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Abstract

Fluctuations in the crude oil price allied to risk have increased significantly

over the last decade frequently varying at di↵erent risk levels. Although exist-

ing models partially predict such variations, so far, they have been unable to

predict oil prices accurately in this highly volatile market. The development

of an e↵ective, predictive model has therefore become a prime objective of re-

search in this field. Our approach, albeit based in part on previous research,

develops an original methodology, in that we have created a risk forecasting

model with the ability to predict oil price fluctuations caused by changes in

both fundamental and transient risk factors. We achieve this by disintegrating

the multi-scale risk-structure of the crude oil market using Variational Mode

Decomposition. Normal and transient risk factors are then extracted from the

crude oil price using Variational Mode Decomposition and modelled separately

using the Quantile Regression Neural Network (QRNN) model. Both risk fac-

tors are integrated and ensembled to produce the risk estimates. We then apply

our proposed risk forecasting model to predicting future downside risk level in
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three major crude oil markets, namely the West Taxes Intermediate (WTI), the

Brent Market, and the OPEC market. The results demonstrate that our model

has the ability to capture downside risk estimates with significantly improved

precision, thus reducing estimation errors and increasing forecasting reliability.

Key words: Crude oil risk forecasting, Variational Mode Decomposition,

Value at Risk, Normal Risk, Transient Risk, Multiscale Analysis, Quantile

Regression Neural Network model

1. Introduction

A significant body of contemporary research shows that the worldwide crude

oil market has been experiencing increasing volatility and risk (Ji and Zhang,

2018; Herrera et al., 2018; Plourde and Watkins, 1998). Many empirical studies

demonstrate that movements in prices are driven by recurrent price bubbles

and structural breaks such as financial crises and regime changes. For example,

Liu and Lee (2018) and Su et al. (2017) identify eight and six such bubbles,

respectively, emanating from energy markets. Ji et al. (2018c) find the struc-

tural break points for the spillover e↵ect between oil and exchange markets. Ji

et al. (2018d) find di↵erent behaviour of spillover e↵ect between oil and agri-

cultural commodity markets under bearish and bullish regimes. Balcilar et al.

(2014) identify four bubbles and a crisis regime in the WTI and Brent markets.

It is arguable that extreme fluctuations are caused by diverse market shocks,

unexpected sector innovations such as the rapid development of transportation

technology, the internet, unforeseen extreme weather conditions, the develop-

ment of mining technology, aggressive exploration and the availability of new

alternative renewable energy sources, as well as global financial crises and inte-

gration with other financial markets (Plourde and Watkins, 1998; Miao et al.,

2017; Zhang and Broadstock, 2018; Huang et al., 2017).

Although such (disruptive) factors have exerted an increasingly powerful in-

fluence on the crude oil market (Miao et al., 2017; Mensi et al., 2017), until

now the ability to measure their e↵ect on future prices has been limited, with a
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lack of predictive tools to inform investors. Before the year 2000, for example,

the equilibrium model, which models the supply and demand characteristics of

the crude oil price, was accepted as the norm (Huang et al., 2017). Neverthe-

less, empirical evidence has increasingly suggested that the information linkage

and spillover e↵ects between oil and other financial markets such as the stock

markets, Carbon market and energy market have been on the rise (Ji et al.,

2018b; Zhang, 2017). Financial characteristics due to the increasing financial-

ization of the energy market have become more prevalent in the crude oil market

in recent years (Zhang et al., 2018). The influence and impact of component

factors driving changes in risk and price cannot be measured accurately by

traditional symmetric summary measures such as the standard deviation that

focuses on both upside and downside return fluctuations. Subsequently, risk

measures placed more emphasis on the potential size of loss and the probability

of downside return. Among di↵erent risk measures, Value at Risk has become

one of the most frequently adopted risk measures, because it has the ability to

model the worst expected losses under normal market conditions over the given

time horizon (Dowd, 2005). Some use Exponential Weighted Moving Average

(EWMA) and GARCH models to capture conditional variance and conditional

volatility (Mohammadi and Su, 2010). Others use di↵erent GARCH models,

such as EGARCH and GJR-GARCH, to forecast crude oil variance, and find

that the covariance stationary GARCH model performs the best. Wang et al.

(2011) show that GARCH-type models are able to capture the long memory

e↵ect for crude oil data, which is consistent with the dominant E�cient Mar-

ket Hypothesis (EMH). These models, however, are built on an equilibrium

condition for a stable market environment, and assume homogeneity of market

structure, and they are therefore appropriate for stable and stationary market

conditions only (Mandelbrot, 1963; Fama, 1965, 1970). In an era beset with

unexpected turbulence, they systematically underestimate the market risk con-

sequent upon transient and extreme events, such as the recent global financial

crisis. Further advancement includes the Quantile Regression Neural Network

(QRNN), which uses Neural Network model to learn the nonlinear relationship
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through quantile variables and explanatory variables. It takes a non-parametric

data-driven approach to model risk changes (Koenker and Bassett, 1978; Engle

and Manganelli, 2004). The neural network model in QRNN has greater flex-

ibility to model a diverse range of empirical distributions, as well as di↵erent,

nonlinear relationships between the VaR and the independent variables (Taylor,

2010; Cannon, 2012). Xu et al. (2016) conduct a comprehensive evaluation of the

performance of the Quantile Autoregression Neural network (QARNN) model

for US , UK and Hong Kong stock markets, providing evidence that QANN

demonstrates improved risk estimate accuracy. But QRNN is built on the neu-

ral network model and does not reveal much of the underlying risk structure.

Researchers have been searching for better risk measures that can incorporate

downside risk exposure under extreme conditions.

An alternative approach is to relax the assumption of homogeneity in the

EMH and adopt the alternative Fractal Market Hypothesis (FMH), which in-

troduces the multiscale view to account for the distinction between normal and

transient risk factors in risk modelling. Multiscale modelling has been well de-

fined in the engineering fields for analysing the complex system that contains

sub-systems with characterizing features across scales of time and space (Hos-

seini and Shah, 2009). In the economics and finance field, the economic and

financial system typically demonstrates nonlinear complex behavior, which is

characterized by a series of influencing factors di↵erentiated by the scale. These

influencing factors can be modelled by a series of models dedicated individually

to their multiscale data characteristics. Thus, multiscale models can contribute

to the understanding and modeling of the influential factors and multiscale dy-

namics in the economic and financial system. As many such economic research

involves time scale considerations, such as di↵erent economic behaviours, over

long-term and short-term time horizon, multiscale algorithms have been in-

creasingly adopted in the field to deal with multi-scale issues. Among di↵erent

multi-scale models, wavelet analysis and Empirical Mode Decomposition (EMD)

have recently been increasingly applied to forecast price movements in financial

markets. These models can identify influencing factors through extracting sub-
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data series distinguished by scales. These sub-data series are usually simpler

and better behaved compared to the original data. They can be modelled more

accurately using econometric models. Models based on wavelet and EMD meth-

ods produce more accurate forecasts as a consequence (Wang and Wang, 2017;

Qiu et al., 2017; Zhang et al., 2018; Yang et al., 2017). For example, Wang

et al. (2018a,b) apply the bivariate EMD model to analyse and forecast the

crude oil price movement, and show that the addition of wavelet analysis, EMD

and VMD models can improve the forecasting accuracy of the mainstream crude

oil price forecasting model. Zhu et al. (2017) apply the EMD model to analyse

and forecast the carbon market. Wavelet analysis, however, has little flexibility

to account for the diverse range of data features found in the crude oil mar-

ket. Empirical Mode Decomposition takes a quantitative approach to derive

the filtering basis from data. Without the theoretical foundation, the number

of decomposed components may change significantly over di↵erent time periods,

causing a mode-mixing problem during the decomposition process. The decom-

posed components may not correspond to economically meaningful risk factors

in the markets.

A new approach, embodying the Variational Mode Decomposition model, is

the latest improvement upon the EMD model, searching for constituent modes

using the non-recursive optimization-based model based on financial data for

forecasting (Dragomiretskiy and Zosso, 2014). For example, Lahmiri (2016)

constructs the forecasting model, with hybridization of the VMD model with

the Particle Swarm Optimized Neural Network model for six stock markets with

improved forecasting accuracy. Jianwei et al. (2017) combine VMD, Indepen-

dent Component Analysis and ARMA to forecast the crude oil price movement

with enhanced accuracy.

In spite of the advances in technical modelling discussed above, none of

these approaches has seriously considered the multiscale characteristics of risk

estimates in the crude oil forecasting modelling, in spite of wide observations

that price fluctuations in the crude oil market are fundamentally determined by

the underlying risk factors characterized by their multiscale structure. In our
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paper, we propose a new multiscale approach, incorporating the downside risk

level in the crude oil market into the model for forecasting crude oil prices. Our

method utilizes the new multi-scale signal processing technique, namely Varia-

tional Mode Decomposition, to decompose the underlying risk factors. The de-

terministic mechanism for each risk factor is modelled using QRNN. Specifically,

we search for the multiscale structure of risks and derive the optimal value by

using the VMD and QRNN models. We establish that the VMD model extracts

data components, or so-called modes in the model. We determine the existence

of normal and transient risk factors with their own multiscale characteristics

such as fluctuation ranges across ten scales. We use the VaR exceedances (VaR

greater than the actual loss) as the criteria. The data series with the lowest

number of VaR exceedances is identified as the normal factor (the most conser-

vative risk estimate). The data series with higher VaR exceedances is identified

as the transient factor (more aggressive risk estimate). For each extracted risk

factor, the QRNN model is estimated with a unique set of parameters. To eval-

uate its performance, we apply our model to real crude oil price data based

on the major crude oil markets. The evaluation results demonstrate that our

proposed models produce risk forecasts with improved forecasting accuracy, as

compared to the benchmarking model, the Quantile Regression Neural Network

model.

Our model makes several significant contributions to the literature. The

major contribution is that we demonstrate the existence of both normal and

transient risk factors in the crude oil price, which can be captured with more

precision by the QRNN model. Recent empirical studies show that crude oil has

distinctive behavioural patterns across time scales (Ji et al., 2018a; Huang et al.,

2017). We take a step further to show that the selected transient scale behaves

significantly di↵erently from the normal factor. The transient scale contains

both temporal and extreme factors. Thus, our proposed model is unique in its

capability to model these risk factors separately in the transformed multi-scale

domain. Our VMD model can separate transient risk factors from normal risk

factors and reintegrate these risk factors into forecasting by analysing real data
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characteristics, so as to improve the accuracy of forecasting. Further, we show

that although each crude oil price can be decomposed into multiscale data series

as the risk factors, the exact scale for both normal and transient risk factors

need to be selected based on some criteria. The criteria we choose is the risk

forecasts reliability at each scale. Typical performance measures for VaR are

the number of VaR exceedances, i.e. the number of times when the actual loss is

greater than VaR. We have proposed an empirical method that has an ability to

determine the optimal risk decomposition structure more e�ciently. We argue

that this is of critical importance when we select scales for both normal and

transient factors, given that there are many valid candidate scales. The result-

ing candidate risk structure critically a↵ects the accuracy of forecasting based

on multi-scale analysis. The risk structure also critically a↵ects the derivation

and generalization of economic and financial theory such as the risk spillover

e↵ect and risk measurement. The determination of the optimal risk structure

using the multi-scale analysis can improve the robustness of crude oil forecast-

ing, creating an e↵ective tool for informing investors. Overall, work in this paper

contributes to the conceptual development in Energy Finance by proposing a

new risk forecasting model in the energy risk measurement field. Reliable en-

ergy risk measurement is the critical part of the energy risk management system,

which is one of the major subjects in the rapid developing Energy Finance dis-

cipline (Zhang, 2018; Narayan, 2017; Sadeghi and Shavvalpour, 2006). Despite

the increasing adoption of risk measurement models such as Value at Risk to

measure downside risk in the energy markets, we have limited knowledge of the

underlying risk factors and limited studies on the quantitative risk measurement

models have been conducted in recent years (Ji et al., 2018c,d; Narayan, 2017).

Our model provides promising modelling approaches to better analyze the risk

factors and measure the risk exposure in the energy markets.

The rest of the paper is organized as follows. In Section 2, we discuss well-

used models, such as VMD and QRNN, and develop our proposed model. In

Section 3, we apply our proposed model to real crude oil data. Section 4 sum-

marises our main findings and provides concluding remarks.
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2. Modelling and hypothesis development

2.1. Variational Mode Decomposition model and Quantile Regression Neural

Network model

Empirical mode decomposition has gained increasing attention and has inspired

a series of researches (Huang et al., 1998). The method is data driven and

adaptive, i.e. the parameter in the algorithm changes automatically when it

is applied to a di↵erent set of empirical data. It can extract data features

from a mixture of diverse ranges of data. The EMD model is often confronted

by the mode mixing problem, when the extracted modes contain components

characterized by more than one frequency. The extracted modes are thus not

uniquely defined in terms of a fluctuation boundary because this may overlap

the extracted modes. VMD is a recently developed new method to solve the

mode mixing problem in this line of research (Dragomiretskiy and Zosso, 2014).

It decomposes the time series into a finite number of data components, known

as modes, using a non-recursive optimization based approach. Given the orig-

inal crude oil data and the number of modes to decompose, the VMD model

produces the exact number of modes required, with limited bandwidth and a

specific sparsity property (Wang et al., 2017). The modes are mostly compact

around the central pulsation. VMD decomposes the original data x(t) into the

modes sk by formulating the constrained optimization problem as in Eq. 1

(Dragomiretskiy and Zosso, 2014).

min{sk},{!k}

(
X

k

||@t[(�(t) +
j

⇡t
)⇥ sk(t)]e

�j!kt||22

)
(1)

Such that
X

k

sk(t) = x(t)

Where x(t) is the original time series data, sk is the decomposed modes, k

is the number of modes, !k is the centre frequency, � is the Dirac distribution,

⌦ is the convolution operator.

The constrained minimization problem in Eq. 1 is transformed to the un-

constrained optimization problem in Eq. 2
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L({yk}, {!k},�) =↵
X

k

||@t[(�(t) +
j

⇡t
)⇥ yk(t)]e

�j!kt||22 (2)

+ ||y(t)�
X

k

yk(t)||22 +
*
�(t), y(t)�

X

k

yk(t)

+

Where a refers to the data fidelity balancing parameter for the penalty term.

It encourages the reconstruction fidelity when noises are present in the data. We

adopt ADMM (Alternate Direction Method of Multiplier) method to solve for

the saddle point of the unconstrained problem in Eq. 2.

The VMD algorithm involves the following three steps. First, by applying

Hilbert transform to the original data, the unilateral frequency spectrum of the

original data is produced. Second, an exponential tuned to the centre frequency

of the data is added to the unilateral frequency spectrum so that it is shifted and

transformed to the baseband. Third, the mode for the bandwidth is estimated

using H1 Gaussian smoothness of the demodulated data.

Although the VMD model is useful in extracting data patterns in the multi-

scale domain, it infers data patterns based on historical data, rendering little

power to predict future data movement. To resolve this issue, the QRNN model

incorporates the neural network model into quantile regression modelling to

estimate the quantile of data using past data observations as predictors. It

allows more flexibility in modelling the complex nonlinear relationship. Unlike

the linear assumption made in QR, QRNN does not impose strict assumptions

on the linear or nonlinear nature of the underlying relationship between the data

quantile of the response variable and the predictor variables. It uses the neural

network model to estimate the nonlinear relationship (Cannon, 2012; Koenker

and Bassett, 1978).

Given the quantileQt and the predictor variables yt , QRNNmodel estimates

the nonlinear relationship as in Eq. 3.

Qt (⌧) = fo

0

@
JX

j=1

wo
j (⌧) f

h

 
pX

i=1

wh
ij (⌧) yt�i + bh (⌧)

!
+ bo (⌧)

1

A , (3)
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where bo indicates the bias of the output layer, wo
j is the weight for the output

layer, and fo(·) is the transfer function in the output layer. wh
ij refers to the

hidden layer weight, fh(·) is the transfer function in the hidden layer, and bh(⌧)

refers to the bias of the hidden layer.

However, there are two problems with the QRNN model. The first is that the

solution of the model can be the local minimum instead of the global minimum

in the feasible solution set. The model may fit the data with high in-sample

estimation precision, but generalizations beyond the sample range are not guar-

anteed with the same level of precision and accuracy in the forecasting. Second,

it is di�cult to interpret and track the underlying dynamics, while allowing for

flexibility in a nonparametric approach. Although it has the ability to model

some unknown data dynamics in the crude oil market, the QRNN model o↵ers

very few insights into the underlying risk structure. In addition, its estimation

accuracy is sensitive to the parameter choice, which is mainly selected using the

trial and error method and the empirical data. It works as a good nonlinear

approximation to risk features when modelling some known risk structure, but

does not su�ce when the underlying risk structure is unknown.

2.2. Hypothesis development and VMD-QRNN model

2.2.1. Hypothesis development

The patterns of crude oil price fluctuations change over time. These regimes

are influenced and shaped by such di↵erent risk factors, notably as macroeco-

nomic factors, government policy, and various market risks. The understanding

of market risk in the crude oil market, however, is preliminary and studies on

risk forecasting are rather limited and sparse. So far, studies on the crude oil

risk estimates use econometric methods, such as the Generalized Autoregressive

Conditional Heteroscedasticity (GARCH) model, among others, to model and

forecast risk measures such as volatility and Value at Risk. These models as-

sume uniform behaviour of risks in the market, i.e. risk in the crude oil market

is generated from common risk factors, and these risk factors do not change

over time. This notion is also supported by the dominant E�cient Market Hy-
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pothesis (EMH), based on the assumption of homogeneity in the market, where

liquidity is generated from noise traders in financial markets. However, it is

widely accepted that crude oil is traded in a more heterogeneous market envi-

ronment, where risk is represented by a distribution with a fat tail, stochastic

volatility, and self-similarity (Barna et al., 2016). To address these issues, we

develop a model, which takes into account both fundamental and transient risk

factors associated with the crude oil market. Given the foregoing discussions,

our hypothesis with regards to the heterogeneity in the crude oil markets is the

following.

Hypothesis: In the crude oil market, two dominant factors determine the

risk dynamics: the normal and transient risk factors, which can be distinguished

by their multi-scale characteristics.

Theoretically, the finance literature has long classified events in financial

markets into ordinary and extraordinary events (McDonald, 2013; Taleb, 2011).

Recently, the Fractal Market Hypothesis [FMH] formalizes this classification by

developing the theory whereby di↵erent major events in financial markets stem

from investors decision making, based on a diverse range of criteria (Peters,

1994). Their distinct investment behaviours are distinguished by their indi-

vidual beliefs, information constraints, and bounded rationality. When making

investment decisions, Investors focus on di↵erent risk factors, such as fundamen-

tal factors versus technical analysis, and localized factors versus global factors.

Among them, time horizon receives most research interest in the existing liter-

ature. Beyond the FMH, a group of researchers have proposed a more general

Heterogeneous Market Hypothesis (HMH) to account for heterogeneous market

features explicitly (Muller et al., 1993). Li et al. (2017) use the agent model

to demonstrate that a limited time horizon exists in the market due to herd-

ing behaviour under the FMH. Rachev et al. (1999) and Weron and Weron

(2000) show that the CED model can be used to approximate the global return

distribution under the FMH and HMH, respectively.

Although the FMH and HMH are theoretically sound for explaining the

risk structure in the crude oil market, there is a lock of empirical methods
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and evidence for the to facilitate their implementation. More specifically, exist-

ing models are unable to identify and capture statistical characteristics of the

multiscale risk structure, and thus, new models are developed using the inter-

disciplinary approach. Some empirical studies employ agent-based models, the

Heterogeneous ARCH (HARCH) model and heterogeneous autoregressive model

(HAR), and provide evidence that the joint influences of these risk factors on

investors behaviour cause complex price changes and risk exposures, reinforced

by characteristics such as self-similarity. For instance, by simulation, Li et al.

(2014) and Li et al. (2017) use the agent-based model to show that interaction

among agents is the source of market liquidity and can help ensure its stability.

Mller et al. (1997) advocate that the HARCH model can capture volatilities

over di↵erent time intervals, and suggest that the heterogeneous time horizon

needs to be taken into account when analysing the market component in foreign

exchange markets. Bianco et al. (2009) demonstrate the negative correlation be-

tween volatility forecasts and serial correlation (LeBaron e↵ects) using the HAR

model. Corsi (2009) proposes the HAR model based on HMH and demonstrates

the e↵ectiveness of HAR in reproducing the empirical data characteristics, such

as long memory and fat tail, and improving forecasting performance. Cheong

(2013) shows that the introduction of a non-homogeneous agent assumption in

HAR, using the RV measure, improves the forecasting accuracy for the S&P 500

stock market. Tao et al. (2018) propose a volatility forecasting model based on

HAR, using the multi-fractal volatility measure, and find that this model pro-

duces more accurate forecasts. Qu and Ji (2016) demonstrate that higher fore-

casting accuracy can be achieved when the lag in HAR is dynamically selected.

All these studies further confirm that heterogeneous dynamics are fundamental

components of market structure.

To account for heterogeneous dynamics, we develop a model that has the

ability to disaggregate the risk factors associated with the crude oil price fluc-

tuation, into the normal and transient risk factors. The most conservative risk

factor with the smallest number of exceedances is taken as the normal data com-

ponent. After the normal risk factor is determined, we calculate the hybrid risk
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estimate using the normal risk factors and other decomposed factors. The scale,

for which the most conservative hybrid risk estimate is produced, is referred to

as the transient data component.

2.2.2. Numerical algorithm

Our proposed method requires three steps.

In the first step, our model deals with the separation of data components

with distinct frequency bands by using the VMD model. We employ the VMD

model to transform the original data into a pre-set number of data components

at di↵erent scale in the multiscale domain. There have not, so far, been an

established theory and methods on the selection of the decomposition scale.

Studies in this field use some pre-set value for the maximum decomposition

scale. For example, empirical studies conducted in Lahmiri (2016, 2015); He

et al. (2018); Li et al. (2018); Mensi et al. (2017) use 10 as the decomposition

scale. The pre-set number of data components is chosen based on this academic

literature.

The uni-variate crude oil data Rt = r1, r2, . . . , rn into the multiscale domain

using VMD model as in Eq. 4.

R(t) =
IX

i=1

modei,t (4)

Where modei,t is the mode matrix. I is the pre-set maximal level of decom-

position scale.

In the second step, based on the in-sample data, we calculate the VaR for

each decomposed modes using QRNN model. For scale i, we take the lagged

modes with lag order p as the input variables and the quantile of the crude oil

prices as the response variables. The nonlinear relationship is modelled using

the QRNN as in Eq. 5.

V aRt,⌧,i = f(modet�1,i,modet�2,i, . . . ,modet�p,i; ✓⌧ ). (5)
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Based on the calculated results, we identify the scale that contains both

normal and transient factors of the original data among the decomposed modes.

With respect to selecting the scale for the normal risk factors, we adopt VaR

exceedances (VaR greater than the actual loss) as the criteria (Dowd, 2005).

The normal factor stems from the fundamental factor and tends to be more

stable, while the transient factor stems from the technical analysis and tends

to be more volatile. The normal risk estimate tends to be more conservative

compared to the transient factor (McDonald, 2013; Muller et al., 1993). We

define the data series with the lowest VaR exceedances as the normal factor (the

most conservative risk estimate). We select the scale with the lowest average

exceedances as the normal factor. For selecting the scale for the transient factor,

we calculate the exceedances of in-sample forecasts produced using the simple

average ensemble of the chosen normal factors in the second step and one of the

other extracted data components. We assume that there exist one normal and

one transient factor, and therefore we select the scale with the lowest average

exceedances as the transient scales among these factors.

In the third step, we produce forecasts using the out-of-sample data by the

proposed model with the normal and transient factors identified in step 2. We

then evaluate the performance of the proposed model using the common per-

formance measures, namely exceedances. VaR for Crude oil V aRt,⌧ is supposed

to be the linear combination of the VaR estimated under the normal market

condition V aRnf,t,⌧ and VaR estimated under the transient market condition

V aRtf,t,⌧ as in Eq. 6.

V aRt,⌧ = (1� a)⇥ \V aRnf,t,⌧ + a⇥ \V aRtf,t,⌧ (6)

Where a is the coe�cient for the transient factor estimated using the multi-

scale model, Both \V aRnf,t,⌧ and \V aRtf,t,⌧ are forecasted using QRNN model

with parameters estimated using decomposed data in the multiscale domains in

step 2.

The combination in the above equation is essentially an ensemble process.
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The ensemble models, often known as model averaging, combine the predictions

from a set of individual models through either heterogeneous (i.e. individual

models are of di↵erent types) or homogeneous (i.e. individual models are of the

same type) ensemble methods (Moyano et al., 2018; Seijo-Pardo et al., 2017).

The ensemble model has an ability to reduce the overfitting problem and im-

proves the model generalization. The ensemble model proposes that each model

bases its assumptions on the empirical data. They can capture only partial

information in the data, as the empirical data taken from real data features vio-

lates the model’s assumptions. Thus the ensemble forecasts are calculated using

individual forecasts from independent models. This would reduce the variance

of the forecast error of the ensemble member models forecasts and improve the

forecasting accuracy of the ensemble forecasts. The ensemble model does not

impose any restriction or assumptions on what types of models can be used to

produce the individual forecasts. Therefore, they proposed that the ensembling

process in step 3 can be generalized to the use of a wide range of models, such

as typical econometric models and artificial intelligence models.

The parameter, a, can be estimated using a range of statistics and economet-

ric techniques such as the linear regression model, the robust regression model,

and the artificial intelligence model (Yu et al., 2005; He et al., 2018). If the

parameters get larger, it implies that the influence of transient factors increases

in strength, and vice versa. The model performance is sensitive to the choice of

a. Abundant empirical evidence has shown the superior performance of the en-

semble models such as Bates-Granger averaging and Bayesian model averaging

(Wang et al., 2018a; Malone et al., 2014; Clemen, 1989). But no consensus has

been reached on the optimal ensemble methods. Graefe et al. (2015) find that

the performance of the simple average model is superior to Ensemble Bayesian

Model Averaging (EBMA), in terms of not only forecasting performance, but

also in the appeal of intuitive understanding and practical applications. They

further argue that the average model is preferred, compared to more complex en-

semble model in practice. In the practical situation, we expect that the weights

for the ensemble model to be dynamic and it can be modelled using nonlinear
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models or artificial intelligence models in a data driven approach. However,

these models introduce other model specification issues. For example, the es-

timated parameters may not be robust due to the data over-fitting issue and

the violation of model assumptions when the model is estimated with di↵erent

empirical datasets. The estimated model may not generalize well in the new

data. Thus, in the simplest case, we adopt the averaging ensemble method in

our model (Graefe et al., 2015). We average the VaR estimates for both normal

and transient factors, i.e. a is 0.5 in Eq. 6.

In summary, both VMD and QRNN model are the integrated parts of our

proposed model. They are combined to extract the appropriate risk structures

to make VaR forecasts. The VMD model constructs a multiscale domain. The

risk structures are identified and forecasts are made in the multiscale domain.

The QRNN model estimates the individual VaR in a nonparametric manner,

capturing the real risk changes in the market.

3. Empirical analyses and discussion of the results

3.1. Experiment design

We apply our proposed method to real crude oil data to evaluate the perfor-

mance of our model. The real data that we employ for evaluation are the daily oil

price in the US West Taxes Intermediate (WTI), UK Brent and OPEC market,

which are the most liquid crude oil markets in the world. The data sources are

the Energy Information Administration (EIA) of the US, and the Organization

of the Petroleum Exporting Countries (OPEC). The data are downloaded from

Quandl, which provides the centralized storage for a wide-range of datasets,

including data from EIA and OPEC (Quandl, 2018). The experimental data

for our evaluation ranges from the 2nd January 2003 to 4th January 2018. Our

final dataset consists of 3784 daily observations for the WTI market, 3817 daily

observations for the Brent market, and 3874 daily observations for the OPEC

market. We will then transform the original price data using the log di↵erence

method at the first order, so that the transformed data is detrended.
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The empirical dataset is divided into the training set and test set to facilitate

the model estimation and model evaluation. The ratio for dataset division is

determined based on the trial and error method, given the lack of a theoretical

framework. In the literature, the ratio can range from 40%-60% to 80%-20%

with su�cient number of observations reserved for the out-of-sample model eval-

uation, while 70%-30% is a popular choice (Dobbin and Simon, 2011; Lahmiri,

2016; Wang et al., 2018b; He et al., 2018, 2017). In our study, the in-sample

data take up the first 70% of the dataset and are used to identify the scales

that exhibit the transient data feature. The out-of-sample estimation takes up

the remaining 30% of the dataset to calculate forecasting accuracy based on our

proposed model. We assume a one-dollar portfolio asset.

Data analysis is conducted using Matlab 2013a computing software, while

experiments with the models and algorithms are conducted using R statistical

computing software. VMD models are implemented using vmd packages on

R (Hamilton and Ferry, 2017). QRNN models are implemented using qrnn

packages on R (Cannon, 2012, 2017).

3.2. Experiment results

The results of the in-sample data analyses are reported in Table 1.

Table 1: Descriptive statistics and statistical tests using the training dataset

Market Mean⇥10�4 Standard Deviation Skewness Kurtosis pJB pBDS

WTI 4.911 0.0269 -0.0999 7.3634 0.001 0

Brent 5.5400 0.0242 0.0089 7.6655 0.001 0.0005

OPEC 5.0477 0.0179 -0.3373 6.2702 0.001 0

Notes: pJB is the p-value for the Jarque-Bera (JB) statistic that tests the null hypothesis of

Gaussian distribution, and pBDS is the p-value for the BDS statistic that detects nonlinear

serial dependence in returns. Table 1 presents descriptive statistics for returns in the WTI,

Brent and OPEC

The experimental results show that the distribution of the three crude oil

markets deviates from the normal distribution, which is consistent with prior
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studies. The kurtosis value is significantly larger than the standard value, 3.

The null hypothesis of both JB and BDS tests are rejected at the 5% level of

significance. These statistics suggest that the crude oil data are not linearly

dependent, and may contain unspecified nonlinear dynamics such as multiscale

data features. Therefore, these nonlinear features in the crude oil market can

be modelled using the VMD model and neural network approach in the QRNN

model.

The decomposed modes are plotted in Figure 1.
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Figure 1: Plot of decomposed modes using the VMD model

Figure 1 shows that risk factors have distinct characteristics. Generally the

volatilities of these risk factors increase as the scale goes up. The first scale

exhibits the most stable behaviour and is most likely influenced by the market-

wide normal risk factors such as macroeconomic factors and government policy,

etc. The other scales exhibit more volatile behaviour and are more likely to

be influenced by the transient risk factors than those in the first scale, i.e.
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the normal risk factors. Since the decomposed data components reconstruct

the original crude oil price, these decomposed modes represent the candidate

structure of risk factors in the crude oil price. The normal and transient risk

factor in the hypothesis is expected to exist among these data components.

However, there is no theory on the identification of the normal and transient

factor in the literature. It is hard to tell which scale is more volatile than

the other scales from direct visual inspection of the figure. We cannot identify

these factors directly from the raw data and need to introduce the performance

measure for risk estimate to provide quantitative evidence during the risk scale

identification process.

We then forecast the VaR using the in-sample data for each of the scales.

We follow the existing studies in the economic and finance literature to set

the decomposition scales to 10, and produce 10 di↵erent forecasts for 10 scales

for each of the three markets (Lahmiri, 2016, 2015; He et al., 2018; Li et al.,

2018; Mensi et al., 2017). The lag is determined by minimizing the information

criteria such as Akaike Information Criteria (AIC) when ARMA-GARCH model

is estimated with di↵erent lag choices. We have identified one lag for the WTI

and OPEC markets and two lags for the Brent market. We, therefore, set the lag

for the QRNN Model to 2 to include the maximum information, i.e. the QRNN

model takes the returns of the current period over the two previous periods

as the input. Although VaR can be estimated at any confidence level given,

they are mostly estimated at three confidence levels, 95% 97. 5% and 99%.

We follow the existing literature and estimate it at the three confidence levels

(Degiannakis and Potamia, 2017; Berger and Genay, 2018; Meng and Taylor,

2018). The number of exceedances for the forecasts at 10 scales are reported in

Table 2 .
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Table 2: Exceedances results from VMD-QRNN model using in-sample data

Market N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

WTI99% 3 0 2 8 5 6 5 10 5 2

WTI97.5% 14 14 13 17 12 17 16 21 17 14

WTI95% 25 26 30 29 21 31 33 32 32 28

WTIAverage 14 13.3333 15 18 12.6667 18 18 21 18 14.6667

Brent99% 2 5 7 4 5 9 10 4 2 4

Brent97.5% 8 13 17 13 15 19 17 12 10 13

Brent95% 25 28 28 29 22 30 28 25 27 19

BrentAverage 11.6667 15.3333 17.3333 15.3333 14 19.3333 18.3333 13.6667 13 12

OPEC99% 3 9 4 4 1 5 5 2 4 4

OPEC97.5% 11 21 13 10 8 15 13 13 11 14

OPEC95% 19 34 34 27 27 36 30 26 24 33

OPECAverage 11 21.3333 17 13.6667 12 18.6667 16 13.6667 13 17

Notes: Ni, i = 1, 2, . . . , 10 is the number of exceedances at the scale i for di↵erent crude oil market at the confidence

level 95%, 97.5% and 99%, as well as the average value across all three confidence levels. Table 2 show the number

of exceedances in the WTI, Brent and OPEC markets

Based on the experimental results in Table 2, the most conservative risk

estimate among the risk estimates of 10 scales in each market is identified as

the normal risk factor, that is, scale 5 for the WTI market and scale 1 for

both the Brent and OPEC market, because VaR at theses scales has the lowest

average number of exceedances.

Next, we conduct an exhaustive evaluation of the performance of our model

across the ten di↵erent scales for use as the transient factors. The results are

reported in Table 3.
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Table 3: Exceedances results from VMD-QRNN model using the in-sample data

Market N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

WTI99% 4 2 5 6 5 5 5 7 4 4

WTI97.5% 10 12 11 11 12 13 13 13 13 10

WTI95% 22 21 23 23 21 26 22 24 24 22

WTIAverage 12 11.6667 13 13.3333 12.6667 14.6667 13.3333 14.6667 13.6667 12

Brent99% 2 2 2 1 2 2 2 1 1 1

Brent97.5% 8 10 8 10 7 10 11 9 7 11

Brent95% 25 22 21 20 22 23 22 21 22 18

BrentAverage 11.6667 11.3333 10.3333 10.3333 10.3333 11.6667 11.6667 10.3333 10 10

OPEC99% 3 2 2 1 2 2 2 2 2 2

OPEC97.5% 11 13 6 6 7 13 8 9 8 11

OPEC95% 19 25 25 20 22 20 25 22 22 25

OPECAverage 11 13.3333 11 9 10.3333 11.6667 11.6667 11 10.6667 12.6667

Notes: Ni, i = 1, 2, . . . , 10 is the number of exceedances at the scale i for di↵erent crude oil market at the confidence

level 95%, 97.5% and 99%, as well as the average value across all three confidence levels. Table 3 presents the number

of exceedances in the WTI, Brent and OPEC markets

The results show that the scale that contains the transient factor has been

identified as scale 2 for the WTI, scale 10 for the Brent market, and scale 4 for

the OPEC market. These scales produce the most conservative risk estimate

for the respective market, when they are chosen to be the transient factor. We

demonstrate that both normal risk factors and transient risk factors contribute

to the overall risk fluctuations. These results are consistent with our hypothesis

that the normal risk factors provide the baseline estimate. The transient risk

factors provide the estimate for the risk over and above the normal risk level

under the transient and extreme market condition. They are both critical to

measuring the market risk level accurately. Our results demonstrate that scale

1, representing the normal risk factors, has a lower number of exceedances than

the transient risk factors. The normal risk factors have larger value and are

more conservative. 1 In the meantime, although the results reported in Table 3

1It is worth noting that we have run the experiment several times. The number of ex-

ceedances for VaR estimated may change slightly for each experiment, but the scale selected
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show the same number of exceedances for scale 9 and 10 in the Brent market,

when the neural network is initialized with di↵erent sets of weights generated

randomly, the number of exceedances for scale 9 and 10 actually di↵ers and the

number of exceedances for scale 10 is the smallest. Thus we choose scale 10 for

the Brent market.

Next, we forecast the VaR using the out-of-sample data by three bench-

mark models, namely the ARMA-GARCH, QRNN and VMD-QRNN models,

and to evaluate and compare their performance to our proposed model. The

performance measures are reported in Table 4.

Table 4: Forecasting performance from di↵erent models using the out-of-sample data

Market N95% p95% MSE95% N97.5% p97.5% MSE97.5% N99% p99% MSE99%

ARMA-GARCHWTI 52 0.5120 0.0020 33 0.3912 0.0026 20 0.0198 0.0034

QRNNWTI 74 0.0245 0.0021 49 0.0004 0.0029 19 0.0374 0.0043

VMD-QRNNWTI 71 0.0613 0.0020 34 0.2995 0.0032 15 0.2994 0.0044

ARMA-GARCHBrent 69 0.1222 0.0016 35 0.2433 0.0021 17 0.1241 0.0028

QRNNBrent 56 0.8649 0.0021 39 0.0625 0.0027 26 0.0002 0.0037

VMD-QRNNBrent 57 0.9729 0.0018 29 0.9435 0.0022 16 0.2023 0.0033

ARMA-GARCHOPEC 63 0.5150 0.0011 33 0.4674 0.0015 18 0.0817 0.0019

QRNNOPEC 80 0.0052 0.0013 50 0.0003 0.0018 30 0 0.0027

VMD-QRNNOPEC 56 0.7762 0.0011 38 0.1081 0.0015 10 0.6246 0.0025

Notes: Ncl, cl = 95%, 97.5%, 99% is the number of exceedances at confidence level cl. Pcl is the p -value for the

likelihood ratio test of unconditional coverage. MSEcl is the Mean Square Error at confidence level cl.

The experimental results in Table 4 show that, in general, our proposed

model has passed the unconditional coverage test for all the three markets at

all the confidence levels. By comparison, the QRNN model fails to pass the test

for the WTI and OPEC market at all the confidence levels and for the Brent

market at the 99% and 97.5% confidence levels. Although ARMA-GARCH

passes the unconditional coverage test for the WTI and OPEC market at both

95% and 97.5% confidence levels respectively, it fails to pass the test for the

remain the same.
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WTI market at the 99% confidence level. It passes the test for the Brent mar-

ket at 95%, 97.5% and 99% confidence levels and OPEC market at the 99%

confidence level. Overall, the evaluation results demonstrate that our proposed

model provides a more reliable and robust risk estimate, with increased forecast-

ing accuracy, than the benchmark ARMA-GARCH model and QRNN model.

Most significantly, our proposed model does not require either conservative or

aggressive risk preference, and the risk estimate produced by our model tracks

the downside risk movement. Compared to the traditional risk models such as

the ARMA-GARCH model, our proposed model produces more conservative

estimates when the risk is underestimated, and vice versa.

These significant results confirm our hypothesis: a diverse range of risk

factors prevails in the crude oil market. They can be divided into two principal

groups: normal and transient type risks. Each type of risk factor has unique

behaviours and patterns. In our experiment, this is reflected by the di↵erence

between the model parameters when estimated by applying normal and transient

risk factors. Our results also demonstrate that both normal and transient factors

need to be identified based on model performance and quantitative performance

measure, as in this paper. The results may contradict the intuitive selection

based on the visual inspection. In this paper, when we examine Figure 1,

data series at scale 1 present the most stable pattern, and hence are chosen as

the normal risk factor among three crude oil markets. However, our empirical

analysis in Table 2 suggests that scale 5 is the normal risk factor for the WTI

market and scale 1 is the normal risk factor for the Brent and OPEC markets.

In the meantime, there does not seem to be clear pattern for the determination

of the scale for the transient risk factor, as our empirical analysis has identified

a di↵erent scale for both normal and transient risk factors for the WTI, Brent

and OPEC markets.

Our model is robust in that it involves no optimization procedure and has

been tested on an extensive dataset across three main crude oil markets over

a considerable length of time. The multiscale model proposed for crude oil

risk forecasting in this paper can be generalized to the risk forecasting in other
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economic and financial markets. Ultimately, it represents a general multiscale

method that improves the modelling accuracy when modeling the data with

multiscale characteristics in other markets (He et al., 2009; Bao et al., 2018;

Pradeepkumar and Ravi, 2017).

Furthermore, in respect of determining the scale for normal and transient

factors, the simplest minimum average exceedances criteria that we have in-

troduced into our model can be easily relaxed and extended. The significant

development in our proposed method also indicates that the criteria can be re-

fined by taking into account the heterogeneous nature of crude oil data so as to

produce more accurate risk estimates by applying more realistic assumptions.

For example, multiple normal factors and transient factors may be modelled

and estimated simultaneously.

As the normal risk factors refer to the macroeconomic factors, they are ex-

pected to be less volatile and more long-term orientated. Empirical evidence

shows the existence of correlation and the spillover e↵ect between the macroeco-

nomic factors and the crude oil movement in the long run equilibrium condition.

For example, Mensah et al. (2017) demonstrate the long-term equilibrium rela-

tionship between oil price and major exchange rates by means of a cointegration

model. Mei-Se et al. (2018) show the long run relationship among metal prices,

oil prices and exchange rates. Yang et al. (2018) find the long run correlation be-

tween oil prices and exchange rates based on Dynamic Conditional Correlation

- Mixed Data Sampling mode.

As the transient risk factors refer to the influence of the unexpected shocks,

they are supposed to be more volatile and demonstrate drastically di↵erent

characteristics. Empirical studies have demonstrated the transient characteris-

tics such as jumps in the short-term time horizon. For example, Li et al. (2017)

find the jump spillover e↵ect between oil prices and exchange rates by applying

the stochastic volatility model. Jawadi et al. (2016) find the volatility spillover

through jumps from the exchange rate to oil price.

24



4. Conclusion

In this paper, we have proposed a new Value at Risk estimate model based on the

VMD and QRNN models. We demonstrate how our approach has the power to

separate the data components with normal and transient characteristics, which

leads to a superior, more e�cient model fit and the capacity to obtain greater

precision in crude oil pricing. We identify the transient factor that contributes

most to the crude oil price fluctuations.

In order to verify the e↵ectiveness of our proposed pricing model, we apply

the real data of the major crude oil markets and compare the performance of our

model against the benchmark, i.e. Quantile Regression Neural Network model

and ARMA-GARCH model. The evaluation results consistently demonstrate

that our model can generate parameters for crude oil prices that are superior to

the existing benchmark approaches such as ARMA-GARCH and QRNN model,

with an improved risk estimation performance. Our approach is of economic

significance since our model demonstrates that di↵erent levels of risk a↵ect the

parameter estimates of complex crude oil data. Hence, modelling data by taking

account of di↵erential levels of risk will lead to a better model fit.

Most significantly, our study provides clear evidence that crude oil data con-

tains a multiscale risk structure. These risk factors incorporate di↵erent features

that may interact with each other to form the complex nonlinear dynamics in

the risk behaviour of the crude oil price. Practically, the proposed model can

serve as a more flexible enterprise’s risk management system. The risk man-

agement decision can be made based on di↵erent risk preferences and market

conditions. Under more extreme and turbulent market conditions, the tran-

sient risk factors take precedence and can be singled out for more accurate risk

analysis. The weights for normal and transient risk estimates can be adjusted

flexibly according to the risk preference of di↵erent types of investors.

Our findings will intensify interest in new models for energy risk forecast-

ing and stimulate subsequent research for energy risk management research.

Our technique will facilitate more accurate measurement of downside risk to
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inform the energy financing decision. Work in this paper has methodological

and empirical value by revealing the existence of di↵erent types of risk factors

in the energy markets, and the construction of the new multi scale method-

ology to capture most important risk factors and forecast the downside risk

more reliably. Future investigation can focus on the more accurate risk fore-

casting model with the increased relaxation of the assumptions of the normal

and transient risk factors, such as their number and time series characteristics.

Further studies are recommended to consider the development of a suitable and

robust ensemble algorithm for integrating normal and transient energy risk fac-

tors in constructing new risk forecasting models, and the follow-up analysis of

the unique characteristics of both risk factors in the energy risk analysis.
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