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A B S T R A C T

During single leg squats (SLS), tibial angle (TA) quantification using inertial measurement units (IMU) may offer
a practical alternative to frontal plane projection angle (FPPA) measurement using 2-dimensional (2D) video
analysis. This study determined: (i) the reliability of IMUs and 2D video analysis for TA measurement, and 2D
video analysis for FPPA measurement; (ii) the agreement between IMU TA and both 2D video TA and FPPA
measurements during single leg squats in elite footballers. 18 players were tested on consecutive days. Absolute
TA (ATA) and relative TA (RTA) were measured with IMUs. ATA and FPPA were measured concurrently using
2D video analysis. Within-session reliability for all measurements varied across days (intraclass correlation
coefficient (ICC) range=0.27–0.83, standard error of measurement (SEM) range= 2.12–6.23°, minimal de-
tectable change (MDC) range= 5.87–17.26°). Between-sessions, ATA reliability was good for both systems
(ICCs=0.70–0.74, SEMs= 1.64–7.53°, MDCs= 4.55–7.01°), while IMU RTA and 2D FPPA reliability ranged
from poor to good (ICCs=0.39–0.72, SEMs= 2.60–5.99°, MDCs=7.20–16.61°). All limits of agreement ex-
ceeded a 5° acceptability threshold. Both systems were reliable for between-session ATA, although agreement
was poor. IMU RTA and 2D video FPPA reliability was variable. For SLS assessment, IMU derived TAs are not
useful surrogates for 2D video FPPA measures in this population.

1. Introduction

In professional football (soccer), periodic health examination (PHE)
is commonly used to obtain performance or rehabilitation benchmarks
and to assess potential prognostic factors (predictors) associated with
future injuries (Hughes et al., 2018). The single leg squat (SLS) can be
utilised in PHE to identify abnormal frontal plane lower extremity ki-
nematics during a functional task (Crossley et al., 2011), which may
indicate poor neuromuscular control (Whatman et al., 2011). Typical
abnormal kinematics include increased hip medial rotation and ad-
duction, medial tibial rotation and increased foot pronation (Hollman

et al., 2009). These movements increase the knee abduction moment
and result in medial knee displacement, also known as dynamic valgus
(Bell et al., 2008, Petersen et al., 2017) or medial collapse (Powers,
2003). Such kinematics are implicated in non-contact anterior cruciate
ligament injury (Koga et al., 2011, Krosshaug et al., 2007, Walden et al.,
2015) and in patellofemoral joint dysfunction (Herrington, 2014,
Levinger et al., 2007, Nakagawa et al., 2012, Willson and Davis, 2008,
Willy et al., 2012).

Dynamic knee valgus kinematics have traditionally been quantified
using 3-dimensional (3D) motion analysis systems to estimate the
frontal plane knee abduction angle (Gwynne and Curran, 2014,
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Herrington et al., 2017). These systems are complex and expensive so
are limited to use within a laboratory (Hu et al., 2014), which restricts
clinical applicability (Willson and Davis, 2008) especially for PHE
purposes. A simpler, less expensive alternative has been proposed,
where observers use 2-dimensional (2D) analysis software to retro-
spectively measure femoral and tibial angles from video recordings of
SLS performance (Scholtes and Salsich, 2017). These are used to cal-
culate the frontal plane projection angle (FPPA), formed between lines
from the anterior superior iliac spine (ASIS) to the knee and from the
knee to the ankle at the maximum range of knee flexion (Willson and
Davis, 2008, Willson et al., 2006). 2D FPPA has been validated against
3D knee abduction angle measurements in healthy recreational adults
(Herrington et al., 2017) and in females with patellofemoral pain
(Willson and Davis, 2008). 2D FPPA also has good to excellent within
and between-session reliability in recreationally active adults (Gwynne
and Curran, 2014, Herrington et al., 2017, Munro et al., 2012). How-
ever, population characteristics have considerable influence on relia-
bility (Kottner et al., 2011) and to date, 2D FPPA has not been ex-
amined in elite football players (Hughes et al., 2017).

Skin mounted tibial inertial measurement units (IMUs) can also be
used to evaluate SLS kinematics (Whelan et al., 2017) and offer prac-
tical benefits over 2D systems because real time data analysis may
improve time and cost effectiveness. Additionally, IMUs are affordable
and portable (Liikavainio et al., 2007) so could be more useful than 3D
systems in clinical environments (Charry et al., 2013). IMU systems use
data from integrated accelerometers, magnetometers and gyroscopes to
estimate tibial angles (TA) in the frontal plane during SLS tasks, which
appear to correspond with FPPA values (Hu et al., 2014).

It is important to evaluate the reliability and agreement of alter-
native systems compared to established clinically relevant methods
before incorporating their use in practice (Luiz et al., 2003). While the
reliability of IMU systems for TA measurement has not been examined
in elite footballers, neither has the agreement between IMU derived TA
measurements and 2D video FPPA measurements. Hence it is unclear if
an IMU system could be used as a surrogate method of 2D FPPA mea-
surement. The aims of this study were to determine during a SLS in elite
footballers: (i) the reliability of an IMU and a 2D video system for TA
measurement and a 2D video system for FPPA measurement; (ii) the
agreement between IMU TA measurements and 2D video FPPA and TA

measurements.

2. Materials and methods

This study was conducted and is reported in accordance with the
Guidelines for Reporting Reliability and Agreement Studies (Kottner
et al., 2011).

2.1. Participants

A convenience sample of 18 participants was selected from a cohort
of elite male football players under contract at an English Premier
League Football Club. Informed consent was not required because all
data were captured from mandatory PHE processes completed through
the participant’s employment. The anonymity and rights of all partici-
pants were protected. The football club granted permission to use these
data. The use of these data for the current purpose was approved by the
Research Ethics Service at the University of Manchester.

2.2. Eligibility criteria

Participants were included if they: (i) were>16 years and<40
years old; (ii) trained fully without injury and available for match se-
lection within two weeks of testing. Participants were excluded if they:
(i) were a goalkeeper; (ii) had undergone previous major lower ex-
tremity joint surgery; (iii) had a true leg length discrepancy of> 1 cm
(cm); iv) suffered a systemic illness within the week before testing.

2.3. Preparation

Baseline measurements were recorded of: (i) standing height (cm)
and body mass (kilograms) using a scale and height measure (SECA
220, SECA, Hamburg, Germany); (ii) true leg length for each limb using
a cloth tape measure (Magee, 2008); (iii) the participants’ preference
for kicking and non-kicking leg. Participants were instructed to wear
the same footwear and use orthotics if previously prescribed.

The IMU used was the ViPerform system (Dorsavi, Melbourne,
Australia) which consisted of two 3D IMUs sampling at 100, 20 and
20 Hz on the x, y and z axes respectively (Charry et al., 2013). IMUs

Fig. 1. Description of angles measured with IMU and 2D video systems. Photographs to show: (A) Baseline tibial angle (TA) for IMU absolute tibial angle (ATA)/
relative tibial angle (RTA) measurements, formed between absolute vertical (solid red line) and line from ankle to knee marker (yellow dashed line); (B) 2D ATA
formed from the angle between the absolute vertical line (solid red line) and the line from the ankle marker to the knee marker (solid blue line) at the maximal knee
flexion angle during the SLS; IMU ATA formed by calculation of sum of baseline TA (angle between dashed yellow line and solid red absolute vertical line), plus the
RTA (angle between dashed yellow line and solid blue tibial line) at maximal ankle dorsiflexion during the SLS (Hu et al., 2014); (C) IMU RTA measurement, formed
between the baseline TA (yellow dashed line) and TA angle at maximal ankle dorsiflexion (blue solid line) during the SLS; (D) 2D FPPA measurement, calculated by
measuring the angle formed between the line from the ASIS marker to knee joint marker (solid green line) and the line from the knee joint marker to the ankle marker
(solid blue line), at the frame that corresponded to maximum knee flexion angle during the SLS (Gwynne and Curran, 2014, Herrington et al., 2017, Munro et al.,
2012, Willson and Davis, 2008). Please note that the yellow dashed lines in pictures B & C have been adjusted to prevent overlap and aid clarity for the reader. For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.

Table 1
Within-session descriptive statistics.

Day 1 Day 2

Preferred leg Non-preferred leg Preferred leg Non-preferred leg

Measure System Mean (SD) n Mean (SD) n Mean (SD) n Mean (SD) n

ATA (°) IMU 9.19 (7.00) 18 13.30 (8.00) 18 8.35 (6.69) 17 11.45 (6.36) 17
2D Video 9.88 (4.23) 17 11.01 (4.02) 18 9.78 (4.54) 17 10.65 (4.23) 17

RTA (°) IMU 4.63 (7.30) 18 8.30 (7.68) 18 3.31 (8.60) 17 6.92 (6.68) 17
FPPA (°) 2D Video 1.36 (8.79) 17 4.75 (7.63) 18 2.15 (7.98) 17 3.71 (9.08) 17

Key: SD= standard deviation; n= number of participants; ATA= absolute tibial angle; RTA= relative tibial angle; Note for ATA/RTA measurements+ ve values
indicate tibial abduction (tibial lateral movement from vertical), −ve values indicate tibial adduction (tibial medial movement from vertical). FPPA= frontal plane
projection angle; Note for FPPA measurements +ve values indicate varus alignment, −ve values indicate valgus alignment.
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were applied according to the manufacturer’s instructions using a
proprietary leg template to identify the correct site, based on each
participant’s height. Disposable application pads (Dorsavi, Melbourne,
Australia) were affixed to the medial tibia and the IMU units were
clipped into position. For the 2D system, one video camera (Sanyo
Xacti, Sanyo, Osaka, Japan) was located 3m from the participant on a
60 cm high tripod. Zinc oxide tape markers were placed on FPPA
landmarks bilaterally at the midpoints of the ankle malleoli, femoral
condyles and ASIS (Willson and Davis, 2008, Willson et al., 2006).
Equipment application was completed by a physiotherapist (JP), ex-
perienced in IMU and video analysis.

2.4. Data capture

IMU data and 2D video capture was completed concurrently by the
same physiotherapist (JP). IMU data were analysed in real time and
saved to a computer using the manufacturer’s software (ViPerform
5.10, Dorsavi, Melbourne, Australia). Video footage was digitised and
analysed retrospectively using Quintic Sports software (Quintic Sports,
Quintic Consultancy Ltd, Sutton Coldfield, UK) by a post-doctoral bio-
mechanist (CS) experienced in 2D video analysis.

2.5. Measurement parameters

All parameters are shown in Fig. 1. Because absolute tibial angle
(ATA) was a component of both IMU and 2D FPPA analysis, this was
directly compared. Relative tibial angle (RTA) was provided by the IMU
system only. For all TA measurements, positive values indicated tibial
abduction (proximal tibial lateral displacement from vertical) and ne-
gative values indicated tibial adduction (proximal tibial medial dis-
placement from vertical). 2D FPPA was calculated using the video
system. Positive values represented varus knee alignment, whereas
negative values represented valgus alignment. FPPA could not be cal-
culated directly using the IMU system, therefore IMU ATA and RTA
measurements were compared as surrogate FPPA measures.

2.6. Procedure

Testing sessions were performed before the players commenced
training, at least 2 days following game participation to reduce poten-
tial fatigue effects. To warm up, participants cycled for 5 minutes on an
exercise bicycle without resistance and completed three practice SLS
attempts on each leg. The standardised start position is presented in
Fig. 1(A). From this position, participants were instructed to perform
the SLS to at least 45° and no greater than 60° knee flexion (Zeller et al.,
2003) over 5 s using a timer, which was verbalised by the examiner
(JP); second 1 initiated the SLS, second 3 indicated the position of
maximal knee flexion and second 5 indicated the trial end, where
ground contact with both legs was permitted (Herrington, 2014). This
standardisation reduced any velocity effects on kinematics. Knee
flexion range was controlled for through examiner observation and
feedback. Data were captured for 5 trials per leg, with the left side
evaluated before the right side. Data were analysed from trials 3, 4 and
5 only. If a trial was discounted due to inappropriate technique or a
technical problem, either trial 1 or 2 was included as an alternative. The
same procedure was repeated 24 h later, to minimise any effects from
football training.

2.7. Data analysis

Within-session analyses were conducted for both testing days,
stratified by kicking limb preference. For between-session analyses,
mean values for the 3 trials were calculated for each testing day and
participant, per kicking limb preference. Within and between-session
ICCs3,1 with corresponding 95% confidence intervals (CIs) were calcu-
lated and interpreted as: poor < 0.40; fair= 0.40–0.70;Ta
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good= 0.70–0.90; excellent≥ 0.90 (Coppieters et al., 2002). For all
parameters, standard error of measurement (SEM) and minimal de-
tectable changes (MDC) were calculated as described by Weir (2005).
MDCs were considered acceptable if values were<10°.

Because ATA could be compared from both the IMU and the 2D
video systems, Bland–Altman plots with 95% limits of agreement (LOA)
were produced (Bland and Altman, 1986) according to limb preference
for each testing day. This process was repeated to establish the agree-
ment between IMU ATA or RTA and 2D FPPA measures. Agreement was
considered acceptable if the 95% LOA fell within a 5° range, as de-
scribed previously (Gwynne and Curran, 2014). Statistical analyses
were completed using STATA 14 (StataCorp LLC, Texas, USA).

3. Results

3.1. Study participation and missing data

The characteristics of the sample were (expressed as mean ±
standard deviations): age 17.45 ± 1.14 years; height
180.32 ± 6.85 cm; weight 74.32 ± 5.62 kg; preferred kicking leg
length 99.19 ± 4.93 cm; non-preferred kicking leg length
99.18 ± 4.87 cm. Orthotics were used in the training shoes of 6 par-
ticipants for both testing sessions, as they had been previously pre-
scribed by a podiatrist. A technical fault affected 2D ATA and FPPA data
from the preferred leg of one participant on Day 1, which was excluded
from the relevant within-session analysis. One participant was injured
before Day 2 testing and was excluded from the relevant within-session
analysis. In both cases, these data were excluded from the between-
session analysis.

3.2. Within-session reliability

Within-session descriptive statistics are presented in Table 1 while
ICCs and 95% CIs, SEM and MDC values are summarised in Table 2. For
ATA, IMU ICCs ranged from poor (0.30) to fair (0.65) while the 2D
video ICCs ranged from fair (0.50) to good (0.75) across legs and days.
SEMs and MDCs were lowest overall for 2D video ATA
(range=2.12–3.21° and 5.87–8.89° respectively), but larger for IMU
ATA (range= 3.77–5.87° and 10.46–16.26° respectively). For RTA,
IMU ICCs ranged from poor (0.27) to good (0.75), SEMs ranged from
4.10° to 6.23° and MDCs ranged from 11.36° to 17.26°. For 2D FPPA,
ICCs ranged from fair to good (0.53–0.83), SEMs ranged from 3.61 to
5.24° and MDCs ranged from 10.01° to 14.52°. Other than 2D ATA and
2D FPPA on the preferred kicking leg, all other reliability measure-
ments improved on Day 2.

3.3. Between-session reliability

Between-session reliability statistics are presented in Table 3. For
ATA, ICCs were good bilaterally for both systems (range 0.70–0.74).
SEMs and MDCs were larger for the IMU (2.39–2.53°, 6.63–7.01°

respectively) compared to the 2D system (1.64–1.73°, 4.55–4.78° re-
spectively) but were similar across limbs. For RTA, IMU ICCs were fair
(0.55) on the preferred kicking leg, but good on the non-preferred leg
(0.77). SEMs and MDCs were larger on the preferred leg (4.09° and
11.35°) compared to the non-preferred leg (2.60° and 7.20°). 2D FPPA
ICCs were poor (0.39) on the preferred leg, compared to good for the
non-preferred leg (0.74). Similarly, SEM and MDCs were greater on the
preferred leg (5.99° and 16.61° respectively) compared to the non-
preferred leg (3.73° and 10.33°).

3.4. Between-system agreement

Bland-Altman plots for each day are presented in Figs. 2 and 3. The
observed mean agreement for: (i) ATA between systems ranged from
−1.5° to 2.29°; (ii) IMU RTA and 2D FPPA ranged from 2.08° to 3.54°;
(iii) IMU ATA and 2D FPPA ranged from 7.10° to 8.54°. For all mea-
sures, the 95% LOA extended beyond the 5° threshold set a priori, which
indicated unacceptable agreement.

4. Discussion

This study has determined during the SLS test in elite footballers: (i)
the reliability of an IMU and 2D video system for TA measurement and
a 2D video system for FPPA measurement; (ii) the agreement between
IMU TA measurements and 2D TA and FPPA measurements. In taking
these assessments we wanted to answer the question, are tibial angles
measured with IMUs useful surrogate measures of frontal plane pro-
jection angles during SLS tasks? Our results show that this is not the
case.

4.1. Tibial angles

Despite generally high levels of between participant variability for
ATA and RTA parameters, irrespective of the system used, we observed
that on average elite footballers demonstrated tibial abduction angles
during the SLS task which were associated with knee varus alignment.
Interestingly, both within and between-session mean ATA and RTA
values were consistently larger in the non-preferred kicking leg.

This is the only study known to investigate TA measurement relia-
bility and cannot be compared with other work. Our within-session
analyses have shown that both systems suffered from variable relia-
bility for ATA measurement (IMU ICC range=0.30–0.65, 2D video ICC
range=0.50–0.75) and 2D video ATA was the only parameter to have
clinically acceptable MDC values. Therefore, using either system for
within-session measurement of ATA is unlikely to be clinically useful in
this population and any results should be interpreted with caution.
Despite this, either system could be useful in clinical practice to monitor
between-session changes of ATA, because both systems have compar-
ably good reliability (IMU ICC range=0.70–0.74, 2D video ICC
range=0.73–0.74) and averaging the scores for each session reduces
the data variability and measurement error. As the IMU and 2D video

Table 3
Between-session Means, SD, ICCs3,1, SEM and MDC values for both systems, per limb preference.

Preferred leg Non preferred leg

Parameter System Mean (SD) (°) n ICC 95% CI SEM (°) MDC (°) Mean (SD) (°) n ICC 95% CI SEM (°) MDC (°)

ATA IMU 6.70 (4.39) 17 0.70 0.35–0.88 2.39 6.63 11.85 (4.97) 17 0.74 0.42–0.90 2.53 7.01
2D Video 10.19 (3.19) 16 0.74 0.39–0.90 1.64 4.55 10.94 (3.30) 17 0.73 0.39–0.89 1.73 4.78

RTA IMU 2.82 (6.07) 17 0.55 0.10–0.81 4.09 11.35 7.32 (5.41) 17 0.77 0.47–0.91 2.60 7.20
FPPA 2D Video 1.55 (7.69) 16 0.39 −0.11–0.74 5.99 16.61 4.90 (7.33) 17 0.74 0.42–0.90 3.73 10.33

Key: SD= standard deviation; n= number of participants; ICC= Intraclass correlation coefficient; CI= confidence interval, SEM= standard error of measurement,
MDC=minimal detectable change; ATA= absolute tibial angle; RTA= relative tibial angle; Note for ATA/RTA measurements +ve values indicate tibial abduction
(tibial lateral movement from vertical), −ve values indicate tibial adduction (tibial medial movement from vertical; FPPA= frontal plane projection angle, +ve
measurements indicate varus alignment, −ve measurements indicate valgus alignment.
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Fig. 2. Agreement between measurement parameters and systems on Day 1. Key: ATA= absolute tibial angle; RTA= relative tibial angle; FPPA= frontal plane
projection angle; Diff= difference, IMU= inertial measurement unit; 2D=2 dimensional; LOA= limits of agreement; °= degrees.
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Fig. 3. Agreement between measurement parameters and systems on Day 2. Key: ATA= absolute tibial angle; RTA= relative tibial angle; FPPA= frontal plane
projection angle; Diff= difference, IMU= inertial measurement unit; 2D=2 dimensional; LOA= limits of agreement; °= degrees.
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systems did not have acceptable agreement for ATA measures, ATA
should be considered as a system specific, arbitrary measure of tibial
motion. However, the relevance of ATA as a performance indicator,
rehabilitation marker or potential prognostic factor for injury is un-
known at present, so further research is required to establish the clinical
usefulness of this measurement parameter.

RTA measurement reliability of the IMU system was mostly inferior
to the related ATA measurements and could not be recommended in
practice.

4.2. 2D FPPA

In this study, 2D FPPA measurements were also observed in a varus
direction. The ranges of within and between-session mean values were
1.36–2.15° for the preferred leg, and 3.71–4.90° for the non-preferred
leg. This apparent effect of limb preference on kinematics has not been
observed previously. Our results differ from the valgus direction (mean
FPPA=8.64° SD=9.06°) observed by Munro et al., 2012) and
Gwynne and Curran (2014) (mean FPPA=7.80°, SD=7.33), although
are more comparable to the varus direction observed by Herrington
et al. (2017) (mean FPPA range from 9.1 (SD=10.6) to 11.7
(SD=9.8) by two separate raters). These kinematic differences may be
due to population characteristics, as none these studies used elite sports
people. Between-participant variability in our study was comparable for
both limbs and confirms previous work (Gwynne and Curran, 2014,
Herrington et al., 2017, Munro et al., 2012). This suggests that large
kinematic variability appears to be trait of 2D FPPA measurement, re-
gardless of population.

In recreationally active adults, 2D FPPA has been shown to have
good to excellent within-session reliability (ICCs 0.72–0.86) and be-
tween-session reliability (ICCs 0.74–0.87) (Gwynne and Curran, 2014,
Herrington et al., 2017, Munro et al., 2012). We found that in elite
footballers, within-session reliability for 2D FPPA was uncertain be-
cause of ICC variability between testing days, which ranged from fair to
good (0.53–0.83). This has also not been observed previously. We also
found generally greater within-session SEM values in our population
(range=3.61–5.24°) compared to values reported previously
(range=1.72°–2.10°) (Gwynne and Curran, 2014, Herrington et al.,
2017) which may account for the clinically unacceptable MDC values
demonstrated (range=10.01–14.52°).

During between-session analysis, we found that 2D FPPA reliability
was dependent on limb kicking preference. On the non-preferred leg,
between-session ICCs were good (0.74) and replicated ICC results pre-
viously reported by Gwynne and Curran (2014) although were less than
those cited by Munro et al. (2012) (ICC= 0.88) and (Herrington et al.,
2017) (ICC=0.87). However, we found that for the preferred kicking
leg, between-session reliability was poor (0.39). This may be due to
differences in SEM values observed between limbs, where the non-
preferred leg was 3.73° and comparable to previous work
(range=1.37°–3.82°) (Gwynne and Curran, 2014, Herrington et al.,
2017, Munro et al., 2012), whereas the SEM for the preferred leg
(5.99°) was greater than previously reported. Subsequently for either
limb, the minimal differences required in between-session 2D FPPA
performances are too large (10.33–16.01°) to be helpful in detecting
real changes in elite footballers. In comparison, 2D FPPA MDCs have
been found to be 7.63° and 8.93° in recreationally active men and
women (Munro et al., 2012) but these differences may be due to
characteristics of the elite football players investigated in our study.

The kicking action in football places differing demands on the
support limb and kicking limb musculature (Brophy et al., 2007), so
kicking limb preference may be associated with specific musculoske-
letal adaptations from training exposure. To account for this, our

analyses were stratified according to limb kicking preference, whereas
previously 2D FPPA data from both legs were either pooled (Herrington
et al., 2017, Munro et al., 2012) or it was unclear which limbs were
evaluated (Gwynne and Curran, 2014). This may partially explain the
differences in kinematics, reliability and error measurements observed
in our study compared to those previously reported. We also controlled
for biomechanical foot differences through standardised use of correc-
tive orthoses (if prescribed), which may have also have influenced 2D
FPPA measurement and the degree of measurement error. It was un-
clear if this was controlled for in previous studies (Gwynne and Curran,
2014, Herrington et al., 2017, Munro et al., 2012).

Considering our results, we would argue that in this population,
using video analysis to measure 2D FPPA is inadequate as a cross sec-
tional assessment or as a rehabilitation/PHE test where performance
could be monitored longitudinally. We have also shown that absolute
and relative tibial angles measured using IMUs did not agree suffi-
ciently with 2D FPPA, so could not be considered as valid surrogate
measures. This is unsurprising because femoral and pelvic measure-
ments are required for FPPA quantification (Willson and Davis, 2008)
and these angles are not recorded with tibial mounted IMUs.

4.3. Limitations and future research

The general improvement of all TA reliability statistics during the
second session is suggestive of learning effects, although this was sur-
prising as practice trials were permitted. Order bias was partially con-
trolled for through analysis stratification by limb preference, although
limbs were tested on the left and right side consecutively and not
randomised, which could have influenced the results. The gen-
eralisability of our findings is limited to elite football players and is
specific to analysis of SLS tasks only.

Further research could involve replication studies which randomise
the limb testing order, using participants from different sports or non-
elite football populations, and evaluation of frontal plane control
during other dynamic functional tasks.

5. Conclusion

This study demonstrates the reliability limitations of an IMU and 2D
video analysis system for SLS kinematic assessment in elite football
players, especially during within-session analyses. For between-session
analysis of ATA, both systems were sufficiently reliable to monitor SLS
performance although agreement was poor and the clinical relevance of
ATA is unknown at present. The varied between-session reliability of
IMUs for RTA measurement and 2D video for FPPA measurement means
that in elite players, the value of using these parameters to quantify SLS
kinematics in clinical practice is questionable. Furthermore, in this
population TA measured with IMUs cannot be considered as surrogate
FPPA measures of SLS tasks due to inadequate agreement between
systems. It should be remembered that this study has exclusively in-
vestigated SLS performance. To firmly establish the usefulness of IMU
and 2D video systems as clinical assessment tools, evaluation of alter-
native functional tasks is recommended.
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