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Magnetohydrodynamic (MHD) solar power has recently been developed in the USA and

is an exciting novel area in renewable power. In this hybrid solar energy design, high-

powered magnets are employed to increase the efficiency of conversion from sunlight to

electricity by stripping electrons from high-energy plasma jets and thereby generating

power with no moving parts. The significantly higher temperatures generated in solar

MHD have been shown to achieve much higher efficiencies than other conventional types

of solar thermal technologies that work at a much lower temperature. The working fluids

in solar MHD designs may be non-Newtonian and are electrically-conducting and strong

thermal convection effects may also be present. To optimize thermal performance,

Bejan’s entropy generation minimization technique is a powerful approach. In the present

poster we describe for the first time a novel analytical and computational model for

entropy generation in magnetohydrodynamic non-Newtonian flows due to constant

pressure gradient in a vertical-parallel plate channel as a simulation of an MHD solar

power system. To more accurately simulate the rheological working fluid, the elegant

Eringen thermo-micropolar material model is employed which features gyratory motions

of micro-elements (suspended particles). This is a new approach to real fluids in solar

MHD pumps. The normalized conservation equations are solved with the powerful Liao

homotopy analysis method (HAM) with physically viable boundary conditions at the

channel (duct) walls. Numerical computations are conducted in MATLAB symbolic

software. The impact of selected parameters e.g. non-Newtonian couple stress

parameter, Eringen micropolar parameter, Reynolds number, Grashof (thermal buoyancy)

number, Hartmann magnetic number and Brinkman (viscous heating) number on

thermofluid characteristics (velocity, temperature, Nusselt number) and on entropy

generation number and Bejan number are studied. The prescribed ranges of parameters

are physically representative of real magnetohydrodynamic solar energy systems

employing non-Newtonian fluids. The computations show that increasing magnetic field

effect reduces the entropy production at the channel walls, whereas the converse

behaviour is observed for increasing couple stress parameter, Reynolds number, Grashof

number and Brinkman number. Increasing Eringen micropolar parameter and Hartmann

number are observed to decrease the entropy generation production in solar MHD

systems. This aids designers in achieving thermally more efficient solar MHD duct

performance.

ABSTRACT

Here h terms are non-zero auxiliary parameters and L is an auxiliary linear operator chosen as

d2/dy2. Using power series expansions then the mth order deformation equations are generated

and solved to give the desired solutions for velocity, micro-rotation and temperature. Once the

base solutions are obtained then gradient functions can be computed at the solar MHD duct

wall e.g. Nusselt number in non-dimensional form defines the heat transfer characteristics at

the walls and is written as:

INTRODUCTION
In recent years, engineers have verified that the entropy generation analysis via the

Second Law of Thermodynamics (SLT) is more robust and accurate than via the first law

of thermodynamics. It is established that thermal processes are inherently irreversible.

There exists an entropy generation which destroys the available energy of a system.

Entropy generation in thermal systems is mainly generated by heat transfer which

occurs in different modes i.e., conduction, convection and radiation. In addition to these,

additional effects including fluid friction (viscosity), buoyancy and magnetic field may

also contribute to this entropy production. Entropy generation or irreversibility in flow

systems was pioneered by Bejan [1]. The entropy generation analysis in ducts (e.g.

parallel-vertical plate systems) have many applications in modern thermal engineering,

including the cooling of nuclear reactors, industrial heat exchanger optimization,

petroleum equipment performance enhancement, microelectronic devices, etc.

micropolar fluid theory, an advanced sub-branch of rheology, has mobilized significant

interest due to immense applications in engineering. Eringen [2, 3] proposed the theory

of non-Newtonian micropolar fluids in the mid-1960s, as a simplification of his earlier

and more general (and complex) micro-morphic fluid theory. This non-Newtonian fluid

model sustains couple stresses, body couples and possesses a non-symmetric stress

tensor. The micropolar fluid model has an independent rotational vector in addition to

the velocity vector since the fluid particles undergo translational as well as rotational

motions. This theory has provided a good model for studying a number of very

sophisticated industrial fluids, e.g. polymers, suspension fluids, paints, liquid crystals,

colloidal solutions, lubricating oils, propellants, physiological and environmental liquids.

This theory can be used to accurately model solar MHD duct working fluids since it

realistically captures the suspension nature of the fluent medium. Here we present

numerical simulations for the effects of viscous dissipation and magnetic force on

entropy generation in incompressible electrically-conducting thermo-micropolar fluid flow

in a solar MHD duct. MHD laminar theory is used [4]. The governing nonlinear

equations are non-dimensionalized and then solved subject to physically realistic

boundary conditions have been solved using the Homotopy Analysis Method (HAM) [5].

The influence of various thermophysical and rheological flow parameters on linear

velocity, microrotation, temperature and entropy related distributions are displayed
graphically and interpreted in detail.

Fig. 1 illustrates the physical model considered. Electrically-conducting incompressible

micropolar fluid flows steadily under thermal buoyancy between two vertical isothermal

plates of infinite length at temperature TI and TII. Take a co-ordinate system (X, Y),

where the X-axis lies along the direction of channel plates and the Y-axis is orthogonal

to it. Assume that the fluid is flowing due to a constant pressure drop. A uniform static

external magnetic field H0 is applied in Y-direction and is orthogonal to the flow

direction, which generates a Lorentzian magnetohydrodynamic drag force. Since the

length of the channel plates is infinite, the velocity, microrotation and temperature are

functions Y only. The fluid physical properties are constant except for density variations

in the body force term where it is considered as a function of temperature. The

governing fluid flow equations take the following form:

Selected HAM computations are shown in Figs 2-5a,b. The main observations of

the present study can be summarized as follows:

i) Increasing couple stress effect in the working fluid decreases the velocity.

ii) An elevation in micropolarity (vortex viscosity) parameter decreases the velocity in

comparison with the Newtonian fluid case. Further, it is noticed that micropolarity

parameter can be used to control the flow motion.

iii) The entropy generation production is maximum near to the solar duct plates as

compared to that of the duct channel centre. This demonstrates that the frictional

forces are dominant near the channel plates and these enhance entropy generation.

Conversely, Bejan numbers have minimum values near to the plates and maximum

values near to the channel centre.

iv) Bejan number is a maximum at the centre point of the channel. This reveals that

the amount of available energy for work is more and irreversibility is less.

v) A strong increase in the entropy generation distribution (Ns) is noted with an

increase in couple stress parameter (s), Grashof number (Gr), Reynolds number

(Re) and group parameter (Br/).

vi) The micropolarity parameter (c) and magnetic parameter (Ha) have decreasing

effect on entropy generation production.

The present study has demonstrated the powerful ability of HAM in simulating

entropy generation problems in non-Newtonian magnetohydrodynamics solar duct

systems. However, it has neglected thermal radiative heat transfer effects [7, 8]

which are presently under consideration with algebraic flux and differential models

(Rosseland, P1, Chandrasekhar etc).
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Contact

The equations are non-dimensionalized and the non-dimensional ordinary
differential equation boundary value problem (ODE BVP) reduces to

MATHEMATICAL MODEL

MATHEMATICAL MODEL ctd

Momentum:

CONCLUSIONS

HOMOTOPY NUMERICAL SOLUTION

From the known velocity, micro-rotation and temperature fields, the volumetric rate of

entropy for a non-Newtonian micropolar fluid in the presence of magnetic field is given as:

SELECTED NUMERICAL RESULTS

Velocity: u(y)=0 at y = -1 and y = +1, (no-slip condition)   

Micro-rotation: M(y)=0 at   y = -1 and y = +1, (hyper-stick condition)

Temperature:  (y) =0  at y = -1 and   (y) = 1  at y = 1 
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Fig. 1: Physical Model of solar MHD duct
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Micro-rotation:

Energy:

Here β,  are gyro-viscosity coefficients and ,  are the viscosity coefficients

(Newtonian dynamic viscosity and Eringen vortex viscosity, respectively) of thermo-

micropolar fluids.
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Note- s is the couple stress parameter, c is the coupling number or Eringen micropolar

vortex parameter (for Newtonian viscous flow c=0),Gr is the Grashof (natural convection)

number, Re is the Reynolds number, Br=EcPr is the Brinkman number, Ec is the Eckert

number, Pr is the Prandtl number, Ha2 is the square of the Hartmann number (magnetic

parameter), is rheological parameter, and B=dp/dx is the pressure gradient.

The coupled non-linear ODE BVP is solved with HAM. This method has garnered exceptional

interest from researchers due to its enormous applications in engineering and science. Liao

[5] introduced HAM in the 1990s and initially applied the method to viscous fluid dynamics

problems. HAM has been subsequently utilized successfully to obtain solutions for a diverse

range of multi-physical non-linear problems stagnation rotating nanofluid dynamics [6]. HAM

has the attractive feature of not requiring small or large parameters (as with perturbation

methods) and thus it can be adapted to solve non-linear problems without such restrictions.

The method is a series based semi-numerical technique which achieves very high accuracy.

Power series expansions are evaluated with symbolic software, e.g. MAPLE, MATLAB,

MATHEMATICA etc. HAM further provides greater choice to select an auxiliary linear, non-

linear operators and initial approximations. This method introduces a parameter known as

homotopy embedding parameter (q), which assumes values from 0 to 1. When q = 0, the

problem under study gets a simple form which gives us a closed form analytical solution for an

initial guess satisfying boundary conditions. As q is increased and finally takes the value one,

the exact solution to the actual problem is recovered. A significant advantage of this approach

is that it is analytical. Also, this method uses two other parameters, a convergence controlling

parameter (h) and a function, H(y), the choice of which are selected to achieve an optimum
solution. The homotopy deformation equations for velocity (u), micro-rotation (M) and temperature
() are defined as follows:
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On the RHS of the above equation, the first term denotes the entropy due to heat

conduction effect, the next three terms denote the viscous dissipation function and the

last term denotes the irreversibility due to external magnetic field. In order to calculate

the exergy loss in the heat transfer, the entropy generation number Ns for micropolar fluid

with non-dimensional quantities may be defined as follows (where  is the temperature

difference and Br/ is the group (or viscous dissipation) parameter :
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The above Eqn. can be expressed as the sum of the irreversibilities due to heat

conduction(Nh), fluid friction (viscous dissipation) (Nf) and magnetic field (Nm). To

understand the entropy generation mechanisms, it is required to analyze the contribution of

heat transfer to overall irreversibility. For this purpose, an alternative irreversibility parameter

is introduced, known as the Bejan number (Be), which is the ratio of irreversibility due to

heat transfer to the total irreversibility and takes values between 0 and 1.

Ny
Be

Ns
=

When Be = 1 irreversibility due to heat transfer is dominates and Be = 0 represents the

irreversibility due to fluid friction and magnetic field is dominant. It is clear when Be = 0.5, the

contribution to entropy due to heat transfer is equal to the sum of magnetic and fluid friction

effects. The total entropy generation number is expressed by integrating across the cross-

sectional area of the duct, A:
  G G

A
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In normalized form, the total entropy generation rate is obtained by integrating Ns over the

channel width:
2 2 2 21 1

2

1

2

1

2d Br du du d'
N N dy c dys S dy dy dy

Ha
dy

u


= = + + + + +
− −

  
                         

  

M
M

Figure 2: Dimensionless a) Entropy generation number and b) Bejan number

versus y for various values of couple stress parameter (s) with B= -0.1, Br = 0.1,

c =0.1, Gr = 0.2, Ha =0.8,  =0.1 and =1.

Figure 3: Dimensionless a) Velocity and b) Microrotation profiles versus position y
for various values of Gr with B= -0.2, Br = 0.1, c =0.3, Ha =0.5, Re = 2, s =2,  =0.1

(a) (b)

(a) (b)

Figure 4: Dimensionless a Velocity and b Microrotation profiles versus position y
for various values of Ha with B= -0.1, Br = 0.1, c =0.3, Gr =0.4, Re = 1, s =2,  =0.1

Figure 5: Dimensionless a) Entropy generation number and b) Bejan number

versus position y for various values of Br/ with B= -0.1, c =0.1, Gr =0.2, Ha = 0.5,
Re = 2, s =2,  =0.1
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