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FIGURE 20.  Force Sensing Resistor used for the tests. 

 

As shown in Fig. 21 the VSO consists of a spring in the centre 

which can be replaced to alter the stiffness of the object. 

The VSO also consists of a linear potentiometer to measure 

the deformation of the VSO for our records. This data is then 

measured using an Arduino Mega, and sent via serial 

communication to a Windows PC using a baud rate of 9600 

bps. We used four compression springs with different stiffness 

constants in our tests. 

 

       

FIGURE 21.  The VSO, Variable Stiffness Object, used in this paper. 

 

Fig. 22 and 23 (a), (b), (c) and (d) depict the experimental 

results for the force control architecture explained by (26) and 

(27) and for the VSO with stiffnesses of  Kb = 1, 1.25, 2.6 and 

3.3 N/mm, respectively. To collect this data, the angle θ was 

set to 0, 5, 10 and 15 degrees, respectively. The control gain 

and the error convergence rate in these tests were Ω = 220 

degree/sec and η = 20. The dashed blue lines in subplots a, b, 

c and d in these figures depict the desired grip force, Fd, 

whereas the red curves show the measured force, Fg. As the 

figures show, thanks to the robustness of the designed SMC to 

overcoming uncertainty and environmental disturbances, the 

output of the controller always follows the desired input values 

with negligible overshoot and small steady-state errors. By 

comparing these subplots, it may also be noted that the steady-

state errors decrease with increasing angle θ. This can be 

explained by the fact that the hysteresis band in VSH1 also 

decreases with increasing θ (please recall Fig. 14). Finally, the 

error-based sliding variable �ê�:�A�á �A�6�;for these tests is shown in 

subplot (e) of the figures. As these subplots show, the sliding 

variable always remains at zero except at the moment when 

the desired grip force changes. This demonstrates the 

robustness of the designed controller in driving the error states 

to zero. At the instant that Fd changes, the sliding variable 

jumps above or below zero for a very short period, then the 

controller drove it to zero. This proves the robustness of the 

controller in converging the error states to zero in a finite time. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

FIGURE 22.  Force tracking test with VSH1 for (a) θ  = 0° and Kb = 1 (b) θ  
= 5° and Kb = 1.25 (c) θ = 10° and Kb =  2.6 (d) θ = 15° and Kb = 3.3 N/mm. 
The dashed blue lines and solid red lines are the desired trajectory and 
the response of the designed controller to the desired trajectory input, 
respectively. (e) The sliding variable, σ, for this experiment. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

FIGURE 23.  Response of the hand controlled by the designed controller 
(solid red lines) to the step inputs with increasing amplitude (dashed blue 
lines) for (a) θ = 0° and Kb = 1 (b) θ = 5° and Kb = 1.25 (c) θ = 10° and Kb = 
2.6 (d) θ = 15° and Kb = 3.3 N/mm (e) The sliding variable, σ, for this 
experiment. 

 

Fig. 23 (a), (b), (c) and (d) depict the experimental results of 

the controller for two sinusoidal inputs and for the variable sets 

as <Kb = 1N/mm, θ = 0°>, <Kb = 1.25N/mm, θ = 5°> , (Kb = 

2.6N/mm, θ = 10°> and <Kb = 3.3N/mm, θ = 15°>, 

respectively. In this figure, the dashed black and green curves 

depict the desired grip force, whereas the solid black and green 

curves show the measured grip force, Fg. As the figures show, 

the output of the controller always follows the desired 

sinusoidal inputs, with zero overshoot and small steady-state 

errors. Similar to the previous experiments, in this experiment 

the steady-state errors decrease with increasing angle θ. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

FIGURE 24.  Response of the hand controlled by the designed controller 
(solid lines) to the sinusoidal inputs (dashed lines) for (a) θ = 0° and Kb = 
1 (b) θ = 5° and Kb = 1.25(c) θ = 10° and Kb = 2.6 (d) θ = 15° and Kb = 3.3 
N/mm. 

VI. CONCLUSION 

A novel variable stiffness mechanism has been presented in 

this paper. The mechanism introduced provides a driving force 

for tendon-driven hands with an ability to control the position 

and stiffness of the fingers. The design consisted of two 

rotational servomotors. One of the servomotors, along with an 

integrated linear compression spring, was used to control the 

stiffness of the fingers whereas the other motor was 

responsible for changing the fingers’ positions. In order to 

control the apparent stiffness in the fingers, a mathematical 

model of the stiffness as a function of the shaft angle has been 

derived. Experimental results confirmed the effectiveness of 

the proposed variable stiffness mechanism. The hand design 

introduced is characterised by a large variability in stiffness, 

which is an essential requirement for a highly flexible 
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handling system, and is particularly useful in food industry 

scenarios. The hand is also characterised by its fast response 

and small hysteresis band. The simplicity of its design besides 

providing a low-cost solution, guarantees the inherent 

reliability and robustness of this mechanism. The mechanism 

introduced can be used to control the grip force applied 

through simple control of the stiffness and compression of the 

integrated spring. Moreover, as explained, the integrated serial 

compliant element increases the robustness of the fixed gain 

controllers when dealing with objects of uncertain stiffness. In 

this paper we explained a PI-first order sliding mode velocity-

force control architecture we designed to control the grip force 

by controlling the compression of the spring in the variable 

stiffness mechanism. We have shown experimentally, in the 

presence of unknown external disturbances and uncertainty of 

the model, that the designed SMC can robustly and in a finite 

time converge the error state variables to the origin and hence 

obtain the desired spring compression and, as a result, the 

desired grip force. 
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