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Glossary of Terms 
 

Habitat Types 
Matrix The matrix is the disturbed/altered habitat to which the primary 

forest is adjacent to. In this study, the matrix was composed of 
secondary regrowth forest.   

  
Edge The area of two adjoining habitats (e.g. primary forest & matrix) 

which is influenced by edge-effects 
 

Interior The area towards the centre of each habitat (primary forest & 
secondary forest) which is not affected by biotic & abiotic changes 
associated with the forest edge. 
 

  

Functional Groups 
Open/edge 

foragers 
Species adapted for flying long distances at high speed. These 
species typically forage in open spaces or along the edge of forest 
fragments where they do not need high maneuverability (Jenning et 
al, 2004).   

 
Forest specialists Species adapted for short, highly-maneuverable flight to enable 

foraging in densely cluttered environments, usually associated with 
the interior habitat (Altringham, 1996).   
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Abstract 

 

Edge effects, the abiotic and biotic changes associated with habitat boundaries, are 

amongst the most important factors determining a species’ distribution in human-modified 

landscapes. Bats are the second most diverse mammalian order, however many species are 

not targeted in studies on edge-effects, particularly in tropical forests which suffer the 

highest rates of deforestation. This study aims to quantify the magnitude and extent of edge 

effects on Amazonian aerial-insectivorous bats by relying on a suite of theoretical models 

previously applied to other taxa. Acoustic sampling was conducted across two seasons at 

the Biological Dynamics of Forest Fragments Project along four 2km transects consisting of 

primary forest which intersected with secondary forest. As part of this study, the 

effectiveness of using an automatic classifier to identify species’ calls was compared against 

manual identification using relevant acoustic keys. A total of six models (mean, linear, 

power, sigmoid, unimodal and cubic) were used to assess the changes in the relative 

activity of both forest specialist and open/edge forager species in response to edge effects, 

as well as changes observed at the assemblage level. Responses were assessed for seven 

individual species, two of which demonstrated a response to edge effects detectable over a 

minimum extent of 400m - Centronycteris maximiliani/centralis and Pteronotus parnellii 

(60KHz). Insect volume was only weakly associated with the activity of these two species, 

and that of total bat activity, therefore prey availability does not explain activity patterns. 

Our results suggest edge responses may be more complex than previously considered, 

however they also imply that a low contrast matrix of mature secondary forest may 

mitigate the impact of edge effects for many bat species. Therefore, allowing for forest 

regeneration between forest patches may reduce the extinction pressure on aerial 

insectivores in tropical fragmented landscapes.      

Keywords: Fragmentation; BDFFP; acoustic monitoring; prey availability; forest 

regeneration 
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Introduction 

 

Tropical Deforestation and its drivers 

The conversion of forests to agricultural land and pasture has and continues to be a global 

phenomenon (Achard et al. 2002; Hansen et al. 2013). However, contrary to popular 

belief, global tree cover has increased since the 1980’s due to reforestation and 

afforestation schemes in many temperate regions (Song et al. 2018).  Unfortunately, the 

opposite may be true for tropical regions which experience the highest rates of forest loss 

(Fig. 1). Approximately 600 million hectares of tropical forests have already been lost. 

This number is expected to rise by 2050 with up to 36% of forest lost within half a century 

(Wright 2010). As of 2012, approximately 1.1 million hectares has been deforested since 

2000 (Hansen et al. 2013).  

 

 

 

Deforestation is currently the second largest cause of CO2 release into the atmosphere 

(D’Amato et al. 2017). Not only does this raise concerns for meeting targets to reduce 

Figure 1 – The sum of country-level deforestation for three climatic types of forests, 
sourced from Leblois et al. (2017). Tropical deforestation accounts for almost half of 
the total deforestation.  
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greenhouse gas emissions, but also for reducing biodiversity losses (Leblois, Damette and 

Wolfersberger 2017; Giam 2017; Wright and Muller-Landau 2006). Despite only 

constituting ~10% of total land cover (1.8 × 107 km2) tropical forests support two-thirds 

of global biodiversity (Raven 1988; Giam 2017), including many endemic species. Hopkins 

(2005) predicted there could be between 30,000–100,000 endemic plant species in 

Amazonia alone. Therefore, intensive deforestation in these habitats is a major threat to 

global biodiversity. Considering the deforestation of tropical forests up until 2010 alone, 

Rosa et al. (2016) predict a current extinction debt of up to 140 forest-specific vertebrate 

species.   

 

In the Old-World, increased global demand for palm oil has accelerated deforestation 

across Malaysia and Indonesia since the 1990’s. Approximately 17% of Malaysian and 

63% of Indonesian plantations have been converted from tropical forests (Pirker et al. 

2016). With ever-increasing demand, palm oil cultivation is spreading to other tropical 

regions increasingly threatening tropical forests in Central and Western Africa, and the 

Neotropics (Pirker et al. 2016; Gollnow and Lakes 2014).  
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In the New World, the Amazon is one of the world’s most important biological resources; 

as a biodiversity reservoir (supporting ~25% of global terrestrial species), as a climate 

regulator (generating 15% of global terrestrial photosynthesis), and as a carbon sink 

(Aleixandre-Benavent et al. 2018; Barros and Fearnside 2016). Over half (52%) of the 

4125 forest-dependent tropical vertebrates are found in the Amazon, compared to 38% in 

SE Asia, and 10% in the Congo Basin (Rosa et al. 2016). However, of these regions, the 

Amazon is expected to have suffered the greatest number of extinctions of forest-

dependent vertebrates (Rosa et al. 2016) as a result of deforestation.  

Figure 2 – How deforestation is occurring in the Amazon. A) Tropical deforestation in the four 
largest developing countries of the tropics from 2001-2012. B) Proportion of forest area in the 
Brazilian Amazon from an edge in increasing distances categories for both present and estimated 
historic forest cover. C)  Number (per size class) of forest fragment in the Amazon and total area of 
forest of the corresponding size categories. As the smallest fragments are poorly mapped it is likely 
the number of 1-10ha fragments is underestimated. Figures adapted from Leblois et al. (2017) and 
Haddad et al. (2015). 
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Deforestation in the Amazon  

Brazil continues to experience one of the highest rates of tropical deforestation in the 

world (Zarin et al. 2015; Fig. 2). Since 2015 there has been an increase in deforestation in 

the Brazilian Amazon (∼8,000 km2 in 2016; Azevedo-Ramos and Moutinho 2018; Barros 

and Fearnside 2016) following declines of 74% at the turn of the century (from ~19,000 

km2 in 2005 to ~5,000 km2 in 2014; Azevedo-Ramos and Moutinho 2018). Pressures 

include industrial logging, mineral extraction, and energy production (Shroder, Sivanpillai 

and Boekhout van Solinge 2016; Barber et al. 2014). However, large-scale clearing for 

agriculture and conversion to pasture remains the predominant driver of deforestation in 

the Amazon. Cattle ranching accounts for 60-70% of forest loss (Malhi et al. 2008; 

Aleixandre-Benavent et al. 2018). Brazil’s exports of beef continue to increase annually 

(ABIEC 2017). Between January - December 2017, Brazil exported over 1.5 million tonnes 

of beef, a revenue increase of 17% from 2016 (ABIEC 2017). The country’s largest exports 

include iron ore, soybeans, crude petroleum, and sugar (OEC 2018). Coffee and corn are 

also significant international products (OEC 2018).   

 

Collectively, soybean exports are currently Brazil’s most profitable commodity (World 

Intergrated Trade Solution 2018) and now accounts for 1/3 of the global production (OEC 

2018). Consequently, the greatest rises in deforestation recently have been observed in 

Mato Grosso (Valdiones et al. 2017), a state recognised for its national and international 

importance for soybean production (Gollnow and Lakes 2014). Although it is typically 

pasture that is converted for soy plantations, this leads to the displacement of cattle 

ranches into forested regions elsewhere. Therefore, soy production is often an indirect 

cause of deforestation (Gollnow and Lakes 2014). This creates conflict between 

conservation and local people as soy is a valuable contributor to the nation’s economic 

development (Weinhold, Killick and Reis 2013). Despite several successful strategies 

implemented over the last decade to protect the Amazon forest, 60 - 90% of deforestation 

has been conducted illegally (Boekhout van Solinge, Sivanpillai and Boekhout van Solinge 

2016), and growing economic and political uncertainty is predicted to incite further 

declines of 40% of the remaining Amazonian forest by 2040 (Carvalho, Domingues and 
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Horridge 2017; Pailler 2018). A patchwork of small forest fragments (<400ha) currently 

dominates the landscape due to land clearing for small agricultural holdings (Laurance, 

Sayer and Cassman 2014) but there are also growing fears that plans to introduce large-

scale palm oil plantations in the Brazilian Amazon may intensify this displacement 

process (Gollnow and Lakes 2014).  

 

Transport infrastructure provides a pathway for this deforestation to occur. 

Approximately 95% of deforestation in the Amazon occurs within 5.5km of a road or 1km 

of a navigable river (Barber et al. 2014) which includes 43.6% of unprotected land and 

10.9% of protected land having been deforested by 2014. Of the 95%, over 80% of 

deforestation is exclusively linked to roads (Rocha, López-Baucells, et al. 2017). This has 

serious consequences for the longevity of the remaining forest as Barber et al. (2014) 

concluded 35.2% of the Brazilian Amazon was classified as highly accessible. Not only does 

this accessibility facilitate agricultural or industrial expansion, the roads themselves may 

divide the forest into patches and thus result in the creation of forest edges.  

Habitat Fragmentation & Edge-Effects 

In the face of widespread deforestation, understanding how habitat fragmentation alters 

ecological communities is an urgent issue challenging conservation biologists (Laurance et 

al. 2017). Habitat fragmentation is an umbrella term used to group a number of landscape 

and local scale processes resulting from initial habitat loss (Fahrig 2013; Sodhi et al. 

2011). 

 

Edge Phenomena 

By breaking up continuous habitat, deforestation creates a patchwork of smaller, isolated 

fragments. Localised extinctions and population declines follow the initial loss of habitat 

as well as through processes such as reduced habitat connectivity (Didham 2010) and 

‘crowding effects’ (Turner 1996). However, the remaining ecological communities are not 

fixed. They are subsequently exposed to biotic and abiotic changes associated with the 

margins of these artificially created fragments (Laurance et al. 2017). These changes are 
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known as edge-effects. Edge-effects are considered amongst the most important drivers 

affecting the dynamics and composition of fragmented faunal and floral communities 

(Laurance et al. 2017; Broadbent et al. 2008), as they exceed the natural intrinsic 

variation in conditions, thereby deteriorating the ecosystem and its suitability for the 

species it previously supported (Murcia 1995; Rocha, López-Baucells, et al. 2017). 

However, due to the diversity of edge-related phenomena, as well as the complexity of 

biological interactions, the processes governing edge-effects are not yet fully understood 

despite being one of the most well-studied ecological phenomena of the last 100 years 

(Ries et al. 2017). 

 

Between 35,000 – 50,000km of new edge habitat is created annually in the Brazilian 

Amazon as a result of deforestation (Broadbent et al. 2008), initiating decreases in 

relative humidity (Cochrane and Laurance 2002), increased exposure to wind stress 

(Laurance et al. 2017), and amplified temperature fluctuations (Murcia 1995). These 

changes all have consequences, both directly or indirectly, on biotic communities. Abiotic 

changes such as increased noise pollution, higher temperatures, and decreased humidity 

have been observed up to 300m either side of a road (Laurance et al. 2017). For species, 

such as terrestrial insectivorous passerines (Ahmed et al. 2014; Fletcher 2005) roads 

themselves create an impassable barrier, reducing connectivity and intensifying the 

effects of fragmentation (Barber et al. 2014).  

 

Edge-effects not only affect populations but also impact community and ecosystem scale 

processes (Fletcher 2005; Laurance et al. 2007). Changes in seed dispersal as a result of 

edge-effects (Wright 2010), as well as changes to the microclimate, modifies forest 

composition and structure. Large, established trees die prematurely (Ferreira and 

Laurance 1997), superseded by early successional plant species. In doing so, the relatively 

open understory layer becomes densely cluttered. Animal species capable of exploiting 

these new conditions and resources show an increased abundance and dominance in edge 

habitat. Butterfly populations of light favoring species have been shown to increase in 

edge habitat (Leidner et al. 2010) at the expense of shade-tolerant species. Similarly, the 
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fruits of pioneer species support a higher abundance of frugivorous bird (Sodhi et al. 

2011) and bat (Rocha, López-Baucells, et al. 2017) species. These replace species 

specialized for forest interiors, such as understory birds (Sodhi et al. 2011; Hansbauer et 

al. 2008) and bats that glean animal prey from vegetation (Rocha, López-Baucells, et al. 

2017). Both groups exhibit population declines and a decrease in species richness. By 

negatively impacting multiple trophic levels, edge-effects are one of the key drivers of 

extinction in fragmented landscapes.   

 

Magnitude and Extent of Edge-Effects 

 

Magnitude and extent are two measures by which edge-effects can be quantitively 

investigated (Ries et al. 2017; Ewers and Didham 2006b). The magnitude of edge effects is 

the relative strength of an effect and the extent of edge effects, as defined by Ewers and 

Didham (2006), is the distance to which changes in natural conditions associated with 

habitat boundaries are present within habitat interiors. Depending on the type of the 

edge-effect and the species of concern, estimates vary as to what distance edge 

phenomena penetrate forest interiors (Fig. 3). Most effects are considered to occur 

between 100-300m from the edge (Laurance et al. 2002; Barros and Fearnside 2016). 

However, some studies have estimated effect distances of 1-10km into forest interiors 

(Delaval and Charles-Dominique 2006; Murcia 1995; Curran et al. 1999). Estimates often 

vary depending on the focal taxonomic group. Villada-Bedoya et al. (2017) observed edge-

related changes affected dung beetle abundance over a maximum extent of 420m in the 

Columbian Andes, however Zurita et al. (2012) found Thamnophilus caerulescens, a 

neotropical bird species, was impacted over an extent of 1,300m. Consequently, there is 

no universally reliable estimate as to what distance from a forest edge a species or specific 

functional group/guild can be affected (Hansbauer et al. 2008). 
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Cumulative effect interactions 

Individual edge-related changes do not act in isolation but rather can form complex 

interactions with each other. As edge-effects are therefore cumulative, the interaction of 

different effects can often result in further or more dramatic changes in conditions 

(Porensky and Young 2013; Malcolm 1994; Grass et al. 2018). One edge effect that arises 

as the result of multiple effects interacting is the increased risk of fire in fragmented 

forests (Cochrane and Laurance 2002; Laurance et al. 2017). Increased tree mortality 

along the edge of fragments results in a diminished canopy which, combined with 

increased wind pressure and higher temperatures, leads to a decrease in local humidity. 

These conditions combined with the increased leaf litter and dead-fall along edges quite 

literally add fuel to the risk of forest fire. The risk is greatly magnified by the accumulation 

Figure 3 – Figure 3 – Penetration distances for a selection of edge-effect phenomena studied at the Biological Dynamics 
of Forest Fragments Project (BDFFP) determined by multiple investigators. PAR - photosynthetically active radiation. 
Grey bars represent abiotic changes to environmental conditions. Adapted  from Laurance et al. (2017). 
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of multiple effects interacting, than if any one of the effects were acting independently. 

Anthropogenic forest fires are exponentially more common at the boundaries of forest 

fragments and can result in irreversible damage to tropical forests (Cochrane and 

Laurance 2002). Differences in the synchronic interactions of different edge-effects can 

lead to variation in how a habitat, and a species, is impacted by the formation of an edge 

amongst different sites of occurrence.  

 

Further additive effects transpire in areas of forest which are located near two or more 

edges (Laurance et al. 2007). Therefore smaller or more irregular fragments are more 

greatly affected by edge effects than larger fragments as they have a higher edge to 

interior ratio (Forman and Gordon 1986; Benítez-Malvido and Arroyo-Rodríguez 2008). 

The presence of multiple edges has been shown to affect both an edge effect’s magnitude 

and extent. The extent of edge effects within double-edged fragments has been recorded 

to penetrate distances of up to 33% greater than at those with a single edge (Fletcher 

2005). The quantity of neighbouring forest edges is an important predictor for local 

phyllostomid bat abundance (Rocha, López-Baucells, et al. 2017) and Bobolink 

(Dolichonyx oryzivorus) site fidelity (Fletcher 2005).  
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Matrix contrast  

The matrix surrounding remnant patches is also important in determining an edge-effect’s 

magnitude and extent, as well as a fragment isolation (Ricketts 2001).  Low-contrast 

matrices (e.g. secondary forest) allow for higher dispersal rates than high-contrast 

matrices (e.g. pasture; Laurance et al. 2002; Malcolm 1994). Generalist species are 

adapted to multiple habitat types and therefore are more capable of exploiting matrices 

which differ substantially in terms of their structure from the original habitat. Habitat 

specialists, in contrast, are incapable of traversing any habitat that differs from their 

primary habitat or are reluctant to do so. Ricketts (2001) demonstrated that specialist 

Lycaenini butterflies had a low tolerance to either low or high contrast matrices, whereas 

generalist Argynnini butterflies were indifferent to matrix type. Other species were only 

tolerant to one of the two matrix types. In this way, the type of matrix acts as a selective 

filter, only facilitating the dispersal of species between fragments which are able to exploit 

that type of matrix habitat (Gascon et al. 1999).    

 

The structural complexity of the matrix surrounding forest remnants also correlates with 

the magnitude of edge effects (Baum et al. 2004; Vleut et al. 2012). Low-contrast matrices 

mitigate some of these effects by reducing the strength of the gradient of many edge-

related changes which are otherwise observed at the boundaries of high contrast matrices 

(Meyer et al. 2016; Rodríguez-San Pedro and Simonetti 2015). They also reduce risk of 

interacting edge effects that may otherwise occur in remnant patches nested within high-

contrast matrices (Porensky and Young 2013). As such, different types of matrices 

provide substantially different value to biodiversity (Gascon et al. 1999). Of the two 

dominant secondary forest types in the Central Amazon, edge-effects have been shown to 

be of smaller magnitude in Cecropia-dominated forest than in Vismia-dominated forest as 

Cecropia  trees grow more densely and larger (Laurance et al. 2002; Benítez-Malvido and 

Arroyo-Rodríguez 2008). Not only does the composition of the matrix affect diversity at 

the species and assemblage level, but it can also determine the effect fragmentation has on 

ecological processes.  Martino (2015) observed that frugivore visitation to fruiting trees 

differed significantly between low-contrast and high-contrast matrices, therefore 

disrupting natural seed dispersal processes. As such, fragment size, shape, and matrix 
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composition all play a crucial role in determining the influence of edge effects on 

community dynamics.  

Modelling edge effects 

Despite significant interest in edge-phenomena over the past century there is still large 

variability in the design of edge-related studies, including the length of transects and the 

scale at which they are sampled (number of distance classes included; Ries et al. 2017). 

Assessing the extent of edge-effects is challenging and requires extensive sampling within 

a habitat to successfully observe fine-grain landscape changes (Ewers and Didham 2006b; 

Ries and Sisk 2004). Between 2013-2015 many empirical studies (e.g. Villaseñor et al. 

2015) utilised short transects (< 500m from edge) with few sample points (< 5). These 

distances are unlikely to incorporate the full area affected by edge-effects and do not 

provide adequate spatial detail to successfully determine extent or magnitude. Inaccurate 

assumptions regarding neotropical herpetofauna responses to edge effects were 

concluded from studies which did not sample adequate distances to detect edge responses 

for these species (Schneider-Maunoury et al. 2016). In addition, the majority of the studies 

reviewed by Ries et al. (2017) only compared two distance classes (interior and edge), as 

such they had no means to quantity magnitude or extent in their assessment of edge 

responses (Ries et al. 2017). Only ~30% of the 674 empirical studies reviewed by Ries et 

al. (2017) quantified distance of edge influence in their analysis. Even so, many studies fail 

to investigate the influence of edge effects on the boundary as a whole, most commonly 

investigating the effect only on one side of the border (Ewers and Didham 2006b; Ries et 

al. 2017). Edge effects are not mono-directional but impact habitats on both sides of a 

border (Fernández et al. 2002). It is therefore important to consider the total penetration 

distance/extent rather than focusing on one habitat exclusively in order to fully 

understand the impact of edge-effects. Of the total studies included in the review only 

~12% quantified distance of influence using suitable analytical approaches such as 

randomization tests, piecewise regression, or Ewers and Didham’s (2006) regression 

models which further reduces the comparability between studies. Magnitude was 

quantified even more infrequently as it was only included in ~5% of studies. 

Consequently, although the distance up to which changes occurred may have been 
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investigated, in ~95% of the studies it was not quantitatively assessed resulting in the 

poor analysis of how much of an effect these changes were having on local populations.  

 

To deduce generalisations of species responses to edge-effects, clear, empirical model 

designs must be adhered to (Ries et al. 2017; Ries and Sisk 2004; Ewers and Didham 

2006b). To do so, designs should accommodate sampling points at a fine-scale over large 

distances (ideally at least >500m from the habitat boundary; Laurance 1991) to ensure 

that extent and magnitude can be calculated with confidence and sampling points should 

also be located in the habitats either side of the boundary. Ewers and Didham (2006) 

proposed five theoretical models to explore species’ responses to edge-effects (see 

methods for model descriptions), individually and as an assemblage, meeting these 

criteria. These models have also been applied to studies investigating how edge effects 

effect processes such as seed dispersal (Vespa, Zurita and Bellocq 2014). They examine 

five potential relationships between edge effects and responses. By testing for potential 

positive affiliations with edge habitat, as well as incomplete sampling ranges for 

measuring extent on one or both sides of the habitat boundary, these models provide a 

valuable tool for empirically investigating edge impact.   

Bats & Fragmentation   

Bats are often overlooked in conservation research but represent the second most diverse 

mammalian order, with over 1300 species worldwide (López-Baucells et al. 2016). Almost 

25% of these are classified as Critically Endangered, Endangered or Vulnerable by the 

IUCN, predominantly due to habitat loss (Mickleburgh, Hutson and Racey 2002; López-

Baucells et al. 2016). Bats perform important ecological roles in tropical forests including 

pollination, seed dispersal, and insect suppression (Kunz et al. 2011; De La Peña-Domene 

et al. 2014). They are also considered valuable bioindicators of disturbed forest habitats 

(Fenton et al. 1992; Cunto and Bernard 2012). The Neotropics has the highest bat 

diversity globally with ~83 genera and ~288 species (Mickleburgh, Hutson and Racey 

2002). This comprises species from a variety of feeding guilds including: frugivores, 

insectivores, carnivores, nectarivores, sanguivores, piscivores and omnivores (Segura-

Trujillo, Lidicker and Álvarez-Castañeda 2016). The Amazon alone supports over 200 



Page 25 of 91 
 

recognised species with representatives from each of these guilds (López-Baucells et al. 

2016). The most common diet of Amazonian species is insectivory, the same as that of 

ancestral bat species (López-Baucells et al. 2016; Segura-Trujillo, Lidicker and Álvarez-

Castañeda 2016).   

Current understanding of tropical bat responses to fragmentation 

There have been numerous studies investigating the effects of fragmentation on tropical 

bat assemblages (reviewed in Meyer et al. 2016), mostly restricted to the Neotropics with 

isolated studies from the Old World (e.g. Struebig et al. 2008; Law, Anderson and Chidel 

1999). In the Neotropics, aerial insectivores are poorly sampled due the sensitivity of 

their biosonar to mist-nets (Marques et al. 2013; Meyer 2015), resulting in a dominance of 

studies focused on phyllostomid bats (Estrada-Villegas, Meyer and Kalko 2010; Meyer, 

Struebig and Willig 2016; Estrada and Coates-Estrada 2002; Arias-Aguilar et al. 2018). 

This has limited our understanding of fragmentation effects on aerial insectivores, 

particularly concerning edge-effects.  

Bat responses to fragmentation at the assemblage level are complex, as evidenced by 

conflicting findings across many studies. Multiple studies, including those conducted by 

Estrada and Coates-Estrada (2002) and Bernard and Fenton (2007), have shown little or 

no changes in the species richness of tropical bat assemblages in response to 

fragmentation (Rodríguez-San Pedro and Simonetti 2015). Rodríguez-San Pedro and 

Simonetti (2015) and Ethier and Fahrig (2011) demonstrated a positive effect on aerial 

insectivorous bat activity in the temperate forests of Chile and Canada. Both studies 

hypothesized that fragmentation can benefit many of these species, increasing the habitat 

complexity as fragmented forests provide a greater set of resources, e.g. for foraging and 

roosting, and that forest-edges provide beneficial commuting routes (Verboom 1998) 

Both studies also suggested a positive response by bats to edge habitat; in Ethier and 

Fahrig (2011) 97.5% of bat passes were recorded at the edge. Higher activity of shrub and 

canopy frugivores has also been observed in the edge than in the interior of tropical forest 

fragments due to a higher abundance of fruiting successional plants (Rocha, López-

Baucells, et al. 2017; Cortés-Delgado and Pérez-Torres 2011). 
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Other studies contradict the conclusion that forest fragmentation is beneficial to bat 

assemblages, having shown bats are negatively impacted by fragmentation at the species 

and assemblage level (Bernard, Albernaz and Magnusson 2010; Meyer et al. 2007; Rocha 

et al. 2016; Cunto and Bernard 2012; Struebig et al. (2008). For both phyllostomids and 

aerial-insectivores, higher abundances and number of species have been shown to occur 

in larger forest fragments compared with smaller ones (Struebig et al. 2008; Rocha, 

López-Baucells, et al. 2017; Estrada-Villegas, Meyer and Kalko 2010) with increased 

species dominance occurring in edge habitat (Rocha, López-Baucells, et al. 2017). The 

results of Ethier and Fahrig (2011) should be interpreted with caution as they do not 

account for higher detectability within clearings compared to cluttered forest interiors 

(Stilz and Schnitzler 2012) nor do they consider matrix composition.  The authors also 

classified the forest interior as 50m from the forest edge at which distance the forest may 

still be affected by edge-effects (Delaval and Charles-Dominique 2006). Similarly, 

Rodríguez-San Pedro and Simonetti (2015) did not quantify bat activity in the matrix so 

were unable to compare the effects of fragmentation on bat activity between all three 

habitats (interior, edge & matrix).  The consensus between all of the studies mentioned is 

varying responses to fragmentation are observed across different bat species.  

 

Although bats are highly mobile, forest cover is an important factor determining whether 

the matrix is favorable for commuting and foraging (Vleut et al. 2012). Ecomorphological 

factors influence a species’ ability to exploit different matrix habitats (Bader et al. 2015; 

García-García, Santos-Moreno and Kraker-Castañeda 2014; Farneda et al. 2015). Species 

which are adapted to foraging in forest interiors may be unable to use high-contrast 

matrices (such as agricultural land; Bader et al. 2015; Farneda et al. 2015; Rocha et al. 

2016), thereby reducing their available range  due to a lack of commuting habitat. As such 

fragments largely enclosed within a low-contrast matrix, e.g. late-stage secondary forest, 

support a higher diversity of species than partially enclosed patches (Vleut et al. 2012). 

Forest fragments within a low-contrast matrix have a lower magnitude of edge-related 

changes. For this reason, high-contrast matrices support a lower diversity of insectivorous 

bat species than secondary forest and forestry plantations (Rodríguez-San Pedro and 

Simonetti 2015; Struebig et al. 2008; Meyer & Kalko 2008). This can be attributed to both 
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abiotic factors - such as increased wind pressure, which reduces the habitat suitability for 

many prey species - and biotic factors - such as increased detectability by predators. Both 

can reduce the matrix’s suitability for many species, thereby creating a barrier between 

fragments. Differences in matrix composition and age are likely to account for much of the 

variability in bat responses across fragmentation studies (Meyer, Struebig and Willig 

2016).  

 

Whilst limited, a number of studies have looked at the difference in bat community 

composition and activity levels between interior, edge, and matrix habitats (e.g. Ferreira et 

al. 2017; Cortés-Delgado and Pérez-Torres 2011; Rocha et al. 2017; Rodríguez-San Pedro 

and Simonetti 2015). Such studies are often used in conjunction with morphological 

studies to inform the classification of a species as a forest specialist, open/edge forager, or 

as a generalist (Delaval and Charles-Dominique 2006). These classifications are helpful for 

conservationists to better understand how anthropogenic changes are likely to impact 

particular species. However, as there are no universal estimates as to the degree to which 

edge effects penetrate unmodified and neighboring modified habitats, these studies often 

rely on arbitrary definitions of the edge’s boundaries (Ries et al. 2017).  

Few studies to date have investigated how bats respond to edge-effects and existing 

studies have focused on phyllostomids. These studies suggest that responses of bats to 

edge effects may be detected up to 3km; the furthest distance recorded within forest 

fragments compared with responses of any other vertebrate group currently studied 

(Delaval and Charles-Dominique 2006). However, as with more generalized studies of 

fragmentation, there have been contradictory findings as to how bats respond to edge-

effects. Da Silva, Filho and Lacher  (2013) observed lower phyllostomid bat abundance in 

the edge habitat than in the interior of tropical forest of Southern Brazil. The sampling 

area for the ‘edge habitat’ was limited to along the border of two adjacent habitats and 

therefore they did not quantify the extent of the effect. The interior transects began ~1km 

into the forest fragment, below the 3km threshold proposed by Delaval and Charles-

Dominique 2006).  In contrast, Cortés-Delgado & Pérez-Torres (2011) and Rocha et al. 

(2017) found that highest phyllostomid abundance occurred in edge habitat in Colombia 
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and the Amazon. Similar to Da Silva, Filho and Lacher  (2013), Cortés-Delgado & Pérez-

Torres’s (2011) definition of the edge only extended ~50m from the boundary and 

interior sampling points located >350m from the edge were unlikely to be independent of 

edge-effects. However, this study identified a significant difference in the value of two 

different types of edge habitat for these species depending on the forest’s structural 

composition, concluding every edge habitat will not stimulate the same response between 

species. Along with Delaval and Charles-Dominique (2006), Rocha et al. (2017) observed 

decreased phyllostomid species richness at the forest edge with a dominance of few, 

generalist species. In Delaval and Charles-Dominique (2006) the edge habitat was defined 

as the distance up to which species’ known to occupy degraded habitats, Glossophaga 

soricina and Artibeus cinereus, were recorded. As mentioned, this creates a feedback loop 

between a specified habitat type being used to determine a species classification, and then 

species being used to determine a habitat criterion. Both are likely to be influenced by 

classifications in other localities. By first quantitatively determining the distance 

threshold of edge effects specifically for a site - and the selected habitats - of interest, 

researchers can ensure that interior, edge, and matrix criteria can be used more accurately 

to reflect the true responses of species. None of the four studies mentioned were able to 

reliably sample aerial insectivores due to the sampling technique used, however aerial 

insectivores constituted 1% of the bats captured by Cortés-Delgado & Pérez-Torres’s 

(2011) and six species were analysed by Da Silva, Filho and Lacher  (2013), and one 

species by Rocha et al. (2017). The latter included Pteronotus parnellii which is an aerial 

insectivorous species which can be sampled well using mist-netting.   

 

Ecomorphological factors influencing response to fragmentation 

Wing shape & roost selection 

As a species’ tolerance to disturbance can be predicted from its ecological requirements 

and adaptability, so too can its response to edge effects. Body size, wing loading (body 

mass divided by wing area), call structure, home range and roost selection are all 

associated with a bat species’ spatial requirements (Kalko and Handley 2001; Pinto and 

Keitt 2008; García-García, Santos-Moreno and Kraker-Castañeda 2014). Species with a 
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high wing loading trade maneuverability for fast, sustained flight. This enables them to 

exploit highly-dispersed food resources and to hawk insect prey in the air. However, this 

morphology restricts their ability to maneuver in highly-cluttered environments such as 

forest interiors. Therefore, these species are principally associated with open habitat and 

forest edges (Estrada-Villegas, Meyer and Kalko 2010). On the other hand, species with a 

low wing loading are well adapted to exploiting resources in the forest interior and 

maneuvering through dense vegetation in the canopy. However, because of this 

specialisation they are more likely to be negatively affected by changes to vegetation 

structure (Pinto and Keitt 2008; García-García, Santos-Moreno and Kraker-Castañeda 

2014). Fast-flying, more mobile species are less impacted by fragmentation as they are 

more capable of exploiting landscape mosaics (Law, Anderson and Chidel 1999; Meyer, 

Struebig and Willig 2016). 

 

Roost selection is also a significant factor in species’ distribution. Although many bat 

species roost in caves and buildings, most roost in trees and foliage (Kunz 1982). Tree 

cavity/foliage roosting species are more at risk from the negative impacts of 

fragmentation than cave-dwelling species as they require suitable habitat within 

remaining forest patches for roosting as well as for foraging (Struebig et al. 2008; 

Rodríguez-San Pedro and Simonetti 2015; Ethier and Fahrig 2011). This is one way in 

which a species may need to utilize more than one fragment to meet all of its ecological 

needs – otherwise known as landscape supplementation (Rodríguez-San Pedro and 

Simonetti 2015). Therefore, an individual is restricted by its ability to commute to and 

from available roost sites.  

 

Call structure 

Different echolocation call structures are utilized by insectivorous species depending on 

their environment and foraging strategy (Stilz and Schnitzler 2012; Holderied and Von 

Helversen 2003). Open/edge foragers often utilize low, long, frequency-modulated (FM) 

calls with narrow bandwidths or FM-QCF (frequency modulated – quasi-constant 

frequency) calls, both of which can detect prey over large distances. Forest specialists 
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typically use frequent, short, high-frequency FM calls with broader bandwidths (Fig. 4; 

Russo, Ancillotto and Jones 2018). This call shape allows for a detailed image of the 

environment necessary to maneuver through vegetation but has a limited detection range 

(Thomas, Moss and Vater 2004). A combination of its morphology and echolocation call 

structure therefore determines a species’ capability for foraging in different 

environments. 

 

However, many bat species are highly adaptable. By overlapping high frequency, constant 

frequency (CF) calls, P. parnelli is capable of observing its environment, both in refined 

detail and over a large distance (Jen and Kamada 1982). Its medium body size allows it to 

not only exploit forest interior but also traverse open areas depending on prey availability 

(Estrada and Coates-Estrada 2002), habitat type and risk from predators. In addition to 

inter-specific variation in call structure, many species are able to adjust their call 

characteristics to fit their habitat requirements (Russo, Ancillotto and Jones 2018; Kalko 

and Schnitzler 1993). This intra-specific variation is commonly observed in pipistrelle 

species (Kalko and Schnitzler 1993) which produce calls with FM and CF components. 

When foraging in open spaces they produce calls with a narrower FM component but an 

elongated CF component than when foraging in a cluttered environment. They are also 

able to adjust the peak frequency of their call (~40-50kHz) depending on the 

environmental conditions (Kalko and Schnitzler 1993). Therefore, a species response to 

edge-induced environmental change is often related to its ecological requirements, its 

Figure 4 – Example of echolocation call shapes. Families which utilise these call shapes incl. A - 
Mormoopidae, B – Emballonuridae, Molossidae and Vespertilionidae, C - Furipteridae and 
Thyropteridae (sourced from López-Baucells et al, 2016). 

C B  A 
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dispersal ability or the ability to which it can adapt to such changes. Fundamentally this is 

often the degree to which it is specialised for a particular habitat type. 

 

Monitoring bat responses 

Over the last five years, the development of echolocation call-libraries (Jung, Molinari and 

Kalko 2014; López-Baucells et al. 2016; Arias-Aguilar et al. 2018) has rapidly expanded 

the potential for including aerial insectivores in fragmentation studies. However, the 

feasibility of such investigations is often limited by the generation of large datasets which 

require extended post-field analysis (López-Baucells 2018; Russo and Voigt 2016). Thus, 

acoustic sampling may result in unmanageable acoustic datasets for many researchers 

interested in studying these species. Including acoustic surveys in these studies is 

essential as aerial-insectivores make up large fractions of Neotropical bat assemblages 

(Silva and Bernard 2017; Estrada-Villegas, Meyer and Kalko 2010; MacSwiney, Clarke and 

Racey 2008), however manual identification of sound recordings is often time-consuming, 

reliant on experts, and lends itself to identification inconsistencies amongst different 

analysists (Jennings, Parsons and Pocock 2008). Automated classifiers not only provide a 

potential solution to these problems but can also reduce the storage requirements for 

acoustic studies and guarantee consistency across long-term projects (Blumstein et al. 

2011; Russo, Ancillotto and Jones 2018) saving time, financial, and energy resources.  By 

utilizing the same signal parameters as measured manually by bio-acoustic technicians, 

machine-based feature-extraction algorithms or neural networks can assign species labels 

based on pre-determined call characteristics (Parsons and Jones 2000; Armitage and Ober 

2010; Zamora-Gutierrez et al. 2016; López-Baucells 2018).  

 

However, automation comes with the risk of generating false positives (over estimating 

species’ occurrence) or, more significantly, false negatives (underestimating species’ 

occurrence; Blumstein et al. 2011; Russo, Ancillotto and Jones 2018). This may result in 

the under or overestimation of species' occurrence, as well as the incorrect mapping of a 

species distribution.  As such, many commercial classifiers have been criticized for their 

low accuracy (Rydell et al. 2017; Madhukumar et al. 2018). Another issue is that 
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automatic classifiers are often restricted to localities where there are large acoustic 

datasets available to first train an algorithm. Intrinsically this has limited their use in the 

tropics where our understanding of bat echolocation is limited (Russo, Ancillotto and 

Jones 2018; MacSwiney, Clarke and Racey 2008). In order to maximise the potential for 

this technique to be widely applied, and ensure reliable results are generated, it is of 

foremost importance that global echolocation call libraries are created for training 

locality-specific classifiers.  

Response to Prey Availability 

Diet and food resource distribution are important factors which influence the spatial 

distribution of many bat species/guilds. In the tropics, fruit abundance is a significant 

determinant of the distribution of frugivorous bats (Francis 1994; Saldaña-Vázquez 2014; 

Kalko and Handley 2001). Consequently, it is important to consider whether tropical 

insectivorous species are equally influenced by the spatial distribution of their 

prey.  Gonsalves et al. (2013) found that prey distribution was more important than 

habitat type in influencing the spatial distribution of aerial insectivores. However, in other 

localities, the extent of this influence was dependent on spatial constraints of a species 

(Müller et al. 2012) and forest specialist species are typically restricted by habitat type 

whereas open/edge foragers are capable of using multiple habitats to exploit fluctuating 

prey abundances (Müller et al. 2012; Kusch et al. 2004).  An inverse relationship between 

prey availability and insectivorous bat activity was observed by Adams, Law and French 

(2009) in harvested forests of S.E. Australia. As previously discussed, maneuverability 

within structural clutter strongly influences the distribution and activity of bat species 

(Kalko and Handley 2001; Adams, Law and French 2009; García-Morales et al. 2016) 

suggesting the dense understory vegetation of disturbed forests provides unsuitable 

foraging habitat for aerial-insectivores. Thus, forest structure, as well as the proximity of 

prey to primary forest (Treitler et al. 2016), is perhaps more significant in determining a 

species distribution rather than prey availability exclusively. Within Neotropical forest 

interiors, P. parnellii is primarily recorded in the understory (Bernard 2001; De Oliveira et 

al. 2015; Herd 1983). However, notably, its morphology and call structure imply that it is 

capable of exploiting multiple strata (Jennings et al. 2004; De Oliveira et al. 2015). There is 
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disagreement as to whether this observation reflects maximum prey availability (Appel et 

al. 2017; De Oliveira et al. 2015), and therefore foraging behaviour, or whether it is due to 

their subterranean roosting behaviour (Bernard 2001; Herd 1983). As edge-effects affect 

insect populations (Foggo and Speight 2001; Villada-Bedoya et al. 2017; Leidner et al. 

2010) it is important to consider whether bat responses to edge-effects reflect changes to 

forest type or changes to prey availability. 

Aims & Objectives 

This thesis aimed to use the approach proposed by Ewers and Didham (2006) to assess 

the magnitude and extent of edge effects on aerial insectivorous bats in the Amazon. To do 

so, data collected by Adrià López-Baucells and Maria Mas were used to quantify bat 

responses to edge effects. This involved modifying an automatic classifier to improve its 

performance for this bat ensemble. Specifically, the objectives were: 

 

1. To quantify and compare aerial insectivorous bat activity across a habitat 

gradient (2km transects beginning 1km into the matrix of secondary forest 

running linear 1km into adjacent primary forest) to determine the magnitude and 

extent of edge effects. This was undertaken for individual species/sonotypes, 

functional groups and for total activity.  

2. To use the calculated extent of the edge effect to define three habitat categories: 

interior secondary forest, edge habitat and interior primary forest.   

3. To quantify and compare species richness and assemblage composition between 

these three habitats. 

4. To quantify and compare activity of aerial insectivorous bats in relation to insect 

availability overall and, more specifically, in relation to individual insect orders 

which are known to be preyed upon by bats. 

 

In doing so, this thesis aimed to address multiple research gaps relating to aerial 

insectivorous species, thereby increasing our scientific understanding of how landscape 

fragmentation - and associated edge effects - impact Neotropical bats. To encourage further 
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studies to include these species in Amazonian fragmentation studies the additional aim 

was: 

 

5. To quantify the performance, in terms of accuracy, of using an automatic classifier 

for Amazonian aerial insectivores in comparison to manual identification using two 

confidence thresholds (≥60% and ≥95%) 

 

Hypotheses 

i. Forest specialist activity and total bat activity will decrease on both sides of the 

boundary towards the edge whereas open/edge foragers will exhibit no 

response to edge effects. This study predicts forest species’ responses will cover 

an extent >~1.5km as no effect has been observed in studies using transects 

<1km. 

ii. Species richness will exhibit a negative response to edge effects in the primary 

forest but no response in the secondary forest, with two communities present: 

one in the primary forest and one in the edge/secondary forest. 

iii. Edge penetration distance will be larger (>100m) in the primary forest than the 

secondary forest for all forest specialists.  

iv. Forest specialist activity will be significantly lower in the secondary forest than 

in the primary forest and there will be no difference in the activity of open/edge 

foragers between the habitats.  

v. Total bat activity will exhibit a positive correlation with insect availability across 

both habitats.  
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Methods 

Study area 

Located 80km north of Manaus, Brazil, in the Central Amazon, the Biological Dynamics of 

Forest Fragments Project (BDFFP) (2024’26’’S, 59043’40’’ W) is the world’s most 

comprehensive, long-term experimental study into the effects of habitat fragmentation 

across a broad range of taxa (Laurance et al., 2017; Fig. 5). This includes important 

observations into how edge effects influence community and landscape dynamics. The 

primary forest is classified as terra firme forest, with an average tree diversity of 280 

species per hectare (Barros & Fearnside, 2016). The canopy height is between 30-45m 

with emergent trees up to 55m.  The primary forest fragments (1, 10, and 100 ha)  were 

experimentally isolated within cattle ranches in the early 1980’s, between 80–650m from 

continuous forest, however forest regeneration quickly occurred after many were 

abandoned 5-10 years later due to economic unviability (Bierregaard et al. 1992; Gascon 

et al. 1999). Regrowth forest was dominated by Vismia spp, in areas that were cleared and 

burned, or Cecropia spp., in areas that were cleared without fire (Mesquita et al. 2001).  

The understory is dominated by palms (Gascon et al. 1999) and it is characterised by an 

average canopy height of 20-25m. The secondary forest at the time of the study was 

classified as ‘old secondary forest’ using the age classes proposed by Powell et al. (2015). 

The forest has been periodically cleared to ensure fragment isolation was maintained 

which was scheduled to commence after the survey period in 2013-2014 (Rocha, López-

Baucells, et al. 2017). Annual average rainfall is between 2.3-2.5m, however a large 

variation may be experienced between years (1.9-3.5m). The rainy season occurs between 

November and June (monthly rainfall >250mm) and the dry season occurs between July 

and October (monthly rainfall <100mm). Average temperature is between 26-30oC and 

the site covers a low elevational range of 80-160m (Bierregaard et al. 1992; de Cássia 

Guimarães Mesquita 2000; Johnson and Wolfe 2016; Ferreira et al. 2017).   
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Acoustic Surveys 

To record bat activity, automatic detectors (Song Meter 2 SM2Bat+, Wildlife Acoustics) 

with omni-directional microphones (SMX-US Ultrasonic Microphone) were placed every 

50m along four, 2km transects for a total of 42 recording stations.  Two sites within the 

BDFFP were used (Cabo Frio and Dimona) to reduce the risk of site bias - two transects at 

each site (see Appendix I for co-ordinates). Each transect extended through 1km of 

secondary forest and then continued 1km into the neighbouring primary forest (Fig. 6). 

Surveys were conducted by Adrià López-Baucells and Maria Mas in the dry season of 2013 

and the rainy season of 2014 to prevent seasonal bias. Recordings were saved in WAC 

format (see Appendix III for further detector settings). As bats are known to favor 

established flyways for commuting (Law and Chidel 2002; Palmeirim and Etheridge 

1985), each transect was established especially for this study. 

Figure 5 – Map of the BDFFP in the Central Amazon. The black areas represent primary 
forest sites used in the study, the light grey areas represent secondary forest fragments 
and the dark grey represents additional continuous primary forest. Transects were 
located in Dimona and Cabo Frio. Sourced from Rocha et al (2017). 
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At each recording station, one SM2Bat+ detector was placed in the understory - affixed to 

a tree at breast height (see Appendix II). To ensure the understory was sampled 

exclusively, plastic dividers were attached to the detectors to create discrete directional 

microphones (Celis-Murillo, Deppe & Allen, 2009). For this study, the understory was 

defined to extend from ground to ~ 10m. Hand releases of P. parnelli were conducted in 

both the primary and secondary forest to establish the maximum distance of call detection 

in each habitat. This species, which has the loudest call of the target species, could trigger 

a detector up to approximately 20m away. Consequently, recording stations situated 50m 

apart were considered spatially independent sampling points. However, to guarantee 

maximum point independence, these were rotationally sampled (7 recording stations per 

rotation) so that actively-recording detectors were 250m apart. Each active detector was 

programmed to record for 12 hours (18:00-06:00) for three consecutive nights. This 

amounted to 3,024 recording hours.  

Figure 6 – Aerial view of the two forest types at Cabo Frio and the sampling points for transects 
C1 & C2. 
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Acoustic Analysis 

To ensure bat activity was comparable across the study, all recordings were divided into 

five- second fragments to define a bat pass (Torrent et al., 2018). These were used as the 

measure of bat activity. 

 

Automatic classification 

A modified version of the automatic classifier developed by López-Baucells et al. (2017) 

was used to identify species in the acoustic dataset collected. Prior to analysis, the call 

parameters of an additional acoustic dataset collected by Adrià López-Baucells (2018) 

were extracted using ScanR (Snapshot Characterization and Analysis Routine) v1.7.4 

(Binary Acoustic Technology, USA). This was to increase the number of reference calls 

available for less common species. All calls were subjected to manual verification prior to 

their inclusion using the acoustic key in López-Baucells et al. (2016). These were used for 

training the supervised learning algorithm - random forest (Breiman 2001). Random 

forest has been shown to achieve the highest predictive power against 6 other supervised 

learning techniques  (bagging, support vector, machine, artificial neural network, boosting 

and linear discriminant analysis; Armitage and Ober 2010) and has performed well for 

classifying Neotropical bat species (Zamora-Gutierrez et al. 2016).  

Group Species/Sonotype Acronym Total No. of Pulses 

for Training Datasets 

Forest 

specialist 

Cormura brevirostris CB 40397 

 Centronycteris 

maximiliani/centralis 

CM 685227 

Table 1 - The classification and number of pulses used per sonotype to train the automatic 
classifier for Amazonian aerial insectivores. Due to difficulties in distinguishing between the 
three molossid sonotypes (M1, M2 and M3) they have been grouped as a single sonotype (M) for 
the analysis. No training dataset was available for Thyroptera sp. This study species were 
classified based on the classifications used by Estrada-Villegas, Meyer & Kalko (2010) and 
information provided by IUCN (2017). 
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 Emballonuridae sp. (Saccopteryx 

gymnura / canescens)  

E1 11068 

 Eptesicus brasilensis  EB 125490 

 Furipterus horrens FH 1125 

 Pteronotus parnellii (55KHz) P5 506515 

 Pteronotus parnellii (60KHz) P6 622328 

 Pteronotus gymonotus PG 8362 

 Rhynchonycteris naso RN 417 

 Saccopteryx bilineata SB 510960 

 Saccopteryx leptura SL 262826 

 Thyroptera sp. 

 

TT - 

Open/edge 

forager 

Myotis nigricans MRN 455664 

 Myotis riparius MRN 735520 

 Molossus molossus M (1) 11468 

 Molossus sp. (Molossus sinaloae / 

currentium / Rufus ) 

M (2) 23672 

 Nyctinomops laticaudatus, 

Tadarida brasiliensis 

M (3) 5141 

 Promops nasutus/centralis P 3714 

 Peropteryx kappleri PK 149007 

 Peropteryx macrotis PM 14176 

 Pteronotus personatus PP 6631 

 

Training datasets of 2000, 3000, 4000, and 5000 pulses were assessed in terms of their 

performance using accuracy and kappa metrics. This analysis was conducted for all 

species with sufficient reference calls. For sonotypes with less than 2000 pulses, the 

maximum number of available files was used for the training dataset (Table 1). The 

relative importance of each acoustic parameter was also assessed for the most efficient 
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model and the best performing model. The efficiency of a model was determined by the 

accuracy of classifications relative to model run time. The optimal model was chosen 

based on efficiency (performance/time taken to conduct analysis). This model was then 

applied to the dataset using ten acoustic parameters (call duration (Dur), maximum 

frequency (Fmax), minimum frequency (Fmin), bandwidth (BW), dominant frequency 

(Fdom), duration of Fdom (Ldom), high end of characteristic (HiFc), low end of 

characteristic (LowFc), global slope of call (Slope), curvature (Curv) to classify the calls to 

species level -  see Binary Acoustic Technology (2005) for detailed descriptions. To be 

considered a bat pass, two pulses per species had to be present in each of the files. Once 

identified, predictions with an accuracy below the 60% threshold (N = 100242) were 

discarded to reduce noise files and the likelihood of including incorrect identifications 

(see Appendix IV). Calls which were identified above this threshold were subjected to 

manual post-validation (N = 235979) to minimize the risk of false negatives and 

increasing the proportion of species where the probability threshold was low. 

 

Manual post-validation 

Manual post-validation on the aforementioned subset of calls was conducted, using 

Kaleidoscope Viewer 4.0 software (Wildlife Acoustics Incl., USA) with the aid of an 

echolocation key for bats of the study area (López-Baucells et al., 2016). Call parameters 

considered include: start/end, maximum/minimum, and peak frequencies, call duration, 

and call shape. These were measured on the strongest harmonic of each call. Where 

species identification was not possible (e.g. significant overlap between species), species 

were identified to mixed-species groups, i.e. sonotype level (Table 1) or calls were 

excluded from analysis (e.g. calls were faint, <10dB of difference from background noise, 

or obscured). Feeding buzzes or social calls were not considered so as to allow for 

comparability with automatically identified calls. To test the reliability of the automatic 

classifications, post crosschecking was conducted on the files identified to both ≥60% and 

≥95% accuracy probabilities (here after referred to as AP60 and AP95). For this, non-

paired Wilcoxon Signed-Rank Tests were used. Due to significant deviation between the 

activity of certain species/sonotypes identified by the automatic classifier and those 
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manually-identified (see Appendix V), the edge-effect analysis was restricted to the 

manually-identified calls. 

Insect sampling 

A light trap was mounted in the understory at each of the acoustic sampling points (21 per 

transect) to quantify insect availability (Appendix II). These traps were mounted for two 

nights (between 18:00-06:00) per sampling point. To prevent the light traps influencing 

bat activity recordings (Froidevaux et al, 2018) insect surveys were rotated to ensure that 

bat activity and insect abundance were not recorded at the same sampling site on the 

same night. Half of the sampling points were sampled for insects before and half after the 

bat activity surveys to prevent bias. 

 

Insects collected were subsequently stored in 96% alcohol until later identification in the 

laboratory. For each sampling point, for each insect order, the number of individuals was 

determined, as well as total insect volume (length*width*height). This was then used as a 

measure of insect availability for each order (see Sample et al. 1993 for further 

justification).  

Data Analysis 

To assess the extent of edge effects on aerial insectivorous bat activity at the level of 

individual species and functional groups (forest species, open space foragers), regression 

analyses were conducted using the five theoretical models proposed by Ewers and 

Didham (2006) and subsequently extended upon by Zurita et al. (2012). These were 

conducted using the stats package in R (version 3.4.4)(R Core Team 2018). Relative bat 

activity (number of bat passes/survey effort) was used as the dependent variable and 

distance to the edge was specified as the independent variable. The second-order Akaike 

Information Criterion, corrected for small sample sizes (AICc), was then used to 

determine the relative fit of these models. Insufficient data to conduct the regressional 

analysis (< 120 bat passes across all replicates) were obtained for Eptesicus brasiliensis, 
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Furipterus horrens, Promops nasutus/centralis, Peropteryx kappleri, Pteronotus 

gymnonotus, Peropteryx macrotis and Pteronotus personatus.  

 

 

 

Model Descriptions 

 

Model 1 – Mean model 

Relative Activity = β0 + ε 

Where species exhibit no response to edges as they utilise both habitats equally; this 

model applies to generalist species. 

*ε = error 

 

Model 2 – Linear model  

Relative Activity = β0 + Distance × β1 

This model implies that the effect of the edge extends the range of the sampled area of the 

study.  

* β0 & β1 = constants 
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Figure 7 – Visualization of the five models proposed by Ewers and Didham (2006) of species 
responses to edge effects. 1 – Mean/null model; 2 – Linear model; 3 – Power model; 4 – 
Sigmoid model; 5 – Unimodal model  

Habitat Boundary Habitat 1 Habitat 2 
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Model 3 – Power model 

Relative Activity = β0 × eβ1 × Distance + Ymin 

This model identifies the uni-directional asymptote response to the edge. 

* Ymin = the uni-directional asymptote 

 

Model 4 – Sigmoid model 

Relative Activity = Ymin + ((Ymax−Ymin)/(1 + e(β0−Distance) × β1)) 

Where asymptotes are determined within both habitats in response to the edge. This 

model implies there is a discrete change in habitat suitability, resulting in a species 

response which is either gradual or abrupt. 

*Ymax & Ymin represent the bi-directional asymptotes 

 

Model 5 – Uni-modal model 

Relative Activity = Ymin + ((β0−Ymin)/(1 + e(β1−Distance + β2 × Distance2) × 

β3)) 

Where species exhibit a preference for edge 

habitat. 

*β2 & β3 = additional constants 

 

Exploratory analysis revealed that for most species 

the five theoretical models outlined above were 

unlikely to fit the data effectively. Therefore, a 

further, more complex polynomial model was also 

included to assess whether other models may 

better explain bat responses to edge-effects. To do 

so, a third-degree polynomial model was used 

(model 6 – cubic). This model implies a bi-

directional response to edge-effects but indicates 

only one asymptote is reached (Fig. 8). 

Habitat 1 Habitat 2 

Distance from edge 

A 

Figure 8 – Visualization of a species 
distribution following the cubic model 
repsonse to edge effects. Point A 
indicates the optimal distance from the 
edge which favours species activity in 
habitat 1. No asymptote is reached for 
habitat 2.  
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Unlike the power or sigmoid models, this model indicates there is an optimum distance 

from the edge which provides the most favorable conditions for at least one habitat type. 

It also indicates that a response to an edge habitat may not be linear across a habitat (see 

figure 20 for more information). Following the procedure outlined by Villada-Bedoya et al. 

(2016) extent was calculated as the distance between both inflection points in the sigmoid 

and unimodal functions (Zurita et al. 2012; Ewers and Didham 2006b) (Fig. 9).  

  

By determining the distance threshold of edge effects, considering the mean extent of all 

species which exhibited a response (N = 2), three habitats were identified: continuous 

forest interior (continuous forest beyond the distance threshold of edge-effect 

penetration), edge habitat (area affected by edge effects) and secondary forest (secondary 

forest beyond the distance threshold of edge-effect penetration). Had all species exhibited 

a mean or linear response then no habitat comparisons could be examined. If a power 

model had been identified as best, then only two habitats could have been compared (the 

habitat with the asymptote and edge habitat). As the data did not meet the assumption 

necessary for One-Way ANOVA, a Kruskal Wallis test was used to test for differences in 

activity between these three habitats defined using mean extent for each functional group, 

total activity, and those species exhibiting an edge-related response. Activity for each 

 
 

Figure 9 – Visual methodology of how magnitude and extent were calculated for the sigmoid (left 
figure) and the unimodal (right figure) models (sigmoid function - the distance between the max. 
and the min. of the second derivative; unimodal function - the distance between the two maxima 
of the second derivative; adapted from Zurita et al (2012). 
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habitat was divided by the number of sample points included within each habitat to 

ensure comparable results (secondary forest = 15 sampling points, edge habitat = 9, 

continuous forest = 17).  

 

Community Composition 

Once the mean extent of edge effect penetration had been determined, Non-Metric 

Multidimensional Scaling (NMDS) on a Bray-Curtis distance matrix was performed using 

R package vegan to visualize the species composition of each habitat. Analysis of 

Similarities (ANOSIM) using the vegan package was used to determine whether 

compositional differences between habitats were statistically significant. A Kruskal Wallis 

test was also used to test for differences in species richness between habitats. 

 

Prey Availability 

A Shapiro-Wilk normality test showed that the data were not normally distributed (W = 

0.235, P-value < 2.2e-16), therefore Spearman’s rank correlations were used to test for a 

relationship between relative bat activity and relative insect volume across the full habitat 

gradient, and for each of the three habitats as defined above based on the calculated 

extent of the edge effect. Both relative bat activity and total insect volume were 

standardized by dividing by the number of sampling stations per habitat.  
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Results 

In total 38,654 bat passes were manually attributed to 18 aerial insectivorous species or 

sonotypes, including two species/sonotypes of the family Vespertilionidae, seven 

species/sonotypes of Emballonuridae, four sonotypes of Molossidae (sonotypes M1, M2 

and M3 have been grouped for analysis; Table 1), four species of Mormoopidae and one 

species of Furipteridae. Of these, ten species/sonotypes of forest-specialists were 

identified and five groups of open/edge foragers. One forest-specialist species, 

Rhynchonycteris naso, which is known to occur locally (López-Baucells et al. 2016; Torrent 

et al. 2018)  and was included in the classifier was not recorded during this study.  

Impact of Edge 

Modelling of edge effect magnitude and extent 

Regression analysis indicated that five species/sonotypes demonstrated no change in 

activity in response to edge effects across the habitat gradient using Ewers and Didham’s 

(2006) models (Fig. 10). This included the open/edge forager family Molossidae, three 

forest-specialist species (C. brevirostris, P. parnellii (55KHz) and S. leptura), and the forest-

specialist genus Myotis (Fig. 10). All five also showed no response under the more 

complex cubic polynomial model (Table 2).  

 

An edge response was identified in two species, C. maximiliani/centralis and P. parnellii 

(60KHz), for both of which the sigmoid model provided the best fit when only considering 

Ewers and Didham’s (2006) models (Fig. 10) (Table 2). However, when including the sixth 

model in the analysis, the cubic polynomial provided the best fit to the data for both 

species. Both species had greater activity in secondary forest than in primary forest. As 

these were the only two species to fit a sigmoid or unimodal model they were the only 

species for which extent and magnitude could be quantified. Extent of the edge effect was 

calculated as 250m for secondary forest and 150m for continuous forest for both C. 

maximiliani/centralis and P. parnellii (60KHz), resulting in a total affected area of 400m. 

Of the two, P. parnellii (60KHz) was more greatly impacted by edge-effects as magnitude 
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was calculated as 94.76% for C. maximiliani/centralis and 99.91% for P. parnellii (60KHz).  

It was not possible to obtain a power model AICc value for S. bilineata as start values 

could not be determined and the species therefore was removed from the analysis.  
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Table 2 – The corresponding AICc values for each model fit for all species, individual species, functional groups and species richness. The Ewers 
and Didham (2006) model of best fit is highlighted in grey. Where the Cubic model provided a better overall fit, values are in bold. See Table 1 
for species abbreviations.  O/E = Open/edge forager species  

 

 

 

 

Species/ 

Sonotype 

/Group 

Model 
Penetration 

Distance (m) 

Strength of edge 

effect 

Mean Linear Power Sigmoid Unimodal Cubic 

Secondary 

Forest 

Primary 

Forest 
Magnitude 

Extent 

(m) 

All Species 522.11 523.46 523.48 523.40 525.92 518.29     

CB 178.24 178.75 178.37 178.62 180.52 182.63     

CM 488.46 489.14 489.46 488.03 491.21 486.55 250 150 94.76% 400 

Molossidae 122.47 123.79 123.91 122.92 126.21 124.69     

MRN 205.24 206.85 207.55 207.13 208.59 208.90     

P5 390.49 392.47 392.48 392.47 394.90 395.26     

P6 392.39 391.30 391.07 390.50 392.97 380.57 250 150 99.91% 400 

SL 261.38 262.08 262.22 262.06 264.49 267.04     

Forest Sp. 521.44 522.79 522.81 522.73 525.25 517.62     

O/E Sp. 211.72 213.92 214.02 213.92 216.32 218.52     

Sp. richness 169.37 171.57 171.57 171.57 172.70 163.24     
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Figure 10 – The activity of each species/sonotype and the corresponding models of best fit proposed by Ewers and Didham (2006). 
Mean distribution models are represented in black (5 species/sonotypes) and a sigmoid distribution are represented in green (2 
species). A further polynomial distribution provided the best overall fit for two species (represented by a dashed grey line). Both 
species exhibited a sigmoid distribution when considering only Ewer & Didham’s models. Minus values on the X-axis indicates the 
distance within the secondary forest whereas positive values indicate the distance into the primary forest. 
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There was no response to edge-effects observed in the total activity of both functional 

groups, forest-specialists or open/edge foragers, or for all species collectively using Ewers 

and Didham’s (2006) models. However, a response was detected with the inclusion of the 

cubic model, which provided the best fit overall for total activity and total activity of 

forest-specialists (Fig. 11; Table 2). Activity of both of these groups peaked 500m from the 

edge within the secondary forest, decreasing both towards the interior of the secondary 

forest and up to 500m into the primary forest. 

 

Habitat Comparison 

 

There was no significant difference in the activity of C. maximiliani/centralis (K-W = 0.34, 

DF = 2, P = 0.85) between the three habitats. P. parnellii (60KHz) exhibited a significant 

difference in activity (K-W = 10.72, DF = 2, P = 0.005) with the highest activity occurring 

Figure 11 – Plots represent the total activity for all species and the total activity of both functional 
groups (forest specialists & open/edge foragers) as well as the corresponding models of best fit. All 
three groups exhibited a mean distribution (shown in black) when considering Ewers and Didham 
(2006) models, however a cubic polynomial provided the best overall fit for total activity and forest-
specialists (represented by a dashed grey line). Minus values on the X-axis indicates the distance 
within the secondary forest whereas positive values indicate the distance into the primary forest 
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in the secondary forest and the lowest in the primary forest. The largest variation in 

activity of both species was observed within the secondary forest (Fig. 12).  

 

When considering these habitat boundaries for all species, no significant difference in the 

activity of open/edge foragers (K-W = 3.36, DF = 2, P-value = 0.42) was observed. There 

was also no significant difference in the activity of forest-specialists (K-W = 3.36, DF = 2, P 

Figure 12 – Mean average bat activity per habitat for both species exhibiting a sigmoid 
response to edge effects. 

Figure 13 – Mean average activity recorded for both functional groups within the 3 habitats. 
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= 0.19) between the three habitats, however there is a possible trend as the highest 

activity occurred in the secondary forest and the least in the edge habitat. The same 

pattern was observed when considering total bat activity (F = 3.45, DF = 2, P =0.18; Fig. 

13). Forest-specialists were much more frequently recorded than open/edge foragers 

throughout this study. 

Species Richness & Community Composition 

Tested against each of the first five theoretical models, species richness followed a mean 

model and therefore exhibited no response to edge. However, with the inclusion of the 

sixth model, the cubic polynomial provided the best fit indicating a response in species 

richness to edge effects (Fig. 14; Table 2) with the greatest number of species predicted to 

occur 300-400m into the secondary forest and increasing beyond 500m from the edge in 

the primary forest.  The number of species in each habitat also showed no significant 

difference (K-W = 2.33, DF = 2, P = 0.31), though no species were recorded in the edge 

habitat along the second Dimona transect during the dry season (Fig. 15).  

 

Figure 14 – Plot showing variation in species richness with increasing distance from the forest 
edge. Of the Ewers and Didham (2006) models the mean model provided the best fit (shown in 
black), however a cubic polynomial model provided the best overall fit (represented by a dashed 
grey line). Minus values on the X-axis indicates the distance within the secondary forest whereas 
positive values indicate the distance into the primary forest. 
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Figure 16 –The relationship between each functional group and habitat type.   

There was no significant difference in species composition between the three habitats (R = 

0.071, P = 0.072; Fig. 16). This was also true for forest specialists (R = 0.073, P = 0.074) but 

insufficient data was obtained to analyse the community composition of open/edge 

foragers.   

 

 

Figure 15 –Mean species richness (no. of species) recorded per habitat with a SD. 
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Prey distribution 

Insect samples included individuals from nine orders. Approximately 81% of total insect 

volume belonged to the two orders Coleoptera and Hymenoptera. A significant positive 

association was present between total bat activity and total insect volume however they 

were not strongly correlated (rho = 0.560, N = 259, P < 0.0001). A weak association was 

identified between total bat activity and the total volume of four insect orders: Homoptera 

(rho =0.134, N = 509, P = 0.0148), Isoptera (rho =0.176, S = 484, P-value = 0.001), 

Lepidoptera (rho =0.116, N = 520, P = 0.036) and Orthoptera (rho =0.193, N = 475, P = 

0.005). Collectively these four orders equate to ~11.5% of the total insect volume sampled 

(3.36%, 2.93%, 3.17% and 2.28% respectively; Fig. 17). When combined, a weak 

association was observed between this group and total bat activity (rho = 0.12, N = 518, P = 

0.03). No relationship was obtained for the remaining five orders sampled (see Appendix 

VI). 

 

Figure 17 – The relationship between mean bat activity (no. of bat passes) and mean abundance 
of insect occurrence (total volume) by Order. Curves fitted using a loess polynomial regression. 
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Random Forest Classifier 

Performance of the training set 

Of the four models tested, the 4000-pulse training model presented the most consistent 

performance for both metrics - accuracy and kappa, whereas the 2000-pulse model 

showed the greatest variation in performance (Fig. 18). The 4000-pulse model exhibited 

the highest accuracy and kappa values (Fig. 18). However, there was relatively little 

difference overall between the performance of all four models. The variables which were 

most informative for both the classifier algorithm using the 2000-pulse and 4000-pulse 

model were the “High end of characteristic”, followed by the “Slope” and the “Maximum 

frequency”. “Minimum frequency” demonstrated a greater importance in the 2000-pulse 

model (Fig. 19).  

 

Figure 19 – Importance of each variable in the algorithm when trained with two datasets; 
one built with 2000 reference pulses and one with 5000 reference pulses per species.   

Figure 18 – Classifier performance determined using accuracy and kappa metrics 



Page 56 of 91 
 

Figure 20 – The number of files identified per sonotype dependent on identification method and 
accuracy. Automatic classifications have been divided into two accuracy thresholds; those above 
60% confidence and those above 95% confidence. See Table 1 for species acronyms. 

Comparison of classification method 

 

Overall, the automatic classifier using AP60 generated similar results to those when 

classifying the species calls manually (W = 123,260, P = 0.87; Fig. 20). There was no 

significant difference in the activity of all species combined or of eight forest-specialist 

species/sonotypes (Table 1) when classified manually or using AP60 (Appendix V). 

However, the classifier significantly overestimated the activity of molossids using this 

accuracy probability (W = 140, P <0.01). In contrast, when restricted to using AP95 the 

automatic classifier significantly underestimated bat activity by >12,000 bat passes (W = 

96,400, P <0.01). At this accuracy probability the classifier significantly underestimated 

the activity of four forest-specialist species: C. brevirostris, C. maximiliani/centralis, S. 

bilineata and S. leptura (Fig. 20).  

 

Sample sizes were too small to statistically test for a difference between the identification 

methods for six species/sonotypes: F. horrens, P. personatus, P. nasutus/centralis, P. 

macrotis, P. kappleri and S. gymnura / canescens. Similar results were observed between 

the classifier at both accuracy probabilities and those manually identified for F. horrens 

and P. personatus (Appendix V). The classifier using AP95 largely underestimated the 
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activity of P. nasutus/centralis whereas the classifier using AP60 largely overestimated the 

activity of P. macrotis. Although not significantly different, the classifier at AP95 only 

identified 17.69% of the molossid activity manually identified (W = 36, P = 0.15; Fig. 12).  
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Discussion 

 

Overall the results indicate aerial insectivorous bat responses to edge effects at the BDFFP 

are more complex than originally hypothesized at the beginning of this study. The pattern 

of forest specialist activity and total bat activity was not as linear as hypothesized 

(increasing from the edge on either side) but rather exhibiting different responses on 

either side of the boundary. Forest specialists were also recorded more frequently in the 

secondary forest which could not be explained as a correlation with insect availability. 

Extent was substantially less than predicted by Delaval and Charles-Dominique (2006) for 

phyllostomid bat species and edge effects were evident at greater distances within the 

secondary forest than in the primary forest. Edge effects also appeared to have no impact 

on species richness or community composition at this site.    

Responses to Edge-effects  

Ewer & Didham’s (2006) models indicated that overall bat activity was unaffected by edge 

effects, as was the activity of both functional groups and that of several species: C. 

brevirostris, S. leptura, M. nigricans/riparius and P. parnellii (55KHz). Forest-specialists 

were more greatly impacted by edge-effects than open/edge foragers none of which 

exhibited a response to edge-effects using the six models within this study.  Although no 

response was detected using Ewers and Didham’s (2006) models for forest specialists or 

total activity, the cubic model provided the best fit for both groups suggesting edge effects 

did influence activity. It is important to note that forest-specialists constitute the vast 

majority of total activity (>98%) and therefore the distribution of overall activity reflects 

nearly entirely the distribution of forest-specialists. Considering a maximum extent of 

2km (transect length), forest-specialists showed a preference for secondary forest over 

primary as the highest activity was recorded in this habitat. In the secondary forest, 

forest-specialist activity peaked at 500m but subsequently continued to decline towards 

the interior of the secondary forest and no activity was predicted beyond 1km into the 

secondary forest. On the contrary, forest-specialist activity was lowest 500m from the 

edge into the primary forest. However, from this point, it continued to increase and was 
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expected to surpass the peak activity observed in the secondary forest >1km into the 

primary forest. This model suggests the response to edge-effects may not be as 

straightforward as proposed by Ewers and Didham (2006). The results imply that edge-

effects do not only differ in terms of magnitude between distances within each habitat (as 

described in the linear, power, sigmoid and unimodal models) but also in how they impact 

populations and communities.   

 

 

This is supported by the activity of C. maximiliani/centralis whose peak activity was 

recorded at ~550m from the edge in the secondary forest (Fig. 10). It could therefore be 

interpreted that this species showed a preference for the interior of the secondary forest 

which was not supported by the comparison of activity for each of the three habitats. The 

secondary forest exhibited the highest variation in activity for this species compared to 

edge and primary forest, and it was rarely recorded farther than 800m into the interior of 

the secondary forest.  This is also true for P. parnellii (60KHz) whose activity peaked at 

600m from the edge in the secondary forest. Unlike C. maximiliani/centralis, P. parnellii 

Figure 21 – Hypothetical representation of bat responses to edge-effects using the cubic model. 
Extent is proposed as the difference between the second asymptotes of each habitat and 
magnitude is proposed as the difference in activity between these two points.  The 
complementation zone is the area between the second asymptotes of each habitat. x-values 
represent the distance from the edge in the secondary forest; positive x-values represent the 
distance from the edge in the primary forest.  
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(60KHz) did show a significant preference for secondary forest compared to the primary 

forest during the habitat comparison. However as with C. maximiliani/centralis, this 

habitat also experienced the highest variability in activity compared to the other habitats. 

Using the cubic model, extent would be calculated at >1000m for C. maximiliani/centralis 

and >1100m for P. parnellii (60KHz) (over double the extent calculated based on the 

sigmoid model) and would intrinsically alter the areas of forest being compared.  By using 

this new measure of extent, the model may indicate that the edge does provide benefits to 

bats within the matrix up to a certain distance from the boundary as suggested by 

Rodríguez-San Pedro and Simonetti (2015) and Ethier and Fahrig (2011) as its suitability 

is improved due its proximity to the primary forest. These positive effects may attract bats 

from the neighbouring primary forest whose suitability has decreased from its proximity 

to the matrix. This area is shown as the Complementation Zone in Fig. 21. However, the 

magnitude of these benefits may decrease beyond this threshold ultimately returning to 

natural activity levels in the secondary forest at the limit of edge-effects.  To test this 

hypothesis, further surveys along transects spanning greater distances would be required. 

This model may provide a better taxon-specific explanation of how bats are affected due 

to the larger home ranges of these species compared to the invertebrates and passerines 

studied by Ewers and Didham (2006) and Zurita et al. (2012). An extent greater than the 

range sampled could also explain why Thyroptera tricolor was not recorded through-out 

the sampling period. Due to its roosting ecology and small home ranges this species is 

highly habitat specific to undisturbed primary forest (Chaverri and Kunz 2011). However, 

as this species also produces short-range, FM calls it is also possible that further acoustic 

sampling would be required to detect the species.  

 

Four of the seven species/sonotypes whose responses were investigated had very low 

relative sample sizes (a mean of <150 bat passes per transect), all of which demonstrated 

no response to edge effects. Where possible, Zurita et al. (2012) suggested an inclusion 

threshold of >30 records on both sides of the habitat boundary which was not achieved 

for three of these species/sonotypes: C. brevirostris, Molossidae and M. nigricans/riparius 

(although the latter did reach this threshold within the secondary forest). This may 

explain why no response was detectable. By also pooling the three Molossid groups, this 
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could have also camouflaged individual species responses. S. leptura did exceed the 

threshold (41 mean bat passes in the secondary forest and 87.5 mean bat passes in the 

primary forest) however this low sample size may explain why no response was detected 

despite this species being twice as abundant in the primary compared to the secondary 

forest. Ewers and Didham’s original tests of their five models was performed using sample 

sizes >6000 per group. Small sample sizes and consequent parameter reductions 

compromise the validity and accuracy of these models potentially leading to an inaccurate 

assessments of a response (Ewers and Didham 2006b). Further sampling would be 

required to investigate whether the current sample sizes available provide an accurate 

representation of how these species are affected by edge effects. 

 

As Ewers and Didham (2006) models did not show a response between the species 

richness to edge-effects it challenges the hypothesis that bats are examples of habitat 

complementation (Dunning, Danielson and Pulliam 1992). Habitat complementation is the 

key process thought to underpin the distribution of mobile species, such as insectivorous 

bats, in heterogeneous landscapes and this guild has been shown to utilise different 

resources across forest landscape mosaics in temperature regions (Charbonnier et al. 

2016). However, the sigmoid model did not indicate that the edge habitat was providing 

important commuting or foraging habitat. However, the cubic model infers that increased 

activity in edge habitat may not occur directly on the habitat border and therefore it does 

not dismiss the role of resource mixing at habitat boundaries. This process may increase 

the number of species naturally occurring in secondary forest to better reflect that of the 

primary forest. However, there was no evidence of distinct communities present in any of 

the habitats, including edge habitat. As the mature secondary forest provides a low-

contrast matrix it is unlikely to provide the differences in ecological conditions needed to 

support species associated with non-forested habitats. Open/edge foragers are classified 

as such due to their perceived association with open and edge habitat however no 

response to edge effects were observed for molossids. Small sample sizes were obtained 

for these species as molossids typically forage in clear, open areas and therefore neither 

primary nor secondary forest provides ideal habitat for these species. Increased activity 

would be expected in a higher contrast matrix consisting of agricultural land or urban 
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areas (Jung et al. 2016). To ensure the species’ recorded during the study provide an 

accurate reflection of the species richness for these habitats, species accumulation curves 

could be used to ensure sufficient sampling was undertaken (Moreno and Halffter 2000).  

 

Considering both the sigmoid and cubic model, the maximum extent of edge effects on 

aerial insectivorous bat species in this study was between 400-1100m; substantially less 

than the 3km proposed by Delaval and Charles-Dominique (2006) for phyllostomid bats 

and most forest-specialist aerial insectivores showed no response to edge effects. 

Approximately 90% of the 104 neotropical herpetofauna  species examined by Schneider-

Maunoury et al. (2016) exhibiting a response to edge effects and almost 60% of the forest 

specialists in this study showed changes in abundance >200m into primary forest interior. 

The low number of forest specialist species exhibiting a response in this study, as well the 

short penetration distance within the primary forest, is likely due to the low contrast 

matrix at the BDFFP as secondary forest maturation has been shown to increase habitat 

suitability for forest-specialist bat species between fragments (Rocha et al. 2018). Barnes 

et al. (2014) and Vespa, Zurita and Isabel Bellocq (2014) found that not only did matrix 

composition affect the magnitude of edge effects calculated using Ewers and Didham’s 

(2006) models but also which model provided the best fit and thus what response was 

being observed. The low contrast matrix at the site is also thought to explain the unimodal 

response to edge effects exhibited by three forest bird species at the BDFFP, as the edge 

provides additional resources to two of the species typically classified as forest interior 

species (Powell et al. 2015). The same pattern was observed for forest interior passerines 

in the Atlantic forests of Brazil (Hansbauer et al. 2008; Zurita et al. 2012), and Zurita et al. 

(2012) also observed differences in the magnitude of two sigmoid responses of these 

species between two matrix types (lower magnitude = low contrast).   

 

The traditional classification of a species as ‘edge favouring’ or ‘edge avoidant’ has been 

challenged by Ries and Sisk (2010) on the grounds that edge responses are not 

idiosyncratic, but rather a species response is likely to vary depending on the type of edge. 

Species which were considered edge sensitive in previous studies have been shown to 

ignore edges where both habitats are considerably favorable (Ries and Sisk 2010) which 
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may partially explain this reduction. As suggested by Powell et al. (2015), it could also be 

that the old secondary forest has reached the point of recovery where edge effects can no 

longer be detected. To confirm either hypothesis’, resampling the transects after the 

matrix is scheduled to be clear-cut would provide an insightful comparison between low 

and high contrast matrices in determining edge effect extent and magnitude. This study 

was predominantly restricted to Vismia regrowth (A López-Baucells 2018, personal 

communication), therefore further studies could also investigate whether extent and 

magnitude were comparable with a matrix dominated by Cecropia regrowth. This would 

enable land-users to clear the forest in a manner (with or without the use of fire) which 

would minimize its effects on bat communities.  

 

Secondary forest provides significant value to tropical biodiversity (Chazdon 2014; Rocha 

et al. 2018), however, López-Baucells (2018) demonstrated that aerial-insectivorous bat 

assemblages still have not fully recovered after 15 years of forest regrowth. Even after 

~30 years of maturation, the secondary forest does not reflect the same phyllostomid bat 

assemblage as primary forest (Rocha et al. 2018). Using the sigmoid model, Zurita et al. 

(2012) also calculated edge effect extent to approximately 300m whether the matrix 

either comprised forest plantation or open agricultural areas. Despite the similar extent 

between both habitat types, extent could not be used in isolation to explain edge effect 

responses effect, magnitude was much greater in the high-contrast matrix than in the low-

contrast matrix. The magnitude of edge effects for both species in this study for which it 

could be calculated were >90% (Table 2) suggesting edge effects are still able to highly 

disrupt natural activity patterns of these species despite the low-contrast matrix. As such, 

at this maturity secondary forest cannot provide a sufficient replacement for primary 

forest. Understanding the factors - both extrinsic (e.g. matrix contrast) and intrinsic (e.g. 

body size) - that underpin edge sensitivity, including unresponsiveness, is essential to 

predicting the vulnerability of species whose ecology is relatively unknown (Ries and Sisk 

2010).  
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If the sigmoid model provides the most accurate estimate of extent, then only fragments 

≥10ha contain primary forest interior. However, if the cubic model is more accurate then 

there is no area within any of the BDFFP fragments that remains un-affected by edge 

effects (Fig. 22). This is an important consideration for future studies comparing the 

interior, edge and matrix of BDFFP fragments as it may be there is no interior to a 

fragment. This may also explain why contrary to previous studies on other taxa (Grass et 

al. 2018; Collinge 1996; Laurance et al. 2007), aerial insectivorous bat activity at the 

BDFFP is independent of fragment size (López-Baucells 2018) and why studies which only 

consider fragments <100ha do not observe substantial differences in bat activity between 

different fragment sizes (e.g. Ortêncio-Filho, Lacher and Rodrigues 2014). The Adolpho 

Ducke Forest Reserve, of the Instituto Nacional de Pesquisas da Amazônia (INPA), 

comprises 10,000ha of lowland terra firme forest; the same forest type as found in the 

BDFFP (Rodrigues et al. 2017). This fragment is 100 times larger than the largest of those 

in the BDFFP and is surrounded by a variety of different matrix types (e.g. urban, 

agricultural). Studies into edge effects at this location could be used in tandem with the 

BDFFP to address several aspects of edge responses otherwise still unanswered, such as if 

whether the cubic model provides a better representation of edge-effect extent in larger 

fragments. It can also provide a wider scope for investigating the influence of matrix 

contrast. It is very important that land managers understand the minimum size fragments 

required to ensure they provide refuge for forest species.   

 

1Ha 

10Ha 

100Ha 

0% 0.26% 50% 

Area unaffected  

Area affected  

Figure 22 – Relative area of each fragment size which remains 
unaffected by edge-effects considering the sigmoid model. There is no 
area of any of the three fragments which are unaffected considering the 
cubic model.  
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Prey availability 

Unlike previous studies (Gonsalves et al. 2013; Müller et al. 2012), the results indicate that 

prey distribution is not a significant predictor of bat activity. Neotropical bat species are 

known to predominantly feed on insects from Lepidoptera, Coleoptera, Diptera and 

Orthoptera (Fleming, Hooper and Wilson 1972; Bernard 2002; LaVal and Rodríguez-H. 

2002), although members from the genus Molossus in Costa Rica also prey on 

Hymenoptera (LaVal and Rodríguez-H. 2002) and P. parnellii is known to consume 

Isoptera (Bernard 2002). Small beetles were the predominant component of fecal samples 

of aerial insectivorous bats observed by Bernard (2002). The former four orders made up 

56% of the insects sampled however only Lepidoptera and Orthoptera, both of which 

were sampled in small densities, were shown to correlate with bat activity (Appendix VI). 

Neither of these groups were more abundant in areas of peak bat activity within the 

secondary forest and therefore do not explain the increase in bat activity at these 

sampling points. The high habitat specificity and high proportion of endemism of tropical 

invertebrates likely result in their high edge sensitivity across studies (Foggo and Speight 

2001). Lepidoptera, which have been shown to respond negatively to disturbance (Dodd 

et al. 2012) and which are selected by both open/edge foragers and forest specialists 

(LaVal and Rodríguez-H. 2002), were more abundant in the primary forest, as were 

Coleoptera. Therefore this study supports previous research by Adams (2012), Müller et 

al. (2012) and Kusch et al. (2004) that indicates habitat suitability is more important to 

forest specialist bats rather than insect availability. 

The feeding ecology of many neotropical insectivores is poorly understood (Bernard 

2002; LaVal and Rodríguez-H. 2002)(but see Fenton et al. 1999, Pio et al. 2010 and 

Whitaker, Findley and Findley 1980) and a species diet is often inferred from limited fecal 

samples. Therefore, our understanding as to the type of insects selected for, as well as in 

what relative concentrations, is also limited. There are further complications when 

examining the relationship between activity and prey availability. Light traps are 

considered a relatively unbiased method of monitoring tropical entomofauna (Hirao, 

Murakami and Kashizaki 2008), however capture rates can be influenced by weather 

conditions, lunar cycles, vegetation density, a species dispersal ability and daily 
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movement patterns (Hirao, Murakami and Kashizaki 2008; Jonason, Franzén and Ranius 

2014; Appel et al. 2017; Bowden 1982). Lepidoptera are a key component of many 

insectivorous bats diets (Bernard 2002; Dodd et al. 2012; Freeman 1979; Freeman 1981) 

but their abundance in light traps fluctuates depending on nightly temperature and 

humidity (Jonason, Franzén and Ranius 2014), therefore a large sampling effort is 

required to adequately assess their distribution and abundance - potentially larger than 

that used for this study.  

 

Another consideration should be that higher bat activity in the presence of higher insect 

volume does not necessarily infer higher predation rates. Therefore, it could be that 

patterns in bat activity indicate foraging activity is highest in the secondary forest, despite 

lower prey availability, or contrastingly that foraging is occurring in the primary forest 

where maximum prey is available and that other factors explain the peak in activity 

within the secondary forest (e.g. commuting or roost availability). To examine this further, 

the occurrence of feeding buzzes (the temporary increase in echolocation call repetition 

rate upon insect pursuit and capture; Griffin, Webster and Michael 1960) could be used to 

investigate predation events (see Torrent et al. 2018). This would provide a clearer 

understanding of how bats foraging behaviour may have altered in response to edge 

effects. It was not possible to examine the relationship between feeding buzzes and prey 

availability in this study as insufficient feeding buzzes were recorded. This method also 

cannot be used in conjunction with automatic classifiers which are unable to detect 

feeding buzzes.    

 

This study also does not investigate temporal variation in bat responses to prey 

availability. As bat activity and insect volume were quantified nightly, it cannot be 

determined whether bat activity was occurring synchronously with insect captures within 

each night. Neotropical insectivorous bat activity peaks during the first three hours after 

sunset  (Brown 1968), therefore it is possible insect captures were occurring during times 

of minimal bat activity. This could obscure the true relationship between activity and prey 

availability. Furthermore, the importance of prey abundance is likely to vary between the 

sexes during the breeding season, as female bats have been shown to be spatially 
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constrained in other regions due to the high energy demands of pregnancy and lactation 

(Barclay 1991). Consequently reproductively-active females may exhibit a higher 

correlation with prey abundance compared with males, juveniles and non-reproductively 

active females. This demand may also affect how each sex responds to edge effects. Rocha 

et al. (2017) found two frugivorous neotropical species exhibited sex-specific responses to 

fragmentation, where it was suggested the distribution of reproductively-active females 

during the breeding season was significantly influenced by food resource availability. The 

use of acoustic sampling in this study did not allow for sex-specific differences in edge 

effect extent or magnitude to be examined, nor determine sex-specific responses to insect 

availability. It is important to consider variation in how different sexes and age classes 

respond to edge effects as a greater impact on reproductively-active females (compared to 

other individuals) will have a greater impact on overall reproductive success, and thus 

have greater negative consequences for a population’s fitness.    

Further considerations 

Although the models utilized throughout this study go part the way to explaining bat 

responses to edge effects, they are limited by the assumption of a positive linear 

relationship between abundance and fitness parameters (e.g. survival, breeding success; 

Terraube et al. 2016). Each inherently fails to consider how fitness parameters may be 

affected (e.g. bat‐ectoparasite interactions; Bolívar-Cimé et al. 2018), independent of 

abundance, in edge habitat. Without also considering these small-scale impacts the full 

picture of edge effect responses is not wholly examined. Investigations into edge effects, 

such as this, have also been predominately confined to the understory (Delaval and 

Charles-Dominique 2006; da Silva, Filho and Lacher 2013; Cortés-Delgado and Pérez-

Torres 2011). The canopy and understory provide significantly different microclimates, 

varying in conditions such as food resource availability, light intensity and wind pressure 

(Bernard 2001; Foggo and Speight 2001). Approximately ~60-70% of all tropical 

mammals and >50% of all tropical diversity occurs in the canopy (Bernard 2001).  Edge 

effects are unlikely to occur simultaneously between strata as the effects they induce are 

not synchronous. Therefore the response by biota is likely to differ between them 

(Didham and Ewers 2014; Stone, Catterall and Stork 2018; Foggo and Speight 2001; 
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Adams, Law and French 2009). Changes to microclimatic conditions caused by edge 

effects are likely to be exaggerated in the canopy as this habitat not only interfaces with 

the matrix but also the understory and atmosphere (Foggo and Speight 2001). Thus, there 

are multiple dimensions compounded by multiple, divergent effects.  

 

Studies investigating bat activity have consistently demonstrated that bat abundance and 

diversity is greater in canopy than the understory in both the Paleo – and Neotropics 

(Francis 1994; Bernard 2001; Adams, Law and French 2009; Adams 2012; Navarro 2014; 

Gregorin et al. 2017). This includes species which occur exclusively in the canopy 

(Gregorin et al. 2017). Few studies have investigated the vertical stratification of aerial 

insectivorous bats in the Amazon as, as with other Neotropical bat studies, vertical 

stratification studies are biased towards phyllostomids (João et al. 2010; Rex et al. 2011; 

Bernard 2001; Kalko and Handley, Jr. 2001). However, investigations so far coincide with 

trends observed for phyllostomid assemblages as Marques, Ramos Pereira and Palmeirim 

(2016) recorded double the diversity of species within the canopy compared to the 

understory. Depending on forest structure, the canopy also supports a higher diversity 

and abundance of flying insects and the presence of distinct communities have been 

identified between these vertical strata (Sutton, Ash and Grundy 1983). This highlights a 

need to consider the potential response variation exhibited between different strata and 

their corresponding communities. Reflecting on the disparity between the microclimate, 

edge effect diversity, and bat and insect diversity within the understory and canopy, 

studies such as this cannot deduce the impact of edge effects on the aerial insectivorous 

bat community as a whole. The inclusion of canopy sampling is critical to determining the 

spatial distribution of these species and that of their prey. For this reason, the extent and 

magnitude of edge effects calculated in this study are only applicable to the understory 

aerial insectivorous bat assemblage.   

 

Methodological comparison 

The automatic classifier successfully generated reliable data for overall bat activity and 

for the individual activity of many forest-specialist species. Unexpectedly, using an AP60 
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better reflected the activity of all but three species/sonotypes (Molossidae, P. macrotis 

and S. gymnura/canescens) compared to using an AP95. Collectively, these 

species/sonotypes only constituted 0.37% of the total activity however their activity was 

over-estimated almost four-fold using AP60 (from 153 bat passes identified manually to 

601 bat passes automatically identified). Molossids produce low-frequency calls, with 

high design plasticity (Jung, Molinari and Kalko 2014; Madhukumar et al. 2018), which 

can be easily confused with or camouflaged by other background noises, such as insects.  

The AP95 failed to detect over 80% of manually identified molossids and therefore these 

species cannot reliably be monitored using either accuracy probability. The three most 

abundant sonotypes constituted over 86% of the total activity recorded (C. 

maximiliani/centralis - 40%, P. parnellii (55KHz) – 26%, P. parnellii (60KHz) – 20.3%) and 

the AP65 provided results which were not significantly different to those manually 

identified. All three sonotypes exhibit little intra-specific variation (López-Baucells et al. 

2016; Jennings et al. 2004) and are emitted at frequencies much higher than common 

background noise. Consequently, they can be easily identified by the classifier. As such the 

classifier may be used to reduce the number of calls that require manual validation by 

removing the highly abundant species which it can reliably identify, thereby reducing the 

time needed to analyse acoustic data for Amazonian species.  

 

By using the classifier to filter files which were not attributed to a species with AP60 an 

unknown number of bat calls were cleaned from the dataset. Intrinsically these 

undetected calls will be biased towards species which are more difficult for the classifier 

to categorize (e.g. molossids).  However, it is my belief that by using a relatively low 

accuracy probability, such as ≥60%, the time saving benefits of this method outweigh this 

risk of missed calls in the analysis of extensive datasets. Further research could compare 

intermittent accuracy thresholds to determine if there is an interval that more effectively 

reflects true bat activity than ≥60%. Overall our results mirror those of Zamora-Gutierrez 

et al. (2016) and support their conclusion that aerial insectivorous bat species of 

megadiverse countries can be reliably monitored using bioacoustic surveys. 
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Conclusion 

Ewers and Didham’s (2006) models provide a valuable, quantitative framework for 

identifying patterns amongst edge-related responses. However, as proposed by other 

researchers (Zurita et al. 2012; Schneider-Maunoury et al. 2016), this tool may need 

adapting to explain the responses of all taxonomic groups to edge effects, as well as to 

explain subsequent changes to ecological processes. Further work should build upon 

these models to include additional non-linear responses species may demonstrate 

depending on traits which impact how a species responds to fragmentation, such as 

dispersal ability and degree of habitat specialization, as these models may not be 

universal across taxa (Ewers and Didham 2006a). This study highlights the importance of 

considering responses on both sides of the habitat boundary, as the activity of at least two 

species differed depending on the habitat being examined. This is despite the relative 

similarity between primary and old secondary forest compared with higher contrast 

matrices. In keeping with Powell et al. (2015) and previous studies at the BDFFP 

(Laurance et al. 2011),  the findings of this study suggest secondary forest regeneration at 

the site may have reached a critical recovery point, thereby reducing the impact of edge 

effects on these species – particularly at the assemblage level. However, as edge effects are 

still evident, the aerial insectivorous bat community is still impacted by the fragmentation 

and its corresponding edge effects despite the maturity of the secondary forest regrowth. 

Nonetheless it provides a buffer against the extremities of these effects and low contrast 

matrices may provide a method by which to mitigate the dangers of edge effects in already 

fragmented environments (Laurance et al. 2011; Barnes et al. 2014).  

The threat posed by edge-effects continues to rise as tropical communities become ever 

increasingly fragmented. Over a quarter of the Brazilian Amazon is currently known to be 

affected by edge effects (Vedovato et al. 2016; Fig. 22) and globally almost three quarters 

of all forest is situated within 1km of an edge (Haddad et al. 2015). Therefore, 

understanding the impact that edge effects have on global and tropical forests ecosystems 

is essential for safe-guarding forest-dependent species. Research into the impacts of 

deforestation continues to rise (Aleixandre-Benavent et al. 2018; Ries et al. 2017) and 

projects such as the BDFFP, the Stability of Altered Forest Ecosystems (SAFE) Project 
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(Ewers et al. 2011) and the Wog Wog fragmentation project  (Debinski and Holt 2001) 

provide a platform for comparing edge effect responses within - and between - taxa on a 

global scale. By doing so fragmentation research aims to identify the underlying trends 

governing edge sensitivity and species‐specific responses.  This will only be achieved by 

the use of standardized, empirical studies into edge effect magnitude and extent (Ries et 

al. 2017). Understanding habitat fragmentation is of critical importance in order to 

establish successful policies which balance the conservation of biodiversity with 

managing social and economic security, particularly for small-holding owners.  
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Appendix 

Appendix I – Co-ordinates of each sampling point of the four transects and corresponding 

habitat type. 

Co-ordinate X Co-ordinate 
Y 

Sampling 
point 

Habitat Type Distance from the edge 
(m) 

-59.8876 -2.39154 C1-100 Secondary forest 100 

-59.8955 -2.39157 C1-1000 Habitat boundary 0 

-59.896 -2.39158 C1-1050 Primary forest 50 

-59.8964 -2.39158 C1-1100 Primary forest 100 

-59.8969 -2.39158 C1-1150 Primary forest 150 

-59.8973 -2.39159 C1-1200 Primary forest 200 

-59.8978 -2.39159 C1-1250 Primary forest 250 

-59.8982 -2.39159 C1-1300 Primary forest 300 

-59.8987 -2.39158 C1-1350 Primary forest 350 

-59.8992 -2.39159 C1-1400 Primary forest 400 

-59.8996 -2.3916 C1-1450 Primary forest 450 

-59.888 -2.39153 C1-150 Secondary forest 150 

-59.9001 -2.39159 C1-1500 Primary forest 500 

-59.9005 -2.3916 C1-1550 Primary forest 550 

-59.901 -2.3916 C1-1600 Primary forest 600 

-59.9014 -2.39161 C1-1650 Primary forest 650 

-59.9018 -2.3916 C1-1700 Primary forest 700 

-59.9023 -2.3916 C1-1750 Primary forest 750 

-59.9027 -2.39161 C1-1800 Primary forest 800 

-59.9032 -2.39161 C1-1850 Primary forest 850 

-59.9036 -2.39162 C1-1900 Primary forest 900 

-59.9041 -2.39162 C1-1950 Primary forest 950 

-59.8885 -2.39153 C1-200 Secondary forest 200 

-59.9044 -2.39163 C1-2000 Primary forest 1000 

-59.8889 -2.39154 C1-250 Secondary forest 250 

-59.8894 -2.39155 C1-300 Secondary forest 300 

-59.8898 -2.39156 C1-350 Secondary forest 350 

-59.8903 -2.39155 C1-400 Secondary forest 400 

-59.8907 -2.39156 C1-450 Secondary forest 450 

-59.8871 -2.39153 C1-50 Secondary forest 50 

-59.8912 -2.39155 C1-500 Secondary forest 500 

-59.8916 -2.39155 C1-550 Secondary forest 550 

-59.8921 -2.39155 C1-600 Secondary forest 600 

-59.8925 -2.39156 C1-650 Secondary forest 650 

-59.893 -2.39156 C1-700 Secondary forest 700 
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-59.8934 -2.39156 C1-750 Secondary forest 750 

-59.8939 -2.39157 C1-800 Secondary forest 800 

-59.8943 -2.39157 C1-850 Secondary forest 850 

-59.8948 -2.39157 C1-900 Secondary forest 900 

-59.8952 -2.39157 C1-950 Secondary forest 950 

-59.8876 -2.38537 C2-100 Secondary forest 100 

-59.8956 -2.38546 C2-1000 Habitat boundary 0 

-59.8961 -2.38546 C2-1050 Primary forest 50 

-59.8965 -2.38547 C2-1100 Primary forest 100 

-59.897 -2.38547 C2-1150 Primary forest 150 

-59.8974 -2.38548 C2-1200 Primary forest 200 

-59.8979 -2.38548 C2-1250 Primary forest 250 

-59.8983 -2.38549 C2-1300 Primary forest 300 

-59.8988 -2.38549 C2-1350 Primary forest 350 

-59.8992 -2.38549 C2-1400 Primary forest 400 

-59.8997 -2.38549 C2-1450 Primary forest 450 

-59.8881 -2.38538 C2-150 Secondary forest 150 

-59.9001 -2.3855 C2-1500 Primary forest 500 

-59.9006 -2.3855 C2-1550 Primary forest 550 

-59.901 -2.38551 C2-1600 Primary forest 600 

-59.9015 -2.38552 C2-1650 Primary forest 650 

-59.9019 -2.38552 C2-1700 Primary forest 700 

-59.9024 -2.38552 C2-1750 Primary forest 750 

-59.9028 -2.38553 C2-1800 Primary forest 800 

-59.9033 -2.38553 C2-1850 Primary forest 850 

-59.9037 -2.38553 C2-1900 Primary forest 900 

-59.9042 -2.38554 C2-1950 Primary forest 950 

-59.8885 -2.38538 C2-200 Secondary forest 200 

-59.9046 -2.38554 C2-2000 Primary forest 1000 

-59.889 -2.3854 C2-250 Secondary forest 250 

-59.8894 -2.38541 C2-300 Secondary forest 300 

-59.8899 -2.3854 C2-350 Secondary forest 350 

-59.8903 -2.3854 C2-400 Secondary forest 400 

-59.8908 -2.3854 C2-450 Secondary forest 450 

-59.8872 -2.38535 C2-50 Secondary forest 50 

-59.8912 -2.38541 C2-500 Secondary forest 500 

-59.8916 -2.38542 C2-550 Secondary forest 550 

-59.8921 -2.38543 C2-600 Secondary forest 600 

-59.8925 -2.38543 C2-650 Secondary forest 650 

-59.893 -2.38543 C2-700 Secondary forest 700 

-59.8934 -2.38542 C2-750 Secondary forest 750 
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-59.8938 -2.38542 C2-800 Secondary forest 800 

-59.8943 -2.38544 C2-850 Secondary forest 850 

-59.8947 -2.38546 C2-900 Secondary forest 900 

-59.8952 -2.38546 C2-950 Secondary forest 950 

-60.101 -2.32796 D1-100 Secondary forest 100 

-60.1087 -2.32548 D1-1000 Habitat boundary 0 

-60.1091 -2.32534 D1-1050 Primary forest 50 

-60.1096 -2.3252 D1-1100 Primary forest 100 

-60.11 -2.32506 D1-1150 Primary forest 150 

-60.1104 -2.32492 D1-1200 Primary forest 200 

-60.1108 -2.32478 D1-1250 Primary forest 250 

-60.1113 -2.32464 D1-1300 Primary forest 300 

-60.1117 -2.32451 D1-1350 Primary forest 350 

-60.1121 -2.32436 D1-1400 Primary forest 400 

-60.1126 -2.32424 D1-1450 Primary forest 450 

-60.1014 -2.32782 D1-150 Secondary forest 150 

-60.113 -2.32409 D1-1500 Primary forest 500 

-60.1134 -2.32395 D1-1550 Primary forest 550 

-60.1139 -2.32382 D1-1600 Primary forest 600 

-60.1143 -2.32366 D1-1650 Primary forest 650 

-60.1147 -2.32354 D1-1700 Primary forest 700 

-60.1151 -2.32343 D1-1750 Primary forest 750 

-60.1156 -2.32327 D1-1800 Primary forest 800 

-60.116 -2.32314 D1-1850 Primary forest 850 

-60.1164 -2.32298 D1-1900 Primary forest 900 

-60.1169 -2.32283 D1-1950 Primary forest 950 

-60.1019 -2.32769 D1-200 Secondary forest 200 

-60.1173 -2.3227 D1-2000 Primary forest 1000 

-60.1023 -2.32754 D1-250 Secondary forest 250 

-60.1027 -2.32741 D1-300 Secondary forest 300 

-60.1031 -2.32726 D1-350 Secondary forest 350 

-60.1036 -2.32713 D1-400 Secondary forest 400 

-60.104 -2.32699 D1-450 Secondary forest 450 

-60.1006 -2.3281 D1-50 Secondary forest 50 

-60.1044 -2.32686 D1-500 Secondary forest 500 

-60.1049 -2.32672 D1-550 Secondary forest 550 

-60.1053 -2.32658 D1-600 Secondary forest 600 

-60.1057 -2.32644 D1-650 Secondary forest 650 

-60.1061 -2.3263 D1-700 Secondary forest 700 

-60.1066 -2.32616 D1-750 Secondary forest 750 

-60.107 -2.32602 D1-800 Secondary forest 800 



Page 85 of 91 
 

-60.1074 -2.32589 D1-850 Secondary forest 850 

-60.1078 -2.32575 D1-900 Secondary forest 900 

-60.1083 -2.32559 D1-950 Secondary forest 950 

-60.0996 -2.32353 D2-100 Secondary forest 100 

-60.1073 -2.32107 D2-1000 Habitat boundary 0 

-60.1077 -2.32096 D2-1050 Primary forest 50 

-60.1082 -2.3208 D2-1100 Primary forest 100 

-60.1086 -2.32067 D2-1150 Primary forest 150 

-60.109 -2.32054 D2-1200 Primary forest 200 

-60.1094 -2.3204 D2-1250 Primary forest 250 

-60.1099 -2.32026 D2-1300 Primary forest 300 

-60.1103 -2.32013 D2-1350 Primary forest 350 

-60.1107 -2.31998 D2-1400 Primary forest 400 

-60.1112 -2.31984 D2-1450 Primary forest 450 

-60.1 -2.3234 D2-150 Secondary forest 150 

-60.1116 -2.31971 D2-1500 Primary forest 500 

-60.112 -2.31957 D2-1550 Primary forest 550 

-60.1125 -2.31943 D2-1600 Primary forest 600 

-60.1129 -2.3193 D2-1650 Primary forest 650 

-60.1133 -2.31915 D2-1700 Primary forest 700 

-60.1137 -2.31901 D2-1750 Primary forest 750 

-60.1142 -2.31889 D2-1800 Primary forest 800 

-60.1146 -2.31875 D2-1850 Primary forest 850 

-60.115 -2.31861 D2-1900 Primary forest 900 

-60.1154 -2.31849 D2-1950 Primary forest 950 

-60.1005 -2.32326 D2-200 Secondary forest 200 

-60.1159 -2.31834 D2-2000 Primary forest 1000 

-60.1009 -2.32311 D2-250 Secondary forest 250 

-60.1013 -2.32299 D2-300 Secondary forest 300 

-60.1017 -2.32284 D2-350 Secondary forest 350 

-60.1022 -2.32272 D2-400 Secondary forest 400 

-60.1026 -2.32259 D2-450 Secondary forest 450 

-60.0992 -2.32366 D2-50 Secondary forest 50 

-60.103 -2.32246 D2-500 Secondary forest 500 

-60.1035 -2.32231 D2-550 Secondary forest 550 

-60.1039 -2.32216 D2-600 Secondary forest 600 

-60.1043 -2.32203 D2-650 Secondary forest 650 

-60.1047 -2.32189 D2-700 Secondary forest 700 

-60.1052 -2.32176 D2-750 Secondary forest 750 

-60.1056 -2.32162 D2-800 Secondary forest 800 

-60.106 -2.32149 D2-850 Secondary forest 850 
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-60.1064 -2.32135 D2-900 Secondary forest 900 

-60.1069 -2.32122 D2-950 Secondary forest 950 
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Appendix II – An example of SM2 deployment (left) and light-trap setup (right).  Sourced 

from Mas (2014).  
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Appendix  III– Additional  detector  settings  used  to  record  bat  activity.   

 

Additional Detector Settings 
HPF left Fs/32 
Div ratio 16 
File format WAC0 
Sample rate 384000 
Channel Mono-L 
Compression 7% 
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Appendix IV – The number of files identified to the three accuracy thresholds for each 

transect. 

Season Location Transect <60% >60% >95% 

1 Cabo Frio 1 6539 14829 8270 

  2 15521 44992 28178 

 Dimona 1 10814 34051 20813 

  2 5122 19484 12400 

2 Cabo Frio 1 9847 13590 7465 

  2 23487 62123 34411 

 Dimona 1 21051 21844 12221 

  2 7861 25066 15006 

 Total  100242 235979 138764 
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Appendix V – The number of bat passes per species/sonotype as calculated using three 

methods: manually identification, automatically classified to a 60% confidence and 

automatically classified to a 95% confidence. Highlighted values indicate a significant 

difference between a classifier results compared with manual identification. 

Species/ 
sonotype 

Manual Auto 
(60+ 
%) 

W-
Value 

P-
Value 

Auto 
(95+ 
%) 

W-
Value 

P-
Value 

Total 38654 40323 123260 0.87 26466 96400 <0.01 

Cormura 
brevirostris 

224 251    293.5 0.72 50 143 0.04 

Centronycteris 
maximiliani/ 
centralis 

15487 15917     3321 0.49 8607 3211 <0.01 

Emballonuridae sp. 
(Saccopteryx 
gymnura / 
canescens)  

1 21 - - 3 - - 

Eptesicus 
brasilensis  

10 8 22 0.52 1 1 1 

Furipterus horrens 23 22 - - 22 - - 

Molossidae 130 411 140 <0.01 23 36 0.15 

Myotis nigricans/ 
riparius 

431 491 471 0.59 169 490 <0.01 

Promops 
nasutus/centralis 

111 154 - - 4 - - 

Pteronotus parnellii 
(55KHz) 

10059 10293 5414 0.99 8811 5635 0.3 

Pteronotus parnellii 
(60KHz) 

7870 8569 5203 1 6468 57345 0.13 

Pteronotus 
gymonotus 

45 30 9 0.7865 3 - - 

Peropteryx kappleri 70 65 57.5 0.86 26 11 0.46 

Peropteryx macrotis 12 169 - - 8 - - 

Pteronotus 
personatus 

1 3 - - 1 - - 

Saccopteryx 
bilineata 

3164 3016 1807.5 0.72 1728 1152 <0.01 

Saccopteryx leptura 1016 903 1570 0.73 542 848 0.02 
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Appendix VI – The table shows the correlation between total bat activity and insect 

volume by insect Order. Total relative volume represents the volume of each insect Order.  

Insect Order Total relative 
Volume 

Rho N P-Value 

Blattodea 1277 0.0914 534 0.098 

Coleoptera 69519 0.0714 546 0.1974 

Diptera 4775.5 0.0456 561 0.4106 

Hemiptera 3791 0.0136 580 0.8056 

Homoptera 4919 0.1345 509 0.0148 

Hymenoptera 49860 0.1029 528 0.0626 

Isoptera 4289.5 0.1763 484 0.0013 

Lepidoptera 4637 0.1161 520 0.0357 

Orthoptera 3340 0.1926 475 0.0045 

 




