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Abstract This paper is devoted to the investigation of the propagation of
magneto-thermo-elastic waves in a rotating monoclinic system. The system
is electrically conducting in the presence of an applied magnetic field. A
general dispersion relation is obtained for magneto-thermo-elastic waves. The
propagation of wave produced two elastic waves and two thermal waves. It
is found that the elastic waves depend on the applied magnetic field and
the rotational frequency, where the thermal waves are independent of these
effects. The numerical simulations are presented in this article to support
the findings.
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1 Introduction

There is a strong relation between the dynamical properties of an object and
its deformation. The key variables are the change in the temperature and
the elastic behaviour, which are closely correlated in the literature to the
deformation properties of solids. Investigation of the thermoelastic waves
has remained a challenge in industry as well as in the field of bio-informatics
and bio-manufacturing, plasma physics and in the study of condensed matter
[1-7,22]. In short, the theory of elasticity has remained an important area of
research since the elementary methods of strength of materials are insufficient
at some scales to provide the detailed insight of the stress distribution and
other properties in the domain of structural mechanics. To obtain adequate
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insight of the thermoelastic properties of structures at different scales, it is
desired to propose models and to apply quantitative and qualitative methods
for analysis.

During the past decade, enormous efforts have been made to address
this requirement and the interaction between magnetic fields and strain in a
thermoelastic materials is studied due to its many applications [2, 3]. Usu-
ally, in these investigations the heat equation under consideration is taken as
the uncoupled or the coupled equation [5]. We can summarise the concept
of magneto-thermoelasticity as a topic concerned with the relation between
magnetic field and electric field in a thermoelastic solid due to its immense
applications in the field of geophysics, plasma physics and engineering ap-
plications [6, 7, 8, 9]. The uncoupled thermo elastic theory has two flaws,
first one is that the elastic body has no thermal effect, but it is not exper-
imentally valid. The second one is that any initial change would instantly
alter the medium under observation, but physically it is not in accordance
with the physical experiments. Thus Biot [10] developed a new thermoelastic
theory to remove the first flaw. The heat equation in the Biot theory is still
parabolic and thermal wave has an infinite speed. Lord and Shulman [11] pro-
posed the generalized theory of magneto-thermoelasticity with the relaxation
times in which the acceleration of heat flux was taken into the account and
Fourier law of heat conduction was replaced by generalized version. Green
and Naghdi [12-14] re-examined the basic postulates of thermo mechanics,
they examined un damped heat wave in an elastic solid and also considered
the thermoelastic wave without energy dissipation. Thus they obtained three
theories called thermoelasticity of type I, II and III is also known as GN the-
ories I-III. When the three theories are linearized, the heat equation of GN-I
is identical to the Fourier law of heat conduction, while GN-II and III showed
that the propagation of thermal waves have finite speed.

The combination of three fields such as mechanical (elastic), electromag-
netic field and thermal field has attracted considerable attention due to its
various applications in science and technology, particular in geophysics, seis-
mology and plasma physics. Knopoff [15] presented the relation between
magnetic field and elastic wave motion in electrical conductors. Kaliski and
Petykiewicz [16] derived the equation of motion coupled with the field of
temperature and magnetic field for an isotropic bodies. Paria [17] investi-
gated the effect of magnetic field on the propagation of thermoelastic waves
in an isotropic unbounded medium. After Paria a detailed revision of mag-
neto thermoelastic plane waves were made by Purushothama [18]. He found
that when magnetic field is parallel to the direction of wave propagation, the
shear wave is purely elastic whereas the compression wave is thermo-elastic
in nature.



The topic of wave propagation in crystalline media shows a very vital role
in geophysics and also in ultrasonic and signal processing. The monoclinic
crystal is one of the biggest symmetry crystals comprising of almost one
third of all the minerals that are present in earth. Singh and Yadav [19]
investigated the propagation of plane wave in a monoclinic medium under the
effect of magnetic field. They observed that the speed of the wave increases
as magnetic field strength increases. Various researchers have investigated
the effect of rotation in crystalline media [20, 21], with applications in diverse
fields of research.

During this research, we have presented the mathematical formulation,
which was not available in literature. In this study, we thus present the
mathematical formulation to describe the influence of magnetic field on the
propagation of thermoelastic wave in a rotating monoclinic medium by using
G-N III theory. The monoclinic medium has remained a topic of debate,
for many years, to observe the propagation of seismic wave. The magneto-
thermo-elastic coupled governing equations are established. At the end, the
dispersion relation for heat and rotation are obtained separately.

The research during this study is documented in the following order:
Section 1 is comprised of the recent literature and the outline of the research
methodology. In section 2, we have described the problem by using GN-III
theory. The vital feature of GN-III theory is that it sustains dissipation of
thermal energy due to the existence of thermal damping term. In section 3
the solution is presented. Section 4 then presents the application of current
research on a practical problem.

2 Formulation of the Problem

The constitutive relation in a infinite homogeneous elastic solid of monoclinic
type having x1 plane as the plane of symmetry are given by

σ11
σ22
σ33
σ23
σ13
σ12

 =



C11 C12 C13 C14 0 0
C12 C22 C23 C24 0 0
C13 C23 C33 C34 0 0
C14 C24 C34 C44 0 0
0 0 0 0 C55 C56

0 0 0 0 C56 C66





ε11
ε22
ε33
2ε23
2ε13
2ε12

 (1)

where 2εij = ui,j + uj,i are the components of the displacement vector
v(x1, x2, x3, t). σij are the components of the stress tensor and Cij(i, j =
1, 2, 3, 4, 5, 6) are elastic constants.
Equation governing the propagation of elastic wave in a electrically conduct-



ing infinite homogeneous monoclinic solid is rotating with an angular velocity
Ω having electromagnetic force J × B (the Lorentz force, J being the elec-
tric current density and B being the magnetic induction vector)as the body
forces are

σij,j +

(
J×B

)
i

= ρ

(
Üi + (Ω× (Ω×U))i + 2

(
Ω× U̇

)
i

)
, (2)

where ρ is the density of the medium. The Hook’s Law for heat conducting
material is

σij,j = Cijklεkl − γδijT. (3)

The energy equation in the absence of heat source is,

ρcvT̈ + γT0Üi,i = KṪ,ii +K∗T,ii, (4)

Where γ is the thermal modulus, K is the thermal conductivity, K∗ is a
material constant and is the specific heat of the medium.

The well known Maxwell’s equations [22] governing the electromagnetic
field are,

curlH = J, divB = 0, (5)

curlE = −∂B

∂t
, B = µeH, E = −µe(U̇×H), (6)

J = σ

(
E +

∂U

∂t
×B + (Ω.B)U− (U.B)Ω

)
, (7)

Here E is the induced electric field and magnetic field H induces both pri-
mary and induced magnetic field, µe and σ are the induced permeability and
conduction coefficient respectively. Let H=H0 + h and Ω=Ω(1, 0, 0) where
H0 = (H0, 0, 0). The perturbed magnetic field h is so small that the product
of U, h, and the derivatives of h can be ignored when linearizing the field
Eqs. (5) to (7) and using the value of H, it gives

σ

(
E1

)
=

(
∂h3
∂x2
− ∂h2
∂x3

)
, (8)

σ

(
E2 +H0µe

∂U3

∂t
+ µeΩH0U2

)
=

(
∂h1
∂x3
− ∂h3
∂x1

)
, (9)

σ

(
E3 −H0µe

∂U2

∂t
+ µeΩH0U3

)
=

(
∂h2
∂x1
− ∂h1
∂x2

)
. (10)



Differentiation of equations 8-10 w.r.t x1, x2 and x3

The differentiation leads to the following results:

σ

(
E2,3 +H0µe

∂2U3

∂t∂x3
+ µeΩH0U2,3

)

=

(
∂2h1
∂x23

− ∂2h3
∂x1∂x3

)
, (11)

σ

(
E3,2 −H0µe

∂2U2

∂t∂x2
+ µeΩH0U3,2

)
=

(
∂2h2
∂x1∂x2

− ∂2h1
∂x22

)
, (12)

σ

(
E1,3

)
=

(
∂2h3
∂x2∂x3

− ∂2h2
∂x23

)
, (13)

σ

(
E3,1 −H0µe

∂2U2

∂t∂x1
+ µeΩH0U3,1

)
=

(
∂2h2
∂x21

− ∂2h1
∂x2∂x1

)
, (14)

and

σ

(
E2,1 +H0µe

∂2U3

∂t∂x1
+ µeΩH0U2,1

)
=

(
∂2h1
∂x3∂x1

− ∂2h3
∂x21

)
, (15)

σ

(
E1,2

)
=

(
∂2h3
∂x22

− ∂2h2
∂x3∂x2

)
. (16)

where Ei,j = ∂Ei
∂xj

and Ui,j = ∂Ui
∂xj

for i, j = 1, 2, 3.

Utility of Induced Electric Field

The formulation for the induced electric field E can further be written as:

E3,2 −E2,3 = −µe
∂h1
∂t

E1,3 −E3,1 = −µe
∂h2
∂t

E2,1 −E1,2 = −µe
∂h3
∂t



which when interfaced with Eqs (11-16) provides the following set of equations
(i.e. Eqs (17-22))(

− ∂h1
∂t
− ∂2U2

∂t∂x2
H0 + ΩH0

∂U3

∂x2
−H0

∂2U3

∂t∂x3
− ΩH0

∂U2

∂x3

)

=
1

σµe

(
∂2h2
∂x1∂x2

− ∂2h1
∂x22

− ∂2h1
∂x23

+
∂2h3
∂x1∂x3

)
, (17)

(
− ∂h2

∂t
− ∂2U2

∂t∂x1
H0 − ΩH0

∂U3

∂x1

)
=

1

σµe(
∂2h3
∂x2∂x3

− ∂2h2
∂x23

− ∂2h2
∂x21

+
∂2h1
∂x2∂x1

)
, (18)

(
− ∂h3

∂t
+

∂2U3

∂t∂x1
H0 + ΩH0

∂U2

∂x1

)
=

1

σµe(
∂2h1
∂x3∂x1

− ∂2h3
∂x21

− ∂2h3
∂x22

+
∂2h2
∂x3∂x2

)
. (19)

Case of Perfect Conduction

For perfectly conducting material σ→∞, the Eqs. (17) to (19) becomes

∂h1
∂t

= H0

(
− ∂2U2

∂t∂x2
+ Ω

∂U3

∂x2
− ∂2U3

∂t∂x3
− Ω

∂U2

∂x3

)
, (20)

∂h2
∂t

= H0

(
∂2U2

∂t∂x1
− Ω

∂U3

∂x1

)
, (21)

∂h3
∂t

= H0

(
∂2U3

∂t∂x1
+ Ω

∂U2

∂x1

)
. (22)

Propagation of Elastic Wave, the Component-form
and the Alf’ven Wave Velocity

Then, Eq. (2) in component form can be written as

C2
1

∂3U1

∂t∂x21
+ C2

6

∂3U2

∂t∂x2∂x1
+ C2

5

∂3U3

∂t∂x3∂x1
+ C2

3

∂

∂t(
∂2U2

∂x3x1
+

∂2U3

∂x2∂x1

)
− γ∂T

ρ∂t∂x1
+ C2

8

∂

∂t

(
∂2U1

∂x22



+
∂2U2

∂x1∂x2

)
+ C2

7

∂

∂t

(
∂2U1

∂x3∂x2
+

∂2U3

∂x1∂x2

)
+ C2

9

∂

∂t(
∂2U1

∂x23
+

∂2U3

∂x1∂x3

)
+ C2

7

∂

∂t

(
∂2U1

∂x2∂x3
+

∂2U2

∂x1∂x3

)
=
∂3U1

∂t3
, (23)

C2
8

∂

∂t

(
∂2U1

∂x2∂x1
+
∂2U2

∂x21

)
+ C2

7

∂

∂t

(
∂2U1

∂x3∂x1
+
∂2U3

∂x21

)
+C2

6

∂3U1

∂t∂x1∂x2
+ C2

10

∂3U2

∂t∂x22
+ C2

11

∂3U3

∂t∂x3∂x2
+ C2

12

∂

∂t(
∂2U2

∂x3∂x2
+
∂2U3

∂x22

)
− γ∂T

ρ∂t∂x2
+ C2

3

∂3U1

∂t∂x1∂x3
+ C2

12

∂3U2

∂t∂x2∂x3
+ C2

13

∂3U3

∂t∂x23
+ C2

2

∂

∂t

(
∂2U2

∂x23

+
∂2U3

∂x2∂x3

)
+ C2

A

(
∂3U2

∂t∂x21
− Ω

∂2U3

∂x21
+

∂3U2

∂t∂x22

−Ω
∂2U3

∂x22
+

∂3U3

∂t∂x3∂x2
+ Ω

∂2U2

∂x3∂x2

)
=
∂3U2

∂t3
− Ω2∂U2

∂t
− 2Ω

∂2U3

∂t2
, (24)

C2
9

∂

∂t

(
∂2U1

∂x3∂x1
+
∂2U3

∂x21

)
+ C2

7

∂

∂t

(
∂2U1

∂x2∂x1
+
∂2U2

∂x21

)

+C2
2

∂

∂t

(
∂2U̇2

∂x2∂x3
+
∂2U3

∂x22

)
+ C2

3

∂3U1

∂t∂x1∂x2
+ C2

12

∂3U2

∂t∂x22

+C2
13

∂3U3

∂t∂x3∂x2
+ C2

5

∂3U1

∂t∂x1∂x3
+ C2

11

∂3U2

∂t∂x2∂x3
+ C2

4

∂3U3

∂t∂x23
+ C2

13

∂

∂t

(
∂2U̇2

∂x23
+

∂2U̇3

∂x2∂x3

)
− γ∂T

ρ∂t∂x3
− C2

A(
− ∂3U2

∂t∂x2∂x3
+ Ω

∂2U3

∂x2∂x3
− ∂3U3

∂t∂x23
− Ω

∂2U2

∂x23
− ∂3U3

∂t∂x21

−Ω
∂2U2

∂x21

)
=
∂3U3

∂t3
− Ω2∂U3

∂t
+ 2Ω

∂2U2

∂t2
. (25)

where



C2
1 =

C11

ρ
, C2

2 =
C44

ρ
, C2

3 =
C14

ρ
, C2

4 =
C33

ρ
,

C2
5 =

C13

ρ
, C2

6 =
C12

ρ
, C2

7 =
C56

ρ
, C2

8 =
C66

ρ
,

C2
9 =

C55

ρ
, C2

10 =
C22

ρ
, C2

11 =
C23

ρ
, C2

12 =
C24

ρ
,

C2
13 =

C34

ρ
and C2

A =
µeH

2
0

ρ
,

where C2
A is the Alf’ven wave velocity (for details, the reader is referred to [23]).

Eqs. (23) to (25) can also be written as

∂3U1

∂t∂x21
+

∂3U2

∂t∂x2∂x1

(
V5 + V7

)
+

∂3U3

∂t∂x3∂x1

(
V1

+V8

)
+

∂3U2

∂t∂x3∂x1

(
V4 + V6

)
+

∂3U3

∂t∂x2∂x1

(
V4 + V6

)
+
∂3U1

∂t∂x22
V7 +

∂3U1

∂t∂x3∂x2

(
2V6

)
+

∂3U1

∂t∂x23
V8

− γ∂2T

ρC2
1∂t∂x1

=
1

C2
1

∂3U1

∂t3
, (26)

∂3U1

∂t∂x2∂x1

(
V7 + V5

)
+

∂3U2

∂t∂x21

(
V7 +RH

)
+

∂3U1

∂t∂x3∂x1(
V6 + V4

)
+

∂3U3

∂t∂x21
V6 +

∂3U2

∂t∂x22

(
V9 +RH

)
+

∂3U3

∂t∂x3∂x2

(
V3 + V10 +RH

)
+

∂3U2

∂t∂x3∂x2

(
2V11

)
+
∂3U3

∂t∂x22
V11 +

∂3U3

∂t∂x23
V12 +

∂3U2

∂t∂x23
V3 +RH

(
− Ω

∂2U3

∂x21

−Ω
∂2U3

∂x22
+ Ω

∂2U2

∂x3∂x2

)
− γ∂2T

ρC2
1∂t∂x2

=
1

C2
1

(
∂3U2

∂t3

−Ω2∂U2

∂t
− 2Ω

∂2U3

∂t2

)
, (27)

∂3U1

∂t∂x3∂x1

(
V8 + V1

)
+

∂3U3

∂t∂x21

(
V8 +RH

)
+

∂3U1

∂t∂x2∂x1



(
V6 + V4

)
+

∂3U2

∂t∂x21
V6 +

∂3U2

∂t∂x2∂x3

(
RH + V3

+V10

)
+

∂3U3

∂t∂x22
V3 +

∂3U2

∂t∂x22
V11 +

∂3U3

∂t∂x3∂x2

(
2V12

)
+
∂3U3

∂t∂x23

(
V2 +RH

)
+

∂3U2

∂t∂x23
V12 −RH

(
Ω

∂2U3

∂x2∂x3

−Ω
∂2U2

∂x23
− Ω

∂2U2

∂x21

)
− γ∂2T

ρC2
1∂t∂x3

=
1

C2
1

(
∂3U3

∂t3

−Ω2∂U3

∂t
+ 2Ω

∂2U2

∂t2

)
. (28)

where

V1 =
C2
5

C2
1

, V2 =
C2
4

C2
1

, V3 =
C2
2

C2
1

, V4 =
C2
3

C2
1

, V5 =
C2
6

C2
1

V6 =
C2
7

C2
1

, V7 =
C2
8

C2
1

, V8 =
C2
9

C2
1

, V9 =
C2
10

C2
1

, V10 =
C2
11

C2
1

V11 =
C2
12

C2
1

, V12 =
C2
13

C2
1

, RH =
C2
A

C2
1

.

where Vi(i = 1, 2, ..., 12) are just presenting ratio between the velocity
components of the wave in a monoclinic medium, and RH is the magnetic
pressure.
The following dimensionless variables and parameters are introduced:

ui =
C11

γT0l
Ui, ξi =

xi
l
, η =

C1t

l
, Ω0 = Ωt0

θ =
T

T0
, c2T =

K∗

ρcvC2
1

=
c23
c21
, εT =

γ2T0
ρ2cvC2

1

,

k0 =
K0

lC1
and K0 =

K

ρcV
. (29)

where, η is the dimensionless time, l and t0 represents the length and time respec-
tively, K0 is the thermal diffusivity, k0 is the non thermal diffusivity, cT is the
thermal velocity and εT is the thermo-elastic coupling constant. The details of the
constants are provided in [24]. The non-dimensional quantities defined in relation
(29), Eqs. (26) to (28) take the form

∂3u1
∂η∂ξ21

+
∂3u2

∂η∂ξ2∂ξ1

(
V5 + V7

)
+

∂3u3
∂η∂ξ3∂ξ1

(
V1 + V8

)



+
∂3u2

∂η∂ξ3∂ξ1

(
V4 + V6

)
+

∂3u3
∂η∂ξ2∂ξ1

(
V4 + V6

)
+
∂3u1
∂η∂ξ22

V7 +
∂3u1

∂η∂ξ3∂ξ2

(
2V6

)
+

∂3u1
∂η∂ξ23

V8

− ∂2θ

∂η∂ξ1
=
∂3u1
∂η3

, (30)

∂3u1
∂η∂ξ2∂ξ1

(
V7 + V5

)
+

∂3u2
∂η∂ξ21

(
V7 +RH

)
+

∂3u1
∂η∂ξ3∂ξ1

(
V6 + V4

)
+

∂3u3
∂η∂ξ21

V6 +
∂3u2
∂η∂ξ22

(
V9 +RH

)
+

∂3u3
∂η∂ξ3∂ξ2

(
V3 + V10 +RH

)
+

∂3u2
∂η∂ξ3∂ξ2

(
2V11

)
+
∂3u3
∂η∂ξ22

V11 +
∂3u3
∂η∂ξ23

V12 +
∂3u2
∂η∂ξ23

V3 +RHa

(
− ∂2u3

∂ξ21

−∂
2u3
∂ξ22

+
∂2u2
∂ξ3∂ξ2

)
− ∂2θ

∂η∂ξ2
=
∂3u2
∂η3

− a2∂u2
∂η

−2a
∂2u3
∂η2

, (31)

∂3u1
∂η∂ξ3∂ξ1

(
V8 + V1

)
+

∂3u3
∂η∂ξ21

(
V8 +RH

)
+

∂3u1
∂η∂ξ2∂ξ1

(
V6 + V4

)
+

∂3u2
∂η∂ξ21

(
V6

)
+

∂3u2
∂η∂ξ3∂ξ2(

RH + V3 + V10

)
+

∂3u3
∂η∂ξ22

(
V3

)
+

∂3u2
∂η∂ξ22

(
V11

)
+

∂3u3
∂η∂ξ3∂ξ2

(
2V12

)
+
∂3u3
∂ξ23

(
V2 +RH

)
+

∂3u2
∂η∂ξ23(

V12

)
−RHa

(
∂2u3
∂ξ2∂ξ3

− ∂2u2
∂ξ23

− ∂2u2
∂ξ21

)
− ∂2θ

∂η∂ξ3
=
∂3u3
∂η3

− a2∂u3
∂η

+ 2a
∂2u2
∂η2

, (32)

∂2θ

∂η2
+ εT

(
∂3u1
∂η2∂ξ1

+
∂3u2
∂η2∂ξ2

+
∂3u3
∂η2∂ξ3

)
= k0

(
∂3θ

∂η∂ξ21
+

∂2θ

∂η∂ξ22
+

∂3θ

∂η∂ξ23

)



+c2T

(
∂2θ

∂ξ21
+
∂2θ

∂ξ22
+
∂2θ

∂ξ23

)
, (33)

where

a =
Ω0l

t0C1
.

3 Solution of the Problem

In a manner similar to [25], consider the harmonic plane wave solution of the form,

ui = pie
i(kξi.ni−ωη) and θ = θ0e

i(kξi.ni−ωη) (34)

Here k is the wave number, ω represents the angular frequency of the wave, the
direction of wave propagation is represented by the unit vector ni = (n1, n2, n3)
while the direction of particle displacement is denoted by unit vector pi. is the
wave speed.
Substituting Eq. (34) into Eqs. (30) to (33), we arrive at the system of four
homogeneous equations(

iωk2n21 + (iωk2n22)(V7) + (2V6)(iωk
2n2n3)

+(iωk2n23)(V8)− iω3

)
p1

+

(
(V5 + V7)(iωk

2n1n2) + (V4 + V6)(iωk
2n1n3)

)
p2

+

(
(V1 + V8)(iωk

2n1n3) + (V4 + V6)(iωk
2n1n2)

)
p3

−
(
ωkn1

)
θ0 = 0, (35)(

(iωk2n1n2)(V5 + V7) + (iωk2n1n3)(V6 + V4)

)
p1

+

(
(iωk2n21)(V7 +RH) + (V9 +RH)(iωk2n22)

+(iωk2n2n3)(2V11) + (iωk2n23)(V3)−RHa(k2n2n3)

−(iω3)− a2(iω)

)
p2 +

(
(iωk2n2n3)(V3 + V10

+RH) + (iωk2n22)(V11) + (iωk2n23)(V12)



+RH(ak2n21) +RHa(k2n22)− 2a(ω2)

)
p3

−
(
ωkn2

)
θ0 = 0, (36)

(
(iωk2n1n3)(V1 + V8) + (iωk2n1n2)(V6 + V4)

)
p1

+

(
iωk2n21)((V6) + (iωk2n2n3)(RH + V3 + V10)

+(iωk2n22)(V11) + (iωk2n23)(V12)−RHa(k2n23)

−RHa(k2n21) + 2a(ω2)

)
p2

+

(
(iωk2n21)(V8 +RH) + (iωk2n22)(V3) + (iωk2n2n3)

(2V12) + (iωk2n23)(V2 +RH) +RHa(k2n2n3)

−(iω3)− a2(iω)

)
p3 −

(
ωkn3

)
θ0 = 0, (37)

(
εTn1ω

2

)
p1 +

(
εTn2ω

2

)
p2 +

(
εTn3ω

2

)
p3

+

(
k0ωk + ikc2T −

iω2

k

)
θ0 = 0. (38)

The system of equations has non trivial solution if and only if the determination
of the factor matrix vanishes. So

∣∣∣∣∣∣∣∣
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

∣∣∣∣∣∣∣∣ = 0,

where

A11 = iωk2n21 + (iωk2n22)(V7) + (2V6)(iωk
2n2n3)

+(iωk2n23)(V8)− iω3,

A12 = (V5 + V7)(iωk
2n1n2) + (V4 + V6)(iωk

2n1n3),

A13 = (V1 + V8)(iωk
2n1n3) + (V4 + V6)(iωk

2n1n2),



A14 = −ωkn1, A24 = −ωkn2, A34 = −ωkn3,

A21 = (iωk2n1n2)(V5 + V7) + (iωk2n1n3)(V6 + V4),

A22 = (iωk2n21)(V7 +RH) + (V9 +RH)(iωk2n22) + (iωk2n2n3)

(2V11) + (iωk2n23)(V3)−RHa(k2n2n3)− (iω3)− a2(iω),

A23 = (iωk2n2n3)(V3 + V10 +RH) + (iωk2n22)(V11) + (iωk2n23)

(V12) +RH(ak2n21) +RHa(k2n22)− 2a(ω2),

A31 = (iωk2n1n3)(V1 + V8) + (iωk2n1n2)(V6 + V4),

A32 = iωk2n21)((V6) + (iωk2n2n3)(RH + V3 + V10) + (iωk2n22)

(V11) + (iωk2n23)(V12)−RHa(k2n23)−RHa(k2n21) + 2a(ω2),

A33 = (iωk2n21)(V8 +RH) + (iωk2n22)(V3) + (iωk2n2n3)(2V12)

+(iωk2n23)(V2 +RH) +RHa(k2n2n3)− (iω3)− a2(iω),

A41 = εTn1ω
2, A42 = εTn2ω

2, A43 = εTn3ω
2,

A44 = k0ωk + ikc2T −
iω2

k .

For simplicity, we choose the propagating vector along x1 axis i.e., n =
(1, 0, 0), the dispersion relation can be converted to the following form.[

k4
(
a2R2

H + V 2
6 ω

2 − V8RHω
2 −R2

Hω
2 − V8V7ω2 −RHV7ω

2

)

+k2
(
a2V8ω

2 − 4a2RHω
2 + 2a2RHω

2 + a2V7ω
2 + V8ω

4 + V7w
4

+2RHω
4

)
+

(
− a4ω2 + 4a2ω4 − 2a2ω4 − ω6

)]
[
k4
(
ik0ω − c2T

)
+ k2

(
ω2(ε+ c2T + 1)− ik0ω3

)
− ω4

]
= 0. (39)

The above equation is the dispersion relation for plane wave propagation in
a monoclinic medium. It has two factors. 1st factor depends on the magnetic
field and frequency of rotation and 2nd factor depends on the thermal velocity
and angular velocity of the elastic wave.



4 Practical Application

For the case of monoclinic medium, we have considered the following para-
metric values:

ρ = 1.74× 103kg/m3, C11 = 5.974× 1010N/m2, C66 = 0.93× 1011N/m2,
C55 = 0.94× 1011N/m2, C56 = −0.11× 1011N/m2.
These values were selected from the results presented by Chattopadhyay et’al. [21].
The magnetic field is given by the following relation as, B = µ0(1 + xm)H,
where µe = µ0(1 + xm) is the magnetic permeability, xm is the constant for
magnetic susceptibility whose value depends on the nature of the material,
µ0 is the free space magnetic permeability. For sulfur xm is 14.9× 10−6 and
µ0 is 4π × 10−7Hm−1 [26], therefore, the relative permeability is equal to 1.
From Eq. (39),[

k4
(
a2R2

H + V 2
6 ω

2 − V8RHω
2 −R2

Hω
2 − V8V7ω2

−RHV7ω
2

)
+ k2

(
a2V8ω

2 − 4a2RHω
2 + 2a2RHω

2

+a2V7ω
2 + V8ω

4 + V7w
4 + 2RHω

4

)
+

(
− a4ω2 + 4a2ω4

−2a2ω4 − ω6

)]
= 0

This is the quadratic equation in k2 so having two roots of velocity of waves,
the values of these velocities are depending on the strength of magnetic field
and frequency of rotation. Figs. 1 and 2 depicts the behaviour of wave
velocity relative to frequency of rotation under the variation of H0. Fig. 1
shows that the wave velocity show peaks at two different values of a, one
between 0.5 to 1 and other between 2 to 2.5. The first peak increase it
maximum value for stronger value of magnetic field H0, while the second
peak shows that the opposite trend. Fig. 2 depicts that the wave velocity is
decreases with increasing rotation a.
And, [

k4
(
ik0ω − c2T

)
+ k2

(
ω2(ε+ c2T + 1)− ik0ω3

)
− ω4

]
= 0

This is the quadratic equation in k2 so having two roots, which represents
existence of two thermal waves. Fig. 3, 4, 5 and 6 demonstrate the effects
of coupling factor εT and thermal diffusivity k0 on the wave velocity. Figs.
3 and 4 is a graph for one wave and Figs. 5 and 6 is for 2nd wave. It is



Figure 1: The wave velocity c (m/s) versus rotation a (Hz) for different values
of H0 when ω = 1.

perceived from these Figs. that, the wave velocity attain its maximum value
before the thermal velocity attain its value 2. In both cases wave velocity
decreases on increasing εT and k0.

5 Conclusion

This paper presented the propagation of an elastic wave in a rotating mon-
oclinic medium in the presence of magnetic field. Thus our results provides
an evidence that in the case of energy dissipation diffusivity is ignored. It is
examined through graphs that energy dissipation changes the nature of the
curve. The elastic wave velocity becomes independent of diffusivity for higher
values of thermal velocity. Furthermore, the elastic wave velocity declines by
increasing the magnetic field and coupling constant.

Dispersion relations for thermoelastic wave has been derived. The main
findings are summarized as:
1) For higher values of thermal velocity cT , the elastic wave velocity c be-
comes independent of diffusivity.
2) Increase in the couple factor εT , decreases the wave velocity c.
3) The wave velocity decreases with increasing magnetic field.



Figure 2: The wave velocity c (m/s) versus rotation a (Hz) for different values
of H0 when ω = 1.

Figure 3: The wave velocity c(m/s) versus thermal velocity cT (m/s) for
different values of εT when ω = 1, k0 = 2.



Figure 4: The wave velocity c versus thermal velocity cT for different values
of k0 when ω = 1, εT = 2.

Figure 5: The wave velocity c versus thermal velocity cT for different values
of εT when ω = 1, k0 = 2.



Figure 6: The wave velocity c versus thermal velocity cT for different values
of k0 when ω = 1, εT = 2.

References

[1] Ezzat, M.A., 2008. State space approach to solids and fluids. Canadian
Journal of Physics, 86(11), pp.1241-1250.

[2] Ezzat, M.A. and El-Bary, A.A., 2017. Application of fractional order the-
ory of magneto-thermoelasticity to an infinite perfect conducting body
with a cylindrical cavity. Microsystem Technologies, 23(7), pp.2447-
2458.

[3] Arshad, S., Siddiqui, A.M., Sohail, A., Maqbool, K. and Li, Z., 2017.
Comparison of optimal homotopy analysis method and fractional ho-
motopy analysis transform method for the dynamical analysis of frac-
tional order optical solitons. Advances in Mechanical Engineering, 9(3),
p.1687814017692946.

[4] Abbas, I.A. and Abo-Dahab, S.M., 2014. On the numerical solution
of thermal shock problem for generalized magneto-thermoelasticity for
an infinitely long annular cylinder with variable thermal conductivity.
Journal of Computational and Theoretical Nanoscience, 11(3), pp.607-
618.



[5] Wajid, H.A. and Sohail, A., 2016. Compact Modified Implicit Finite El-
ement Schemes for Wave Propagation Problems with Superior Disper-
sive Properties. Arabian Journal for Science and Engineering, 41(11),
pp.4613-4624.

[6] Sohail, A., Rees, J.M. and Zimmerman, W.B., 2011. Analysis of
capillary-gravity waves using the discrete periodic inverse scattering
transform. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 391(1-3), pp.42-50.

[7] Cherifi, R.O., Ivanovskaya, V., Phillips, L.C., Zobelli, A., Infante, I.C.,
Jacquet, E., Garcia, V., Fusil, S., Briddon, P.R., Guiblin, N. and Mou-
gin, A., 2014. Electric-field control of magnetic order above room tem-
perature. Nature materials, 13(4), p.345.

[8] Kittel, C., McEuen, P. and McEuen, P., 1996. Introduction to solid state
physics (Vol. 8, pp. 323-324). New York: Wiley.

[9] Han, T., Bai, X., Gao, D., Thong, J.T., Li, B. and Qiu, C.W., 2014.
Experimental demonstration of a bilayer thermal cloak. Physical review
letters, 112(5), p.054302.

[10] Biot, M.A., 1956. Thermoelasticity and irreversible thermodynamics.
Journal of Applied Physics, 27(3), pp.240-253.

[11] Lord, H.W. and Shulman, Y., 1967. A generalized dynamical theory of
thermoelasticity. Journal of the Mechanics and Physics of Solids, 15(5),
pp.299-309.

[12] Green, A.E. and Naghdi, P.M., 1991, February. A re-examination of the
basic postulates of thermomechanics. In Proc. R. Soc. Lond. A (Vol.
432, No. 1885, pp. 171-194). The Royal Society.

[13] Green, A.E. and Naghdi, P.M., 1992. An Unbounded Heat Wave in an
Elastic Solid. Journal of Thermal Stresses, 15 pp 253-264.

[14] Green, A.E. and Naghdi, P.M., 1993. Thermoelasticity Without Energy
Dissipation, 31, pp189-208.

[15] Knopoff, L., 1955. The interaction between elastic wave motions and a
magnetic field in electrical conductors. Journal of Geophysical Research,
60(4), pp.441-456.



[16] S. Kaliski and J. Petykiewicz, 1959 Equation of motion coupled with
the field of temperature in a magnetic field involving mechanical and
electrical relaxation for isotropic bodies,Proc. Vibr. Probl 4, 1-12.

[17] Paria, G., 1962, July. On magneto-thermo-elastic plane waves. In Math-
ematical Proceedings of the Cambridge Philosophical Society (Vol. 58,
No. 3, pp. 527-531). Cambridge University Press.

[18] Purushothama, C.M., 1965, October. Magneto-thermo-elastic plane
waves. In Mathematical Proceedings of the Cambridge Philosophical
Society (Vol. 61, No. 4, pp. 939-944). Cambridge University Press.

[19] Singh, B. and Yadav, A.K., 2016. Plane Waves in a Rotating Mono-
clinic Magnetothermoelastic Medium. Journal of Engineering Physics
and Thermophysics, 89(2), pp.428-440.

[20] Landersj, C., Hg, C., Maliniak, A. and Widmalm, G., 2000. NMR inves-
tigation of a tetrasaccharide using residual dipolar couplings in dilute
liquid crystalline media: Effect of the environment. The Journal of Phys-
ical Chemistry B, 104(23), pp.5618-5624.

[21] Chattopadhyay, A., Gupta, S., Singh, A.K. and Sahu, S.A., 2009. Prop-
agation of shear waves in an irregular magnetoelastic monoclinic layer
sandwiched between two isotropic half-spaces. International Journal of
Engineering, Science and Technology, 1(1), pp.228-244.

[22] Zhdanov, Viktor Mikhalovich. 2014 Transport processes in multicompo-
nent plasma. CRC Press.

[23] Alfven H., 1942. On existence of electromagnetic-hydrodynamic waves:
Ark Mat Astron Fys A29: pp 1-7.

[24] Khan A.A., Zaman A. and Yaseen S., 2018. Impact of two relaxation
times on thermal, P and SV waves at interface with magnetic field and
temperature dependent elastic moduli, Results in Physics 8 pp 324-335.

[25] Achenbach J.D., 1987. Wave propagation in elastic Solids, Vol (16)
North Holland Series in Applied Mathematics and Mechanics.

[26] Lide, David R. 2005. Magnetic susceptibility of the elements and inor-
ganic compounds. CRC handbook of chemistry and physics 86: 130-135.


