The role of the copper oxidation state in the electrocatalytic reduction of CO₂ into valuable hydrocarbons

Juan-Jesús Velasco-Vélez^{1,2}*, Travis Jones², Dunfeng Gao^{3,4}, Emilia Carbonio², Rosa Arrigo^{5,6}, Cheng-Jhih Hsu⁷, Yu-Cheng Huang^{7,8}, Chung-Li Dong⁷, Jin-Ming Chen⁸, Jyh-Fu Lee⁸, Peter Strasser⁹, Beatriz Roldan Cuenya^{3,4}, Robert Schlögl^{1,2}, Axel Knop-Gericke^{1,2}, Cheng-Hao Chuang⁷*

¹Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany

²Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany

³ Department of Physics, Ruhr-University Bochum, Universitätstraße 150, 44780 Bochum, Germany

⁴Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany

⁵Diamond Light source Ltd., Harwell Science & Innovation Campus, Didcot, Oxfordshire OX 11 0DE, UK

⁶School of Environment and Life Sciencesm, University of Salford, Cockcroft building, M5 4WT, Manchester, UK

⁷Department of Physics, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist, New Taipei City 25137, Taiwan.

⁸National Synchrotron Radiation Research Center, No. 101, Hsin Ann Rr., East District., Hsinchu 30076, Taiwan

⁹Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany

*Corresponding authors: <u>velasco@fhi-berlin.mpg.de</u>, <u>chchuang@mail.tku.edu.tw</u>

Number of pages: 5

Number of Figures: 4

In situ flow cell for X-ray spectroscopy

The *in situ* EC flow liquid cell was operated on the main chamber of the beamline 20A1 end station of the National Synchrotron Radiation Research Center (NSRRC) in Hsinchu (Taiwan) with a background pressure of $\sim 10^{-8}$ mbar while the aqueous electrolyte circulated on the back side of a SiN_x membrane 100 nm thick (from the company Norcada, Edmonton, Canada). Theeffective area of the working electrode was $\sim 2 \text{ mm}^2$. This membrane is used as working electrode and membrane to separate the liquid form the vacuum side. Hard X-ray absorption measurements at the Cu K-edge were performed at the beamline BL17C1 of the National Synchrotron Radiation Research Center (NSRRC) in Hsinchu (Taiwan). The photon source consists of a 25 poles wiggler (W20) with 20 cm period length and a focus spot size of 2 mm x 6 mm. The excitation energy ranges from 4.8 keV up to 14.2 keV. The signal was collected in fluorescence yield mode using an ionization chamber detector. A similar cell to the used in beamline 20A1 was located in the BL17C hutch at 1 bar in air with an effective area of the working electrode of ~36 mm². The flow of liquid was assured with a peristaltic micro pump, flowing continually around 1 ml/min of electrolyte. In the Si₃N₄ membrane a thin Au/Ti thin film was deposited by sputtering using a Cressington 208HR sputter-deposition system. First of all, 3 nm-thick adhesion layer of Ti (99.99%, Elektronen-Optik-Service GmbH, Dortmund, Germany) was deposited in a 0.1 mbar Ar atmosphere at a current of 40 mA during 30 s. After that, a 20 nm-film of Au (99.99%, Elektronen-Optik-Service GmbH, Dortmund, Germany) was deposited in a 0.1 mbar Ar atmosphere at a current of 40 mA during 140 s. It yields the formation of a homogenous polycrystalline thin film used as working electrode20 nm thick on a SiN_x membrane (100 nm), which yields a total signal transmission of ~74% of the incoming X-ray photons. The X-ray transmission through this membrane is estimated to be approximately equal to 80% of the incoming X-ray. The main body of the cell is made of polyether ether ketone (PEEK) which is electrically insulator and chemically inert.

Figure S1: Cu L_{2,3}-edges spectra depending on the cathodic polarization in the presence of different electrolytes and initial oxidation state: A Cu⁰ catalyst A1 5 mM KClO₄ saturated with N₂(gas) and A2 5 mM KHCO₃ saturated with CO₂(gas). B Cu⁺ catalyst B1 5 mM KClO₄ saturated with N₂(gas) and B2 5 mM KHCO₃ saturated with CO₂(gas). C Cu²⁺ catalyst C1 5 mM KClO₄ saturated with N₂(gas) and C2 5 mM KHCO₃ saturated with CO₂(gas). Side graphics are the Cu L-edge spectra under the highest cathodic polarization with the different electrolytes in order to compare the formation of surface/sub-surface oxygen species.

Figure S2: Cu L_3 -edge of Cu⁰ catalyst in presence of N_2 and CO₂ shows the existence of a slightly increase of Cu⁺ species in presence of CO₂ ascribed to the existence of dissociative proton-consuming reactive adsorption of CO₂ on copper yielding chemisorbed CO.

Figure S3: Cu L₃-edge depending on elapse time of copper carbonates species in presence of 100 mM HClO₄ acidic media.

Calculation of the Faradaic efficiency of gas products:

$$f_{gas} = \frac{f_{flow} \times c_{gas} / V_m \times n \times F}{I \times 60} \times 100$$

 f_{gas} : Faradaic efficiency of gas product, %;

 f_{flow} : flow rate of CO₂, mL min⁻¹;

I: electrolysis current at 60 min, A;

c_{gas}: volume ratio of gas product, determined by online GC;

 V_m : the molar volume of an ideal gas at 1 atmosphere of pressure, 22400 mL mol⁻¹;

n: number of transferred electrons for certain product;

F: Faradaic constant, 96485 C mol⁻¹.

Figure S4: Density of current for Cu^0 , Cu^+ and Cu^{2+} depending on the applied potential in 100 mM KHCO₃ saturated in CO₂.