by inserting a USB thumb drive containing malware

into their computer. Once the malware gets to the organization there will be a breach in private data,

disruption in operations or destruction in infrastructure by using a wide range of tactics and tools(Security

and Report, 2017). The sheer number and variety of known and unknown attack strategy is part of the

reason why detection cyber-attack is a difficult problem.

The method for indication of an attack and classification mainly fall into two broad categories: Signature-

based, Behaviour/anomaly-based and Heuristic/specification (Deka, Sarma and Panicker,

2017)(Gharacheh et al., 2016)(Bist and Campus, 2014)(Santos et al., no date; Zhang et al., 2011)(Kaur

and Singh, 2014) (Damshenas, Dehghantanha and Mahmoud, 2013) (Pai et al., 2016) (Scott, Fellow and

Technology, 2017)(Louk et al., 2014)(Nauman, Azam and Yao, 2016)(Nissim et al., 2014)(Hassani and

Zarei, 2015) (Baldangombo, Jambaljav and Horng, 2013). The advantages and disadvantage of each

method are summarized in Table 2-6 and different methods belong to each category are presented in

Figure 2-5.

Table 2-6Malware Detection Methods

Methods Pros. Cons.

Signature-based

Effective and efficient against a common

type of viruses

The low percentage of false alarm

The high speed of detection

Fail to detect unknown malware and

undocumented attacks

Fail to detect crafted malware such as

polymorphic and metamorphic

The high amount of manpower and

time

29

 `

i i

Behaviour-based Polymorphic/Zero-day malwares can be

detected.

Obtaining comprehensive information

about the malware

Identifying what the malware does in a

specific environment when files are

opened

Detecting an individual instance of

malware targeted at a person or

organization

False positive remain an issue

The high amount of scanning time

Require safe environment like a

virtual sandbox

Fail to detect curtailing malicious

activities

Restriction of a Cloud-based solution

Hybrid Depends on the feature extraction

techniques the accuracy of malware

detection effectively is improved.

Depends on the feature extraction

techniques there is time complexity

of training or evaluation phase

Signature-based detectors compare signatures (using MD5 or other hashes) of files into a predefined

database of known malicious files. Signatures are created by examining the internal components of an

object. The object could be data which collected from static or dynamic analysis. The good and unknown

file is categorized in one group and malware and its. The similarity between two objects is measured by

counting the number of common blocks. If they match, the file is treated as a 'threat' (Yewale and Singh,

2017).

At this point, the challenge can be seen when it comes to the detection of a new variation of known malware

families. On the other hand, many hackers have begun using polymorphic or encrypted code segments

which are very difficult to create a signature for. Hence, malware authors can make signature detection

redundant(Alazab, 2015). In response, observation of a particular pattern or abnormal behaviour was born

as behaviour-based scanning(Ding et al., 2014). For example, malware is better able to watch when it has

been placed in a virtual environment such as a sandbox. Yet, detecting malware using behavioural analysis

involves heavily instrumenting the operating system. Besides, it is time-consuming to observe programs

as they run for suspicious or malicious behaviours in order to stop them(Mohammed, Mohammed, and

Saraee, 2016). Over above that, many behaviour solutions are exclusively cloud-based which may be an

issue for some organizations. Putting it all together the scheme of each approach is illustrated in Figure 2-4

30

 `

i i

based on gain knowledge of present works by (Wang et al., 2013)(Wang and Wang, 2015)(Hu and Tan,

2017)(Alazab, 2015).

Figure 2-4 Malware Analysis Scheme

Some malware detects a specific registry key related to a virtual environment, allowing the threat to evade

an automatic sandbox as well as an analyst attempting to dynamically run the suspected malware binary

in a virtual machine(Mehra and Pandey, 2016). Both signature and behaviour-based malware detection are

important and have advantages. These methodologies, while valid, waste resources and are imprecise

because they assume that neither the malware nor its behaviour will mutate. Theoretically, behaviour and

signature-based approaches hold some promise, but as pure technologies, they fail; as result, usage of these

methods is debatable to detect or predict (Das et al., 2016). In response, a hybrid analysis, specification-

based, is introduced by utilizing both techniques. The scheme of each technique is illustrated in Figure 2-4.

31

 `

i i

Figure 2-5 Taxonoly of Malware Detection Techniques

The authors(Yewale and Singh, 2017) in explained that features analysis conducted by analysing bytes,

binary, and disassembly. This type of analysis measured certain patterns in the malware and was

exemplified by(O’Kane, Sezer and McLaughlin, 2014), and(Ekhtoom et al., 2016).

32

 `

i i

2.7 Techniques over Malware Detection

The ability to detect both known and unknown or zero-day threats provides a huge benefit for businesses

that simply cannot afford the potential downtimes, data breaches, and remediation costs resulting from

mitigated malware attacks.

In the authority of Internet Security Threat Report released by Symantec in 2016 (Security and Report,

2017), over more than 357 million new variants were observed in 2016. Thus, signature-based detection

is not scalable when there are more than hundreds of new signatures every day, let alone when there are

hundreds of thousands. With the daily creation of nearly one million unseen and newly establish attacks,

the existing anti-malware systems which are based on signature and behavioural mechanisms cannot

practically challenge this issue (Gandotra, Bansal and Sofat, 2016). In order to solve this issue, the

utilization of machine learning aided has been effectively employed along with the integration of static

and dynamic approaches.

The characteristic of obfuscated viruses poses a great challenge to the security professionals leading to the

deployment of integration of ML techniques(Comar et al., 2013)(Mohammadi and Hamzeh, 2017)(Bot,

2017)(Alazab, 2015). Malware is grouped into a malware family according to its particular functionality.

Nevertheless, the attacks of same malware families are very similar in terms of file content and

characteristics(Liangboonprakong and Sornil, 2013).

Suitably, features analysis key argument is that no matter what code is being executed, the end result is

still the same. Subsequently, with grouping similar sophisticated malware attacks together, discover a new

group of threats will accrue.

From the perspective of a growing number of unique malware samples, it is important to group similar

malware variants for two main reasons. First relates to human resources: malware analysts do not have to

analyse every single variant, just some representative samples(Nissim et al., 2014). The second reason it

is linked to the fact that grouping variants from the same family could help anti-malware companies to add

generic detection for that family(Liangboonprakong and Sornil, 2013)(Canfora et al., 2015)(Milosevic,

Dehghantanha and Choo, 2017). Bilar (2007) for first time lesser frequent opcode could be used to identify

polymorphic and metaphoric malware. He demonstrated the malicious code has a lower basic block count,

implying a simpler structure. Santos et al. (2013) computed the cosine similarity between opcode sequence

length n of 2 variant and the other variants of that specific malware family each malware and its set of

33

 `

i i

variants. This model mined the importance of each opcode and evaluated the repetition of opcode group

to discover obscure malware families. This approach is consistent with literature (Hu et al., 2013). Code

instruction in variants malware type may tend to change; however, distinct frequent sequential patterns

and its association may homogeneous in a malware family(Hu et al., 2013).

Figure 2-6 Overview of the proposed system by(Hu et al., 2013)

In later papers, reduction in the effort of labelling that is required for the training phase and highlights the

issue of unpacking malware by (Rathnayaka and Jamdagni, 2017) and also (Zolotukhin and Hämäläinen,

2014). The authors (Milosevic, Dehghantanha and Choo, 2017) tested several learning methods and proved

the malware can be detected with a high degree of accuracy using opcode-sequence by supervised learning.

Philip(O’Kane, Sezer and McLaughlin, 2014) used SVM classification to determine the ability of N-gram

analysis. Their study presented dynamic N-gram analysis for N<= 4 clearly spot an opportunity for

detecting obfuscated malware.

Malware analysis has been investigated extensively, however, shortcomings still exist for advanced

malicious software which is specifically crafted for such target sectors: Healthcare, Defence, Aerospace,

Government, Media, and Universities(Shenwen, Yingbo and Xiongjie, 2015). What follows describes

these methods.

Table 2-7 Comparison of opcode in Malware Detection

File

representation

Reference Techniques Merits Demerits

Opcode

sequence

(O’Kane,

Sezer and

McLaughlin,

2014)

k-clustering

centroid mean

Improve detection

with a classifier

Not metamorphic,

Runtime

performance unclear

34

 `

i i

Opcode

frequency

(Yewale and

Singh,

2017)(Chandran,

Hrudya and

Poornachandran,

2015)

SVM, Random

Forst, BOOST

and Decision

Tree

Random Forest

provided better

accuracy and zero

per cent false

positive ratio.

Classify malware

only into two

categories:

goodware or

malware

The frequency

of Opcode

sequence

(Santos et al., no

date)

Computation

the mutual

information

Static-based

Able to detect the most

number of malware

variants whilst the

number of false

positives is kept to 0

Able to distinguish

benign executables

The longer sequence

didn’t use as features

An experiment

performed with a

small malware

dataset(1319 malware

and 13000 benign)

(Zhang et al., 2011) explored that a dynamic system relies on fuzzy inference based on hidden malware

behaviour. Although the proposed technique produces a retail model of malware; change of input data

characteristics require re-training of the whole model. This is a critical issue when malware detection

requires a fast update of the decision rules while adding new characteristics. The developed rules should

be tested, modified and further tested and modified again in order to reduce false negatives and false

positives. Anyhow, false positives are unavoidable but they can be kept low(Mohammadi and Hamzeh,

2017).

In the next subsection, firstly classification of malware families discussed. Next the use of clustering and

data mining argued.

2.7.1 Classification of Malware

The ML model is considered more practical which the trained model can be used to detect similar data. In

other words, data can be scored against a trained model, with higher scores indicating a higher degree of

similarity to the training data. However, malware functionality it remains the same while its structure is

changing. The metamorphic generator presents malware files look like benign files. Therefore, apart from

an indication of malicious code from benign; identification of malware families (multiple classes) is

another way to allow malware analysts to uncover zero-day threats(Ling, Putra and Ling, 2017).

35

 `

i i

A common single classification method designs either by utilizing the collection of static or dynamic

features of a malware. However, the current trend in the identification of malicious code is to integrate

both techniques to prevent malware users to evade defences. Islam et al (Islam et al., 2013) tested the first

classification method which equipped with combination of static and dynamic information into a single

training test. Based on their finding, Random Forest ML technique performed the best accuracy to classify

the latest malicious code.

Motivated by the Hidden Markov Model (HMM) based classification system, (Thunga and Neelisetti,

2015) were able to identify the family of metaphoric malware files. The authors trained and tested multiple

HMM’s to measure score of a family virus-based opcode sequence similarity. The proposed technique

gave an accuracy of about 90% in each virus samples. In addition, the author concluded computation based

on distance to centroids in K –means provided considerable result in terms of precision and overall

accuracy. In their method first, extract features from it by HMM models. Similarly, Gharacheh et al. (2016)

tested the idea of combining different approaches to increase the efficiency in terms of time by using

trained HMM in two layers based on the important sequence of the opcode. These techniques are aimed at

deriving a model that captures the similarity of a given metamorphic family. Yet, the important factor of

malware group similarity of viruses is not considered (Rezaei and Afraz, 2016).

Similarity and metamorphic detection Software similarity is a potentially helpful recommendation for

detecting metamorphic malware. In this regard, malware creators commonly redistribute the original

malware code to increase the likelihood of evading current recognition mechanisms (Ucci, Aniello and

Baldoni, 2017)(Luo, Ming and Wu, 2017).

The appearance of malware is different even in one family which making it difficult to identify a common

feature of each group. Moreover, it is ambiguous to what extent it is essential to retrain the classifier with

new files. Thereby, a feature selection method which improves the classification of advanced malware

families could be extended to unsupervised learning approach.

2.7.2 Clustering of Malware

One of the most popular approaches to data mining is clustering methods. In recent years, various

research has introduced new thresholding techniques based on data mining or subsets to control the noises

of data like malicious codes. Due to the complexity and high volumes of malware on daily basis usage of

data mining is increased in the area of cybersecurity publication(Fraley, 2016) (Gandotra, Bansal and

Sofat, 2016) (Ye, 2017) (Souri and Hosseini, 2018).

36

 `

i i

Since uncertainty is an intrinsic characteristic of a malicious program; the role of fuzzy methods will

help to filter virus threats and also fight with a zero-day virus attack. Recently, the study of Neuro Fuzzy

(NF) has been reported by (Shalaginov, 2017)as a mechanism for proactive malware detection. This

method is covered limitations of methods in which require retraining of the whole model as authors argued

in. The proposed is upgraded their previous work in a way that reduces the rate of malware misdiagnosis

from VM and decreases inaccurate analysis results by malware detectors. Three of the most well-known

methods for grouping observations in a cluster analysis are a single linkage, complete linkage, and average

linkage. The choice of distance measures is very important, as it has a strong influence on the clustering

results. For most common clustering software, the default distance measure is the Euclidean distance.

2.8 Dealing with Advanced Persistent Threats (APT)

Dealing with the exponential growth of APT attack together with evading techniques is a serious concern.

Since the attackers behind the APT want both convenient and deniability. APT attack detection techniques

are evolving and facing open issues. On the report of FireEye, APT attackers receive direction and support

from an established nation state. Whether their mission is to steal data, disrupt operations or destroy

infrastructure, these threat actors tenaciously pursue their goal using a wide range of tools and tactics. To

detect malware link to still, the security team should pay close attention when their security tools detect

malware linked to previous APT attacks. APT ecosystem is a group of advance malware families that work

together to perform the same objective. A malware family is a collection of malware in which each sample

shares a significant amount of code with all of the others. Perhaps the simplest and most typical ecosystem

is a dropper and a backdoor that is used tighter. They may not share the same code structure, but they are

related because one drops and installs the other. Therefore, detect APTs is a challenge and requires and

hybrid approach to detect and remediate.

2.8.1 Common Techniques to Detect Advanced Persistent Threats (APT)

An APTS is typically a more sophisticated attack in which an unauthorized user gains access to a system

or network and remains there for an extended period of time without being detected. The current lack of

automatic and speedy labelling of a large number of unknown APTs samples seen every day leading to a

low detection rate of new malware samples in the wild. As the number of clusters is ambiguous and it is

not easy to mention beforehand according to have prior knowledge of the dataset. Hence K-Means

clustering as a hard clustering algorithm is not suitable for this particular problem (Wang and Zhang,

37

 `

i i

2007). Conventionally, intrusion detection systems have been categorized as signature-based or anomaly

based.

The authors (Shenwen, Yingbo and Xiongjie, 2015) reviewed the available literatures on APTs attack

detection and introduced an architecture based on big data processing. The proposed detection system

performs trace back and predicate APTs attack, as well as increase the APTs, attack warning. Until date,

these issues have not been answered properly.

While opcode is considered an efficient feature for malware detection, there has been limited attempt to

use opcode mining for APTs malware classification. This could be, perhaps, due to the lack of suitable

research datasets and the difficulties in collecting APTs samples. In addition, using machine learning for

robust malware detection in APTs appear to be another understudied topic. Hence, in the paper, we seek

to contribute this gap by exploring the potential of using Opcodes as features for APTs classification with

unsupervised learning. Accordingly, ML approaches have capabilities to discover and predict data

breaches attributed by obscure malware.

2.9 Summary and Remarks

There are a few observation that can be made about the growing trend in advanced malware detection:

a. The traditional signature-based are purely based on signature have zero resilience against new

attacks of self-modification malware variants at runtime. Hence, this type of defence approach lacks

the ability to specify a new threat. That is why usage specification-based take into consideration to

address this deficiency.

b. An issue with the behavioural-based methods to evaluating whether the suspicious behaviour on the

system, is that the information about a sequence of an event like API calls is insufficient. Moreover,

the complexity of the approach makes the system works slower. More importantly, this approach

requires the involvement of security expertise to determine a program is malicious which is resource

consuming and also time exhaustive.

c. Specification-based approaches to developing an ML malware detector. For this reason, detectors

which are entirely based on heuristic have a very low resilience against new attacks of metamorphic

malware families.

d. Malware analysis approach is a potential method for attaining a complete understanding of new

malicious behaviour. The integration of both static and dynamic analysis is used conduct to high

38

 `

i i

performance and time-effective malware systems. Still, the main problem with this system is the

high false positive and false negative rate. Nevertheless, the process of developing an automated

classification model which are based on features obtained from static and dynamic analysis

frequently is time to consume with high accuracy due to the large feature set.

e. Signature based methods must be along with another approach that can able to detect unknown

malwares. The machine learning is a suitable approach to complement classical signature based

malware detection system.

f. Malware detection is similar to other related fields, such as software plagiarism and text

categorization techniques. In the analogy to text categorization, using words or sequences of words

as features is analogous to using the opcode group.

g. It does not appear to be any previous work involving similarity techniques or analysis for APTs

classification.

h. Data mining is a close relative. It focuses on using machine learning, pattern recognition and

statistics to discover patterns in data. Besides, clustering would fall into the machine learning/pattern

recognition realm.

Summarizing briefly, malicious code detection, which is considered as a sort of pattern recognition could

be fairly solved by integration of both data mining and clustering algorithm. Data mining and clustering

are complementary technologies. This combination method will articulate both advantages of the two,

from mining relevance features, learning abilities, optimization abilities, connectionist structure to

clustering. Sharing of structural information of malware types based on attributes and hidden links is

consider a method to detect known and unknown malware.

39

 `

i i

Chapter Three

Methodology

3 Overview

As discussed earlier, the goal of this work is to assess the capability of using link analysis concept as rule

mining with the integration of unsupervised machine learning approach in malware family classification.

The hypothesis is shaped in a way that this work is given sufficient static analysis, the clustering algorithms

may form well-separated malware sample to the respective family. The basis for the proposed techniques

and the underlying research methodology are presented next.

3.1 Fundamental Techniques and the Proposed Models

In the section, the techniques, tool, and languages are inputted in this research is covered. Next, clustering

techniques are discussed. Followed by dealing data for ML. Since each programming language has its own

advantages for each specific task one language hasn’t been chosen for the entire project but it always uses

the one with lowest implementing costs for each given task. The research idea is driven by (Rathnayaka

and Jamdagni, 2017), visible in Figure 3-1.

The proposed framework consists of three major phases (A, B, and C), namely: Feature Extraction,

Feature Selection, and Selected Algorithm Assessment. To establish each phase from A to C the necessary

steps are show cased in details in each phase. The idea behind the approach is structured by the proposed

approach in (Hu et al., 2013).Phase A is accomplished by a mixture of Python, MATLAB, and Excel

scripts for feature extraction purpose. All the scripts are written from scratch. As stated, phase B practiced

in SAS® Enterprise Miner™ to construct the opcodes graph to demonstrate the feature construction

process. The multiple results of link analysis technique formed into a single dataset to identify factors that

differentiate data segments from the population. Further exploration and profiling of the segmentation

results will reveal how effective this method is at identifying segments. For this reason, Phase C is shaped

to do the process of partitioning task. Data clustering is adopted to generate valuable features for future

data-driven decision making. Finally, results of phase C is verified in the same phase.

40

 `

i i

The task is to develop the best mechanism for classifying malware files a given dataset into groups. Phase

A and B will be outlined in details in section 3.7. Phase C will be described in 3.8.

Figure 3-1Architecture of the malicious code detector

For this purpose, R-3.4.3 language used since a variety of clustering algorithms and functions are available

both in statistical R packages and libraries. A collection of R Statistical packages/ libraries pack has been

used which is listed in Table 3.2. As stated, the method is assessed with a standard package in which

established leading clustering algorithms from statistics and ME implemented.

Name of the package Key Usage

Mclust

For model-based clustering, classification, and

density estimation based on finite normal mixture

modelling.

To provide functions for parameter estimation via the

EM algorithm for normal mixture models with a

41

 `

i i

variety of covariance structures, and functions for

simulation from these models.

It also included are functions that combine model-

based hierarchical clustering, EM for mixture

estimation and the Bayesian Information Criterion

(BIC) in comprehensive strategies for clustering,

density estimation, and discriminant analysis.

Additional functionalities are available for displaying

and visualizing fitted models along with clustering,

classification, and density estimation results.

Table 3-1 R-packages

The classification of observations into groups requires some methods to calculate the distance or the

(dis)similarity between each pair of observations. The result of this computation is known as a dissimilarity

or distance matrix. Generally, it is recommended to standardize the variables before distance matrix

computation. Standardization makes variable comparable, in the situation where they are measured in

different scales. The results of link analysis in current research provide standard variables. In this research,

common distance measures that best differentiate each cluster are ranked by segmentation analysis and

evaluate by GMM algorithm.

Figure 3-2 Clustering Distance

There are many methods to calculate this distance of observations. Common distance measures in

unsupervised algorithms iteratively collects points/groups together until the desired number of clusters

enlisted. The distribution of observations after conducting link analysis is visible in Figure 3-3.

42

 `

i i

Figure 3-3Malware samples for clustering

According to the research objective we want our clusters to be as compact and separated as possible. In

the following section, the justification why the Expectation Maximization clustering using GMMs

implemented in Phase C provided. The most leading clustering algorithms-namely Centroid-based

clustering (k-means, k-medoid), Connectivity-based clustering (hierarchical clustering), and Distribution-

based clustering (Expectation Maximization /Gaussian mixture models) briefly explained as follow.

3.2 Expectation Maximization (EM) Clustering

The Expectation Maximization (EM) algorithm is a soft clustering technique. It used for the iterative

computation of maximum likelihood (ML) estimates. The EM algorithm is commonly used for estimating

the mixture model density. Moreover, it is useful in a variety of problems where the data may be viewed

as incomplete data. Wherefore, EM can be viewed as clustering based on “hidden” probability distribution.

Gaussian probability distribution employed to assess the strength of association between clusters and

instances.

3.3 K-means and K-medoids Clustering

Key points of K-Means is summaries in Table 3-2. As discussed in chapter two, hierarchical clustering

is a good tool for exploratory analysis in multivariate statistics whereas K-means clustering is a good tool

for modelling. K-means clustering allows the observations to be moved from one group to another

APT Kaggle

43

 `

i i

throughout the algorithm, a process that does not occur in hierarchical methods. The results of the

hierarchical cluster analysis are used to set k in the K-means cluster analysis.

Table 3-2 K-means algorithm key points

K-Means Algorithm Key Notes

Takes the number of component of the population equal to the final required number of clusters

Examines each component in the population

Assigns it to one of the clusters depending on the minimum distance

Centroid’s position it recalculated every time a component is added

Unable to handle noisy and outliners

Need to specify k, the number of clusters, in advance

It is hard to assign number of clusters when the overlapping occurs in soft clustering. K-means uses

Euclidean distance to the centre. Therefore, if the clusters define by non-circular shape K-means cannot

discover with this type of assignment of features. K-medoid or pam is based on centroids or medoid. Both

k-means and k-medoids algorithms are breaking the dataset up into k groups. That is, we determine the

parameters of K probability distributions that specify the clusters. Moreover, they are both trying to

minimize the distance between points of the same cluster and a particular point which is the centre of that

cluster. In contrast to the k-means algorithm, the k-medoids algorithm chooses points as centres that belong

to the dataset. The most common implementation of the k-medoids clustering algorithm is Partitioning

Around Medoids (PAM) algorithm. PAM algorithm uses a greedy search which may not find the global

optimum solution. While medoids are more robust to outliers than centroids. However, they need more

computation for high dimensional data.

3.4 Hierarchical Clustering

Hierarchal is an approach for clustering one data point in more than one clusters. In hierarchical cluster

analysis, it is important to consider a few different linkage methods to identify which method appropriately

clusters the data type such as single, complete, average linkage or Ward. The comparison between the above

algorithms is summarized in Table 3-3.

44

 `

i i

Table 3-3 Clustering comparison

Clustering name K-means Heretical clustering

Advantages Assign each data point to

exactly one cluster

Simple

Fast(usually scales linearly)

Simple

Can produce a tree for

visualisation

Disadvantages Used Euclidean distance

Don’t play well with non-liner

data

Need to specify a value for the

number of clusters in advance

Sensitive to noise and outlines

Slow

3.5 Why EM?

When the class for each observation is unknown and estimation of them is target of clustering we can

use the GMM model. GMM fitted via Expectation-Maximization (EM) algorithm has been used for model-

based clustering, classification, and density estimation, dimension reduction for visualisation-means and

EM in the sense that each data point is assigned to a cluster, they perform the same step. In EM, significance

of statistical distribution of variables in the dataset is the measure. Therefore, every point has a probability

of being associated with every cluster. For this reason, it can be viewed as “fuzzy” approach to clustering.

Moreover, both K-means and hierarchical clustering work on heuristic approach to build clusters, and do

not rely on a formal model. Model-based clustering assumes a data model and applies an EM algorithm to

find the most likely model components and the number of clusters.

3.6 Obtaining and Dealing with Data

Before embarking upon a statistical cluster analysis, there are certain data cleaning and data preparation

steps that should be countered. The process of phase A and B are outlined in this section. The following

steps are customized in fulfilment of the research objectives II to VI.

 Data Collection: the first step needs to collect the malware hashes from various resources.

 Data Preparation: the second step is to download the file and recognize unpacked malware samples.

 Feature Extraction: raw source code extracts from each sample.

45

 `

i i

 Data Cleaning: filtering irrelevant information.

 Feature Construction: the data even after cleaning are not ready for clustering as it needs to be

constructed as variables. The basis variables used in the cluster detection algorithm should represent

characteristics of malware samples.

 Feature Selection: variables with little relationship to the target were excluded from the analysis.

3.6.1 Data Collection

Ideally, to work on datasets which are meaningful to our research aims, it was necessary to find and

download samples consisting of various advanced malicious files. If data collect from standard repositories

and comes from multiple families, it could build a robust model. For the sake of learning and practicing

the various algorithms, there are a few websites available which provide academic or publicly available

datasets. The researcher obtained a total of 500 samples from Kaggle, VirusTotal, VirusShare, Contagio

and also FireEye. The samples were also evaluated through the peer review process by Virsutotal

Intelligence platform.

In phase A, collected malware hashes uploaded to www.virustotal.com to download their file. Virsutotal

is a web interface which is a virus scan program integrated with several different antivirus engines into a

single web interface. A large corpus of APTs downloaded in this way, see Figure 3-4.

Figure 3-4Download process by Virsutotal Intelligence

http://www.virustotal.com/

46

 `

i i

An experiment has done in VMware. All malware were verified from Virsutotal and FireEye websites.

3.6.2 Data Preparation

Once datasets are collected. The next step is to find out unpacked files to have consistency in each sample

datasets. This evaluation is done by the usage of Exeinfo PE, see Figure 3-5.The next challenge was static

analysis.

Figure 3-5 Examine malware file

3.6.3 Feature Extraction

To capture the necessary opcode information is done by some static analysis that has been developed and

ready to use, like IDA Pro 32/64. IDA Pro is included in best lists as claimed by statistical analysis

launched by SAN institute. It used to disassemble a malware program into a sequence of machine

instructions that are then used for feature extraction, see Figure 3-6. A portion of opcode generated by IDA

Pro pointed in Figure 3-7. The gain information from this part is saved in an excel file for each individual

malware sample.

47

 `

i i

Figure 3-6 Example Disassembly opcode

Figure 3-7Static Analysis-IDA Pro

All information collected during static analysis was compiled into a single database for each malware

family.

3.6.4 Data Cleaning

The gain information from the previous stage contains opcode, instruction reference and also redundant

data. Thus, all operands, labels, directives, etc. are discarded only retain the mnemonic opcode.

Chunk of Opcode

48

 `

i i

The filtering process has been done by MATLAB script and a Macro in Excel file to generate static

opcode sequence, visible in Figure 3-8

Figure 3-8 Procedure of Data Cleaning

49

 `

i i

The obtained data from this step, it serves as a means to convert the capture opcode sequence into a raw

dataset.

3.6.5 Feature Construction

Usually, there are thousands of rows (opcodes) representing individual malware type. As per research

objective, it is necessary to understand and check source code relationships and links prior to running a data

clustering technique. As it mentioned in section 2.5, Link Analysis tailors code instructions to opcode

features. For this purpose, opcode sequence of each sample was captured and added to an individual

repository for each family. Table 3-4 partically illustrates such a repository for class number one.

Table 3-4 Opcode Sequence -Gatak Family

To gain a better understanding of the relationship betweeen opcodes in the network, link analysis performed

separately for each class, visible in Figure 3-9.

Figure 3-9Shame of Link Analysis process diagram

50

 `

i i

Figure 3-10 Link Analysis process diagram

After the run completes successfully, the results and generate valuable insights are available. The results

view generates several outputs to allow us to explore the data, discover the associations and view them

51

 `

i i

graphically in a network graph, view multiple centrality measures as well as show scoring results, see

Figure 3-11.Besides, Link Analysis node builds a full rule set (a network of opcode) and then prune to the

most important rules. The visualizing the relationship between all opcode as items is reported in the

separated window.

Figure 3-11Sample Link Analysis output

The reports revealed the associations, relationships, structures, and patterns among opcode sequence.

Based on the association rules and centrality measure, a bunch of continuous variables produced. These

variables consider as opcode features which mentioned below:

opcode, weight, centr_degree_in, centr_degree_out, centr_degree, centr_close_wt, centr_close_in_wt,

centr_close_out_wt, centr_close_unwt, centr_close_in_unwt, centr_close_out_unwt, centr_between_wt,

52

 `

i i

centr_between_unwt,centr_influence1_wt,centr_influence2_wt,centr_influence1_unwt,centr_influence2_

unwt, centr_cluster

Figure 3-12Items Constellation Plot-Gatak sample Group

In the new dataset, there is an apparent good mix of variables which explain the difference between the

groups. Therefore, the primary dataset consists of N observations and 17 variables, see Table 3-5

Table 3-5 Featuers names

 The result measured the redundancy between variables which means that it can be beneficial as it can

identify similarities among these observations. These attributes can be meaningful to segment and classify

observations which are justified in section 5.1.

53

 `

i i

3.6.6 Feature Selection

Prior to developing predictive models, it is recommended to exclude variables which are unnecessary or

irrelevant to the stated dimensional reduction objective. Feature selection methods are normally used to

reduce the number of features considered in a classification task by weeding out meaningless features.

Thereupon, data segmentation analysis as a scalable feature selection method used for mining meaningful

opcode features, refer to section 5.2.

54

 `

i i

Chapter Four

Design and Implementation of Research

Case Studies

4 Overview

This chapter explains the steps have been taken to complete the Link Analysis process. A sample of 500

malware used to visualize and illustrate which equally divided into two case studies. Two malware datasets

which consist of different malware types of known family used. The two case studies are outlined in details

in sections 4.2 and 4.3. In both case studies, a similar process employed. A separate experiment is conducted

for each of the malware datasets listed below:

 Classifying Kaggle into families (Ramnit, Lollipop, Kelihos_ver3, Vundo, Simda, Tracur,

Kelihos_ver1, Obfuscator, and Gatak)

 Classifying APTs into groups(APTs1,APTs28,APTs29,APTs30,APTs33)

4.1 Opcode Mining

Opcode structure extracted by utilizing static analysis via IDA Pro 32/64. Figure 4-1 exhibits part of source

code. Disassemble samples were compiled into a single database for each malware family. The gain

information contains opcode, instruction reference and also redundant data. Thus, all operands, labels,

directives, etc. are discarded only retain the mnemonic opcodes. The filtering process has been done by

MATLAB script and a Macro in Excel file to generate static opcode sequence.

Figure 4-1Assembly code example generated by IDA-pro

55

 `

i i

As a case in point, the static opcode sequence corresponding to the example in Figure 4-1 is:

call, push, lea, push, push, call, add, test, jz

The obtained data from this step serves as a means to convert the capture opcode dataset into a raw dataset.

Thus, all sequences of opcodes of each family inserted as observation into a CSV file. This way it will be

easier to turn it into vectors since data mining algorithms work by performing computation on vectors.

4.2 Kaggle Case Study

A free set provided by Microsoft for a competition is used. Kaggle datasets are widely used for research

and studies on malware. This dataset constructed a collection of nine families which contains about 10,000

labelled data instances in total. The size dataset is enormous, therefore a smaller subset randomly is chosen

for faster evaluation of the proposed approach

4.2.1 Dataset Characteristics and Pre-processing

This dataset constructed a collection of nine malware families. A brief description of each class is provided

below according to the Microsoft threat intelligence archive:

 https://www.microsoft.com/en-us/wdsi/research/antimalware-security-research-papers.

 Gatak (class 1) is a spyware usually hidden in key generators (a piece of software generating product

activation key, usually created by hackers) or as an update to the regular application.

 Kelihos_ver1 (class 2) is a Trojan and a spam bot. It usually sends messages containing links leading

to a virus installer. Some versions of this malware also capture sensitive data about the user, therefore

it can be classified as spyware as well.

 Kelihos_ver3 (class 3) is just another version of Kelihos_ver1described above. Its functionality is

similar, it is just a different implementation.

 Lollipop (class 4) is an adware which shows ads in the browsers. In addition, it often monitors the

activities of the user via search engines. It is usually distributed as a browser add-in with some third-

party software. It affects all main browsers: Fire-fox, Microsoft Internet Explorer and Google

Chrome.

 Obfuscator (class 5) is, as the name suggests, a tool for hiding other malware from being discovered

by antivirus and antispyware software. The hidden malware can be any-thing. This makes this

category very hard to detect.

https://www.microsoft.com/en-us/wdsi/research/antimalware-security-research-papers

56

 `

i i

 Ramnit (class 6) is a spyware trying to steal financial, banking and social accounts from the PC.

Moreover, it disables all Microsoft Windows security features (antivirus, firewall, and User account

control).

 Simda (class 7) is a Trojan and a spyware. It steals your passwords and sends them to virus creator.

 Tracur (class 8) is a Trojan adware redirecting your searches to advertisement pages. It can

download other malware as well. Some implementations are even creating back door for a hacker,

thereupon they can take over a system.

 Vundo (class 9) is an adware and a virus. Additionally, it shows unrequested pop-up ads and

downloads other malware and installs it on the system too.

Once opcode excels sheets of each family is generated, it would be ready to feed into SAS.It can be

seen from Table 4-1 that the number of rows (opcodes) that belong to each class is different.

Table 4-1Kaggle raw dataset

Family Name Number of Opcode Sequence

Gatak 136465

KelihosV-1 38797

KelihosV-3 43533

Lolipop 895597

Obfuscator 343722

Ramint 1000000

Smida 67836

Tracur 184399

Vundo 56445

4.2.2 Experimental Set up and Reports

In what follows, the focus will be less on the details of the mathematical algorithms used and more on the

visual interpretation of the outcomes. In the figure that appears in the next page the processing completes.

57

 `

i i

Figure 4-1 Link Analysis process diagram

One of the powerful advantages of link analysis is to convert association and/or sequence rules into network

graphs. Each link chart designs according to centrality measures computation. Clustering algorithms could

be developed by using these centrality measures-namely degree, betweenness, closeness, and eighnvector

(Liu et al., 2014). Centrality measure qualifies how important a node is in the association community. It

provides information about which variables are meaningful. These variables will be passed as inputs to the

variable clustering node in order to select interesting variables associate with each group. These variables

formed as raw dataset in MS Excel format and then it uploaded into variable clustering node. Potentially

useful features will be pulled out which enhance segmentation of clustering. Part of these variables is shown

in Table 4-2.

58

i i

As the Figure 4-2 illustrated link analysis produced interesting differentiation among the groups. Interesting

means different forms of link maps which present relationships and connections in opcodes.

Figure 4-2Link Analysis Windows Output -Kaggle Dataset

59

i i

Gatak windows output is provided in Figure 4-3.

Figure 4-3Gatak windows output

Extracted calculation of centrality measure can be accessible by reports, see Table 4-2.

Table 4-2 Variables in the Kaggle dataset

60

i i

The result of each class analysed carefully and structured meaningful features for next step which is data

segmentation analysis.

Figure 4-4 Gatak distribution Opcode weight

The node weight of an opcode is the frequency of it. Figure 4-4 and Figure 4-5 simply illustrate which

opcode is the most popular in two different families.

To give an example, ,cmp,jnb,jnz,jz,lea,mov,or,pop,push,sub,and xor are the most popular opcode with

weight of 15 in Gatak family. On contrary, fcom,fld,punpc,ror,setnl,setnz are unpopular with lowest weight

of 2.

Node=xchg

Weight =47

61

i i

Figure 4-5 KelihosV-1 distribution Opcode weight

From the thickness of the link, the most frequent opcode can be seen. Link Analysis node provides a very

powerful visualization of Opcode-malware relations, visible in Figure 4-6 and Figure 4-7.

62

i i

Figure 4-6 Lolipop Opcode Network

cmp node the height weight =15

ror node the low weight =2

63

i i

Figure 4-7 KelihosV-1 Opcode Network

The plot gives association graphs among opcode nodes. For more specific data, if a single node or a

pattern of node to node linkages is “interesting” the investigator can select one or more nodes for further

reporting. Figure visualized a single opcode ‘cmp’ with its neighbours. The size of nodes represent the

support of opcode and the thickness of the link represents association strength between opcode.

64

i i

Figure 4-8 Links among selection, Constellation ‘cmp’

Graph based visualization sketches the weight of the nodes and links which represent features vectors as it

showed in Table 4-2.Two malicious codes are judged to be similar to each other according to the association

support and minimum confidence. Furthermore, sequence discovery presented based on order opcode

orders. The Rules Table displays information about each rule that was generated – the Support, Confidence

and Lift, as well as the number of occurrences and the items in each rule. Which rules have the highest

Support is matter in terms of knowledge discovery process. Figure illustrated the association rule for Gatak

family, and part of rules yields the following Table 4-3.

Table 4-3 Sample rules from Gatak family analysis

65

i i

Since these values are different from one family to another one and such can be expressed as follows, see

Figure 4-9.

Figure 4-9Rule statistics-Gatak family

Rule ID=1

Transaction count =51

Rule=jnz==>or

66

i i

Sample exploratory plot of opcode ‘cmp’ is visible in the following figure.

Figure 4-10 Opcode constellation plot for ‘cmp’

A few outliers in the data spotted in each plot, example provided in Figure 4-11.

Figure 4-11 Relationship between cmp and other opcode based on rules

Finally, extracted weight centrality measures values is built Kaggle primary datasets.

67

i i

Figure 4-12Kaggle Primarily dataset in RStudio

Additional reports are available in appendix A .These reports used interactively, nodes and kinks to

provide more detailed information.

4.3 APTs Case Study

For current experiments, the primarily focus is on five dominant APTs groups, namely, group number 1,

28, 29, 30, and 33. A collection of malware samples from each group is 50 files. This is first collection of

APTs samples which is available now for other researcher. Hashes of APTs group number 1 retrieved from

VirusShare https://virusshare.com/torrents.4n6, see Figure 4-13, other hashes were collected from FireEye

cyber threat intelligence reports. FireEye is an American company regularly publishes cyber threat

intelligence reports that include hashes of APT groups https://www.fireeye.com/current-threats/threat-

intelligence-reports.html.All corpus of APTs downloaded from VirustotalIntelligence. This is first time

APTs samples were collected from different groups for research purpose. The dataset is available on

GitHub.

https://virusshare.com/torrents.4n6
https://www.fireeye.com/current-threats/threat-intelligence-reports.html
https://www.fireeye.com/current-threats/threat-intelligence-reports.html

68

i i

Figure 4-13APT1 hash dataset

4.3.1 Dataset Characteristics and Pre-processing

Standard APTs groups according to FireEye is used in the research.A number of observations associated

with each family presents in Table 4-4.

Table 4-4.APTs raw dataset

Group Name Number of Opcode Observation

APTs1 244098

APTs28 1964498

APTs29 529931

APTs30 391935

APTs33 1000000

4.3.2 Experimental set up and Reports

The experiment setup for is the same as in the previous section. Link Analysis process diagram is shown

below:

Figure 4-14APTs Link Analysis process diagram-APTs

69

i i

After running the link analysis node, a variety of standard graphs can be displayed. The result of this

model is illustrated below:

Figure 4-15Link Analysis windows output- APTs dataset

The delivered weighted links and nodes from each APT family is presented in following pages (from

Figure 4-16 to Figure 4-20.)

70

i i

Figure 4-16 opcode Network -APT1

Figure 4-17 Opcode Network-APT28

71

i i

Figure 4-18Opcode Network-APT29

Figure 4-19 Opcode Network-APT30

72

i i

Figure 4-20Opcode Network-APT33

Once all the above processing has been completed, the primary dataset was uploaded into SAS for feature

engineering purpose. Additional reports are available in appendix B. These reports used interactively,

nodes and kinks to provide more detailed information.

4.4 Summary

With prepared primarily dataset of each case study we intended to identify whether constructed features can

be segmented meaningfully in the view of malware classification. This objective successfully achieved by

usage of variable clustering and segmentation algorithms in SAS.

73

i i

Chapter Five

Models Assessment for Feature

Engineering

5 Overview

In this section, the performance of feature construction and selection models are investigated. To

illustrate the usefulness of these models in feature engineering, we selected segmentation analysis and

Gaussian Mixer Model. The performances are evaluated based which will be discussed further.

5.1 Validity of the Feature Construction Model

Ultimately, link analysis, like any data mining analysis, needs to prove its value as a feature construction

method. To examine the efficiency and effectiveness of this method for malware classification

segmentation analysis are used. Segmentation strategy across all dimensions execute and analyse the

extracted feature relationships. In the context of business data mining, segmentation analysis has been

applied for marketing or customer contact strategy(Y. Liu et al., 2014) .The unlabelled data is partitioned

correctly by this prediction method. Suppose a dataset consists of n malicious samples, the partitioning

method construct k partition and k < n. It means that it will classify the malicious sample into k group, in

a way that each group contains at least one sample. Beside, each malware must belong to exactly one

group. The following diagrams created to represent clusters or segments, see Figure 5-1.

A common strategy prior to developing clusters or predictive models is to reduce the number of variables

to a more manageable uncorrelated, non-redundant set. Finding interesting regularities in large malware

datasets is can be possible by using decision Tree methodology. The segmentation analysis attempts to

evaluate the overall value or importance of the variable over the fitted tree. For instance, if variable A has

a variable importance higher than variable B then variable A can be said to have a larger impact on the

clustering model. Keeping track of where each observation was placed and how each cluster is expanding

can be achievable by variable clustering and segmentation techniques. The aim is to segregate groups with

similar traits and assign them into clusters.

74

i i

Figure 5-1Segmentation process diagram for both case studies

 Segment Profile node scans clustered data and pulls out the factors that differentiate data segments

(clusters/groups) from the population reflects the finding of the author(Thompson, 2008). As specified to

the relationships between variables and observations in a dataset; objects will be grouped. The

segmentation node selected nine clusters in Kaggle primary data and five in APTs primary data as seen in

the segment size pie chart of Figure 5-2.

Figure 5-2 Segment Size: Cluster window generated by Segment Profile Node

Referring to Figure 4-2 and also Figure 4-15 a significant difference between families can be seen. A group

of partitioning clustering algorithms is used to partition a data set of n objects with 17 features into 9 groups

for Kaggle, 5 groups for APTs. The results indicate the ‘correct’ number of clusters correctly in both case

studies. The figure shows the distribution of Kaggle observation based on first two weight centrality

measurement features. Once an observation has been included in a cluster, it cannot be reassigned. The pie

char can be scaled by count or by percentage of the segment population.

75

i i

Summary of segment:

Segmentation analysis in SAS is based on factor analysis. It can perfume two methods to determine which

variables can be employed to differentiate among segments. The first method works on binning the input

variable to identify their maximum log-worth which is known as ‘variable worth’. Another one creates a

Decision Tree to predict the segments from the inputs and use the Tree methodology of assessing ‘variable

importance’. The first step is to form groups of attributes that express some sort of common theme. The

number of factors is determined using a combination of statistics and knowledge of the category. Once the

number of factors has been calculated, each respondent receives a score for each of the factors. Respondents

are then assigned to the factor that has the highest score. Results of segmentation analysis create a subset of

“important” features and find “meaningfully” related features among malware families. Partial results of

factor segmentation classification are shown in Table 5-1.

76

i i

Table 5-1 Kaggle cluster metrics

The segmentation process used to select the best subset of opcodes sequence. To deal with high

dimensionality, only variables with the highest score used in the secondary dataset. Segment Profile results

with aligned reporting variables exhibit in Variables (segment vs overall) are displayed horizontally in

descending order of importance for each segment/cluster. The distribution charts are displayed for the most

significant variables in each segment, which can be different for each. The columns are well ordered from

left to right according to their ability to discriminate that segment from the population. The green shaded

region represents the within-segment distribution. The orange outline represents the population distribution.

77

i i

Figure 5-3 Segment Profile Distribution

As can be seen from the plat the following five variables have been chosen: _center_influencel_unwt,

_center_close_in_wt, _center_dgree,_center_close_unwt,_center_between_wt. It is the above bar graph that

highest worth variable is _center_influencel_unwt, and the lowest is _center_between_wt. The present

finding reflects in the following pages (Figure 5-4 and Figure 5-5)

78

i i

Figure 5-4Segment Profile Outputs -Kaggle Segment

79

i i

Figure 5-5 Segment Profile Outputs - Kaggle Segment

The output shows the decision tree results of importance for the variable by each segment. The variables

which have been grouped together show obvious similarity relationships. The similarity relationships

provide a very good idea of which variables are dominant in the Ramnit segment. The variable importance

in the Segment Profile node is based on the relationship to the Segment variable. When the depth of the

decision tree used to differentiate among variables is 1, the ‘variable worth’ is used to rank the variables. If

not, ‘variable importance’ is used the rank the variables. A comparison of the outputs is furnished the

variables sub set that can sufficiently help to build cluster and predictive model. These variables can be

segmented various type of malware that has similar opcode structure in each family. From here, the

important variables are pulled out which separate each individual malware family by their worth variables.

The following shows worth variables chart of APTs dataset (from Figure 5-6 to Figure 5-10).

80

i i

Figure 5-6 Segment Value-APT29

Figure 5-7 Segment Value-APT1

81

i i

Figure 5-8 Segment Value-APT33

Figure 5-9 Segment Value-APT28

82

i i

Figure 5-10Segment Value-APT30

As can be seen from the plat the following ten variables have been chosen: _center_influencel2_wt

,_center_influencel2_unwt, _center_close_in_wt, _center_dgree,_center_close_wt,_center_between_unwt.

_centr_close_wt ,_centr_between_unwt , center_influencel1_unwt, _centr_degree_out , _centr_degree_in

will constructed the final APT dataset.

Summarization Kaggle class distribution generated by data segmentation node is presented in Table 5-2.

Table 5-2 Class Distribution in Secondary Kaggle Dataset

There is slight difference between the class distributions in actual vs secondary dataset, see Table 5-3.

83

i i

Table 5-3 Class Distribution in Actual Kaggle Dataset

Following this procedure, a target dataset for testing classification performance is constructed in an Excel

file for each dataset.

5.2 Validity of the Feature Selection Model

Validation of feature selection performance it can be a difficult task. There are multiple methods to

understand the goodness of the proposed model for clustering task. To test how well the segmentation

model partitioned malware observation, Gaussian Mixture Model (GMM) is employed. It utilized to

determine that selected features inherent to malware families are interesting features. The mixture models

not only can estimate the density function but also can provide a probabilistic clustering of the observed

data i (i = 1, ..., n) into k clusters. Gaussian model is developed on the Bayesian theory (Tree theory) which

is based on counting the relative occurrences of observations. K-fold cross-validation is measure too. The

result of it shows the discriminant analysis based on Gaussian finite mixture modelling. Gaussian finite

mixture model fitted by EM algorithm is run. In the following steps we shall show how GMM operations

split the final set of distribution. SAS will not implement model-based clustering algorithms. With R,

Mclust package loaded and the final Kaggle dataset is imported in R as shown in Figure 5-11.

Figure 5-11 Number of Observation of Kaggle dataset

The model-based clustering performed on primary and final Kaggle dataset, visible in Figure 5-12 and

Figure 5-13.

84

i i

Figure 5-12 Classification Model on Primary Kaggle Dataset

85

i i

Figure 5-13 Classification model on final Kaggle dataset

86

i i

To select which log-likelihoods should be used, the function Bayesian Information Criterion (BIC) is

run. According to BIC from Mclust (R package) for the 6 available model parameterizations and up to 9

clusters for the Kaggle dataset. Different symbols and line types encode different model parameterizations.

The ‘best’ model is taken to be the one with the highest BIC among the fitted models. The resulting plot

is shown in Figure 5-14.

Figure 5-14 BIC values and plot for models fitted to Kaggle data

87

i i

A summary of the selected model is obtained as:

Each component is the mixture is what we call a cluster. Mclust uses an identifier for each possible

parametrization of the covariance matrix that has three letters: E for “equal”, V for “variable” and I for

“coordinate axes. The summary is showing the top models are VEV and VVV. Estimation model

complexity by the BIC determined VEV is the best model, visible Figure 5-15.

88

i i

Figure 5-15 Extracted VEV from BIC

BIC fit models with all K of interest and choose the one with largest BIC. Gaussian Mixture Model (GMM)

classifier may not be properly separated as the dataset too small. However, the outcome of clustering

method validate true number of Kaggle dataset. Cluster may be separated but surrounded, see Figure 5-16.

89

i i

Figure 5-16 Classification of Kaggle Dataset

The error in detection was measured as the root mean squared difference between actual and detected

number of clusters in the data. Mismatch between the two can be result from small number of dataset, see

Figure 5-17.

90

i i

Figure 5-17Error Distribution

Estimation the optimal number of clusters depicted in Figure 5-18. This estimation determined the number

of cluster in Kaggle dataset based on gap statistic model. According to this observation, it is possible to

define N=9 as the optimal number of cluster in the data based on segmentation results.

91

i i

Figure 5-18 Optimal number of Kaggle Clusters

5.3 Discussion

A classification-based approach is presented by using common-factor analytic mixture models.

Segmentation analysis attempts to identify significant opcode features of malware types in different families

and also to predict group. How to select informative features from more than two classes is explored and

examined. SAS Enterprise Miner provides a very powerful visualization of opcode relations. The results

showed that the Link Analysis technique for the variable constructor is an efficient method from a feature

engineering technique perspective. The key features within a cluster which present high similarity or

correlation extracted by segment analysis. Our experimental results show that the combination of link

analysis and data segmentation analysis in features engineering can be used to cluster malware families with

a small penalty.

92

i i

Chapter Six

Conclusion and Future Directions

6 Overview

In this chapter discussing the research objectives and lessons learned are presented. The research results

offer an attractive feature selection model a means to reduce feature dimension with an adaptable and

scalable data mining techniques. The method shows to give excellent classification performance on Kaggle

and APTs malware datasets.

6.1 Research objectives revisited

The aim of this research was to better understand feature selection by using the concept of data mining

to uncover unknown patterns of advanced malware which can be used as a classification technique. This

work is very much inspired by the opcode mining technique. Link Analysis as a powerful data mining

technique is used to discover useful associations and sequences hidden in opcode structures. Segment

analysis can utilize link analysis result to discover interesting and similar patterns in one group.

Previous studies relied on n-gram, opcode frequency or sequence patterns whereas we utilized

association rule mining to determine opcode hidden patterns in one malware family. To examine the

difference between each malware groups, link analysis was conducted. We used opcode weights to

calculate the prevalence of opcode observations to test for segmentation clustering. To avoid redundant

rules, we used segmentation analysis. These rules can automatically form a different type of malware to

the respective family if they feed to the training stage.

The Link Analysis rules satisfy some evaluation criterion of family classification. It can be used for

creating new derived variables to use in feature construction techniques. Then, tree-based dimensional

reduction techniques as such segmentation analysis are used to find the promising features.

93

i i

Due to sophisticated techniques, static analysis is performed on malware samples to reveal their intended

behaviour, which was hidden (Bilar, 2007). Additionally, this method provides more meaningful features

for detection purpose compare with behaviour analysis approach(Cosovan, Benchea and Gavrilut, 2015).

Most existing rule inductive learning algorithms have been developed based on single rule evaluation

measures. Research results indicate that Link Analysis method has led to a desirable number of families

based on segmentation analysis. This model of feature engineering is developed based on the

characteristics of malicious files and code instructions. It is strongly believed that this research will lead

to further research and new detection techniques for polymorphic and metamorphic malware, prior to

execution or transmission.

6.2 Recommendation and Future Work

Future work should entail evaluating network analysis of malware families to better assess attribution and

intrinsic relationships that may exist. Some useful next steps to this type of analysis include adding an

observation of a significant relationship. The relationships between rules in a set are complicated. There

are many conditions need to be considered. Measures investigate the subjective aspect of rule

interestingness or significant pattern can be considered for further work. Besides, increase the performance

of the clustering is another objective.

94

i i

7 Reference

Ahmadi, M. et al. (2013) ‘Malware detection by behavioural sequential patterns’, Computer Fraud and

Security. Elsevier Ltd, 2013(8), pp. 11–19. doi: 10.1016/S1361-3723(13)70072-1.

Ahmadi, M. et al. (2015) ‘Novel Feature Extraction, Selection and Fusion for Effective Malware Family

Classification’. doi: 10.1145/2857705.2857713.

Ahmadi, M. and Giacinto, G. (2015) ‘Novel Feature Extraction , Selection and Fusion for Effective

Malware Family Classification’, pp. 183–194.

Alam, S. et al. (2015) ‘A framework for metamorphic malware analysis and real-time detection’,

Computers & Security. Elsevier Ltd, 48, pp. 212–233. doi: 10.1016/j.cose.2014.10.011.

Alazab, M. (2015) ‘Profiling and classifying the behavior of malicious codes’, Journal of Systems and

Software. Elsevier Inc., 100, pp. 91–102. doi: 10.1016/j.jss.2014.10.031.

Azab, A. et al. (2015) ‘Mining Malware To Detect Variants’. doi: 10.1109/CTC.2014.11.

Azmoodeh, A. et al. (2018) ‘Robust Malware Detection for Internet Of (Battlefield) Things Devices

Using Deep Eigenspace Learning’, 3782(c), pp. 1–9. doi: 10.1109/TSUSC.2018.2809665.

Baldangombo, U., Jambaljav, N. and Horng, S.-J. (2013) ‘A Static Malware Detection System Using

Data Mining Methods’, International Journal of Artificial Intelligence & Applications, 4(4), p. 113.

Available at: http://arxiv.org/abs/1308.2831.

Ban, T. et al. (2015) ‘A Study on Association Rule Mining of Darknet Big Data’.

Bekerman, D. et al. (2015) ‘Unknown malware detection using network traffic classification’, 2015 IEEE

Conference on Communications and Network Security (CNS), pp. 134–142. doi:

10.1109/CNS.2015.7346821.

Bernardi, M. L. et al. (2017) ‘A Fuzzy-based Process Mining Approach for Dynamic Malware

Detection’.

Bhatt, P., Yano, E. T. and Gustavsson, P. (2014) ‘Towards a framework to detect multi-stage advanced

persistent threats attacks’, Proceedings - IEEE 8th International Symposium on Service Oriented System

Engineering, SOSE 2014, pp. 390–395. doi: 10.1109/SOSE.2014.53.

Bilar, D. (2007) ‘Opcodes as predictor for malware’, 1(2), pp. 156–168.

Bist, A. S. and Campus, Q. G. (2014) ‘Fuzzy Logic for Computer Virus Detection’, 3(2), pp. 771–773.

Bot, O. (2017) ‘HACGA : An artifacts-based clustering approach for malware classification’, pp. 5–12.

Canfora, G. et al. (2015) ‘Effectiveness of opcode ngrams for detection of multi family android

malware’, Proceedings - 10th International Conference on Availability, Reliability and Security, ARES

95

i i

2015, pp. 333–340. doi: 10.1109/ARES.2015.57.

Chandran, S., Hrudya, P. and Poornachandran, P. (2015) ‘An efficient classification model for detecting

advanced persistent threat’, 2015 International Conference on Advances in Computing, Communications

and Informatics, ICACCI 2015, pp. 2001–2009. doi: 10.1109/ICACCI.2015.7275911.

Cheng, J. Y. C., Tsai, T. S. and Yang, C. S. (2013) ‘An information retrieval approach for malware

classification based on Windows API calls’, Proceedings - International Conference on Machine Learning

and Cybernetics, 4, pp. 1678–1683. doi: 10.1109/ICMLC.2013.6890868.

Comar, P. M. et al. (2013) ‘Combining Supervised and Unsupervised Learning for Zero-Day Malware

Detection’, pp. 2022–2030.

Cosovan, D., Benchea, R. and Gavrilut, D. (2015) ‘A practical guide for detecting the java script-based

malware using hidden markov models and linear classifiers’, Proceedings - 16th International Symposium

on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2014, pp. 236–243. doi:

10.1109/SYNASC.2014.39.

Damshenas, M., Dehghantanha, A. and Mahmoud, R. (2013) ‘International Journal of Cyber-Security

and Digital Forensics (IJCSDF) 2 (4): 10-29 The Society of Digital Information and Wireless

Communications , 2013 (ISSN : 2305-0012) A SURVEY ON MALWARE PROPAGATION ,

ANALYSIS , AND DETECTION International Jou’, 2(4), pp. 10–29.

Das, S. et al. (2016) ‘Semantics-based online malware detection: Towards efficient real-time protection

against malware’, IEEE Transactions on Information Forensics and Security, 11(2), pp. 289–302. doi:

10.1109/TIFS.2015.2491300.

Deepa, K., Radhamani, G. and Vinod, P. (2015) ‘Investigation of feature selection methods for android

malware analysis’, Procedia Computer Science, 46(Icict 2014), pp. 841–848. doi:

10.1016/j.procs.2015.02.153.

Deka, D., Sarma, N. and Panicker, N. J. (2017) ‘Malware detection vectors and analysis techniques: A

brief survey’, 2016 International Conference on Accessibility to Digital World, ICADW 2016 -

Proceedings, pp. 81–85. doi: 10.1109/ICADW.2016.7942517.

Ding, Y. et al. (2014) ‘Control flow-based opcode behavior analysis for Malware detection’, Computers

and Security. Elsevier Ltd, 44(2007), pp. 65–74. doi: 10.1016/j.cose.2014.04.003.

Ekhtoom, D. et al. (2016) ‘A Compression-Based Technique to Classify Metamorphic Malware’.

Epishkina, A. and Zapechnikov, S. (2016) ‘A Syllabus on Data Mining and Machine Learning with

Applications to Cybersecurity’, pp. 194–199.

Fan, M. et al. (2016) ‘Frequent Subgraph Based Familial Classification of Android Malware’,

Proceedings - International Symposium on Software Reliability Engineering, ISSRE, pp. 24–35. doi:

10.1109/ISSRE.2016.14.

Firdausi, I. et al. (2010) ‘Analysis of Machine learning Techniques Used in Behavior-Based Malware

Detection’, Advances in Computing, Control and Telecommunication Technologies (ACT), 2010 Second

96

i i

International Conference on, pp. 10–12. doi: 10.1109/ACT.2010.33.

Fraley, J. B. (2016) ‘Polymorphic Malware Detection Using Topological Feature Extraction with Data

Mining’.

Gandotra, E., Bansal, D. and Sofat, S. (2016) ‘Detecting Zero Day Malware’, Ised.

Gharacheh, M. et al. (2016) ‘Detection of Metamorphic Malware based on HMM: A Hierarchical

Approach’, International Journal of Intelligent Systems and Applications, 8(4), pp. 18–25. doi:

10.5815/ijisa.2016.04.02.

Hassani, H. and Zarei, J. (2015) ‘Interval Type-2 fuzzy logic controller design for the speed control of

DC motors’, Systems Science & Control Engineering, 3(1), pp. 266–273. doi:

10.1080/21642583.2015.1013644.

Homayoun, S. et al. (2017) ‘Know Abnormal , Find Evil : Frequent Pattern Mining for Ransomware

Threat Hunting and Intelligence’, 6750(c), pp. 1–11. doi: 10.1109/TETC.2017.2756908.

Hu, W. and Tan, Y. (2017) ‘On the robustness of machine learning based malware detection algorithms’,

2017 International Joint Conference on Neural Networks (IJCNN), pp. 1435–1441. doi:

10.1109/IJCNN.2017.7966021.

Hu, X. et al. (2013) ‘MutantX-S: Scalable Malware Clustering Based on Static Features’, USENIX

Annual Technical Conference, pp. 187–198. doi: 10.1.1.389.5696.

Huang, H. De et al. (2012) ‘TWMAN+: A type-2 fuzzy ontology model for malware behavior analysis’,

Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, pp. 2821–

2826. doi: 10.1109/ICSMC.2012.6378176.

Huang, H. De et al. (2013) ‘An IT2FLS-based malware analysis mechanism: Malware analysis network

in Taiwan (MIT)’, Proceedings - 2013 IEEE International Conference on Systems, Man, and Cybernetics,

SMC 2013, pp. 4652–4657. doi: 10.1109/SMC.2013.792.

Idrees, F. et al. (2017) ‘PIndroid: A novel Android malware detection system using ensemble learning

methods’, Computers & Security. Elsevier Ltd, 68, pp. 36–46. doi: 10.1016/j.cose.2017.03.011.

Islam, R. et al. (2013) ‘Classification of malware based on integrated static and dynamic features’,

Journal of Network and Computer Applications. Elsevier, 36(2), pp. 646–656. doi:

10.1016/j.jnca.2012.10.004.

Islamic, I. and Minna, T. (no date) ‘Android Malware Classification Using Static Code Analysis and

Apriori Algorithm Improved with Particle Swarm Optimization’, pp. 123–128.

Kaur, R. and Singh, M. (2014) ‘A survey on zero-day polymorphic worm detection techniques’, IEEE

Communications Surveys and Tutorials, 16(3), pp. 1520–1549. doi: 10.1109/SURV.2014.022714.00160.

Khazaee, S. and Faez, K. (2014) ‘A Novel Classification Method Using Hybridization of Fuzzy

Clustering and Neural Networks for Intrusion Detection’, International Journal of Modern Education and

Computer Science(IJMECS), 6(11), p. 11. doi: 10.5815/ijmecs.2014.11.02.

97

i i

Khazaee, S. and Sharifi Rad, M. (2013) ‘Using fuzzy c-means algorithm for improving intrusion

detection performance’.

Le, D. C., Zincir-Heywood, A. N. and Heywood, M. I. (2017) ‘Data analytics on network traffic flows

for botnet behaviour detection’, 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016.

doi: 10.1109/SSCI.2016.7850078.

Liangboonprakong, C. and Sornil, O. (2013) ‘Classification of malware families based on N-grams

sequential pattern features’, Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and

Applications, ICIEA 2013, pp. 777–782. doi: 10.1109/ICIEA.2013.6566472.

Lin, Y.-S., Jiang, J.-Y. and Lee, S.-J. (2014) ‘A Similarity Measure for Text Classification and

Clustering’, IEEE Transactions on Knowledge and Data Engineering, 26(7), pp. 1575–1590. doi:

10.1109/TKDE.2013.19.

Ling, Y., Putra, U. and Ling, Y. (2017) ‘Short Review on Metamorphic Malware Detection in Hidden

Markov Models International Journal of Advanced Research in Short Review on Metamorphic Malware

Detection in Hidden Markov Models’, (June).

Liu, D. et al. (2014) ‘Network Traffic Anomaly Detection Using Adaptive Density-Based Fuzzy

Clustering’, 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and

Communications, 16, pp. 823–830. doi: 10.1109/TrustCom.2014.109.

Liu, J. et al. (2013) ‘FENOC: An ensemble one-class learning framework for malware detection’,

Proceedings - 9th International Conference on Computational Intelligence and Security, CIS 2013, pp.

523–527. doi: 10.1109/CIS.2013.116.

Liu, L. et al. (2017) ‘Automatic malware classification and new malware detection using machine

learning’, Frontiers of Information Technology & Electronic Engineering, 18(9), pp. 1336–1347. doi:

10.1631/FITEE.1601325.

Liu, Y. et al. (2014) Link Analysis Using SAS ® Enterprise MinerTM. Available at:

https://support.sas.com/rnd/app/data-mining/enterprise-miner/papers/2014/linkAnalysis2014.pdf.

Louk, M. et al. (2014) ‘An Effective Framework of Behavior Detection- Advanced Static Analysis for

Malware Detection’, International Symposium on Communications and Information Technologies

(ISCIT), pp. 361–365. doi: 10.1109/ISCIT.2014.7011932.

Luo, L., Ming, J. and Wu, D. (2017) ‘Semantics-Based Obfuscation-Resilient Binary Code Similarity

Comparison with Applications to Software and Algorithm Plagiarism Detection’, 43(12), pp. 1157–1177.

Mastjik, F. and Varol, C. (2015) ‘Comparison of Pattern Matching Techniques on Identification of Same

Family Malware’, 4(May), pp. 224–228.

Mehra, M. and Pandey, D. (2016) ‘Event triggered malware: A new challenge to sandboxing’, 12th IEEE

International Conference Electronics, Energy, Environment, Communication, Computer, Control: (E3-

C3), INDICON 2015, pp. 1–6. doi: 10.1109/INDICON.2015.7443327.

Mendel, J. M., John, R. I. and Liu, F. (2006) ‘Interval Type-2 Fuzzy Logic Systems Made Simple’, Fuzzy

98

i i

Systems, IEEE Transactions on, 14(6), pp. 808–821. doi: 10.1109/TFUZZ.2006.879986.

Milosevic, N., Dehghantanha, A. and Choo, K. R. (2017) ‘Machine learning aided Android malware

classification R’. Elsevier Ltd, 61, pp. 266–274. doi: 10.1016/j.compeleceng.2017.02.013.

Mohaisen, A., Alrawi, O. and Mohaisen, M. (2015) ‘AMAL: High-fidelity, behavior-based automated

malware analysis and classification’, Computers and Security. Elsevier Ltd, 52, pp. 251–266. doi:

10.1016/j.cose.2015.04.001.

Mohammadi, M. and Hamzeh, A. (2017) ‘Proposing an efficient approach for malware clustering’.

Mohammed, W., Mohammed, S. and Saraee, M. M. (2016) ‘Sematic Web Mining Using Fuzzy C-means

Algorithm SCIENCEDOMAIN international Sematic Web Mining Using Fuzzy C-means Algorithm’,

(January). doi: 10.9734/BJMCS/2016/25471.

Mooney, C. H. and Roddick, J. F. (2013) ‘Sequential pattern mining -- approaches and algorithms’, ACM

Computing Surveys, 45(2), pp. 1–39. doi: 10.1145/2431211.2431218.

Narouei, M. et al. (2015) ‘DLLMiner : structural mining for malware detection’, (April), pp. 3311–3322.

doi: 10.1002/sec.

Narra, U. et al. (2016) ‘Clustering versus SVM for malware detection’, Journal of Computer Virology

and Hacking Techniques. Springer Paris, 12(4), pp. 213–224. doi: 10.1007/s11416-015-0253-z.

Nauman, M., Azam, N. and Yao, J. (2016) ‘A three-way decision making approach to malware analysis

using probabilistic rough sets’, Information Sciences. Elsevier Inc., 374, pp. 193–209. doi:

10.1016/j.ins.2016.09.037.

Nissim, N. et al. (2014) ‘Novel active learning methods for enhanced PC malware detection in windows

OS’, Expert Systems with Applications. Elsevier Ltd, 41(13), pp. 5843–5857. doi:

10.1016/j.eswa.2014.02.053.

Nissim, N. et al. (2015) ‘Detection of malicious PDF files and directions for enhancements: A state-of-

the art survey’, Computers and Security. Elsevier Ltd, 48, pp. 246–266. doi: 10.1016/j.cose.2014.10.014.

O’Kane, P., Sezer, S. and McLaughlin, K. (2014) ‘N-gram density based malware detection’, 2014 World

Symposium on Computer Applications and Research, WSCAR 2014. doi: 10.1109/WSCAR.2014.6916806.

Pai, S. et al. (2016) ‘Clustering for malware classification Clustering for malware classification’, Journal

of Computer Virology and Hacking Techniques. Springer Paris, (April). doi: 10.1007/s11416-016-0265-3.

Pandeeswari, N. and Kumar, G. (2016) ‘Anomaly Detection System in Cloud Environment Using Fuzzy

Clustering Based ANN’, Mobile Networks and Applications. Mobile Networks and Applications, 21(3),

pp. 494–505. doi: 10.1007/s11036-015-0644-x.

Poulsen, R. (2013) ‘SAS Global Forum 2013 Statistics and Data Analysis Multivariate Statistical

Analysis in SAS : Segmentation and Classification of Behavioral Data ABSTRACT SAS Global Forum

2013’, pp. 1–14.

99

i i

Rathnayaka, C. and Jamdagni, A. (2017) ‘An Efficient Approach for Advanced Malware Analysis Using

Memory Forensic Technique’, 2017 IEEE Trustcom/BigDataSE/ICESS, pp. 1145–1150. doi:

10.1109/Trustcom/BigDataSE/ICESS.2017.365.

Rezaei, S. and Afraz, A. (2016) ‘Malware Detection using Opcodes Statistical Features’, pp. 151–155.

Runwal, N., Low, R. M. and Stamp, M. (2012) ‘Opcode graph similarity and metamorphic detection’,

Journal in Computer Virology, 8(1–2), pp. 37–52. doi: 10.1007/s11416-012-0160-5.

Santos, I. et al. (2013) ‘Opcode sequences as representation of executables for data-mining-based

unknown malware detection’, Information Sciences, 231, pp. 64–82. doi: 10.1016/j.ins.2011.08.020.

Santos, I. et al. (no date) ‘Idea : Opcode-sequence-based Malware Detection’.

Sarvani, A. (no date) ‘Clustering The Polymorphic Malware Traces’.

Schultz, M. G. et al. (2001) ‘Data mining methods for detection of new malicious executables’,

Proceedings. 2001 IEEE Symposium on Security and Privacy, 2001. S&P 2001., pp. 38–49. doi:

10.1109/SECPRI.2001.924286.

Scott, J., Fellow, S. and Technology, C. I. (2017) ‘Signature Based Malware Detection is Dead’,

(February).

Security, I. and Report, T. (2017) ‘No Title’, (April).

Shabtai, A. et al. (2012) ‘Detecting unknown malicious code by applying classification techniques on

OpCode patterns’, Security Informatics, 1(1), p. 1. doi: 10.1186/2190-8532-1-1.

Shalaginov, A. (2017) ‘Dynamic feature-based expansion of fuzzy sets in Neuro-Fuzzy for proactive

malware detection’. doi: 10.23919/ICIF.2017.8009812.

Shalaginov, A., Grini, L. S. and Franke, K. (2016) ‘Understanding Neuro-Fuzzy on a class of

multinomial malware detection problems’, Proceedings of the International Joint Conference on Neural

Networks, 2016–Octob, pp. 684–691. doi: 10.1109/IJCNN.2016.7727266.

Sharma, A. and Sahay, S. K. (2016) ‘An effective approach for classification of advanced malware with

high accuracy’, International Journal of Security and its Applications, 10(4), pp. 249–266. doi:

10.14257/ijsia.2016.10.4.24.

Shenwen, L., Yingbo, L. and Xiongjie, D. (2015) ‘Study and research of APT detection technology based

on big data processing architecture’, 2015 IEEE 5th International Conference on Electronics Information

and Emergency Communication, (2012), pp. 313–316. doi: 10.1109/ICEIEC.2015.7284547.

Shijo, P. V. and Salim, A. (2015) ‘Integrated static and dynamic analysis for malware detection’,

Procedia Computer Science. Elsevier Masson SAS, 46(Icict 2014), pp. 804–811. doi:

10.1016/j.procs.2015.02.149.

Siddequi, M., Wang, M. C. and Lee, J. (2008) ‘Detecting Internet Worms Using Data Mining

Techniques’, Journal of Systemics, Cybernetics & Informatics, 6, pp. 48–53. doi:

100

i i

10.1145/1593105.1593239.

Souri, A. and Hosseini, R. (2018) ‘A state ‑ of ‑ the ‑ art survey of malware detection approaches using

data mining techniques’, Human-centric Computing and Information Sciences. Springer Berlin

Heidelberg. doi: 10.1186/s13673-018-0125-x.

Suarez-tangil, G. et al. (2014) ‘Expert Systems with Applications D ENDROID : A text mining approach

to analyzing and classifying code structures in Android malware families’, Expert Systems With

Applications. Elsevier Ltd, 41(4), pp. 1104–1117. doi: 10.1016/j.eswa.2013.07.106.

Thompson, W. (2008) ‘SAS Global Forum 2008 Data Mining and Predictive Modeling and Predicting

Risk in the Telecom Industry Glendon Cross , AT & T Corporation SAS Global Forum 2008 Data Mining

and Predictive Modeling’, pp. 1–14.

Thomson, G. (2011) ‘APTs: A poorly understood challenge’, Network Security. Elsevier Ltd, 2011(11),

pp. 9–11. doi: 10.1016/S1353-4858(11)70118-0.

Thunga, S. P. and Neelisetti, R. K. (2015) ‘Identifying metamorphic virus using n-grams and Hidden

Markov Model’, 2015 International Conference on Advances in Computing, Communications and

Informatics, ICACCI 2015, pp. 2016–2022. doi: 10.1109/ICACCI.2015.7275913.

Tong, F. and Yan, Z. (2017) ‘A hybrid approach of mobile malware detection in Android’, Journal of

Parallel and Distributed Computing. Elsevier Inc., 103, pp. 22–31. doi: 10.1016/j.jpdc.2016.10.012.

Ucci, D., Aniello, L. and Baldoni, R. (2017) ‘Survey on the Usage of Machine Learning Techniques for

Malware Analysis’, 1(1). doi: 10.1109/INTECH.2016.7845073.

Wang, C. et al. (2016) ‘A malware variants detection methodology with an opcode based feature method

and a fast density based clustering algorithm’, 2016 12th International Conference on Natural

Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2016, pp. 481–487. doi:

10.1109/FSKD.2016.7603221.

Wang, H. T. et al. (2013) ‘Clustering of similar malware behavior via structural host-sequence

comparison’, Proceedings - International Computer Software and Applications Conference, pp. 349–358.

doi: 10.1109/COMPSAC.2013.60.

Wang, M. C. (2014) ‘Data mining methods for malware detection using instruction sequences DATA

MINING METHODS FOR MALWARE DETECTION USING’, (January 2008).

Wang, P. and Wang, Y. S. (2015) ‘Malware behavioural detection and vaccine development by using a

support vector model classifier’, Journal of Computer and System Sciences. Elsevier Inc., 81(6), pp. 1012–

1026. doi: 10.1016/j.jcss.2014.12.014.

Wei, C., Sprague, A. and Warner, G. (2009) ‘Clustering malware-generated spam emails with a novel

fuzzy string matching algorithm’, Sac, (205), pp. 889–890. doi:

http://doi.acm.org/10.1145/1529282.1529473.

Ye, Y. (2017) ‘A Survey on Malware Detection Using Data Mining Techniques’, 50(3).

101

i i

Yewale, A. and Singh, M. (2017) ‘Malware detection based on opcode frequency’, Proceedings of 2016

International Conference on Advanced Communication Control and Computing Technologies, ICACCCT

2016, (978), pp. 646–649. doi: 10.1109/ICACCCT.2016.7831719.

Zhang, Y. et al. (2011) ‘Fuzzy neural network for malware detect’, Proceedings - 2010 International

Conference on Intelligent System Design and Engineering Application, ISDEA 2010, 1, pp. 780–783. doi:

10.1109/ISDEA.2010.314.

Zhao, G. et al. (2015) ‘Detecting APT malware infections based on malicious DNS and traffic analysis’,

IEEE Access, 3(5), pp. 1132–1142. doi: 10.1109/ACCESS.2015.2458581.

Zolotukhin, M. and Hämäläinen, T. (2014) ‘Detection of zero-day malware based on the analysis of

opcode sequences’, 2014 IEEE 11th Consumer Communications and Networking Conference, CCNC

2014, pp. 386–391. doi: 10.1109/CCNC.2014.6866599.

102

i i

Appendices

Appendix A: Segmentation Profile Node Report-Kaggle

Frequencies: _group

 Percent of

Segment Segment Frequency Total

Variable Value Count Frequency

 _group Ramnit 52 18.3746

 _group Tracur 47 16.6078

 _group Gatak 38 13.4276

 _group Simda 38 13.4276

 _group Vundo 36 12.7208

 _group Lolipop 31 10.9541

 _group Obfuscator 21 7.4205

 _group KelihosV_1 10 3.5336

 _group KelihosV_3 10 3.5336

Variable: _group Segment: Ramnit Count: 52

Decision Tree Importance Profiles

Variable Worth Rank

_centr_influence1_unwt 0.27233 1

_centr_close_in_wt 0.24387 2

_centr_degree 0.16460 3

_centr_close_unwt 0.09183 4

_centr_between_wt 0.04828 5

Variable: _group Segment: Tracur Count: 47

Decision Tree Importance Profiles

Variable Worth Rank

_centr_degree 0.16978 1

_centr_influence1_unwt 0.08682 2

_centr_close_in_wt 0.07389 3

_centr_close_unwt 0.03446 4

_centr_between_wt 0.01051 5

Variable: _group Segment: Gatak Count: 38

Decision Tree Importance Profiles

Variable Worth Rank

103

i i

_centr_close_in_wt 0.083503 1

_centr_influence1_unwt 0.080400 2

_centr_degree 0.057014 3

_centr_close_unwt 0.033149 4

_centr_between_wt 0.004634 5

Variable: _group Segment: Simda Count: 38

Decision Tree Importance Profiles

Variable Worth Rank

_centr_influence1_unwt 0.17166 1

_centr_close_in_wt 0.08586 2

_centr_degree 0.03084 3

_centr_close_unwt 0.03067 4

_centr_between_wt 0.00904 5

Variable: _group Segment: Vundo Count: 36

Decision Tree Importance Profiles

Variable Worth Rank

_centr_influence1_unwt 0.11885 1

_centr_degree 0.07602 2

_centr_close_in_wt 0.06236 3

_centr_close_unwt 0.05760 4

_centr_between_wt 0.00947 5

Variable: _group Segment: Lolipop Count: 31

Decision Tree Importance Profiles

Variable Worth Rank

_centr_degree 0.10151 1

_centr_influence1_unwt 0.07562 2

_centr_close_in_wt 0.07305 3

_centr_close_unwt 0.02801 4

_centr_between_wt 0.02173 5

Variable: _group Segment: Obfuscator Count: 21

Decision Tree Importance Profiles

Variable Worth Rank

_centr_degree 0.083687 1

_centr_close_in_wt 0.027060 2

_centr_close_unwt 0.023447 3

_centr_influence1_unwt 0.017557 4

104

i i

_centr_between_wt 0.005840 5

Variable: _group Segment: KelihosV_1 Count: 10

Decision Tree Importance Profiles

Variable Worth Rank

_centr_degree 0.047982 1

_centr_close_in_wt 0.010275 2

_centr_influence1_unwt 0.007999 3

_centr_close_unwt 0.007001 4

_centr_between_wt 0.002654 5

Variable: _group Segment: KelihosV_3 Count: 10

Decision Tree Importance Profiles

Variable Worth Rank

_centr_degree 0.048740 1

_centr_influence1_unwt 0.027410 2

_centr_close_in_wt 0.025877 3

_centr_close_unwt 0.018145 4

_centr_between_wt 0.006611 5

105

i i

Appendix B: Segmentation Profile Node Report-APTs

Frequencies: _group

 Percent of

Segment Segment Frequency Total

Variable Value Count Frequency

 _group APT28 44 32.5926

 _group APT33 26 19.2593

 _group APT29 25 18.5185

 _group APT1 22 16.2963

 _group APT30 18 13.3333

Variable: _group Segment: APT28 Count: 44

Decision Tree Importance Profiles

 Variable Worth Rank

_centr_close_in_unwt 0.43940 1

_centr_close_in_wt 0.43940 2

_centr_close_out_unwt 0.43940 3

_centr_close_out_wt 0.43940 4

_centr_close_unwt 0.43940 5

_centr_close_wt 0.43940 6

_centr_influence2_wt 0.42643 7

_centr_degree_out 0.27233 8

_centr_influence1_unwt 0.24858 9

_centr_influence2_unwt 0.23344 10

Variable: _group Segment: APT33 Count: 26

Decision Tree Importance Profiles

Variable Worth Rank

_centr_influence2_wt 0.31100 1

_centr_influence1_unwt 0.29830 2

_centr_influence2_unwt 0.29753 3

_centr_degree 0.28511 4

_centr_degree_out 0.26903 5

_centr_degree_in 0.26257 6

_centr_close_wt 0.23503 7

_centr_cluster 0.23396 8

_centr_close_out_wt 0.23119 9

_centr_close_in_wt 0.22109 10

Variable: _group Segment: APT29 Count: 25

Decision Tree Importance Profiles

Variable Worth Rank

106

i i

_centr_influence2_wt 0.27452 1

_centr_degree 0.21035 2

_centr_degree_out 0.20070 3

_centr_close_in_wt 0.19637 4

_centr_close_out_wt 0.19637 5

_centr_close_wt 0.19637 6

_centr_cluster 0.17903 7

_centr_influence1_unwt 0.17490 8

_centr_degree_in 0.16511 9

_centr_close_out_unwt 0.16447 10

Variable: _group Segment: APT1 Count: 22

Decision Tree Importance Profiles

Variable Worth Rank

_centr_influence2_wt 0.24571 1

_centr_influence2_unwt 0.21405 2

_centr_influence1_unwt 0.19313 3

_centr_degree_out 0.16819 4

_centr_close_out_wt 0.15450 5

_centr_close_out_unwt 0.15202 6

_centr_degree 0.14849 7

_centr_degree_in 0.14841 8

_centr_close_in_wt 0.14407 9

_centr_close_wt 0.14407 10

Variable: _group Segment: APT30 Count: 18

Decision Tree Importance Profiles

Variable Worth Rank

_centr_influence2_wt 0.23111 1

_centr_influence2_unwt 0.21708 2

_centr_close_in_wt 0.19930 3

_centr_close_out_wt 0.19619 4

_centr_close_wt 0.19619 5

_centr_degree_in 0.18111 6

_centr_between_unwt 0.16531 7

_centr_influence1_unwt 0.16208 8

_centr_degree_out 0.15915 9

_centr_degree 0.15726 10

107

i i

