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Abstract 

Knee osteoarthritis is a progressive disease, which is associated with pain, stiffness and 

disability. Previous research has demonstrated that the progression of knee OA is influenced 

by numerous biomechanical factors, which will affect the loading on the knee joint. Cross 

sectional studies have shown altered knee OA gait to be characterised by altered joint moments, 

increased muscle activity and increased muscular co-contraction. Furthermore, modelling 

studies have shown that the alterations in muscle patterns that are characteristic of knee OA 

lead to elevated joint loads, while longitudinal studies have demonstrated the progression of 

knee OA to be related to these altered muscular responses. 

 

In this thesis, I examine a new model that has the potential to explain some of the previous 

observed differences in joint moments and muscle activity characteristic of knee OA gait. 

Specifically, this thesis investigates the effect of increased sagittal plane inclination of the trunk 

(forward trunk lean) and the effect this could have on hip, knee and ankle moments and muscle 

activation patterns. Three studies were conducted. The first sought to characterise differences 

in sagittal trunk inclination during walking, between people with knee OA and healthy control 

participants. This study demonstrated that people with knee OA walk with approximately 3° 

more trunk flexion than healthy control subjects. In the second study, I examined the 

relationship between trunk inclination and a range of different biomechanical parameters, 

including hip extensor moments, hamstring activation levels and hamstring-quadriceps co-

contraction. These results of this study showed weak to moderate correlations between hip 

extensor moment and the magnitude of hamstring activation during the period 15-25% of the 

stance phase of the gait cycle. In the final study, I explored the effect of a three-curve rocker 

shoe on trunk inclination and a range of other biomechanical variables. These data showed that, 

although there was significant reduction in trunk inclination with the rocker shoe, there was no 
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corresponding decrease in moments or muscle activations over the period 15-25% of stance. 

Taken together, the results of this thesis show that people with knee OA walk with an increased 

trunk lean and that this may explain some of the previously observed differences in hip 

moments and muscle patterns. However, further work is required to establish if interventions 

that could reduce trunk lean (such as a rocker shoe) could lead to long-term clinical benefits 

for people with knee OA. 
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Chapter 1 - Introduction 
                                                     

1.1 Introduction   

What is knee osteoarthritis? 

Osteoarthritis (OA) is a type of joint disease which is characterised by the breakdown of cartilage 

and underlying bone (Brooks, 2002, Reginster, 2002), and which can also affect ligamentous 

structures.  In the active phase of OA, physiological processes lead to the destruction of cartilage, 

bone thickening in the subchondral area and new bone formation  (Peat et al., 2001) (see Figure 1-

1). As OA progresses, there is a continued loss of articular cartilage and osteophytes (small bony 

projections) gradually form at the margins of the joint (Altman et al., 1986; Sangha, 2000). These 

physiological changes are normally accompanied by clinical pain, stiffness and swelling around the 

joint (Kean et al., 2004). As the most common joint disease, OA is among the most frequent and 

symptomatic health problems for middle aged and older people (Buckwalter et al., 2004). The 

development of osteoarthritis is dependent on many intrinsic factors, such as age, gender and genetic 

predisposition (Kennish et al., 2014), but also on environmental factors, such as previous injuries to 

the joint and abnormal biomechanical loading (Andriacchi, 1994). 

Figure 1-1.  Photographs of healthy knee joint (left) and knee osteoarthritic (right) knee joint 

specimens (Peters et al., 2018) 
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The common joints affected with OA are the hand, knee and hip  (Hunter and Eckstein, 2009). 

Interestingly, the knee joint is the most affected, with a prevalence twice that of OA of the hand and 

hip joints (Oliveria et al., 1995). Clinically, knee OA is characterized by clinical symptoms including 

joint swelling, pain, tenderness, movement limitation in the joint, crepitus in the joint and stiffness 

early in the morning (Bijlsma and Knahr, 2007, Buckwalter et al., 2004). Knee osteoarthritis can 

influence daily activities, work and emotional status and lead to disability in the long term. It 

therefore places a large emotional and financial burden on the individual and also on society as a 

whole.   

1.2 Incidence of knee osteoarthritis  

Over 100 million people across the world suffer from OA, as revealed by global statistics, and the 

disease is one of the most common reasons for disability (Hinman et al., 2010, Heiden et al., 2009a). 

Yu et al. (2015) have recently reported that in the UK, 1% of adults are newly diagnosed with OA 

each year. However, this percentage increases to 3% in those aged between 75 and 85 years old  (Yu 

et al., 2015). Moreover, this study used a run-in period and stratification by age group, which 

revealed a rising OA incidence in adults aged between 35 and 44 years old (Yu et al., 2015). In 

England, 9 people in each 1000 face diagnosis with osteoarthritis yearly (Yu et al., 2015) and in the 

United States of America, while an estimated 21 million adults had OA in 1995, unfortunately, this 

number had risen to approximately 27 million by 2008 (Lawrence et al., 2008). Another recent study 

(Radha and Gangadhar, 2015) gives the prediction that by 2025, India will be home to the largest 

number of arthritis sufferers of any country in the world, at an expected 60 million sufferers. 

Traditionally, OA incidence is assumed to increase among older individuals and to be more 

prevalent in females than males (Lawrence et al., 2008). Similarly, Felson et al. (1995) report that 

gender plays a role in OA incidence (Felson et al., 1995). 

The knees and hips are the most frequent areas in which osteoarthritis is seen. Moreover, the most 

common occurrence of osteoarthritis is in the knee joint, and this joint is a primary location for pain 
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and disability resulting from OA, affecting between 3 and 4 in ten of 60-year-olds (Felson, 1990, 

Lawrence et al., 1998). Among those over 30 years of age, approximately six per cent have 

symptoms of OA in the knee, with this rising to eleven per cent among those over 65 (Guccione et 

al., 1990). At the same time, between 20 and 28 per cent of adults over 40 in the UK exhibit pain 

symptoms in this joint, and in half of these cases, it is predicted that these individuals will go on to 

develop OA of the knee (Peat et al., 2001). 

Knee OA in women is the fourth most common reason for disability, while it is the eighth in males, 

based on World Health Organization (WHO) reports (Vad et al., 2002). Furthermore, the chance of 

a woman developing OA in the knee is substantially greater in comparison with  males (Felson et 

al., 1995), and women after menopausal age, aged 55 years and over, are more likely to have 

increased severity of knee OA  (Srikanth et al., 2005). Further, knee osteoarthritis incidence 

increases with age, so that approximately  11% of females older than 60 are knee OA symptomatic 

(Creamer et al., 2000). Whereas radiographic knee osteoarthritis had a prevalence of  19.2% for the 

Framingham study in the >45 age group, it was 27.8% in Johnston County, and in those aged 60 or 

over, about 37.7%  in the NHANES III study (Dillon et al., 2006). On the other hand, Knee OA 

symptoms in adults aged 26 or over reached nearly 5% in Framingham, and in people aged 45 or 

over it reached 16.7% in Johnston, while it was 12.1% in the NHANES III study in those aged 60 

and over (Dillon et al., 2006).  

Across the UK population, 20% to 28% of those aged 40 or over have knee pain and 50% develop 

knee OA (Peat et al., 2001). The knee OA rate of incidence based on population studies in the US 

is similar to that in Europe. Those studies show that severe radiological changes affect adults aged 

between 25 and 34  at a rate of 1%, and that this increases  to about half of individuals in the >75 

age group (Litwic et al., 2013). In China, studies using a similar definition and methods to the 

Framingham study reveal that the incidence of knee OA (bilateral compartment disease) was higher 

by 2 to 3 times in the Chinese cohort in comparison to rates estimated by the Framingham research 

among OA sufferers (Kang et al., 2009). In the Chinese Asia-Pacific region, 7.5 % of the population 
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were found to be suffering from knee OA (Wigley et al., 1994), while the percentage was almost 

6% in rural India (Chopra et al., 1997). In urban India, this proportion was 22% to 28%, while it was 

25% in the rural population of north Pakistan (Farooqi and Gibson, 1998). In other countries such 

as Bangladesh, there are about 10 people  affected with OA for each 100 population (Haq et al., 

2005). 

1.3 The economic cost of knee osteoarthritis  

The economic costs of osteoarthritis are substantial, and can be divided into two types; indirect and 

direct costs. Direct costs include surgery and pharmacological/non-pharmacological treatments, as 

well as use of hospital resources and management of complications arising from osteoarthritis 

treatment. Indirect costs appear as a loss of personal working time, low productivity due to 

premature retirement, pain, care-giver time, disability compensation/benefits and mortality (Chen et 

al., 2012). In particular however, knee OA treatment is a major burden to health care. In the UK in 

2006, the Royal College of General Practitioners estimated that more than one million adults 

consulted their GP every year with osteoarthritis symptoms (Royal College of General Practitioners, 

2006). In 2007, another study presented the finding that osteoarthritis consultations accounted for 

15% of all musculoskeletal consultations in patients aged 45 and older, increasing to 25% in those 

aged 75 and over (Chen et al., 2012). The consultation cost is estimated at £36 for a 12-minute 

consultation visit (Curtis, 2008). To improve function and relieve knee pain in knee OA, total knee 

arthroplasty (TKA) is a commonly performed surgical procedure. Every year, more than 650, 000 

TKAs are performed in the United States (Kolisek et al., 2007). The total cost of osteoarthritis in the 

United States of America, Canada, United Kingdom, France, and Australia is estimated at between 

1 and 2.5% of the gross national product (GNP) for those countries (March and Bachmeier, 1997). 

Osteoarthritis has a substantial negative impact on the UK economy. It has been estimated that the 

total cost forms the equivalent of 1% of GNP every year and that the disease leads to an estimated 

36 million working days lost. This is because of the large number of people with osteoarthritis, the 
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impact on quality of life, ability to work, and the need for health, social care and welfare benefits 

(Chen et al., 2012). Furthermore, knee OA may draw a higher cost in terms of social functions and 

associated disability than different joints affected with OA, and osteoarthritis imposes a burden on 

health care and the general economy, with one quarter of United Kingdom citizens of 65 or over 

showing changes in the knee associated with OA (Jinks et al., 2004, Bijlsma and Knahr, 2007). So, 

in view of the increasing health burden and prevalence of OA, there is an urgent need to understand 

the causes of knee OA in order to find preventative and effective therapies and reduce risk factors 

for both the incidence and progression of knee OA. 

1.4 Statement of the problem 

OA is the most common joint disease worldwide with the knee joint being the most affected joint 

(Felson, 1990, Lawrence et al., 1998). Furthermore, knee OA is clearly known to lead to disability, 

mainly in older people, and indirectly leads to pain. This disease affects the economic, physical, 

social and health spheres, impacting upon body functions, causing limited mobility, stiffness and 

decreasing activity undertaken on a day-to-day basis. In general, this burden has impact at personal, 

national and world scales. However, importantly, progression of knee OA is known to be strongly 

influenced by biomechanical factors which will affect loading patterns of the knee during walking 

(Guilak, 2011).  

Previous research has looked at a range of biomechanical factors that have the potential to influence 

knee joint loading(Sritharan et al., 2016a). For example, many studies have investigated differences 

in joint moments (e.g. Baliunas et al., 2002b; Mundermann et al., 2005; Kaufman et al., 2001; 

Astephen et al., 2008; Sritharan et al., 2016) on the basis that an increased moment will increase the 

loading at the joint surface (de David et al., 2015).  In line with this idea, research has examined the 

knee adduction (or frontal plane) moment as this is related to the magnitude of loading on the medial 

compartment. Other studies have looked at the sagittal plane moment at the knee (Liu et al., 2014; 

Preece et al., 2016) as an increased sagittal moment could also lead to increased stress on the 
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articular surface. There is now a large body of research showing that people with knee OA walk 

with increased co-contraction (simultaneous activity of the agonist and antagonist muscles) (Sirin 

and Patla, 1987, Childs et al., 2004, Lewek et al., 2004, Hubley-Kozey et al., 2006). Through 

modelling studies, this increased muscle activity has been shown to increase the loads at the articular 

surface (Brandon et al., 2014, Sritharan et al., 2016a) and possibly accelerate disease progression. 

However, to date there is no widely accepted theory to explain why knee muscle activity is elevated 

in people with knee OA.  

In this thesis, I put forward a new model to explain both the alterations in moments and muscle 

activity which have been observed in in people knee. The idea is developed from an understanding 

of how subtle alterations in sagittal plane trunk inclination, adopted during walking could alter the 

direction of the ground reaction force vector and therefore the moments and muscle activation 

patterns at the hip knee and ankle. Following a detailed literature review and methodology section 

(Chapters 2&3); I first explore differences in sagittal plane trunk inclination between healthy people 

and individuals affected by knee OA (Chapter 4). In the following chapter (Chapter 5), I then 

investigate possible associations between trunk inclination and moments/muscle activations. This 

research is novel because, although there has been a lot of previous work investigating the links 

between trunk position in the frontal plane and knee adduction moments (Creaby et al., 2012, 

Bechard et al., 2012, Hunt et al., 2008), there has been very little investigation into the 

characteristics, and effects, of sagittal plane trunk alignment in people with knee OA. 

In the final chapter (Chapter 6), I explore the effect of a footwear intervention that has the potential 

to alter sagittal plane alignment of the trunk. Footwear interventions are relatively easy to implement 

and may therefore prove to be an effective conservative management approach for people with knee 

OA. However, although there has been a considerable amount of previous research investigating the 

biomechanical effects of footwear interventions in knee OA, most studies have sought to investigate 

footwear-induced changes in frontal plane moments (Shakoor et al., 2008, Jones et al., 2013, Jones 

et al., 2014). In contrast, the final study in this thesis focuses on the sagittal plane and explores 
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whether a three-curved rocker could be used to improve sagittal plane trunk alignment and produce 

corresponding changes in joint moments and muscle activation patterns.  
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Chapter 2 - Literature review. 
 

2.1 Definition, clinical characteristics and diagnosis of knee 

osteoarthritis   

Knee OA is characterised by an active disease process involving cartilage destruction, subchondral 

bone thickening, and new bone formation (Peat et al., 2001). Clinically, diagnosis of knee OA 

depends upon a symptom set which is largely subjectively reported, such as swollen areas and pain. 

Alongside these indicators, objectively recorded symptoms from physical investigation include 

assessment of deformation or stiffness in the knee, as well as radiographically recorded data to 

supplement other indicators. According to the American Academy of Orthopaedic Surgeons (2004), 

osteoarthritis may be classified into two types; primary (idiopathic) or secondary (caused by 

metabolic, anatomical, traumatic or inflammatory conditions). The primary form involves the hip, 

knee, hand, spine and other joints. Primary knee osteoarthritis is described as occurring through 

degenerative processes in the articular cartilage without an identifiable abnormal condition 

underpinning those processes (Peters et al., 2018). However, secondary knee osteoarthritis 

frequently occurs due to traumatic impacts or repeated motions, including those linked to particular 

jobs. Secondary osteoarthritis of the knee can also come from other disease or congenital 

abnormalities.  

There are many clinical features that are used to identify the presence of knee OA on clinical 

examination. These symptoms include pain, swelling, stiffness mainly in the morning and after 

sitting for a long time, decreased mobility during activities for daily living such as walking, and a 

crackling sound in the knee during walking (Jackson et al., 2003). 



 

2.1.1 Pain in Knee Osteoarthritis 

The most challenging of the symptoms of knee osteoarthritis tends to be pain (Peter et al., 

2011). Peter et al. (2011) report that in the early stages of knee OA, pain occurs and worsens 

in the joint when the patient starts to walk, and commonly increases during daily activity and 

after a long duration bearing weight on the knee joint, such as when standing or walking. This 

pain can however still be felt during resting and at night. More than 50% of those over 65 state 

that their OA causes them pain (Parmelee et al., 2007). The location of this pain is usually in 

the knee joint or in the area around the joint, and  is sometimes located in the upper leg or above 

the knee (Peter et al., 2011). Patients with  knee OA usually avoid moving their painful joints 

and so function becomes impaired (Dandy and Edwards, 2009). This action leads to weakening 

in the knee muscle: mainly the extension muscle. It is reported that weakness in the quadriceps, 

unstable joints, pain and restriction of function are the symptoms which OA sufferers mainly 

report (Hurley et al., 1997). The location of knee OA is sometimes in the patellofemoral joint, 

but more often in the medial tibiofemoral compartment and occasionally in the lateral 

tibiofemoral compartment (Felson, 2006). 

2.1.2 Stiffness 

Knee stiffness is usually  reported by people who are suffering from knee osteoarthritis, and 

forms a single criterion from the list of six which are employed to diagnose osteoarthritis of 

the knee (Gignac et al., 2006). More than 50% of people over the age of 65 report some pain 

and stiffness due to osteoarthritis (Parmelee et al., 2007). It is reported that morning stiffness 

is associated with osteoarthritis, however, this usually lasts less than 30 minutes (Sorensen et 

al., 2014). An increase in self-reported knee stiffness is correlated with a significantly higher 
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risk of increasing incidence of osteophytes (Mazzuca et al., 2007) and also in the 

progression/growth of osteophytes over time (Mazzuca et al., 2006). Furthermore, self-efficacy 

for physical tasks in knee OA is related to the sensation of knee stiffness (Maly et al., 2006). 

Therefore, knee stiffness is an important symptom associated with knee OA and warrants 

evaluation (Dixon et al., 2010). 

2.1.3 Functional Ability and Knee Osteoarthritis 

Ability in daily functional activity is significantly impaired with knee osteoarthritis and this 

can impact on gait (Bejek et al., 2006). Some degree of physical activity limitations are reported 

in 20–80 percent of osteoarthritis patients and this has been shown to be an independent risk 

factor for functional decline (Parmelee et al., 2007). Statistical differences between patients 

with knee OA and healthy control subjects have been observed in walking characteristics, such 

as cadence, step length, knee & hip joint motions and also motion of the pelvis (Bejek et al., 

2006). These observations support the idea that knee OA is associated with considerable 

changes in overall movement and this is likely to be linked to functional decline (White et al., 

2014). 

2.1.4 Level of severity of knee OA diagnosed by Kellgren-Lawrence 

radiographic classification. 

Clinically, diagnosis of knee OA depends on subjective symptoms of the knee, including pain 

or swelling. However, objective physical examination of knee stiffness or deformity along with 

a number of supplementary radiographic findings may also be used. Radiographic 

investigations observe abnormalities in osteophytes, narrowing of the joint  space, subchondral 

sclerosis and subchondral cysts as signs of knee OA (Peter et al., 2011). In addition, 
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radiographic definitions are based on the Kellgren-Lawrence radiographic classification, which 

grades the extent of radiographic osteoarthritis from 0 to 4, based on the presence and severity 

of individual radiographic features such as osteophytes and joint space narrowing (Chaganti 

and Lane, 2011). Bing et al. (2011) suggest that it is important to evaluate the progression of 

the disease and understand it through the radiographic features of the OA knee: mainly, joint 

space narrowing. In light of this, X-rays and MRIs are still most commonly used in OA to 

evaluate pathological progression.  

The Kellgren-Lawrence (KL) scale has long been considered a gold standard for evaluating 

knee OA progression and severity on the basis of X-ray results  (Altman et al., 1986). Severity 

has been classified into five grades according to the KL scale, graded between 0 and 4, with 

grade 0 indicating no features (normal), and grade 4 showing the highest severity, with large 

osteophytes, marked narrowing of joint space, severe sclerosis and definite deformity of bone 

contour (Kellgren and Lawrence, 1957, Miyazaki et al., 2002, Sharma et al., 1998). 

2.1.5 ACR criteria for knee OA  

The American College of Rheumatology (ACR) developed the clinical classification criteria 

of knee OA. This remains a popular method of classifying knee osteoarthritis, recommended 

for epidemiological and clinical studies (Brooks and Hochberg, 2001) and the practice of 

primary care (Jackson et al., 2003). ACR criteria have a specificity of 93% and sensitivity of 

94% (Heidari, 2011). They consist of five criteria which are: (1) knee pain for most days of the 

preceding month; (2) crepitus on active joint motion; (3) morning stiffness of at least 30 min 

in duration; (4) age > 38 years; and (5) bony enlargement of the knee on examination. If items 

1, 2, 3, 4, or 1, 2, 5 or 1, 4, 5 are present, respondents are diagnosed with clinical osteoarthritis 

(Mathers et al., 2000). Wu et al. (2005) conclude that the ACR clinical criteria detect OA 
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patients with cartilage damage prior to any radiographic change, whilst the ACR clinical and 

radiographic classification criteria detect OA patients with severe cartilage damage. The ACR 

criteria associates well with articular cartilage damage in patients with knee OA (Wu et al., 

2005). 

2.2 Risk factors for incidence of knee OA  

There is a range of different factors that have the potential to influence OA in the knee joint. 

These factors encompass systematic factors and biomechanical factors affecting progression 

of the disease. The systematic factors (age, gender, menopause, genetics etc.) are those that 

increase susceptibility to progression of knee OA disease. Those factors interact with 

environmental/mechanical factors (obesity, joint injuries, severity of the joint, muscle 

weakness etc.) to influence articular structure/damage, progression of the disease and 

ultimately joint breakdown (Figure 2-1). Thus, mechanical factors play a role in determining 

OA severity in the knee joint (van Raaij et al., 2010, Cooper et al., 2000, Felson et al., 2000). 

 

Figure 2-1. Adapted from Dieppe, 1995 
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Two different approaches have been used to study the risk factors associated with specific 

diseases, such as knee OA: a case-control and a cohort study.  With a case-control study, 

patients who have the disease or outcome of interest (cases) are compared with patients who 

do not have the disease or outcome (controls). The investigator then looks back retrospectively 

to compare how frequently exposure to a risk factor is present in each group, to determine the 

relationship between the risk factor and the disease. The second method is a cohort study, 

defined as a design where one or more samples (called cohorts) are followed prospectively and 

subsequent status evaluations with respect to a disease or outcome are conducted to determine 

which initial participants’ exposure characteristics (risk factors) are associated with it. As the 

study is conducted, the outcome from participants in each cohort is measured and relationships 

with specific characteristics determined. In the paragraphs below, the different risk factors, 

which have been obtained either through case-control or cohort studies and are divided up into 

systemic and environmental/mechanical factors: 

2.2.1 Systemic Factors: 

A. Age:  

The prevalence and incidence of knee OA is sharply increased with age (Felson et al., 1995, 

Lawrence et al., 2008). Around 50 % of people aged fifty and over indicate having pain of a 

year’s duration in the knee joint, and 25 % have severe and disabling knee pain (Jinks et al., 

2004). Studies in the United States have shown that 13.9% of adults aged 25 or over have 

osteoarthritis, and of those people over 65 years old, there are 33.6% with knee OA, with about 

27 million persons of all ages in America having the disease (Lawrence et al., 2008). 

B.  Gender:  

Knee OA incidence is higher in women. In 2015, a systematic review was done for the 

population aged over 50 and reported that 11 cohort studies found being female to be a possible 
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risk factor (Silverwood et al., 2015). Knee OA symptoms presented in women over the age of 

50 and increased dramatically at about menopause time (Andriacchi, 1994, Felson et al., 2000, 

Srikanth et al., 2005), while it was higher in men in the age group younger than 50 years old 

(Felson et al., 2000). In addition, knee OA is more common in males younger than 45 and 

women aged 55 years or over (Silman and Hochberg, 2001, Iqbal et al., 2011). 

C. Hormone effect:  

Oestrogen regulates bone metabolism, and OA increases dramatically in women in the years 

after the menopause, due to lower levels of the oestrogen hormone (Felson and Nevitt, 1998). 

Pre-menopausal women have greater risk of OA development as the hormone raises bone mass, 

which increases the load on the cartilage (Nevitt et al., 1996).  

 

 

D.  Ethnic differences 

Knee OA prevalence varies among different ethnic and racial groups. Thus, the knee 

osteoarthritis risk in non-Hispanic white women is lower as compared with people of  African– 

American descent (Felson and Nevitt, 1998). 

E. Vitamin deficiency:  

A subclinical deficit in vitamin K was correlated with raised risk of progression of knee OA 

from results shown in radiographic and MRI assessments of cartilage lesions (Misra et al., 

2013). Also, Zhang et al. (2014) suggest that people who have a deficiency in vitamin D have 

a raised incidence and risk of knee osteoarthritis (Zhang et al., 2014). 



35 

 

2.2.2 Environmental/Biomechanical factors: 

A. Obesity:  

People who are obese or overweight have a high prevalence of osteoarthritis in the knee joint. 

Further, in people who are suffering from knee osteoarthritis, being overweight raises the risk 

of radiographic progression of the disease (Dougados et al., 1992, Schouten et al., 1992). In 

addition, it is clear from previous studies that obese individuals have a high risk of progression 

in knee OA (Cooper et al., 2000, Felson and Nevitt, 2004). So, obesity is a significant factor in 

increasing knee OA progression (Felson et al., 1987) and risk significantly increases, from 9 to 

13%, for each kg of body weight increased (Cicuttini et al., 1996). In Saudi Arabia, obesity is 

extremely widespread and may lead the Kingdom of Saudi Arabia to have one of the highest 

incidences of knee osteoarthritis in the world (Al-Arfaj and Al-Boukai, 2002).  

B. Previous knee injury: 

 Knee injury is one of the most presently documented risk factors in  knee OA (Cooper et al., 

2000). The population with joint injuries, including articular surface fractures, have a raised 

percentage of knee joint OA. Ligaments and menisci tears (Honkonen, 1995): for example, 

meniscectomy after knee injury; were radiographically shown as a considerable risk factor for 

knee OA, with an association found twenty-one years after meniscectomy (Roos et al., 1998). 

Moreover, ACL tears in  soccer-playing women of 12 years’ duration showed high 

radiographic incidence of OA in the knee joint (Lohmander et al., 2004). In addition, a recent 

systematic review including meta-analysis reports that 13 cohort studies show previous injury 

of the knee joint as a risk factor for the start of osteoarthritis in the knee (Silverwood et al., 

2015). 
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C. Occupational-related joint stresses:  

An increased risk factor, from moderate to severe, for radiographic knee osteoarthritis is 

associated with long knee-bending activities such as squatting, and repetitive knee stresses  

(Muraki et al., 2009, Cooper et al., 1994). In the Framingham study, it was suggested that from 

15% to 30%  of knee OA is due to occupational activity such as stair climbing, walking on 

uneven ground, or repeated knee bending and standing for prolonged periods (Felson et al., 

1991, Cooper et al., 1994). 

It is clear from the above discussion that a range of intrinsic and environmental factors can 

contribute both to the onset and progression of OA of the knee. These include age, gender, 

ethnic variation, obesity, previous knee joint injury and occupational-related stresses. A range 

of different biomechanical factors also have the potential to contribute to knee joint loading 

and therefore to the onset and progression of knee OA. These factors can only be measured 

using complex laboratory testing and so are not typically incorporated into large-scale cohort 

or case-control studies. Nevertheless, these factors may provide important insights into the 

aetiology of knee OA. In the following section, a short summary of biomechanical 

measurement is presented, followed by a detailed discussion of the specific biomechanical 

factors that have been linked with knee OA.  
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2.3 Measuring the biomechanics of walking 

Definition of biomechanics 

The  term biomechanics contains  two parts; the prefix word bio, and the root, mechanics 

(Hoffman, 2009). Bio pertains to the living, while mechanics pertains to the action of forces on 

the body which result in balance and motion. So, ‘biomechanics’ is the scientific knowledge of 

the living body’s movement, including bones, tendons, ligaments and muscles, which work 

with each other to produce movement. Therefore, biomechanics can be clearly defined as the 

study of motion of the  living organism, such as the human, using  mechanical science (Hatze, 

1974). Newtonian mechanics as applied to the skeleton, nerves and muscles of the body is 

known as biomechanics, and is based on the forces applied which lead to motion, and the 

internal forces that apply within the body (Rau et al., 2000, Rose et al., 2006). Biomechanics 

provides the researcher with the necessary tools (conceptual and mathematical) to understand 

how the movement of living things is performed (Knudson, 2007).  

2.3.1 Gait cycle: 

The gait cycle or walking cycle is defined as the period of time that starts when one foot touches 

the ground and finishes when the same foot touches the ground again during human walking. 

This gait cycle must contain two steps to complete one cycle. The gait cycle has two basic 

phases: the stance phase and the swing phase: 

- Stance phase, in which the foot is in touch with the ground. 

- Swing phase, in which the foot is not in touch with the ground (in the air) and the limb 

swings forward. 
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The stance phase can be divided  into single limb support and double limb support in general 

within the gait cycle  (Perry and Davids, 1992). Moreover, there are eight subdivisions during 

the full gait cycle, with five of these in the stance phase (about 60% of the gait cycle). These 

are:  1) initial contact; 2) loading response; 3) mid stance; 4) terminal stance; and 5) pre-swing. 

The remainder are in the swing phase, forming approximately 40% of the gait cycle: 1) initial 

swing; 2) mid swing; and 3) terminal swing, as shown in the figure below: 

 

 

 

 

Figure 2-2. The phases of the gait cycle in walking (Adapted from Perry, 1992). 

 



39 

 

2.3.2 Kinematics & Kinetics 

Kinematics and kinetics are widely used in gait analysis. Kinematics describe the speed, extent, 

and direction of movement of the joint, however, kinematics descriptions do not provide insight 

into causes of motion. For this, it is necessary to look to kinetics which is the branch of 

biomechanics concerned with the causes of motion through forces and joint moments 

(Richards, 2008; Perry et al., 1992). The joint moment is the turning force around the joint 

centre, created by the action of the different muscles and the effect of gravity. The moments at 

different phases of the gait cycle can be understood from a consideration of position and 

direction of the ground reaction force (GRF) vector relative to the position of the joint under 

study. This idea is illustrated below (Levangie and Norkin, 2011). For example, during the first 

half of stance, the GRF vector first passes in front, then behind and then again in front of the 

knee joint centre. This gives rise to the pattern of a flexor, extensor and then again a flexor 

moment, as illustrated below. 
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Figure 2-3. Patterns of internal moments in the sagittal plane at the hip, knee, and ankle with 

centre of pressure (CoP) and ground reaction force vectors (GRFVs). The dotted lines 

represent the standard deviations, and the solid lines represent the mean values. Reproduced 

from Levangie and Norkin (2011).   

 

2.3.3 Measuring muscle activation using EMG 

Surface electrodes recording kinesiological electromyographic (EMG) data are commonly 

used to measure muscular activity during walking and determine normal and pathological 
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motor strategies  (Frigo and Crenna, 2009). The myo-electric signal acts as a helpful indicator 

of muscular mechanical effect.  The amplitude of the EMG signal obtained during walking may 

be translated as a measure of relative muscle activity  (Kunju et al., 2009). The timing of the 

EMG during each phase or the whole gait cycle gives information about muscle integration 

and neurological control (Perry et al., 1992). Although EMG amplitude is straightforward to 

quantify, this parameter needs to be interpreted with caution, as the magnitude of EMG signals, 

as well as reflecting electrical impulses, is also influenced by how conductive the tissues are 

which separate the muscle and the electrodes on the skin. Further, the fact that the force of the 

muscle and electrical impulses are not connected in a linear manner means that it is important 

to be cautious in linking the amplitude of the EMG signal to the muscle forces associated with 

a dynamic movement (De Luca, 1997). 

2.4 Previous research into biomechanical differences between knee 

OA and control groups 

2.4.1 Differences in spatiotemporal gait parameters and kinematic 

characteristics 

It has been reported that patients with knee osteoarthritis walk significantly more slowly than 

healthy subjects (Andriacchi et al., 1977, Chen et al., 2003). Previous studies have also 

demonstrated alterations in spatiotemporal gait variables in those with different severities of 

knee osteoarthritis (Al-Zahrani and Bakheit, 2002, Kaufman et al., 2001). People who  suffer 

from osteoarthritis of the knee, mainly in the medial compartment of the joint, have slower 

walking speeds  (Kaufman et al., 2001),  shorter step lengths, longer time of  double support,  

reduced length of stride and reduction in cadence (Al-Zahrani and Bakheit, 2002). In addition, 

people with knee OA have been shown to have a prolonged stance phase (Al-Zahrani and 
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Bakheit, 2002, Landry et al., 2007, Astephen et al., 2008)  when compared with healthy control 

subjects. A slower walking speed in knee OA sufferers has been suggested to decrease loading 

on the knee joint (Mündermann et al., 2004). However, it is also possible that the alterations in 

spatiotemporal gait parameters may be a strategy to increase the body’s stability of centre of 

mass (CoM) during walking. 

Studies comparing knee joint kinematic parameters between healthy individuals and those with 

knee OA often demonstrate contradictory findings. For example, some studies demonstrate 

greater knee flexion angles at initial contact  (Baliunas et al., 2002a, Childs et al., 2004), while 

others show greater knee extension angles (Rudolph et al., 2007, Smith et al., 2004). Similarly, 

during early stance, peak flexion angle at the knee joint also varies between studies, with 

greater knee flexion for controls (Al-Zahrani and Bakheit, 2002, Lewek et al., 2006) or no 

variation in peak knee flexion values (Baliunas et al., 2002b). Several studies of knee OA 

patients have reported reductions in knee flexion excursion (Childs et al., 2004, Lewek et al., 

2006, Rudolph et al., 2007), while other studies have shown patients with OA to exhibit greater 

knee flexion angles at initial contact, and during early and late stance (Heiden et al., 2009b). 

These contradictory findings most likely indicate varied kinematic responses to the disease. 

However, as explained above, kinematic patterns give no indication of the underlying forces 

and so provide minimal insight into differences in joint loading between people with knee OA 

and healthy controls. 

2.4.2 Differences in joint moments 

Joint moments can be considered as either external or internal. External moments are created 

about the centre of the joint by external forces such as gravity. External moments oppose 

internal moments and are developed via muscle and soft tissue forces (Baliunas et al., 2002b). 
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Internal net joint moments are those required by the body to resist the external forces applied. 

For example, when the ground reaction force vector passes posterior to the knee, creating a 

knee flexion moment, the quadriceps or knee extensor muscles must contract to create a knee 

extension moment to resist knee flexion. Net internal joint moments reflect muscle activity and 

can be used to obtain insight into which particular muscles are active during a specific phase 

of movement. Furthermore, joint moments can be used as an indicator of joint loading and 

therefore are often used in the study of injury and injury prevention (de David et al., 2015). 

The paragraphs below highlight the key differences in joint moments which have been 

observed between healthy participants and individuals with knee OA. 

 Frontal plane 

The term knee adduction moment is used to describe the frontal plane moment at the knee joint 

and provides a useful measure of the load distribution between the medial and lateral 

compartments of the knee joint (Hurwitz et al., 2002, Henriksen et al., 2006). The knee 

adduction moment is determined as the product of the magnitude of the ground reaction force 

(GRF)  and the frontal moment arm at the knee (perpendicular distance from the knee joint 

centre to the GRF) (Maneekittichot et al., 2013) and has been widely studied in knee OA. For 

example, this biomechanical parameter was examined in patients with knee OA and matched 

healthy controls by Mundermann et al. (2005). The knee adduction moment was found to be 

elevated at the first peak (during mid-stance) and the second peak (during terminal stance) in 

patients with severe knee OA, while in patients with early knee OA, the second peak was lower 

(Maneekittichot et al., 2013). Thorp et al. (2007) reported that, in patients with Kellgren–

Lawrence grade 2, the adductor moment of the knee joint increased by 10 % compared to 

healthy persons (Baliunas et al., 2002b).  
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Sagittal plane  

In addition to alterations in frontal plane moment, previous research has observed kinetic 

alterations in the sagittal plane associated with knee OA. Several studies comparing individuals 

with knee osteoarthritis and healthy controls have shown that, during mid-stance, knee flexion 

moments are decreased (Kaufman et al., 2001, Astephen et al., 2008) (see Figure 2-4 below). 

This gait pattern in knee OA patients may have been adopted in an attempt to decrease joint 

loading in order to relieve pain (Baliunas et al., 2002a)  and may be achieved through altered 

upper body positioning and/or altered muscle activation patterns. Interestingly, other studies 

report minimal differences in knee moments during this phase of the gait cycle (Sritharan et 

al., 2016; Mündermann et al., 2005). However, it is not clear whether these contradictory 

findings are the result of differences in severity of OA between the different studies. 

 

Figure 2-4. Sagittal plane knee moment for healthy subjects (blue dashed ), OA patients at 

baseline (red solid) adapted from (Edd et al., 2017) 

 

Other studies have investigated potential differences in hip and ankle moments in the sagittal 

plane during walking between OA and control (Liu et al., 2014, Judge et al., 1996, Apps et al., 
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2016, Chien et al., 2014). Although the patterns of ankle moments are typically similar between 

healthy individuals and those with knee OA, there are subtle differences in the pattern of hip 

extensor moment during mid-stance (Liu et al., 2014).  These differences were highlighted in 

a previous study comparing knee OA with healthy controls (see Figure 2-5 below) (Liu et al., 

2014). Although peak hip moments were similar between these two groups, the subjects with 

knee OA appeared to walk with greater hip extensor moments in mid-stance and the time at 

which the hip moment changed from an extensor moment to a flexor moment was delayed. 

 

 

Figure 2-5.  Mean curves of the hip joint moments in the sagittal plane, for the control (solid 

line) and the OA group (dotted line) (Liu et al., 2014). 

 

In summary, previous research has demonstrated clear differences in frontal plane moments in 

people with knee OA when compared to healthy individuals. However, there are also 
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differences in sagittal plane moments. These differences are characterised by a reduced 

extensor moment at the knee and an increased hip extensor moment during early and mid-

stance. 

2.4.3 Differences in muscle activation and muscular co-contraction  

To date, there has been a large number of studies which have investigated differences in muscle 

activation between healthy individuals and those with knee OA.  These studies tend to report 

co-contraction, which is defined as the simultaneous activity of synergistic muscles (agonist 

and antagonist) (Sirin and Patla, 1987). Over recent years, research has shown that muscle co-

contraction is increased in individuals with OA compared to healthy subjects (Childs et al., 

2004, Lewek et al., 2004a, Hubley-Kozey et al., 2006). It has been suggested that muscle co-

contraction in patients with knee OA will increase joint loading at the medial compartment 

(Andriacchi, 1994). This idea has motivated a substantial number of studies comparing muscle 

co-contraction between patients with knee OA and healthy subjects (Childs et al., 2004; Lewek 

et al., 2004b; Hubley-Kozey et al., 2006). This research is outlined below. 

In general, research has shown increased activity of the hamstrings and quadriceps (Zeni et al., 

2010, Childs et al., 2004, Hortobagyi et al., 2005, Hodges et al., 2016). For example, Zeni et 

al. (2010) investigated the muscle co- contraction of hamstring and quadriceps in people with 

medial knee osteoarthritis. In this study, they recruited two groups; healthy and medial knee 

OA groups. The knee OA patients were divided into three groups based on severity of disease 

to investigate whether previously observed differences in co-contraction changes were due to 

walking speed or associated with severity of OA. EMG data were analysed from the vastus 

lateralis and semimembranosus of one leg and normalized by MVIC (maximal voluntary 

isometric contraction) using data collected as subjects walked at three different speeds; self-
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selected over the ground, 1.0 m/s, and the fastest speed possible on the treadmill (Zeni et al., 

2010). This study showed higher co-contraction in the knee OA groups with severe and 

moderate disease in comparison to the healthy subjects when walking at 1.0 m/s, illustrating 

that knee OA is associated with higher co-contraction regardless of speed or the severity of 

OA. 

In addition to quadriceps and hamstring activity, a small number studies have also investigated 

gastrocnemius activity (Schmitt and Rudolph, 2007, Childs et al., 2004, Sritharan et al., 2016a). 

This research shows that this muscle is often overactive during walking in individuals with OA 

(Schmitt and Rudolph, 2007, Childs et al., 2004, Sritharan et al., 2016a). In addition to 

functioning to plantar flex the ankle, the gastrocnemius muscle also acts to flex the knee joint. 

Therefore, an increased plantar flexor moment may reduce the net knee extensor moment and 

may explain the results of previous research that has shown that people with knee OA tend to 

walk with lower peak knee extensor moments in early stance (Huang et al., 2008, Kaufman et 

al., 2001). 

In general, studies investigating differences in muscle activation between healthy individuals 

and those with knee OA have shown increased quadriceps, hamstrings and gastrocnemius 

activity (Hortobagyi et al., 2005, Childs et al., 2004). These increases in muscle activation give 

rise to increased co-contraction, which, as explained below, will increase the compressive 

loading on the knee joint. 

2.4.3 Current models to explain co-contraction.      

The benefits and drawbacks of co-contraction are still subject to controversy. Lewek et al. 

(2005) evaluated co-contraction of antagonist muscles of the upper and lower leg in patients 

with knee OA, and, following on from Chipplein and Andriacchi (1991), showed that patients 
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with knee OA had higher levels of co-contraction than healthy subjects. Also, there was a 

positive correlation between better knee stability and higher co-contraction in patients with 

OA. The authors concluded that patients with medial knee OA try to stabilize the knee with 

greater co-contraction of the muscles on the medial side in response to slackness that shows on 

the medial side of the joint. However, Lewek at al. (2005) suggested that may plays a role in 

higher joint compression and therefore, as it could aggravate joint damage, it should be reduced 

to slow the progression of knee OA. Nevertheless, in a letter to the journal editor, Steultjens et 

al. (2006) suggested that the experimental results of Lewek et al. (2005) can be interpreted to 

mean that antagonist muscle co-contraction is a strategy employed to steady the knee joint in 

the absence of sufficient stabilization by the passive structure (capsule and ligaments) of the 

knee. In addition, Steultjens et al. (2006) have interpreted the experimental findings of Childs 

et al. (2004) to mean that, in the absence of sufficient stabilization by the passive structure, 

muscle activity becomes even more essential in preserving walking ability in knee OA. 

However, these ideas are in contrast to those originally proposed by Lewek et al. (2005), who 

proposed that co-contraction needs to be reduced as it will increase compressive loads across 

the joint. So, continued research is needed to identify whether increased co-contraction is 

harmful or helpful in patients with knee OA. 

A recently published article by Sritharan et al. (2016) aimed to investigate the influence of 

muscles on medial knee forces in knee osteoarthritis to compare muscle forces with healthy 

subjects during gait. The results show that small increases in knee flexor muscle (hamstring 

and gastrocnemius) and knee extensor muscle (quadriceps) activity can lead to significantly 

higher joint compression at the knee. This study highlighted the complex relations between 

gravity, muscle activation and knee joint loading (Sritharan et al., 2016a).  Interestingly, the 

study showed that subtle alterations in the activation of specific knee muscles during gait, such 

as a decreased muscle activity in the hamstrings, quadriceps, and gastrocnemius, significantly 
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increase compressive force at the knee joint during gait (stance phase).  Such increases in 

compressive loading have the potential to both increase pain and also to increase the rate of 

cartilage loss and therefore accelerate disease progression. These ideas are discussed in more 

detail below.  

2.4.4 Co-contraction and disease progression 

To date, there have been two studies investigating the link between co-contraction and the rate 

of knee OA disease progression.  In one study, Hodges et al. (2016) collected data from 50 

patients with medial knee osteoarthritis. The cartilage of the medial compartment of the knee 

was measured at baseline and again at one year using MRI techniques and changes in cartilage 

thickness were related to muscle activation patterns, measured using EMG. The authors found 

that the people who had higher co-contraction at baseline demonstrated a more rapid loss of 

cartilage, indicating that muscle co-contraction accelerates the progression of knee OA 

(Brandon et al., 2014). Based on this finding, the authors suggested that research is needed into 

biomechanical interventions which may be effective at changing patterns of knee muscle 

activation. This may offer a possible way to decrease joint loading, and consequently, the rate 

of progression of knee OA (Brandon et al., 2014).  

In another study, Hubley-Kozey et al. (2013) examined fifty patients with medial knee OA of 

a moderate level of severity. Patients were then followed from baseline for eight years, with 

50% choosing to undergo total knee replacement (TKR). Baseline measures of co-contraction 

and muscle strength were obtained and used to understand risk factors for TKR. The study 

found that the patients who chose to have total knee arthroplasty (TKA) had higher co-

contraction in the knee flexor muscle (hamstrings) and knee extensor muscle (quadriceps) 

during the mid-stance of the gait cycle. This muscle activity pattern in total knee replacement 



50 

 

patients is consistent with the idea of co-contraction increasing knee  joint loading  and 

accelerating knee OA progression through increased compressive joint loads (Hubley-Kozey 

et al., 2013). Together, these two studies show that increased co-contraction has the potential 

to accelerate disease progression. This is most likely because increased co-contraction will 

increase the compressive loads at the knee joint. Modelling studies have the potential to provide 

insight into how co-contraction can elevate joint loads and are therefore discussed below. 

 2.4.5 Mechanical knee joint loading in knee OA 

A recent study provides useful insight into mechanical loading at the knee during walking 

(Brandon et al., 2014). This study used a modelling approach to understand how muscle 

activation patterns, typically observed in people with knee OA, may affect joint loading on the 

lateral and medial compartment of the knee joint during gait. The plots shown in Figure 2-6 

below illustrate the medial compartment load (A), lateral compartment load (B) and total load 

(C), and show that there are two clear peaks in the medial load which occur at approximately 

10-15% of the gait cycle and at around midstance. Interestingly, the model showed that changes 

in muscle activation characteristic of knee OA (shown in red below) led to increases in contact 

force: especially around the initial peak in loading. Furthermore, this paper showed that 

selective activation of lateral knee muscles (vastus lateralis), as found in subjects with medial 

knee OA, would not independently reduce medial knee contact loads as has been suggested by 

some researchers (Hodges et al., 2016). 
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Figure 2-6. Mean & standard deviation (shaded) (A) medial, (B) lateral and ((C) total, sum) 

axial knee contact force during normal gait in eight subjects with moderate knee 

osteoarthritis. Forces predicted for “Baseline” condition (blue, dashed) were lower than 

those predicted after applying an “OA-type” activation perturbation (red, solid) to vastus 

lateralis, biceps femoris (LH), and medial Gastrocnemius (Brandon et al., 2014). 

In a similar study, Sritharan et al. (2016) used a modelling approach to understand the 

contribution of three factors to medial contact forces; the muscles which span the knee, the 

muscles which do not span the knee, and gravity. Their results again illustrate that OA type 

activation patterns (shown in red) will result in elevated joint contact force at the medial 

compartment (Sritharan et al., 2016a). However, the exact pattern of increase is slightly 

different to that reported by Brandon et al. (2014). These differences may be due to the precise 

nature of the models. Whereas Brandon et al. (2014) sought to understand the effect of 

changing muscle activation patterns on joint loading. Sritharan et al. (2016) calculated joint 

loads from a cohort of healthy and a cohort of knee OA participants. However, despite these 

subtle differences in results, both studies clearly illustrate that elevated hamstring, quadriceps 

and gastrocnemius activity will increase medial joint loading and that this loading will be 

significantly higher at approximately 10-15% of the gait cycle (15-25% stance), close to the 

initial peak in loading. 
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Selection of outcome 

The two studies discussed above provide important insight into the effects of increasing co-

contraction on the compressive forces on the knee joint. In the first study, Brandon et al. (2014) 

showed that if muscle patterns change from those characteristic of a healthy person (low co-

contraction) to those more characteristics of somebody with knee OA (high co-contraction), 

then there is a corresponding increase in the knee contact force, in both the medial and lateral 

compartment. The figure below shows that peak medial knee joint loading occurs at two 

distinct phases of the gait cycle. However, changes in muscle activation produce the most 

pronounced increase in joint force during the first period, with minimal change at the second 

peak. This first peak occurs at 12.5% of the full gait cycle, at time point which corresponds to 

20% of stance, assuming stance to last for 62% of the gait cycle. Given this observation, all 

subsequent analysis in this thesis are focused on the time period 15-25% of stance, a windows 

which is centred on the timing of the peak in knee loading most affected by increased co-

contraction.  

 

Figure 2-7: Contact knee force during normal gait with low co-contraction (blue) and high 

co-contraction (red). 
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2.5 A new model to explain altered moments and increased co-

contraction in people with knee OA 

In the sections above, the findings of previous research investigating joint moment, muscle 

activation patterns and joint loading in people with knee OA were reviewed. These studies have 

identified three important characteristics of knee OA walking gait, which are: 

1. Moments: peak knee extensor moments are reduced but hip extensor moments 

increased during midstance in people with knee OA. 

2. Muscle activity: hamstring activity, quadriceps activity and gastrocnemius activity are 

increased in people with knee OA. 

3. Joint loading: elevated levels of muscle activity, characteristic of knee OA, lead to 

increased compressive loading between 15-25% of stance phases during walking. 

Although previous authors have argued that increased co-contraction is an appropriate coping 

strategy adopted by people with knee OA to stabilise the knee joint, others suggest that it may 

be maladaptive response to the disease as it leads to increased knee joint compressive forces. 

In this section we propose an alternative model which may explain both the alterations in joint 

moment and the increases in muscle activity, characteristic of people with knee OA. This model 

is based around a biomechanical understanding of increasing the forward lean or inclination of 

the trunk and is described in detail below. 
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2.5.1 Trunk inclination and altered joint moments 

The plot below illustrates the difference in hip moments between healthy subjects (solid line) 

and those with knee OA (dashed line) (Liu et al., 2014). Although there is minimal difference 

in the peak hip extensor moment, which occurs just after initial contact, during the remainder 

of stance (10-60% of gait cycle), the hip extensor moment is increased in people with knee OA 

and there is a delay in the time at which the hip moment transitions from an extensor to a flexor 

moment.  

 

Figure 2-8.  Mean curves of the hip joint moment in the sagittal plane, for control subjects 

(solid line) and OA individuals (dotted line) (Liu et al., 2014). 

Interestingly, the pattern shown above is similar to that observed in a study which compared 

hip flexor moments between individuals who walk with different amounts of trunk forward 

lean (Leteneur et al., 2009). This study recruited a cohort of 25 individuals who were then 

divided into two groups based on their natural trunk inclination during walking. The first group 

(the backward leaners) had a trunk lean of -1.7°, while the second group (the forward leaners) 

had a trunk lean of 2.9°. The data showed a clear difference in hip moments between these two 
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groups (see Figure 2-9 below), despite a mean difference in trunk inclination of less than 5° 

between the groups. 

 

Figure 2-9.  Hip moments for the right limb as function of the stance phase for the backward 

trunk inclinations (dotted line) and forward trunk inclinations (solid line) (Leteneur et al., 

2009). 

The plot above shows that, in subjects who habitually walk with a forward lean, hip extensor 

moments are elevated from early stance through to midstance, although interestingly, the peak 

hip extensor moment is unchanged. These increased moments are likely to be a response to the 

demand of having to support the trunk segment against gravity, which will require an increased 

extensor moment at the hip. The similarity between this data and the figure above, displaying 

differences, between healthy and knee OA, suggests that differences in joint moments 

previously observed in people with knee OA may be explained by a forward inclination of the 

trunk. Interestingly, the study investigating differences in moments associated with trunk lean 

(Leteneur et al., 2009) also showed a small decrease in knee moment and a small increase in 

ankle moment to be associated with forward lean. Again, these patterns are similar to those 

reported in people with knee OA (Zeni and Higginson, 2011). 
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Figure 2-10. Patterns of internal moments in the sagittal plane at the hip, knee, and ankle 

with centre of pressure (CoP) and ground reaction force (GRF) vectors. The dotted lines 

represent the standard deviations, and the solid lines represent the mean values. Reproduced 

from Levangie and Norkin (2011). 

To better understand why these changes in moment occur, it is helpful to consider the changes 

in the direction of the GRF vector which would accompany a change in trunk inclination. The 

figure above illustrates the orientation of the GRF vector during the early stance and midstance 

phases of the gait cycle. The head-arms-trunk (HAT) segment accounts for approximately 65% 

of body mass (Dempster, 1955) and therefore, small changes in the inclination of the segment 

have the potential to influence the position of the centre of mass (CoM) and therefore the 

direction of the GRF vector. With an increase in forward lean, there will be a relative anterior 

movement of the GRF vector relative to the hip joint and this will lead to an increase in the hip 

extensor moment. Similarly, if there is no change in knee flexion-extension angles, then the 

anterior movement of the GRF relative to the knee joint (which would result from increased 

forward lean) would decrease the knee extensor moment (or increase the knee flexor moment). 



57 

 

In order to understand the effect of forward lean on ankle moments, it is necessary to consider 

the possible effect of increased forward lean on the CoP position. There are two possible 

scenarios. Firstly, increased forward lean leads to an anterior shift in the position of the CoP as 

body weight is moved onto the forefoot region. In this scenario, there would be an increase in 

the ankle plantarflexor moment due the anterior shift on the CoP relative to the ankle joint. In 

the second scenario, forward lean is not associated with a change in the CoP and therefore there 

is no corresponding change in the ankle moment.   

The changes in joint moments which are characteristic of people with knee OA (detailed in 

Section 2.4.2) appear, to some degree, to be consistent with a gait pattern in which an increased 

forward lean has been adopted. Specifically, previous studies have reported increased hip 

moments (Huang et al., 2008) and decreased knee moments (Debbi et al., 2014). However, 

most studies report relatively little change in the ankle joint moment (Astephen et al., 2008) 

suggesting that the CoP is not always shifted anteriorly. However, it is possible that the slower 

walking speed often adopted by patients with knee OA (Al-Zahrani and Bakheit, 2002, Zeni 

and Higginson, 2011, Andriacchi et al., 1977, Kaufman et al., 2001) would lead to a 

corresponding reduction in the vertical GRF. This may offset changes in the position of the 

CoP and show similar ankle moments. Interestingly, a recent study found that a cohort of 

patients with knee OA did exhibit a more anterior-shifted CoP during walking (Saito et al., 

2013). However, in this study, controls walked faster than the people with knee OA and this 

could explain the observed differences in CoP pattern.  

Changes in joint moments will be accompanied by corresponding changes in muscle activation 

patterns, as external moments which result from the GRF will need to be balanced by internal 

moments created by the muscles. It is therefore interesting to map out possible changes in 
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muscle activity which could accompany the changes in joint moments describe above. This is 

described below. 

2.5.2 Trunk inclination and hamstrings-quadriceps co-contraction 

A large number of studies have demonstrated increased co-contraction between the hamstrings 

and quadriceps (Zeni et al., 2010; Childs et al., 2004; Hortobagyi et al., 2005) in people with 

knee OA (Heiden et al., 2009b). In the section above, a mechanism was proposed for how 

increased trunk inclination could lead to increased hip extensor moments. During walking, the 

hamstrings function to both extend the hip joint and also to flex the knee joint. Generating an 

increased hip extension moment will require increased hamstring activity. However, given the 

two-joint nature of this muscle group, increased hamstring activity will also increase the flexor 

moment at the knee. Therefore, it is possible that, in order to balance this increased hamstring 

activity at the knee, there will also be an increase in quadriceps activity. This increase in both 

hamstring and quadriceps activity will result in elevated co-contraction. Peak compressive knee 

joint loading occurs at approximately 15-25% of stance phase (see Section 2.5). Interestingly, 

during this period, hip extensor moments are elevated considerably in individuals who walk 

with an inclined trunk position (Leteneur et al., 2009) and consequently hamstring activity is 

also likely to be increased. Therefore, the possibility exists that co-contraction between the 

hamstrings and quadriceps, and therefore joint loading, results from a forward inclination of 

the trunk. 

2.5.3 Trunk inclination and gastrocnemius-quadriceps co-contraction  

Research has shown that individuals with knee OA walk with elevated levels of gastrocnemius-

quadriceps co-contraction (Childs et al., 2004, Vieira et al., 2010). These studies have 

quantified gastrocnemius activity at different parts of the gait cycle, with one study 
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demonstrating greater gastrocnemius activity during the weight acceptance phase (Schmitt and 

Rudolph, 2007) and another showing an earlier onset of gastrocnemius activity (Childs et al., 

2004). Interestingly, a recent study demonstrated increased gastrocnemius activity between 15-

25% of stance phase (Sritharan et al., 2016b). As explained in the sections above, this is the 

period which corresponds to the first peak in compressive loading at the knee joint. 

In scenario 1 above, a mechanism was proposed in which an increase in trunk inclination 

resulted in an increase in both sagittal hip moment and also sagittal ankle moment. This 

increase in ankle moment resulted from an anterior shift in the CoP position. There are two 

primary muscles which act to plantarflex the ankle joint: the gastrocnemius and the soleus 

muscle. Therefore, if an individual responds to a forward trunk inclination with an anterior shift 

in CoP (as outlined above), then there is likely to be a corresponding increase in gastrocnemius 

activity.  Similar to the hamstring muscles, the gastrocnemius is a two-joint muscle which acts 

both to plantarflex the ankle and flex the knee. Therefore, if increased gastrocnemius activity 

does result from an increased in the ankle plantarflexor moment, this may lead to increased 

quadriceps activity, which would be required to prevent an undesired change in the flexion-

extension moment at the knee. Thus, the potential exists for increased gastrocnemius-

quadriceps co-contraction to result from an increased inclination of the trunk, provided this 

inclination is associated with a change in the CoP and therefore the ankle moment. 

 

Modelling studies have identified that a peak in joint loading occurs at around 15-25% of the 

stance phase of walking. During this period of the gait cycle, sagittal hip moments appear to 

be elevated in individuals with knee OA (Liu et al., 2014) and sagittal knee moments appear to 

be reduced (Astephen et al., 2008). Furthermore, EMG activity also appears to be elevated in 

the hamstrings, gastrocnemius and quadriceps, and this results in elevated co-contraction 
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(Childs et al., 2004, Hortobagyi et al., 2005, Zeni et al., 2010, Hubley-Kozey et al., 2009, 

Brandon et al., 2014), and therefore joint loading, during this phase. In the sections above, a 

model was presented to explain how these alterations in joint moments and muscle activity 

may have resulted from an increase in trunk inclination. In the following sections, the literature 

on CoM position and trunk inclination in people with knee OA is reviewed to understand if 

current evidence supports the idea that people with knee OA walk with a forward trunk 

inclination. 

2.6 Alterations in trunk inclination and centre of mass position in 

standing and walking in individuals with knee OA 

2.6.1 Alterations in trunk inclination in people with knee OA 

A recent study by Turcot et al. (2015) studied postural behaviour in people with end-stage 

(immediately prior to a knee replacement) knee osteoarthritis. By comparing joint positions in 

standing between their OA group and a healthy group, they were able to demonstrate that when 

standing, people with knee OA adopt a more flexed posture at all joint levels (see Figure 2-11 

below. Interestingly, these data showed OA patients as standing with approximately 3° more 

trunk inclination that the healthy participants. However, Turcot et al. (Turcot et al., 2015a), did 

not investigate walking and therefore it is not clear whether the forward inclination of the trunk, 

adopted in standing is maintained during walking. As far as can be identified, there are no other 

papers which have reported trunk inclination during walking in people with knee OA. 
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Figure 2-11. Flexed posture in knee OA patients. Illustration of the postural strategy used by 

the group of patients with knee OA (blue line) and the control group (red dotted line) in the 

sagittal plane (adapted from Turcot et al., 2015). 

2.6.2 Alterations in CoM position in people with knee osteoarthritis    

As an alternative to trunk inclination, it is possible that previous research has investigated CoM 

position and sought to understand whether CoM movements/positions may be altered in people 

with knee OA. The motion of the CoM reflects whole body motion and therefore can provide 

insight into whole-body postural control during dynamic movements, such as walking. This 

idea has motivated previous research which has used the CoM trajectory to understand 

disturbances for a wide range of gait pathologies (Lord and Menz, 2000, Chen and Chou, 2010, 

Granata and Lockhart, 2008). This is because alterations in CoM trajectory may point to a 

clinical manifestation of an underlying pathology or indicate a problem with gait stability. 

Given this motivation, an exhaustive literature search was performed to identify any studies 

looking at CoM motions in walking. However, before this work is presented, a brief 
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explanation is given of how CoM position is calculated and also its typical pattern of motion 

during walking.  

Total body centre of mass in the global reference system (GRS) is defined as the weighted 

average of the CoM of each body segment in 3D space (Winter, 1995) and can be thought of 

as the imaginary point in a body or system in which its mass is located (Richards, 2008). The 

location of the human body’s centre of mass lies approximately anterior to the second sacrum 

vertebra (S2) (Figure 2-12). However, CoM location depends on the body weight distribution 

and relative orientation of each body segment and therefore changes continually during a 

dynamic movement such as walking. The gold standard method for calculating CoM trajectory 

during walking is to segment the body into 13 segments (feet, shanks, thighs, pelvis, trunk, 

head and upper and lower arms) (Halvorsen et al., 2009).  With this approach, CoM motion is 

derived from a weighted average of the positions of the CoM of individual body segments for 

each frame of kinematic data obtained during the data trial. Anthropomorphic data (e.g. 

(Dempster, 1955) is used to determine mass fractions and therefore the weighting of the 

individual segments, and therefore the mean position of the CoM for the whole body.  
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Figure 2-12. The CoM of the human body is located at approximately S2, anterior to the 

second sacrum (inset). The extended line of gravity lies within the BoS. Adapted from 

(Levangie and Norkin, 2001). 

Two studies have been carried out which have explored differences in CoM trajectory between 

healthy individuals and people with knee OA (Wang et al., 2010, Hsu et al., 2010). In the first 

study, Wang et al. (2010) sought to investigate dynamic stability in people with knee OA by 

studying the position of the CoM with respect to the CoP.  A total of 20 subjects were recruited 

in this study; ten healthy and ten with knee OA, and a full body (12-segment) model was used 

to calculate CoM position at different parts of the gait cycle. Importantly, they calculated the 

CoM-CoP inclination angle in the sagittal and frontal plane and compared this between the OA 

and the healthy group. Their data showed a greater CoM-CoP inclination angle in the sagittal 

plane during the early- and mid-stance phase, illustrating that the CoM was displaced anteriorly 

with respect to the CoP in participants with knee OA. However, from the analysis, it is not 

clear whether this anterior shift of the CoM was the result of an increased trunk inclination.  
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In the second study Hsu et al. (Hsu et al., 2010) investigated the control of CoM during obstacle 

crossing in 11 participants with knee OA and 11 healthy control subjects. The researchers used 

a full body model (12 segments) and also studied CoM and CoP, by quantifying CoM-CoP 

inclination angles and while obstacle crossing. They reported that the knee OA patients adopted 

a successful strategy to achieve “better” control of the CoM and with a decreased inclination 

angle from the sagittal plane (Hsu et al., 2010).  However, this study provides limited insight 

into any possible differences in trunk inclination between healthy and knee OA individuals 

during normal walking. 

The results of the first study, described above, demonstrate that individuals with knee OA walk 

with an anterior displacement of CoM relative to the CoP. However, it is not clear whether this 

relative displacement is the result of an increased trunk inclination and/or an alteration in foot 

placement position. Furthermore, the data presented by Wang et al. (Wang et al., 2010) gives 

only limited insight into the relative positioning of the CoM with respect to the foot. As outlined 

above, it is possible that an increased inclination of the trunk may lead to an anterior shift in 

the CoP. If both CoM and CoP move anteriorly by similar amounts, then their relative 

displacement could remain unchanged. Thus, reporting only the CoM-CoP distance or angle 

gives limited insight into the presence or absence of increased trunk inclination. Therefore, 

although evidence exists to suggest that people with knee OA stand with increased trunk 

inclination, it is currently not clear whether people with knee OA walk with an inclined trunk.  

2.7 Summary and research questions 

The gait of people with knee OA is characterised by increased hip extension moments, 

decreased knee extension moments and increased muscular co-contraction during 15-25% of 

stance phase. Interestingly, other research has demonstrated that, in people who walk with an 

increased trunk inclination, there is also increased hip extension moment and a trend towards 
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a reduced knee extension moment. It is therefore possible that the gait characteristics of people 

with knee OA are a result of an increased inclination of the trunk. However, although previous 

research has shown that people with knee OA stand with increased trunk inclination, it is not 

clear whether the increased trunk inclination in standing is maintained during walking. 

Furthermore, it is not clear whether there is a direct relationship between trunk inclination and 

joint moments/muscular co-contraction during 15-25% of stance phase in people with knee 

OA. These limitations in knowledge motivate the first two studies presented in this thesis, 

which address the specific research questions defined below: 

 

Study 1: Trunk inclination in people with knee OA 

This first study focused on characterising the differences between people with knee OA and 

healthy controls. In addition to exploring differences in trunk inclination during standing and 

walking (RQ 1A-1C), I also sought to understand differences in CoP and whether these 

differences could be linked to trunk inclination (RQ1D-1E). In the final part of this study, I 

sought to characterise differences in moments, muscle activations and co-contraction (RQ 1F-

1H), between healthy people and those with knee OA. This comparison was performed to fully 

characterise the knee OA cohort and to facilitate comparison with previous research. A full list 

of research questions is provided below.  

RQ 1A: Do individuals with knee OA walk with an increased inclination of the trunk? 

RQ 1B: Do individuals with knee OA stand with an increased inclination of the trunk? 

RQ 1C: Does trunk inclination in standing correlate with trunk inclination in walking 

both in a group of individuals with knee OA and also in a healthy cohort? 

RQ 1D: Is there a difference in CoP between healthy and knee OA subjects? 

RQ 1E: Is there a link between forward trunk inclination and anterior shift of CoP?  
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RQ 1F: What are the differences in hip/knee/ankle moments between healthy and knee 

OA subjects? 

RQ 1G: What are the differences in hamstring/quadriceps/gastrocnemius muscle 

activity between healthy and knee OA subjects? 

RQ 1H: What are the differences in the co-contraction between healthy and knee OA 

subjects? 

 

Study 2: The relationship between trunk inclination and joint moments/muscular co-

contraction  

In the sections above, I presented a model to explain how increased trunk inclination could be 

linked to altered lower limb moments, muscle activation and co-contraction during human 

walking. Therefore, this second study sought to explore relations between specific gait 

characteristics and trunk inclination both in people with knee OA and also healthy control 

subjects. A full list of research questions is provided below.  

 RQ 2A: What is the relationship between trunk inclination and hip/knee/ankle moments 

in people with knee OA and also in healthy control subjects? 

 RQ 2B: What is the relationship between trunk inclination and 

hamstring/quadriceps/gastrocnemius activity in people with knee OA and also in 

healthy control subjects? 

 RQ 2C: What is the relationship between trunk inclination and co-contraction in people 

with knee OA and also in healthy control subjects? 

It is possible that individuals with knee OA adjust their postural strategy in response to knee 

pain. Specifically, patients with knee OA may adopt an increased inclination of the trunk in 

order to reduce knee moments. As explained above, this appears be a maladaptive strategy 
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which may lead to increased co-contraction and therefore joint loading. Scientific evidence 

supports the idea that co-contraction will accelerate disease progression (Hodges et al., 2016), 

and therefore conservative interventions are required which can be used to reduce co-

contraction. If co-contraction is associated with upper body position, then these interventions 

need to target trunk lean, hip joint moments or increased co-contraction. These ideas are 

discussed further in the next section. 

2.8 Conservative management of knee osteoarthritis (OA):  

Most conservative management of knee OA focuses on physiotherapy, and may include a 

combination of other medical approaches.  Osteoarthritis does not yet have a successful 

treatment: instead, the goal of treatment is to manage pain. A physiotherapy programme, self-

management advice, and patient education are core proposals for the management of pain in 

patients with knee OA, as they have short-term benefits for pain as well as for psychosocial 

and physical function (Deyle et al., 2000, Falconer et al., 1992). Whether these benefits are 

persistent however is unclear, as few studies follow patients for more than 6 months, as a result 

of the fact that assessment of long-term benefit demands expensive, large, complex studies.  

The few studies with long-term follow up have not found persistent clinical benefits and do not 

comprise an economic evaluation (Deyle et al., 2000, Falconer et al., 1992). Benefits have been 

reported with manual therapy techniques used in combination with joint mobility and 

strengthening exercises (Deyle et al., 2000, Falconer et al., 1992). Falconer et al. found 

improvements in motion (11%), pain (33%), and gait speed (11%) after 12 treatments of 

stretching, strengthening, and mobility exercises combined with manual therapy procedures 

performed in a physical therapy clinic over 4 to 6 weeks. A comparison group who received 

the same exercise and manual therapy interventions plus therapeutic doses of ultrasound 

demonstrated no additional improvement (Falconer et al., 1992). It is possible that current 
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physiotherapy practices for managing knee OA are not effective because they do not directly 

target trunk lean, hip joint moment or increased co-contraction. 

A number or alternatives to current physiotherapy exercise-based intervention programmes 

have been proposed. These include; weight management in overweight patients, assistive 

device prescription (Pendleton et al., 2000), bracing  and footwear modifications (Kerrigan et 

al., 2002). In general, these approaches aim to modify the loads imposed on the knee joint by 

either reducing body weight or using a device to redistribute load at the knee. For example, 

unloader braces have been shown to be effective in alleviating pain and reducing adduction 

moment (Crenshaw et al., 2000). One study showed how one type of unloader knee brace 

significantly increased the joint space in the affected compartment in patients with arthritis 

(Komistek et al., 1999). However, while braces were reported to be beneficial, they may not 

be ideally suited for the morbidly obese or for those who have peripheral vascular disease, skin 

disease or an inability to apply a brace due to other physical limitations (Marks and Penton, 

2004). 

2.9 Footwear and insole intervention in knee osteoarthritis (OA) 

patients 

2.9.1 Insole intervention for knee osteoarthritis  

Another approach for altering knee joint loads is the lateral wedge insole. These shoe 

modifications are used with the aim of realigning the weight-bearing load  (Fang et al., 2006) 

and altering the loading rate of GRF during walking (Wakeling et al., 2003).  Specifically, these 

insoles are designed to decrease knee adduction moment, thereby slowing the progression of 

medial knee OA (YASUDA and SASAKI, 1987, Sasaki and Yasuda, 1987). In a recent study, 
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Jones et al. (2014) investigated the effect of lateral wedge insoles in 70 patients suffering from 

osteoarthritis and confirmed that a lateral wedge decreases the external knee adduction moment 

in knee OA sufferers (Jones et al., 2014). This confirms the findings of other previous reports 

(Kerrigan et al., 2002, Sasaki and Yasuda, 1987, YASUDA and SASAKI, 1987, Yeh et al., 

2014). Recently, variable-stiffness shoes with increased lateral stiffness have been tested as an 

alternative to lateral wedge insoles (Kean et al., 2013) and were shown to decrease peak knee 

adduction moment during walking in individuals with OA in comparison to constant-stiffness 

control shoes (Erhart‐Hledik et al., 2012). However, although both lateral wedge insoles and 

variable stiffness shoes may alter frontal plane moments, these devices are not designed to 

influence trunk inclination and/or sagittal joint moments. Therefore, it is necessary to consider 

the potential of specially-designed footwear. 

2.9.2 Footwear intervention for knee osteoarthritis  

Specially designed footwear has the potential to influence the forces experienced at the knee 

joint and therefore to reduce knee loading patterns, potentially reducing pain. This has 

motivated a number of research studies which have demonstrated the possible efficacy of 

footwear as a clinical management strategy for knee OA (Shakoor et al., 2013, Nigg et al., 

2006, Shakoor et al., 2008). Most current footwear modifications aim to modify the frontal 

plane loads by reducing the first peak knee adduction moment. The magnitude of this moment 

is determined by the magnitude of the GRF vector and the perpendicular distance from the 

GRF vector to the knee joint centre. By making subtle alterations in centre of pressure, the 

direction of the resultant GRF vector is changed and this leads to corresponding changes in the 

frontal plane moment arm and change in the knee adduction moment.  

One example of footwear designed to alter the frontal plane knee adduction moment is that of 

APOS shoes (Haim et al., 2012). The concept with this type of footwear is to alter the shape of 
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the outsole so that the CoP is shifted laterally. With this shift comes a corresponding change in 

the direction of the GRF which brings it closer to the centre of the knee joint and therefore 

reduces knee adduction moment (Haim et al., 2011). Biomechanical studies have demonstrated 

that APOS footwear can be used to reduce both first and second knee adduction moment in 

people with knee OA (Haim et al., 2012).  

Other studies have looked at the effect of walking barefoot on knee adduction moments. For 

example, Shakoor et al. (2006) evaluated variations in gait and joint loads in patients with knee 

OA when walking barefoot compared with walking in modern shoes. This study reported that 

barefoot walking decreases knee adduction moment at the hip and knee joints, with alterations 

in cadence, stride, toe out angle and joint ROM observed during barefoot walking. They 

proposed that modern shoe designs can predispose increased joint loading in patients with knee 

OA, thereby influencing the progression of knee OA (Shakoor et al., 2006). In a subsequent 

study, Shakoor et al. (2013) compared a “mobility” shoe with patients’ preferred shoe and also 

walking barefoot for people with knee OA. The “mobility” shoe in this study incorporated a 

very flexible outsole which allowed the foot to function as naturally as possible. This study 

reported that use of the mobility shoe for six months imitated the biomechanical effects of 

barefoot walking and resulted in reduced knee adduction moment.  

Previous research has looked at lateral wedges and various different footwear designs for 

people with knee OA. In general, previously tested footwear has been designed to reduce knee 

adduction moments, either by influencing the position of the CoP and therefore the ground 

reaction force or by allowing the foot to function more naturally. However, to date, there has 

been minimal investigation of footwear which is specifically designed either to influence 

sagittal knee joint moments or trunk inclination. In the previous chapter, a biomechanical 

rationale was presented to explain how increased trunk inclination could affect sagittal 
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moments and muscular co-contraction.  Therefore, further research is needed into footwear 

which can influence sagittal loading and/or trunk inclination. One shoe design which has the 

potential to influence these aspects of gait is the rocker shoe. 

 

2.10 The biomechanical effects of rocker shoes in healthy people 

Rocker shoes are designed with a rigid outsole which is designed to “rock” the foot forwards 

during the stance phase of walking. There are a number of different types of rocker shoe (see 

the figures below), each of which has a different type of rocker profile. For example, the 

traditional rocker incorporates a distinct apex angle, whereas the toe-only curved rocker 

incorporates a gradual curve in the outsole geometry. Regardless of the exact profile, all rocker 

shoes facilitate a rolling motion of the foot as the body’s CoM moves across the profile’s 

fulcrum point (Myers et al., 2006). Rocker shoes have been shown to reduce plantar pressures 

under the forefoot (Chapman et al., 2013, Ochsmann et al., 2016, Brown et al., 2004) during 

walking, which is assumed to be the result of a reduction in range of motion at the metatarsal 

joints (Hutchins et al., 2009). However, rocker shoes also have the potential to influence 

sagittal joint angle, moments and upper body positioning. The evidence supporting these 

biomechanical changes is outlined in the sections below. 
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Figure 2-13. Angled rocker shoe (Traditional) (Hutchins et al., 2009) 

 

 

Figure 2-14. Toe-only curved rocker shoe (Hutchins et al., 2009). 

 

 

Figure 2-15. Negative heel rocker shoe (Hutchins et al., 2009). 

 

2.10.1 Lower limb joint kinematics  

Rocker shoes have been found to influence joint angles at the ankle, knee and hip. For example, 

studies have shown that rocker footwear can lead to a decrease in ankle plantarflexion range of 

moment (Gardner et al., 2014). These findings are similar to other studies of rocker footwear 
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which shows a decrease in the knee extension angle in early stance phase and also a decreased 

hip extension angle in the late stance period (Taniguchi et al., 2012). However, there is some 

inconsistency between different studies, which may be due to the difference in the rocker 

profile tested. For example, MBT footwear has been shown to reduce peak hip flexion, increase 

peak knee extension, and reduce hip and knee range of motion throughout gait (Tan et al., 

2016). In contrast, Long et al. (Long et al., 2007) tested a custom-made double rocker sole and 

found to increase flexion at the hip, knee, and ankle during early and mid-stance.  

2.10.2 Lower limb joint kinetics  

A number of previous studies have investigated the effect of rocker footwear on ankle plantar 

flexor moment during walking. In general, this research shows the plantar flexor and 

dorsiflexor moments to be reduced with rocker footwear (Taniguchi et al., 2012, Boyer and 

Andriacchi, 2009). However, some studies have also demonstrated alterations in knee kinetics 

with rocker footwear. For example, Buchecker et al. (2013) observed a reduction in the external 

knee flexor moment during loading response and reduced concentric hip power output during 

early stance. These findings contrast with the results reported by Sobhani et al. (2013), who 

observed no change in knee or hip moments. However, it is important to recognise that Sobhani 

et al. did not test shoes with the same outsole profile as Buchecker et al. (2013). Again, this 

highlights the importance of the precise rocker profile on the biomechanical aspects of gait 

which are to be modified. Importantly, the study by Buchecker et al. (2013) highlights that it 

may be possible to reduce hip moments during early stance with an appropriately designed 

rocker shoe. Given the biomechanical rationale, presented in the section above, in which 

increased hip moments were associated with increased trunk inclination and elevated hamstring 

activity, it is possible that appropriate rocker footwear may be effective at reducing hamstring 

activity and therefore joint loading in people with knee OA. 
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2.10.3 Muscle activity during walking 

By using EMG techniques, a number of previous studies have sought to understand whether 

muscle activity during walking is altered when wearing rocker footwear. Again, the findings 

of these studies differ depending the precise design of the rocker outsole profile. For example 

some studies have shown increases in gastrocnemius activity (Forghany et al., 2014). In 

contrast, Sobhani et al. (Sobhani et al., 2013) showed a delayed onset of the triceps surae 

muscle group when walking with rocker shoes and Santo et al. (Santo et al., 2012) found no 

change in muscle activity in either biceps femoris, gastrocnemius or tibialis anterior when 

walking in rocker footwear. To date, most studies have demonstrated minimal changes in the 

EMG activity of the other knee extensors/flexors. However, it is still not clear whether, with 

an appropriately designed shoe, it would be possible to reduce hamstring activation. 

2.10.4 Trunk motion during walking 

Very few studies have investigated the effects of rocker footwear on trunk position. While one 

study showed that rocker footwear might increase trunk flexion (Talaty et al., 2016), another 

showed a clear decrease in trunk inclination when wearing rocker shoes (Ochsmann et al., 

2016). Again, the different types of rocker shoes tested were different between these studies. 

However, the results of the latter study illustrate the possibility that appropriately designed 

rocker footwear could be used to decrease trunk inclination in people with knee OA. 

Rocker footwear is designed based on the principle of introducing instability in order to 

influence parameters of posture and gait. Performing any given task involves interactive effects 

from the simultaneous coordination of many muscles and joints (Sousa & Tavares, 2014). As 

an individual moves, the central nervous system receives a range of inputs, which it must 

prioritise and respond to in order to maintain balance, by adjusting the way the body is aligned. 
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It is possible that the introduction of instability (such as a rocker shoe) may accentuate the 

effect of poor upper body position and this might make the individual feel more imbalanced. 

In order to adapt to this potential instability, they will be required to improve overall segmental 

alignment and therefore balance. This leads to the idea that introducing instability at the foot 

could lead to adjustments to posture through the central nervous system (Sousa & Tavares, 

2014). 

As explained above, previous studies have demonstrated that rocker footwear can influence 

trunk inclination (Ochsmann et al., 2016, Sousa et al., 2014, Talaty et al., 2016), with one study 

showing a decrease in trunk inclination in healthy people (Ochsmann et al., 2016). This 

research indicates that rocker footwear could have a potentially positive effect on postural 

control performance. Interestingly, other research has demonstrated lower latency in the ankle 

muscles, decreased gastrocnemius activity, as well as changes in the activity of the thigh 

muscles both immediately and after long term use of unstable footwear (Sousa & Tavares, 

2014). Taken together, these data suggest that rocker footwear can alter both muscle activity 

and postural control and suggest that the destabilising effect of the rocker shoe could encourage 

a realignment of body segments, with associated changes in muscle activity.  This idea is 

explored in the final chapter of the thesis. 

2.10.5 Biomechanical and clinical effects of rocker shoes in people with knee 

OA  

To date, only three studies have investigated either the biomechanical or clinical efficacy of 

the rocker shoe for individuals with knee osteoarthritis (Nigg et al., 2006, Tateuchi et al., 

2014b, Madden et al., 2015).  Nigg et al.’s (2006) study was a randomised controlled trial with 

123 subjects and focused on one type of rocker shoe, known as the Masai Barefoot Technology 
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(MBT) shoe. Although this study did not include gait-related biomechanical outcomes, the 

authors did look at static and dynamic balance and knee joint range of movement measures, in 

addition to clinical outcomes investigating pain and function. The study demonstrated 

improvement in static balance for the MBT group and which were accompanied by reductions 

in pain. The authors concluded that rocker shoes may be effective in reducing pain in people 

with knee OA.  

A study by Tateuchi et al. (2014) focused on the immediate biomechanical effects of MBT 

shoes in women with knee OA. This study showed that MBT rocker shoes decreased the knee 

flexion moment in early stance but observed no change in the peak knee extensor moment. 

However, they did report an “increase in trunk lean toward the extension direction while 

wearing the MBT shoes.” This suggests that the MBT rocker shoes actually reduced forward 

lean in their OA patients and this may explain their observed reduced in knee flexion moment. 

However. Tateuchi et al. (2014) did not report hip extension moments or EMG activity and 

therefore it is unclear whether the change in trunk inclination was accompanied by a 

corresponding change in the hip extensor moment.  

In a more recent study, Madden et al. (Madden et al., 2015) investigated the immediate 

biomechanical effects of another type of rocker shoe design in people with knee OA. 

Specifically, they focused on the Sketchers Shape-ups, a commercially available rocker shoe. 

Their data showed a significant decrease in the peak knee adduction moment with the rocker 

footwear but no corresponding change in the knee flexion or extension moment. Again, the 

difference between these findings and those of Tateuchi et al. (2014) highlight the different 

effects of different rocker shoes and demonstrate that, if rocker footwear is to be effective for 

reducing knee joint loading in knee OA, there needs to be careful selection of the outsole 

profile. 
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2.10.6 The three-curved rocker shoe (T3C) 

It is possible that a very specific design of rocker shoe is required to alter trunk inclination, 

reduce hip moments and reduce knee muscle co-contraction in people with knee OA. In a recent 

study, Hutchins et al. (2012) proposed a rocker shoe design with a rocker profile created from 

three different curves, generated from circles drawn around the hip, knee and ankle. This design 

aims to maintain a normal walking pattern but to reduce muscle activation around the hip, knee 

and ankle, and therefore may be an ideal candidate to test in a cohort of patients with knee 

osteoarthritis. The shoe design contains three curves positioned so that during the stance phase 

of walking, the radius of each curve is centred on the sagittal plane centres of three lower limb 

joints; ankle, hip and knee, in that order, as shown in Figure 2-15. This specific design helps 

the shoe to roll forward gently and it has been suggested that it may reduce muscle activity 

around the knee and ankle (Hutchins et al., 2012). It is possible that any reduction in the hip 

extensor moment may be accompanied by a corresponding reduction in hamstring activity and 

this may lead to a reduction in co-contraction of the hamstring-quadriceps muscles.  
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Figure 2-16. Radiuses of 3 curve rocker shoe (T3C) 

Hutchins et al. (2012) suggest that the three-curve rocker shoe could alter the direction and 

orientation of the GRF during walking in such a way as to reduce the ankle joint moment during 

early stance. Such a change in ankle moment may lead to a corresponding reduction in the 

activation of the gastrocnemius muscle during walking and it is possible that this would lead 

to a corresponding decrease in gastrocnemius-quadriceps muscle co-contraction during mid-

stance. Given the potential for the three-curve rocker profile to influence both hip moments 

and ankle moments and therefore muscle co-contraction, further investigation is required to 

establish the precise biomechanical effect of this footwear design in a cohort of patients with 

knee OA. 

2.10.7 Summary and research questions 

The gait of people with knee OA is characterised by increased hip extension moments, 

decreased knee extension moments and increased muscular co-contraction during 15-25% of 

stance phase. Previous research has demonstrated that rocker footwear has the potential to alter 

trunk inclination, lower limb moments and also muscle activation patterns during normal 
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walking. However, these effects appear to be strongly dependent on the exact rocker profile 

incorporated into the footwear. The three-curve rocker profile has been designed to reduce both 

hip and the ankle moment in early-mid stance and therefore may be effective at reducing co-

contraction during 15-25% of stance phase.  Therefore, in the final study of this thesis, the 

following questions will be addressed: 

Study 3: The biomechanical effects of rocker footwear in people with knee OA 

 RQ 3A: How does trunk inclination change when people with knee OA or healthy 

control subjects wear a three-curve rocker shoe? 

 RQ 3B:  How do lower limb moments change when people with knee OA or healthy 

control subjects wear a three-curve rocker shoe? 

 RQ 3C: How the activation patterns of the specific muscular 

 RQ 3D: How does muscular co-contraction change when people with knee OA or 

healthy control subjects wear a three-curve rocker shoe? 

 RQ 3E:  Are there immediate changes in the measurement of pain when people with 

knee OA wear a three-curve rocker shoe? 

 

2.11 Overarching aim of the thesis 

In the section 2.5-2.7, I proposed a new framework which may explain some of the 

previously observed differences between people with knee OA and heathy controls. This 

framework was based on the idea that an increase in forward trunk inclination could alter the 

direction of the ground reaction force vector and therefore the moments and muscle 

activation patterns at the hip, knee and ankle. In section 2.8-2.10, I discussed the idea that, 

with a simple footwear intervention, it may be possible to influence upper body position 
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and/or change the direction of the ground reaction force during walking. Together these 

different ideas motivate the overarching aims of the thesis. These aims are to characterise 

forward trunk inclination in people with knee OA (Chapter 4), understand whether there is a 

link between trunk inclination and specific biomechanical variables related to loading 

(Chapter 5) and understand whether footwear-based intervention could bring about changes 

in trunk inclination and/or biomechanical variables related to joint loading (Chapter 6). 
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Chapter 3 - Methodology 
 

3.1 Overview of the data collection procedures  

A single data collection session, for each participant, was used to obtain the necessary data to 

address the overarching objectives described above. Although these data was collected at the 

same point, it was analysed separately in order to address the three separate objectives of the 

thesis, subsequently referred to as studies. The first study examined the differences between 

individuals with knee OA and healthy participants in terms of the forward trunk inclination 

during walking and standing, gait characteristics such as anterior-posterior displacement of 

centre of pressure (A-P CoP) and sagittal moments of hip, knee and ankle. Additionally, the 

differences in muscle activity between people with knee OA and healthy individuals were 

investigated for the hamstring (biceps femoris and semitendinosus), quadriceps (vastus 

medialis (VM) and vastus lateralis (VL) and gastrocnemius (medial and lateral gastrocnemius). 

as well as muscle co-contraction. 

  

In the second study, the link between forward trunk inclination during walking and sagittal 

moments of lower limb joints hip, knee and ankle were assessed for both subject groups. In 

addition, the link between forward inclination and both muscle activity and muscle co-

contraction was also assessed, again for both groups. In the final, third study, the biomechanical 

effect of the three-curve rocker shoe on forward trunk inclination, sagittal lower limb joint 

moment, muscle activity and co-contraction was investigated for both healthy and OA subjects.  

 

As explained above, a single protocol for data collection was developed to address each of the 

three studies, as shown in Figure 3-1, and described in detail in the sections below. Although 
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these data were collected during the same session, extensive analysis and processing was 

performed on each dataset and specific outcomes derived/ statistical analysis performed for 

each of the separate studies. These outcomes and the statistical analysis are described in the 

subsequent chapters. It was deemed appropriate to present the data in three separate studies 

(corresponding to chapter 4,5 & 6) in order to ensure clarity of the thesis. Furthermore, although 

it would have been possible to collect the data for the final footwear study through second 

testing session, this would have been more inconvenient for the participants. Therefore, the 

decision was made to collect all data in a single longer session, which incorporated a break 

midway through. In total, data were collected on a total of 47 subjects; a cohort of 27 knee OA 

participants as well as 20 healthy participants.  
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Figure 3-1.  Steps of lab protocol 
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3.2 Ethical approval, participant recruitment & sample size calculation 

The University of Salford staff and PGR ethics committee provided ethical approval for the 

study (Reference HSCR15-35). Approval was also obtained from the NHS ethics committee via 

the IRAS system (Reference 15/EM/0502). Letters of approval for each of these panels, along 

with the participant information sheet and consent forms, are provided in Appendices. 

3.2.1 Recruitment strategies: 

Recruitment of knee OA and healthy participants was done through a range of approaches.  

Posters (flyers) and emails were sent around on the campus of the university to both students 

and staff. The emails and flyers contained the lead researcher’s contact details and potential 

participants were required to contact the lead researchers directly if they were interested in 

volunteering. 

 

Another avenue for recruitment was the Citizen Scientist Salford Project. This project 

represents a collaboration between Salford city council, GM universities and Salford NHS trust 

and recruits individuals to participate in research projects. This is achieved through listing 

projects on a dedicated website, as well as via a monthly newsletter. In addition to the citizen 

scientist website, the School of Heath Sciences website was used in a similar way to advertise 

this project (http://www.salford.ac.uk/health-sciences/research/opportunities-to-participate) 

Again, anyone interested in participating in the study was required to contact the lead 

researcher directly.   

 

http://www.salford.ac.uk/health-sciences/research/opportunities-to-participate
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The final avenue for recruitment was via a volunteer database held at the University of Salford. 

A database search was carried out by the manager of the database, and potentially eligible 

people send an invitation letter and participant information sheet.  Again, those interested in 

taking part were required to contact the lead researcher directly.  

  

The recruitment approach described above allowed identification of both healthy and knee OA 

subjects, leaving control over contacting the researcher and volunteering for the study with the 

potential participants. After contact had been made, volunteers were called or emailed and 

asked a number of questions to identify whether or not they were eligible according to the 

exclusion and inclusion criteria. Those who qualified were sent the participant information 

sheet through post or email and allowed a minimum of three days to read and absorb the 

information contained on the sheet, before being re-contacted and given an invitation to attend 

the test at the university. Every participant who took part in the study was pad £25 in cash to 

cover travel expenses and give compensation for the loss of 2 hours of their time required to 

participate in the research project. 

3.2.2 Sample size calculation 

In order to establish an appropriate group size for each of the studies in the thesis, power size 

was calculated a priori using g-power software following Faul, Erdfelder, Buchner and Lang 

(2007; 2009).  The calculations made are explained below for each of the main research studies: 

  

Study 1 (Chapter 4): A sample size of 20 individuals was chosen for this research question, 

which looked for differences between healthy and knee OA individuals across a range of 

parameters. The primary outcome in this study was trunk inclination during walking, and based 

on previous work by Turcot et al. (2015), I estimated an effect size of 1 standard deviation as 
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a difference between the two groups (healthy and knee OA). The study by Turcot et al. (2015) 

investigated standing joint angles for the trunk, pelvis and hip with a mean ± SD (OA: 5.3°± 

8.7°; control:−3.5° ± 5.6°). This was taken as the best indicator for differences between the two 

groups which would be associated with walking. With α = 0.05 and a power of 0.8 based on 

using a two-tailed test, the required minimum sample size for the study is n=17 in each separate 

group. 

  

Study 2 (Chapter 5): The primary focus of this study was the correlation between trunk 

inclination in walking and moments. No similar investigation of this type of relationship has 

been carried out before and so it was difficult to estimate the potential correlation. Therefore, 

I based my sample size calculation on a correlation of r=0.5, which represents a weak-moderate 

correlation. Based on this correlation coefficient, with an alpha of 0.5 and a power size of 0.8, 

the g-power software (Faul et al., 2007; Faul et al., 2009) estimated that I would need a sample 

size of n=26. 

 

Study 3 (Chapter 6): This primary objective of this study was to investigate the change in 

biomechanical parameters between the different footwear conditions (control and rocker shoe). 

Previous studies have reported different effects, on trunk lean, of rocker footwear between 0.35 

and 1.25SD. Specifically (Tateuchi et al., 2014a) observed a mean (SD) of −0.1° (4.7°) for 

control shoes and a mean (SD) −1.6° (4.3°) for MBT rocker shoes, whereas Ochsmann et al. 

(2016) observed a mean (SD) of 8.9° (2.2°) for control shoes and a mean(SD) of 5.9° (2.4°) for 

rocker shoes. Given these different effects, I based the sample size calculation around a 

conservative estimate of a 0.5SD difference between the control and the rocker shoe. Using the 

g-power software, with a power = 0.8 and α = 0.05, it was shown that a sample of n=25 would 

be needed to identify a 0.5 SD difference between footwear conditions.  
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3.3 Inclusion/exclusion criteria:  

The following inclusion/exclusion criteria were used for the participants with knee OA and 

also the healthy participants.  

Inclusion criteria (both groups): 

 Age range of 40-85 (upper age limit due to the amount of walking involved in the 

study).  

 Ability to stand and walk independently. 

 Ability to speak and understand written English  

 Ability to walk without any walking assistance for at least 250 m.  

Exclusion criteria (both groups): Participants were excluded if they satisfied any one 

of the following exclusion criteria: 

 Complex pain conditions such as diabetic neuropathic pain, fibromyalgia 

 Previous surgery to the lower limb. 

 BMI >33, since it is not possible to perform accurate measurements on 

individuals with excess adipose tissue. 

 Lower limb arthroplasty. 

 Any systemic inflammatory disorders, such as rheumatoid arthritis. 

 Any balance disorders which may increase the risk of a fall. 

 Low back pain. 

Participants with knee OA were defined using the following criteria: 

 Clinical diagnosis of knee OA affecting the tibiofemoral joint, according to 

American College of Rheumatology (ACR) guidelines (Altman et al., 1986). 



88 

 

 Patients with patellofemoral OA were excluded. Such patients were identified 

as reporting pain or discomfort within the patellofemoral joint.  

 Pain for at least 6 months' duration (if they are a participant with knee OA). 

 Pain or difficulty in rising from sitting and/or climbing stairs (if they are a 

participant with knee OA). 

 

3.4 Participant characteristics  

Recruitment for this project was challenging, for a number of reasons. Firstly, there were a 

number of other knee OA research projects happening at the same time as this project and this 

put pressure on the people registered on the database, many of whom did not have the time to 

participate in multiple projects. Another challenge to recruitment was the need to identify 

people with knee OA who had a BMI lower than 33. This was necessary to obtain high-fidelity 

EMG signals, but excluded many people with this disease. Finally, some potentially eligible 

participants decided not to participate in this project due to the complexity of the gait lab 

protocol. Nevertheless, after persisting with recruitment, I was able to identify and test at total 

of 47 participants. The demographics of the 47 are detailed in Table 3-1 (knee OA) individuals 

and Table 3-2 (healthy participants). It can be seen that, in the participants with tibiofemoral 

OA 13 had a more affected right side and 14 a more affected left side. Importantly, both health 

and OA groups were similar (no significant differences) in age, height, weight and BMI. With 

the protocol we asked the healthy people to walk slightly slower than normal (see later) and 

this resulted in similar walking speeds between the two groups. Table 3-3 shows no significant 

difference between the groups relating to age, height, weight, and walking speed. 
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Table 3-1.  Knee OA demographic 

 

 

Items 

People with knee osteoarthritis OA 

(tibiofemoral) (n = 27) 

 

Mean (SD) Range (maximum-

minimum) 

Age (yrs) 56.71(± 8.8) 35 

Weight (in kg) 82.08 (±11.06) 35 

BMI (kg/m2) 27.74 (±3.4) 11.7 

Height (m) 1.72 (±0.06) .28 

Mean walking speed (in M/s) 1.07(± 0.13) 0.80 -1.3 

 

WOMAC 

pain Mean (SD) 9.41 (±2.62) 

Function Mean (SD) 4.37 (±1.75) 

Stiffness 28.41 (±10.05) 

Affected side 13 R   14 L 

   
 

Table 3-2.  Healthy participants demographic 

Items Healthy participants (n = 20) 

 

Mean (SD) Range (maximum-minimum) 

Age (yrs) 53.65(± 11.3) 33 

Weight (in kg) 81.2 (±11.8) 44 

BMI (kg/m2) 27.13( ±3.1) 7.2 

Height (in m) 1.73 (±0.07) 0.3 

Mean walking 

speed (in M/s) 

1.09(± 0.13) .44 

Dominant side 2L  18R 
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Table 3-3.   Independent t-tests showed that there was no difference in age, weight, height 

between the two groups 

 

Items 

Mean (SD)  

P 
Knee OA Healthy 

participants 

 

Age (yrs) 57 (9) 54 (11) 0.28 

Weight (in kg) 82 (11) 80 (12) 0.51 

Height (in m) 1.7 (0.07) 1.7 (0.07) 0.52 

Mean walking speed (in M/s) 1.1 (0.13) 1.09 (.013) 0.81 

 
 

3.5 Clinical characterisation of knee OA and overview of the data 

collection procedure 

Upon the subjects’ arrival at the gait laboratory at Salford University, participants were 

provided with a brief introduction to the gait laboratory equipment, after which the study aims 

were explained to them to ensure that they were happy to participate. The investigator then 

asked participants to reread the participant information sheet and to sign a consent form to take 

part in the study. The knee osteoarthritis subjects then completed the Western Ontario and 

McMaster Universities Osteoarthritis (WOMAC) clinical questionnaire, which is used to 

capture pain, stiffness and function in patients with knee OA. This is a standard questionnaire 

which is used regularly in clinical trials of knee OA (Roos et al., 1999, Theiler et al., 2002). 

 

Knee OA was characterized using the ACR criteria for clinical classification, which are widely 

used for this condition (Altman et al., 1986). For knee OA classification, the ACR criteria 

require pain to be present in the knee as well as 50% or more of the 6 characteristics given 

below (Altman et al., 1968):  
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• Age > 50 years old 

• Morning stiffness < 30 minutes 

• Crepitus on knee motion 

• Bony tenderness 

• Bony enlargement 

• No palpable warmth 

 

All participants recruited into this study had received a previous diagnosis of knee OA from a 

qualified medical practitioner, such as a GP. Patients for whom the patellofemoral joint was 

affected were excluded to ensure that only subjects with OA in the tibiofemoral joint were 

studied. I chose to rely on ACR criteria to confirm the presence of knee OA because, although 

some of the participants had had their diagnosis confirmed via x-ray, it was not possible to 

access these x-rays. Furthermore, it was not deemed ethical to send those who had not been x-

rayed for a scan because of the unnecessary exposure to ionising radiation. This approach, of 

identifying knee OA based on the ACR criteria, is supported by previous research by Skou et 

al. (2014), which shows that x-rays are unnecessary for diagnosis of knee OA and recommends 

that radiological assessment is only needed when further investigation is required to investigate 

other pathological conditions (Skou et al., 2014). As the aim of this thesis was not to examine 

radiological progression in knee OA, it was deemed appropriate to use ACR criteria as a 

diagnostic tool. This is in line with current clinical practice, advocated by the National Institute 

for Health and Care Excellence (NICE), quality standard QS87 (2015). 

  

Following consent and recording of the ACR criteria, the investigator recorded demographic 

details such as age, weight (kg) and height (m) and determined the correct shoe size for the 
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individual. Participants were then asked to change into their shorts and a comfortable vest in a 

private room. The full experimental procedure is set out in the diagram below and listed in 

Appendix 1. Full details of each procedure are provided in the sections which follow. 

3.5.1 Clinical outcomes 

The WOMAC (Western Ontario and McMaster Universities) index for osteoarthritis was used 

to rate each participant in the study, prior to gathering biomechanical data. Each question was 

answered based on a 5-point Likert-type rating system with were 5 questions for pain, 2 for 

stiffness, and 17 for function. The WOMAC score is the questionnaire most often utilized in 

existing knee OA research (Bellamy, Buchanan, Goldsmith, Campbell, & Stitt, 1988). Further, 

it is accepted as sufficiently valid, responsive and reliable (Chesworth, Mahomed, Bourne, & 

Davis, 2008; Escobar et al., 2007; Jinks, Jordan, & Croft, 2002; Ryser, Wright, Aeschlimann, 

Mariacher‐Gehler, & Stucki, 1999; Salaffi, Carotti, & Grassi, 2005). Each participant also 

filled in the health history questionnaire in order to provide information on their existing and 

previous medical treatment and conditions.  

3.6 EMG measurement procedures 

3.6.1 Background to EMG measurement 

 Electromyography (EMG) is used to record and evaluate the electrical activity which skeletal 

muscle generates when muscles contract (Reaz et al. 2006). The term motor unit refers to the 

lowest size of functional unit which is a group of muscle fibres all innovated (and therefore 

activated) by the same motor neuron. The term MUAP (motor unit action potential) refers to 

an action potential which is generated when the motor unit becomes active and when specific 

biochemical changes occur in the motor unit. This action potential propagates along the motor 
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unit and can be detected using invasive (in-dwelling wires) or using surface EMG techniques. 

Surface EMG techniques involve the use of surface electrodes which are typically 1-2cm apart 

which record the summed activity of many motor units. This signal can be analysed to provide 

information on activity levels and temporal characteristics of muscle activation (Preece et al., 

2016).  

   

There are two different types of EMG collection systems can be used to record the muscle 

activity signal: surface electromyography and fine wire electromyography. The first approach 

is widely used in measuring muscles’ activity while walking, due to its non-invasive nature and 

high level of safety (Kleissen, Buurke, Harlaar, & Zilvold, 1998). However, the typical size of 

signal in walking is (100-500 microvolts) while in rest typically is about 5-10 microvolts. The 

magnitude of the surface EMG signals is influenced by the type of tissue present (e.g. 

subcutaneous fat), as well as how thick the tissues are (Farina & Mesin, 2005), the ambient 

temperature and physiologically-based crosstalk (Winter, Fuglevand, & Archer, 1994), as well 

as altered geometrical relationships between the location of the electrodes and the muscles 

being measured (Delaney, Worsley, Warner, Taylor, & Stokes, 2010). Furthermore, surface 

EMG is negatively impacted by noise from outside sources. In comparison, fine wire EMG is 

based on inserting electrode needles into the muscles themselves, which can cause discomfort 

or pain (Perry, 2010). Moreover, this approach does not detect the signal from the whole muscle 

but only from the motor unit where it is inserted, and the pain caused can have an impact on 

the way the muscle is activated. For these reasons, surface EMG is typically used to analyse 

the activation of muscles in during gait tasks, especially for pathological groups.  
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3.6.2 EMG data collection system  

Collection of data from surface electromyography (EMG) was carried out via a Noraxon 

Desktop Direct Transmission System (DTS), sampling at 1500 Hz, as shown in Figure 3-3 The 

system was configured with eight channels for EMG use, and was used in conjunction with 

Qualisys motion capture system in the laboratory while biomechanical tests took place. 

Equipment needed for measurement of muscle activity via DTS in the study included sensors, 

chargers, sensor cables/leads, USB leads, DTS Wireless EMG Sensors, double-sided tape, dual 

electrodes (figures3-2 to 3-5), the myomuscle program and desktop USB receiver. From the 

eight channels of the EMG DTS, six were employed, in line with the requirements for muscles 

to be monitored along with single-use adhesive Ag/AgCl snap EMG electrodes shaped in a 

figure of eight, and measuring 2.2x4cm, with two 1 cm-diameter conductive circles and 2 cm 

separating each electrode. The electrode equipment comes with hypoallergenic adhesive and 

gel and similar to accepted practice Ag/AgCl electrodes were used (Hermens et al., 2000). With 

the DTS system, information from the muscle being monitored is transmitted, via Bluetooth, 

between the sensor electrode and the receiver on the desktop. This allows EMG measurements 

to be taken simply, as it bypasses the requirement to connect the EMG base station and the 

electrode (subject) with a connecting cable.  
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Figure 3-2.  Desktop DTS 

 

Figure 3-3. SEMG sensor 

 

Figure 3-4. EMG lead set 3 inches electrode cable 
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Figure 3-5. Dual electrodes 

 

Figure 3-6. Nuprep gel. 

3.6.3 Skin preparation, electrode placement & signal testing 

3.6.3.1 Skin preparation 

Before EMG measurement, the skin must be prepared in order to reduce the impedance of the 

skin and enable the electrode to be firmly attached, improving the quality of the signal. Prior 

to recording EMG signals, if required an area of 2-3cm across was shaved with a disposable 

razor (if appropriate). After that, Nuprep Gel (Figure 3-6) was used as an exfoliant at the 

location identified for electrode placement, in order to remove dead skin. A wipe with 70% 

isopropyl alcohol was used for cleaning of the area, before leaving the skin for 2 minutes to 

dry. Finally, electrodes (disposable adhesive Ag/AgCl snap EMG electrodes with 20 mm 

between each electrode) were placed on the skin oriented parallel to the direction of muscle 

fibres. Preparing the skin and placing the electrodes appropriately are both important measures 

to record EMG signals of good quality. 
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Electrode placement & signal testing 

The first part of the experimental protocol was to place EMG electrodes over six muscles on 

the most affected side if bilateral knee OA was present, or on the affected leg if unilateral (or 

matched leg in healthy group): VM, VL, semitendinosus, biceps femoris, medial and lateral 

gastrocnemius. There are various guidelines available for placement of electrodes, but the most 

frequently used is the Surface Electromyography for the Non-Invasive Assessment of Muscles 

(SENIAM) Guidelines (http://www.seniam.org). SENIAM guidelines were implemented in 

this study to select electrode sites through locating muscles using given reference points in the 

anatomy. The SENIAM guidelines offer a method for minimising the risk of crosstalk in the 

signal from the muscles which surround the target muscle. Further, it is recommended in the 

SENIAM guidance that muscles are palpated as the subject performs manual resisted isometric 

contractions, allowing the researcher to locate the muscle belly and reference points in the 

anatomy (Hermens et al., 1999), minimising crosstalk occurrence (Winter, Fuglevand & 

Archer, 1994). Positioning participants in an initial position which is specified by SENIAM for 

individual muscles allows electrodes to be correctly positioned (Hermens et al., 1999, Winter 

et al., 1994).  The muscle belly was palpated to establish muscle layout and fixed features in 

the anatomy to locate sensors correctly. The muscle palpations were recommended to establish 

the underlying muscle layout (Hubley-Kozey et al. 1998; Leveau et al.1992).  Using the 

procedure described above, the 6 muscles tested were located in line with SENIAM guidance, 

and as described below:  

Biceps femoris (lateral hamstring) 

The participant was asked to lie face down on the bed and the thigh was kept on the bed while 

the knee was flexed to an angle smaller than 90°, while laterally rotated. For testing, 

participants were asked to try to flex the knee against a fixed resistance (the experimenter held 

the foot of the participant). This allowed the muscle belly to be palpated. Placement of the 

http://www.seniam.org/
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electrode was made at a distance of halfway from the ischial tuberosity to the tibial lateral 

epicondyle and over the belly of the muscle. 

Semitendinosus (medial hamstring) 

The same procedure as described above was followed, however, the leg was medially rotated. 

For this muscle, the electrode was placed halfway from the ischial tuberosity to the tibial medial 

epicondyle over the muscle belly. 

Vastus medialis (medial quadriceps) 

To locate electrodes on the vastus medialis, participants sat on the bed with their back supported 

in a slight backward inclination of the upper body. Testing was carried out with the leg straight. 

Electrodes were positioned at 80% of the way from the anterior superior iliac spina (ASIS) to the 

joint space found before the medial ligament’s anterior edge. Testing to confirm the muscle 

belly had been correctly located was carried out by participants extending their knees with as 

the examiner resisted any movement of the leg by holding the ankle.  

Vastus lateralis (lateral quadriceps) 

Participants were positioned as described above and electrodes placed at 66% of the distance 

between the anterior superior iliac spina (ASIS) and the patella at its lateral side. Testing that the 

location of the muscle belly had been identified was carried out by participants extending their 

knees as the examiner applied pressure at the ankle to resist leg movement.  

Medial gastrocnemius  

Electrodes for the medial gastrocnemius were located with the participants lying prone on the 

plinth with a straight leg and the foot positioned past the end of the bed. Electrode placement 

was at the most prominent bulge of the muscle. Testing to confirm the location over the muscle 
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belly was carried out by again asking participants to plantar flexion their ankle against manual 

resistance. 

Lateral gastrocnemius 

For the lateral gastrocnemius, electrodes were positioned two thirds of the way from the heel 

to the head of the fibula as the subject lay prone with their foot was off the plinth edge. 

Electrode placement was at third of the line between the head of the fibula to the heel. The 

protocol to check the signal quality was the same as for the medial gastrocnemius, which is 

explained above.  

After applying the protocol, described above, for the individual muscles, the subject was 

required to walk up and down the gait lab as the researcher visually inspected the signals during 

walking to ensure that there was no signal artefact due to motion of the cable. No EMG signals 

were recorded within ten minutes of placement of the disposable electrodes (Redfern et al., 

1994). 

 

3.6.4 Reference contractions (types and rationale)  

EMG signal magnitude is dependent on the level of muscle activation but also on a range of 

physiological factors, including skin conductivity, thickness of subcutaneous fat and number 

of motor units in the EMG collection volume (De Luca, 1997). Therefore, normalisation of 

EMG signals is essential if comparisons are to be made between different individuals. 

Normalisation is done by division of the signal by an appropriate reference contraction value 

(Burden, 2010; De Luca, 1997) and enables EMG signal to be shown as a percentage of 

reference values, meaning that different muscles and participants can be compared (French, 

Huang, Cummiskey, Meldrum, & Malone, 2015). A range of different normalisation methods 

have been proposed previously which include, maximum voluntary isometric contractions 
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(MVIC), sub-maximal voluntary isometric contraction, peak dynamic during gait and mean 

dynamic methods.  

With the peak dynamic approach, processed EMG signals are normalised using the peak 

activation of the muscle over the movement of interest, such as walking. This results in a signal, 

which varies between 0 and 1 (corresponding to the peak activation). In contrast, normalisation 

to an MVIC involves collection of additional EMG data during a maximal reference 

contraction, in which the participant exerts a maximal effort. This maximal contraction is then 

used to normalise the movement EMG signal. Although this approach can be problematic, 

especially for people with pathology, it is widely used to examine neuromuscular changes in 

walking for knee OA subjects (Lewek et al, 2004; Hubley-Kozey et al., 2006; Ramsey et al., 

2007b; Rudolph et al., 2007) and is the most frequently used method of EMG signal 

normalization (MIRKA, 1991). This is because of the relative disadvantages of using the peak 

or the mean dynamic peak normalization which do not allow quantification of the degree of 

overall muscle activation. This is essential when investigating people with knee osteoarthritis 

who will often activate their muscles much more than healthy participants. Given these 

limitations of the peak and mean dynamic method, I chose to use MVIC to normalise the EMG 

signals in this Ph.D. 

 

In order to use MVIC normalisation techniques, it is necessary to select appropriate positions, 

for each individual muscle, in which to collect the normalisation data. Although there have 

been a large number of previous studies which have used MVIC methods to normalise EMG 

signals in knee OA research, there is little consistency between these studies, with different 

investigators using a range of different procedures for positioning the lower limb during the 

MVIC tests. For example, Preece et al. (2016). obtained the MVIC from the hamstrings and 

quadriceps  muscles with the knee flexed at 45°, whereas other investigators have tested people 
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in a position with the  hip and knee in 90° degrees (Lewek et al., 2004b) or a  position of 90° 

degree hip flexion and 70° degrees knee flexion (Winters and Rudolph, 2014). The aims of any 

MVIC test should be to elicit a maximal contraction from the tested muscle. However, it is also 

important that the same limb positioning is used for each subject. Therefore, in order to identify 

the optimal limb position (i.e. that which would elicit the highest muscle contraction), I 

performed a pilot study, which is described below.  

3.6.5 Pilot Study to determine the most appropriate reference contraction 

Aim:  

The purpose of this pilot study was to investigate the different methods of normalisation with 

the aim of identifying which method was able to elicit maximal muscle contraction in each of 

the separate muscles (lateral gastrocnemius (LG), medial gastrocnemius (MG), vastus lateralis 

(VL), vastus medialis (VM), biceps femoris (BF) and semitendinosus (ST). 

Method:  

The sample of this pilot study consisted of 12 healthy subjects and 16 individuals with knee 

OA aged between 40-85years, each of whom were tested in a range of different MVIC 

positions. The MVIC protocol included 10 contractions in a number of different positions 

(described below). Data were recorded from all muscle during all contractions, following 

practice contractions for familiarization. Each of the MVICs lasted for 3 seconds, followed by 

a one-minute rest period (Hubley-Kozey et al., 2006). The tests for the three muscle groups are 

described below: 

Hamstrings:  

For biceps femoris and semitendenosis muscles, the participants lay on the bed and were then 

instructed to push their heel into the researcher’s hand (flexing their knee). Resistance was 

applied to the participant’s movement manually while the researcher’s hand remained in a 



102 

 

consistent position. The task was performed in different positions and a goniometer was used 

to determine the angles of the leg (Rutherford et al., 2011). The following positions were tested: 

 Resisted knee flexion at 15 degrees and leg rotated slightly inwards. (KF15 IR) 

 Resisted knee flexion at 15 degrees and leg rotated slightly outwards. (KF15 ER) 

 Resisted knee flexion at 55 degrees and leg rotated slightly inwards. (KF55 IR) 

 Resisted knee flexion at 55 degrees and leg rotated slightly outwards. (KF55 ER) 

Quadriceps  

For VM and VL muscles, the participant sat on a chair and was instructed to extend their knee 

against the bar (figure 3-7) (which was padded to minimise discomfort). The task was 

performed in different four positions and a goniometer was used to determine the angles. The 

four testing positions were: 

 Resisted knee extension at 15 degrees and leg rotated slightly inwards. (KE15 IR) 

 Resisted knee extension at 15 degrees and leg rotated slightly outwards. (KE15 ER) 

 Resisted knee extension at 45 degrees and leg rotated slightly inwards.  (KE45 IR) 

 Resisted knee extension at 45 degrees and leg rotated slightly outwards. (KE45 ER) 

Gastrocnemius: 

For gastrocnemius muscles, the participants first sat on the plinth with their back supported and 

were instructed to plantarflex their ankle against the bar (PF sit). Specifically, they were asked 

to push against the ball of their foot and a strap was used to prevent knee flexion. A second 

task for gastrocnemius muscles involved the participant standing on one leg. In this position, 

they were instructed to plantarflex their ankle against body weight (as forcefully as they could) 

while holding the frame for balance only (PFstand).  
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Figure 3-7. Movable bar for MVIC 

With the testing described above, there was a total of 10 different MVIC tests carried out. Each 

was performed once and for each test, EMG data was collected using the Noraxon system for 

the six different muscles. Note that this testing was always performed after the gait analysis 

testing to avoid any possible effects of fatigue on the gait assessment.  

 

Following data collection, MVIC data was exported to a custom Matlab programme which was 

used to carrying out specific signal processing. Firstly, a 20Hz high pass FFT filter was used 

to remove noise and movement artefact. The signal was then rectified and a low pass 6Hz 

Butterworth filter used to create a linear envelope. This this linear envelope frequency has been 

used in a number of previous studies (Winter 1990; Hubley-Kozey et al. 2006).  Following the 

procedure suggested by Hubley-Cozey et al. (2006) a moving window algorithm was used to 

determine the 0.1 second window during which the maximum EMG amplitude occurred. This 

maximum value (averaged across the 0.1 second window) was then take as the highest MVIC 

value for that muscle. This procedure was identical for each muscle and each subject and the 

maximal values exported to excel for subsequent analysis. Using these data, I then identified, 

for each muscle, the limb position corresponding to the largest EMG signal, i.e. the position 
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which would be most appropriate to use for an MVIC for that muscle/individual. This analysis 

was repeated for all muscles/participants in order to obtain data identifying the most 

appropriate MVIC across the different muscles.  

Results: 

This data showed that, for the biceps femoris, the position most commonly associated with a 

maximum contraction was the position of 55° knee flexion with external rotations (Table 3-4). 

This position was optimal for 42% of healthy individuals and 50% of patients with knee OA 

exercise. Similarly, for semitendinosus, 67% of healthy subjects and 44 % of individuals with 

knee OA (Table 3-4) exhibited the highest MVIC at this position (55° knee flexion with 

external rotation). For the quadriceps muscles, the highest MVIC for both the medial and lateral 

quadriceps was in 15 degrees of knee flexion with slight internal rotations (Table 3-4). 

Specifically, the percent of individuals who achieved the highest MVIC for the VM in this 

position was 44% for the knee OA group and 42% for the healthy group, while for the VM 

muscle, it was 44% and 33 % for individuals with knee OA and healthy participants 

respectively (Table 3-4). For the gastrocnemius muscle, the data showed that over 80% of 

participants generated a maximal contraction in the standing position (PF stand) (Table 3-4).  
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Table 3-4.  The maximal voluntary isometric contraction exercises MVIC Standard positions 

and the numbers of subjects for both healthy and knee OA groups. 

  Healthy n=12 OA n=16 

  

Number of 

subjects % 

Number of 

subjects % 

Medial 

Gastrocnemius 

PF Sit 1 8.33 0 0.00 

PF Stand 11 91.67 16 100.00 

Lateral 

Gastrocnemius 

PF Sit 2 16.67 2 12.50 

PF Stand 10 83.33 14 87.50 

Vastus medialis 

KE 15 ER 2 16.67 4 25.00 

KE 15 IR 5 41.67 7 43.75 

KE 45 ER 2 16.67 5 31.25 

KE 45 IR 3 25.00 0 0.00 

Vastus lateralis 

KE 15 ER 4 33.33 2 12.50 

KE 15 IR 4 33.33 7 43.75 

KE 45 ER 1 8.33 3 18.75 

KE 45 IR 3 25.00 4 25.00 

Semitendinosus 

KF 15 ER 1 8.33 0 0.00 

KF 15 IR 2 16.67 3 18.75 

KF 55 ER 2 16.67 6 37.50 

KF 55 IR 8 66.67 7 43.75 

Biceps femoris. 

KF 15 ER 3 25.00 3 18.75 

KF 15 IR 2 16.67 2 12.50 

KF 55 ER 5 41.67 8 50.00 

KF 55 IR 1 8.33 3 18.75 

 

 

Summary, 

Given the results described above, I adopted the following positions for MVIC testing: 

- For both of the quadriceps muscles (VM and VL): KE15 IR (knee flexed to 15°and 

slightly internally rotated) 

- For the biceps femoris: KF55 ER (knee flexed to 55°and slightly externally rotated) 

- For the semitendinosus: KF55 IR (knee flexed to 55°and slightly internally rotated) 
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- For the medial and lateral gastrocnemius: PF stand (plantarflexion of the ankle against 

body weight in standing). 

 

3.6.6 Further justification for the use the MIVC normalization method 

As explained in section 3.6.4, it is necessary to select an appropriate method to normalise the 

EMG signals. This is because EMG magnitude is dependent on factors other than the level of 

muscle activation, such as skin conductivity, thickness of subcutaneous fat and number of 

motor units in the EMG collection volume (De Luca, 1997). In section 3.6.4, a theoretical 

justification was provided for the use of MVIC normalisation. However, to provide further 

support for the use of MVIC data, a comparison of MIVIC data was performed between the 

healthy group and the group with knee osteoarthritis. For this analysis, MVIC contraction data 

for each muscle, in the test position specified above, were compared between the two groups 

The MVIC value, for each muscle, was obtained using the linear envelop approach described 

in the previous subsection (Section 3.6.5) and is presented below in the units of MicroVolts. 

For each muscle, a comparison between the two groups was performed using an independent 

t-test. 
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Table 3-5. Differences in maximal voluntary isometric contraction exercises (MVIC) for 

selected positions of the muscle around the knee joint. Mean(SD) data is expressed in 

MicroVolts. 

Muscle Group 
Mean (SD) 

 
P- value 

MG (PF stand) 
Healthy 212.37 (97.10) 

0.16 
OA 176.48 (74.07) 

LG (PF stand) 
Healthy 198.09 (92.21) 

0.76 
OA 191.11 (60.84) 

VM (KE15 IR) 
Healthy 137.18 (74.40) 

0.28 
OA 115.19 (63.62) 

VL (KE15 IR) 
Healthy 135.60 (60.13) 

0.29 
OA 114.38 (72.81) 

ST (KF55 IR) 
Healthy 236.43 (112.14) 

0.64 
OA 222.39 (93.42) 

BF (KF55 ER) 
Healthy 203.29 (92.62) 

0.86 
OA 199.08 (76.85) 

 

The results, shown in Table 3.5, illustrate that while differences exist between values for the 

two groups, none of these differences were significant. Percentage difference between the 

healthy and knee OA subjects were approximately 20% higher in the healthy group for the 

medial gastrocnemius but less than 20% for the other muscles. Importantly, the comparison of 

muscle activation levels between participants with knee OA and healthy controls (described in 

detail in Section 3.6.5) showed that five out of the six muscle studied were significantly higher 

in the group with knee OA. Although it is possible that this difference could have been due to 



108 

 

higher MVIC levels in the healthy groups, the differences observed in section 4.4.4 are 

typically 50% larger in the group with knee OA. Therefore, given the differences of less than 

20% in the table above, it is unlikely that differences in MVIC level could explain the observed 

differences in muscle activation. These difference most likely reflect true differences in muscle 

coordination between the two groups. 

  

The approach of normalisation of EMG to MVIC was selected based on a consideration of its 

previous use, strengths and weaknesses. First, it is noted that this approach is well established 

for studies of knee OA, as evidenced by Mills, Hunt, Leigh and Ferber’s (2013) systematic 

review and meta-analysis of fourteen studies to identify frequently-occurring neuromuscular 

changes with knee OA and the impact of the level of OA, joint laxity and varus alignment. The 

majority of the studies included in the review followed this approach. Good reliability is 

reported for MVIC (Halaki & Ginn, 2012; Rutherford, Hubley-Kozey & Stanish, 2010; Lee & 

Jo, 2016). However, Halaki and Ginn (2012) emphasize the need to achieve maximal 

neuromotor activation through using the most appropriate MVIC test for each muscle to be 

measured. The findings above of only small, non-significant, differences between the MVIC 

values, provides confidence that the maximal neuromotor activation was achieved with the 

protocol used for this thesis.  

 

 

3.7 Kinematic and kinetic data collection procedures:  

3.7.1 Calibration and set up of the motion capture system  

 

Calibration of the camera system was required for collection of kinetic and kinematic 

information. For this, a reference item (A frame of metal in an L-shape) was located on force 
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platform first on a corner, aligned parallel with both Y and X axes and marked with 4 markers 

which are positioned a set length from the force platform co-ordinate origin (corner) figure 3-

8 b). These were calculated on an automatic basis and entered into the computer program 

(Winter, 2009). The medial/lateral (X) axis, anterior posterior (Y) axis and vertical (Z) axis act 

together with the reference item to form the co-ordinate system origin for the lab. In order to 

calibrate the system, random motions are made for one minute’s duration using a wand to which 

2 markers are attached Figure 3-8 A, with the reference object remaining situated on the force 

platform. This process establishes where the sixteen cameras are positioned and oriented in 

relation to the system of co-ordinates established in the laboratory (Payton and Bartlett, 2008). 

Following this calibration process, the errors in identifying the 3D coordinates during the 

calibration procedure were 1 mm.  

 

With 3D marker capture and kinematic analysis, at least 2 cameras must be able to image an 

individual marker for the software to be able to reconstruct the precise 3D co-ordinates 

(Cappozzo et al., 2005). During the piloting phase of the experimental work, I checked each 

marker in the chosen configurations to be sure that it could always be seen (throughout the 

collection volume) and therefore the 3D co-ordinates calculated. With 3D motion analysis, the 

body is segmented into a number of rigid segments, each of which is tracked separately. In 

order to define the precise position and orientation of each segment, at least three non-colinear 

markers must be attached to each segment. Provided all three markers can be tracked 

accurately, then specialised software can be used to calculate 3D position and orientation of 

each segment both relative to the reference, (laboratory) system and also relative to other 

segments. By combining the kinematic information with precise information on forces under 

the foot, inverse dynamic calculations can be used to derive moments at the ankle, knee and 
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hip (Winter et al., 1990). Both the kinematic and the kinetic calculations were performed using 

the Visual 3D software (see later section). 

 

Figure 3-8.  A) Calibration wand with two markers.   B) L-shape of Calibration frame with 

four markers.   C) The sixteen-camera Qualisys Oqus motion analysis system, force platforms 

walking distance and direction at gait lab. 

 

 

3.7.2 Marker placements 

A set of 14.5 mm-diameter reflective markers were adhered to the skin by means of 

hypoallergenic tape stuck on the flat base of the markers. As explained above, a minimum of 

3 markers, which are not aligned linearly, are needed per rigid body segment to describe the 

3D position and orientation (Cappozzo et al., 1996). According to Cappozzo et al. (1996) 

artefacts caused by motion of the skin moving markers in relation to the bones presents a 

significant source of errors in gait trials. For this reason, the CAST (Calibrated Anatomical 
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System Technique) was applied to reduce the effect of these artefacts, which utilises rigid 

cluster plates (Cappozzo et al., 1996, Cappozzo et al., 1995). In CAST, the POSE (position and 

orientation of body segments) is derived by placing individual anatomical markers at points of 

bony prominence to define rigid segments, while clusters of technical markers are used to track 

segment motions. By using this approach, artefacts from skin movement were minimized 

(Cappozzo et al., 1996). 

Cappozzo et al. (1997) identified the optimal marker numbers to be included in the cluster for 

a segment in order to give the most accurate orientation and positioning data within practical 

parameters. They suggested clusters of 4 markers attached in locations to minimise global skin 

motion artefacts, using anti-migratory self-attaching tape, and that tracking clusters should not 

be placed over bony prominences, to reduce displacement effects. Manal et al. (2000) reported 

the use of a rigid plate for marker clusters rather than mounting them directly on the skin, 

therefore reducing skin movement artefact occurrence as no motion is possible within a cluster. 

Given these recommendations, I used 4-marker clusters mounted on rigid plates made of 

polypropylene, and attached these to the two shanks, two thighs and pelvis with double-sided 

adhesive tape, before wrapping the clusters in Fabriofoam Superwrap™. 

CAST was selected over the set of markers put forward by Hayes, because the latter set create 

the potential for error to be transferred along the lower limbs, with incorrect location of markers 

for the pelvis impacting other marker placement. Further, the Hayes approach is more open to 

soft tissue artefact production, with both wands and markers mounted directly onto skin. I 

adopted a CAST, seeking to minimise the presence of artefacts from motion of the skin by 

placement of markers centrally within a body segment. Further, the way in which markers on 

joints are oriented and positioned should be constant, and mathematical calculation of the 

relationship of the markers on segments to markers on joints should be achievable, in static 



112 

 

calibration. After removal of the calibration markers from the joints the segment, this allows 

for the use of tracking marker data to calculate segmental position and orientation.  

3.7.3 Kinematic and kinetic data collection 

Kinematic/kinetic data was collected using a Qualisys motion analysis system and two AMTI 

force platforms. Sixteen infrared cameras (Qualisys, Sweden) were used to capture the 3-

dimensional positions of retro-reflective markers (see Figure 3-9) attached at various 

anatomical positions on the lower limbs and trunk. The small reflective markers were stuck to 

the skin using hypo-allergenic adhesive tape. Individual markers were attached on anterior 

superior iliac spines (ASISs), posterior superior iliac spines (PSISs), iliac crests, right greater 

trochanter, left greater trochanter, lateral femoral epicondyles, medial femoral epicondyles, 

lateral malleoli, medial malleoli, the 1st, 2nd and 5th metatarsal heads and calcaneal tubercle. 

In addition, a cluster pad (as explained above) with four markers was placed on the shank, thigh 

and pelvis using bandages. Markers were also placed on the anatomical joint landmark of trunk, 

Jugular notch, Thoracic vertebrae T2 and T8, shoulder (Right and left side acromion process). 

The rationale for this choice of marker placements is discussed in detail in section 3.10.2 below.  

 

3.8 Footwear 

Once all EMG electrodes (Section 3.6.3) and reflective markers (Section 3.7.2) were in place, 

then the gait analysis data was collected in two different types of footwear:  

1. Control footwear which was a standard oxford style shoe (figure 3-9)  

2. Rocker footwear which was the three-curved rocker shoe, described below. 
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Figure 3-9. Control shoe (left pair shoes for women and right pair for men). 

The control shoe used was a high street Oxford shoe, which this was selected as a standard 

shoe as it is widely available and is in widespread use. The outsole has a low heel, and the 

shoes are lace-up. While this type of shoe is less commonly worn by women, the shoe design  

for men and women was kept constant for all participants to avoid creating a factor for variation 

in the results.  See Figure 3-10. 

3.8.1 The three-curved rocker shoe 

Rocker shoes are designed with a rigid outsole, which is designed to “rock” the foot forwards 

during the stance phase of walking. In a recent study, Hutchins et al. (2012) proposed a rocker 

shoe design with a rocker profile created from three different curves, generated from circles 

drawn around the hip, knee and ankle. The motivation for this design is to redirect the GRF 

vector so that it is closer to the respective joint centres and therefore reduces the effective 

distance between the GRF vector and the joint centre, thereby reducing joint moments (Figure 

3-13 below). Although further research is required to fully validate the proposed effects of the 

three-curved rocker shoe, Hutchins et al. (2012) suggests that the realignment of the GRF 
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vector will reduce joint moments and therefore reduce muscle activation around the hip, knee 

and ankle.  

According to Hutchins et al. (2012) this design of shoe will modify the direction and orientation 

of the GRF during early stance and this will bring about a corresponding reduction in 

gastrocnemius activation. In-turn this will produce a corresponding decrease in gastrocnemius-

quadriceps muscle co-contraction during early stance and therefore may reduce co-contraction 

in people with knee OA. Hutchins et al. (2012) also suggest that the three-curve rocker shoe 

will reduce the hip moment, as a result of the change in the direction of the ground reaction 

force vector, during the early-mid stance part of the gait cycle. Furthermore, as explained 

above, it has been suggested that the destabilising effect of the rocker shoe may improve 

postural alignment by encouraging a better alignment of body segments during gait. These 

effects, of reducing forward trunk inclination, combined with a reduction in hip moment, due 

to the redirection of the ground reaction force, are likely to lead to decreases in hamstring 

muscle activity and therefore reductions in hamstring-quadriceps co-contraction. Given the 

mechanisms (explained above) by which this three-curved rocker shoe could reduce both 

hamstring-quadriceps and also gastrocnemius-quadriceps co-contraction, it was deemed the 

most appropriate design for this study.  
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Figure 3-10. The three radiuses of 3 curve rocker shoe (T3C) 

 

 

Figure 3-11. The three-curved rocker shoe (T3C) (left pair for women and right for men). 
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3.9 Gait analysis procedures  

For each shoe, a static trial was collected initially followed by at least 5 successful dynamic 

walking trials. For the static trial, the subject stood stand on the force plate form for 10 seconds 

while motion capture (kinematic) data was collected. Following the static trial, each participant 

was given a 5-minute familiarisation period with each footwear type and then was asked to 

make at least five successful walking trials. Successful trials were those in which subjects made 

contact with the force plate with the most affected leg for knee OA subjects, and the matched 

leg for the healthy volunteer, without targeting and with appropriate and consistent gait pattern. 

For the gait trials, walking was undertaken at a self-selected speed for knee OA patients.  

However, people with knee OA typically walk slower than health controls (Kaufman et al., 

2001). Therefore, in order to ensure that the results were not confounded by speed, healthy 

subjects were instructed to walk slowly. During each trial, walking speed was measured using 

optical timing gates and subsequent comparison of the speeds between the two groups showed 

that the knee OA group walked with a mean (SD) speed of 1.1 (0.13) m/s and the healthy group 

with a mean (SD) speed of 1.09 (0.13) m/s. An independent t-test was carried out to analyse 

the speed difference and showed that there was no significant difference between the groups 

(p=.81). To ensure that subjects maintained the same walking speed in each of the footwear 

conditions, walking speed was measured using optimal timing gates after each trial and only 

trials within +/-10% were accepted.   

Following successful completion of the walking trials, the subject then repeated the process for 

the next pair of shoes (order randomised), allowing sufficient time to get used to each of the 

different footwear conditions.  During each of the gait trials, kinematic data and kinetic data 

were collected with the Qualisys motion analysis system (100Hz) and two AMTI force 

platforms (1000 Hz) respectively, while a wireless DTS -EMG system (1500 Hz) was used at 



117 

 

the same time for recorded muscle activity, as explained in Sections 6 and 7 respectively. 

Following the gait data collection, the MVIC data was obtained as explained in Section 3.6.5 

above.  

 

3.10 kinemetic and kinetic data processing  

3.10.1 Choice of biomechanical model 

A widely-used rigid body model is the CGM (conventional gait model) (Davis, Ounpuu, 

Tyburski, & Gage, 1991; Kadaba, Ramakrishnan, & Wootten, 1990). However, with this 

approach, it has been suggested that the use of minimal, but widely spaced, markers can 

increase the sensitivity and effectiveness of CGM as the skin moves (Cereatti, Camomilla, 

Vannozzi, & Cappozzo, 2007). Furthermore, the CGM does not allow identification of the way 

in which a segment is positioned and orientated without reference to another segment, as there 

are only two markers tracking each segment (Cereatti et al., 2007; Schwartz, Trost, & Wervey, 

2004). As an alternative to the CGM, Della Croce (1996) propose a ‘6 degrees of freedom’ 

(6DOF) model which allows segments to be individually tracked by attaching 4 retro-reflective 

markers to each segment. In this model, transverse, frontal and sagittal rotation variables are 

derived from the data alongside anterior-posterior, medial-lateral and vertical translational 

parameters for every joint, forming a picture of how the joint is oriented and located in three 

dimensions. This allows independent measurement of all segments, minimizing error rates. The 

6DOF approach is reported to reduce error in comparison with CGM (Cappozzo et al., 1996; 

Cereatti et al., 2007). Given the potential advantages of the 6DOF approach, it was chosen in 

this thesis as the basis for calculating joint kinematics and moments.  
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3.10.2 Definition and tracking for the thoracic segment 

The trunk weighs more than any other body segment (Gillet et al., 2003), and therefore the 

kinematics of the trunk need to be considered carefully when analyzing gait (Romkes et al., 

2007). However, a range of different approaches have been used for modelling the thoracic 

segment, each with a different set of markers. For example, Davis et al. (1991) used just two 

markers to define this segment, positioned between the left and right clavicle and at C7. In 

another study, Nguyen and Baker (2004) and Gutierrez, Bartonek, Haglund-Åkerlind, and 

Saraste (2003) also use these two markers, but add two additional markers at T10 and on the 

sternum (Gutierrez et al., 2003). Another approach proposed by the International Society of 

Biomechanics (ISB) uses markers placed at the IJ (incisura jugular), XP (process of xyphoid) 

C7 and T8. 

 

In a recent study Armand et al. (2014) sought to determine the optimal marker set for tracking 

thorax motions during clinical gait analysis, comparing different marker sets. The authors first 

studied a set of markers incorporating incisura jugularis (IJ) and the processus xyphoid (XP), 

with a low thorax marker at T6, T8 or T10. This set was compared to a set consisting of  IJ, 

and T2 or C7 along with T8/T10. The former set appeared to lead to excessive amplitude of 

movement in the frontal plane and therefore the latter set was deemed more appropriate. From 

this latter set, the C7 marker was rejected for analysing walking patterns as it was found to be 

highly responsive to movements of the head. Both T8 and T10 were found to give good 

reliability as markers. Overall, the authors found suggested that the optimum marker set for 

tracking the thoracic segment was IJ, T2 and T8 or T10 (Armand et al., 2014), and these 

recommendations are used in the thesis. 
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3.10.3 Defining and tracking the different segments in the model 

The biomechanical model used 

 

A three-dimensional ‘six degrees of freedom’ (6DOF) model was constructed as biomechanical 

model, comprising 8 rigid segments: the thorax, pelvis, right and left thigh, right and left shank 

and right and left foot (Figure 3-12). Each segment was defined and tracked separately 

following the 6DOF modelling approach. As explained above, each segment was tracked with 

at least 3 (and sometimes 4) non-colinear markers which enabled the position and orientation 

of each segment to be precisely determined relative to the laboratory origin. With these data, 

biomechanical software (see Section 3.10.5) was used to derived joint kinematics. The 

biomechanical model is described in Table 3-6 below. 
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Table 3-6.  Biomechanical model segments and tracking markers 

Segment Proximal 

joint 

Distal joint Tracking 

markers 

Trunk Right and left 

grater 

trochanter 

Right and left 

acromion 

Jugular 

notch(IJ), 2nd 8th 

Thorax 

vertebra 

Thorax 

vertebra 

Coda 

Pelvis 

Right and left 

-  anterior 

superior iliac 

spine 

 

Right and left - 

posterior 

superior iliac 

spine 

 

Pelvis cluster 

belt 

(3 markers) 

Thigh Right and left 

greater 

trochanter 

Medial and  

Lateral femoral 

epicondyles 

Thigh cluster 

(two clusters; 4 

markers for 

each) 

Shank Medial  and 

lateral 

femoral 

epicondyles 

Medial and 

lateral malleolus 

Shank cluster 

(two clusters; 4 

Markers for 

each) 

Foot Medial and  

lateral 

malleolus 

first and fifth 

foot metatarsals 

Right and left 

foot  1st 2nd 5th 

metatarsal 

head 

metatarsal 

head 

Right and left 

heel calcaneus 
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Figure 3-12. (A) Visual 3D biomechanical Model, (B) Qualysis Track Manager 

 

3.10.4 Raw data pre-processing  

 
The Qualisys motion analysis system (Qualisys, Gothenburg, Sweden) and two AMTI force 

platforms (AMTI BP400X600, AMTI, USA) were used to acquire kinematic and kinetic data 

respectively. Kinematic data acquisition was made at 100 Hz, while kinetic data was obtained 

using two force platforms at 1000 Hz. Once collected, the raw data for kinematics were 

interpolated to correct for tracking errors (max 10 frames) low pass filtering used to  remove 

the high frequency noise from the marker trajectory data. The filtering was performed, in Visual 

3D, using a Butterworth 4th order bi-directional filter with a cut-off point of 6Hz for kinematics 

(Winter, 2009). The force data was also low pass filtered at 25Hz to remove any high frequency 

noise (Schneider and Chao, 1983), again in Visual 3D.  
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3.10.5 Kinematics and kinetic calculations  

 

Following filtering, the raw data was used as input to the 6DOF biomechanical model 

(described above) in order to derive segmental positions and orientations. Visual 3D was then 

used to implement Euler angle calculations to determine 3D joint angles between each set of 

adjacent segments. Force data was the used as part of inverse dynamic calculations, to derive 

joint moments at the hip, knee and ankle and to derive CoP in a foot coordinate system. All 

moment data was subsequently normalised to body weight.  

 

Specific kinematic and kinetic curves were then selected for subsequent analysis, including 

hip, knee and ankle sagittal plane kinematic and moment data, thorax (relative to the laboratory) 

kinematic data and CoP data. All kinematics, kinetic and CoP data curves were time-

normalised (0-100%) to the stance phases of the gait cycle, from initial contact (heel strike) to 

toe-off using the force data and a threshold of 5N. Finally, all gait curves were exported from 

V3D to Microsoft Excel 2016. This was done for each individual trial and each shoe, creating 

a database containing all data. Using these data, the ensemble averages from the kinematic, 

kinetic and CoP data were then calculated across stance phase for each subject and each shoe. 

From these curves, specific outcomes were calculated for each of the separate studies. Further 

details are provided in Chapters 4, 5 and 6. 

 

3.11 EMG data processing 

Following data collection, the gait EMG data was exported in a c3d format which could be 

ready by a custom Matlab programme which was used to perform standardised EMG 

processing. This processing involved using 20Hz high pass FFT filter to remove noise and 
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movement artefact. The signal was then rectified and a low pass filter (6Hz Butterworth) used 

to create a linear envelop. Note this cut  frequency has been used previously in earlier EMG 

studies of people with knee OA (Winter 1990; Hubley-Kozey et al. 2006). The EMG signals 

were then time normalised to the stance phase of the most affected limb using gait event data 

captured from the force platforms. Following EMG processing, the data were exported to a 

Microsoft Excel 2016 so that ensemble average curves could be produce for each muscle, shoe 

and participant.  

 

The MVIC data processing, described in the MVIC pilot study (Section 3.6.5), was used to 

obtain a reference value for each muscle for each person. This MVIC value was then used to 

normalise the EMG data for each muscle individually from the ensemble average of the 

walking trials. Specific outcomes, relating to each research question, were then derived from 

these ensemble average normalised curves, either for individual muscles or by combining 

agonist-antagonist pairs characterise co-contraction. Previous researchers have suggested two 

possible methods for calculating co-contraction from pairs of muscle groups. The first of these 

methods, suggested by Heiden et al. (2009), is based on a co-activation ratio, calculated from 

the angonist and antagonist muscles, and is defined as follows: 

 

The other method is to simply sum the activity of the agonist and antagonist at each point of 

the gait cycle to produce an overall ensemble average co-contraction curve (Winby et al., 2013, 

Preece et al., 2016). Importantly, a recent modelling study showed that this latter approach of 

summing the activity correlated more strongly with knee loads (Winby et al., 2013)  and 

therefore was used throughout this thesis. In chapters 4,5 and 6, muscle activity or co-
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contraction were averaged across a specific window of the gait cycle to create appropriate 

outcomes. Further details of these outcomes are provided in Chapters 4, 5 and 6. 

 

3.12 Reliability study: 

As this thesis aimed to investigate gait kinetics, kinematics and EMG, it was necessary to 

ensure that the data produced was reliable, and repeatable between different sessions. 

Therefore, before the main data collection began, a reliability study was carried out. 

 

Aim:  To assess the test-retest repeatability of the gait kinetics and kinematics and muscle 

activity between days.  

 

Method 

The sessions took place at the Gait Laboratory of the University of Salford. Three healthy 

subjects were recruited for this study. The participants were postgraduate students at the 

University of Salford. The full lab protocol, explained above , was performed on two occasions 

separated by at least 2 days. However, due to a problem with a development of the EMG testing 

protocol, MVIC data were not collected. EMG data was therefore normalised to the peak value 

(the peak dynamic method) rather than the MVIC. 

 

The Coefficients of Multiple Correlation (CMC), which measures the similarity of waveforms, 

was used to quantify the between day measurements for each curve (Kadaba et al., 1989). The 

CMC value can be any number from zero (0) to positive one (+1). The higher the reliability 

(waveform match), the closer the result is to one. According to Growney et al. (1997), similar 

waveforms with values of more than 0.8 demonstrate high test-retest reliability. All statistics 
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were performed using The Statistical Package for the Social Sciences (SPSS 20, IBM, New 

York, USA).  

Results: 

Three male healthy subjects in the study; mean age 37.33 (1.5) years; age range 36-39 years 

with mean 37.3 (1.5); mean height 1.653 (.01)m; height range 1.64-1.67 cm; mean mass 

74.3(12.5) Kg; weight range 60- 83 Kg) mean 74.3(12.5).  

Test-retest reparability of EMG during gait. 

The results demonstrate high levels of repeatability in kinematic, kinetic and EMG measures 

between sessions on different days. CMC results for trunk inclination (Figure 3-13 to 3-15), 

moments, EMG (medial and lateral gastrocnemius, VM, VL, semitendinosus and biceps 

femoris activity) for all subjects are presented in Table 3-7.   
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Table 3-7.  Within- & between-days CMC 

Variable Subject CMC 
K

in
em

at
ic

 Trunk inclination (°) 1 0.97 

2 0.97 

3 0.94 

K
in

et
ic

 

Hip moment 

1 0.99 

2 0.99 

3 0.99 

Knee moment 

1 0.99 

2 0.99 

3 0.99 

Ankle moment  

1 0.99 

2 0.99 

3 0.99 

E
M

G
 

Medial gastrocnemius 

activity 
1 1.00 

2 0.99 

3 1.00 

Lateral gastrocnemius 
activity  

1 0.99 

2 0.99 

3 0.99 

VM activity 

1 1.00 

2 1.00 

3 1.00 

VL activity 

1 0.99 

2 0.99 

3 0.99 

Semitendinosus 

activity  

1 0.99 

2 0.99 

3 0.99 

Biceps femoris activity 

1 0.99 

2 1.00 

3 0.35 
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Figure 3-13.  Subject 1: trunk inclination with the dotted line is the second day and the solid 

line is the first day 

 

 

Figure 3-14. Subject 2: Trunk inclination with the dotted line is the second day and the solid 

line is the first day. 
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Figure 3-15. Subject 3: Trunk inclination with the dotted line is the second day and the solid 

line is the first day. 

 

As can be seen above, the study showed very good repeatability in all outcomes.  Specifically, 

CMC values of .97, .97 and .94 were observed for the three subjects for trunk inclination, while 

for the remaining variables, values of 0.99 - 1 were obtained. Sample waveforms shown in 

Figures 3-13, 3-14 and 3-15 for trunk inclination, show that values for this variable closely 

matched at each point during the stance phase. These data provide confidence in my ability to 

perform the laboratory protocol repeatedly.    
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Chapter 4 - Study One: Trunk inclination in people with 

knee OA 
 

Overarching aim: 

To fully characterise differences in sagittal plane trunk inclination and other biomechanical 

variables between people with knee OA and healthy controls.  

 

4.1 Overview of the study  

Previous research has shown that people with knee OA stand with increased trunk inclination 

(Figure 4-1) (Turcot et al., 2015b). However, there is no definitive data on trunk inclination in 

people with knee OA, and it is not clear whether the trunk lean adopted in standing is 

maintained in walking. Therefore, the first three research questions (RQ1A-1C) in this chapter 

explore trunk inclination during walking and standing in people with knee OA.  

 

Figure 4-1. Walking with normal trunk position on the left and with forward trunk inclination 

on the right. 
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If patients with knee OA do walk with an increased inclination of the trunk, then this may lead 

to a change in the CoP path under the foot. However, there appear to be conflicting results in 

previous research, with some studies showing a definite alteration in the CoP path (Saito et al., 

2014) in people with knee OA and others showing no differences in ankle plantarflexor 

moments (Astephen et al., 2008). These conflicting findings of previous research motivated 

research questions RQ1D-1E, which seek to explore whether alterations in CoP path are a 

characteristic of OA gait and whether such alterations are linked to variations in forward trunk 

lean.  

Previous research has consistently shown that people with knee OA walk with increased muscle 

activations (Zeni et al., 2010; Childs et al., 2004; Hortobagyi et al., 2005; Hodges et al., 2016) 

and an increase in the associated co-contraction (Childs et al., 2004, Lewek et al., 2004; Hodges 

et al., 2016; Hubley-Kozey et al., 2006). Furthermore, research has shown that knee OA to be 

associated with increased hip extensor moment (Liu et al., 2014) and, in some cases, alterations 

in knee moments (Kaufman et al., 2001, Astephen et al., 2008, Baliunas et al., 2002a, Sritharan 

et al., 2016; Mündermann et al., 2005). Therefore in the final set of research questions in this 

chapter (RQ1F-1H, I have repeated previous research which has sought to characterise the 

differences in moments, muscle activations and co-contraction between people with knee OA 

and healthy control subjects. The purpose of this investigation was to fully characterise the 

cohort and to facilitate comparisons with previous research.  

4.2 Research Questions 

                  The research questions for this study are as follows: 

1. RQ 1A: Do individuals with knee OA walk with an increased inclination of the trunk? 

2. RQ 1B: Do individuals with knee OA stand with an increased inclination of the trunk? 
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3. RQ 1C: Does trunk inclination in standing correlate with trunk inclination in walking 

both in a group of individuals with knee OA and also in a healthy cohort? 

4. RQ 1D: Is there a difference in CoP between healthy and knee OA subjects? 

5. RQ 1E: Is there a link between forward trunk inclination and anterior shift of CoP?  

6. RQ 1F: What are the differences in hip/knee/ankle moments between healthy and knee 

OA subjects? 

7. RQ 1G: What are the differences in hamstring/quadriceps/gastrocnemius muscle 

activity between healthy and knee OA subjects? 

8. RQ 1H: What are the differences in co-contraction of between healthy and knee OA 

subjects? 

For each of these studies, I chose to focus on the period 15-25% of the stance phase as this has 

been shown to the period of peak loading during walking. This idea was discussed in detail in 

Section 2.4.5 of the literature review section. 

 

4.3 Methodology 

4.3.1 Sample and population 

Data for all the three studies were collected during a single visit from two groups; healthy 

(n=20) and knee OA (n=27) subjects across both genders. Further details of the specific 

inclusion/exclusion criteria are provided in Section 3.2 of the methods section.  
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4.3.2 Derivation of outcome measures 

In the methods chapter, a full description was provided for all the experimental testing and 

initial data processing required to address the eight research questions stated above. The 

methods section explains how specific joint kinematics, moments and CoP were derived and 

also details the post processing which was applied to the raw EMG data. In the section below, 

I have presented a detailed explanation of how the specific outcomes (relating to each research 

question) were derived from the kinematic, moments, CoP and EMG data. As explained in 

Chapter 3, only data collected whilst participants wore the control shoe was used to address the 

questions in this chapter.  

RQ 1A: Do individuals with knee OA walk with an increased inclination of the trunk? 

Trunk inclination was calculated as the orientation of the thoracic segment (see methods 

section) with respect to the laboratory reference frame in the sagittal plane. For each person, 

an ensemble average trunk inclination was calculated over the stance phase of gait and from 

this ensemble average, a value for mean trunk lean was calculated over the specific period of 

stance phase (15-25%). Mean trunk lean (over 15-25% stance) was the outcome used to address 

this research question.  

RQ 1B: Do individuals with knee OA stand with an increased inclination of the trunk? 

As explained in the methods section, each participant was required to stand still for a period of 

at least 10 seconds whist kinematic data was collected for the calibration trial. A one second 

window (selected on the basis of there being minimal body movement) was used to obtain a 

representative signal for trunk inclination during standing. Mean standing trunk inclination was 

then calculated across this one-second window and used as the outcome to address this research 

question.  
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RQ 1C: Does trunk inclination in standing correlate with trunk inclination in walking both 

in a group of individuals with knee OA and also in a healthy cohort? 

The outcomes defined above (RQ 1A and 1B) were used to address this question. 

RQ 1D: Is there a difference in CoP between healthy and knee OA subjects? 

Ensemble average CoP signals were derived, in the anterior posterior (A-P) direction, for each 

individual and then a mean CoP position calculated over the period 15-25% stance. This mean 

CoP was the outcome used to address this research question. 

RQ 1E: Is there a link between forward trunk inclination and anterior shift of CoP in the 

specific period of gait? 

The outcomes were explained in RQ 1D  

RQ 1F: What are the differences in hip/knee/ankle moments between healthy and knee OA 

subjects? 

Ensemble average curves for sagittal hip, knee and ankle moment were calculated for each 

participant. Then, to produce a single outcome for each curve, we calculated the mean over the 

specific period of stance phase (15-25%) during walking. 

RQ 1G: What are the differences in hamstring/quadriceps/gastrocnemius muscle activity 

between healthy and knee OA subjects? 

The means of biceps femoris, semitendinosus, vastus medialis, vastus lateralis and medial and 

lateral gastrocnemius activity, over 15-25% stance were calculated to answer this question.      

For each individual, we created a smoothed linear envelop signal which was normalised by the 

MVIC signal (as explained in the methods section) for each muscle over each walking trial.                                          
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Mean ensemble EMG profiles were calculated across the time window 15-25% stance, giving 

a value of muscle activation over the period of interest for each muscle in every individual.   

RQ 1H: What are the differences in muscle co- contraction between healthy and knee OA 

subjects? 

In order to quantify co-contraction, I used a method that involved summing the activation levels 

of the agonist and antagonist muscles. This was done separately for the medial muscles and the 

lateral muscles. Specifically, two quadriceps–hamstrings co-contraction outcomes were 

obtained along with two quadriceps–gastrocnemius outcomes (one for the lateral muscle and 

one for the medial muscle pairs) over the time window 15-25% stance (Heiden et al., 2009b),     

as this corresponds to peak loading, as explained in details in section 2.4.5.   

4.3.3 Statistical analysis 

All statistical analysis relating to research questions RQ 1-H were performed using the 

statistical package for social studies (SPSS) version 23 for Windows. This study involved one 

independent variable, the tested group; and evaluated sixteen tested dependent variables. 

Before the results were analysed, data screening was carried out for normality and homogeneity 

of variance assumptions, to allow parametric calculations of analysis of difference. No outliers 

were found when a box and whiskers boxplot was carried out for each tested variable. 

Descriptive analysis using histograms with normal distribution curves revealed normal 

distribution of data each variable, and normality tests did not suggest significant differences 

between the distribution of the tested sample’s raw data and normally-distributed population 

data, using the same means as those of the tested variables (p>0.05) and evaluated using the 

Shapiro-Wilk's test. Homogeneity of variances was identified using Levene's test for equality 

of variances testing (p>0.05) for each dependent variable. Thus, the results did not violate the 
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parametric assumption, and parametric data analysis was possible.   Data are given in the form 

of mean ± standard deviation (SD) in the descriptive statistics (see following section).  

In order to investigate the differences between knee OA and healthy groups (research questions 

RQ 1A, B, D, F, G, and H) specific outcomes, defined above were used. These were forward 

trunk inclination, moments, A-P CoP, each muscle’s EMG profile and co- contraction averaged 

across the time window 15-25 % stance. These comparisons were calculated using an 

independent t-tests to determine if there were any significant differences in the mean values of 

each the outcome between the groups.   

A Pearson’s correlation coefficient (r) was used to investigate the relationship between forward 

trunk inclination and the outcomes defined for research questions RQ 1C and RQ 1E (standing 

trunk lean and A-P CoP), again averaged across the time window 15-25 % stance. A pooled 

correlation (all subjects) was performed across subjects from both groups, and separate 

correlations were conducted with knee OA and healthy groups. Correlation tests were carried 

out to quantify the strength of the linear relationship between each pair of variables. Guidelines 

suggested by Hinkle et al. (2003) and Mukaka. (2012) were used to interpret the value of the 

correlation coefficient and are summarised in Table 4-1 below. 

Table 4-1.  Correlation level guidelines (Mukaka, 2012, Hinkle et al., 2003) 

Coefficient Value Level of Correlation 

0.1 < [ r ] < 0 .3 Negligible correlation 

0.3 <  [ r ]  < 0.5 Weak/low correlation 

0.5<  [ r ]  <    0.7 Moderate correlation 

[ r ]  ˃   0.7 Strong/high correlation 
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4.4 Results 

4.4.1 Trunk inclination in people with knee OA 

RQ 1A: Do individuals with knee OA walk with an increased inclination of the trunk? 

Figure 4-2 shows the ensemble average (across each of the two separate groups, knee OA and 

healthy) trunk inclination pattern during stance phase. This ensemble profile has the same 

pattern in both the knee OA and healthy group. The plots show that the knee OA individuals 

walk with higher forward trunk inclination during whole stance phase. Specifically, in initial 

contact, the lean was ~ 6 º in knee OA groups, while it was ~ 4 º for the healthy group. However, 

as noted above, the general pattern was the same, with small decrease in inclination during 

early stance and a slight increase over midstance. The highest peaks for both groups were at 

the initial contact and late mid stance. Interestingly, the period of 15-25% appeared to be the 

period associated with the largest difference across the groups. 

During the period 15-25% of stance, the forward trunk inclination was significantly higher 

(p<0.01) in the knee OA group compared to the healthy group, with a mean difference of 3º. 

Descriptive data for on trunk inclination across the period 15-25% stance are given in Figure 

4-2, Figure 4-3 and Table 4-2. 
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Figure 4-2. Ensemble average and standard deviation of trunk inclination during walking in 

stance phase for people with knee OA (red dashed) and healthy subjects (black). 
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Figure 4-3. Mean (SD) trunk inclination (15-25% of stance) for healthy participants and 

those with knee osteoarthritis in control shoes 

 

Table 4-2.  Mean (SD) forward trunk inclination in specific period of stance phase (15-25%) 

for healthy and knee OA group. 

Group 
Control shoes 

 

Healthy   Mean(SD) 1.6 º (±3)º 

Knee OA   Mean(SD) 4.6º (±2.9)º 

P value 0.002 

 

RQ 1B: Do individuals with knee OA stand with an increased inclination of the trunk? 

There was a significant difference between the knee OA and healthy group in terms of standing 

forward trunk inclination. Specifically, those individuals suffering from knee OA had 1.7º more 

trunk inclination (p<0.01) in comparison to the healthy group. Descriptive data are shown in 

Figure 4-4 and Table 4-3. 
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Figure 4-4. Mean (SD) trunk inclination in standing for healthy group and knee OA group. 

Control shoes. 

 

Table 4-3.  Mean (SD) trunk inclination standing in two different shoes for healthy group and 

those with knee OA. 

Grouping  Control shoe 

Healthy mean (SD) (-3.7± 2.3) º 

Knee OA mean (SD) (-2 ± 2.7) º 

P value 0.03 

 

RQ 1C: Does trunk inclination in standing correlate with trunk inclination in walking 

both in a group of individuals with knee OA and also in a healthy cohort? 

Based on Hinkle et al. (2003) and Mukaka. (2012) correlation guidelines in Table 4-1, the 

results showed that there was a positive weak correlation (r =0.42) between trunk inclination 

in standing and trunk inclination during walking during the specific time period 15-25 % but 

only when the data from the health and the knee OA participants was combined. In contrast, 

the correlations calculated separately for each group were not significant (see Table 4-4 and 

Figure 4-5).  
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Table 4-4. Correlation between trunk inclination in standing and trunk inclination in walking 

for group of individuals with knee OA and also in the healthy group. 

Type of shoes Group r value p- value 

 

Control shoes 

Knee OA .31 .103 

Healthy .38 .10 

Combined .42** .003 
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Figure 4-4.  Correlation between trunk inclination in standing and walking (15-25 % stance). 

a) Trunk inclination for healthy group. b) For knee OA participants and c) for combined 

group. 
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4.4.2 CoP in people with knee OA 

RQ 1D: Is there a difference in CoP between healthy and knee OA subjects? 

The plot in Figure 4-6 shows the means (SD) ensemble profile of the anterior-posterior position 

of the centre of pressure (AP-CoP) for the two groups of participants across the stance phase 

(%). The plots show a similar pattern for both groups at initial contact and pre-swing with a 

slight difference during mid stance. Specifically, the AP-CoP was slightly more anterior in the 

OA group between 20-60% stance with a maximum difference of approximately 1.5 cm 

occurring around mid-stance.  However, at the specific period (15-25%) of stance phase, there 

were no significant differences (p>0.05) in anterior-posterior (A-P) displacement of CoP at 

knee OA group between the healthy and knee OA participants. Descriptive statistics (mean and 

standard deviation) are provided in Table 4-5. 

 

Table 4-5. Mean (SD) anterior-posterior displacement of centre of pressure (CoP) in specific 

period of stance phase (15-25%). For healthy and knee OA group. 

Group Control shoes 

Healthy mean (SD) in meters (m) 0.004(±.01) 

Knee OA mean (SD) in meters (m) 0.006(±.01) 

P value 0.61 
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Figure 4-5.  Ensemble average anterior posterior (AP) displacement of centre of pressure 

(Cop) during walking in stance phase for people with knee OA (red dashed) and healthy 

subjects (black). 

RQ 1E: Is there a link between forward trunk inclination and anterior shift of CoP? 

A Pearson's coefficient correlation(r) was used to assess the relationship between forward trunk 

inclination during walking (15-25% stance phase) and CoP A-P displacement. This analysis 

showed that there was no correlation between these variables for knee OA, healthy and 

combined groups (Table 4-6). 
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Table 4-6.  Results of correlation between forward trunk inclination and A-P f centre of 

pressure across 15-25% of stance phase, when wearing control shoes. 

Group r value p- value 

Knee OA 0.078 0.70 

Healthy -0.144 0.55 

Combined 0.012 0.93 

 

4.4.3 Sagittal moment  

RQ 1F: What are the differences in hip/knee/ankle moments between healthy and knee OA 

subjects? 

Hip moments 

The plots below in Figure 4-7 illustrate the ensemble average of the sagittal hip, knee and ankle 

moments for the two groups during stance phase (%). For the hip moment, these data show 

only minimal differences between the groups at initial contact, but do illustrate a difference 

from early to midstance. Specifically, the hip extensor moment was larger for the knee OA 

group between 20-80% of stance. However, analysis of the period 15-25% of stance showed 

no significant differences in sagittal hip moment, as reported in Table 4-7. This lack of a 

statistical difference was likely the results of a large variability across the cohort. 
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Figure 4-6.  Ensemble average of sagittal hip moments for both healthy and knee OA groups. 

Knee moment 

The sagittal knee moment ensemble average is plotted in Figure 4-8, and shows the difference 

between knee OA and healthy groups across stance phase. It illustrated that there were only 

minimal differences between the two groups, with a reduced peak in the knee OA group at 

around 20% of stance. However, again, there was no significant difference in the average knee 

moment between 15-25% of stance (Table 4-7). 

Extension 

Flexion 
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Figure 4-7. Ensemble average of sagittal knee moments for both healthy and knee OA 

groups. 

 

The ensemble average ankle moment data is shown in Figure 4-9 and again shows only minimal 

differences between the two groups, with only a slightly high moment in the knee OA group 

during mid stance. The only other difference was a slightly lower peak plantarflexor moment 

at the end stance in the knee OA group.  Descriptive results for the time period 15-25% stance 

phase are presented in Table 4-7, and confirm no significant difference between groups over 

this period. 
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Figure 4-9: Ensemble average of sagittal Ankle moments for both healthy and knee OA 

groups. 

 

Table 4-7. Mean (SD) sagittal moment of hip, knee and ankle during walking with control 

shoes for healthy group and individuals with knee OA. 

Variable Group Control shoes 

Mean (SD) p-value 

Hip moment  Healthy .34(.20) .48 

OA .39(.21) 

Knee moment  Healthy .50(.18) .96 

OA .51(.23) 

Ankle moment  Healthy -.12 (.10) .14 

OA -.07(.10) 
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4.4.4 Differences in muscle activity between healthy and knee OA groups 

RQ 1G: What are the differences in hamstring/quadriceps/gastrocnemius muscle activity 

between healthy and knee OA subjects? 

Medial gastrocnemius activity 

The plots below show the ensemble average of the normalised medial gastrocnemius activity 

for both the healthy group and the knee OA group across stance phase (Figure 4-10). This plot 

illustrates clearly that medial gastrocnemius activity was higher in the knee OA group for 

almost all of stance phase. Nevertheless, the pattern of activity was similar between the groups 

with a characteristic rapid rise in activity from 30-65% of stance, followed by a rapid decrease.  

In the period of interest (15-25% of stance), the knee OA group were observed to walk with 

~64% higher muscle activity than the healthy group and this difference was significant (p<0.05, 

Table 4-8). 
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Figure 4-10. The ensemble mean average curves of Medial gastrocnemius activity when 

wearing control shoes in stance phase for healthy and knee OA group. 

 

Lateral Gastrocnemius activity 

Ensemble average profiles for lateral gastrocnemius activity for both groups are shown in 

Figure 4-11. These profiles were similar to those of the medial gastrocnemius with a distinct 

peak around 65-75% of stance. Again, there appeared to be increased activation in the knee 

OA group, however, the difference was more pronounced during the period 0-30% and there 

appeared to be minimal differences in mid stance. In the period of interest (15-25% of stance), 

there was significant difference in muscle activity between the two groups (p<0.05, Table 4-

8), with the knee OA group having almost double the activity of the healthy participants. 
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Figure 4-11. The ensemble mean average curves of Medial gastrocnemius activity when 

wearing control shoes in stance phase for healthy and knee OA group. 

 

Vastus medialis activity  

The ensemble average curves in Figure 4-12 illustrate the characteristic pattern of quadriceps 

activity across the stance phase of walking, with high activity during loading response and 

early stance. The plot illustrates the differences between the groups, with an overall higher 

activity in knee OA group. However, these differences were more pronounced around mid 

stance with minimal differences across the period of interest. The analysis showed, that, 

although there was a slight difference between the groups across 15-25% stance, this did not 

reach significance (Table 4-8). 
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Figure 4-12. The ensemble mean average curves for VM activity during walking with control 

shoes in stance phase for healthy and knee OA group. 

 

Vastus lateralis activity 

The pattern of vastus lateralis activity was similar between the two groups (Figure 4-13).   

There were very clear differences in vastus lateralis muscle activity between the two groups.  

However, the ensemble plots show a similar profile of activity for the It was also revealed that 

the peak value of vastus lateralis activity for both groups was approximately located in loading 

response and the first half of early mid stance: a similar gait time to peak vastus medialis 

activity. Interestingly, there was a significant difference in the focused time of stance (15-25%), 

in which the knee OA group had muscle activation of 57% more than the healthy group, as 

shown in Table 4-8.  
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Figure 4-13. The ensemble mean average curves of VL activity when wearing control shoes 

during stance phase for healthy and knee OA group. 

 

Biceps femoris activity 

The ensemble average for the normalized biceps femoris muscle activity (MVIC) for the two 

groups, knee OA and healthy participants, is presented in Figure 4-14. It was found that 

maximum activity occurred during the initial contact and loading response for both groups. 

Then, the activity for both groups decreased in early mid stance. However, in mid stance (early, 

middle and late mid-stance), those participants with knee OA had approximately the same level 

of activity as previously. In contrast, for the healthy groups it gradually decreased in mid stance 

and in the rest of the stance phase. The ensemble average from the plot reflected a clear, 

significant difference in muscle activity during stance phase. The individuals with knee OA 

had a higher muscle activity during stance in comparison to the healthy group. 
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Interestingly, in the specific time of focus for stance phase, 15-25%, there was a significant 

difference between the groups. Thus, the knee OA group walked with ~54% higher activation 

than the healthy group. The descriptive data is explored in Table 4-8. 

 

 Figure 4-14. The ensemble mean average curves of biceps activity when wearing control 

shoes during stance phase for healthy and knee OA group. 

 

Semitendinosus activity 

The final ensemble average for this research question (RQ 1G) is the normalized 

semitendinosus muscle activity (MVIC) for both groups, and is presented in Figure 4-15. It 

follows the same maximum activity pattern as biceps femoris activity, which was during the 

initial contact and loading response for both groups. However, in the healthy group, this activity 

decreased fast from initial contact to early mid stance. At two thirds of mid stance (middle and 

late mid-stance), activity was slightly reduced until reaching minimal activity at pre-swing in 

the healthy group. However, in the knee OA group, the muscle activity decreased slowly from 

loading response up to 60% stance, and then recorded minimal activity after that. However, 
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during the whole stance phase, the knee OA group walked with higher semitendinosus muscle 

activation than the healthy group. Statistically, it is showed in the graph that there was a 

difference. Specifically, in our time of interest at 15-25% stance, it revealed that there was a 

statistically significant difference between the groups. This result is illustrated in Table 4-8. 

 

Figure 4-15. The ensemble average of semitendinosus activity when wearing control shoes 

during stance phase for healthy and knee OA group 

 

 

  



155 

 

Table 4-8. Mean (SD) and P-value of muscle activity of biceps femoris, semitendinosus, 

vastus medialis, vastus lateralis and medial and lateral gastrocnemius for healthy and knee 

OA group during walking. 

 

 4.4.5 Medial and lateral muscular co-contraction for healthy and knee OA 

groups 

1. RQ 1H: What are the differences in co-contraction of between healthy and knee OA 

subjects? 

 

Variable Group Control shoe 

Biceps femoris activity  Mean (SD) p-value 

Healthy .07(0.42) .020* 

OA .13(.10) 

Semitendinosus activity Healthy .07(.49) .003* 

OA .16 (.12) 

VM activity Healthy .34(.27) .814 

OA .36(.21) 

VL activity Healthy .35(.3115) .007* 

OA .61(.43) 

Med gastrocnemius activity Healthy .07(.39) .043* 

 OA .11(.06) 

Lateral gastrocnemius activity Healthy .065(.027) .012* 

OA .13(.12) 
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The muscle co-contraction between the biceps femoris and Vastus lateralis was increased 

significantly (p<.05) in the knee OA group in comparison to the heathy group. Additionally, 

there was observed a significantly higher (p<.05) muscle co-contraction between lateral 

gastrocnemius and vastus lateralis in the knee OA group. However, there was an increase, but 

not a significant one, in the muscle co-contraction between the semitendinosus and vastus medialis, 

and also between the medial gastrocnemius and vastus medialis (p>.05) in knee OA patients 

compared to the healthy group.  

 

Table 4-9. Mean (SD) and P-value of muscle co-contraction of biceps femoris and vastus 

lateralis, semitendinosus and vastus medialis, medial gastrocnemius and vastus medialis and 

lateral gastrocnemius and vastus lateralis during 15-25% of stance phase in control. 

Variable Group Control shoes 

Mean (SD) 

p-value 

Vastus lateralis 

vs. 

Biceps femoris 

Healthy .41 (.16) .002* 

OA .74(.47) 

Vastus medialis 

vs 

Semitendinosus 

Healthy .45(.25) .50 

OA .52 (.37) 

lateral Gastrocnemius vs. 

Vastus lateralis 

Healthy .43 (.16) .003* 

OA .74 (.46) 

medial Gastrocnemius 

vs. 

Vastus medialis 

Healthy .42(.22) .572 

OA .47(.34) 



4.5 Discussion  

4.5.1 Overview of the results 

An overview of the results for healthy and knee OA groups has been provided in Table 4-10. 

These data show the results of the statistical comparisons for the specific period of stance phase, 

15-25%, for all variables measured during walking. 

 

Table 4-10. Summary of results in healthy and knee OA groups 

Comparison Variables  P- 

value 

Null 

hypothesis 

Acceptance / 

Rejection of 

null hypothesis 

Favour to  
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Forward trunk inclination 

during walking 
0.002* 
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Reject OA group 

Forward trunk inclination 

during standing 
0.03* Reject OA group 

Cop displacement (A-P) 0.61 Accept  

Sagittal hip moment 0.48 Accept  

Sagittal knee moment 0.96 Accept  

Sagittal ankle moment 0.14 Accept  

Biceps femoris activity 0.020* Reject OA group 

Semitendinosus activity 0.003* Reject OA group 

VM activity 0.814 Accept  

VL activity 0.007* Reject OA group 

Medial gastro activity 0.043* Reject OA group 

Lateral gastro activity 0.012* Reject OA group 

Vastus lateralis 

vs. 

Biceps femoris 

0.002* Reject OA group 

Vastus medialis 

vs 

Semitendinosus 

0.50 Accept  

lateral Gastrocnemius vs. 

Vastus lateralis 
0.003* Reject OA group 

medial Gastrocnemius 

vs. 

Vastus medialis 

0.572 Accept  
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   The main findings of the study reveal significant differences between the OA and control 

groups in terms of standing and walking trunk inclination. Specifically, the knee OA group 

stood with an increase in trunk inclination of approximately 2º compared to the healthy group 

and walked with 3º greater forward trunk inclination than healthy participants. However, 

there was only a weak correlation between forward lean in standing and in walking, while A-

P CoP displacement showed no correlation to walking trunk inclination. Nevertheless, there 

were clear differences in muscle activations and co-contraction, supporting the idea that people 

with knee OA use increased muscle activation and co-contraction to walk. The chapter’s 

discussion section will relate these and other findings to the relevant research question, and 

discuss the implications of the results.    

4.4.1 Trunk Inclination in Standing and walking 

This study found a significant increase in forward trunk inclination in knee OA during standing 

when compared to the healthy group, which is consistent with the findings of Turcot et al. 

(2015). This similarity in the two studies is despite methodological differences. While Turcot 

et al.’s (2015) knee OA group was limited to patients with severe knee OA, this study tested 

people with moderate knee OA. The two studies taken together therefore establish a general 

tendency for knee OA sufferers to stand with a forward inclination of the trunk. 

The data on trunk inclination during walking, presented in this thesis, are a genuinely novel 

contribution to the literature, as no previous studies exist on this parameter. I showed that 

people with knee OA walk with a clear forward lean. Interestingly, however, when comparing 

the trunk inclination in walking and standing there was not a strong correlation. This points to 

the possibility of a different mechanism underlying the forward lean in standing and the 

forward lean in walking. Whereas Turcot et al. (2015) suggested that standing forward lean, 

along with increased sagittal flexion in the joints of the lower limb, in people with knee OA 
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may be an attempt to move the centre of mass forward to aid with balance, it is possible that 

the forward lean in walking may be due to muscular restriction. The potential mechanisms 

behind increased trunk inclination when walking will be discussed later in this section, but first, 

the findings for A-P CoP will be discussed. 

The investigation of anterior-posterior displacement of CoP did not give statistically significant 

results. However, a difference between the healthy and knee OA groups was observed at mid-

stance, with the OA group’s CoP being shifted forwards from 15% of stance. This change of 

CoP reached approximately 1.5cm at around midstance, and although not statistically 

significant does suggest that people with OA have a tendency to shift load on the forefoot 

during mid stance. This idea is consistent with the findings of Saito et al. (2013) who also 

observed a shift in the CoP from the heel to the mid foot during early-mid stance.  

The data did not show any meaningful correlation between forward trunk inclination and A-P 

CoP. This is finding is surprising, and does not support the idea that increasing forward lean 

will shift the centre of mass anteriorly and this will lead to a corresponding anterior shift in the 

CoP. It is possible that this lack of a correlation points to the idea that increases in forward 

trunk lean are compensated for by a series of small subtle changes at each joint, rather than a 

simple, and proportionate, shift in the CoM. The lack of a correlation is also not consistent with 

the idea that increasing trunk lean is a strategy used to anterior shift the CoP anteriorly to aid 

balance as suggested by Turcot et al. (2015) to explain their observations in standing.  

It is important to use the finding so this study to speculate on the underlying cause of increased 

trunk inclination in people with knee OA. I suggest a number of mechanisms. The first 

mechanism relates to tightness of the hip flexor muscle which can lead to compensatory hip 

movement (Kagaya et al., 2003) . In older people, it is common to develop muscle imbalances 

around the hip, which are characterised by hip flexor muscles tightness and gluteal muscle 
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weakness. As the tight muscle becomes shorter in length, this will change the pelvis position 

and create a corresponding change in the trunk position (see Figure 4-16). There is some 

evidence to support this idea, as Sato and Maitland (2008) suggest tight hip flexor muscles as 

an underlying factor in forward lean while standing and walking. While their study focused on 

females from 46-79, and not knee OA sufferers, the mechanism may be applicable here. This 

idea is also supported by a simulation of walking with joint contractures carried out by Kagaya 

et al. (2003), who found that in a simulated model, introducing hip flexion contracture led to a 

forward leaning of the trunk.  However, this idea has not previously been discussed in relation 

to knee OA, and so it motivates further research to investigate hip flexor tightness in those with 

knee OA. 

The second potential mechanism is a strategy in which people with knee OA adopt a forward-

leaning posture because of balance issues. Specifically, I suggest that the forward lean may be 

a strategy to shift the CoP anteriorly in order to reduce the risk of falling backwards. Previous 

studies demonstrate balance issues for those with knee OA, shown through an increased fall 

rate (Levinger, 2011) and greater postural sway while standing on one leg (Tarragon, 2009). 

This could relate to the alterations observed in muscle activation patterns while walking 

(Duffell, 2013), and contribute to explanations of forward lean. However, as explained above, 

the lack of a correlation between trunk inclination and CoP does not support the idea that the 

alteration in trunk lean was a direct strategy to shift CoP and therefore influence balance. A 

third possible mechanism is that forward lean is adopted due to a feeling of load on the knee 

joint. However, no significant changes were noted in sagittal knee joint moment in this study, 

a finding which is consistent with the observations of Baliunas et al. (2002).  In conclusion, 

given the data presented in the section above, I suggest that the most likely explanation of 

increased forward lean in the knee OA group in related to tightness of the hip flexor muscles.  
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Figure 4-16. Upright posture versus forward trunk inclination due to hip flexor muscle 

tightness. The first picture shows a normal upright posture with normal inclination of the 

trunk. In the second, tight hip flexor muscles cause the trunk to incline forward. 

In light of the discussion above, clinically, strength exercises for the gluteus maximus muscle 

could help to decrease forward trunk lean and decrease the external extension moment of the 

hip joint. Also, it may be useful to increase the strength of the spinal muscle (the back muscle 

of the trunk). Further, the problem could also be treated using a specifically-designed footwear 

intervention (discussed in Chapter 6), and through stretching of the hip flexor muscle (Falconer 

et al., 1992). However, further investigations are required before a particular clinical 

intervention can be recommended.  
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4.4.2 Differences in moment between knee OA and healthy groups 

The study explored sagittal lower limb joint moments and found minimal differences between 

the groups. Nevertheless, it is interesting to compare the sagittal hip data in this study with that 

observed by Liu et al. (2014). In this study, while the difference between the two groups was 

not statistically significant, mean hip moment over the period of interest was up to 15% higher 

in the knee OA group compared with the healthy sample. This difference was at its greatest 

from the first peak, in early mid-stance, and continued throughout most of the gait cycle. Liu 

et al. (2014) found a significantly higher extensor moment in the OA group in comparison to a 

group of healthy controls (see Figure 4-17). Visual inspection of the two plots (shown below) 

show a similar difference in the overall pattern and therefore, despite the lack of statistical 

significance in the current study, a consistency in the findings. It is possible that the larger 

effect observed by Liu et al. (2014) was the result of more forward lean in the group tested by 

Liu et al. (2014). However, this gait characteristic was not reported and so it is not possible to 

make any definite conclusions about the underlying reason for the differences.  
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Figure 4-17. Hip extension/flexion moments in Liu et al. (2014) (above) and in the current 

study (below). Hip flexion/extension moments are shown across the gait cycle in the first 

graph and across the stance phase only in the second graph, with 1-100 % in the second 

graph equal to 1-60% in the first. A similar pattern is seen in the two studies, with increased 

values for OA groups.  
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In another study Astephen et al. (2008) found reduced early stance hip extension moment in a 

group with severe OA, which further supports the overall finding of this study, shown in the 

figure above. However, it is important to note that the lack of a significant difference in the 

current study may be due to the focus on the specific period of 15-25% of stance. In Figure 4-

17 above, there appears to be a more pronounced difference in midstance and this many have 

been significant. Nevertheless, we chose to focus on the period 15-25% of stance because this 

corresponds to the period of peak loading at the knee (Brandon et al., 2014; Sritharan et al., 

2016), it was felt that focusing on multiple time periods would have increased the number of 

statistical tests and therefore the probability of type 1 error.  

 

This study did not find any significant differences in the sagittal plane knee moment between 

the knee OA group and healthy controls, with an increase of just 2% for the OA group. This 

finding contrasts with a number of previous studies (Kaufman et al., 2001; Astephen et al., 

2008a; Sritharan et al., 2016; Mündermann et al., 2005; Liu et al., 2014), which showed a 

statistically significant reduction in knee moments in the sagittal plane in participants with knee 

OA.  However, these studies tended to focus on the peak knee moment and not the mean knee 

moments across a specific period of the gait cycle (as was analysed in this study). Nevertheless, 

Baliunas et al. (2002) observed similar trends to our data, finding no significant differences in 

peak knee extension/flexion moments or in early midstance knee extension/flexion.  As 

explained above, I chose to focus on the period 15-25% it was felt to be the period most 

appropriate to use in order to understand joint loading.   

The ankle moment across the period 15-25% showed an increase in the group with knee OA, 

however, this was not statistically significant. These findings match those of Liu et al. (2014), 

who also report an increased sagittal ankle moment, which was significant in a group with 
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severe OA group but not in a moderate group. This moderate group are more characteristic of 

this study and so there appears to be a consistency in the findings. The observation of no 

increased ankle moment matches the findings of no significant change in the CoP position and, 

as explained earlier, suggests that the increases in trunk inclination characteristic of the people 

with knee OA are not accompanied by an anterior shift of the CoM and therefore the CoP. 

4.4.3 EMG 

The next element of the study was measurement of mean muscle activity for 6 muscles involved 

in walking:  the biceps femoris and semitendinosus from the hamstrings; the Vastus medialis 

and vastus lateralis of the quadriceps; and the medial and lateral gastrocnemius muscles. In 

general, the results for the OA group show raised activity levels in the 15-25% period across 5 

of the 6 muscles studied, with the exception being the Vastus medialis. These finding are 

similar to those of previous studies comparing muscle activation between knee OA and healthy 

groups (Childs et al., 2004; Hortobagyi et al., 2005; Zeni et al., 2010; Hodges et al., 2016). In 

interpreting these results, raised EMG levels can be understood to link to increased loading on 

the joints, based on the modelling papers used for the study (Brandon et al., 2014; Hodges, 

2016).  The results therefore imply increased knee loads for the OA group.   

The vastus medialis and lateralis were measured for the quadriceps group. The findings showed 

that there was high activation overall in the group with knee OA, but not a significant difference 

over the 15-25% period for the VM. Interestingly this period corresponded to the highest VM 

activity across both groups. This lack of a significant difference in VM activity is surprising as 

it does not match the findings of previous studies (e.g. Sharma et al., 2017). However, the 

overall pattern of VM activity showed a clear increase in the knee OA group, with the 

similarity, during the period of interest being uncharacteristic of the general profile. 
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Nevertheless, although these results are similar to those reported by Selistre (2017), it is not 

clear why they do not match the findings of other research (Sharma et al., 2017). 

The findings for the vastus lateralis reveal significantly higher activity in the OA group during 

the stance phase. These findings are in line with Zeni et al. (2010), who found significantly 

greater quadriceps activation for moderate OA subjects over healthy controls when walking at 

a fixed, fast walking pace, with results at a self-selected speed also showing an increase but not 

reaching statistical significance. The findings of Hortobagyi et al. (2005), Hodges et al. (2016) 

and Childs et al. (2004) also support those of the current study and provide general support for 

increased quadriceps muscle activation in knee OA. 

For the hamstrings, significantly higher biceps femoris activity was found in the OA group, 

and this muscle remained active through midstance, compared to healthy controls for whom 

BF activity decreased. Semitendinosus activity was also higher and maintained for longer 

compared to a rapid decrease in the healthy group through the stance phase. These results are 

in line with those of Hortobagyi et al. (2005), Zeni et al. (2010) and Sharma et al. (2017), who 

also found increased activity. Taken together these findings support the idea that increased 

hamstring activity is a clear gait characteristic of people with knee OA. In the next chapter, I 

explore whether this increase is associated with an increased trunk lean.  

As with the hamstrings and quadriceps, increased gastrocnemius muscle activity was also seen 

in the OA group while walking. In fact, for both the medial and lateral gastrocnemius muscles, 

there was significantly higher activity in early midstance for the period 15-25%, continuing 

until 65-75% of stance. Previous assessments of gastrocnemius activity in knee OA have made 

similar findings (Schmitt & Rudolph, 2007; Childs et al., 2007; Sritharan et al., 2016a) and 

again, my data support the idea of generalised increased activity in posterior calf muscles as a 

gait characteristic of people with knee OA.  
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 4.4.4 Co-contraction 

Co-contraction was studied during walking for the muscles of the knee, including the pairs: 

vastus lateralis vs. biceps femoris; vastus medialis vs. semitendinosus; lateral gastrocnemius 

vs. vastus lateralis; and medial gastrocnemius vs. vastus medialis. For all pairs studied, there 

was increased co-contraction shown in the OA group compared to healthy controls, but only 

the VL-BF and LG-VL findings were statistically significant. The increase in BF-VL co-

contraction was also reported by Sharma et al. (2007), who link increased co-contraction 

activity between quadriceps and hamstrings with increased hamstring activity during walking. 

Zeni et al. (2010) also find that increased quadriceps-hamstring co-contraction is a strategy 

employed during gait by those with moderate OA.      

As explained in the literature review, increased muscle co-contraction will increase the 

compressive loading at the knee joint. Although some authors have suggested that increased 

co-contraction is employed as a neuromuscular approach to promote unloading of the medial 

compartment Andriacchi (1994), there is no strong evidence to validate this idea. Nevertheless, 

there is evidence that increased co-contraction will accelerate cartilage degeneration (Hodges 

et al., 2016) and also increase the likelihood of progression to total knee replacement (Hubley-

Kozey et al., 2013). One of the ideas explored in this thesis is that increased co-contraction 

could be the result of increased trunk inclination. In this chapter, I have shown that people with 

knee OA walk with increased trunk lean and increased co-contraction. The possible links 

between these two phenomena will be explored further in the next chapter of the thesis. 

4.4.5 Limitations  

The measurement of trunk lean is problematic. Specifically, it is challenging because of the 

complex and flexible structure of the spine in comparison to the simpler and more rigid 
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structures of the lower limbs, such as the femur. In this study, trunk lean was quantified by 

defining a single thoracic segment which was tracked using three markers attached to the IJ, 

T2 and T8, and defined using four markers attached bilaterally on the acromiums and the 

greater trochanters. This thoracic segment was tracked against the laboratory reference frame 

and this study focused specifically on sagittal movements. This approach was adopted given 

the recommendations of a previous study (Armand et al., 2014), showing that this method gave 

the most valid and reliable data, as the set of markers with the lowest error when tested from a 

range of possible markers. However, limitations remain because minor anatomical differences 

in the shape and position of the anatomical structure used to define and track the segment could 

lead to differences in trunk angle. This could lead to uncertainty in quantifying trunk 

inclination. Nevertheless, the data did demonstrate a clear difference in trunk lean between 

people with knee OA and healthy control subjects.   

The study took its focal point as the 15-25% period of stance. This decision made it difficult in 

some cases to compare the findings with previous work. However, it was important to select a 

time period which reflected the period of peak loading as ultimately, it was important to explore 

how trunk lean could impact on the loads at the knee joint. The decision to focus on 15-25% 

stance was motivated by previous studies that modelled the effect of increasing co-contraction 

(Brandon et al., 2014; Sritharan et al., 2016). Data from these studies suggest that this period 

contained a peak in medial and lateral loading which increased markedly when co-contraction 

was increased (See section 2.4.3 for more details).  The focus on a single time window 

minimised the chance of type 1 errors which would have been more likely if I had chosen 

multiple periods of the gait cycle to analyse. However, this narrow focus means that the 

statistical analysis did not capture changes in muscle activation across the whole of stance 

phase. Nevertheless, the data presented on co-contraction is consistent with previous research 
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which looked at alternative time windows and this may suggest that the findings are not overly 

sensitive to the precise choice of time period. 

Unlike some other studies in this area (e.g. Liu et al., 2014; Astephen et al., 2008), the current 

study used only one group of subjects with knee OA, rather than separating subjects by severity. 

This was done to allow a clear focus on the main issues, to ensure appropriate statistical power 

and to avoid possible logistical problems which might have resulted from recruiting people in 

different stages of knee OA. The group chosen represents moderate OA, and it is therefore not 

clear whether different results would be seen with a group in the later stages of disease 

progression.   

4.4.6 Conclusions  

In summarising the main findings for the first study of this thesis, it is important to stress the 

novel findings related to trunk inclination, and anterior-posterior position of the centre of 

pressure (AP-CoP) during gait. However, the data presented in this thesis also supports 

previous studies. In particular, the findings for muscle activity, co-contraction and sagittal joint 

moments in general agree with previous work, although some findings did not show the 

difference previously shown. I have suggested that this might be due to the focus on a specific 

period of the gait cycle and/or a single OA group of only moderate severity.  

The main original contribution of the study was to demonstrate a significantly increased 

tendency for forward trunk inclination in knee OA subjects while walking. Previous work has 

identified forward lean in OA groups while standing, and this study found the same, but these 

two findings did not correlate with each other in the study, meaning that the underlying 

mechanisms for this lean may differ. With the lack of a finding of a significant alteration in 
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 A-P CoP during walking, I suggest that the reason for increased trunk lean may related to 

increased hip flexor tightness. However, further work is required to fully explore this idea.  

Forward trunk lean while walking may link to and partly explain a range of other mechanical 

alterations in the gait of knee OA patients. These ideas are explored in more detail in the next 

chapter.  
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Chapter 5 - Study two: The relationship between trunk 

inclination and joint moments/muscular co-contraction  
 

Overarching aim 

To investigate the potential link between trunk inclination and biomechanical variables, 

related to joint loading: lower limb joint moments, muscle activity and co-contraction. 

5.1 Overview of the study  

This study investigates the possible link between trunk inclination and lower limb 

moments/muscle activation patterns in the sagittal plane while walking. There has been very 

little study of the effects of upper body position on lower limb biomechanics and therefore this 

is novel question, especially in the field of knee OA research. Turcot et al. (2015) found that 

subjects with knee osteoarthritis show an increased forward trunk inclination during stance, 

and study one in this thesis both supports this conclusion and also identifies an increased lean 

in people with knee OA while walking. Interestingly, previous research has shown that trunk 

inclination in healthy subjects is associated with increases in hip moments during the early and 

mid-stance phase of walking (Leteneur et al., 2009), and in study one for this thesis, 15% higher 

hip moments were seen in the knee OA group during this period, with increased hip moment 

in knee OA also identified by Liu et al. (2014) in mid-stance. This leads to the need to establish 

whether these variations in joint moments correlate to forward trunk inclination in walking. In 

addition, Leteneur et al. (2009), in investigating differences in moments as associated with 

trunk inclination, also found an association between forward trunk lean and a minor decrease 

in knee moment, as well as with a small increase in ankle moment. The patterns reported in the 

previous chapter are similar to those reported for individuals with knee OA in previous studies 
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(Zeni and Higginson, 2011). However, to date, there has been no previous research 

investigating whether these patterns are intrinsically linked to variations in forward trunk 

inclination. 

It is likely that the increases seen in hip moment are associated with increased levels of 

hamstring activity, as the major hip extensor muscles. Furthermore, it is possible that these 

increases in hamstring activation may lead to increased co-contraction, as increases in the knee 

flexor moment (resulting from increased hamstring activity) may need to be balanced by 

changes in quadriceps activity to maintain knee joint moment. Increased hamstring-quadriceps 

co-contraction has been widely reported in knee OA (Zeni et al., 2010; Childs et al., 2004; 

Hortobagyi et al., 2005) and is linked by Andriacchi (1994) to increased knee joint loading in 

the medial compartment. Steultjens et al. (2006) argue that higher rates of muscle activity in 

knee OA are a positive defence mechanism against passive joint instability and are needed to 

maintain walking ability, while Lewek et al. (2005) argue that interventions to reduce co-

contraction are necessary to relieve joint loading and slow progression of the disease. In light 

of this debate, it is interesting to investigate forward trunk inclination as a potential factor in 

the reported increase in lower limb muscle activation and co-contraction in knee OA. This will 

provide some insight into the mechanisms which could underlie co-contraction in people with 

knee OA. 

The peak compressive knee joint loading has been identified by modelling studies as occurring 

at between 15% and 25% of the stance phase (Sritharan et al., 2016; Brandon et al., 2014). 

Interestingly, Leteneur et al. (2009) found significant increases in hip extensor moment during 

this phase for individuals who have a forward trunk inclination while walking, with a 

corresponding delayed transition from extensor to flexor moment. This period was investigated 

in the previous study for this thesis and will also be used in this chapter. The main findings 
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from study one include a significant difference between knee OA and healthy participants in 

forward trunk inclination. 

In the previous section, I presented data showing an increase in forward trunk inclination in 

people with knee OA. I then discussed a scenario in which, as the trunk inclines further forward, 

possible anterior shifting of the centre of mass is compensated for by movement at the knee 

and ankle joints with a corresponding minimal change in the centre of pressure, remaining 

static. This idea is supported by the findings, which showed only a minimal shift in CoP. 

Nevertheless, with this model, the hip joint centre would move anteriorly, increasing hip 

extensor moment with little change in GRFV, possibly reducing knee extensor moment with 

anterior movement of the GRFV, and causing little change to dorsiflexion and plantar flexion 

moment at the ankle. These are similar changes to those seen in walking in knee OA, and these 

changes, their impact on muscle activity, and their correlation to trunk inclination, are therefore 

investigated here.  

The second study of this PhD thesis consists of three research questions, which are given in the 

next section. These questions build from the results of the first study to focus on forward trunk 

inclination during walking in knee OA and healthy subjects and investigate potential links 

between this and lower limb joint moments, muscle activity and co-contraction. 

Therefore, the study addresses the following questions: 

5.2 Research questions  

RQ 2A: What is the relationship between trunk inclination and hip/knee/ankle moments in 

people with knee OA and also in healthy control subjects? 
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RQ 2B: What is the relationship between trunk inclination and 

hamstring/quadriceps/gastrocnemius activity in people with knee OA and also in healthy 

control subjects? 

RQ 2C: What is the relationship between trunk inclination and co-contraction in people with 

knee OA and also in healthy control subjects? 

 

5.3 Methodology 

A detailed description of the procedures carried out for each of the studies is given in the 

methodology chapter. The study was carried out with subjects wearing control shoes only. All 

data collection was conducted in the Allerton Building Gait Laboratory located within the 

University.  

5.3.1 Sample and population 

The data for the second study were collected during one visit across two groups; healthy (n=20) 

and knee OA (n=27) subjects, across both genders. Further details of the specific 

inclusion/exclusion criteria are provided in Section 3.2 of the methods section. 

5.3.2 Derivation of outcome measures and statistical methods: 

This study was designed to determine the association between forward trunk inclination over 

15-25% stance and lower limb joint moments, muscle activity and co-contraction. The methods 

section explains how specific joint kinematics and moments related to the research questions 

were derived and also details the post-processing which was applied to the raw EMG data. In 

the section below, I have explained in detail how the specific outcomes (relating to each 

research question) were derived from the kinematic, moments and EMG data.  
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RQ 2. What is the relationship between trunk inclination and hip/knee/ankle moments in 

people with knee OA and also in healthy control subjects? 

    Mean trunk lean and sagittal hip knee and ankle moments (over 15-25% stance) were the 

outcomes used to address this research question. Trunk inclination was calculated as set out in 

the methods chapter, and in the previous chapter for RQ 1A, Sagittal moments for hip, knee 

and ankle were then calculated as, explained in RQ 1F, Section 4.3.2.      

RQ 2b: What is the relationship between trunk inclination and 

hamstring/quadriceps/gastrocnemius activity in people with knee OA and also in healthy 

control subjects? 

Trunk inclination in walking was defined as explained above for RQ 2A.  EMG profiles were 

then created for the two hamstring muscles (biceps femoris and semitendinosus), the two 

quadriceps muscles (vastus medialis oblique and vastus lateralis) and the two gastrocnemius 

muscles (medial and lateral gastrocnemius), as explained in Section 4.3.2 for RQ 1G. The 

profiles from each muscle in a group (e.g. biceps femoris and semitendinosus for hamstrings) 

were also summed to give a value for combined hamstrings, combined quadriceps and 

combined gastrocnemius muscles. 

RQ 2c: What is the relationship between trunk inclination and co-contraction in people 

with knee OA and also in healthy control subjects? 

To address this question, I examined the relationships between trunk inclination while walking 

and muscle co-contraction across the period 15-25% of stance. The outcomes explained in RQ 

1H in the previous chapter (Section 4.3.2) relating to EMG co- contraction in walking and RQ 

1A, relating to trunk inclination in walking, were used to address this research question.  
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In the section below, I have provided a detailed explanation of statistical methods used to 

address each question using the outcomes detailed above. 

5.3.3 Statistical analysis  

All statistical tests for this study, relating to research questions RQ 2A, RQ 2B and RQ 2C, 

were performed using the statistical package for social studies (SPSS) version 23 for Windows. 

This study involved one independent variable, the tested group; and evaluated the correlation 

with the tested dependent variables. Before the results were analysed, data screening was 

carried out for normality and homogeneity of variance assumptions, to allow parametric 

calculations of analysis of difference. No outliers were found when a box and whiskers boxplot 

was carried out for each tested variable. Descriptive analysis using histograms with normal 

distribution curves revealed normal distribution of data each variable, and normality tests did 

not suggest significant differences between the distribution of the tested sample’s raw data and 

normally-distributed population data, using the same means as those of the tested variables 

(p>0.05) and evaluated using the Shapiro-Wilk's test. Homogeneity of variances was identified 

using Levene's test for equality of variances testing (p>0.05) for each dependent variable. Thus, 

the results did not violate the parametric assumption, and parametric data analysis was 

possible.   Data are given in the form of mean ± standard deviation (SD) in the descriptive 

statistics. Correlation tests were carried out to quantify the strength of the linear relationship 

between each pair of variables. 

In order to investigate the relationship between forward trunk inclination and the other 

outcomes defined above (moments, each muscle’s EMG profile/each combined profile activity 

and co- contraction) across the time window 15-25 % stance, associations were calculated 

using a Pearson’s correlation coefficient (r). A pooled correlation was performed across 

subjects from both groups, and separate correlations were conducted with knee OA and healthy 
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groups. Each Pearson's correlation was run to assess the relationship between trunk inclination 

and other dependent variables, along a range of r values which were considered to indicate a 

weak, moderate or strong correlation. Guidelines suggested by Hinkle et al. (2003) and 

Mukaka. (2012) were used to interpret the value of the correlation coefficient and are 

summarised in Table 5-1 below 

Table 5-1. Correlation level guidelines (Mukaka, 2012, Hinkle et al., 2003) 

Coefficient Value Level of Correlation 

0.1 < [ r ] < 0 .3 Negligible correlation 

0.3 <  [ r ]  < 0.5 Weak/low correlation 

0.5<  [ r ]  <    0.7 Moderate correlation 

[ r ]  ˃   0.7 Strong/high correlation 

 

 

5.4 Results 

5.4.1 Relationship between trunk inclination and hip/knee/ankle moments  

  Analysis showed that there was a weak-moderate positive correlation between trunk 

inclination in walking and hip moment. Specifically, the knee OA and healthy group showed 

moderate positive correlation, while the combined groups showed a weak positive correlation 

(see Table 5-2).  Figures 5-1 and 5-2 show the correlation between trunk inclination and the 

hip moment for the healthy and knee OA group respectively.  No meaningful correlations were 

observed between trunk inclination and sagittal knee or ankle moment (Table 5-2).  
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Table 5-2. Correlation between trunk inclination and hip/knee/ankle moments averaged 

across 15-25% stance. 

Variable Group Control shoes 

R P 

Relationship between trunk 

inclination and hip moment 

Healthy .548** .015 

OA .545** .022 

Combined .495* .001 

Relationship between trunk 

inclination and knee moment 

Healthy .197 .629 

OA .082 .691 

Combined .102 .510 

Relationship between trunk 

inclination ankle moment 

Healthy -.119 .629 

OA .175 .391 

Combined .136 .374 
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Figure 5-1. Correlation between trunk inclination and hip moments averaged across a 

specific period of stance phase (15-25%) during walking for healthy group 

 

Figure 5-2. Correlation between trunk inclination and hip moments averaged across a 

specific period of stance phase (15-25%) during walking for knee OA group. 
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The plots above show that there was considerable variability across the two samples (knee OA 

and healthy). Although there was a trend for hip moment to increase as trunk inclination 

increased, there were some cases in which higher trunk inclination was associated with 

relatively low hip moments. Nevertheless, in general the subjects with higher trunk inclination 

appeared to walk with increased hip moments. This idea is highlighted in the plots below which 

show example participants with high/low trunk inclination and the corresponding hip moment 

curves. These examples have been shown both for two healthy subjects (see Figure 5-3) and 

also two subjects with knee OA (Figure 5-4). 
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Figure 5-3. Example plots of variability of trunk inclination and hip moment (high trunk 

lean/high hip moment & low trunk lean/low hip moment) for healthy group. 
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Figure 5-4. Example plots of variability of trunk inclination and hip moment (high trunk 

lean/high hip moment & low trunk lean/low hip moment) for knee OA group. 
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5.4.2 Relationship between trunk inclination and hamstring /quadriceps 

/gastrocnemius activity  

 

Relationship between trunk inclination and hamstring muscle activity 

Based on the correlation guidelines in Table 5-1, the results showed that there was a positive 

weak correlation between trunk inclination and the combined biceps femoris and 

semitendinosus muscle (hamstrings) in the healthy group (Table 5-3). Note that this correlation 

was performed for the combined muscle activity averaged over the period 15-25% of stance. 

Surprisingly, no correlations were found when the muscle values were tested individually, nor 

was there a correlation in the group with knee osteoarthritis.  Inspection of the individual 

correlation plots showed that this lack of a statistical correlation was the result of wide 

variability across the cohort. 
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Table 5-3.  Results for association between forward trunk inclination and hamstring (medial 

and lateral) activity for healthy, knee OA and combined group from 15-25% of stance phase. 

Variable Group Control shoes 

R P 

Relationship between trunk inclination 

and biceps activity 

Healthy .28 .25 

OA -.36 .86 

Combined .17 .25 

Relationship between trunk inclination 

and semitendinosus activity 

Healthy .10 .70 

OA -.17 .38 

Combined .19 .18 

Relationship between trunk inclination 

and combined hamstring muscle 

activity (biceps and semitendinosus 

muscles) 

Healthy .47* .04* 

OA -.12 .52 

Combined .200 .183 

 

Relationship between trunk inclination and quadriceps muscle activity 

 The combined vastus medialis and vastus lateralis values showed a positive moderate 

association with forward trunk inclination for the healthy group (r=0.47), but not for the group 

with knee OA. However, again, no correlations were seen with the individual quadriceps 

muscles.  The statistical results for this section are presented in Table 5-4. 
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Table 5-4.  Results of association between forward trunk inclination and quadriceps muscle 

activity (VM, VL and combined muscles) for healthy, knee OA and combined groups from 15-

25% of stance phase. 

Variable Group Control shoes 

R P 

Relationship 

between trunk 

inclination and VM 

activity 

Healthy .162 .52 

OA -.19 .33 

Combined -.06 .68 

Relationship 

between trunk 

inclination and VL 

activity 

Healthy .36 .14 

OA -.064 .75 

Combined -.12 .14 

Relationship 

between trunk 

inclination and 

combined       muscle 

activity (VM & VL 

muscles) 

Healthy .47* .04 

OA -.12 .52 

Combined -.017 

 

.911 

 

Relationship between trunk inclination and gastrocnemius muscles 

This correlation analysis showed that there was no relationship between activity of the 

gastrocnemius muscles and trunk inclination in walking across any of the groups. Table 5-5 

shows the results of this analysis.  
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Table 5-5.   Results of association between forward trunk inclination and gastrocnemius 

activity (medial, lateral and combined) for healthy, knee OA and combined groups at 15-25% 

of stance phase. 

Variable Group Control shoes 

R P 

Relationship between trunk inclination and medial 

gastrocnemius activity 

Healthy -.07 .76 

OA -.04 .81 

Combined .07 .63 

Relationship between trunk inclination and lateral 

gastrocnemius activity 

Healthy -.12 .63 

OA .10 .59 

Combined .15 .31 

Relationship between trunk inclination and 

combined gastrocnemius   muscles activity (medial 

& lateral gastrocnemius)  

Healthy -.065 .793 

OA .054 .788 

Combined .154 

 

.308 

 

5.4.3 Relationship between trunk inclination and muscle co-contraction  

 

Mean values for co-contraction of four pairs of muscles around the knee joint were investigated 

for correlation with trunk inclination in walking. However, consistent with the findings 

presented above of minimal correlations between muscle activation levels and trunk 

inclination, no meaningful correlations were observed between any of the co-contraction 

measures and trunk inclination across the period 15-25% of stance phase (Table 5-6). 
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Table 5-6. Summary of the correlation results between forward trunk inclination and co-

contraction. 

Variable Group Control shoe 

R p-value 

Relationship between trunk inclination and BF- 

VL co-contraction 

Healthy .23 .36 

OA -.06 .74 

Relationship between trunk inclination and 

semitendinosus -VM co-contraction 

Healthy .29 .24 

OA -.22 .29 

 Relationship between trunk inclination and 

lateral gastrocnemius - VL co-contraction 

Healthy .31 .19 

OA -.32 .08 

Relationship between trunk inclination and 

medial gastrocnemius   -VM co-contraction 

Healthy .13 .60 

OA -.18 .34 

 

 

Relationship between trunk inclination and combined co-contraction 

Correlational analysis was performed on the combined muscle signals (obtained by summing 

the medial and lateral muscles) for each of the three muscle groups studied. Consistent with 

the data presented above, no meaningful correlations were observed between forward trunk 

inclination and hamstring-quadriceps co-contraction or between forward trunk inclination and 

gastrocnemius-quadriceps co-contraction for any of the groups (healthy, knee OA and 

combined groups). This data is presented in Table 5-7 below. 
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Table 5-7. Summary of the correlation results between forward trunk inclination and 

hamstring-quadriceps and gastrocnemius-quadriceps co-contraction. 

Variable: Relationship between trunk 

inclination and: 
Group Control shoes 

R P 

Hamstring-quadriceps co-contraction Healthy .16 .50 

OA -.15 .45 

Combined .04 .76 

Gastrocnemius-quadriceps co-

contraction 

Healthy -.02 .92 

OA -.11 .57 

Combined .02 .88 
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5.5 Discussion 

5.5.1 Overview  

This study aimed to investigate correlations between sagittal plane trunk inclination, sagittal 

moments, muscle activity and co-contraction while walking. In order to do this, I focused on a 

specific period of the gait cycle (15-25% of stance) as this has been shown to correspond to the 

period of peak loading. The motivation for this study was based on the ideas presented in the 

literature review on how trunk inclination could affect joint moment and how, in turn, this may 

affect muscle activations. The study follows from the previous chapter in which I observed a 

significant increase in forward lean in the participants with knee osteoarthritis. The findings of 

this study showed a weak to moderate association between forward trunk inclination and 

sagittal hip moment. The data also showed a weak correlation between forward trunk 

inclination and combined hamstring activity along with a weak correlation between combined 

quadriceps activity and trunk inclination. However, these links were only observed for the 

healthy subjects and were not evident in the data on the individual muscles: nor was there any 

link between co-contraction and trunk inclination.  

There has been minimal previous work which has investigated links between trunk lean and 

biomechanical characteristics of the lower limb. Therefore, direct comparison with other 

studies is not always possible. However, in this section, the research questions and their related 

findings will be systematically discussed and linked to previous studies wherever possible. The 

limitations of the study will then be discussed, followed by conclusions, the overall 

implications of the study and recommendations for further research.  
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5.5.2 Correlation between forward trunk inclination and lower limb 

moments 

The findings for the association between forward trunk inclination and sagittal hip moment 

showed a moderate positive correlation in the both the knee OA and healthy groups, while a 

weak correlation was found for the combined groups. Thus, although not a strong correlation, 

this does suggest that trunk inclination impacts upon hip moments, as predicted in a modelling 

study by Kagaya et al. (2003) and suggested by Sato and Maitland (2008) and Leteneur et al. 

(2009) when studying healthy subjects.  

Small changes in the inclination of the segment have the potential to influence the moment arm 

of the GRF vector around the hip joint centre. Specifically, as the centre of mass (CoM) is 

shifted forwards, in relation to the hip centre, the external hip extensor moment will increase. 

This external moment will require an increased internal moment from the action of the hip 

extensor muscles to maintain the upright position of the trunk segment during walking.  

Although the findings of study two support this hypothesis, the issue remains as to why the 

correlations found were relatively weak.  

Based on the mechanism outlined above, I hypothesised that the data would show a strong link 

between greater forward trunk lean and increased sagittal hip moment. Equally, I anticipated 

that individuals with lower forward inclination of the trunk would consistently show lower hip 

moments, as seen in the example plots given in results section of this chapter (Figures 5-3 and 

5-4). However, only moderate correlations were observed. The various factors which may 

account for this inconsistency are explained below. However, before these factors are discussed 

in detail, it is important to first reflect on the reliability of the data presented in the methods 

chapter of this thesis. These data showed that all kinematic data were robust to potential errors 

which could have resulted from inconsistencies in marker placement. I am therefore confident 

that the weaker than expected correlation was not the result of errors in the experimental data. 
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Nevertheless, precisely quantifying the position and motion of the trunk can be problematic 

and the issues associated with this type of measurement are discussed below. 

Unlike the shank and thigh segments, the trunk is not a rigid body segment, but a highly 

complex structure with multiple articulations. In order to produce a useable kinematic model 

of the trunk (and therefore an estimate of trunk inclination), it was necessary to make choices 

about how to create a single rigid-body model of this segment. I selected a model of the trunk 

in line with the recommendations of Armand et al. (2014). With this model, the trunk segment 

was defined using markers on the left/right acromiums and left/right greater trochanters and 

tracked using markers placed on the IJ and on T2 and T8.  

Small differences in bony anatomy and/or relaxed standing position have the potential to create 

an offset in sagittal trunk inclination. Difficulties emerge because individual people have varied 

anatomical characteristics: for instance, they may show more or less rounding at the shoulder, 

unbalanced muscles in the upper part of the trunk or weakness in the spinal muscle or trapezius, 

which could lead to subtle, but important, differences in anatomical alignment.  Such 

differences between people will affect the definition of the anatomical coordinate frame and 

could lead to an offset in sagittal trunk inclination which would cause the trunk inclination data 

to be shifted either upwards (increased trunk inclination) or downwards (decreased trunk 

inclination). Given the relatively small range of trunk inclination across the cohort, small 

changes in individual trunk inclination, due to subtle differences in anatomical alignment, will 

increase the spread of the data in the correlation analyses. This source of variability could have 

led to the weaker than anticipated correlations.  

Uncertainty in measuring hip moment 

A further biomechanical factor for which there could be measurement uncertainty is hip 

moment. Although my repeatability study demonstrated good reliability for the hip moments, 
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this only indicates that the measurement was repeatable.  It does not preclude the possibility 

that there might have been some aspects of the measurement which might have resulted in a 

consistent error. The knee OA group, and matched controls, in this study had a higher body 

mass index than would be expected in a younger group. This increased body mass index is the 

result of excess adipose tissue which is associated with increased soft tissue movement artefacts 

(Cappozzo et al., 1996), difficulty in locating the precise position of the hip joint centre (Kainz 

et al., 2015) and tracking the pelvic segment (Becker and Russ, 2015).  Errors in the anatomical 

definition and kinematic tracking of the pelvis and thigh segment will translate into errors in 

the calculation of the hip joint moment which is derived using the segmental motions and the 

precise position of the joint centre relative to the direction of the ground reaction force vector. 

As explained above, uncertainty in one of the variables of the correlational analysis (hip 

moment) will lead to reduced correlation due to more random noise and therefore more scatter 

of the data. Thus, soft tissue artefacts and the associated random error in hip moments may 

have contributed to the lower than expected correlation between trunk inclination and hip 

extensor moment.  

Turning to the findings for knee and ankle moments, no correlations were observed between 

these moments and the degree of forward trunk inclination. This could be because moment is 

determined by the magnitude of the GRF vector and the perpendicular distance between this 

vector and the knee/ankle joint centre. While small changes in trunk position, may lead to 

relatively large changes in the distance between the GRF vector and the hip joint centre, it is 

possible that such alterations in trunk position may not have a major effect on the distance 

between the GRF vector and knee/ankle joint centre. This may explain that lack of a correlation 

between trunk inclination and knee/ankle moments. Alternatively, the sources of variability in 

the measurement, described above, may have introduced noise into the measurements, which 

would weaken any possible correlation.  
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A number of previous studies have investigated the effect of altering upper body position on 

lower limb moments in healthy subjects. However, most of these studies have instructed 

subjects to adopt an unrealistic trunk inclination, not characteristic of normal walking and 

therefore it is not possible, in most cases, to make meaningful comparisons of my results with 

this work. Nevertheless, it is important to reflect on the findings of these studies in the context 

of my results. One recent study (Kluger et al., 2014) showed that knee and hip moments joint 

moments change significantly when trunk flexions of  25 ±7° and 50±7° are adopted,. They 

also found that ankle plantarflexion moment was decreased with increasing trunk flexion.  

Lewis and Sahrmann's (2015) study examined trunk flexion effects on kinematic and kinetic 

lower limb measures. They instructed healthy participants to walk using first, their natural 

posture, then with a swayback posture and finally while inclining the trunk forwards (with 

flexed knees and hips). The findings showed that walking with the swayback position led to 

increased hip flexor moment, while when walking with a forward flexed posture, hip extensor 

moment increased. This is consistent with the finding observed in this present study. Kluger et 

al. (2014) studied the impact of a sustained trunk inclination on kinetic variables in the lower 

limbs for healthy subjects while walking, in which participants walked first using an upright 

posture, then with trunk flexion of 25° ± 7, and then at 50° ± 7degree. It was found that as trunk 

flexion increased, plantar flexor moment was reduced, while peak hip extensor moments were 

increased.  However, these trunk inclinations are very large and therefore this study is not 

directly comparable with the data presented in this thesis.  

 

Leteneur et al. (2009) divided twenty-five healthy participants into two groups based on trunk 

inclination, with one group containing those who leaned backwards naturally (average 

inclination -1.7°) and the other those who leaned forward (average inclination 2.9°), and 

investigated lower limb moments. The results demonstrate clear differences in hip moments 
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between the groups, with duration of hip extension moments being increased for the forward 

group. These patterns match those observed in the current study, however they did not report 

correlations and therefore direction comparison is not possible. Interestingly, differences in 

moments were less clear at the knee and ankle, which is again consistent with the findings 

presented in this thesis.  

5.5.3 Correlation between forward trunk inclination and muscle activity 

The next research question in the study investigated correlations between forward trunk 

inclination and activity of the muscles of the lower limb. The data did not show a significant 

correlation between trunk inclination and either biceps femoris or semitendinosus muscles 

when they were measured individually. However, when both hamstring muscles were 

combined, a weak correlation was observed with trunk inclination. in the healthy group but not 

the group with knee osteoarthritis. Thus, although these data provide some support for the idea 

that forward trunk lean will be associated with increased hip extensor muscle activity, the 

results were not conclusive and therefore it is important to consider the other factors which 

may have influenced this relationship.  

Although most previous researches into hamstring patterns in people with knee osteoarthritis 

(Childs et al., 2004, Rutherford et al., 2017, Sharma et al., 2017) has focused on the hamstring 

muscles individually, I chose to combine them as part of the analysis. The findings that, 

together, there was a correlation appears biomechanically plausible as the hamstring will work 

as a group to create an extensor moment at the hip. Therefore, increased trunk lean could be 

compensated for by the two muscles acting together, rather than by one of the hamstring 

muscles providing the necessary increase in force. Nevertheless, the correlations were not 

strong in the healthy group and there were no meaningful correlations observed in the group 

with knee OA. This lack of a correlation could have resulted from the synergistic nature of the 
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hamstrings and the gluteus maximus muscles, which also act to extend the hip. The analysis 

described above was limited to the hamstring muscles. However, it is possible that increases in 

trunk inclination were compensated for by increases in gluteus maximus activity which were 

not measured in this study. This methodological choice was made because of the difficulty in 

obtaining high fidelity signals from this muscle during walking in people with increased levels 

of adipose tissue. Therefore, further research is needed to understand the link between trunk 

inclination and gluteus maximus activity.   

As explained in the section above, there are a number of limitations which result from 

modelling the trunk as a single segment. These limitations may lead to uncertainty in the 

measurement of trunk inclination and therefore increased scatter in the data. This scatter will 

reduce possible correlations and might explain why the correlations between the trunk 

inclination data and the EMG data were lower than anticipated. Furthermore, EMG is a 

complex measurement which is also associated with a level of uncertain, especially when 

comparisons are to be made across different subjects. Again, this uncertainty, or noise, could 

have lowered observed correlations.  

The findings for the quadriceps revealed no correlation between VM muscle activity and trunk 

inclination in either of the groups. This finding was similar for the VL muscle also, with no 

correlations found. However, there was a moderate positive correlation found for the combined 

activity of the quadriceps and forward trunk lean in the healthy but not in the knee OA or 

combined groups.  This finding of a correlation may be explained as a part of the mechanism 

of forward lean. It is possible that the increases in hamstring moment, as well as acting to 

increase upper body position, may also act to increase the flexor moment at the knee. A 

corresponding increase in quadriceps activity would act to balance this moment at the knee, 

resulting in no change in knee moment. Interestingly, the knee OA group in this study did not 
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demonstrate a correlation between quadriceps activity and trunk inclination. However, there 

was no correlation between hamstring activity and trunk inclination, suggesting different 

mechanisms underlying neuromuscular control. No correlations were observed between trunk 

inclination and either medial or lateral gastrocnemius activity, and further, no correlation was 

seen with the combined gastrocnemius results in either healthy or knee OA group. However, 

given the lack of a correlation between ankle joint moment and trunk inclination, this result 

could be expected.  

It is interesting to compare the muscle activity data in this study which that observed by Grasso 

et al. (2014), as the only previous study to investigate how muscle activity during walking may 

change with trunk lean. In this study, five healthy participants aged 21-36 were tested while 

walking at in three different postures; regular, with flexed knee, and with trunk and knee flexed. 

However, it is important to note that forward leans of up to 50º were adopted by the participants 

in their study and therefore direct comparison of the findings with this present study are 

difficult.  Given the small number of people in the study by Grasso et al. (2014), it was not 

possible to make generalisable statements; however, their data did suggest a general increase 

in muscle activity as trunk inclination was increased. These findings are consistent the 

hamstring data reported in this current study over a more modest range of trunk inclination 

angles.  

5.5.4 Correlation between forward trunk inclination and muscle 

co-contraction  

The analysis revealed no correlations between trunk inclination and any of the co-contraction 

indices studied. However, given that there was only a weak link between hamstring activation 

and trunk lean, and minimal other correlations between trunk inclination and muscle activation, 
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this lack of a correlation between co-contraction and trunk inclination was inevitable. Increased 

co-contraction activity between medial knee muscles has been linked by Hodges et al. (2015) 

to more rapid progression of knee OA. Therefore, as part of the background developed in the 

literature review section, I suggested a hypothesis around a possible link between trunk 

inclination and co-contraction. The key idea was that increased trunk inclination may be 

associated with increased co-contraction and therefore increased compressive force at the joint.  

 

The lack of a clear correlation between co-contraction and trunk inclination may indicate that 

joint contact forces are not influenced by upper body position. However, it is also possible that 

measurement uncertainty in both trunk inclination (see section 5.5.2) and EMG measurement, 

increased the scatter in the data, thereby hiding potential correlations. As explain earlier, the 

range of trunk inclination across the cohort was relatively small (1.6 º ±3º for healthy and 4.6º 

±2.9º ) for knee OA and so relatively small errors in this parameter could have led to relatively 

high levels of scatter which would have hidden a true correlation. EMG data is also 

problematic, especially as this needs to be normalised to an MVIC. Given that co-contraction 

is calculated from two (potentially noisy) EMG variables, this could have led to an increase in 

the scatter of the data, again hiding a potential link between trunk inclination and co-

contraction. 

5.5.5 Clinical implications of the findings  

The most important findings from the study are the weak-moderate correlations between trunk 

inclination and hip moment and the moderate correlation observed between trunk inclination 

and hamstring activation. While these findings were not strong, they do provide some support 

to the idea that upper body position may influence hip moments and potentially hip extensor 
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muscle patterns. If such findings are strengthened by further studies, it is possible that clinical 

strategies for reducing forward inclination for people with knee OA may be a viable treatment 

option for reducing muscle activity and therefore improving pain and function. Such clinical 

approaches may include stretching exercises for the hip flexor muscles, postural re-education 

and specially designed footwear. However, further intervention studies are required to establish 

if such approaches could improve trunk position and if this could lead to a corresponding 

change in muscle activation.  

 5.5.6 Limitations of the study 

As discussed in Section 5.5.2, it is challenging to quantify forward trunk inclination, due to 

issues in kinematic modelling this a multi-articular structure, which is not a rigid segment. To 

ensure that data collection methodology was sound, I performed a repeatability study which 

showed high levels of repeatability for the measurement of the thoracic segment (see chapter 

on methods). However, this only indicates that the measurement was repeatable.  It does not 

preclude the possibility that there might have been some aspects of the measurement which 

might have resulted in a consistent error, such as differences in anatomical alignment in the 

standing position. Such systematic errors could not have been eliminated completely and may 

have affected the findings of the study. As explained earlier, these uncertainties could have had 

a large influence on the derived correlations.  

5.5.7 Conclusions 

This second study aimed to establish whether joint moments, muscle activity and co-

contraction were correlated with increased forward trunk inclination. While the findings did 

not show the strong correlations, this does not necessarily imply that there is no link between 

upper body position and muscle activations/co-contraction. Indeed, I suggest that for some 
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variables, particularly trunk inclination, there were inherent difficulties in measurement which 

are difficult to avoid but which may have hidden a true correlation. Nevertheless, the findings 

offer some interesting implications, showing a weak-moderate correlation between trunk 

inclination and hip moment for both groups and a weak correlation between trunk inclination 

and hamstring activation in the healthy group. These findings show the beginnings of a link 

between upper body position and joint loading, but further research is required to develop more 

insight into this phenomenon.  
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Chapter 6 - Study three: The biomechanical effects of 

rocker footwear in people with knee OA 
 

Overarching aim: 

To investigate the effect of a footwear intervention (the three-curved rocker shoe) on 

biomechanical variables related to joint loading, both in people with knee OA and healthy 

control subjects.  

6.1 Overview of the study 

This is the final study of this Ph.D. thesis. This study aims to investigate the biomechanical 

effect of the three-curve rocker shoe on trunk inclination, lower limb moments and muscle 

activation patterns during gait with a focus on the early stance period, from 15-25% of stance. 

While previous studies of knee OA groups have tested lateral wedges and other shoe designs, 

most studies have focused on the reduction in knee adduction moments as a desired outcome. 

This study is novel in focusing instead on a footwear intervention to reduce moments in the 

sagittal plane, muscle co-contraction around the knee and trunk inclination. In the literature 

chapter, a rationale was put forward for how greater forward trunk inclination might have an 

impact on both muscle co-contraction and moments in the sagittal plane. In the previous 

chapter, the observed correlations between trunk inclination and other biomechanical variables 

was shown to be weak. However, I argued that this weaker-than-expected correlation may have 

be a result of uncertainty in measurement of trunk inclination which could have resulted from 

anatomical variation. Therefore, in order to explore further the potential link trunk inclination 

and lower limb biomechanics, it is interesting to use a within-subject design in which the effects 
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of an intervention, which has the potential to change trunk inclination, are examined. For this 

study, a simple footwear intervention was chosen: the three-curve rocker shoe. 

Rocker shoes have a curved, inflexible outsole, which means that the foot rocks forwards in 

the stance phase of gait. Previous research has shown that rocker footwear can be used to alter 

trunk inclination (Ochsmann et al., 2016) and also that this approach may be an effective way 

to reduce hip moments (Buchecker et al., 2013). Significantly, a study by Buchecker et al. 

(2013) demonstrates the possibility that hip moment reductions for the early stance phase are 

achievable with a correctly designed rocker shoe. Based on the rationale proposed in this thesis, 

in which greater hip moment is linked with forward trunk inclination and increased activity in 

the hamstrings, a well-designed rocker shoe intervention might lead to reductions in values for 

these variables for a knee OA cohort.  

The rocker shoe’s effect on muscle activity is not clear, with some studies finding raised 

gastrocnemius activity (Forghany et al., 2014) and others showing decreases (Sobhani et al., 

2013), and most research seeing little change in muscle activation (e.g. Santo et al., 2012). 

However, the effect of the exact shoe design should be taken into account here, and the 

appropriate outsole design for the rocker shoe may impact upon hamstring activity, and 

requires investigation. This study will investigate the effects of the rocker shoe on co-

contraction in particular.  

Considering trunk inclination, very few studies have examined the impact of rocker footwear 

on this variable. From these studies, Ochsmann et al. (2016) found that trunk inclination was 

significantly decreased by the rocker shoe tested, and this will be explored here, as these results 

raise the possibility that a rocker shoe design could lead to reductions in forward trunk 

inclination for people with knee OA.  However, it is likely that the effect of the rocker shoe 

will be dependent on the precise geometry of the outsole. 
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Potentially, a very specific design of rocker shoe may be required to reduce trunk inclination, 

hip moments and co-contraction of the knee muscles in people with knee OA. Recently, 

Hutchins et al. (2012) proposed a rocker profile which contained three different curves, based 

on circles drawn around the ankle, knee and hip, and aiming to reduce the amount of muscle 

activity at the hip, while maintaining a normal walking pattern. This suggests that a design of 

this type could be suitable for testing with a knee OA cohort. The 3 curves designed into the 

shoe are positioned with the radius of each one corresponding to the sagittal plane centre of 

either the hip, knee or ankle joint during the stance phase of gait, allowing a gentle forward 

rolling motion of the shoe, intended by Hitchins et al. (2012) to reduce muscle activity for 

muscles of the knee and ankle around the knee and ankle. If hip extensor moment can be 

reduced also, it is possible that hamstring activity may reduce in line with this, reducing 

hamstring-quadriceps co-contraction.  

The three-curve rocker profile used for this study has been designed to reduce both the hip and 

the ankle moment in early-mid stance and therefore may be an effective approach for 

decreasing both moments and also muscle activation and therefore co-contraction during 15-

25% of stance phase. To date, this specific design of three-curve rocker shoe has not been tested 

in individuals with knee OA. However, there is a substantial amount of previous research 

demonstrating increased muscle activity/co-contraction during this period in people with knee 

OA. Therefore, if the three-curve rocker shoe is effective at reducing muscle activity, then it 

may prove an effective approach for the clinical management of knee OA. 

This study will investigate the effect of three-curve footwear interventions (rocker shoe) on 

sagittal plane hip, knee and ankle moments and also muscle co-contraction patterns 

(hamstrings, quadriceps and gastrocnemius) in a cohort of patients with knee OA during 

walking during the early stance period (15-25%). The peak of compressive knee joint loading 
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is identified by modelling studies as occurring at between 15% and 25% and 65-75% of the 

stance phase (Sritharan et al., 2016; Brandon et al., 2014). Both clinical and biomechanical 

outcomes will be collected as part of the study and a healthy control group included to 

understand whether the effect of the footwear differs between healthy people and those with 

knee OA. 

6.2 Research Questions 

RQ 3A: How does inclination change when people with knee OA or healthy control 

subjects wear a three-curve rocker shoe? 

RQ 3B:  How do lower limb moments change when people with knee OA or healthy control 

subjects wear a three-curve rocker shoe? 

RQ 3C:  How does muscular co-contraction change when people with knee OA or healthy 

control subjects wear a three-curve rocker shoe? 

RQ 3D:  Are there immediate changes in measure of pain when people with knee OA wear 

a three-curve rocker shoe? 

6.3 Methodology: 

The methodology chapter should be referred to for a detailed description of the methods 

followed in each study for the thesis. This study was conducted with subjects wearing control 

shoes and then the intervention shoe (3-curve rocker shoe). All trials took place in the 

University’s Gait Laboratory.  
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6.3.1 Sample and population 

The sample for the third study of this thesis included 27 knee osteoarthritis patients and 20 

healthy subjects, across both genders. The data for all three studies was collected in a single 

visit for both groups. The methods chapter provides full details of the criteria used for inclusion 

or exclusion of the subjects.   

 

6.3.2 Design 

A between-within subjects design (two-way mixed design ANOVA) was used for the present 

study. Therefore, this study was designed to examine the effect of two independent variables 

between and within groups. The first variable was the between-subject factor, which had two 

levels (healthy group and OA group). The second was the within-subject factor, which also had 

two levels (control and rocker shoes). In addition, this study included fourteen tested dependent 

variables within the subject design, as detailed in the outcomes section below.  

6.3.3 Derivation of Outcome Measures and Statistical Methods  

This study was designed to determine the association between use of a 3-curve rocker shoe and 

forward trunk inclination, lower limb joint moments and muscle co-contraction during the 15-

25%. Outcome measures and statistical methods for the research questions set are presented in 

this section.   

 RQ 3a: How does inclination change when people with knee OA or healthy control subjects 

wear a three-curve rocker shoe? 

To answer this question, trunk inclination was recorded for all subjects when walking in the 

control shoes as a baseline and then when wearing the three-curve rocker shoe, as explained in 
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the methods chapter and Chapter 4, Section 4.3.2.  An average for the degree of forward 

inclination over 15-25% of stance phase was then calculated, to give a single value for each 

subject. The association between the values produced, the subject group and the footwear worn 

was then calculated two-way mixed design ANOVA. 

RQ 3b:  How do lower limb moments change when people with knee OA or healthy control 

subjects wear a three-curve rocker shoe? 

To address this question, mean sagittal moments for the ankle, knee and hip joints were 

calculated over the 15-25% period of stance phase. Two-way ANOVA was used to calculate 

the correlation between these values, subject type (knee OA or healthy group) and shoe type 

(control or rocker shoe).  

RQ 3c:  How does muscular co-contraction change when people with knee OA or healthy 

control subjects wear a three-curve rocker shoe? 

In order to examine the relationship between group, shoe type and lower limb co-contraction 

for the period 15-25% of stance phase, values for co-contraction were calculated for all subjects 

in both types of footwear, following the method described in Chapter 4, Section 4.3.2. The 

effect of group and shoe type, as well as interaction effects,  on the different co-contraction 

values, were then calculated using two-way ANOVA analysis. I chose to use the sum method 

to quantify co-contraction as this has been shown to correlate better with joint contact loading 

(Sritharan et al., 2016; Hodges et al., 2016) than other  approaches to calculating co-contraction 

(Heiden et al., 2009b). 

RQ 3d:  Are there immediate changes in measure of pain when people with knee OA wear a 

three-curve rocker shoe? 
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The Visual Analog Scale for Pain (VAS Pain) is a continuous scale, which is 10 centimetres in 

length (Huskisson, 1974, Hawker et al., 2011). The scale is used to measure pain intensity, with 

a score of 0 representing  “no pain” and a score of 10 the "worst imaginable pain” (Jensen et 

al., 1986, Burckhardt and Jones, 2003, Ferraz et al., 1990). Specifically, from the VAS score, 

pain can be interpreted as severe at 7.5-10cm, moderate at 4.5-7.4 cm, mild at 0.5- 4.4 cm and 

not found at 0-0.4cm, based on prior studies of score distribution among post-operative patients 

(Jensen et al., 2003). The VAS pain scale was used to quantify the clinical outcomes of pain 

both before and after the footwear interventions. 

6.3.4 Statistical Analysis 

Statistical analysis of results was carried out using the statistical package for social sciences 

(SPSS) version 23 for Windows. The two-way mixed design ANOVA design investigated the 

individual effects of shoe type (control and rocker shoe) and subject (knee OA and healthy) for 

each dependent variable. ANOVA also allows these two independent variables to be compared 

against each other for interaction effects. This was used to investigate whether the effects seen 

from shoe type were affected by subject group (OA and healthy groups).  

For between-subject analysis, homogeneity of variances and covariance were assessed by 

Levene's test and by Box's M test at (p > .05) respectively. For within subjects, Mauchly's test 

of sphericity was used.  The assumption of sphericity was met for the two-way mixed design 

ANOVA (p > .05) for each dependent variable. All of these assumptions met the parametric 

analysis. Accordingly, two-way mixed design ANOVA was used to compare between subjects 

and within subjects. The LDS adjustment was used to investigate possible pairwise differences 

if the ANOVA showed a significant difference. Data are mean ± standard deviation, unless 

otherwise stated. The test was performed on the examined sample with the alpha level 0.05.  

Inspection of a box and whiskers boxplot of each of the tested variables prior to the analysis 
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showed there were no outliers. The data was normally distributed, as assessed by Shapiro-

Wilk's test of normality (p > .05). There was homogeneity of variances (p > .05) and 

covariances (p > .05), as assessed by Levene's test of homogeneity of variances and Box's M 

test, respectively. Mauchly's test of sphericity indicated that the assumption of sphericity was 

met for the two-way interaction. However, a non-parametric test was used to address RQ 3D. 

The VAS (pain score) as this is ordinal data. 

The results section will present the main effects of the different shoe types, followed by the 

interaction observed. Although the ANOVA analysis provided statistics on the effect of group, 

this will not be discussed at length, as differences between knee OA and healthy subject groups 

were compared comprehensively in Chapters 4 and 5.  

6.4 Results 

6.4.1 Forward trunk inclination  

When wearing the rocker shoe, the knee OA group showed an average reduction of 1.4° in 

forward trunk inclination compared to when wearing the control shoe. As seen from the 

ensemble curves in Figure 6-1, this difference remained consistent across the gait cycle. The 

ANOVA analysis for the mean trunk inclination value across 15-25% of stance showed main 

effects for footwear (p=0.01) and group (p<0.01) but no interaction (see Table 6). Specifically, 

there was a 30% reduction in forward lean in the OA group (effect size = .05) and a 31% 

reduction in forward lean in the healthy group. The finding of no interaction demonstrated that 

overall, the effects of footwear were similar for each group, albeit slightly smaller in the healthy 

group.  
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Figure 6-1.  Ensemble average of trunk inclination for the knee OA group in two different 

shoes: (control shoes- blue line and (rocker shoes-red line) at stance phase. 

 

 

 

Table 6-1. Summary result of trunk inclination before and after wearing rocker shoes in 

healthy and knee OA group. 

 

 

 

Trunk 

inclination 

Control 

shoe  

Mean (SD) 

Rocker shoe  

Mean (SD) 

Effect size(ES) P  

OA group 4.6 º 

(2.9)º 

3.2 (2.7)º 0.5  Effect of shoes=.014* 

 

 Effect of group=0.005* 

 
 

 Interaction effect=0.22 

Healthy group 1.6 º  (3)º 1.1 º  (2.7)º 0.17 
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6.4.2 Lower limb moments  

Sagittal hip moment 

 

The ensemble curves for the different shoes showed only slight differences in sagittal hip 

moment (Figure 6-2). However, there was a consistent pattern across the stance phase for 

both groups. Specifically, for knee OA individuals, the curve showed a reduction in hip 

moment in the period between 20-70% of stance when wearing rocker shoes (Figure 6-2). 

Two-way mixed design ANOVA analysis for this factor across the period 15-25% stance 

phase found no significant main effects of shoes or group. No interaction effect was 

observed. Interestingly, mean hip moment was reduced by almost 8% in the knee OA group 

and almost 12% in the healthy group when wearing the rocker shoe (Table 6-2).  
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Figure 6-2.  Ensemble average of sagittal hip moment for the knee OA group in two different 

shoes: (control shoes- blue line and (rocker shoes-red line) at stance phase. 

 

Table 6-2. Summary result of sagittal hip moment before and after wearing rocker shoes in 

healthy and knee OA group. 

 

 
 

 

 

Sagittal hip 

moment in: 
Control shoe  

Mean (SD) 

Rocker shoe  

Mean (SD) 
Effect size(ES) P  

OA group  0.39 (0.21)  0.36 (.24) 0.13  Effect of shoes=0.11 

 

 Effect of group=0.27 

 

 Interaction effect=0.83 
Healthy group 0.34(0.20) 0.30 (.20) 0.2 
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Sagittal knee moment   

 

In the knee OA group, the ensemble curve for the rocker shoe demonstrated that sagittal knee 

moment was higher than for control shoes from 12-90% of stance phase, with a marked 

difference between 40 and 90% (Figure 6-3). No main effects were seen using ANOVA 

analysis across the period 15-25% of stance, however the effect of footwear approached 

significance (p=0.07). There were non-significant increases in knee moment, when both knee 

OA and healthy groups wore the rocker shoe, of 8% and 6% respectively. There was no 

interaction effect between footwear type and group (Table 6-3).    

 

 

Figure 6-3.  Ensemble average of sagittal knee moment for the knee OA group in two 

different shoes: (control shoes- blue line and (rocker shoes-red line) at stance phase. 
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Table 6-3.  Summary result of sagittal knee moment before and after wearing rocker shoes in 

healthy and knee OA group. 

 

Sagittal ankle moment 

The two ensemble curves indicate that the rocker shoe reduced sagittal ankle moment at 

between 2-65% of the stance phase for the knee OA group, which included the period of 

interested, 15-25% stance (Figure 6-4). Two-way ANOVA results for mean ankle moment 

(15-25% of stance) demonstrated main effects for both shoes (0.012) and the group tested 

(0.032), without an interaction effect. Sagittal ankle moment decreased by 70% (effect size 

= 0.45) for the knee OA group and by almost 67% (effect size = 0.47) for the healthy 

sample. Lack of an interaction effect shows that the shoes had a similar effect for both 

healthy and knee OA subjects (see Table 6-4).  

Sagittal knee 

moment 

Control shoe  

Mean (SD) 

Rocker shoe  

Mean (SD) 

Effect 

size(ES) 
P  

OA group 0.51 (0.23) 0.55 (0.22)  0.18  Effect of shoes=0.07 

 

 Effect of group=0.77 

 

 Interaction effect=0.89 

Healthy 

group 
0.50 (0.18) 0.53 (0.18)  0.16 
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Figure 6-4.  Ensemble average of sagittal ankle moment for the knee OA group in two 

different shoes: (control shoes- blue line and rocker shoes-red line) at stance phase. 

 

Table 6-4.  Summary result of sagittal ankle moment before and after wearing rocker shoes in 

healthy and knee OA group. 

 
 

Sagittal 
ankle 

moment 

Control shoe  

Mean (SD) 

Rocker shoe  

Mean (SD) 

Effect 

size(ES) 
P  

OA group -0.07(0.10) -.021 (.12)  0.45  Effect of shoes=0.012* 

 

 Effect of group=0.032* 

 
 

 Interaction effect=0.66 

Healthy 

group 
  -0.12 (0.10) -.08 (.07)  0.47 
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6.4.3 Muscle activity changes  

Biceps femoris activity 

The ensemble curve for biceps femoris activity in the rocker shoe shows clear differences with 

the control shoe for knee OA participants between 20 and 80% of stance phase, with a marked 

reduction between 30-60% of stance (Figure 6-5). When 2-way ANOVA was applied to the 

average BF activity values between 15-25% stance phase, no main effects of footwear were 

found (Table 6-5) and no interaction effect was identified. 

 

 

Figure 6-5.  Ensemble average of biceps femoris muscle activity in stance phase for knee OA 

group within two shoes. (red-rocker, and blue –control shoes). 
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Table 6-5.  Summary result of Biceps femoris activity before and after wearing rocker shoes 

in healthy and knee OA group. 

 
 

Semitendinosus activity 

The ensemble curves reveal a consistent pattern, but with lower levels of semitendinosus 

activity for the treatment shoe from 0-85% of stance phase in the knee OA group (Figure 6-6). 

However, although the ANOVA analysis of mean values (across 15-25% stance) did not show 

a main effect for footwear (Table 6-6), there was an interaction, suggesting that medial 

hamstring activity was reduced, with the rocker footwear, in the group with knee OA but not 

in the healthy group.  

 

Biceps femoris 

activity 

Control shoe  

Mean (SD) 

Rocker shoe  

Mean (SD) 
Effect size(ES) P  

OA group 0.13(0.10) .12 (.10)  0.1 
 Effect of shoes=0.51 

 

 Effect of group=0.10 

 
 

 Interaction effect=0.31 
Healthy group 0.07(0.42) .09 (.08)  -0.04 
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Figure 6-6.  Ensemble average of semitendinosus muscle activity in stance phase for knee OA 

group within two shoes; (Red-rocker, and blue –control shoes). 

 

Table 6-6. Summary result of Semitendinosus activity before and after wearing rocker shoes 

in healthy and knee OA group. 

 

 

 

 

Semitendinosus 
activity 

Control 

shoe  

Mean (SD) 

Rocker 

shoe  

Mean (SD) 

Effect 

size(ES) 
P  

OA group 
0.16 

(0.12) 
.13 (.12)  0.23 

Effect of shoes=0.22 

 

Effect of group=0.021* 

 

Interaction effect=0.031* 
Healthy group 0.07(0.49) .08 (.06)  0.01 
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Vastus medialis 

Vastus medialis activity appeared to be higher between 35 and 70% of stance in people with 

knee OA, when they wore the with the rocker shoe compared to the control, (Figure 6-7). 

However, across the period of interest (15-25% stance), there was minimal change in the medial 

quadriceps activity with the different shoes and no evidence of any interaction effects (see 

Table 6-7). 

 

Figure 6-7.  Ensemble average of VM muscle activity in stance phase for knee OA group 

within two shoes; (Red-rocker, and blue –control shoes). 
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Table 6-7. Summary result of VM activity before and after wearing rocker shoes in healthy 

and knee OA group. 

 

 

VL muscle activity  

The ensemble curves shown in Figure 6-8 show slightly higher VL activity for the rocker 

footwear, in the people with knee OA, between 10 and 75% of stance phase. However, these 

differences were small, and the ANOVA analysis did not reveal any main effects of footwear 

across the period 15-25% of stance (Table 6-8), with an increase of only 6.5% for the knee OA 

group compared to 14% for the healthy group. No interaction effects were observed for this 

muscle.  

 

VM muscle 
activity 

Control 

shoe  

Mean (SD) 

Rocker shoe  

Mean (SD) 
Effect size (ES) P  

OA group 
0 

.36(0.21) 
.37 (.33)  0.03 

Effect of shoes=0.66 

 
Effect of group=0.87 

 
 
Interaction effect=0.99 

Healthy group 
 

0.34(.27) 
.35 (.26)  0.03 
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Figure 6-8.  Ensemble average of VL muscle activity in stance phase for knee OA group 

within two shoes; (Red-rocker, and blue –control shoes). 

 

Table 6-8.  Summary result of VM activity before and after wearing rocker shoes in healthy 

and knee OA group. 

 

Medial gastrocnemius activity 

The knee OA group's ensemble curves for the two shoes tested show slight reductions in MG 

activity between 10 and 30% of stance and larger reductions between 30 and 75% (Figure 6-

9). However, average values analysed by two-way ANOVA showed no main effects from 

VL muscle 

activity 

Control shoe  

Mean (SD) 

Rocker shoe  

Mean (SD) 
Effect size(ES) P  

OA group 0.61 (0.43) .65 (.43)  0.09 
 Effect of shoes=0.20 

 

 Effect of group=0.011* 

 
 

 Interaction effect=0.89 

Healthy 

group 
0.35 (0.31) .40 (.18)  0.20 
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footwear over 15-25% of stance phase (Table 6-9). These data indicate minimal change in MG 

activity for the healthy group compared with a 9% reduction for the knee OA group (effect size 

= 0.16). However, although these effects were slightly different, no interaction was observed 

between shoe type and subject group. 

 

Figure 6-9.  Ensemble average of medial gastrocnemius activity in stance phase for knee OA 

group in different shoes (red-rocker and blue –control shoes). 

. 

Table 6-9. Summary result of MG activity before and after wearing rocker shoes in healthy 

and knee OA group. 

 

Medial 

gastrocnemius 

activity 

Control 

shoe  

Mean (SD) 

Rocker shoe  

Mean (SD) 
Effect size(ES) P  

OA group 0.11 (0.06) 0.10 (.06)  0.16 
 Effect of shoes=0.50 

 

 Effect of group=0.027* 

 

 Interaction effect=0.83 

 

Healthy group  0.07 (0.39) 0.07 (.04)  0.00 
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Lateral gastrocnemius activity 

The ensemble curves for the two different footwear types show little difference in the knee OA 

group for LG activity (Figure 6-10).  Given this similarity, the ANOVA analysis for average 

values across 15-25% of stance showed no effect of footwear and no interaction between the 

variables (Table 6-10).    

 

Figure 6-10.  Ensemble average of lateral gastrocnemius activity in stance phase for knee 

OA group in different shoes (red-rocker and blue –control shoes). 

Table 6-10.  Summary result of LG activity before and after wearing rocker shoes in healthy 

and knee OA group. 

 

LG activity 

Control 

shoe  

Mean (SD) 

Rocker shoe  

Mean (SD) 

Effect 

size(ES) 
P  

OA group 0.13 (0.12)  .13 (.10)  0.00 
Effect of shoes=0.12 

 

Effect of group=0.029* 

 
Interaction effect=0.33 

Healthy 

group 
.065 (.027) .08 (.04)  0.09 
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6.4.4 Muscle co-contraction 

Biceps femoris-VL Co-contraction 

The ensemble curves for the knee OA group shows a very similar trend for both footwear types, 

with the only clear differences between 58-75% of stance (Figure 6-11). Unsurprisingly, the 

ANOVA analysis, focused on 15-25% of stance, showed no significant effect of footwear 

(Table 6-11), although there was a clear difference between the two participant groups as 

discussed in Chapter 4.                     

 

Figure 6-11.  Ensemble average of biceps femoris and VL co contraction in stance phase for 

knee OA group in different shoes (Red-rocker and blue –control shoes). 
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Table 6-11.  Summary result of biceps femoris-VL co-contraction before and after wearing 

rocker shoes in healthy and knee OA group (15-25%) stance. 

 

Semitendinosus -VM Co contraction 

Only small differences were seen in the ensemble curves for semitendinosus-VM co-

contraction, with slightly lower values of co-contraction for the rocker shoe between 20-45% 

and 70-85% of stance but higher values from 45%-70% (Figure 6-12). For 15-25% of stance, 

ANOVA analysis of mean values showed no significant effects of the intervention (Table 6-

12). 

BF-VL co 
contraction 

Control shoe  

Mean (SD) 

Rocker 

shoe  

Mean (SD) 

Effect 

size(ES) 
P  

OA group 
 0.74 

(0.47) 
0.77 (.47)  0.06 

 Effect of shoes=0.86 

 Effect of group=0.001* 

 Interaction effect=0.89 Healthy 

group 

  0.41 

(0.16) 
0.49 (.21)  0.43 
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Figure 6-12.  Ensemble average of Semitendinosus -VM co contraction in stance phase for 

knee OA group in different shoes (red-rocker and blue –control shoes). 

 

Table 6-12.  Summary result of semitendinosus-VM co-contraction before and after wearing 

rocker shoes in healthy and knee OA group (15-25%) stance. 

 

 
 

semitendinosus-
VM co-

contraction 

Control shoe  

Mean (SD) 

Rocker shoe  

Mean (SD) 
Effect size(ES) P  

OA group 
0.52 

(0.37) 
.50 (.39)  0.05 

Effect of shoes=0.42 

 
Effect of group=0.40 

 
 

Interaction effect=0.73 

Healthy group 
0.45 

(0.25) 
.41 (.23)  0.16 
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Lateral gastrocnemius-VL Co contraction 

The ensemble curve for lateral gastrocnemius-VL showed slightly lower co-contraction in 

the rocker shoe across the middle of stance (Figure 6-13) but minimal differences across 

the period of interest.  Small effects were found from ANOVA analysis across the period 

15-25% stance phase: co-contraction was 5% higher for the rocker shoe in the knee OA 

group (effect size = 0.08), and almost 12% higher for the healthy group (effect size = 0.29). 

With these small effects, there was no significant difference in co-contraction between the 

different footwear types (Table 6-13). 

 

 

Figure 6-13. Ensemble average of lateral gastrocnemius-VL co contraction in stance phase 

for knee OA group in different shoes (red-rocker and blue –control shoes). 
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Table 6-13. Summary result of LG-VL co-contraction before and after wearing rocker shoes 

in healthy and knee OA group (15-25%) stance. 

 

 

Medial gastrocnemius -VM Co contraction 

Very little difference was observed in the ensemble curves for MG-VM co-contraction for 

the two shoe types across the stance phase, with only a minimal reduction in co-contraction 

across the period 20-50% and 60-80% of stance (Figure 6-14). Focusing on 15-25% of 

stance, ANOVA analysis revealed no effect from shoe, group or interaction (Table 6-14). 

LG-VL 

co contraction 

Control shoe  

Mean (SD) 

Rocker shoe  

Mean (SD) 
Effect size(ES) P  

OA group 
0.74 

(0.46)   
.78 (.45)  0.08 

Effect of shoes=0.17 

 

Effect of group=0.004* 

 
 

Interaction effect=0.85 

Healthy group 
0.43 

(0.16)   
.48 (.18)  0.29 
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Figure 6-14.  Ensemble average of medial gastrocnemius-VM co contraction in stance phase 

for knee OA group in different shoes (red-rocker and blue –control shoes). 

. 

 

Table 6-14.  Summary result of MG-VM co-contraction before and after wearing rocker 

shoes in healthy and knee OA group (15-25%) stance 

 

 

MG-VM co 

contraction 

Control 

shoe  

Mean 

(SD) 

Rocker 

shoe  

Mean (SD) 

Effect size(ES) P  

OA group 
 

0.47(0.34) 
 .48 (.33)  0.02 

 Effect of shoes=0.80 

 

 Effect of group=0.51 

 
 

 Interaction effect=0.42 

Healthy group 
  0.42 

(0.22) 
.41 (.21)  0.04 
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6.4.6 Are there immediate changes in measure of pain when people with knee OA wear a 

three-curve rocker shoe? 

The knee pain in knee OA group was not changed after wearing rocker shoes. The 

Wilcoxon signed-rank Test -equivalent to the dependent t-test- show no significant 

difference before and after wearing rocker shoes (Table 6-15) 

 

Table 6-15. Knee pain before and after wearing rocker shoes in the knee OA group during 

walking. 

                        Knee pain Mean (SD) 

 Pre-rocker shoes 1.8 (0.9) 

Post- rocker shoes 1.8 (0.9) 

 
 

6.5 Discussion: 

This study aimed to investigate the impact of a 3-curved rocker shoe on trunk inclination, lower 

limb joint moments, and muscle co-contraction, as well as on reports of pain. The study was 

based on the idea that an intervention which reduced forward trunk inclination might have 

effects on the sagittal joint moments and increased co-contraction around the knee seen in knee 

OA patients. Rocker shoes were selected as an intervention due to their potential to encourage 

postural realignment, given the instability that they introduce (Sousa & Tavares, 2014). I chose 

to test the 3-curve rocker shoe design based on its potential for aligning the GRF with the hip, 

knee and ankle joints across the gait cycle, which, in theory, should reduce the moments about 

each of these joints (Hutchins et al., 2010), and therefore reduce muscle activity and possibly 

co-contraction.  
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The 3-curve rocker shoe was selected from three possible design types, two of which had been 

previously used in knee OA research:   the first was the Masai Barefoot Technology shoe tested 

by Nigg et al. (2006), who found it to improve static balance and reduce pain; and Tateuchi et 

al. (2014), who found that it decreased knee flexion moment and increased trunk inclination in 

the extension direction, suggesting a reduction in forward lean. The second was the Skechers 

Shape-ups shoe tested by Madden et al. (2015), who found that it decreased peak knee 

adduction moment, with no change in knee flexion moment. The other possible design was the 

3-curve rocker shoe first used by Hutchins et al. (2012), who found lowered muscle activity 

around both ankle and knee joints using this design. This design was selected for the current 

study due the possibility that it might lead to reduced co-contraction given the fundamental 

idea underlying the design which aims to reduce moments at all three joints. Furthermore, in 

the current study, it was hypothesised that reducing forward trunk lean and hip extensor 

moment may reduce the excess hamstring activation and hamstring-quadriceps co-contraction 

reported in knee OA patients during walking (Zeni et al., 2010; Childs et al., 2004; Hortobagyi 

et al., 2005). Note that this shoe design has been little tested and is novel for knee OA research. 

This discussion section will first consider the shoe design chosen for the study. It will then 

discuss the results for each of the four research questions in turn. Then, a summary of the main 

findings, limitations, conclusions and recommendations will be provided. 

6.5.1 Trunk inclination  

Trunk inclination is a novel measure for studies of knee OA patients during gait. As expected, 

the results showed that both knee OA and healthy subjects exhibited mean reductions in 

forward trunk inclination when wearing the rocker shoe of 30% and 31% respectively, with a 

pattern which continued across the whole of the stance period. This appeared to confirm the 

ability of the 3-curve rocker shoe to cause segmental realignment, as reported by Sousa & 
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Tavares (2014). It is possible that improvements in trunk lean, which were more pronounced 

in the people with knee OA, were a result of the destabilizing effect of the rocker profile which 

caused individuals to alter the segmental alignment of their upper body in order to maintain 

balance on an unstable base. In addition, it is also possible that the observed reductions in 

forward lean were a direct result of the alteration in the direction of the GRF which is known 

to occur with a rocker profile (Hutchins et al., 2012).  

While there are no other knee OA studies measuring this parameter with footwear 

interventions, it is interesting to compare with findings from other studies outside the knee OA 

field.  Ochsmann et al. (2016), studying an all-male and healthy cohort, also found significantly 

reduced trunk inclination in a different rocker design, while Tateuchi et al. (2014) found an 

impact on trunk lean toward extension direction, i.e. a decrease in forward lean. However, in 

contrast, Talaty et al. (2016), in a healthy male cohort and different rocker design, report 

increases in trunk flexion.  These contrasting findings, one rocker shoe showing an increase in 

trunk lean and the other showing a decrease, supports our choice of rocker profile and suggests 

that further research is required into the possible therapeutic benefit of the three-curved rocker 

shoe in other clinical populations which may benefit from improvements in upper body posture.  

This study was novel in focusing on 15-25% stance (the period of peak loading) in a cohort of 

individuals with knee osteoarthritis. In addition, the majority of other studies looking at 

footwear interventions and knee OA have not measured trunk lean, so the results here showing 

a clear decrease in trunk lean are particularly interesting.  In the discussion section of chapter 

3, I outlined the possibility that forward trunk lean may be connected to tight hip flexor muscles 

(Kagaya et al., 2003; Sato & Maitland, 2008). The results presented in this chapter show a 

reduction in trunk lean when wearing rocker footwear. It is possible that this improvement 

resulted from a change in the activation of the hip flexor muscles and therefore less muscular 
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restriction during walking. However, I did not measure the hip flexor muscles as part of this 

investigation and therefore further research is required to confirm this idea.  

6.5.2 Lower limb joint moments  

Wearing the rocker shoes led to an 8% reduction in sagittal hip moment for the knee OA group 

and 12% for the healthy group.  However, although the reductions in hip moment for the knee 

OA group extended from 20-70% of stance, the magnitude of this between-shoe difference was 

not statistically significant. One of the key ideas presented in the literature review of this thesis 

was that reductions in trunk inclination would lead to reduction in hip moments. However, the 

data did not fully support this idea. This leaves two possibilities: first, that the changes seen in 

trunk inclination were not big enough to bring about sufficiently large changes in hip moment; 

or second, that another mechanism is acting to increase the moments.  To explore these ideas 

further, it is necessary to consider the mechanics of the rocker shoe. 

The three-curve rocker shoe design was intended to decrease hip moments, through the 

introduction of instability, which may encourage realignment of the segments of the body 

(Sousa & Tavares, 2014). Reductions in trunk inclination were expected to reduce the need for 

increased hamstring activation to maintain balance, leading to a reduction in hip moment. 

Hutchins (2012) designed the 3-curve rocker shoe with curves aligned with the sagittal plane 

centres of the 3 lower limb joints and intended to reduce joint moments, and Buchecker (2013) 

found a reduction in hip moments using this design. However, in the current study, only a small 

(non-significant) reduction in the hip extensor moment was observed. This could have been 

due to the concomitant change in the magnitude and direction of the GRF vector which may 

have offset the effect the effect of a small decrease in trunk inclination. Alternatively, it is 

possible that the relatively small change in trunk inclination (1.4° in the knee OA group) was 

not sufficiently large to elicit a significant change in the hip moment. Interestingly, in their 
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study comparing individuals with a natural forward lean and natural backward lean, Leteneur 

et al. (2009) observed a mean difference of about 4.6° between the two groups to correspond 

to a difference of 0.2 Nm/Kg. This compares to a mean difference of 1.4° in lean when wearing 

rocker and control shoes, with a difference of .03 Nm/Kg in mean hip moment. 

When looking at the available literature on footwear interventions in knee OA, a mixed picture 

is seen regarding the effects of interventions on hip moments. Sobhani et al. (2013), studied a 

rocker shoe with a proximally positioned profile which differed from the shoe used in this study 

and found no change in hip moments, which matches the observations in this study. However, 

in another study, Buchecker’s (2013) observed a reduced concentric hip output with an MBT 

shoe. Overall, it would appear that rocker shoes are only capable of bringing about relatively 

small changes in hip moments in knee OA populations which, in general, are not significant. 

This study observed only small (non-significant) increases in sagittal knee moments in both 

groups when wearing the 3-curve rocker shoe. However, although the differences over the 15-

25% stance period, were small, more pronounced differences were observed in later stance 

(Figure 6-3). The small differences in knee moment over 15-25% stance suggest that the rocker 

footwear brought about minimal changes in the direction of the GRF vector during this period. 

However, later in stance, the internal flexor moment was reduced dramatically and became an 

internal extensor moment. These data demonstrate a large shift in the direction of the GRF 

vector relative to the knee joint centre during this phase of the gait cycle and therefore a 

substantial change in the moment. Nevertheless, as knee moments are typically small during 

this phase of gait cycle, it is unlikely that change would results in a substantial change in knee 

joint loading.   

Previous studies into the effects of rocker footwear on knee moments show mixed results. For 

example, two studies observed rocker footwear to bring about a reduced external knee flexor 



233 

 

moment during loading response (Buchecker et al., 2013, Tateuchi et al., 2014a). However, in 

a study of MBT rocker shoes, Sobhani et al. (2013) found no change in the knee flexion 

moment in early stance. These latter results are consistent with the findings of this study. Sacco 

et al. (2012) state that their results with an MBT shoe, in which vertical loads were increased 

in comparison with standard shoes and walking barefoot, suggest increased musculoskeletal 

loading when the shoe was first worn. Overall, the research does not point to a clear and 

consistent effect of rocker footwear on knee moments and this is most likely the result of 

variations in the outsole profile design of the different shoes shoe having a different effect on 

the change in the direction of the GRF vector and possibly the position of the upper body.  

The data presented in the section above showed a clear effect of the rocker footwear on the 

ankle moments over the period of interest (15-25% stance) for both groups. This difference 

appeared to be maintained throughout midstance: however, I did not perform any statistical 

analysis outside the period of interest and so it is not clear whether these differences are 

significant. Nevertheless, Figure 6-4, shows a large effect of the footwear, illustrated by a large 

shift in the curve relative to the standard deviation band. Hutchins et al.  (2012) suggest that 

the three-curve rocker shoe will alter the direction and orientation of the GRF during walking 

in such a way as to redirect the GRF so that it is closer to the ankle joint centre during early 

stance. My results support this idea and suggest that this redirection of the GRF occurred from 

10-60% stance. This idea is consistent with the results of other studies into rocker footwear 

(Taniguchi et al., 2012, Boyer and Andriacchi, 2009, Hutchins et al., 2009) which have reported ankle 

plantarflexor moment during walking. In general, these studies demonstrate reduced 

plantarflexor moments over early to mid-stance and this effect appears to occur irrespective of 

the precise rocker profile.  
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6.5.3 EMG muscle activity 

The results for EMG assessment of the hamstrings showed minimal difference in the biceps 

femoris over the period of interest but a consistent (however non-significant reduction) in 

semitendinosus activity across the gait cycle (Figure 6-6). Interestingly, although there was no 

difference in biceps femoris across early stance, wearing the rocker shoe did seem to be 

associated with a reduction in activity during midstance (Figure 6-5). The lack of an effect of 

the rocker shoe on hamstring activity fits with the data, presented above, showing only small 

reductions in hip extension moment. Given these small changes in hip moment, it would be 

reasonable to anticipate only small reductions in hamstring activity. However, larger change in 

hamstring activity later in midstance is difficult to explain and could possibly be the result of 

an increase in gluteus maximus activation, a synergist for hip extension. 

It is interesting to compare these findings on hamstring activity with those from previous rocker 

shoe research. A study on MBT rocker footwear worn by healthy subjects conducted by Sacco 

et al. (2012) reported no differences in EMG results between the rocker shoe and a control 

shoe. Further, Santo et al. (2012) found no change in biceps femoris muscle activity when 

walking in rocker footwear. Likewise, Forghany et al. (2014) found no significant effects of 

MBT or rollover shoes on biceps femoris activity. The results of the current study are therefore 

comparable to previous literature on this measure and confirm the idea that rocker footwear is 

unlikely to reduce hamstring activity, irrespective of the rocker profile.   

The EMG results for the quadriceps also showed no clear increase in activity across the period 

of interest. Again, given the minimal changes in the knee moment across this period, this lack 

of a change in the EMG data would be expected. However, there did appear to be a slight 

increase in vastus medialis activity during midstance (Figure 6-7). This may indicate that the 

instability resulting from the rocker shoe could lead to increased activity in the quadriceps. 
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However, further analysis across the midstance period would be needed to test this idea but 

this was deemed outside the scope of the current study.  

Considering previous studies, Sacco et al. (2012) did not find any significant difference in 

EMG activity for the vastus lateralis between MBT rocker and standard footwear for a healthy 

cohort. Moreover, Tan et al. (2016) found no significant effects of MBT rocker shoes on 

quadriceps activity in their systematic review. This present study is therefore in line with 

previous work on other rocker shoes in finding no significant link with quadriceps activity.        

The EMG results for the gastrocnemius muscles show a decrease for the medial gastrocnemius 

particularly from 30-75% of stance, but also a slight decrease between 10 and 30%. However, 

the strength of these changes is not significant, and little change is seen for the lateral 

gastrocnemius muscle in relation to the rocker shoe. Overall, these results do not match the 

reduction in sagittal ankle moment which is seen in the period of interest.  

Santo et al. (2012) did not find alterations in gastrocnemius activity in rocker shoes, similar to 

this study. However, Forghany et al. (2014) found increased medial gastrocnemius activity, 

which, while not statistically significant, contrasts with the decrease observed in this study. 

Tan et al. (2016) found no significant alterations in amplitude or time of gastrocnemius muscle 

activity when reviewing trials of MBT rocker shoes. Overall therefore, the results here fit 

within the wider literature in finding little change in the activity of these muscles from rocker 

footwear.  

6.5.4 Co-contraction 

The data comparing co-contraction for the four muscle pairs (Figure 6-11 – 6-14) showed 

minimal differences between the control and the rocker shoe across the 15-25% period of 

interest. During this time, no significant changes were identified in any of the four measures of 
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co-contraction. These results are logical when viewed alongside the muscle activity results for 

this period, which also showed minimal changes in EMG patterns with the rocker footwear. 

This result is important as it shows that rocker footwear is unlikely to decrease co-contraction 

in people with knee OA. As explained in the literature review and demonstrated in Chapter 4, 

people with OA have a tendency to walk with increased co-contraction of the knee muscles 

(Childs et al., 2003), which may cause the knee joint to deteriorate (Lewek et al., 2005). These 

OA-type muscle activation and co-contraction patterns may result in elevated joint contact 

force at the medial compartment (Sritharan et al., 2016a). The data from this study does not 

support the idea that the three-curve rocker shoe could reduce co-contraction and therefore does 

not support is use clinically in knee OA populations.  

It is interesting to compare the data in this study with previous studies which have investigated 

co-contraction in rocker footwear. Horsak et al. (2015) found a statistically significant increase 

in co-contraction between BF and vastus medialis across the gait cycle. Although I focused on 

a specific phase of the gait cycle, my data do not seem to be consistent with this finding which 

may possibly be because of the different rocker profile used by Horsak. However, the idea of 

rocker shoe increasing co-contraction is also supported by the data of Buchecker et al. (2010), 

who noted that vastus lateralis activity, as well as gastrocnemius activity, was greater in a 

rocker shoe in the late phase of stance, and that this lead to an increased co-activation between 

these muscles at mid- and end-stance. These previous studies suggest a destabilising effect 

from the rocker shoe which leads to increased co-contraction. However, I did not observe this 

effect and so it would appear that alterations in co-contraction are dependent on rocker outsole 

profile. 
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6.5.5 Effect of 3-curve rocker shoe on pain 

 The investigation of pain experienced by the knee OA group when walking in control shoes 

or in the three-curve rocker shoe found no immediate changes. This is unsurprising given the 

findings discussed above with regard to the lack of a change of co-contraction of the lower 

limb muscles.  Nigg et al. (2006) studies the Masai Barefoot Technology (MBT) shoe and 

looked at clinical outcomes relating to pain and function. They and found significant 

improvement in static balance for the MBT shoe which was accompanied by reductions in pain. 

The authors concluded that rocker shoes may be effective in reducing pain in people with knee 

OA and suggested a mechanism focused on the idea that the rocker shoe reduced the force 

exerted between bones, redistributed body weight and changed the activity of the muscles 

surrounding the joint (Nigg et al., 2006). In the current study, there was no immediate change 

in pain before and after wearing rocker shoes. One explanation for this is that the three-curve 

rocker shoe did not reduce co-contraction. However, alternatively, it is possible that the short 

time frame of the experimental trials was insufficient to produce any marked reduction in 

reported pain.  

6.5.6 Clinical implications 

We hypothesised that the three-curve rocker shoe would lead to a segmental realignment (more 

upright position of the trunk) during walking. It was thought that if this was achieved, it might 

lead to a corresponding reduction in sagittal hip moments and muscle co-contraction and that 

this could reduce the articular load, thereby improving pain. However, while the rocker shoe 

had the effect of reducing forward trunk inclination, minimal changes were observed in co-

contraction and there was no change in reported pain. Therefore, the three-curve rocker shoe 

may not be a suitable clinical intervention for improving gait in people with knee OA.  
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6.5.7 Limitations of the study 

As explained in the previous chapter of this thesis, the measurement of trunk lean is 

problematic, due to the complex and flexible structure of the spine. Trunk lean was quantified 

by using a single thoracic segment which was tracked using four markers attached at fixed 

points and defined using markers on the acromiums and the greater trochanters. However, 

whereas in the previous study (chapter 5), I was comparing trunk inclination across different 

individuals, in this present study I was looking for within-subject changes in trunk inclination. 

Using a within-subject design, reduces the potential for error which results from inter-subject 

differences in trunk motions. However, the limitation of using a single rigid body model of the 

trunk still remains and may have introduced a degree of uncertainty into the trunk inclination 

measurements.  

A further limitation of the study comes from the use of surrogate measures (EMG and joint 

moments) to gain insight into joint loading. It is possible that the rocker footwear did result in 

reductions in joint loading, but I was unable to capture this with my measurement. To obtain 

more precise estimates of joint loading, it is necessary to develop a full musculoskeletal and 

finite element model. This was deemed to beyond the scope of this thesis. Nevertheless, I used 

a measure of co-contraction which has been shown to have a reasonable correlation with joint 

load (Brandon et al., 2014, Sritharan et al., 2016a). This measure was focused on a time window 

15-25% stance, a choice which was justified from interpretation of modelling studies showing 

the effect of increased co-contraction on peak knee forces (See section 2.4.5 for more details). 

With this outcome, the analysis provided insight into whether rocker footwear may have 

influence joint loading. However, it is possible that this narrow statistical focus did not capture 

other changes in muscle patterns which may have resulted from the rocker footwear. 



239 

 

Nevertheless, this decision was made to minimise the chance of type 1 error, which would have 

increased if additional outcomes (focusing on additional time windows) had been analysed.  

A single, specific rocker outsole profile was chosen for the study, and this presents a limitation, 

as it is not clear whether or not findings would have been similar using other designs of rocker 

footwear. This limitation was made necessary by the practical limitations of the study, 

including time and resources. While other studies have focused on different rocker shoe 

designs, including MBT and Skechers Shape-ups, the 3-curve design used for this study was 

chosen based on data and the suggestion by Hutchins (2012) that it could reduce joint moments. 

Nevertheless, most of the patterns that we observed were generally consistent with previous 

studies and suggest that rocker footwear is unlikely to result in large changes to muscle co-

contraction.  

6.6 Conclusions 

The three-curve rocker shoe led to a reduction in forward trunk inclination, as hypothesised. 

Howeer, this was not accompanied by reduced joint moments, reductions in hamstring activity 

or reduced co-contraction. It is likely that the reductions in trunk inclination were insufficient 

to bring about the changes in hip moments and muscle patterns that were hypothesised. 

Therefore, as reductions in moments and in co-contraction were not observed, the results 

suggest that rocker footwear may not be a viable intervention for people with knee OA if the 

aim is to reduce sagittal plane loads. 
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Chapter 7 - Final conclusions and future recommendations  
 

7.1 Introduction 

This thesis has extended the knowledge base related to gait in knee OA patients, and in 

particular has contributed to the understanding of forward trunk inclination for this group, 

through three linked studies. It has explored a new model to explain altered moment and muscle 

activity in people with knee OA, based on sagittal plane trunk inclination altering the direction 

of the ground reaction force vector and therefore the moments and muscle activation patterns 

at the hip knee and ankle. The data show a clear pattern of increased forward lean in people 

with knee OA while walking and confirms previous research showing that people with knee 

OA also stand with increased forward lean (Turcot et al., 2015). The data presented in this 

thesis also supports previous work which shows differences in lower limb joint moments, 

muscle activity and co-contraction between people with knee OA and healthy subjects. 

However, in contrast to much earlier research which has often focused on peak values (Brandon 

et al., 2014, Sritharan et al., 2016a), I focused on the period (15-25% of stance) which 

corresponds to the point of peak loading. In chapter 5, I investigated the links between a range 

of biomechanical parameters and trunk inclination and found weak-moderate correlations 

between trunk inclination and hip moments/muscle activations. Although this link was less 

clear that I originally hypothesised, these data do provide new insights into the gait mechanics 

of people with knee OA and motivate further study in this area. The thesis has also extended 

understandings of rocker shoe interventions for knee OA, finding reductions in forward lean 

from a 3-curved rocker shoe, but also showing minimal changes in other biomechanical 

variables over the period of interest (15-25% stance). 
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The final chapter of the thesis will review the rationale for the project, its objectives, and the 

outcomes of the three studies conducted in comparison to the overall aim of the thesis and the 

objectives set for each study. Further, it will synthesise results to give an overview of what has 

been learnt in terms of the overall contribution to the body of knowledge. The limitations of 

the project will then be presented, before the extendibility of the study is discussed and 

recommendations for future directions made.  

7.2 Overview of results 

First, the literature related to gait and knee OA was reviewed and synthesised, and this resulted 

in several main findings on important characteristics of gait in knee OA:  

 Moments: peak knee extensor moments are reduced but hip extensor moments 

increased during midstance in people with knee OA.  

 Muscle activity: hamstring activity, quadriceps activity and gastrocnemius activity are 

increased in people with knee OA.  

 Joint loading: the elevated levels of muscle activity lead to increased compressive 

loading at the knee joint at between 15-25% stance phase. 

 

While these main features are generally accepted however, explanations for these alterations 

vary, with one perspective viewing them as an appropriate strategy to stabilise the knee joint 

in knee OA, while another perspective views the responses as maladaptive, increasing 

compression at the knee joint and therefore speeding the progression of the disease. 

The literature review also formed a basis for the formulation of a hypothesis to explain some 

of the modifications to gait seen in knee OA. Briefly, it was proposed that increased hip 

extension moments, decreased knee extension moments and increased muscular co-contraction 

during 15-25% of stance phase (Liu et al., 2014) may result from increased forward trunk 
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inclination, which has been found to have similar effects in studies of gait more generally, 

because of the need to support the trunk against gravity (Leteneur et al., 2009). This was 

considered to result from anterior shifting of the ground reaction force vector relative to the hip 

joint and knee joint in response to the altered centre of mass from forward trunk lean, thereby 

increasing hip extensor moment and decreasing knee moment, as reported by Huang et al. 

(2008) and Debbi et al. (2014) respectively. The hamstrings-quadriceps co-contraction increase 

seen in knee OA (Zeni et al., 2010; Childs et al., 2004; Hortobagyi et al., 2005) was 

hypothesised to be linked with increased hip extensor moment from trunk inclination, as 

hamstrings are responsible for extending the hip. Further, the potential was identified for 

increased gastrocnemius-quadriceps co-contraction resulting from increased trunk inclination 

if shifting A-P CoP and therefore ankle moment is changed by this. In investigating these 

possibilities, the thesis has presented an original approach to gait knee OA. There is previous 

work investigating the links between trunk position in the frontal plane and knee adduction 

moments, but little exploration of the characteristics and consequences of sagittal plane trunk 

alignment in people with knee OA.  

7.2.1 Study One: Trunk inclination in people with knee OA 

The first of the three studies explored differences in sagittal plane trunk inclination between 

healthy people and individuals affected by knee OA. It first explored trunk inclination during 

standing and walking through the following research questions: 

RQ 1A: Do individuals with knee OA walk with an increased inclination of the trunk?  

RQ 1B: Do individuals with knee OA stand with an increased inclination of the trunk?  

RQ 1C: Does trunk inclination in standing correlate with trunk inclination in walking 

both in a group of individuals with knee OA and also in a healthy cohort?  

  Following this, CoP was investigated to find potential links to forward trunk inclination:  
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RQ 1D: Is there a difference in CoP between healthy and knee OA subjects?  

RQ 1E: Is there a link between forward trunk inclination and anterior shift of CoP?   

Finally, moments, muscle activation and co-contraction were compared for healthy people and 

those with knee OA: 

RQ 1F: What are the differences in hip/knee/ankle moments between healthy and knee 

OA subjects?  

RQ 1G: What are the differences in hamstring/quadriceps/gastrocnemius muscle 

activity between healthy and knee OA subjects?  

RQ 1H: What are the differences in the co-contraction between healthy and knee OA 

subjects?  

The main findings from this study support the differences in gait in people with knee OA from 

previous studies which were summarised in Section 7.2, concerning moments and muscle 

activity. In particular, the knee OA group showed muscle activations in biceps femoris activity, 

semitendinosus activity and vastus lateralis activity which were typically 50% larger than in 

the healthy people.  Importantly, the findings also reveal significant differences between the 

OA and control groups in terms of standing and walking of sagittal trunk inclination, with mean 

increased forward lean for the knee OA group of 1.7° while standing and 3° during walking. 

However, only a weak correlation (r=0.42) between standing and walking was identified, 

suggesting a different mechanism for inclination in standing and in walking. Two mechanisms 

were considered in this thesis for forward trunk lean in walking. First was the theory of 

realignment through anterior displacement of CoP to maintain balance, which would show 

increases in the ankle plantar flexor moment due to the anterior shift on the CoP relative to the 

ankle joint. However, this appeared to be unlikely given the lack of an association between 

trunk inclination and change in CoP and no corresponding change in ankle moment. The second 

theory was that tightness in hip flexor muscles had a causal role in forward lean, and the 
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findings were in line with this concept. While I did not collect data to fully support this idea, it 

appeared possible and therefore further research is required in this area. 

7.2.2 Study Two: The relationship between trunk inclination and joint 

moments/muscular co-contraction   

The second study investigated links between trunk inclination and lower limb moments/muscle 

activation and co contraction patterns in the sagittal plane while walking, to understand more 

fully the mechanism for forward lean. The study therefore examined a novel concept in knee 

OA and a comparatively under-researched area of gait analysis more generally. This was 

approached through three research questions:    

RQ 2A: What is the relationship between trunk inclination and hip/knee/ankle moments 

in people with knee OA and also in healthy control subjects?  

RQ 2B: What is the relationship between trunk inclination and 

hamstring/quadriceps/gastrocnemius activity in people with knee OA and also in 

healthy control subjects?  

RQ 2C: What is the relationship between trunk inclination and co-contraction in people 

with knee OA and also in healthy control subjects? 

 

The main findings of study two include a weak to moderate association between forward trunk 

inclination and sagittal hip moment and weak correlation between trunk lean and hamstring 

muscle activation. Although these findings are consistent with some previous research on 

healthy participants (Kluger et al., 2014; Leteneur et al., 2009; Sato & Maitland, 2008), the 

correlations were weaker than anticipated. Nevertheless, the data do provide support for the 

idea that increased trunk inclination could lead to increase hip moments and therefore 

hamstring activation patterns. However, it is possible that uncertainty in trunk measurements 
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which results from anatomical variation, along with other associated uncertainties in hip 

kinetic/EMG measurement could have contributed to the lower-than-anticipated correlations.  

7.2.3 Study Three: The biomechanical effects of rocker footwear in people 

with knee OA 

The final study in the thesis considered a footwear intervention for knee OA in relation to the 

aspects of gait studied in the first two studies. Based on literature, a 3-curved rocker shoe was 

identified as a potential intervention to influence sagittal joint angle, moments and upper body 

positioning, and in particular to alter sagittal plane alignment of the trunk and produce 

corresponding alterations in joint moments and patterns of muscle activation. While previous 

literature has trialled various designs of footwear as a knee OA intervention, this is the first to 

focus on this specific aim. This was done through the following research questions:  

RQ 3A: How does inclination change when people with knee OA or healthy control 

subjects wear a three-curve rocker shoe?  

RQ 3B:  How do lower limb moments change when people with knee OA or healthy 

control subjects wear a three-curve rocker shoe?  

RQ 3C:  How does muscular co-contraction change when people with knee OA or 

healthy control subjects wear a three-curve rocker shoe?  

RQ 3D:  Are there immediate changes in measure of pain when people with knee OA 

wear a three-curve rocker shoe? 

It was anticipated that the intervention would reduce forward trunk inclination, and this was 

clearly observed, with an average 1.4° reduction for the knee OA group across the gait cycle. 

However, this was not accompanied by the expected changes in joint moment or hamstrings 

activity. Further, there was no immediate change noted in the pain reported by participants. 

Based on these findings, it is possible that trunk inclination was insufficiently altered by the 



246 

 

intervention to reach the desired outcomes for the other parameters. Alternatively, this specific 

design of rocker shoe may have had other effects which were not anticipated, such as 

destabilisation effects, which counteracted any effects from the change in trunk inclination and 

produced the unexpected results. The findings produced do not point to the viability of the 3-

curved rocker shoe as an intervention for knee OA.   

7.3 Clinical Recommendations 

Overall, the thesis demonstrates an increased forward trunk lean in people with knee OA. 

Therefore, strategies to decrease this may be warranted in clinical practice. These may include 

therapeutic approaches such as a programme of tailored stretching exercises, as well as postural 

re-education approaches and/or muscle strengthening programmes. Clinical programmes could 

also include proprioceptive training in body position awareness and/or biofeedback training to 

re-educate patients on the correct position of the trunk during walking. 

In the second study, a weak, but significant, correlation was observed between trunk inclination 

and hamstring muscle activity. Given that increased muscle activity is associated with 

increased compressive force at the joint (Andriacchi, 1994, Zeni et al., 2010), then approaches 

which could reduce trunk inclination, such as those described above, could have an impact on 

muscle patterns, thereby reducing contact loading at the joint. However, further research is 

required to fully validate this idea.  

The findings of the final study do not support the use of 3-curve rocker shoe as a footwear 

intervention. This is because, although the shoe reduced forward trunk inclination, it did not 

have corresponding effects, reducing either hamstrings activity or joint moments. This suggests 

that this type of footwear may not be beneficial for reducing joint loading and therefore not 

appropriate for people with knee OA.  Further research is therefore needed to understand the 
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potential effectiveness of other types of rocker footwear could be a better alternative treatment 

if the target is to reduce muscle activity. 

7.4 Recommendations for future research  

The outcomes of this study advance knowledge in relation to walking in knee OA, and 

particularly in terms of trunk inclination: however, they also raise questions which could 

usefully be explored further. Future research recommendations are therefore given as follows:  

I proposed that tightness in hip flexor muscles may acts as a mechanism for forward trunk 

inclination. However, further evidence is needed to fully validate this idea, particularly in the 

area of knee OA. Such studies could be both cross sectional in nature, investigating correlations 

between natural trunk inclination and hip flexor muscle length or intervention studies, 

investigatintg the effects of stretching hip flexor muscles on upper body position.  

This results of this thesis also motivates future study into the effects of biofeedback training on 

trunk inclination. With recent advances in motion capture technology, it is now possible to give 

participants real-time feedback on the position of their trunk. Using this appraoch, it would be 

possible to precisely quantify the effect of small, imposed changes in trunk inclination on joint 

moments, muscle activations and co-contraction. Such an approach would reduce the 

uncertainty associated with comparing trunk inclination across different people and may 

provide improved insight into th eeffect of trunk inclination on gait parameters related to joint 

loading.  

Finally, more research is needed into the full effects of rocker shoe designs in people with knee 

OA. I observed some interesting effects in which trunk inclination was reduced but co-

contraction and hamstring activity did not decrease. Future studies may determine how 

different rocker shoe profiles may impact on specific gait parameter, related to knee loading, 
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and establish whether optimised footwear designs could be used as a treatment option for 

people with knee OA. 

 

 

  



249 

 

 

List of References 

 

AL-ARFAJ, A. & AL-BOUKAI, A. A. 2002. Prevalence of radiographic knee osteoarthritis in 

Saudi Arabia. Clin Rheumatol, 21, 142-5. 

AL-ZAHRANI, K. & BAKHEIT, A. 2002. A study of the gait characteristics of patients with 

chronic osteoarthritis of the knee. Disability and rehabilitation, 24, 275-280. 

ALTMAN, R., ASCH, E., BLOCH, D., BOLE, G., BORENSTEIN, D., BRANDT, K., 

CHRISTY, W., COOKE, T. D., GREENWALD, R., HOCHBERG, M. & ET AL. 1986. 

Development of criteria for the classification and reporting of osteoarthritis. 

Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria 

Committee of the American Rheumatism Association. Arthritis Rheum, 29, 1039-49. 

ANDRIACCHI, T., OGLE, J. & GALANTE, J. 1977. Walking speed as a basis for normal and 

abnormal gait measurements. Journal of biomechanics, 10, 261-268. 

ANDRIACCHI, T. P. 1994. Dynamics of knee malalignment. Orthop Clin North Am, 25, 395-

403. 

APPS, C., STERZING, T., O'BRIEN, T. & LAKE, M. 2016. Lower limb joint stiffness and 

muscle co-contraction adaptations to instability footwear during locomotion. J 

Electromyogr Kinesiol, 31, 55-62. 

ASTEPHEN, J. L., DELUZIO, K. J., CALDWELL, G. E. & DUNBAR, M. J. 2008. 

Biomechanical changes at the hip, knee, and ankle joints during gait are associated with 

knee osteoarthritis severity. Journal of orthopaedic research, 26, 332-341. 

BALIUNAS, A., HURWITZ, D., RYALS, A., KARRAR, A., CASE, J., BLOCK, J. & 

ANDRIACCHI, T. 2002a. Increased knee joint loads during walking are present in 

subjects with knee osteoarthritis. Osteoarthritis and cartilage, 10, 573-579. 

BALIUNAS, A. J., HURWITZ, D. E., RYALS, A. B., KARRAR, A., CASE, J. P., BLOCK, 

J. A. & ANDRIACCHI, T. P. 2002b. Increased knee joint loads during walking are 

present in subjects with knee osteoarthritis. Osteoarthritis Cartilage, 10, 573-9. 

BECHARD, D. J., BIRMINGHAM, T. B., ZECEVIC, A. A., JONES, I. C., GIFFIN, J. R. & 

JENKYN, T. R. 2012. Toe-out, lateral trunk lean, and pelvic obliquity during prolonged 

walking in patients with medial compartment knee osteoarthritis and healthy controls. 

Arthritis Care & Research, 64, 525-532. 



250 

 

BECKER, L. & RUSS, P. 2015. Evaluation of joint angle accuracy using markerless silhouette 

based tracking and hybrid tracking against traditional marker tracking. Poster für 

Masterarbeit bei Simi Reality Motion Systems GmbH und der Otto-von-Guericke-

Universität Magdeburg. 

BEJEK, Z., PARÓCZAI, R., ILLYES, A., KOCSIS, L. & KISS, R. M. 2006. Gait parameters 

of patients with osteoarthritis of the knee joint. Phys Edu Sport, 4, 9-16. 

BIJLSMA, J. W. & KNAHR, K. 2007. Strategies for the prevention and management of 

osteoarthritis of the hip and knee. Best Pract Res Clin Rheumatol, 21, 59-76. 

BOYER, K. A. & ANDRIACCHI, T. P. 2009. Changes in running kinematics and kinetics in 

response to a rockered shoe intervention. Clinical Biomechanics, 24, 872-876. 

BRANDON, S. C., MILLER, R. H., THELEN, D. G. & DELUZIO, K. J. 2014. Selective lateral 

muscle activation in moderate medial knee osteoarthritis subjects does not unload 

medial knee condyle. J Biomech, 47, 1409-15. 

BROOKS, P. & HOCHBERG, M. 2001. Outcome measures and classification criteria for the 

rheumatic diseases. A compilation of data from OMERACT (Outcome Measures for 

Arthritis Clinical Trials), ILAR (International League of Associations for 

Rheumatology), regional leagues and other groups. Rheumatology, 40, 896-906. 

BROOKS, P. M. 2002. Impact of osteoarthritis on individuals and society: how much 

disability? Social consequences and health economic implications. Current opinion in 

rheumatology, 14, 573-577. 

BROWN, D., WERTSCH, J. J., HARRIS, G. F., KLEIN, J. & JANISSE, D. 2004. Effect of 

rocker soles on plantar pressures. Archives of physical medicine and rehabilitation, 85, 

81-86. 

BUCHECKER, M., LINDINGER, S., PFUSTERSCHMIED, J. & MULLER, E. 2013. Effects 

of age on lower extremity joint kinematics and kinetics during level walking with Masai 

barefoot technology shoes. European Journal of Physical and Rehabilitation Medicine, 

49, 675-686. 

BUCKWALTER, J. A., SALTZMAN, C. & BROWN, T. 2004. The impact of osteoarthritis: 

implications for research. Clinical orthopaedics and related research, 427, S6-S15. 

BURCKHARDT, C. S. & JONES, K. D. 2003. Adult measures of pain: the McGill Pain 

Questionnaire (MPQ), Rheumatoid Arthritis Pain Scale (RAPS), Short‐Form McGill 

Pain Questionnaire (SF‐MPQ), Verbal Descriptive Scale (VDS), Visual Analog Scale 

(VAS), and West Haven‐Yale Multidisciplinary Pain Inventory (WHYMPI). Arthritis 

Care & Research, 49. 



251 

 

CAPPOZZO, A., CATANI, F., DELLA CROCE, U. & LEARDINI, A. 1995. Position and 

orientation in space of bones during movement: anatomical frame definition and 

determination. Clinical biomechanics, 10, 171-178. 

CAPPOZZO, A., CATANI, F., LEARDINI, A., BENEDETTI, M. & DELLA CROCE, U. 

1996. Position and orientation in space of bones during movement: experimental 

artefacts. Clinical biomechanics, 11, 90-100. 

CHAGANTI, R. K. & LANE, N. E. 2011. Risk factors for incident osteoarthritis of the hip and 

knee. Curr Rev Musculoskelet Med, 4, 99-104. 

CHAPMAN, J., PREECE, S., BRAUNSTEIN, B., HÖHNE, A., NESTER, C., 

BRUEGGEMANN, P. & HUTCHINS, S. 2013. Effect of rocker shoe design features 

on forefoot plantar pressures in people with and without diabetes. Clinical 

Biomechanics, 28, 679-685. 

CHEN, A., GUPTE, C., AKHTAR, K., SMITH, P. & COBB, J. 2012. The global economic 

cost of osteoarthritis: how the UK compares. Arthritis, 2012. 

CHEN, C. J. & CHOU, L. S. 2010. Center of mass position relative to the ankle during walking: 

A clinically feasible detection method for gait imbalance. Gait & Posture, 31, 391-393. 

CHEN, C. P., CHEN, M. J., PEI, Y. C., LEW, H. L., WONG, P. Y. & TANG, S. F. 2003. 

Sagittal plane loading response during gait in different age groups and in people with 

knee osteoarthritis. Am J Phys Med Rehabil, 82, 307-12. 

CHIEN, H. L., LU, T. W. & LIU, M. W. 2014. Effects of long-term wearing of high-heeled 

shoes on the control of the body's center of mass motion in relation to the center of 

pressure during walking. Gait Posture, 39, 1045-50. 

CHILDS, J. D., SPARTO, P. J., FITZGERALD, G. K., BIZZINI, M. & IRRGANG, J. J. 2004. 

Alterations in lower extremity movement and muscle activation patterns in individuals 

with knee osteoarthritis. Clin Biomech (Bristol, Avon), 19, 44-9. 

CHOPRA, A., PATIL, J., BILLAMPELLY, V., RELWANI, J. & TANDALE, H. 1997. The 

Bhigwan (India) COPCORD: methodology and first information report. APLAR J 

Rheumatol, 1, 145-154. 

CICUTTINI, F. M., BAKER, J. R. & SPECTOR, T. 1996. The association of obesity with 

osteoarthritis of the hand and knee in women: a twin study. J Rheumatol, 23, 1221-

1226. 

COOPER, C., MCALINDON, T., COGGON, D., EGGER, P. & DIEPPE, P. 1994. 

Occupational activity and osteoarthritis of the knee. Annals of the rheumatic diseases, 

53, 90-93. 



252 

 

COOPER, C., SNOW, S., MCALINDON, T. E., KELLINGRAY, S., STUART, B., COGGON, 

D. & DIEPPE, P. A. 2000. Risk factors for the incidence and progression of 

radiographic knee osteoarthritis. Arthritis & Rheumatism, 43, 995. 

CREABY, M. W., BENNELL, K. L. & HUNT, M. A. 2012. Gait differs between unilateral 

and bilateral knee osteoarthritis. Arch Phys Med Rehabil, 93, 822-7. 

CREAMER, P., LETHBRIDGE‐CEJKU, M. & HOCHBERG, M. 2000. Factors associated 

with functional impairment in symptomatic knee osteoarthritis. Rheumatology, 39, 490-

496. 

CRENSHAW, S. J., POLLO, F. E. & CALTON, E. F. 2000. Effects of lateral-wedged insoles 

on kinetics at the knee. Clinical Orthopaedics and Related Research, 375, 185-192. 

CURTIS, L. A. 2008. Unit costs of health and social care 2008. 

DANDY, D. J. & EDWARDS, D. J. 2009. Essential orthopaedics and trauma, Elsevier Health 

Sciences. 

DE DAVID, A. C., CARPES, F. P. & STEFANYSHYN, D. 2015. Effects of changing speed 

on knee and ankle joint load during walking and running. Journal of sports sciences, 

33, 391-397. 

DE LUCA, C. J. 1997. The use of surface electromyography in biomechanics. Journal of 

applied biomechanics, 13, 135-163. 

DEBBI, E. M., WOLF, A., GORYACHEV, Y., ROZEN, N. & HAIM, A. 2014. Alterations in 

Sagittal Plane Knee Kinetics in Knee Osteoarthritis Using a Biomechanical Therapy 

Device. Ann Biomed Eng. 

DEMPSTER, W. T. 1955. Space requirements of the seated operator: geometrical, kinematic, 

and mechanical aspects of the body, with special reference to the limbs. 

DEYLE, G. D., HENDERSON, N. E., MATEKEL, R. L., RYDER, M. G., GARBER, M. B. 

& ALLISON, S. C. 2000. Effectiveness of manual physical therapy and exercise in 

osteoarthritis of the knee. A randomized, controlled trial. Ann Intern Med, 132, 173-81. 

DILLON, C. F., RASCH, E. K., GU, Q. & HIRSCH, R. 2006. Prevalence of knee osteoarthritis 

in the United States: arthritis data from the Third National Health and Nutrition 

Examination Survey 1991-94. J Rheumatol, 33, 2271-9. 

DIXON, S. J., HINMAN, R. S., CREABY, M. W., KEMP, G. & CROSSLEY, K. M. 2010. 

Knee joint stiffness during walking in knee osteoarthritis. Arthritis care & research, 

62, 38-44. 

DOUGADOS, M., GUEGUEN, A., NGUYEN, M., THIESCE, A., LISTRAT, V., JACOB, L., 

NAKACHE, J., GABRIEL, K., LEQUESNE, M. & AMOR, B. 1992. Longitudinal 



253 

 

radiologic evaluation of osteoarthritis of the knee. The Journal of rheumatology, 19, 

378-384. 

ERHART‐HLEDIK, J. C., ELSPAS, B., GIORI, N. J. & ANDRIACCHI, T. P. 2012. Effect of 

variable‐stiffness walking shoes on knee adduction moment, pain, and function in 

subjects with medial compartment knee osteoarthritis after 1 year. Journal of 

Orthopaedic Research, 30, 514-521. 

FALCONER, J., HAYES, K. W. & CHANG, R. W. 1992. Effect of ultrasound on mobility in 

osteoarthritis of the knee. A randomized clinical trial. Arthritis Care Res, 5, 29-35. 

FANG, M. A., TAYLOR, C. E., NOUVONG, A., MASIH, S., KAO, K. C. & PERELL, K. L. 

2006. Effects of footwear on medial compartment knee osteoarthritis. Journal of 

rehabilitation research and development, 43, 427. 

FAROOQI, A. & GIBSON, T. 1998. Prevalence of the major rheumatic disorders in the adult 

population of north Pakistan. Br J Rheumatol, 37, 491-5. 

FELSON, D., HANNAN, M., NAIMARK, A., BERKELEY, J., GORDON, G., WILSON, P. 

& ANDERSON, J. 1991. Occupational physical demands, knee bending, and knee 

osteoarthritis: results from the Framingham Study. The Journal of rheumatology, 18, 

1587-1592. 

FELSON, D. T. 1990. The epidemiology of knee osteoarthritis: results from the Framingham 

Osteoarthritis Study. Semin Arthritis Rheum, 20, 42-50. 

FELSON, D. T. 2006. Osteoarthritis of the knee. New England Journal of Medicine, 354, 841-

848. 

FELSON, D. T., LAWRENCE, R. C., DIEPPE, P. A., HIRSCH, R., HELMICK, C. G., 

JORDAN, J. M., KINGTON, R. S., LANE, N. E., NEVITT, M. C. & ZHANG, Y. 2000. 

Osteoarthritis: new insights. Part 1: the disease and its risk factors. Annals of internal 

medicine, 133, 635-646. 

FELSON, D. T., NAIMARK, A., ANDERSON, J., KAZIS, L., CASTELLI, W. & MEENAN, 

R. F. 1987. The prevalence of knee osteoarthritis in the elderly. The Framingham 

Osteoarthritis Study. Arthritis & Rheumatism, 30, 914-918. 

FELSON, D. T. & NEVITT, M. C. 1998. The effects of estrogen on osteoarthritis. Current 

opinion in rheumatology, 10, 269-272. 

FELSON, D. T. & NEVITT, M. C. 2004. Epidemiologic studies for osteoarthritis: new versus 

conventional study design approaches. Rheum Dis Clin North Am, 30, 783-97, vii. 

FELSON, D. T., ZHANG, Y., HANNAN, M. T., NAIMARK, A., WEISSMAN, B. N., 

ALIABADI, P. & LEVY, D. 1995. The incidence and natural history of knee 



254 

 

osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum, 38, 

1500-5. 

FERRAZ, M. B., QUARESMA, M., AQUINO, L., ATRA, E., TUGWELL, P. & 

GOLDSMITH, C. 1990. Reliability of pain scales in the assessment of literate and 

illiterate patients with rheumatoid arthritis. The Journal of rheumatology, 17, 1022-

1024. 

FORGHANY, S., NESTER, C. J., RICHARDS, B., HATTON, A. L. & LIU, A. M. 2014. 

Rollover footwear affects lower limb biomechanics during walking. Gait & Posture, 

39, 205-212. 

FRIGO, C. & CRENNA, P. 2009. Multichannel SEMG in clinical gait analysis: a review and 

state-of-the-art. Clinical Biomechanics, 24, 236-245. 

GARDNER, J. K., ZHANG, S., PAQUETTE, M. R., MILNER, C. E. & BROCK, E. 2014. 

Gait biomechanics of a second generation unstable shoe. J Appl Biomech, 30, 501-7. 

GIGNAC, M. A., DAVIS, A. M., HAWKER, G., WRIGHT, J. G., MAHOMED, N., FORTIN, 

P. R. & BADLEY, E. M. 2006. “What do you expect? You're just getting older”: A 

comparison of perceived osteoarthritis‐related and aging‐related health experiences in 

middle‐and older‐age adults. Arthritis Care & Research, 55, 905-912. 

GRANATA, K. P. & LOCKHART, T. E. 2008. Dynamic stability differences in fall-prone and 

healthy adults. J Electromyogr Kinesiol, 18, 172-8. 

GUCCIONE, A. A., FELSON, D. T. & ANDERSON, J. J. 1990. Defining arthritis and 

measuring functional status in elders: methodological issues in the study of disease and 

physical disability. Am J Public Health, 80, 945-9. 

GUILAK, F. 2011. Biomechanical factors in osteoarthritis. Best practice & research Clinical 

rheumatology, 25, 815-823. 

HAIM, A., RUBIN, G., ROZEN, N., GORYACHEV, Y. & WOLF, A. 2012. Reduction in 

knee adduction moment via non-invasive biomechanical training: a longitudinal gait 

analysis study. J Biomech, 45, 41-5. 

HAIM, A., WOLF, A., RUBIN, G., GENIS, Y., KHOURY, M. & ROZEN, N. 2011. Effect of 

Center of Pressure Modulation on Knee Adduction Moment in Medial Compartment 

Knee Osteoarthritis. Journal of Orthopaedic Research, 29, 1668-1674. 

HALVORSEN, K., ERIKSSON, M., GULLSTRAND, L., TINMARK, F. & NILSSON, J. 

2009. Minimal marker set for center of mass estimation in running. Gait & posture, 30, 

552-555. 



255 

 

HAQ, S. A., DARMAWAN, J., ISLAM, M. N., UDDIN, M. Z., DAS, B. B., RAHMAN, F., 

CHOWDHURY, M. A. J., ALAM, M. N., MAHMUD, T. A. K. & CHOWDHURY, 

M. R. 2005. Prevalence of rheumatic diseases and associated outcomes in rural and 

urban communities in Bangladesh: a COPCORD study. The Journal of rheumatology, 

32, 348-353. 

HATZE, H. 1974. The meaning of the term ‘biomechanics’. Journal of Biomechanics, 7, 189-

190. 

HAWKER, G. A., MIAN, S., KENDZERSKA, T. & FRENCH, M. 2011. Measures of adult 

pain: Visual analog scale for pain (vas pain), numeric rating scale for pain (nrs pain), 

mcgill pain questionnaire (mpq), short‐form mcgill pain questionnaire (sf‐mpq), 

chronic pain grade scale (cpgs), short form‐36 bodily pain scale (sf‐36 bps), and 

measure of intermittent and constant osteoarthritis pain (icoap). Arthritis care & 

research, 63. 

HEIDARI, B. 2011. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: 

Part I. Caspian journal of internal medicine, 2, 205. 

HEIDEN, T. L., LLOYD, D. G. & ACKLAND, T. R. 2009a. Knee extension and flexion 

weakness in people with knee osteoarthritis: is antagonist cocontraction a factor? J 

Orthop Sports Phys Ther, 39, 807-15. 

HEIDEN, T. L., LLOYD, D. G. & ACKLAND, T. R. 2009b. Knee joint kinematics, kinetics 

and muscle co-contraction in knee osteoarthritis patient gait. Clin Biomech (Bristol, 

Avon), 24, 833-41. 

HENRIKSEN, M., SIMONSEN, E. B., ALKJAER, T., LUND, H., GRAVEN-NIELSEN, T., 

DANNESKIOLD-SAMSOE, B. & BLIDDAL, H. 2006. Increased joint loads during 

walking--a consequence of pain relief in knee osteoarthritis. Knee, 13, 445-50. 

HERMENS, H. J., FRERIKS, B., DISSELHORST-KLUG, C. & RAU, G. 2000. Development 

of recommendations for SEMG sensors and sensor placement procedures. J 

Electromyogr Kinesiol, 10, 361-74. 

HERMENS, H. J., FRERIKS, B., MERLETTI, R., STEGEMAN, D., BLOK, J., RAU, G., 

DISSELHORST-KLUG, C. & HÄGG, G. 1999. European recommendations for 

surface electromyography. Roessingh research and development, 8, 13-54. 

HINMAN, R. S., HUNT, M. A., CREABY, M. W., WRIGLEY, T. V., MCMANUS, F. J. & 

BENNELL, K. L. 2010. Hip muscle weakness in individuals with medial knee 

osteoarthritis. Arthritis Care Res (Hoboken), 62, 1190-3. 



256 

 

HODGES, P. W., VAN DEN HOORN, W., WRIGLEY, T. V., HINMAN, R. S., BOWLES, 

K. A., CICUTTINI, F., WANG, Y. & BENNELL, K. 2016. Increased duration of co-

contraction of medial knee muscles is associated with greater progression of knee 

osteoarthritis. Man Ther, 21, 151-8. 

HOFFMAN, S. J. 2009. Introduction to kinesiology: studying physical activity, Human 

Kinetics. 

HONKONEN, S. E. 1995. Degenerative arthritis after tibial plateau fractures. Journal of 

orthopaedic trauma, 9, 273-277. 

HORTOBAGYI, T., WESTERKAMP, L., BEAM, S., MOODY, J., GARRY, J., HOLBERT, 

D. & DEVITA, P. 2005. Altered hamstring-quadriceps muscle balance in patients with 

knee osteoarthritis. Clin Biomech (Bristol, Avon), 20, 97-104. 

HSU, W. C., WANG, T. M., LIU, M. W., CHANG, C. F., CHEN, H. L. & LU, T. W. 2010. 

Control of Body's Center of Mass Motion during Level Walking and Obstacle-Crossing 

in Older Patients with Knee Osteoarthritis. Journal of Mechanics, 26, 229-237. 

HUANG, S. C., WEI, I. P., CHIEN, H. L., WANG, T. M., LIU, Y. H., CHEN, H. L., LU, T. 

W. & LIN, J. G. 2008. Effects of severity of degeneration on gait patterns in patients 

with medial knee osteoarthritis. Med Eng Phys, 30, 997-1003. 

HUBLEY-KOZEY, C., HATFIELD, G. & STANISH, W. 2013. Muscle activation differences 

during walking between those with moderate knee osteoarthritis who progress to total 

knee arthroplasty and those that do not: a follow up study. Osteoarthritis and Cartilage, 

21, S38. 

HUBLEY-KOZEY, C. L., DELUZIO, K. J., LANDRY, S. C., MCNUTT, J. S. & STANISH, 

W. D. 2006. Neuromuscular alterations during walking in persons with moderate knee 

osteoarthritis. J Electromyogr Kinesiol, 16, 365-78. 

HUBLEY-KOZEY, C. L., HILL, N. A., RUTHERFORD, D. J., DUNBAR, M. J. & STANISH, 

W. D. 2009. Co-activation differences in lower limb muscles between asymptomatic 

controls and those with varying degrees of knee osteoarthritis during walking. Clin 

Biomech (Bristol, Avon), 24, 407-14. 

HUNT, M. A., BIRMINGHAM, T. B., BRYANT, D., JONES, I., GIFFIN, J. R., JENKYN, T. 

R. & VANDERVOORT, A. A. 2008. Lateral trunk lean explains variation in dynamic 

knee joint load in patients with medial compartment knee osteoarthritis. Osteoarthritis 

Cartilage, 16, 591-9. 

HUNTER, D. J. & ECKSTEIN, F. 2009. Exercise and osteoarthritis. J Anat, 214, 197-207. 



257 

 

HURLEY, M. V., SCOTT, D. L., REES, J. & NEWHAM, D. J. 1997. Sensorimotor changes 

and functional performance in patients with knee osteoarthritis. Ann Rheum Dis, 56, 

641-8. 

HURWITZ, D. E., RYALS, A. B., CASE, J. P., BLOCK, J. A. & ANDRIACCHI, T. P. 2002. 

The knee adduction moment during gait in subjects with knee osteoarthritis is more 

closely correlated with static alignment than radiographic disease severity, toe out angle 

and pain. J Orthop Res, 20, 101-7. 

HUSKISSON, E. C. 1974. Measurement of pain. Lancet, 2, 1127-31. 

HUTCHINS, S., BOWKER, P., GEARY, N. & RICHARDS, J. 2009. The biomechanics and 

clinical efficacy of footwear adapted with rocker profiles--evidence in the literature. 

Foot (Edinb), 19, 165-70. 

HUTCHINS, S. W., LAWRENCE, G., BLAIR, S., AKSENOV, A. & JONES, R. 2012. Use of 

a three-curved rocker sole shoe modification to improve intermittent claudication calf 

pain—A pilot study. Journal of Vascular Nursing, 30, 11-20. 

IQBAL, M. N., HAIDRI, F. R., MOTIANI, B. & MANNAN, A. 2011. Frequency of factors 

associated with knee osteoarthritis. J Pak Med Assoc, 61, 786-9. 

JACKSON, J. L., O'MALLEY, P. G. & KROENKE, K. 2003. Evaluation of acute knee pain 

in primary care. Annals of internal medicine, 139, 575-588. 

JENSEN, M. P., CHEN, C. & BRUGGER, A. M. 2003. Interpretation of visual analog scale 

ratings and change scores: a reanalysis of two clinical trials of postoperative pain. J 

Pain, 4, 407-14. 

JENSEN, M. P., KAROLY, P. & BRAVER, S. 1986. The measurement of clinical pain 

intensity: a comparison of six methods. Pain, 27, 117-26. 

JINKS, C., JORDAN, K., ONG, B. N. & CROFT, P. 2004. A brief screening tool for knee pain 

in primary care (KNEST). 2. Results from a survey in the general population aged 50 

and over. Rheumatology (Oxford), 43, 55-61. 

JONES, R. K., CHAPMAN, G. J., FINDLOW, A. H., FORSYTHE, L., PARKES, M. J., 

SULTAN, J. & FELSON, D. T. 2013. A new approach to prevention of knee 

osteoarthritis: reducing medial load in the contralateral knee. J Rheumatol, 40, 309-15. 

JONES, R. K., CHAPMAN, G. J., FORSYTHE, L., PARKES, M. J. & FELSON, D. T. 2014. 

The relationship between reductions in knee loading and immediate pain response 

whilst wearing lateral wedged insoles in knee osteoarthritis. Journal of Orthopaedic 

Research, 32, 1147-1154. 



258 

 

JUDGE, J. O., DAVIS, R. B., 3RD & OUNPUU, S. 1996. Step length reductions in advanced 

age: the role of ankle and hip kinetics. J Gerontol A Biol Sci Med Sci, 51, M303-12. 

KAGAYA, H., ITO, S., IWAMI, T., OBINATA, G. & SHIMADA, Y. 2003. A computer 

simulation of human walking in persons with joint contractures. The Tohoku journal of 

experimental medicine, 200, 31-37. 

KAINZ, H., CARTY, C. P., MODENESE, L., BOYD, R. N. & LLOYD, D. G. 2015. 

Estimation of the hip joint centre in human motion analysis: a systematic review. Clin 

Biomech (Bristol, Avon), 30, 319-29. 

KANG, X., FRANSEN, M., ZHANG, Y., LI, H., KE, Y., LU, M., SU, S., SONG, X., GUO, 

Y., CHEN, J., NIU, J., FELSON, D. & LIN, J. 2009. The high prevalence of knee 

osteoarthritis in a rural Chinese population: the Wuchuan osteoarthritis study. Arthritis 

Rheum, 61, 641-7. 

KAUFMAN, K. R., HUGHES, C., MORREY, B. F., MORREY, M. & AN, K.-N. 2001. Gait 

characteristics of patients with knee osteoarthritis. Journal of biomechanics, 34, 907-

915. 

KEAN, C. O., BENNELL, K. L., WRIGLEY, T. V. & HINMAN, R. S. 2013. Modified 

walking shoes for knee osteoarthritis: Mechanisms for reductions in the knee adduction 

moment. J Biomech, 46, 2060-6. 

KEAN, W. F., KEAN, R. & BUCHANAN, W. W. 2004. Osteoarthritis: symptoms, signs and 

source of pain. Inflammopharmacology, 12, 3-31. 

KELLGREN, J. H. & LAWRENCE, J. S. 1957. Radiological assessment of osteo-arthrosis. 

Ann Rheum Dis, 16, 494-502. 

KENNISH, L., ATTUR, M., OH, C., KRASNOKUTSKY, S., SAMUELS, J., GREENBERG, 

J. D., HUANG, X. & ABRAMSON, S. B. 2014. Age-dependent ferritin elevations and 

HFE C282Y mutation as risk factors for symptomatic knee osteoarthritis in males: a 

longitudinal cohort study. BMC musculoskeletal disorders, 15, 1. 

KERRIGAN, D. C., LELAS, J. L., GOGGINS, J., MERRIMAN, G. J., KAPLAN, R. J. & 

FELSON, D. T. 2002. Effectiveness of a lateral-wedge insole on knee varus torque in 

patients with knee osteoarthritis. Archives of physical medicine and rehabilitation, 83, 

889-893. 

KLUGER, D., MAJOR, M. J., FATONE, S. & GARD, S. A. 2014. The effect of trunk flexion 

on lower-limb kinetics of able-bodied gait. Human movement science, 33, 395-403. 

KNUDSON, D. 2007. Fundamentals of biomechanics, Springer Science & Business Media. 



259 

 

KOLISEK, F. R., BONUTTI, P. M., HOZACK, W. J., PURTILL, J., SHARKEY, P. F., 

ZELICOF, S. B., RAGLAND, P. S., KESTER, M., MONT, M. A. & ROTHMAN, R. 

H. 2007. Clinical experience using a minimally invasive surgical approach for total 

knee arthroplasty: early results of a prospective randomized study compared to a 

standard approach. The Journal of arthroplasty, 22, 8-13. 

KOMISTEK, R. D., DENNIS, D. A., NORTHCUT, E. J., WOOD, A., PARKER, A. W. & 

TRAINA, S. M. 1999. An in vivo analysis of the effectiveness of the osteoarthritic knee 

brace during heel-strike of gait. The Journal of arthroplasty, 14, 738-742. 

KUNJU, N., KUMAR, N., PANKAJ, D., DHAWAN, A. & KUMAR, A. 2009. EMG signal 

analysis for identifying walking patterns of normal healthy individuals. Indian Journal 

of Biomechanics, 118. 

LANDRY, S. C., MCKEAN, K. A., HUBLEY-KOZEY, C. L., STANISH, W. D. & 

DELUZIO, K. J. 2007. Knee biomechanics of moderate OA patients measured during 

gait at a self-selected and fast walking speed. Journal of biomechanics, 40, 1754-1761. 

LAWRENCE, R. C., FELSON, D. T., HELMICK, C. G., ARNOLD, L. M., CHOI, H., DEYO, 

R. A., GABRIEL, S., HIRSCH, R., HOCHBERG, M. C., HUNDER, G. G., JORDAN, 

J. M., KATZ, J. N., KREMERS, H. M. & WOLFE, F. 2008. Estimates of the prevalence 

of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum, 

58, 26-35. 

LAWRENCE, R. C., HELMICK, C. G., ARNETT, F. C., DEYO, R. A., FELSON, D. T., 

GIANNINI, E. H., HEYSE, S. P., HIRSCH, R., HOCHBERG, M. C., HUNDER, G. 

G., LIANG, M. H., PILLEMER, S. R., STEEN, V. D. & WOLFE, F. 1998. Estimates 

of the prevalence of arthritis and selected musculoskeletal disorders in the United 

States. Arthritis Rheum, 41, 778-99. 

LETENEUR, S., GILLET, C., SADEGHI, H., ALLARD, P. & BARBIER, F. 2009. Effect of 

trunk inclination on lower limb joint and lumbar moments in able men during the stance 

phase of gait. Clinical Biomechanics, 24, 190-195. 

LEVANGIE, P. K. & NORKIN, C. C. 2011. Joint structure and function: a comprehensive 

analysis, FA Davis. 

LEWEK, M. D., RUDOLPH, K. S. & SNYDER-MACKLER, L. 2004a. Control of frontal 

plane knee laxity during gait in patients with medial compartment knee osteoarthritis. 

Osteoarthritis Cartilage, 12, 745-51. 



260 

 

LEWEK, M. D., RUDOLPH, K. S. & SNYDER-MACKLER, L. 2004b. Quadriceps femoris 

muscle weakness and activation failure in patients with symptomatic knee 

osteoarthritis. J Orthop Res, 22, 110-5. 

LEWEK, M. D., SCHOLZ, J., RUDOLPH, K. S. & SNYDER-MACKLER, L. 2006. Stride-

to-stride variability of knee motion in patients with knee osteoarthritis. Gait Posture, 

23, 505-11. 

LITWIC, A., EDWARDS, M. H., DENNISON, E. M. & COOPER, C. 2013. Epidemiology 

and burden of osteoarthritis. Br Med Bull, 105, 185-99. 

LIU, Y. H., WANG, T. M., WEI, I. P., LU, T. W., HONG, S. W. & KUO, C. C. 2014. Effects 

of bilateral medial knee osteoarthritis on intra- and inter-limb contributions to body 

support during gait. J Biomech, 47, 445-50. 

LOHMANDER, L., ÖSTENBERG, A., ENGLUND, M. & ROOS, H. 2004. High prevalence 

of knee osteoarthritis, pain, and functional limitations in female soccer players twelve 

years after anterior cruciate ligament injury. Arthritis & Rheumatism, 50, 3145-3152. 

LONG, J. T., KLEIN, J. P., SIROTA, N. M., WERTSCH, J. J., JANISSE, D. & HARRIS, G. 

F. 2007. Biomechanics of the double rocker sole shoe: gait kinematics and kinetics. 

Journal of biomechanics, 40, 2882-2890. 

LORD, S. R. & MENZ, H. B. 2000. Visual contributions to postural stability in older adults. 

Gerontology, 46, 306-10. 

MADDEN, E. G., KEAN, C. O., WRIGLEY, T. V., BENNELL, K. L. & HINMAN, R. S. 

2015. Effect of rocker-soled shoes on parameters of knee joint load in knee 

osteoarthritis. Med Sci Sports Exerc, 47, 128-35. 

MALY, M. R., COSTIGAN, P. A. & OLNEY, S. J. 2006. Determinants of self efficacy for 

physical tasks in people with knee osteoarthritis. Arthritis Care & Research, 55, 94-

101. 

MANEEKITTICHOT, T., SORACHAIMETHA, P., ONMANEE, P. & 

CHANTHASOPEEPHAN, T. 2013. The effect of vary varus malalignment on knee 

adduction moment during walking of human normal gait. Conf Proc IEEE Eng Med 

Biol Soc, 2013, 7229-32. 

MARCH, L. M. & BACHMEIER, C. J. 1997. Economics of osteoarthritis: a global perspective. 

Baillieres Clin Rheumatol, 11, 817-34. 

MARKS, R. & PENTON, L. 2004. Are foot orthotics efficacious for treating painful medial 

compartment knee osteoarthritis? A review of the literature. International journal of 

clinical practice, 58, 49-57. 



261 

 

MATHERS, C., SMITH, A. & CONCHA, M. 2000. Global burden of hearing loss in the year 

2000. Global burden of Disease, 18, 1-30. 

MAZZUCA, S. A., BRANDT, K. D., KATZ, B. P., DING, Y., LANE, K. A. & 

BUCKWALTER, K. A. 2006. Risk factors for progression of tibiofemoral 

osteoarthritis: an analysis based on fluoroscopically standardised knee radiography. 

Annals of the rheumatic diseases, 65, 515-519. 

MAZZUCA, S. A., BRANDT, K. D., KATZ, B. P., DING, Y., LANE, K. A. & 

BUCKWALTER, K. A. 2007. Risk factors for early radiographic changes of 

tibiofemoral osteoarthritis. Annals of the rheumatic diseases, 66, 394-399. 

MISRA, D., BOOTH, S. L., TOLSTYKH, I., FELSON, D. T., NEVITT, M. C., LEWIS, C. E., 

TORNER, J. & NEOGI, T. 2013. Vitamin K deficiency is associated with incident knee 

osteoarthritis. Am J Med, 126, 243-8. 

MIYAZAKI, T., WADA, M., KAWAHARA, H., SATO, M., BABA, H. & SHIMADA, S. 

2002. Dynamic load at baseline can predict radiographic disease progression in medial 

compartment knee osteoarthritis. Ann Rheum Dis, 61, 617-22. 

MÜNDERMANN, A., DYRBY, C. O., HURWITZ, D. E., SHARMA, L. & ANDRIACCHI, 

T. P. 2004. Potential strategies to reduce medial compartment loading in patients with 

knee osteoarthritis of varying severity: reduced walking speed. Arthritis & Rheumatism, 

50, 1172-1178. 

MURAKI, S., AKUNE, T., OKA, H., MABUCHI, A., EN‐YO, Y., YOSHIDA, M., SAIKA, 

A., NAKAMURA, K., KAWAGUCHI, H. & YOSHIMURA, N. 2009. Association of 

occupational activity with radiographic knee osteoarthritis and lumbar spondylosis in 

elderly patients of population‐based cohorts: A large‐scale population‐based study. 

Arthritis Care & Research, 61, 779-786. 

NEVITT, M. C., CUMMINGS, S. R., LANE, N. E., HOCHBERG, M. C., SCOTT, J. C., 

PRESSMAN, A. R., GENANT, H. K. & CAULEY, J. A. 1996. Association of estrogen 

replacement therapy with the risk of osteoarthritis of the hip in elderly white women. 

Study of Osteoporotic Fractures Research Group. Arch Intern Med, 156, 2073-80. 

NIGG, B. M., EMERY, C. & HIEMSTRA, L. A. 2006. Unstable shoe construction and 

reduction of pain in osteoarthritis patients. Med Sci Sports Exerc, 38, 1701-8. 

OCHSMANN, E., NOLL, U., ELLEGAST, R., HERMANNS, I. & KRAUS, T. 2016. 

Influence of different safety shoes on gait and plantar pressure: a standardized 

examination of workers in the automotive industry. J Occup Health, 58, 404-412. 



262 

 

OLIVERIA, S. A., FELSON, D. T., REED, J. I., CIRILLO, P. A. & WALKER, A. M. 1995. 

Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health 

maintenance organization. Arthritis Rheum, 38, 1134-41. 

PARMELEE, P. A., HARRALSON, T. L., SMITH, L. A. & SCHUMACHER, H. R. 2007. 

Necessary and discretionary activities in knee osteoarthritis: Do they mediate the pain–

depression relationship? Pain Medicine, 8, 449-461. 

PEAT, G., MCCARNEY, R. & CROFT, P. 2001. Knee pain and osteoarthritis in older adults: 

a review of community burden and current use of primary health care. Ann Rheum Dis, 

60, 91-7. 

PENDLETON, A., ARDEN, N., DOUGADOS, M., DOHERTY, M., BANNWARTH, B., 

BIJLSMA, J., CLUZEAU, F., COOPER, C., DIEPPE, P. & GÜNTHER, K. 2000. 

EULAR recommendations for the management of knee osteoarthritis: report of a task 

force of the Standing Committee for International Clinical Studies Including 

Therapeutic Trials (ESCISIT). Annals of the Rheumatic Diseases, 59, 936-944. 

PERRY, J., BURNFIELD, J. M. & CABICO, L. M. 1992. Gait analysis: normal and 

pathological function. 

PERRY, J. & DAVIDS, J. R. 1992. Gait analysis: normal and pathological function. Journal 

of Pediatric Orthopaedics, 12, 815. 

PETER, W. F., JANSEN, M. J., HURKMANS, E. J., BLOO, H., DEKKER, J., DILLING, R. 

G., HILBERDINK, W., KERSTEN-SMIT, C., DE ROOIJ, M., VEENHOF, C., 

VERMEULEN, H. M., DE VOS, R. J., SCHOONES, J. W. & VLIET VLIELAND, T. 

P. 2011. Physiotherapy in hip and knee osteoarthritis: development of a practice 

guideline concerning initial assessment, treatment and evaluation. Acta Reumatol Port, 

36, 268-81. 

PETERS, A. E., AKHTAR, R., COMERFORD, E. J. & BATES, K. T. 2018. The effect of 

ageing and osteoarthritis on the mechanical properties of cartilage and bone in the 

human knee joint. Scientific reports, 8, 5931. 

PREECE, S. J., JONES, R. K., BROWN, C. A., CACCIATORE, T. W. & JONES, A. K. 2016. 

Reductions in co-contraction following neuromuscular re-education in people with 

knee osteoarthritis. BMC Musculoskeletal Disorders, 17, 372. 

RAU, G., DISSELHORST-KLUG, C. & SCHMIDT, R. 2000. Movement biomechanics goes 

upwards: from the leg to the arm. J Biomech, 33, 1207-16. 

REGINSTER, J. Y. 2002. The prevalence and burden of arthritis. Rheumatology, 41, 3-6. 



263 

 

RICHARDS, J. 2008. Biomechanics in Clinic and Research: An Interactive Teaching and 

Learning Course. Churchill Livingstone. Elsevier, London. 

ROOS, E. M., ROOS, H. P. & LOHMANDER, L. S. 1999. WOMAC Osteoarthritis Index—

additional dimensions for use in subjects with post-traumatic osteoarthritis of the knee. 

Osteoarthritis and Cartilage, 7, 216-221. 

ROOS, H., LAUREN, M., ADALBERTH, T., ROOS, E. M., JONSSON, K. & 

LOHMANDER, L. S. 1998. Knee osteoarthritis after meniscectomy: prevalence of 

radiographic changes after twenty-one years, compared with matched controls. 

Arthritis Rheum, 41, 687-93. 

ROSE, J., GAMBLE, J. G. & ADAMS, J. M. 2006. Human walking, Lippincott Williams & 

Wilkins Philadelphia. 

RUDOLPH, K. S., SCHMITT, L. C. & LEWEK, M. D. 2007. Age-related changes in strength, 

joint laxity, and walking patterns: are they related to knee osteoarthritis? Phys Ther, 87, 

1422-32. 

RUTHERFORD, D., BAKER, M., WONG, I. & STANISH, W. 2017. The effect of age and 

knee osteoarthritis on muscle activation patterns and knee joint biomechanics during 

dual belt treadmill gait. J Electromyogr Kinesiol, 34, 58-64. 

RUTHERFORD, D. J., HUBLEY-KOZEY, C. L. & STANISH, W. D. 2011. Maximal 

voluntary isometric contraction exercises: a methodological investigation in moderate 

knee osteoarthritis. J Electromyogr Kinesiol, 21, 154-60. 

SAITO, I., OKADA, K., NISHI, T., WAKASA, M., SAITO, A., SUGAWARA, K., 

TAKAHASHI, Y. & KINOSHITA, K. 2013. Foot Pressure Pattern and its Correlation 

With Knee Range of Motion Limitations for Individuals With Medial Knee 

Osteoarthritis. Archives of Physical Medicine and Rehabilitation, 94, 2502-2508. 

SANTO, A. S., ROPER, J. L., DUFEK, J. S. & MERCER, J. A. 2012. Rocker-bottom, profile-

type shoes do not increase lower extremity muscle activity or energy cost of walking. J 

Strength Cond Res, 26, 2426-31. 

SASAKI, T. & YASUDA, K. 1987. Clinical evaluation of the treatment of osteoarthritic knees 

using a newly designed wedged insole. Clinical orthopaedics and related research, 

221, 181-187. 

SCHMITT, L. C. & RUDOLPH, K. S. 2007. Influences on knee movement strategies during 

walking in persons with medial knee osteoarthritis. Arthritis Care & Research, 57, 

1018-1026. 



264 

 

SCHOUTEN, J., VAN DEN OUWELAND, F. & VALKENBURG, H. 1992. A 12 year follow 

up study in the general population on prognostic factors of cartilage loss in osteoarthritis 

of the knee. Annals of the rheumatic diseases, 51, 932-937. 

SHAKOOR, N., LIDTKE, R. H., SENGUPTA, M., FOGG, L. F. & BLOCK, J. A. 2008. 

Effects of specialized footwear on joint loads in osteoarthritis of the knee. Arthritis 

Rheum, 59, 1214-20. 

SHAKOOR, N., LIDTKE, R. H., WIMMER, M. A., MIKOLAITIS, R. A., FOUCHER, K. C., 

THORP, L. E., FOGG, L. F. & BLOCK, J. A. 2013. Improvement in knee loading after 

use of specialized footwear for knee osteoarthritis: results of a six-month pilot 

investigation. Arthritis Rheum, 65, 1282-9. 

SHARMA, L., HURWITZ, D. E., THONAR, E. J., SUM, J. A., LENZ, M. E., DUNLOP, D. 

D., SCHNITZER, T. J., KIRWAN-MELLIS, G. & ANDRIACCHI, T. P. 1998. Knee 

adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral 

osteoarthritis. Arthritis Rheum, 41, 1233-40. 

SHARMA, S. K., YADAV, S. L., SINGH, U. & WADHWA, S. 2017. Muscle Activation 

Profiles and Co-Activation of Quadriceps and Hamstring Muscles around Knee Joint 

in Indian Primary Osteoarthritis Knee Patients. J Clin Diagn Res, 11, RC09-RC14. 

SILMAN, A. J. & HOCHBERG, M. C. 2001. Epidemiology of the rheumatic diseases, Oxford 

University Press. 

SILVERWOOD, V., BLAGOJEVIC-BUCKNALL, M., JINKS, C., JORDAN, J. L., 

PROTHEROE, J. & JORDAN, K. P. 2015. Current evidence on risk factors for knee 

osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthritis 

Cartilage, 23, 507-15. 

SIRIN, A. V. & PATLA, A. E. 1987. Myoelectric changes in the triceps surae muscles under 

sustained contractions. Evidence for synergism. Eur J Appl Physiol Occup Physiol, 56, 

238-44. 

SKOU, S. T., THOMSEN, H. & SIMONSEN, O. H. 2014. The value of routine radiography 

in patients with knee osteoarthritis consulting primary health care: a study of agreement. 

The European journal of general practice, 20, 10-16. 

SMITH, A. J., LLOYD, D. G. & WOOD, D. J. 2004. Pre-surgery knee joint loading patterns 

during walking predict the presence and severity of anterior knee pain after total knee 

arthroplasty. J Orthop Res, 22, 260-6. 



265 

 

SOBHANI, S., HIJMANS, J., VAN DEN HEUVEL, E., ZWERVER, J., DEKKER, R. & 

POSTEMA, K. 2013. Biomechanics of slow running and walking with a rocker shoe. 

Gait & Posture, 38, 998-1004. 

SORENSEN, R. R., JORGENSEN, M. G., RASMUSSEN, S. & SKOU, S. T. 2014. Impaired 

postural balance in the morning in patients with knee osteoarthritis. Gait Posture, 39, 

1040-4. 

SOUSA, A. S., SILVA, A., MACEDO, R., SANTOS, R. & TAVARES, J. M. R. 2014. 

Influence of long-term wearing of unstable shoes on compensatory control of posture: 

An electromyography-based analysis. Gait & posture, 39, 98-104. 

SRIKANTH, V. K., FRYER, J. L., ZHAI, G., WINZENBERG, T. M., HOSMER, D. & 

JONES, G. 2005. A meta-analysis of sex differences prevalence, incidence and severity 

of osteoarthritis. Osteoarthritis Cartilage, 13, 769-81. 

SRITHARAN, P., LIN, Y. C., RICHARDSON, S. E., CROSSLEY, K. M., BIRMINGHAM, 

T. B. & PANDY, M. G. 2016a. Musculoskeletal loading in the symptomatic and 

asymptomatic knees of middle-aged osteoarthritis patients. J Orthop Res. 

SRITHARAN, P., LIN, Y. C., RICHARDSON, S. E., CROSSLEY, K. M., BIRMINGHAM, 

T. B. & PANDY, M. G. 2016b. Musculoskeletal loading in the symptomatic and 

asymptomatic knees of middle‐aged osteoarthritis patients. Journal of Orthopaedic 

Research. 

TALATY, M., PATEL, S. & ESQUENAZI, A. 2016. A Randomized Comparison of the 

Biomechanical Effect of Two Commercially Available Rocker Bottom Shoes to a 

Conventional Athletic Shoe During Walking in Healthy Individuals. J Foot Ankle Surg, 

55, 772-6. 

TAN, J. M., AUHL, M., MENZ, H. B., LEVINGER, P. & MUNTEANU, S. E. 2016. The 

effect of Masai Barefoot Technology (MBT) footwear on lower limb biomechanics: A 

systematic review. Gait & Posture, 43, 76-86. 

TANIGUCHI, M., TATEUCHI, H., TAKEOKA, T. & ICHIHASHI, N. 2012. Kinematic and 

kinetic characteristics of Masai Barefoot Technology footwear. Gait Posture, 35, 567-

72. 

TATEUCHI, H., TANIGUCHI, M., TAKAGI, Y., GOTO, Y., OTSUKA, N., KOYAMA, Y., 

KOBAYASHI, M. & ICHIHASHI, N. 2014a. Immediate effect of Masai Barefoot 

Technology shoes on knee joint moments in women with knee osteoarthritis. Gait 

Posture, 40, 204-8. 



266 

 

TATEUCHI, H., TANIGUCHI, M., TAKAGI, Y., GOTO, Y., OTSUKA, N., KOYAMA, Y., 

KOBAYASHI, M. & ICHIHASHI, N. 2014b. Immediate effect of Masai Barefoot 

Technology shoes on knee joint moments in women with knee osteoarthritis. Gait & 

posture, 40, 204-208. 

THEILER, R., SPIELBERGER, J., BISCHOFF, H., BELLAMY, N., HUBER, J. & 

KROESEN, S. 2002. Clinical evaluation of the WOMAC 3.0 OA Index in numeric 

rating scale format using a computerized touch screen version. Osteoarthritis and 

cartilage, 10, 479-481. 

TURCOT, K., SAGAWA, Y., HOFFMEYER, P., SUVÀ, D. & ARMAND, S. 2015a. Multi-

joint postural behavior in patients with knee osteoarthritis. The Knee, 22, 517-521. 

TURCOT, K., SAGAWA, Y., JR., HOFFMEYER, P., SUVA, D. & ARMAND, S. 2015b. 

Multi-joint postural behavior in patients with knee osteoarthritis. Knee, 22, 517-21. 

VAD, V., HONG, H. M., ZAZZALI, M., AGI, N. & BASRAI, D. 2002. Exercise 

recommendations in athletes with early osteoarthritis of the knee. Sports Med, 32, 729-

39. 

VAN RAAIJ, T. M., REIJMAN, M., BROUWER, R. W., BIERMA-ZEINSTRA, S. M. & 

VERHAAR, J. A. 2010. Medial knee osteoarthritis treated by insoles or braces: a 

randomized trial. Clin Orthop Relat Res, 468, 1926-32. 

VIEIRA, T. M., WINDHORST, U. & MERLETTI, R. 2010. Is the stabilization of quiet upright 

stance in humans driven by synchronized modulations of the activity of medial and 

lateral gastrocnemius muscles? J Appl Physiol (1985), 108, 85-97. 

WAKELING, J. M., LIPHARDT, A.-M. & NIGG, B. M. 2003. Muscle activity reduces soft-

tissue resonance at heel-strike during walking. Journal of biomechanics, 36, 1761-

1769. 

WANG, T. M., HSU, W. C., CHANG, C. F., HU, C. C. & LU, T. W. 2010. Effects of Knee 

Osteoarthritis on Body's Center of Mass Motion in Older Adults during Level Walking. 

Biomedical Engineering-Applications Basis Communications, 22, 205-212. 

WHITE, D. K., TUDOR‐LOCKE, C., ZHANG, Y., FIELDING, R., LAVALLEY, M., 

FELSON, D. T., GROSS, K. D., NEVITT, M. C., LEWIS, C. E. & TORNER, J. 2014. 

Daily walking and the risk of incident functional limitation in knee osteoarthritis: an 

observational study. Arthritis care & research, 66, 1328-1336. 

WIGLEY, R. D., ZHANG, N. Z., ZENG, Q. Y., SHI, C. S., HU, D. W., COUCHMAN, K., 

DUFF, I. F. & BENNETT, P. H. 1994. Rheumatic diseases in China: ILAR-China study 



267 

 

comparing the prevalence of rheumatic symptoms in northern and southern rural 

populations. J Rheumatol, 21, 1484-90. 

WINBY, C., GERUS, P., KIRK, T. & LLOYD, D. G. 2013. Correlation between EMG-based 

co-activation measures and medial and lateral compartment loads of the knee during 

gait. Clinical biomechanics, 28, 1014-1019. 

WINTER, D., FUGLEVAND, A. & ARCHER, S. 1994. Crosstalk in surface 

electromyography: theoretical and practical estimates. Journal of Electromyography 

and Kinesiology, 4, 15-26. 

WINTERS, J. D. & RUDOLPH, K. S. 2014. Quadriceps rate of force development affects gait 

and function in people with knee osteoarthritis. Eur J Appl Physiol, 114, 273-84. 

WU, C. W., MORRELL, M. R., HEINZE, E., CONCOFF, A. L., WOLLASTON, S. J., 

ARNOLD, E. L., SINGH, R., CHARLES, C., SKOVRUN, M. L. & FITZGERALD, J. 

D. Validation of American College of Rheumatology classification criteria for knee 

osteoarthritis using arthroscopically defined cartilage damage scores.  Seminars in 

arthritis and rheumatism, 2005. Elsevier, 197-201. 

YASUDA, K. & SASAKI, T. 1987. The mechanics of treatment of the osteoarthritic knee with 

a wedged insole. Clinical orthopaedics and related research, 215, 162-171. 

YEH, H. C., CHEN, L. F., HSU, W. C., LU, T. W., HSIEH, L. F. & CHEN, H. L. 2014. 

Immediate efficacy of laterally wedged insoles with arch support on walking in persons 

with bilateral medial knee osteoarthritis. Arch Phys Med Rehabil, 95, 2420-7. 

YU, D., PEAT, G., BEDSON, J. & JORDAN, K. P. 2015. Annual consultation incidence of 

osteoarthritis estimated from population-based health care data in England. 

Rheumatology (Oxford), 54, 2051-60. 

ZENI, J. A. & HIGGINSON, J. S. 2011. Knee osteoarthritis affects the distribution of joint 

moments during gait. Knee, 18, 156-9. 

ZENI, J. A., RUDOLPH, K. & HIGGINSON, J. S. 2010. Alterations in quadriceps and 

hamstrings coordination in persons with medial compartment knee osteoarthritis. J 

Electromyogr Kinesiol, 20, 148-54. 

ZHANG, F. F., DRIBAN, J. B., LO, G. H., PRICE, L. L., BOOTH, S., EATON, C. B., LU, B., 

NEVITT, M., JACKSON, B., GARGANTA, C., HOCHBERG, M. C., KWOH, K. & 

MCALINDON, T. E. 2014. Vitamin D deficiency is associated with progression of 

knee osteoarthritis. J Nutr, 144, 2002-8. 

 



268 

 

 

List of appendices 

Appendix 1: University of Salford ethical approval  

 



Appendix 2:  NHS ethic approval 

 

 

 



270 

 

 

 



271 

 



Appendix 3: Consent form  

 



Appendix 4: Participant Information Sheet - Healthy subject 

 

Rocker Shoes in Knee Osteoarthritis 
Participant Information Sheet - Healthy subject- v5 (16-11-15) 

 

Participant Information Sheet 

The biomechanical effect of rocker shoes in people with knee osteoarthritis. 

INFORMATION ABOUT THIS DOCUMENT  

You are being invited to take part in a research study, as a healthy volunteer, to help us 

understand the possible effects of rocker footwear on the biomechanics of walking. Before you 

decide, it is important for you to understand why the research is being done and what it will 

involve. This document gives you important information about the purpose, risks, and benefits 

of participating in the study.  Please take time to read the following information carefully. If 

you have any questions then feel free to contact the researcher whose details are given at the 

end of the document. Take time to decide whether or not you wish to take part.  

BACKGROUND TO THE STUDY 

Individuals with knee osteoarthritis suffer from pain during normal activities such as walking, 

standing or climbing stairs. We aim to gain more information about the effect of using 

conservative interventions, such as footwear on the biomechanics of gait and knee joint 

loading. A number of footwear have been designed to potentially lower the loads in the knee 

joint and these treatments could be extremely popular, effective and inexpensive interventions 

for this disease if we can understand which one has the best results. As well as understanding 

the effect of these footwear designs on people with knee arthritis, it is important to understand 

how they could change the way healthy volunteers walk. 

WHAT WILL HAPPEN TO ME IF I PARTICIPATE IN THIS STUDY? 

 

If you decide that you would like to take part in the study, please contact the researcher on the 

numbers at the end of this information leaflet. The principal investigator will contact you to 

ask you a few questions to confirm that you are suitable for the study and answer any further 

questions you may have.  

 

If you are happy to take part in the study, you will be required to visit the gait laboratory at the 

University of Salford on a single occasion. At the start of this visit, the study will be explained 

in full and, if you are happy to proceed, you will complete a consent form. Next, we will 

measure your height and weight and then ask you to change into shorts and a comfortable T-

shirt.  
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To begin with the researcher will place small electrodes over specific 

muscles on the front and back of your thigh, on your calf and on the 

front of your shin. Before each of these electrodes is positioned, the 

researcher will remove any excess hair with a disposable razor and then 

remove dead skin with an exfoliating cream. Once the electrodes are in 

place, the researcher will then position reflective markers on your legs, 

feet, arms and upper body using hypo-allergenic tape as shown in the 

picture to the right.  

  

 

With the electrodes and markers in place the researcher is able to capture 

biomechanical data during movement. To begin with you will be asked to stand still whilst a 

standing trial is recorded. We will then  ask you to walk in a pair of normal shoes 5-10 times, 

over a distance of 6 metres, at your normal walking speed. We will then ask you to change into 

a pairof rocker shoes and to walk another 5-10 times, again at your normal walking speed. 

Finally, you will change into a pair of flexible shoes and again repeat the 5-10 walks. Note that 

the rocker shoes have a curved bottom and are designed to ‘rock’ the 

foot forward thereby making walking a little easier (see picture to the 

right).If you get tired during any point then we will give you sufficient 

time to rest. We anticipate that the total duration of this visit would be 

no longer than 1.5-2 hours. 

 

If you are able to make your own way to the university then you will receive a £25 payment to 

cover travel expenses. Alternative, we can arrange a taxi to pick you up and to take you back 

home again. If you do need a taxi, then we will pay for it but we will be unable to provide you 

with personal expenses payment. 

RISKS & POTENTIAL BENEFITS OF THE STUDY 

What risks are involved in participating in the study? 

This is a very simple, straight forward study with negligible risks. The laboratory 

measurements of walking are often carried out in routine clinical practice and will be performed 

by a fully trained researcher with state-of-the are equipment 

 

What benefits are involved in participating in the study? 

There are no immediate benefits to you of participating in the study. However, the results will 

help us understand the effect of footwear interventions on the biomechanics of gait in people 

with osteoarthritis. This could ultimately help us to develop effective treatments for people 

who suffer with knee arthritis. 

 

WHAT IF SOMETHING GOES WRONG 

The university has insurance to cover against any harm to you which may occur whilst you are 

taking part in these tests. However, if you decide to take legal action, you may have to pay for 

this. If you wish to complain, or have any concerns about any aspect of the way you have been 

approached or treated during the course of this study, you can approach the University of 

Salford as describe below:  
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Contact the Research & Innovation Manager:   

Mr.  Anish Kurien MBA, PRINCE2, MSP 

Email: a.kurien@salford.ac.uk,  Tel:+44 (0) 161 295 5276 

ENDING THE STUDY 

What if I want to leave the study early? 

You can withdraw from this study at any time without loss of any non-study related benefits to 

which you would have been entitled before participating in the study. There is no danger to 

you if you leave the study early. If you want to withdraw you may do so by notifying the study 

representative listed in the “Contact Information” section below. Moreover  all data collected 

from you will be destroyed, including any personal information. 

FINANCIAL INFORMATION 

Who is organizing and funding the research? 

This study is organized and funded by the University of Salford. 

Will I be paid for participating? 

We are able to provide a £25 payment to cover your travel expenses to and from the 

university or, alternatively, to provide you with a taxi. 

CONFIDENTIALITY OF SUBJECT RECORDS 

Will my taking part in this study be kept confidential? 

All information which is collected about you during the course of the research will be kept 

strictly confidential. Any information about you which leaves the University of Salford will 

have your name and address and any other identifying features removed so that you cannot be 

recognized from it.  

 

USE OF THE DATA 

The data collected as part of this study will be used to understand the effect of different 

footwear designs and this will be published both in a Ph.D. thesis and also in scientific journal 

papers. 

 

CONTACT INFORMATION 

If you require more information about the study, want to participate, or if you are already 

participating and want to withdraw, please contact 

 

Ali Algarni 

Email:    A.S.S.Algarni@edu.salford.ac.uk 

Phone :  0161 295 2017 

Address:  School of Health Sciences 

Brian Blatchford Building, 

University of Salford 

Salford 

Manchester M6 6PU 

mailto:a.kurien@salford.ac.uk
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Thank you very much for taking time to read this document! 

We appreciate your interest in this study and hope to welcome you at the School of Health 

Sciences, University of Salford. 



Appendix 5: Participant information sheet -OA participants 
Rocker Shoes in Knee Osteoarthritis 

Participant Information Sheet - OA Participants v5 (16-11-15) 

Participant Information Sheet 

The biomechanical effect of rocker shoes in people with knee osteoarthritis. 

INFORMATION ABOUT THIS DOCUMENT 

You are being invited to take part in a research study to help us understand if a new treatment 

for knee osteoarthritis could be effective and also what effect it may have on healthy volunteers. 

Before you decide, it is important for you to understand why the research is being done and 

what it will involve. This document gives you important information about the purpose, risks, 

and benefits of participating in the study.  Please take time to read the following information 

carefully. If you have any questions then feel free to contact the researcher whose details are 

given at the end of the document. Take time to decide whether or not you wish to take part.  

BACKGROUND TO THE STUDY 

Individuals with knee osteoarthritis suffer from pain during normal activities such as walking, 

standing or climbing stairs. We aim to gain more information about the effect of using 

conservative interventions, such as footwear on the biomechanics of gait and knee joint 

loading. A number of footwear have been designed to potentially lower the loads in the knee 

joint and these treatments could be extremely popular, effective and inexpensive interventions 

for this disease if we can understand which one has the best results. As well as understanding 

the effect of these footwear designs on people with knee arthritis, it is important to understand 

how they could change the way healthy volunteers walk. 

WHAT WILL HAPPEN TO ME IF I PARTICIPATE IN THIS STUDY? 

 

If you decide that you would like to take part in the study, please contact the researcher on the 

numbers at the end of this information leaflet. The principal investigator will contact you to 

ask you a few questions to confirm that you are suitable for the study and answer any further 

questions you may have.  

 

If you are happy to take part in the study, you will be required to visit the gait laboratory at the 

University of Salford on a single occasion. At the start of this visit, the study will be explained 

in full and, if you are happy to proceed, you will complete a consent form. Then we will ask 

you to complete a data access form to give us permission to contact your GP (telling them you 

are participating in the study) and so that we can view you knee x-ray data. 
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Next, we will measure your height and weight and then ask you to change 

into shorts and a comfortable T-shirt. You will then complete a short 

questionnaire which will allow us to understand how much your knee 

arthritis interferes with your daily life. To begin with the researcher will 

place small electrodes over specific muscles on the front and back of your 

thigh, on your calf and on the front of your shin. Before each of these 

electrodes is positioned, the researcher will remove any excess hair with 

a disposable razor and then remove dead skin with an exfoliating cream. 

Once the electrodes are in place, the researcher will then position 

reflective markers on your legs, feet, arms and upper body using hypo-

allergenic tape as shown in the picture to the right. 

With the electrodes and markers in place the researcher is able to capture 

biomechanical data during movement. To begin with you will be asked to stand still whilst a 

standing trial is recorded. Following the standing trial, we will ask you to walk in a pair of 

normal shoes 5-10 times, over a distance of 6 metres, at your normal walking speed. We will 

then ask you to change into a pair of rocker shoes and to walk another 5-10 times, again at your 

normal walking speed. Finally, you will change into a pair of 

flexible shoes and again repeat the 5-10 walks. Note that the rocker 

shoes have a curved bottom and are designed to ‘rock’ the foot 

forward thereby making walking a little easier (see picture to the 

right). 

 

If you get tired during any point then we will give you sufficient 

time to rest. We anticipate that the total duration of this visit would be no longer than 1.5-2 

hours. 

 
If you are able to make your own way to the university then you will receive a £25 payment to 

cover travel expenses. Alternative, we can arrange a taxi to pick you up and to take you back 

home again. If you do need a taxi, then we will pay for it but we will be unable to provide you 

with personal expenses payment. 

RISKS & POTENTIAL BENEFITS OF THE STUDY 

What risks are involved in participating in the study? 

This is a very simple, straight forward study with negligible risks. The laboratory 

measurements of walking are often carried out in routine clinical practice and will be performed 

by a fully trained researcher with state-of-the are equipment 

 

What benefits are involved in participating in the study? 

There are no immediate benefits to you of participating in the study. However, the results will 

help us understand the effect of footwear interventions on the biomechanics of gait in people 

with osteoarthritis. This could ultimately help us to develop effective treatments for people 

who suffer with knee arthritis. 

 

WHAT IF SOMETHING GOES WRONG 

The university has insurance to cover against any harm to you which may occur whilst you are 

taking part in these tests. However, if you decide to take legal action, you may have to pay for 

this. If you wish to complain, or have any concerns about any aspect of the way you have been 
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approached or treated during the course of this study, you can approach the University of 

Salford as describe below:  

 

Contact the Research & Innovation Manager:   

Mr.  Anish Kurien MBA, PRINCE2, MSP 

Email: a.kurien@salford.ac.uk,  Tel:+44 (0) 161 295 5276 

ENDING THE STUDY 

What if I want to leave the study early? 

You can withdraw from this study at any time without loss of any non-study related benefits to 

which you would have been entitled before participating in the study. There is no danger to 

you if you leave the study early. If you want to withdraw you may do so by notifying the study 

representative listed in the “Contact Information” section below. Moreover all data collected 

from you will be destroyed, including any personal information. 

FINANCIAL INFORMATION 

Who is organizing and funding the research? 

This study is organized and funded by the University of Salford. 

Will I be paid for participating? 

We are able to provide a £25 payment to cover your travel expenses to and from the 

university or, alternatively, to provide you with a taxi. 

CONFIDENTIALITY OF SUBJECT RECORDS 

Will my taking part in this study be kept confidential? 

All information which is collected about you during the course of the research will be kept 

strictly confidential. Any information about you which leaves the University of Salford will 

have your name and address and any other identifying features removed so that you cannot be 

recognized from it.  

 

USE OF THE DATA 

The data collected as part of this study will be used to understand the effect of different 

footwear designs and this will be published both in a Ph.D. thesis and also in scientific journal 

papers. 

 

CONTACT INFORMATION 

If you require more information about the study, want to participate, or if you are already 

participating and want to withdraw, please contact 

 

Ali Algarni 

Email:    A.S.S.Algarni@edu.salford.ac.uk 

Phone :  07985502817 

Address:  School of Health Sciences 

Brian Blatchford Building, 

University of Salford 

mailto:a.kurien@salford.ac.uk
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Salford 

Manchester M6 6PU 

Thank you very much for taking time to read this document! 

We appreciate your interest in this study and hope to welcome you at the School of Health 

Sciences, University of Salford. 



Appendix 6: WOMAC questionnaires 
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