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ABSTRACT

Doppler sodar is a technology used for acoustic-based remote sensing of the lower planetary boundary

layer. Sodars are often used to measure wind profiles; however, they suffer from problems caused by noise

(both acoustic and electrical) and echoes from fixed objects, which can bias radial velocity estimates.

An experimental bistatic sodar was developed with 64 independent channels. The device enables flexible

beamforming; beams can be tilted at the same angle irrelevant of frequency, a limitation in most commercial

devices. This paper presents an alternative sodar signal-processing algorithm for wind profiling using a

multifrequency stepped-chirp pulse. A noncoherent matched filter was used to analyze returned signals.

The noncoherent matched filter combines radial velocity estimates from multiple frequencies into a single

optimization. To identify and separate sources of backscatter, noise, and fixed echoes, a stochastic pattern-

recognition technique, Gaussian mixture modeling, was used to postprocess the noncoherent matched filter

data. This method allowed the identification and separation of different stochastic processes. After identifi-

cation, noise and fixed echo components were removed and a clean wind profile was produced. This technique

was comparedwith traditional spectrum-based radial velocity estimationmethods, and an improvement in the

rejection of fixed echo components was demonstrated; this is one of the major limitations of sodar perfor-

mance when located in complex terrain and urban environments.

1. Introduction

Sodar operates by transmitting pulses of sound into

the atmosphere and analyzing the sound backscattered

from moving turbulent fluctuations. Sodars have a va-

riety of applications, including wind velocity profiling

(Peters et al. 1984) and measurements of turbulence

and stability parameters (Petenko et al. 2014). However,

backscattered sound may originate from both atmo-

spheric turbulence and stationary objects such as build-

ings or masts. Because of the zero-Doppler shift on these

echoes, in wind velocity profiling this can bias estimates.

Fixed echoes from sidelobes of the transmitted beam

pattern are one of the main sources of error in sodar

measurements (Bradley and vonHünerbein 2007). Fixed
echoes are usually minimized by placing the sodar

transponder away from tall objects such as trees, masts,

buildings, and slopeswith large stone boulders (AQSystem

2013). Most sodars use acoustic baffles to reduce sidelobes

and thus control fixed echoes. Sodar manufacturers

provide guidance as to how to reduce the risk from fixed

echoes. AQSystem (2013) suggests plotting complete

(no data rejection) wind speed profiles on a log–log scale.

Should the relationship be nonlinear, this indicates de-

viation from the expected power-law relationship and

could indicate the presence of fixed echoes. Similarly, fixed

echoesmay be detected as discontinuities in radial velocity

profiles of amplitude or frequency (Kalogiros and Helmis

1999). Kalogiros and Helmis (1999) also proposed a

method utilizing the wavelet transform to better locate

fixed echoes in time. The variability of the radial wind

velocity over a scattering volume causes spectral broad-

ening of the returned signal (Mayer 2005). Spectral

broadening is also linked to the beamwidth of the device

(Quintarelli and Bergstrom 2001). As such, commercial

sodars may also use the width of Doppler spectrum peaks

to indicate the presence of fixed echoes (Antoniou

et al. 2003). However, such methods are sensitive to

the chosen threshold and may lead to poor data

availability. Alternatively, a bistatic sodar can be used

where the Doppler shift in the backscattered signal is

greater than an equivalent monostatic implementation

(S. Bradley et al. 2012); this makes the differentiation

between fixed echo and turbulent backscatter easier.Corresponding author: Paul Kendrick, p.kendrick@salford.ac.uk
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This paper aims to address some of the issues associ-

ated with fixed echoes. A flexible bistatic sodar was de-

veloped with two, 32-channel, two-dimensional transducer

arrays. Each transducer had its own independent signal

path to allow more control over beamforming behavior

than other sodars. Backscattered return signals were ana-

lyzed using a noncoherent matched filter, which combined

the estimation of Doppler shifts from multiple sequential

pulses of different frequencies into a single optimization.

Gaussian mixture models (GMM) were then used to an-

alyze received signals; this processing method shows in-

teresting advantages in fixed echo detection and rejection,

one of the main limitations in sodar performance.

2. Background and method

a. A flexible sodar design

Sodars may be implemented using horn antenna with

parabolic dishes for capturing backscatter (Argentini

et al. 2013) but are also often implemented as two-

dimensional transducer arrays where beam steering is

achieved by introducing phase shifts between groups of

transducers. Bradley and von Hünerbein (2007) com-

pare several sodar technologies. Introducing phase shifts

between groups rather than individual transducers

minimizes the required number of channels; however, it

also means that tilt angle is dependent on frequency,

and, as such, different frequencies will backscatter from

entirely different volumes of atmosphere. An experi-

mental bistatic sodar was designed with 32 separate

transducers for both receiver and transmitter, where

each had an independent signal path (Fig. 1). This allows

for flexible signal-processing approaches in which tilt

and angle and frequency can be decoupled. A 32-channel

digital-to-analog converter (DAC) and a 32-channel

analog-to-digital converter (ADC) (RME M-32AD

and RME M-32DA) were used, with playback and

capture carriedout in theMATLABsoftwarepackage.The

sampling frequency was 44100Hz. The design was bistatic,

although the receiver and transmitter were closely located

so that the sodar could be operated as a monostatic device.

This means that there was no requirement for a switch

between transmission and receivemodes, and therefore the

blind range was minimized. Both transmitter and receiver

used 32 identical transducers (Motorola, Inc., KSN-1005A

superhorn piezoelectric tweeters). More details of the im-

plementation can be found in Kendrick et al. (2010).

Beamforming was implemented over the transmitter

and receiver by applying independent time delays to

each channel. A five-beam configuration was used that

includes north, south, east, west, and vertical with a tilt

of 208. Beamforming was trivial to implement on the

transmitter, because individual delays could be applied

to the pulse-generating function for each speaker. For

the receiver, delays were applied to each signal by

adding a linear phase term to the Fourier transform of

the received signal. This was converted back into the

time domain by using an inverse Fourier transform,

prior to summation over all channels.

b. Pulse design and matched filtering

1) STEPPED CHIRP

The flexible nature of the sodar design ensured the

different frequencies could be steered in the same

directions for both transmitter and receiver. Multi-

frequency pulses can offer advantages in terms of flex-

ibility and increased range in sodar (Rao et al. 2009).

Therefore, a multifrequency approach was adopted,

where a train of subpulses of different frequencies was

generated and transmitted. This is referred to as a

stepped chirp, which is a form of frequency modulation

known as frequency-shift keying (FSK). The stepped

chirp is a train of M single-frequency pulses, each with

frequency fm, and modulated by a Gaussian window,

x(t)5 �
M21

m50

sin[2pf
m
(t2mT)]G(t) , (1)

where m is the pulse number, T is the pulse length, and

G(t) is a Gaussian window function,

G(t)5 exp

��
t2

�
mT1

T

2

��2
=s2

�
, (2)

where here s5 T/4. The stepped chirp can be processed

in multiple ways. It can be processed using a common

FIG. 1. Antenna array containingMotorola KSN-1005A superhorn

piezoelectric tweeters with hinged baffle slabs.
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approach adopted by most commercial sodars; the return

signal is windowed into range gates, and the Doppler

power spectrum is computed for each frequency sepa-

rately. Doppler shifts and thus radial velocities are esti-

mated by locating peaks in the spectrum.A range offset is

applied to account for the delay in subpulse transmission

times for different frequencies. The stepped chirp can

also be analyzed using a technique known as matched

filtering, which has been shown to improve perfor-

mance in phased-array radar systems for weather radar

(Alberts and Chilson 2011).

2) MATCHED FILTER RECEIVER

Matched filters are associated with pulse compression, a

technique used in radar to increase maximum range

without compromising range resolution for moving

point targets (Klauder et al. 1960). Longer waveforms

are transmitted; this increases the transmitted power

but unlike the simple pulse, the transmitted band-

width is also increased. This enables echoes to be

unwrapped; pulse compression allows an increase in

range while preserving range resolution. Bandwidth

extension in pulse compression is usually achieved by

frequency or phase modulation (FSK in this case).

Detection involves a matched filter. A matched filter

is commonly used to detect scattered signals in both

point target and weather radar. Formally, a matched

filter is the optimal linear filter, for a signal, for max-

imizing the signal-to-noise ratio within the presence

of noise. It is defined as the correlation of the received

signal with a local copy of the transmitted waveform,

mf(t)5

ð‘
2‘

y(t)x*(t2 t) dt , (3)

where the matched filter magnitude mf(t) at time t rep-

resents the magnitude of the returned signal at a range

of ct meters (c is the speed of sound), x(t) is the local

copy of the transmitted signal, and y(t) is the received

signal. Bradley (1999) suggested a number of waveforms

that may be appropriate for pulse compression in sodar.

Unfortunately, pulse compression for wind profiling

is not possible in sodar as shown by Hargreaves et al.

(2014). This is because Bragg scattering, the dominant

scattering mechanism, does not provide coherent re-

turn signals. Scattering is dominated by randomly lo-

cated turbulent eddies spaced by integer multiples of

the transmission wavelength. Hence, differently lo-

cated eddies will dominate at different wavelengths.

This causes the phase response of a scattering volume

to be both stochastic and nonlinear; there is not a pre-

dictable relationship between the phases of each sub-

pulse. This breakdown of the intersubpulse phase

relationship means that the advantages of pulse com-

pression are not realized. However, a matched filter is

still capable of noncoherent signal detection (Guimarães
and de Souza 2015). Noncoherent matched filtering does

not increase range or Doppler resolution when compared

with the spectral estimation method, but, as will be

demonstrated, it helpfully combines the Doppler es-

timation from many discrete frequencies into one

optimization problem.

3) DOPPLER ESTIMATION FROM MATCHED

FILTERS

When an object is moving, there is now a mismatch

because of the Doppler shift between the scattered sig-

nal and the stored waveform. This mismatch results in a

decrease in the matched filter output magnitude as the

correlation between returned and transmitted signal is

reduced. If the stored waveform can be modified to

better represent the scattered signal from the moving

object, then the mismatch is reduced. Therefore, it is

common to use a bank of matched filters, with each

representing a different radial velocity. The filter with

the largest output, at a time lag (range), represents the

likely radial velocity for an object at that range.

Radarmatched filter banks such as those demonstrated

by Othman et al. (2017) utilize a narrowband model of

Doppler shift. This assumes that the wave speed is sig-

nificantly greater than the target speed and as a result

Doppler can bemodeled as a simple shift in frequency. In

sodar, wave speed and wind velocity are more similar in

their orders of magnitude; thus, a wideband model of

Doppler shift was employed. In this case both the shift in

frequency and elongation (or compression) in time of the

waveform were modeled. The degree to which the

waveform is stretched is captured in a Doppler stretch

parameter a that has a monotonic relationship with the

radial velocity y as follows:

a(y)5
c2 y

c1 y
. (4)

A delayed, stretched version of the stepped chirp,

representing an echo from target at y, can be ex-

pressed as

x(t, y)5 �
M

m51

sin(2pf
m
fa(y)[t2 (m2 1)T]g)G(t, y) , (5)

where

G(t, y)5 exp(2fa(y)t2 [(m2 1)T1T/2]/sg2) . (6)

A matched filter bank was defined that contains

waveforms representing a range of target radial
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velocities yk. These waveforms were then correlated

with the scattered signal y(t); the matched filter output

for a particular range and velocity is

mf
k
(t, y

k
)5

���� ffiffiffiffiffiffiffiffiffiffiffi
a(y

k
)

q ð‘
2‘

y(t)x*[a(y
k
)(t2 t)] dt

���� . (7)

The matched filter bank was implemented as shown in

Fig. 2. A grid of trial radial velocities was defined over a

realistic range. With an assumption of a maximum hor-

izontal wind velocity of 20m s21 and a beam tilt of 208,
the maximum radial velocity is about 7ms21; therefore, a

grid of trial velocities was defined between27 and 7ms21

in 0.05m s21 steps (resolution defined by the available

RAM at a sampling frequency of 44 100Hz). A matched

filter was computed for each trial radial velocity, and

cross-correlation calculations were carried out in the

frequency domain for speed,

mf
k
(t, y

k
)5F21fF[y(t)]F[x

d
(t, y

k
)]*g , (8)

where F indicates a Fourier transform and F21 is the

inverse Fourier transform. The resulting matched filter

output is downsampled from 44100 to 400Hz to reduce

memory requirements. This reduces the range resolution

from 7.6 to 0.84m, although the effective resolution is still

determined by the subpulse duration. Themaximum value

for each time lag was found,

mf
max

(t)5max
yk

mf
kdownsampled

(t, y
k
)

h i
and (9)

y
r
(t)5 argmax

yk

mf
kdownsampled

(t, y
k
)

h i
. (10)

This results in two outputs,mfmax(t) and yr(t). The time lag

t represents the range (ct); mfmax(t) indicates the returned

signal strength for a particular range; and yr(t) is the

estimated radial velocity for each lag. The signal-to-noise

ratio (SNR) of the backscatter was estimated as follows:

SNR
matched

(t)5 20 log
10

"
mf

max
(t)

N
mf

#
, (11)

where the noise level Nmf is the average of mfmax(t)

between the ranges 300 and 350m. This was possible

because the atmospheric conditions under which the

experiment was carried out were relatively stable

(evening); this is not a general procedure, and other

FIG. 2. System diagram for matched filter bank implementation.
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methods should be employed to estimate the back-

ground noise level in other conditions.

4) WAVEFORM DESIGN

The ambiguity function is a design tool introduced by

Woodward (1951) to help to understand the Doppler

range ambiguity problem. Doppler range ambiguity arises

when multiple frequencies are transmitted. Consider the

case of a train of simple pulses where each subsequent

pulse is a higher frequency. For a received reflection,

there is now ambiguity between the estimated range and

the Doppler frequency shift. In simple terms, a distant

fast object and a closer slower object could be indistin-

guishable. The wideband ambiguity function Cn(t, y) is a

two-dimensional function of time lag and radial velocity

for a waveform x(t) and a Doppler-shifted waveform

xd(t) (Cahlander et al. 1964),

C
n
(t, y)5

���� ffiffiffiffiffiffiffiffiffi
a(y)

p ð‘
2‘

x*(t)x
d
[a(y)(t2 t)]x dt

���� . (12)

A waveform with an ambiguity function that is a Dirac

delta function at t 5 0 and y 5 0 has no range–velocity

ambiguity. Thus, minimizing Cn(t, y), where t 6¼ 0 and

y 6¼ 0, reduces the range–velocity ambiguity. Range–

velocity ambiguity manifests in a stepped chirp when the

Doppler shift is equal to the frequency spacing: For

example, if the first transmitted subpulse frequency

matches the second frequency of the returned signal,

then they are indistinguishable.

Doppler scales with frequency; therefore, the ambigu-

ity is more problematic with higher frequencies. Hence,

nonlinear frequency spacing makes best use of the avail-

able bandwidth. The experimental chirp sodar has a usable

frequency range of 3–6kHz. To optimize the available

bandwidth, the transmitted frequencies was chosen using

Eq. (13), where f1 is the maximum operating frequency

(6kHz) and each subsequent frequency fn11 is determined

from the previous using the maximum expected radial

velocity Vrmax as follows:

f
n11

5 f
n
2 f

n

�
12

c2 2V
rmax

c1 2V
rmax

�
. (13)

The experimental sodar has a usable bandwidth of

3–6 kHz; assuming Vrmax 5 7m s21, this means that a

step chirp may have up to nine frequencies without

ambiguity, and assuming c5 340m s21, this yields the

following frequencies that were used: 6000, 5525, 5088,

4686, 4315, 3974, 3660, 3370, and 3104Hz.

5) NONCOHERENT DETECTION

Because of the nature of the scattering volume, the

relative phase of the subpulses in the returned signal is

unpredictable. Therefore, coherent signal detection is

not possible. However, a matched filter receiver can

still be used to detect backscatter, but the lack of co-

herence will influence the performance. To investigate

this, an approximate model of Bragg scattering was

employed. The ambiguity function in Eq. (12) was evalu-

ated for the step chirp, but the phase of each of the

subpulses was randomized for the Doppler-shifted

signal,

x
d
(t, y)5 �

M

m51

sin(2pf
m
fa(y)[t2 (m2 1)T]g

1f
m
)G

d
(t, y) , (14)

where fm is a uniformly distributed random phase

between 2p and p, generated independently for each

subpulse. The ambiguity function was averaged from

40 repeated simulations for a nine-frequency stepped

chirp with a subpulse length of 20m. This average rep-

resents the expected range–velocity ambiguity when a

set of randomly located moving objects scatters the

sound simultaneously but a different set of objects

scatters each frequency. The ambiguity function for a

single discrete moving object was also calculated; this is

where the phase relationship is predictable and linear

(coherent).

The left panel of Fig. 3 shows the marginalized velocity

ambiguity function, and the right panel of Fig. 3 shows the

marginalized range ambiguity for both coherent and

noncoherent scattering. The levels of both are normalized

to the maximum level for the coherent detector. The

coherent detector offers an increased resolution and a

9-dB increase in signal level; this is a result of pulse

compression. However, the noncoherent detection still

shows a broad peak in the ambiguity function. By ana-

lyzing the return signal and locating this broad peak, a

noncoherent matched filter can still be used to assess the

range–velocity, but the increased resolution and range

associated with pulse compression will not be realized.

c. Analysis of sodar returns using GMMs

While matched filter–based processing of sodar

signals does not improve range or Doppler resolu-

tion, there are several other interesting advantages. It

provides radial velocity profiles from multifrequency

data without the need for separate processing for

each frequency; conventional methods often use ad

hoc methods for combining frequency information.

Additionally, range gating is not required. This does

not increase the resolution of the data but removes

the need for smoothing or excessive overlapping

if smoother data are required. It is also possible

that reflections from fixed objects will maintain a
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coherent subpulse phase relationship; this means that

pulse compression may enable fixed echoes to be

identified with increased resolution compared with

backscatter.

Analysis of sodar signals has traditionally involved

a statistical moment analysis of the peaks in spectral

data. Within each range gate the mean and standard

deviation of the radial velocity are computed, and

postprocessing methods are used to reduce the influ-

ence of noise and fixed echoes on the radial velocity

estimates. This usually involves rejecting data from

range gates when either the SNR is too low or the

spectrum is narrow. This reduces the data availability;

it would be advantageous if the presence of fixed

echoes did not mean rejection of data but could be

robustly ignored. It is with this goal that Gaussian

mixture models are applied to the matched filter

result.

BACKGROUND TO MIXTURE MODELS

A mixture model is a probabilistic tool where it is

assumed that the probability density function (pdf) of a

random process can be approximated as a sum of other,

simpler pdfs (e.g., Gaussian). Melnykov and Maitra

(2010) trace back the history of statistical mixture

modeling to Newcomb (1886) and Pearson (1895).

The most popular form of mixture model is where the

component mixtures are Gaussian distributions (GMM)

(Day 1969; Wolfe 1970; McLachlan and Peel 1999;

McLachlan and Peel 1999; Banfield and Raftery 1993).

GMMs are used for cluster analysis, segmentation, and

density estimation in many areas, including finance

(Lindemann et al. 2004), audio signal processing (Reynolds

and Rose 1995), image processing (Permuter et al. 2003),

and medical applications (Schlattmann 2009) among

many others.

Taylor’s classical ‘‘frozen turbulence’’ hypothe-

sis assumes that the atmosphere consists of many

randomly located discrete scatterers. The velocity,

range, and scattering strength of these objects is as-

sumed to vary according to some underlying random

process. By fitting a GMM to the matched filter out-

put, the joint probability density function of this

underlying processing can be estimated. From this,

components that exhibit particular properties can

be rejected. For instance, components with low var-

iance in range and velocity are likely to be from

fixed echoes.

The resulting GMM fit is a joint probability density

function that represents the probability there is a

FIG. 3. Ambiguity function for a 180-m, nine-frequency stepped chirp, comparing the ambiguity function when phase response is

linear (blue) and when phase response is random and unpredictable (red). Both ambiguity functions are normalized to the max-

imum level for the coherent method. Shown are (left) the marginalized velocity ambiguity and (right) the marginalized range

ambiguity.
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scatterer at a particular range, radial velocity, and scat-

tering strength. The joint probability density function

px(z, yr, SNRmatched) was modeled as a sum of Gaussian

probability density functions,

p
x
(z, y

r
, SNR

matched
)5 �

K

k51

w
k
N(xjm

k
,S

k
) , (15)

where x is the output from the matched filter, N is a

Gaussian probability density function, k is the compo-

nent number,K is the total number of components,wk is

the component weight, mk is a three-dimensional vector

of mean values for the kth component, and Sk is a 33 3

covariance matrix for the kth component. IfK is known,

then the parameters of the GMM can be estimated

using expectation–maximization (EM; Dempster 1977).

Using conditional probability, the likelihood function is

derived,

lnL(m
k
,S

k
,w

k
jx

1
, . . . , x

M
)

5 �
M

m51

ln �
K

k51

w
k
N(x

m
jx

m
jm

k
,S

k
) . (16)

The maximum of Eq. (16) was found by optimizing the

model parametersmk,Sk, andwk overMmeasurements.

TheEMalgorithm is an iterative algorithm that searches

for local maxima in the log-likelihood function to es-

timate the most likely set of model parameters. The

number of components K is chosen by computing the

Akaike information criterion (AIC; Akaike 1974),

which is a measure of goodness of fit for a model. The

EM algorithm is carried out for a range of K, and the

model with the lowest AIC is selected.

d. Data capture and analysis

The chirp sodarwas operated at a site nearManchester,

United Kingdom (Basell Polyolefins, Carrington, Man-

chester), at 2050 UTC 28 March 2012 for 10min under

stable atmospheric conditions. The sodar transponders

were placed around 2m apart on a flat concrete surface;

the nearest object was a single-story building 60m from

the transponders. Additionally, a cooling tower, build-

ings, and a number of pipes were located between 100

and 200m away. The presented data represent a limited

time period and type of atmospheric condition; in future

studies it will be important to understand how the

method performs in a wider range of conditions, such as

when convection occurs.

The device was operated using a nine-frequency

stepped chirp. The length of each subpulse was 20m.

Five beams were transmitted (respectively labeled

1–5): south, east, vertical, north, and west, using a tilt

angle of 208. The receiver captured 3.5 s of audio

synchronized from the start of playback, and beam-

forming was carried out on the received signals. Radial

velocities were estimated using both the noncoherent

matched filter method and frequency estimation from

power spectra.

For the power spectrummethod, the return signal was

windowed into range gates using 20-m, 50% overlapping

Hanning windows. A power spectrum was computed

for each range gate, and a Gaussian function was fitted

to the spectrum amplitude to estimate the frequency;

this is a method commonly utilized in commercial

sodar. The Gaussian fit was restricted to within 100Hz

of themth subpulse frequency and (m2 1)T/c seconds

were removed from the start of the signal to account

for the delayed transmission of each subpulse. Once

the Doppler shift d was estimated for each frequency

and range, the radial velocity was computed using the

following relationship:

v52ld/2 . (17)

The SNR of the backscatter was estimated as follows:

SNR
spec

(z)5 20 log
10
[Spec

peak
(z)/N

spec
] , (18)

where Specpeak(z) is the peak level of the amplitude

spectrum in range gate z and Nspec is the noise level

computed as the average peak spectrum amplitude

from range gates between 300 and 350m. For each

subpulse and range gate, the radial velocities were

averaged over frequencies at which SNRspec(z) was

greater than 3 dB; all range gates with insufficient

SNR were rejected.

3. Results and discussion

a. Noncoherent signal detection

Figure 4 shows the matched filter radial velocity

estimates from the westerly beam, overlaying 10min

of data (30 pulses). A matched filter bank resolution

of 0.05m s21 was used. The x axis shows the range, and

the y axis shows the radial velocity; the color indicates

the matched filter output magnitude, or SNRmatched.

Figure 4 shows data points when SNRmatched was greater

than 3dB.

Figure 4 has captured a radial wind velocity profile,

showing an increase in radial velocity up to 70m (the

range of the device was generally limited by elec-

tronic noise). However, there were also several scat-

terers with radial velocities around 0m s21. These are

fixed echoes resulting from several tall structures

nearby. Fixed echoes were visible in the data up to

200m away.
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Figure 5 shows the radial velocity computed using

the power spectrum method. As with the matched filter

method, only data points that have an SNR that is 3 dB

above the background noise level are plotted.

In comparing the data from the matched filter and

spectral methods, it is seen that there is no difference in

the maximum range where backscattered sound from

turbulence can be detected (around 70m). If pulse

compression were possible, there would be a clear ad-

vantage in the maximum range. This is consistent with

Hargreaves et al. (2014); the matched filter is func-

tioning only as a noncoherent detector.

Some fixed echoes visible in Fig. 4 are not apparent

in Fig. 5. For example, echoes at a range of 175 and

200m in the matched filter data cannot be seen in the

spectral data. This is indicative of pulse compression.

The returned sound is a reflection from a solid object,

unlike turbulence, which exhibits backscattering. The

reflected sound maintains the intersubpulse phase

relationship; for fixed echoes, pulse compression ap-

pears successful.

In addition, there is a fixed echo at 60m, visible at

0ms21 in Fig. 4. In Fig. 5, the same fixed echo at 60m is

not clearly visible; however, it appears that the radial

velocity estimates using the spectral method are

lower. This is likely to be because of the spectral peak

estimation; if there are two closely spaced peaks, the

Gaussian fit could be suboptimal and the radial ve-

locity estimate could be biased.

b. Analysis of sodar returns using GMM

Figure 6 shows the result of the GMM fit to the

data from Fig. 4. The AIC was evaluated for up to 60

components; the lowest AIC was when the GMM con-

tained 50 components. To visualize the GMM, Fig. 6a

shows each component plotted as an ellipse, where the

location of the center is the mean and the surface rep-

resents 1 standard deviation s. The color represents the

strength of the backscattered signal SNRmatched. The pdf

for the GMM was plotted in Fig. 6b, where the shading

represents the probability when the pdf was marginal-

ized with respect to thematched filter outputmagnitude;

this shows the probability of a moving scatterer at a

particular range and radial velocity.

Figure 6a shows a number of components with very

low velocity magnitude and velocity variance. Direct

sound is visible up to around 20m. At 90m there is a

single small component with low variation in velocity

and range, and from around 120 to 200m there was a

component with a large range variance but low velocity

variance; these two components represent fixed ech-

oes from nearby objects. The GMM pdf in Fig. 6b can

be helpful in making sense of the response. As the

GMM fit was computed over 30 pulses, it captures any

FIG. 4. Radial velocities estimated using matched filter estimates: the x axis depicts the range,

the y axis represents the detected radial velocity, and colors represent the matched filter output

magnitude (referenced to the average level between ranges of 300 and 350m). Each point represents

the detected radial velocity for each range. The results from 30 stepped-chirp pulses are overlaid.
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consistencies in the response over the measurement

period. Figure 6b indicates that there is a high proba-

bility that a stationary object is located at around 90m.

The use of the GMM pdf to analyze the response was

further demonstrated by considering, in Fig. 4, the

presence of scatterers between 50 and 100m away with a

radial velocity of around 5ms21. In Fig. 6b, this same

region shows that the components have a relatively low

probability; this is because the returns were not consis-

tent across the 30 pulses and are likely just due to noise.

Some of the more distant components show a very high

variance. These components were due to background

FIG. 5. Radial velocities estimated using spectral estimates: the data are windowed into

range gates, the x axis depicts the range, the y axis represents the detected radial velocity, and

colors represent the reflection strength (spectral peak level referenced to the average spectral

peak level between ranges of 300 and 350m). Each point represents the detected radial ve-

locity for a particular range gate. The results from 30 stepped-chirp pulses are overlaid.

FIG. 6. (a) GMM fit to matched filter data from beam 5 (west): 50 components, the Gaussian components are displayed as ellipses, and

colors represent magnitude of matched filter output. (b) Probability density function of GMM fit to matched filter data: 50 components,

and colors represent the probability that reflection originated from a particular range at a radial velocity.
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noise in the system. The matched filter was not detecting

any strong returns; this is the matched filter output to a

broadband random noise input. Additionally, many of the

components from noise also do not decay with distance as

one would expect the backscattered return to do; this fact

could be used to identify noise.

1) CLUSTER ANALYSIS OF SODAR RETURNS

On the basis of the statistical parameters of each

component (mk, Sk, and wk) extracted from the GMM,

rules were defined to classify each component as back-

scatter, fixed echo, or noise. Experience and guidance

from Peters et al. (1984) were used to determine these

rules. The classification rules were as follow:

d Components are classed as fixed echoes if themagnitude

of the mean velocity my is less than 0.1ms21 and the

standard deviation of the radial velocity sy is less than

0.1ms21. The rationale for this is that, while backscatter

may have a lowDoppler shift, it will have a much higher

variance because of turbulence fluctuations.
d Components are classified as noise if the covariance

matrix indicates that the matched filter output in-

creases with range (scattering magnitude should de-

crease with range) and if sy is greater than 1m s21.

After noise/fixed echo component classification, all

remaining components were classified as backscatter.

These rules were used to remove fixed echoes and noise

(Fig. 7). This has removed direct sound, the strong re-

flection at 90m, the fixed echo between 120 and 200m,

and most of the noise components.

The same process was carried out for each of the five

beamdirections. Figure 8a shows the result of theGMMfit

to the vertical beam (beam 3). Similar to beam 5, Fig. 8b

shows a high probability of scatter from objects with a low

velocity magnitude and variance at 80–100 and around

120m. It is important in the cluster analysis that the fixed

echo rejection algorithm does not also reject backscatter.

For backscatter with low radial velocity, this relies on the

velocity variance being less than 0.1ms21. From Fig. 9, it

can be seen that the fixed echoes at 80–100 and around

120m have been successfully rejected. A couple of com-

ponents between 20 and 80m have been rejected. Further

refining of the procedure is likely required; for instance, a

machine-learning approach to identification and rejection

of fixed echoes may be more robust, although this was

beyond the scope of this initial investigation.

2) EXTRACTIONOFWINDVELOCITY PARAMETERS

The GMM pdf appears to be a useful tool for identi-

fying fixed echoes, but it can also provide an estimate of

the radial wind velocity profile. The matched filter re-

sults were analyzed: all data points with an SNR less

than 6dB were rejected. After the fixed echo compo-

nents were removed, the GMM pdf was marginalized by

summation over the matched filter output magnitude

dimension. The 50th percentile (the median) of the ra-

dial velocity was computed for each range.

The standard deviation of the radial velocity is a com-

monly quoted meteorological parameter. Because the

standard deviation requires a normal distribution and this

is not, it can be approximated by averaging the distance

from the median to the 159th and 841th permilliles,

which for a normal distributionwould represent 1 standard

deviation around the mean.

To provide an indication of when the signal disappears

below the noise floor, the cumulative distribution func-

tion is evaluated with respect to range. The range where

FIG. 7. (a) GMM fit to matched filter data from beam 5 (west), with noise and fixed echo components removed. (b) GMM pdf.
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this falls below 0.85 was chosen after empirical in-

vestigations. One of the idiosyncrasies with the EM

algorithm is that, by randomly initializing the starting

point, the GMM will be different for each fit. To elimi-

nate the variability resulting from the stochastic nature

of the fitting algorithm, the whole algorithm is repeated

30 times, and the resulting velocity magnitude and

the velocity standard deviation profiles are averaged.

Figure 10 shows the resulting radial velocity profiles for

beams 1–5, with dashed lines representing the standard

deviation.

Sodar devices often assess data quality in the form of

the percentage availability over a measurement period

for a range gate (from 0% to 100%). It may be possible

to use the magnitude of the GMM pdf to indicate data

quality; however, the collection and analysis would need

to be carried out over a wider range of atmospheric

conditions than how it is addressed in the current study

to assess this.

3) COMPARISON WITH SPECTRAL METHODS

Radial velocity profiles for the five beams were com-

puted using the power spectrum method. Data were

rejected when the SNR is less than 6dB. Spectral peaks

that were the same or close to the spectral width of the

transmitted sound were likely to be from fixed echoes.

The width of the spectral envelope of the transmitted

peak was 7.7Hz (the s of the Gaussian fitted to the

spectrum). Data were rejected when the spectral peak

width (s) was less than 9Hz; this threshold was de-

termined empirically. Figure 11 shows the spectrally

estimated radial velocity profiles.

FIG. 8. As in Fig. 6, but fit to matched filter data from beam 3 (vertical).

FIG. 9. As in Fig. 7, but fit to matched filter data from beam 3 (vertical).
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In comparing the spectrum method with GMM

methods (Figs. 10 and 11), it is seen that the maximum

ranges are similar, around 70m, with the spectral

method apparently offering a slightly farther range for

some beams. However, the spectral method appears to

consistently estimate a lower radial velocity magnitude

compared with the GMMmethod. The reason for this is

indicated by comparing beam 5 (west) and beam 2 (east)

in Figs. 10 and 11. In the matched filter GMM results

(Fig. 8), the east and west beams show similar wind ve-

locity profiles but in opposite directions and at an equal

distance from the vertical radial velocity. This was as

expected; the device is capturing the same wind radial

velocity field (east and west) but in opposite directions.

However, in Fig. 11 beam 5 shows a sharp drop in the

radial velocity at 65m that is not replicated in beam 2;

this is evidence that this profile was biased by fixed

echoes from nearby objects. In general, the presence of

clutter and nearby tall structures causes the spectrally

estimated profiles to be underestimated. The similarity

of radial velocity profiles in opposite directions indicates

that the matched filter/GMM method is more robust to

these fixed echoes. It is possible that sodar manufac-

turers have optimized their signal-processing algorithms

to be more resilient to this problem, and therefore it

would be important to validate this result on commercial

systems.

The advantage provided by the GMM method comes

from the greater number of dimensions in which the

statistical analysis is performed. The GMM procedure

captures how the range, radial velocity, and scattering

magnitude all vary together, whereas the spectral anal-

ysis examines the radial velocity independently for each

range gate. The covariance captured by the GMM al-

lowed the definition of a set of empirical clustering rules.

In further developments performance may be improved

by learning the best set of clustering rules experientially

from simulations or in measurements with known fixed

echo locations.

4. Conclusions

This paper presents a novel sodar analysis technique

with some advantages in fixed echo detection and re-

jection compared with more traditional techniques. A

flexible 64-channel bistatic sodar device was developed

for which each transducer has its own signal path. This

configuration enabled flexible beamforming, in which

different frequencies can be steered electronically in the

same direction; this is not possible on most commercial

devices.

Backscattered return signals were analyzed using a

noncoherent matched filter. This analysis method com-

bined the estimation of Doppler shift from multiple

pulses of different frequencies into a single optimi-

zation. Postprocessing of the matched filter data was

carried out using Gaussian mixture modeling. This is

a statistical analysis technique that utilizes the full

dimensionality of the feature space to enable better

identification and separation of unwanted sources

from the backscattered signal. The proposed post-

processing method via GMM combines several aspects

of sodar postprocessing previously carried out sepa-

rately, in which profile estimation, fixed echo, and noise

rejection are all combined into a single framework.

In a limited study (over 10min during stable atmo-

spheric conditions), the processing method showed

FIG. 10. GMM-detected radial wind velocity profile for all five

beams; dashed lines represent 1 std dev.

FIG. 11. As in Fig. 10, but for spectrally detected radial wind

velocity.
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better performance in fixed echo detection and re-

jection over spectral methods, addressing one of the

main limitations in sodar performance. However,

careful siting of the instrument away from tall struc-

tures should still be the first consideration in the

elimination of fixed echoes.
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