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Abstract: The railway infrastructures have been rapidly developed around the world in the recent 

years. As a consequence, topology structures and operation modes of the railway network are 

greatly changed to very complicated network systems. Reliability analysis of a railway network 

combining topology structures with operation functions will help to optimize the railway network 

infrastructures. This paper presents a new reliability analysis method of the railway network, 

combining the physical topology with operation strategies. Firstly, two network models of railway 

physical network and train flow network are proposed. Then key stations identification indexes 

can be gained from such two network models, which include degree, strength, betweenness 

clustering coefficient and a comprehensive index. Given the key stations, railway network 

efficiency can be analysed under selective and random modes of the stations failure. A real-world 

case study of the high-speed railway network in China is presented to demonstrate the key stations 

playing an important role in improving the whole network reliability. In the end, some 

recommendations are given to improve the network reliability. The proposed method can provide 

useful information to railway developers, designers and engineers in the railway infrastructure 

projects for sustainable development. 

 

Keywords: reliability analysis, railway network infrastructure, complex network, train flow 

network, key stations 

 

 

1. INTRODUCTION  

 

The railway infrastructures have been rapidly developed around the world in the recent years. 

The total length of the railway network in the world is more than 1,370,000km and the high-

speed railway is 29,792km by 1 April 2015 (UIC, 2015). With the continuous construction 

and development of the railway system, the temporal and spatial dynamics of the network 

and the organization relationship between the rail lines are getting stronger. Due to the rapid 

increase, operation and maintenance of the whole railway network are becoming more 

difficult. The trains traveling bring more complex relationship between the stations. If there is 

a failure at the key station, it would decline the transportation efficiency of the whole network. 

Therefore, identifying the key stations and analysing the reliability of the network is one of 

the most important things in the railway development. Since the railway network is a 

complex system with lots of stations and tracks and operation correlation, it can be analysed 

based on complex network theory. Therefore, the reliability analysis is becoming more 

important to ensure the safe operation. This paper proposes a new method to analyse the 

reliability of railway network based on the key station identification and efficiency evaluation 

of the network in different failure modes of the stations, which will help to provide 

comprehensive suggestions for the infrastructure planning and transportation operations. 

 

Many researchers have found that there are many complex networks in the real world, such as 

biology network (Zenil et al, 2014), Internet (Zquez et al, 2002), research cooperating 
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network (Yin et al, 2006, Koseoglu, 2016), electricity system(Chassin et al, 2005) and traffic 

network (An et al, 2014, Meng et al, 2015). Furthermore, based on the complex network 

theory, a lot of empirical studies show that some transportation system infrastructure 

topologies have exponential degree distributions, such as Chinese bus-transport systems (Xu 

et al, 2007), Indian railway system (Sen et al, 2003), urban street networks (Porta et al, 2006, 

Wang et al, 2017), Indian airline network (Bagler, 2008) and USA airline network (Dall’Asta 

et al, 2006), They all have the small-world network or scale-free network characteristic. In 

addition, complex network theory has also been applied to the research of the safety and 

reliability of some complex systems (Zio and Sansavini, 2011, Dey, 2016). Furthermore, their 

research established various network models and studied the structural characters by the 

system indicators, which includes nodes degree, average path length, clustering coefficient 

etc. Some researchers described the complex system vulnerability by cascading failures 

theory under random or selective node failure modes (Buldyrev et al, 2010, Ren et al, 2016, 

Yan, 2014, Wilkinson, 2017). While some researchers developed reliability analysing 

methods for the transportation systems.   

 

Guidotti et al (2017) proposed a probabilistic methodology to quantify the network reliability 

based on existing (diameter and efficiency) and new (eccentricity and heterogeneity) 

measures of connectivity and was applied to a highway transportation network. Qian et al 

(2015) proposed a cascading failure model of the complex network to simulate the road 

traffic states using different time delays, incident dissipation factor and load capacity. Chen et 

al (2014) presented a directed chaos mutation sorted discrete PSO algorithm to optimize the 

invulnerability of Chinese railway traffic network by adding edges to the network. Lin et al 

(2016) and Li et al (2015) treated high-speed train as a complex system accompanied by a lot 

of components and connections, and studied the safety and reliability based on complex 

network theory. Ouyang et al (2014) applied complex network to study the performance and 

vulnerability of Chinese railway under various types of attacks and hazards.  

 

Although, the complex network theory was widely developed in the reliability analysis of the 

complex system, however these studies limited to the physical topological properties, the 

railway operation functions are neglected. The aim of this paper is to present a new method to 

analyse the reliability of the railway network by identification of the key stations. Not only 

the physical network topology, such as degree and clustering coefficient, but also the 

dynamic operation parameters, such as train running paths, stop-schedules and service 

frequencies, are considered in this method. Given the key stations, railway network efficiency 

is analysed under random and selective modes of the station failure, and demonstrates the key 

stations playing an important role in improving the whole network reliability. 

 

This paper is organised into the following sections. Section 2 proposes the reliability analysis 

method of railway network based on key stations identification and network efficiency using 

network complex theory. In section 3, a case study of the high-speed railway network in 

China illustrates the proposed method. Section 4 presents some recommendations in terms of 

infrastructure planning and transportation operation of in order to satisfy the safety and 

economic development in the future. Section 5 gives the conclusions. 
 

 

 

 



 

2. RELIABILITY ANALYSIS METHOD 

 

In this section, a new reliability analysis method of the railway network is proposed 

combining the infrastructure topology structure with operation function. It includes three 

main stages, railway network models, key station identification indexes and network 

efficiency analysis under random and selective modes of nodes failure as shown in Fig.1. In 

the railway network models, railway physical network (RPN) that has been further developed 

on the basis of Guidotti et al (2017) and Meng et al (2015), and a train flow network (TFN) of 

a service plan can be then obtained by integrating RPN in taking operation strategies into 

consideration, for example, train running routes, stop-schedules and service frequencies as 

stated in section 1. Afterwards, key station identification indices are used to evaluate the 

nodes of TFN, which provided the rank of the stations. Finally, network efficiency analysis is 

simulated by the selective and random station failure. 

 

 
Fig.1: Reliability analysis process 

 

 

2.1. Railway Network Model 

 

Two models, railway physical network and train flow network are proposed in this section. 

The former shows the physical connecting properties and provides constraints to the train 

flow network, whereas, the latter shows train service plan and the operation properties of 

railway physical network, which improved railway physical networks. 

 

Railway physical network (RPN): The stations are regarded as nodes and the connecting 

tracks between any two stations are regarded as edges based on the network theory (Xu et al. 

2007; Wang et al. 2017; Bagler 2008; Dey 2016).Thus, the RPN can be represented as 

undirected graph Gg=(Vg, Eg), where Vg is the railway station set, and Eg is the rail track set. 



The RPN shows the physical connectivity between the stations. Furthermore, the track length, 

section capacity and station capacity can be added to the network, hence, the RPN can carry 

the transportation capacity constraints for train service plan.  

 

Train flow network (TFN): As the stations are regarded as nodes, therefore, if a train stops at 

two stations, there will be one edge between them. The number of trains’ stop at two stations 

is defined as the weight of the edge (Meng et al 2015). Based on this definition, there will be 

6 edges if one train stops at 4 stations. Thus, the TFN can be represented as undirected graph 

Gt=(Vt, Et), where Vt is the station set where any train can stop at, and Et is the edge set that 

created by any two stops at any station of all trains. According to the definition, the TFN can 

be established according to train service plan, in which the stop-schedules can create the 

nodes and edges, and trains’ frequencies decide the weights of edges. 
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Fig.2(a): Railway physical network 
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Fig.2(b): Train flow network 

Fig.2: Railway networks 

 

According to the proposed models, the RPN can be improved to a TFN by including the train 

service plan. A simple case of two rail lines for the two network models is given in Fig.2. 

Fig.2 (a) represents two rail lines in the RPN. One includes 5 stations marked as A, B, C, D 

and E, and the other includes 4 stations marked as F, G, C and H. The station C is a junction, 

and the blue nodes mean terminal stations that can be starts and ends of the trains. While, 

Fig.2 (b) shows the TFN that is developed by adding train service plan to the RPN, whereas 

the service plan is shown in Fig. 3. 
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Fig.3: Train service plan 



As shown in Fig.3, the train service plan includes 9 stop-schedules marked from T1 to T9, 

and their frequencies are 2, 1, 1, 3, 2, 1, 1, 1 and1 respectively (shown in the bracket). The 

nodes shown in one line mean the train with this stop-schedule will stop at these stations. For 

example, T4 (3) means there are 3 trains take the same stop-schedule but with different 

departure times.  And all of them will stop at stations A, B, C, D and E. According to the 

definition of TFN, the edge between node A and B is created by stop-schedule T4, T7 and T9, 

and the edge weight is the sum of frequencies of the three stop-schedules. Similarly, other 

edges and the weights in TFN are generated by the same way. With the constraints to RPN, 

the railway network physical topology and the operation strategies such as train running 

routes, origins and destinations, stop-schedules, and service frequencies can be transferred to 

the topological relations and weights of edges in TFN.  

 
 

2.2. Key Station Identification Index  

 

Given the train flow network model, we can present the key station identification indices 

combining physical topological structure and train operation strategies. A set of function 

index in the view of TFN based on complex network theory will be proposed in this section, 

which shows the importance of different stations in the railway network. 

 

a. Degree centrality (DC) 

 

Degree centrality of a node vi is the number of the connection between vi and other nodes. It 

describes the physical connective influence of a node by the number of its neighbours. For 

the TFN, the degree centrality ki of a node vi is defined as Eq. 1. 
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i i j

j

k n                                               (1) 

Where N is the number of the nodes in the network; ni,j is a variable of 0 and 1. If there is a 

connection between nodes vi and vj, ni,j=1; otherwise, ni,j=0. A node with a larger degree is 

likely to connect to more edges than a node with a smaller degree, which means a higher 

influence of connectivity in the whole network. In the TFN, the degree ki of a node vi is the 

number of stations that can be reached without a transfer from the station represented by vi. 

The degree of a node in the TFN describes the topological reachability of the station. 

 

b. Strength centrality (SC) 

 

A very important feature of TFN is that each edge is not equally important. Some edges are 

more important than others, therefore, carry a higher weight, which depends on the service 

frequencies of different trains and therefore plays a greater role in contributing to the 

functioning of the whole network. Strength centrality can describe the weight of an edge. 

Strength centrality of a node vi is the sum of the weights of the edges between vi and other 

nodes. For the TFN, the strength centrality si of a node vi is defined as Eq. 2. 

,

1


N

i i j

j

s w                                                                    (2) 

Where wi,j is the weight of the edge between node vi  and  vj. In the TFN, the weight wi,j of an 

edge between node vi and vj is the number of trains that stop at stations i and j. The strength 

of a node describes the service capability of the specific station, which represents the 

convenience of the passenger from this station to other stations that can be reached without a 

transfer.  



 

c. Betweenness centrality (BC) 

 

Betweenness centrality describes the influence of a node over the information spread through 

the network, which is based on shortest paths. For every pair of nodes in a network, there is at 

least one shortest path either the minimum number of edges that the path passes through or 

the minimum sum of the weights of the edges. In the TFN, the betweenness centrality (bi) of 

a node vi without the weights of edges is defined as topological betweenness centrality (TBC) 

and bi can be represented by Eq. 3. Similarly, the betweenness centrality (bi
w) of a node vi 

with the weights is defined as capacity betweenness centrality (CBC) and bi
w is represented 

by Eq. 4. 
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Where gj,k is the number of shortest paths with the minimal number of the edges from a node 

vj to a node vk; gj,k (i) is the number of shortest paths with the minimal number of the edges, 

which pass through the node vi from a node vj to a node vk. Likewise, ,

w

j kg  is the number of 

shortest paths with the minimal sum of the weights of the edges from a node vj to a node vk; 

gw
j,k (i) is the number of shortest paths with the minimal sum of the weights of the edges, 

which pass through the node vi from a node vj to a node vk. The betweenness centrality 

reflects the influence of the nodes throughout the network. Influential nodes are those that are 

visited by the largest number of shortest paths from all nodes to the rest. Therefore, we can 

get the influential nodes in different perspectives of topological connectivity and 

transportation capacity. 

 

d. Clustering coefficient (CC) 

 

The clustering coefficient is a key quantity that characterizes the extent to which the nodes in 

the neighbourhood of a certain node are connected. The higher the value of a clustering 

coefficient of a node, the more densely connected the nodes in its neighbourhood will be. The 

clustering coefficient ci of a node vi is defined as Eq. 5. 
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Where the ki  nodes are the neighbours of the node vi, and ki is also the degree centrality of vi. 

Thus, there are at most ki (ki -1)/2 arcs between the ki nodes. The mi is the real number of the 

arcs between the ki nodes. A node with a higher clustering coefficient means the node and its 

neighbours tend to be a close organization. In the TFN, the higher clustering coefficient 

means an intensive requirement between the stations for the transportation of passengers and 

goods. It shows the influence of the station in the local area of the network.   

 

 

 

 



e. Comprehensive index (CI) 

 

The key station set and the rank of the stations identified by the five indices may be different, 

due to the influence of the stations evaluated by these indexes is in different points of view. 

To balance these different, a comprehensive index Ci should be given based on the five basic 

indexes. First, the basic indexes can be normalized by Eq. 6. Then, the comprehensive index 

Ci of a node vi can be the sum of these normalized indices, formulated as Eq. 7. 
min
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Where 


iz represents the value of any of the basic indexes of a node vi; 
min

z is the minimum 

value of the basic index   of the stations in TFN; 
max

z is the maximum value of  the basic 

index   of the stations in TFN; 


iz  is normalized value of  the basic index   of the station 

vi;  is the weight of the basic index  , which shows the impact of different basic indexes 

in the comprehensive index. The principle for selection of   is reflecting the evaluation 

purpose such as the topological connectivity, transportation capacity and local influence. 

Some methods, such as the trial and error method and the Delphi method can be used in the 

selection of  .  

 
 

2.3. Network Efficiency Analysis  
 

Network reliability can be obtained by the analysis of the characteristics of the network under 

random and selective modes of stations failure (Lin et al. 2016). The difference between the 

two modes is to decide the failure order of the stations. In the first mode, the failure stations 

are randomly selected, however, the node and its edges are removed to form a new network. 

In the second mode, the failure order should be consistent with the ranks of the stations which 

can be obtained by CI. The two indexes of network efficiency (E) and relative network 

efficiency (R) are given to evaluate the reliability of the TFN, which are derived from Eq. 8 

and Eq. 9. 
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Where n is the number of nodes in the network after the failure of the stations and edges, di,j 

represents the shortest network distance between node vi and vj but when they are not 

connected =+ijd  , E is the network efficiency after the failure and E0 is the initial network 

efficiency. 
 

 

3. CASE STUDY 

 

In this section, a case study of reliability analysis of railway network in China is presented. 

Firstly, the TFN is established based on the model given in section 2 from the train timetable 

of June 2015 as described in below sections. Secondly, the key station identification indices 

are calculated based on TFN, and the comprehensive index can be generated from basic 



indices as discussed is section 2.2. Finally, the network efficiency analysis under different 

failure modes is discussed in detail.  

 

 

3.1 High-speed Railway Network in China 

 

China has world's longest high-speed railway network, which has rapidly been developed in 

the recent years. By the end of 2015, the operation mileage was over 19,000km (National 

railway administration of China, 2016), which is more than 50% of the world's total mileage. 

There are 3 kinds of High-speed trains in China, high-speed trains (with the subtitle of G), 

intercity trains (with the subtitle of C) and trains running on the existing line after upgraded 

(with the subtitle of D). The average operation speeds of these trains are 300km/h，250km/h 

and 200km/h respectively. According to the train timetable on June 10, 2015, there are 2487 

trains running on the high-speed railway network including 1062 G, 466 C and  959 D trains. 

In order to ensure the connectivity of the railway network, 2 isolated lines Haikou to Sanya 

and Urumqi north to Lanzhou West high-speed rail line are removed from the network for the 

case study. As a result, the RPN has 485 nodes and 570 edges as shown in Fig.4. Whereas, 

the TFN has the same number of nodes, however, due to the addition of service plan, the 

number of edges has reached to 68198 making it more complex than RPN. 

 

 
  

Fig.4 High-speed railway physical network in China  



 

3.2 Key Station Identification 
 

a. Degree centrality 
 

The distribution and cumulative distribution of DC can be calculated by Eq. 1, which is 

shown in Fig. 5 and Fig. 6. In the TFN, the number of the stations with DC of more than 150 

is only 2% of the whole network. And most of them are the hub stations converged by several 

rail lines, such as Shanghai Hongqiao station, Nanjing South station, Wuhan station, 

Hangzhou East station etc. It can be observed that the cumulative distribution of DC is 

exponential, which can be formulated as follows: 
0.02( ) 1.09  p k e                                                     (10) 
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Fig.5 Distribution of DC 
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Fig.6 Cumulative distribution of DC 

 

b. Strength centrality 
 

The cumulative distribution of SC is shown in Fig.7. The statistics show that the SC of 4.59% 

stations is greater than 1000, and for 60.04% it is less than 200, indicating that the 

distribution of SC of the stations in the TFN is extremely deviated. There are a few stations 

having very high service capacity. It is more convenient for the passengers to travel from 

these stations than others. It can be observed that the distribution of DC versus SC follows a 

power law (shown as Fig. 8), which can be formulated as follows: 

 1.242s k                                                        (11) 

It means the growth rate of SC is faster than the DC, which shows that in the current 

transportation operation strategy if the topological connectivity of a station is k the ability to 

serve the passengers is k1.242, therefore, the transportation capacity of a station is growing 

faster than the growth of topological connectivity.  
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Fig.7 Cumulative distribution of SC 
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Fig.8 Distribution of DC versus SC 

 



c. Betweenness centrality 

 

The distribution of TBC and CBC in the TFN is shown in Table 1. Most of the stations have a 

very small TBC and CBC, but very few stations’ BC are very large, which is 1.8% stations 

with the interval of 0.05730~0.06548. So these stations have very important significance in 

the TFN. 

Table 1: The distribution of TBC and TFN 

No Interval  Probability of TBC Probability of CBC 

1 0~0.00005 0.168498 0.161172 

2 0.00005~0.00030 0.131868 0.14652 

3 0.00030~0.00100 0.194139 0.201465 

4 0.00100~0.00307 0.197802 0.201465 

5 0.00307~0.00501 0.124542 0.10989 

6 0.00501~0.00603 0.03663 0.032967 

7 0.00603~0.01037 0.058608 0.058608 

8 0.01037~0.02206 0.040293 0.040293 

9 0.02206~0.05730 0.029304 0.029304 

10 0.05730~0.06548 0.018315 0.018315 

 

d. Clustering coefficient 

 

The average CC of the TFN is 0.697, showing high aggregation characteristics as shown in 

Fig. 9. While, the relationship between the CC and DC of each node is shown in Fig. 10. 

From the relationship graphs, it is clear that the nodes with high CC have very low DC and 

DC and CC show a negative correlation, which means the lower the DC of the station, the 

greater the CC. 
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Fig.9 Cumulative distribution of CC 
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Fig.10 Distribution of CC versus DC

 

e. Comprehensive index 
 

The distributions of the basic indices for the stations are different, therefore, the rank of key 

stations cannot be the same. Table 2 shows the top 20 stations in different indices. Whereas, 

the nodes with top 20 high CI are indicated with red colour in Fig. 4. Most of the high CI 

nodes distribute in the central and eastern regions of China, because higher economic 

development has higher population density and brings more transportation needs. However, 

not all the top 20 stations are junctions such as No.11, 40, 41, 58, 96 and 174. These nodes 

have higher transportation capacity, though lower physical connectivity. Thus, these stations 

should be given more maintenance and be more likely to be included when a new railway line 



is planned in the future. The stations of No. 259 and 266 in Beijing city, the capital of China, 

are ranked as 17 and 14, which is not the higher level in the TFN. Since there are 4 stations in 

Beijing to decentralize transport pressure. However, there are only 2 stations (266 and 259) in 

top 20 and the sum of their CI is 3.10, higher than 2.91 of the first station No. 8. Increasing 

some hub lines between the 4 stations can improve capacity and reliability of transportation 

of the whole city, which should be one direction in the future design of the railway 

infrastructure.  

 

Table 2: Comparison of top 20 statioins in different indexes 

Rank Station 

(DC) 

Station 

(SC) 

Station 

(TBC) 

Station 

(CBC) 

Station 

(CC) 

Station 

(CI) 

CI 

1 8 8 5 29 215 8 2.909347 

2 10 10 69 48 217 10 2.856245 

3 38 38 55 10 219 5 2.594738 

4 48 29 45 8 187 69 2.51187 

5 85 40 96 256 246 48 2.282593 

6 5 81 266 69 234 29 2.281926 

7 29 85 259 58 89 38 2.179361 

8 40 48 19 67 90 45 1.962085 

9 11 174 22 38 258 55 1.914219 

10 41 25 61 11 259 96 1.842426 

11 81 5 232 85 260 85 1.718422 

12 2 11 30 81 88 11 1.69267 

13 43 12 24 5 250 40 1.651933 

14 13 248 7 2 257 266 1.626548 

15 12 67 4 25 261 58 1.615441 

16 39 2 58 18 272 81 1.60119 

17 83 13 254 13 235 259 1.473424 

18 67 41 46 40 266 67 1.467032 

19 160 126 208 27 267 41 1.460257 

20 69 44 56 41 209 174 1.423473 
 

 

3.3. Network Efficiency Analysis 
 

 

The efficiency of TFN is 2.10, much higher than 0.06 of RPN, which means the physical 

connectivity of the high-speed railway network in China is not very dense, but it has a very 

high service capacity and convenient transportation services. Distributions of R under 

different failure modes are shown in Fig.11. The relative network efficiency is declined 

sharply in the beginning of the selective mode, however, is relatively flat in the random mode. 

The failure of the top 20 stations, 4% of the total nodes shows a higher loss of efficiency in 

the both modes, which are close to 70% and 40% respectively. Furthermore, the top 40% 

failure makes the network efficiency loss to nearly 0 in selective mode, while in random 

mode,  80% failure dropped the efficiency to almost 0. Therefore, the key stations that are 

identified in section 2.2 should be given more attention in the future development of the 

railway network.  



 
Figure.11 Distribution of R under different failure modes 

 
 

4. RECOMMENDATIONS TO IMPROVE RAILWAY NETWORK 
 

Based on the reliability analysis of the railway network, the optimised suggestions of 

improving the network considering in the following two terms. 

 

a. Railway Network Infrastructure Planning  

 

 The reliability of the network should be considered in the future infrastructure planning, 

in addition to the economic and demographic factors. Some high-CI stations have only 

one railway line passing through should be included when a new rail line is planned, 

which will not only balance the distribution of the key stations in the network and relieves 

the transportation pressure but also help to improve the network reliability. 

 The combination of the topology of RPN indicates that some stations are located in the 

same city, for instance, 4 in Beijing and 3 in Shanghai. Some hub links between these 

stations should be allocated in the future, which will not only be able to improve the 

physical connectivity and transportation service of stations but also improve the reliability 

of the whole network in different failure modes. 

 

b. Railway Transportation Operation  

 

According to the reliability analysis of the railway network, once the key stations are failed or 

lost capacity, the connectivity and efficiency of the overall network would drop rapidly. To 

ensure the normal operation of the railway, it is recommended to strengthen the protection of 

the key stations, for example, protection strategies in advance to reduce the impact of disaster 

weather, organizing extra trains to improve transportation capacity etc. Furthermore, service 

capacity can be improved by optimising operation scheme with the constraints of the existing 

RPN. Therefore, higher k power means higher service capacity as shown in Eq. 11, which 

means a better operation scheme. Nevertheless, all these principles should be considered in 

the future to improve the stability of the high-speed railway Network.    

 

 



5. CONCLUSIONS 

 

The paper presented a new method to analyse the reliability of the railway network by 

identification of the key stations based on the two network models of RPN and TFN. In 

addition, both physical network topology and dynamic operation strategies are considered in 

this method. Considering the key stations, railway network efficiency is analysed under 

selective and random failure modes. A real-world case study of the high-speed railway 

network in China is presented to demonstrate that the cumulative distribution of DC is 

exponential and the relationship between DC and SC follows power distribution. Furthermore, 

the key stations were obtained by the CI by considering all the factors of topological 

connectivity, transportation capacity and local influence. Therefore, maintenance of these key 

stations can ensure a higher reliability of the whole network. In the end, some 

recommendations are given in terms of infrastructure planning and transportation operation 

of the railway network in order to improve the network development. 
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