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ABSTRACT 

Osteoporosis is a prevalent but asymptomatic condition that 

affects a large population of the elderly, resulting in a high risk of 

fracture. Several methods have been developed and are available 

in general hospitals to indirectly assess the bone quality in terms 

of mineral material level and porosity. In this paper we describe a 

new method that uses a medical reflex hammer to exert testing 

stimuli, an electronic stethoscope to acquire impulse responses 

from tibia, and intelligent signal processing based on artificial 

neural network machine learning to determine the likelihood of 

osteoporosis.  The proposed method makes decisions from the key 

components found in the time-frequency domain of impulse 

responses. Using two common pieces of clinical apparatus, this 

method might be suitable for the large population screening tests 

for the early diagnosis of osteoporosis, thus avoiding secondary 

complications. Following some discussions of the mechanism and 

procedure, this paper details the techniques of impulse response 

acquisition using a stethoscope and the subsequent signal 

processing and statistical machine learning algorithms for 

decision making. Pilot testing results achieved over 80% in 

detection sensitivity.  
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1. INTRODUCTION 
Bone undergoes a regeneration process where collagen and 

mineral is added then removed for remodelling. As the skeleton 

develops more bone is added than is being taken away. The 

process eventually stabilises and the bone mass remains constant. 

If however, more bone is removed than added, akin to skeletal 

bio-corrosion, we have a condition called osteoporosis. 

Osteoporosis literally means ‘porous bone’ and describes a period 

of largely asymptomatic bone loss leading to skeletal fragility and 

increased risk of fracture. One in three women and one in five 

men over the age of 50 will break a bone attributed to 

osteoporosis according to well known public surveys. 

Osteoporosis affects more than 75 million people in the Europe, 

United States and Japan, being the cause of more than 8.9 million 

fractures annually worldwide. It is well established that early 

diagnosis and treatments are the key to prevent further 

complications and fractures. The lack of a simple and practical 

diagnostic method for screening has been identified as a major 

cause of delayed diagnosis and poor prognosis.  

The paper proposes a vibroacoustic method, using the bone’s 

‘impulse response’, to estimate the likelihood if a person is 

sustaining osteoporosis. It is based on bio-mechanical theories, a 

clinically collected database and computer learning algorithms. A 

clinician taps a specific part of a patient’s tibia bone with a Taylor 

reflex hammer, an electronic stethoscope picks up the induced 

sound at the midpoint and/or the distal end of the tibia. The signal 

is transmitted via a Bluetooth datalink to a computer for further 

signal processing and gives a verdict on the patient’s diagnosis. 

The hypothesis is that the bone’s bending stiffness, mass, and 

densities can be interpreted from its resonant frequencies with 

some necessary assumptions. The decision to suggest that a 

patient might have osteoporosis is based on machine learning. The 

algorithm looks for common features in the time-frequency 

domain from a good number of acoustical examples of normal and 

osteoporotic subjects, then generalises the knowledge for decision 

making. 

2. BACKGROUND AND RATIONALE  

2.1 Background 
Because of the asymptomatic nature, detecting osteoporosis 

before it results in a fracture has been the main challenge in 

treating the disease. The standard method is the use of dual energy 

X-ray absorptiometry (DXA, formally DEXA) scans to measure 

the bone mineral density (BMD), a usable proxy measure which is 

the current way of diagnosing osteoporosis [1]. The World Health 

Organisation (WHO) has used a statistical measure based on DXA 

called the “t-score” as part of their diagnosis guidelines [2]. This 

is based on standard deviations (SD) from the BMD of a reference 

population where a score below -2.5 SD is deemed to indicate that 
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the patient has osteoporosis. However the BMD is not an accurate 

or reliable measure of the bone’s strength and can only imply 

bone quality [3, 4]. While there is a connection between low 

BMD (t-score) and higher fracture risk, a low BMD is not a 

prerequisite to a low trauma fracture. Other methods such as 

Quantitative ultrasound (QUS) and recently the more direct 

Mechanical Response Tissue Analysis (MRTA) have found their 

uses and been studied as alternatives, but the former relies on the 

speed of sound transmission, again a proxy measure of stiffness, 

while MRTA is still yet to find wider clinical use [5,6]. 

Research into bio-mechanics investigated the vibro-acoustic 

response as a means of describing the quality of bone 

macrostructure. The objective as reported from the literature was 

to find a parameter which would correlate strongly with the 

condition of the bone and therefore could be used as an index for 

diagnosis. The lowest resonant frequency found some limited 

adoption as a parameter, but this has been questioned as the 

dynamics of the whole limb becomes better understood. 

Stethoscopes have been used for auscultating the sound 

transmitted through bones by tapping the body and listening 

through the chest [7]. This required a high level of practice and 

experience to identify the sound of a diseased bone, and could be 

too holistic for general diagnosis. But the potential of using a 

stethoscope for auditioning the vibro-acoustic response instead of 

typical laboratory equipment is explored further in this paper: 

directly listening to the bone’s vibration in question rather than 

through the chest. 

Machine learning was used in the diagnosis of osteoporosis from 

the tibia’s lowest resonant frequency and other physiological 

information of patients [8]. The algorithm mimics the already-

established fracture prediction algorithm ‘FRAX’ rather than 

signal processing and information extraction. The only physical 

measure adopted was the lowest resonant frequency, which was 

known to be inadequate to reliably determine the quality and 

fragility of bones. The complex set-up and procedure, including 

an accelerometer, a dedicated charge amplifier and an analogue to 

digital converter, and the use of an impact hammer as described in 

[8], are unlikely to find adoption for front-line screening tests.  

2.2 Rationale 

2.2.1 Bone Structure 
Vibration analysis has found common use in engineering to 

characterize certain properties of a structure. Several parameters 

relevant to bone quality, such as its stiffness/mass ratio, its elastic 

modulus and natural modes of vibration, are contained in its 

impulse responses. In particular, the resonances are related to the 

stiffness/mass ratio. 

Bone is a complex anisotropic structure which is made of two 

main phases: a surface layer of calcium and an internal network 

structure (trabeculae) [4]. The trabeculae are arranged in plates 

along the bone to give strength in typical load directions. Its 

modes of vibration will therefore depend on their axis and type, 

each with a different stiffness. The complexity and diversity in the 

bony structures of individuals make accurate mathematical 

modelling and analytical solutions of governing equations 

extremely difficult. Using the machine learning approach for this 

type of complex problem is a sensible choice if a large number of 

examples can be collected. 

2.2.2 Bio-Mechanical Research 
Research into bone vibration in the 1970s suggested that the 

lowest fundamental frequency was related to the bending stiffness 

of the bone, and therefore the quality of the bone [9, 10]. This is 

in line with what is found in a simple rod model: the square root 

of the stiffness/mass ratio will give the lowest resonant frequency 

of the object: 

      
   (1)  

where   (N/m) is the stiffness of the bone,   (kg) is the mass and 

   (Hz) is the fundamental frequency. Therefore a drop in stiffness 

will reduce the frequency. While having osteoporosis does result 

in reduced stiffness of the bone, it also removes mass from the 

bone. Such a decrease in the mass will counter-act on the 

reduction of the lowest resonant frequency. Fortunately, much of 

the research indicated that lowered resonant frequencies and 

shifting in modal frequencies’ distribution are often associated 

with osteoporosis, though the strict proportional relation between 

the resonant frequency and the square root of stiffness does not 

hold, due to the fact that mass is a yet another dependent variable 

[11,12,13,14,15].  

2.2.3 Machine Learning vs. Analytical Model 
Attempts have been made to derive an analytical model of the 

bone vibration response by using slender beam theory and hollow 

cylinders to predict the modal shapes and frequencies. These have 

been followed by FE (finite element) models investigating 

parameter changes and their effect on the bone response [16]. 

There has been moderate agreement with experimental results 

with the assumption that the bone is isotropic. However it is clear 

in reality that bone is highly anisotropic, leading to over-

simplified results. 

Bone, when impacted on, sustains different waves at any moment 

in time, but it is difficult to be certain which wave shape relates to 

which modal frequency from a frequency response. Therefore 

using a purely analytical or empirical model is not sufficient to 

made accurate predictions on the extent of osteoporosis. Instead, a 

statistical machine learning algorithm can be used where 

analytical solutions are difficult to obtain or where laboratory 

replication is impractical. With a large enough dataset the 

algorithms might be trained to learn from examples with a 

“teacher” (senior doctors’ diagnosis) and generalise the acquired 

knowledge to correctly diagnose cases not previously included in 

the training. Further inspired by the fact that one can tap on a 

piece of furniture to evaluate its solidity from the sound, it is 

therefore reasonable to hypothesize that an audition approach can 

train a computer algorithm to listen to the tapping sound from the 

bone in question and make a statement on the quality of the bone. 

2.2.4 Stethoscope 
A typical method to study vibration phenomena and 

characteristics of a structure is the use of accelerometer(s) and an 

impact hammer to measure the impulse response at various 

excitation and receiving positions. Nevertheless standard 

accelerometers are not suitable for clinical adoption, owing to 

their unfamiliarity to healthcare professionals, complexity in 

calibration and use, and difficulty in mounting. The stethoscope is 

the tool of nurses and doctors, and so electronic stethoscopes are 

the better choice. There have been several different models and 

designs of electronic stethoscopes, all with different types of 

sensors and sensitivities [17]. The one chosen for this project was 

the 3M Littmann Model 3200 stethoscope with the StethAssist 



software [18]. It has found more adoption in clinical use than the 

other models, and 3M offers a software development kit (SDK) 

which allows for future expansion of the capabilities of the 

device. While the market for electronic stethoscopes is still small 

and fractured, these devices are the only way of being able to use 

the digital signal processing methods to detect signals and 

problems that would be very difficult to find by auralization 

alone.  

3. THE METHOD 

3.1 Reflex Hammer and Stethoscope Method  
The patient’s limb is held in the supine position, supported on 

furniture or other height. The Taylor hammer is used to tap the 

tibial tubercle of the tibia. The stethoscope is placed in the 

anterior border, where the bone is deemed most flat and closet to 

the surface. The practitioner then taps with moderate force (about 

10-30 N) at the impact site with about 1 s gap in between 

consecutive taps. The number of taps and the total duration are not 

important, but for this project 8 knocks were recorded in a 15 

second recording.  

The stethoscope is connected to a computer running StethAssist 

software via Bluetooth. The software primes the stethoscope to 

record. The stethoscope has digital filters to emulate the bell and 

diaphragm of an acoustic stethoscope [18]. For the purposes of the 

listening session, the third filter option: “extended range” is used. 

This can be assumed to be the ‘original’ signal which ranges from 

20 Hz - 1 kHz. Once the session is complete, the recording is 

exported as an audio file with the extended range filter enabled to 

be used inside MATLAB. The exported file is a .wav format 

audio file with a sample rate of 4 kHz.  

Previous research had used impact hammers and accelerometers 

to study the bone response, e.g. [8]. Our Taylor hammer and 

stethoscope must be able to repeat these findings and show 

equivalency. To compare the two sensors, the stethoscope was 

placed onto a metal plate, with an accelerometer (B&K Type 

4507) underneath at the same point connected to a converter into 

vibro-acoustics software (B&K PULSE LabShop). This was to 

confirm that given a common medium, the two receivers will 

respond the same. Their placement is shown in figure 1. An 

impact hammer (B&K Type 8206) struck the plate and the input 

force was recorded. The stethoscope recorded the audio output 

while the vibration software gave the frequency response function 

of the accelerometer. The recordings were passed through a 

MATLAB script and compared with the results from Pulse. The 

results show the same resonant peaks found in the frequency 

response function from the Pulse software occurred in the FFT of 

the recordings. In terms of magnitude response some necessary 

equalisation is needed as detailed in the next section.  

 

Figure 1. Stethoscope and accelerometer for equivalency tests. 

3.2 Reflex Hammer/Stethoscope Response  
The reflex hammer and electronic stethoscope are not ideal impact 

source and perfect transducer. The Taylor hammer does not 

produce a perfect impact with a flat spectrum because of its semi-

solid rubber construction, effectively imposing a low-pass 

filtering effect. Combined with the damping effect of the soft 

tissue, this reduces the useful region down to a few kilohertz, 

which should still excite and pick up vibration modes of interest 

for this study.  

The stethoscope is built on a piezoelectric transducer behind a thin 

rubber cover as shown in figure 2 [17]. The frequency response of 

the stethoscope itself shows a rolling-off starting at 600 Hz.  It 

also shows resonances in the LF region, from 10 - 40 Hz. The 

impulse response shown in figure 3 is acquired from tapping the 

rubber cover of the stethoscope with the Taylor’s hammer 

directly. This represnets the intrinsic artefects of the signal chain, 

and if desirable, can be de-convolved out.  

Figure 2. Exposed stethoscope sensor.  

Figure 3. Reflex hammer-stethoscope's responses. 

3.3 De-convolution or Equalization   
The recorded stethoscope signal is the convolution of the response 

of the bone, the soft tissue as well as all the devices in the signal 

chain: 

                             (2)  

where   is the recorded signal,   is the bone response,     is the 

soft tissue response,   is the Taylor hammer and     is the 

stethoscope response. 

To isolate the sound of the bone and soft tissue, the response of 

the signal chain has to be removed. This can be done by taking an 

impulse response of the devices in the chain, either separately or 

all as one, and filtering their responses in the frequency domain. 

                             (3)  



            
    

           
 (4)  

This can be simplified by grouping the signals into: 

     
    

    
 (5)  

where   represents the while limb (bone and soft tissue) and   is 

the signal chain (the hammer and stethoscope).The filtering will 

therefore leave only the modal response of the bone in vivo with 

the muscle and soft tissue attached. This should in theory remove 

the influence of the signal chain entirely, but if the response of the 

signal chain is non-linear, then some artefacts will still remain in 

the recording. The muscle and soft tissue’s effect on the bone’s 

vibration response would also be unchanged, owing to its 

connection with the bone itself.  

3.4 Dataset 
The dataset contains a series of recordings collected in 2016 from 

30 patients by Rakoczy following the method described in Section 

3.1. A summary is in given in Table 1. Each patient was recorded 

5 times, with 8 knocks in each recording. These recordings are 

exported and put through MATLAB scripts developed for this 

project to perform time domain gating and alignment and give 

further frequency domain and cepstrum domain representations. 

The detail of that data analysis is detailed in Section 4. The data 

structure of the dataset is described in Table 2. Of course, senior 

doctors’ diagnoses are annotated and used as the teacher values. 

Table 1. Population Statistics 

Parameter Mean [Min, Max] 

Age 66.25 [51,93] 

DXA -0.95 [-3.3, 0.5] 

Weight 68.33 [46,93] 

Height 161 [152,176] 

 

Table 2: Dataset parameters 

Parameter Size Unit 

IR Sample Length 800 samples 

FFT Window Length 8192 points 

FFT Output Spectra Size 100 points 

MFCC Window Length 0.03 seconds 

MFCC Window Overlap 0.02 seconds 

MFCC Total 378 points 

 

4. SIGNAL PRE-PROCESSING 

4.1 Alignment and Normalization 
The recordings are imported into a MATLAB script to isolate the 

impulse responses (IR). The data is normalized and any offset 

removed. Because of the noisy nature of the recordings, the 

gradient and the Hilbert amplitude envelope of the waveform are 

separately used to isolate the impulses from the files. The gradient 

is used first to detect the rise of the impulse (represented as a peak 

in the gradient) and begins the ‘cut’ procedure to isolate it. The 

amplitude envelope then is used to find when the level of the 

signal is below the threshold when the impulse has assumed to 

end (figure 4). There are two checks to remove erroneous 

impulses: a peak level threshold (to remove low level impulse 

noises) and a peak position (to avoid early triggering). This does 

assume that the peak of the impulse is very soon after the zero-

crossing point, which can be broken by loud impacts elsewhere 

near the stethoscope. Also recordings with high level of noise can 

cause miss-triggering or false positives. The signals are then 

normalized again to remove any impulse to impulse variation. An 

example of the time domain representation is given in figure 5. 

 

 

 

 

 

Figure 4. Zoom of waveform (Light Blue) with gradient 

(Orange) and Hilbert envelope (Dark Blue) 

 

 

 

 

 

 

 

 

 

Figure 5. Individual IR with one misalignment. 

4.2 Equalization and Pre-emphasis 
Since machine learning will normally learn to ignore (or 

compensate) spectrum coloration from the stethoscope and reflex 

hammer, for a convenient solution the data can be left unfiltered. 

However, there are advantages in accuracy and speed of 

convergence if the influence of the stethoscope and the reflex 

hammer is de-convolved out as mentioned in Section 3.3. Figure 6 

shows time and frequency domain responses from multiple reflex 

hammer impacts on the stethoscope.  The maximum envelope of 

the spectra is used for the design of equalization filter. The reflex 

hammer and stethoscope system has a clear spectral rolling-off 

when frequency increases. A pre-emphasis high pass filter of 

12dB/Oct to 24 dB/Oct starting from 63 Hz can be used as a 

simpler but rather effective compensation mechanism before the 

signal is further processed, rather than strict equalization.  

 

Figure 6. Individual stethoscope IR with their FFT spectra. 

The deep blue dashed line is the average IR and maximum 

FFT spectrum respectively. 

 



4.3 Frequency Domain Feature Extraction 
The signals are transformed into the frequency domain. Owing to 

the very short duration of the impulses (800 samples) and the low 

sample rate, the window length is made much larger (zero 

padding) to increase the resolution (L = 8192). The results of the 

absolute spectrum are displayed in figure 7. There is a clustering 

of peaks in the very low frequency region, which we assume to be 

the resonances of the stethoscope as described previously. A 

second group of peaks are found at 75-110 Hz, which would agree 

with [8, 19]. Further along there is a cluster of much more damped 

peaks in the 200 - 250 Hz region, which would match the findings 

in much of the previous bio-mechanics literature [9, 15, 16]. 

Looking for sign changes in the imaginary component will 

confirm which peaks are true resonances of the tibia and which 

are noise peaks. The real and imaginary components are in figure 

8. 

 

 

 

 

 

 

 

Figure 7. Absolute frequency spectra of IR 

 

 

 

 

 

 

 

 

 

Figure 8. Real and Imaginary parts of spectra.  

(Only positive values of real part is displayed). 

 

While there is some agreement with the previous findings, there 

are some discrepancies in the repeatability and exact correlations. 

The signals from osteoporotic subjects do not show strong 

clustering, or are too heavily damped to be identified. Secondly 

the resonant frequencies do not always shift in accordance with 

the t-score as described by some authors. These observations 

suggest that the use of lowest resonant frequency alone is not 

reliable in detecting osteoporosis. Therefore the pattern of modal 

frequencies is instead used in this study. 

4.4 MFCC 
FFT spectral analysis uses filter bands with equal frequency bins. 

It is not an efficient representation for many types of audio signals 

requiring uneven frequency sampling. To reduce the data points 

and mitigate the complexity of machine learning, time-frequency 

domain representations, namely Mel Frequency Cepstrum 

Coefficients (MFCCs) are used to capture the features and 

resonance patterns.  The MFCCs are found popular use in speech 

recognition and music classification. Taking the discrete Fourier 

transform (FT) of a time domain signal, and then taking the 

inverse DFT of the logarithm of the FT spectrum to express the 

signal in the time-frequency domain is called the Cepstrum. For 

the real part of the cepstrum: 

                                             (6)  

For MFCC an extra filtering stage is included after the initial FT 

with logarithmically spaced triangular filters, which emulate the 

frequency selection filters in the human ear (Figure 9). The filters 

are spaced on the Mel scale from psychoacoustics, which is a 

subjective measurement of pitch instead of linear frequency. 

               
   

   
  (7)  

The number of filters dictates the number of coefficients required 

to describe the energy of each filter band in time. The log energies 

are calculated per Mel band and are passed though a cosine 

transform. For this project 21 coefficients are used. 

Figure 9. Mel Filterbank shapes. 

 

Because the IRs are so short and with many influences on the 

vibration response, using MFCC is a valid option with a slightly 

larger window. The algorithm used is the ‘mfcc.m’ function 

included with MATLAB 2018a, based on the “Auditory Toolbox” 

from Interval Research. The sum of the coefficients of each IR is 

given lastly in figure 10. 

 

 

 

 

 

 

 

 

Figure 10. Cepstrum coefficient sum of IR. (Colour bar is 

clipped to increase resolution). 

 

Wavelet analysis was considered, as like MFCC it displays 

complex frequency and phase interactions in the time-frequency 

domain. For this project MFCC was deemed to be more 

convenient, as it already contains the non-linear distribution of 

frequency filtering, weighted more towards the lower frequencies. 

5. MACHINE LEARNING 

5.1 Neuron Model 
Machine learning is at its core an error reduction algorithm. The 

input data is mapped or categorized in a non-linear fashion to 



expected outputs. There are several different methods of 

achieving this goal (decision trees and support vector machines 

are examples), but one which is most popular in engineering 

applications is the feed-forward Artificial Neural Network (ANN). 

The data is processed through individual neuron models (shown in 

figure 11), which have several connections for inputs with 

weighting coefficients, sometimes with a bias offset. This is 

expressed as: 

                 

 

   

 (8)  

where   is the current neuron,   is the next neuron in the next layer 

of the network,   is the weight from the  th to the  th neuron,   

the input to that neuron and   is the bias term. 

 

 

 

 

 

Figure 11. Neuron Model: summation and activation function. 

The activation function then shapes the summed and weighted 

inputs into a single output, either as binary logic via a threshold or 

as a sigmoid function for a continuous output bounded in the 

interval (0,1). A continuous sigmoid function is used in this study.  

    
 

       
 (9)  

5.2 Multi-layer feed forward neural network 

Figure 12. Neuron network model  

 

ANNs rely on a large number of connected neuron models to 

deliver computational power and learning capability. A classical 

fully connected feed-forward network featuring two non-linear 

hidden layers of decreasing number of neurons, as depicted in 

Figure 12, is empirically found appropriate for the current study.  

The input layer is as large as the number of data points and has 

only one input per neuron. The hidden layers reduce the data and 

manipulate the weights to find the optimal solution. The output 

layer has only one neuron and a sigmoid activation function is 

adopted. There is no strict rule or theory prescribing the number 

of neurons per layer or the number of layers in the network, since 

the model is data driven and is highly depends on the context. For 

this paper the network was built with 378 neurons for the input 

layer, 120 for one hidden layer and 1 output neuron. Each set of 

MFCCs has 21 data point, 18 sets of MFCCs (acquired through 

moving windows with overlap) gives 18 x 21 = 378 coefficients 

arranged in column vector as input to the neural network.  

The ANN starts from random weights; the percussion sound 

represented in 378 coefficients is presented at the input; the output 

of the network is compared with the doctor’s diagnosis (“teacher 

value”). The aim of training is to minimise the total square error E 

as defined in Equation 10 over all training examples.  

  
 

 
               

 
 

   

 (10)  

where     is the ANN output   is teacher value m is example 

number. 

The well established back-propagation algorithm is used for 

training. It updates the weights of the output layer first then 

onwards to the previous layers by updating the weights according 

to  

   
            

           
       (11)  

where    
     

 represents connecting weights between ith and jth 

neurons, l represents the layer. Changes made to the weight matrix 

are determined using a chain rule: 

    
         

  

    
      

 (12)  

   
  

   
      

 
   

      

    
      

 (13)  

    
           

         
         (14)  

where   is the learning rate (step size) and: 

  
        

  

   
      

 (15)  

6. TRAINING & VALIDATION 
After applying the data scrutiny algorithm, as described in Section 

4.1, the training set includes 48 impulse responses and the 

validation set contains 46 samples that had not been encountered 

in training. The network is given the teacher values given by 

senior doctors’ diagnoses, which are generally in line with the 

aforementioned WHO guidelines, i.e. t-scores below -2.5 as 

osteoporotic (OP) (teacher value: 0); the rest are deemed OK 

(teacher value: 1). But some other conditions and aspects are also 

taken into account. 

For any iterative algorithm, a stop criterion is always needed to 

determine when the algorithm should be terminated. A common 

practice is to freeze the weights when over-fitting starts to occur. 

It is not surprising when testing with the examples in the training 

set that 100% accuracy is always possible when training is left 

running for sufficiently long period of time. Validation of the 

generalization showed over 80% correct classification when 

stopped immediately before over-fitting occurs. The actual 

percentage varies slightly depending on step size and each 

different random start.  

To evaluate the clinical usefulness of the method, it is important 

to find how specific and sensitive the algorithm is. This is a 

medical version of a hypothesis test, where there are type 1 and 

type 2 errors (false positives and false negatives). Specificity 

describes how accurate the algorithm is in detecting OK patients 

while reducing false negatives. Sensitivity describes the opposite: 

how accurate the algorithm is in detecting the OP subjects while 

   
      

 

   

   

   

      

   

   



reducing false positives. A highly sensitive test is one which will 

not miss an OP patient, but perhaps at the expense of diagnosing 

other subjects that are not. While a highly specific test would be 

very strict about who is diagnosed, leaving the fewest false 

positives, but at the loss of some which are positive but missed. 

Furthermore, 3 practical stop criteria were experimented with over 

12 patient cases to explore the generalisation behaviour, with a 

range of learning rates. Some of the validation results are detailed 

below. 

(1) When the squared error, as in Equation 10, falls below 0.05, 

i.e any individual case will be rounded to the correct category. 

Figure 14 a) and b) give some of the results for illustration. 

 

Figure 14. a) Patient sensitivity result. 

 

 

Figure 14. b) False negatives found in validation. 

 

It can be observed in Figure 14 b) there is a period of rapid 

oscillating change in overall error. This indicates the likelihood of 

missing some valuable local minima, leading to poor results even 

at a late stage. 

(2) When the algorithm reached 80% accuracy for both the OK 

and OP cases. This is presented in Figure 15 a) and b). 

  

Figure 15. a) Correct diagnoses out of 3 positive patients. 

 

 

Figure 15. b) Number identified as OK out of 35 IR’s. 

 

For a medical application the possibility of false negatives is a 

concern. It is observed in Figure 15 b) for low learning rates the 

false negatives for individual IR is low in the initial stages (0 - 2 

seconds run time) but once the algorithm starts to balances to 

reduce the false positives, the false negative rate rises. At high 

learning rates such as 0.5, the network rebalances at the expense 

of increasing false negatives for IR identification. However this 

does not affect the patient results, which still shows the 

osteoporotic patients being diagnosed as such. 

(3) When the algorithm was able to correctly identify all the 

patients that were OK and OP. Figure 16 a) and b) give examples 

of this.  

 

Figure 16. a) Patient sensitivity result of ANN. 

 

 

Figure 16. b) IR sensitivity result of ANN. 

Overall, as the training error decreases, the number of patients 

correctly identified increases, while the number of IR correctly 

identified converges to stable values. The typical training time to 

reach the three criteria is given in Table 3. 

Table 3: Typical training times for different learning rates 

Learning 

Rate 
Criterion (1) (s) Criterion (2) (s) Criterion (3) (s) 

0.5 76.27 1.71 35.19 



0.3 130.52 2.31 39.17 

0.2 207.18 3.03 43.33 

0.1 343.41 4.14 74.87 

7. CONCLUDING REMARKS 
A new method for the screening testing of osteoporosis has been 

developed in this paper.  Using two pieces of common medical 

apparatus, a reflex hammer, an electronic-stethoscope, and 

machine learning based intelligent decision making algorithms 

loaded in a computer (even possible with a mobile phone), tests 

can be done in basic clinics by virtually any healthcare 

professionals, making it particularly suitable for GPs’ or primary 

healthcare professionals for large scale screening testing. 

Although typical machine learning methods are a blackbox 

approach to complex problems, the method proposed in this paper 

may be deemed as  being semi-analytical, as the physical meaning 

for bony resonance frequencies and their distribution patterns are 

known to correlate to the stiffness, porosity and many other 

relevant physical parameters of bones. As a proof of concept pilot 

study, the paper only used a limited number of examples. Even so 

a sensitivity of 80% seems achievable. It is envisaged if a larger 

dataset is made available and the understanding of the bone 

resonance is further deepened, the proposal method has a potential 

to become a clinically useful one.     
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