
1 
 

 

COMPUTATIONAL THERMAL SCIENCES: AN INTERNATIONAL JOURNAL 

 
An Official Journal of the American Society of Thermal and Fluids Engineers 

Publisher: Begell House, USA. 

ISSN Print: 1940-2503; ISSN Online: 1940-2554 

Accepted October 24th 2018  

NUMERICAL SOLUTIONS FOR AXISYMMETRIC NON-NEWTONIAN 

STAGNATION ENROBING FLOW, HEAT AND MASS TRANSFER WITH 

APPLICATION TO CYLINDRICAL PIPE COATING DYNAMICS   

 

O. Anwar Bég1, R. Bhargava2, Sapna Sharma3,  

T. A. Bég4, MD. Shamshuddin5* and Ali Kadir1 
 

1Aeronautical and Mechanical Engineering, University of Salford, Manchester, M54WT, UK. 
2Mathematics Department, Indian Institute of Technology-Roorkee, India. 

3 School of Mathematics, Thapar University, Patiala - 147001, Punjab, India. 
4 Computational Mechanics and Renewable Energy, Dickenson Road, Manchester, M13, UK. 

5*Department of Mathematics, Vaagdevi College of Engineering, Warangal, Telangana-506005,India. 

*Corresponding author: shammaths@gmail.com 

ABSTRACT  

Heat and mass transfer in variable thermal conductivity micropolar axisymmetric stagnation 

enrobing flow on a cylinder is studied. Numerical solutions are obtained with an optimized 

variational finite element procedure and also a finite difference method. Graphical variations 

of velocity, angular velocity, temperature and concentration are presented for the effects of 

Reynolds number, viscosity ratio, curvature parameter, Prandtl number and Schmidt number. 

Excellent agreement is obtained for both finite element method (FEM) and finite difference 

method (FDM) computations. Further validation is achieved with a Chebyshev spectral 

collocation method (SCM). Skin friction is elevated with greater Reynolds number whereas it 

is suppressed with increasing micropolar parameter. Heat transfer rate decreases with an 

increase in the thermal conductivity parameter. Temperature and thermal boundary layer 

thickness is reduced with increasing thermal conductivity parameter and Reynolds number. 

Greater Reynolds number accelerates the micro-rotation values. Higher Schmidt number 

reduces the mass transfer function (species concentration) values. The mathematical model is 

relevant to polymeric manufacturing coating (enrobing) flows.  

 

Keywords: Micropolar; thermal conductivity; stagnation point; finite element method, 

enrobing. 

 

1. Introduction 

Fluid mechanics is important in many branches of engineering manufacturing including control 

of debris materials (Dowding and Lawrence, 2009), nano-materials synthesis (Das et al., 2012) 

and grinding systems (Mihic et al., 2013; Parthasarthy and Malkin, 2010).  Coupled heat and 
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mass transfer phenomena are also important in a range of enrobing flows in foodstuff and 

biotechnological material coating systems (Cunningham, 1995; Bean, 2009; Gray, 2009). 

Mixed convection is in particular a commonly encountered phenomenon and describes 

situations where both buoyancy and pressure forces exert an influence on the flow domain. 

Some excellent practical applications are documented in the monograph of (Denn, 1998). Many 

researchers have investigated coupled heat and mass transfer flows, often employing boundary 

layer theory to simplify the transport equations in order to yield numerical or closed-form 

solutions. This generally reduces the elliptic (Navier-Stokes) models to parabolic differential 

models which are significantly simpler to simulate yet retain a considerably degree of accuracy 

and physical relevance. Many of the studies communicated have been motivated by 

applications in polymeric, foodstuff and other process engineering systems. (Tien and 

Campbell, 1963) examined the combined heat and mass transfer from spinning conical 

geometries using boundary-layer theory. Heat and mass transfer in the presence of complex 

physical effects such as hydro magnetism, lateral mass flux, condensing surfaces and so on has 

also stimulated major investigations in the past several decades owing to significant 

applications in magnetic materials processing. (Fedrov and Viskanta, 1998) studied the heat 

and mass transfer and also adsorption aspects in a honeycomb material. (Dietl et al., 1998) 

numerically investigated the heat and mass transfer in hygroscopic material drying processes. 

A coupled heat and transfer mathematical model for an adsorption reactor was presented by 

(Fedrov and Viskanta, 1999). Further interesting studies of relevance to manufacturing 

engineering have been presented by (Grigoropoulos et al., 1996) for pulsed-laser-induced 

material modification, (Bég et al., 2009) for magnetohydrodynamic sheet processing, (Tan et 

al., 2012) for laser spot conduction welding, (Uddin et al., 2013) for rheological nanogel 

thermal processing and (Rashidi et al., 2012) for combustion boundary layers. Clearly there is 

a wide interest in heat and mass transfer processes. For coupled problems (involving 
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buoyancy), the differential equations are more complex to solve, and numerical methods are 

the only practicable means to yield solutions of interest to the engineering science community.   

All these studies have been concerned with Navier-Stokes or Newtonian fluids. However, there 

are many environmental and industrial flows where the transport fluid deviates substantially in 

behaviour from this classical theory. Non-Newtonian fluid models are therefore needed to 

analyze such flow domains. Many such models have been communicated and are reviewed in 

the excellent monograph by (Edwards and Brenner, 1993). Among the generalized theories for 

rheological fluids, the most comprehensive has proven to be that of the micromorphic fluid 

introduced in a classical paper by (Eringen, 1964). The theory of micropolar fluids was 

developed due to the increasing importance in processing industries and elsewhere of materials 

which have significant micro-structural characteristics including couple stresses and rotating 

elements at the microscopic level. Experiments done by (Hoyt and Fabula, 1964), with fluid 

containing a minute number of polymeric additives indicate a reduction in skin friction near a 

rigid body, when compared with the skin friction in the same fluid without additives. This 

phenomenon cannot be explained on the basis of the so-called viscoelastic family of 

rheological models. In support of these experiments, (Eringen, 1966) proposed the theory of 

micropolar fluids, which took in to account the initial characteristics of the substructure 

particles, which are allowing to undergo rotation. The theory can be applied successfully to 

explain the colloidal fluids, foodstuffs (chocolate), liquid crystals fluid with additives and many 

other “complex fluids”. Later (Eringen. 1972) developed the theory of thermo-micropolar 

fluids to include heating effects. The study of heat and mass transfer in micropolar liquids has 

important applications including extrusion flows (Kelson and Farrell, 2001), energy systems 

(Rawat et al., 2009), polymeric synthesis (Bég et al., 2010) and medical engineering (Rashidi 

et al., 2011). Micropolar transport phenomena therefore are important to study from the 

viewpoint of elucidating more accurately the flow dynamics occurring in many manufacturing 
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engineering systems. A great amount of research in micropolar hydromechanics and heat 

transfer has been communicated in the past three decades. For example, (Gorla and Hassanien, 

1990) studied the boundary flow of a micropolar fluid near the stagnation point on a horizontal 

cylinder. This analysis was extended for the case of heat transfer by (Hassanien and Salma, 

1997). (Mansoor et al., 2000) studied the heat and mass transfer in MHD flow of a micropolar 

fluid on a circular cylinder with uniform heat and mass transfer.  (Bég et al., 2008) recently 

studied the biomagnetic micropolar heat transfer in a non-Darcian biomaterial. (Zueco et al., 

2009) have investigated the magneto-micropolar convection through a vertical circular non-

Darcian porous medium conduit. Other recent studies of multi-physical micropolar flows 

include (Mishra et al., 2015) (on magnetic natural convection micropolar flow with heat 

generation), (Rout et al., 2016) (on reactive magnetic natural convection micropolar boundary 

layers), (Mishra et al., 2016) (cross diffusion in magnetic Sakiadis micropolar flow), (Baag et 

al., 2017) (on stagnation chemically-reacting magnetized micropolar convection with internal 

heat generation). Further studies of relevance are (Mehmood et al., 2017) (on viscoplastic 

micropolar Sakiadis convection flow), (Iqbal et al., 2017) (on finite difference analysis of 

hydromagnetic oblique micropolar flow) and (Mehmood et al., 2016) on rotating channel 

magneto-micropolar convection). All these investigations confirmed the substantial 

modification in heat and momentum transfer characteristics computed by including micro-

structural effects. These studies were based on micropolar fluids possessing constant physical 

properties such as viscosity and thermal conductivity. However, these properties in real 

problems are greatly affected due to high temperature. In particular the influence of variable 

thermal conductivity finds significant applications in enrobing flows. The variable fluid 

property for viscous and incompressible fluids was first analyzed by (Ghaly and Seedeek, 

2002) etc. Very little work has been done in this direction for the case of micropolar fluids. 

Additionally, the importance of species diffusion of micropolar fluids has also been neglected 



5 
 

 

in many studies despite the importance of this effect in sedimentary interaction with diffusing 

contaminants in the coastal/ocean zone, electroplating technologies in the metallurgical 

industries etc. In the present paper, we therefore investigate the boundary layer stagnation flow 

heat and species transfer of a micropolar fluid past a horizontal cylinder with variable thermal 

conductivity effects. The governing differential equations are reduced to nonlinear 

simultaneous differential equations by using similarity transformations. These equations are 

solved using an optimized finite element method, robust finite difference technique and a 

Chebyshev spectral collocation algorithm. The effect of variable thermal conductivity 

parameter, Reynolds number and Schmidt number are studied on the flow, heat and mass 

transfer fields graphically. Excellent validation of the computations is demonstrated. 

  

2. Hydrodynamics of Micropolar Fluids 

Prior to developing the mathematical model for the flow regime under consideration we shall 

initially discuss briefly the mechanics of micropolar fluids, to provide the reader not familiar 

with this theory with a physical insight into its formulation. Micropolar fluids are a special sub-

class of simple microfluids. These fluids exhibit behaviour and properties which are influenced 

by the local motions of the material particles contained in each of the volume elements i.e. 

microelements. They possess local inertia. The simple microfluids are isotropic viscous fluids 

and in the linear case are characterized by twenty-two viscosity coefficients. Such “simple” 

fluids require a system of nineteen partial differential equations with nineteen unknowns to 

simulate completely. As such the micropolar model reduces this complex system to seven 

equations, three for translational motion, three for angular momentum and a conservation of 

mass equation. Micropolar fluids have volume elements containing rigid particles (non-

deformable) which can spin about the center of the volume element and are defined by a micro-

rotation vector. This local rotation of the particles is supplementary to the conventional rigid 
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body motion of the entire volume element which defines Navier-Stokes fluids. In micropolar 

fluid mechanics, the classical continuum laws are therefore augmented with additional 

equations which account for the conservation of micro-inertia moments and the balance of first 

stress moments which arise due to the consideration of micro-structure in a fluid. Hence new 

kinematic variables (gyration tensor, microinertia moment tensor), and concepts of body 

moments, stress moments and micro-stress are amalgamated with classical continuum fluid 

dynamics theory. The field equations for micropolar fluids in generalized form can be stated 

following (Eringen, 2002) as follows: 

Conservation of Mass 

0)( =•+



V



t
                                                                                (1) 

Conservation of Translational Momentum 

( ) ( )+2 + V V G P f V       • − +  +  − + =                                                (2) 

Conservation of Angular Momentum (Micro-rotation) 

( )+ + 2G G V G l j G       • −  +  − + =                                                       (3) 

where  the mass density of micropolar fluid, V is translational velocity vector, G is angular 

velocity (microrotation or gyration) vector, j is microinertia, f is the body force per unit mass 

vector, l is the body couple per unit mass vector, p is the thermodynamic pressure,   is the 

Newtonian dynamic viscosity,  is the Eringen second order viscosity coefficient,  is the 

vortex viscosity coefficient, and ,  and  are spin gradient viscosity coefficients for 

micropolar fluids. In the micropolar model theory we are only concerned with two independent 

kinematical vector fields, namely the velocity vector field (familiar from Navier-Stokes theory) 

and the axial vector field which simulates the spin or the microrotations of the micropolar fluid 

particles, these being assumed non-deformable i.e. rigid. We apply this model to the two-

dimensional boundary layer flow past a horizontal infinite cylinder as illustrated in Schematic 

1. We note that in micropolar fluid theory for the case where the fluid has constant physical 
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properties, no external body forces exist and for steady state flow, the conservation equations 

can be greatly simplified. Additionally, for the case where  =  =  =  = 0 and with vanishing 

l and f, the gyration vector disappears and equation (2.3) due to (Eringen, 2002) vanishes. 

Equation (2) also reduces in this special case to the classical Navier-Stokes equations. We also 

note that for the case of zero vortex viscosity only, the velocity vector V and the micro-rotation 

G are decoupled, and the global motion is unaffected by the micro-rotations. 

 

3. Mathematical Model 

Consider the steady, incompressible micropolar heat and mass transfer in boundary layer flow 

at a stagnation point on an infinite horizontal circular cylinder of diameter 2a, with reference 

to a cylindrical (r, , z) coordinate system. The regime is illustrated in schematic 1. The species 

is assumed to be a non-reactive second fluid diffusing within the micropolar ambient fluid 

medium, as encountered for example in a pollutant released from a horizontal pipeline. We 

neglect turbulent and oscillatory flow effects. The flow is also assumed to be axisymmetric 

about the z-axis and also symmetric to the r- plane with the stagnation point located at z = 0. 

Under the boundary layer approximations, the governing equations can be written as follows: 

Continuity 
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Azimuthal Translational Momentum:  
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Axial Translational Momentum:  
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Angular momentum (Micro-rotation Conservation): 
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Energy (Heat Conservation) 

,
11

















=












+





r

T
rK

rrcz

T
w

r

T
u f

p

                                                                                       (9)  

Diffusion (Species Conservation) 
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The appropriate boundary conditions on the surface of the cylinder and far from the surface in 

the body of surrounding micropolar fluid are: 

At        ,ar =  
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In the above equations (4) to (10),  u   denotes translational velocity along the r-direction (radial 

component), v   is the translational velocity along the  - direction (tangential or azimuthal 

component), w is the translational velocity along the z- direction (axial  component),  is the 

mass density of micropolar fluid, p is the hydrodynamic pressure,  is the Newtonian dynamic 

viscosity,  is the Eringen vortex viscosity coefficient, N is the angular velocity (micro-

rotation) component in the r-z plane,  is the Eringen spin gradient viscosity, j is microinertia, 

T is fluid temperature, pc denotes  specific heat at constant pressure (isobaric), Kf is thermal 

conductivity of  the micropolar fluid, CA is species concentration, kg is the mass diffusivity of 

the species (contaminant). In the boundary conditions (11a) and (11b), A is a generalized 

parameter, CAw and Tw denote the concentration and temperature at the cylinder wall, CA and 
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T designate the concentration and temperature far away from the wall. The variation of the 

thermal conductivity, Kf, with temperature can be taken for the micropolar fluid as follows: 

))(1(  −+= TTbKK f                                                                            (12) 

 or  

)1( += KK f  Where )( −= TTb w                                                              (13) 

where   represents the thermal conductivity parameter. Here b is the conductivity coefficient 

(a constant) for a particular fluid e.g. 0b for water and air whereas 0b for fluids such as oils 

and petroleum derivatives, as noted in Schlichting (1979). A linear relationship between 

microrotation function N and the surface shear stress /w r   is chosen for investigating the 

influence of different cylinder surface conditions for the microrotation. Here is the boundary 

condition parameter and varies from 0 to 1. The boundary condition corresponding to s = 0 

corresponds to the no-slip condition i.e. the fluid particles closest to a solid boundary adhere to 

it, neither translating nor rotating. The second boundary condition, corresponding to 0s , 

implies that in the neighborhood of the rigid boundary (i.e. cylinder surface), the effect of 

microstructure is negligible since the suspended particles cannot get closer to the boundary 

than their radius. Hence in the neighborhood of the boundary, the only rotation is due to fluid 

shear and therefore, the gyration vector must be equal to fluid vorticity, corresponding to 

5.0−=s .  

   

4. Transformation of the Model 

To facilitate a numerical solution and generate computations which are independent of the 

dimensions of the regime i.e. can be applied to any similar geometry, we introduce a set of 

similarity transformation, following (Gorla and Hassanien, 1990), so that the mass 

conservation equation (4) is satisfied identically:  
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Equation (4) is satisfied identically. Since the radius of the cylinder has been assumed to be 

very small as compared to other dimension, equation (2) i.e. radial momentum is neglected in 

the transformation. Equations (4) - (10) are thereby reduced to the following simultaneous 

ordinary differential equations: 

Azimuthal Momentum Equation: 

'' '(1 ) Re 0R f+  +  =                                          (15) 

Axial Momentum Equation: 
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Angular Momentum (Micro-rotation) Equation: 
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Energy Equation  
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Species Diffusion Equation  

'' ' '( ) Re ( ) 0
2

Sc
f  + + =                                          (19) 

The corresponding transformed boundary conditions are now: 
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where the prime denotes differentiation with respect to  , 2Re / 2Aa =  the Reynolds

number, /R K =   is the micropolar parameter, / j  =  is the spin-gradient micropolar 

parameter,  Pr /pc K  =  is the Prandtl number, /  =   is kinematic viscosity, 
2 /B a j=  

the curvature parameter, f is dimensionless stream function, g is dimensionless 

microrotation, hf ='  is dimensionless axial velocity,   is dimensionless azimuthal velocity,
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/p gSc c k =  is Schmidt number, s  is the surface parameter,  is the dimensionless 

temperature function,   is dimensionless mass transfer function and  designates conditions 

far away from the surface.  In engineering simulations, we are interested not only in the 

velocity, micro-rotation, temperature and species transfer fields, but also certain gradient 

functions of these variables. We therefore also define a shear stress at the boundary as follows: 
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The heat flux may also be computed from the following expression: 
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Finally, the Nusselt number, can be defined as: 
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Where 

2/Re 2Azz =                                                                                      (24) 

5. Finite Element Method (FEM) Solutions 

This popular technique (Reddy, 1985) has been employed by the authors in many complex 

multi-physical industrial flow problems including nanofluid dynamics (Rana et al., 2013a), 

membrane stress dynamics (Rana et al., 2013b) and stretching sheet rheological flows (Gupta 

et al., 2014). Here we utilize the variational formulation, also known as the “weak formulation” 

in computational mechanics (Reddy, 1985).  

5.1 Method of solution: 

To solve the differential equations (15) - (19) with boundary conditions (20), we assume 

 ,' hf =                                                                  (25) 

The entire two-point boundary value problem then reduces to: 

,0Re)1( ''' =++ fR                                           (26) 
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The whole domain is divided into eighty-two-noded line elements, over each of the element, 

finite element equations are derived. 

5.2 Variational formulation: 

The variational form associated with equation (25) - (30) over a typical linear element ),( 1+ee 

is given by: 
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+  +  =                              (33)  

1

'' ' ' ' 2

2 ((1 )( ) ( ) Re( ( ) ) 0
4

e

e

R
w R h h g g fh h d





  
+

 
+ + + + + − = 

 
                          (34)                                                     

1

2 '' ' '' ' '

3(

Re
( 2 ) ( ) (2 ( ) )) 0

2 2

e

e

w g g BR f g f g fg fg d






     

+

+ − + − − − =                            (35) 

1

'' ' ' 2 '

5 ((1 )( ) ( ) Re Pr( )) 0
e

e

w f d





      
+

+ + + + =                           (36)

1

'' ' '

6 (( ) Re ( )) 0
e

e

w Sc f d





   
+

+ + =                  (37) 

where ,,,, 5432,1 wwwww  and 6w are arbitrary test function and may be viewed as the variation 

in ,,,, ghf   and   respectively.  

5.3 Implementation of the Finite Element Method: 
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Finite element formulation: 

The finite element model is for equations obtained after variation formulation by substituting 

finite element approximation of the following form 

2 2 2 2 2 2

1 1 1 1 1 1

, , , , ,j j j j i i j j j j j j

j j j j j j

f f h h g g         
= = = = = =

 =  = = = = =                 (38) 

where  ,1=iw  for the first node and ,2=iw  for the second node with 6,5,4,3,2,1=i  

Here 
j  are the shape functions for the line element ),( 1+ee   and are taken as: 

1
1 2

1 1

,e ee e

e e e e

   
 

   
+

+ +

− −
= =

− −
 where 1+ ee                                         (39) 

The finite element model of the equation (32)-(37) for the typical element thus formed is given 

by: 

 
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
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










}{

}{

}{

}{
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][][][][][][
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r

r

r

r
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                          (40) 

Here each  mnK  is of the order 22 and   )6,5,4,3,2,1,( =nmr m
is of 12 . These matrices are 

defined as:   

1 1

11 12

13 14 15 16

, ,

0

e e

e e

j

ij i ij i j

ij ij ij ij

d
K d K d

d

K K K K

 

 


    
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+ +

= = −

= = = =

 
                                                                                      (41) 

1 1 1

1 1

21 22

23 24 25 26

0, (1 ) Re Re

, 0
4 4

e e e

e e

e e

e e
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ij ij i i j

e

j

ij i i j ij ij ij
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K K R d f d h d

d d d

dR R
K d d K K K

d

  

  
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
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  

 

                             (42) 
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1 1

1 1 1

1 2 3

4 5 6

0, , ,

, ,

e e

e e
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e e e

i i i i i
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dh dg
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d d

d d d
r r r

d d d

 

 

  

  

 
 

 
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  

+ +
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   
= = − =   

   

     
= − = − = −     

     

                                                            (47) 

where 

2 2 2 2

1 1 1 1

, ,j j j j j j j j

j j j j

f f h h and     
= = = =

= =  =  =                                                    (48) 

The whole domain is divided in to a set of 80-line elements. Each element matrix is of order 

.1212  Thus after assembly of all the element equations we obtained a matrix of order 486 

486. For the computation purpose  has been fixed at 40, since all the unknown functions 

attained the desired accuracy of 0.0005. If 
 is taken more than 40, all the above functions do 
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not change up to the desired accuracy. The system of equations as obtained after assembly of 

the element equations, is nonlinear therefore an iterative scheme has been used to solve it. The 

system is linearized (Rana et al., 2013a; Rana et al., 2013b; Gupta et al., 2014) by incorporating 

the known functions ,,, hf and  .  

6. Finite Difference Method (FDM) Solutions 

For validation of the present FEM code, the same system of nonlinear coupled differential 

equations (25)– (30), subject to boundary conditions (31) are solved numerically using the 

finite difference method (FDM). No viable solutions from the literature are available with 

which to make a robust comparison. The advantage of using an alternative method is that the 

full model can be verified, not just a simpler version of it. The FDM method is equally efficient 

for ordinary as well as partial differential equations of the  boundary value type or initial value 

type. Employing central-difference formulae, the set of equations (25)– (30), can be written as 

follows: 
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where eh  is the step length. Since the above equations are non–linear and coupled hence they 

cannot be solved exactly. Therefore, an iterative scheme is required to be used. Writing down 

the equations in the form: 

( )ni lllFx .........,, 21=                                          (55) 

where each il  is the function of the variable iiiiii ghf  ,,,,,    and ix  is any of the variable 

iiiiii ghf  ,,,,,  . Similar type of equations is written for each variable of the equations (49)– 

(54). Now starting with initial guess values, new iterate values are obtained. This process 

continues till the absolute error 
1−− ii xx  is less than the accuracy required. The condition of 

convergence of the scheme has been already checked before implementing the iterative 

scheme. More details are to be found in (Bég et al., 2011). Following equation (55), the 

equations (49)-(54) can be written as follows: 

ieii fhhf +=+ 21                                (56) 
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The corresponding boundary conditions now become:  

0,0,0,0,0,0 111111 ====== ghf            (62a)  

8181 81 81 811, 0, 1, 1, 1h g  = =  = = =                                      (62b) 

The system of equations (56) to (61) with the boundary conditions (62) has been solved 

iteratively and the FDM results obtained are compared with those obtained by the FEM in 

Tables 1, 2 and 3, showing close agreement. 

 

7. Further Validation with Chebyshev Spectral Collocation Method (SCM) 

The eleventh order boundary value problem defined by eqns. (25)-(30) and wall and free stream 

conditions (31), has also been solved with a spectral collocation method of Chebyshev type 

(SCM), using a Matlab-based code, Microspecsim, (Micropolar Spectral Simulation) 

developed for micropolar flows. Again, this is done in order to increase confidence in the FEM 

and FDM solutions, since inspection of the literature does not yield any practical solutions with 

which to benchmark our simulations. This technique has been implemented to successfully 

resolve a number of challenging nonlinear problems. (Bég et al., 2013) simulated 
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electrohydrodynamic (EHD) ion drag pumping flows at general electrical Hartmann numbers 

using SCM. (Hoque et al., 2013) analyzed magneto-hydrodynamic blood flow in a curved tube 

(i.e. the “magnetic Dean problem”) using SCM. Further applications include rotating duct heat 

transfer in aerospace propulsion (Wahiduzzaman et al., 2013). The principal advantage of SCM 

lies in the accuracy achievable for a given number of unknowns. For problems whose solutions 

are sufficiently smooth, SCM demonstrates exponential rates of convergence and accuracy. To 

optimize the present method, Microspecsim has been tested for convergence with respect to 

the spatial resolution. The solutions converge in 25 iterations in Newton’s method. Numerical 

solutions are found to be independent of the number of collocation points for a sufficiently 

large number of collocation points. N=65 yields the optimal convergence and very high 

accuracy (up to 610− ) and is therefore implemented in all the computations in Microspecsim. 

An excellent perspective of SCM is documented in (Trefethen, 2000). In SCM, we seek an 

approximate solution, which is a global Chebyshev polynomial of degree N defined on the re-

mapped interval [-1, 1]. We discretize the interval by using collocation points to define the 

Chebyshev nodes in [-1, 1], namely  
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N

j
x j ==


.                                                                 (63)   

The derivatives of the functions at the collocation points are given by: 
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where 
n

kjd  represents the differentiation matrix of order n and are given by   
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Here )( jn xT  are the Chebyshev polynomial and the coefficients j  and lc  are defined as  
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As described above the Chebyshev polynomials are defined on the finite interval [-1,1]. 

Therefore, to apply Chebyshev spectral method to the nonlinear boundary eqns. (9)-(11), we 

make a suitable linear transformation and transform the physical domain [0, ] to Chebyshev 

computational domain [-1, 1]. We sample the unknown function w at the Chebyshev points to 

obtain the data vector: 

T

Nxwxwxwxww ]),(......),(),(),([ 210= .                  (68) 

The next step is to find a Chebyshev polynomial P  of degree N that interpolates the data, i.e. 

( ) , 0,1,...j jP x w j N= = .                                          (69) 

 and obtain the spectral derivative vector w  by differentiating P  and evaluating at the grid 

points, i.e. 

' '( ), 0,1,... .j jw P x j N= = .                                          (70) 

This transforms the nonlinear differential equations into a system nonlinear algebraic equation 

which are solved by Newton’s iterative method starting with a initial guess. The comparisons 

of FEM and SCM solutions, for skin-friction coefficient and local Nusselt number for the 

general micropolar model are shown in Tables 1-3. Very close agreement is observed, further 

confirming the accuracy of the FEM solutions, and the FDM solutions. 

 

8. Results and discussion  

To study the behavior of the axial velocity, azimuthal velocity, microrotation function, heat 

and mass transfer functions, we have provided graphs of the parameters namely Reynolds 

number, micropolar parameter, thermal conductivity parameter and Schmidt number as 

depicted in figures (1) – (10). Other geometrical and thermophysical parameters namely the 

Prandtl number, curvature parameter, B, and spin gradient viscosity parameter,   are taken to 
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be constant at 0.05, 0.1 and 0.5 respectively. The thermal conductivity parameter   has been 

selected following (Schlichting, 1979) with 0  for air, water etc. and 01.0 −   for 

lubricating oils. We shall discuss the influence of each parameter on the hydrodynamic regime 

in turn. The independent variable in the computations,  is the ratio (r/a) 2. Hence  = 0 

corresponds to r = 0 i.e. at the center of the cylinder edge;   = 1 implies that r = a i.e. the 

surface of the cylinder (near field zone) and  = 41 corresponds to the far field zone.  

8.1 Reynolds Number Effects  

Figures (1) – (5) depict the variation of dimensionless axial velocity (h), dimensionless 

azimuthal velocity (  ), dimensionless microrotation (g), and dimensionless temperature 

function ( ) and dimensionless mass transfer function ( ) with Reynolds number. Figure (1) 

illustrates the axial velocity (h) profile for different value of Re. Reynolds number embodies 

the ratio of inertial force to viscous force. The axial velocity is observed to increase with a fall 

in Reynolds number; hence the axial momentum is seen to be positively influenced in the 

stagnation region, by a lower Reynolds number or higher viscous force. For small values of the 

Reynolds number the axial velocity profile takes a concave shape, indicating that in viscous-

dominated flow axial momentum is substantially influenced. As Reynolds number increases, 

the h profile reduces its concavity i.e. becomes more monotonic. The effect of the Reynolds 

number on azimuthal velocity is shown in figure 2. Azimuthal velocity increases with a rise in 

Reynolds number. For larger values of Reynolds number (i.e. 1 and 2) which still correspond 

to a creeping flow regime, it takes S-shaped but as Re decreases a steep change is obtained. 

For Re = 0.05, the profile has a monotonic inverted parabolic nature. Variation of the 

microrotation function, g, with Reynolds number is shown in figure 3. An increase in the 

Reynold numbers generates a major positive boost in microrotation function especially in the 

range 0 <  <1. Also, it is clear from the figure that the concentration of the micro-constituents 

decreases as Reynolds number rises. With larger values of Re, the angular momentum field is 
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boosted, increasing the rate of rotation of particles about their poles, leading to a general rise 

in g values. This result would also be important in assessing the contribution of fluid containing 

suspension e.g. sediment-laden water on the ocean bed. Figures 4-5 display the distribution of 

temperature and mass transfer function. As the Reynolds number increases, the temperature 

function, , and mass transfer function, , decrease continuously with distance from the 

cylinder end center ( = 0) i.e. further into the pure fluid regime (free stream). Temperature 

profiles are seen to decay monotonically from the cylinder end center where  = 0, to the far 

field zone i.e. where →  (41 in the case of the present numerical computations). The rate of 

descent of the  profiles is much sharper however for larger Re values (0.5, 1, 2) than for the 

lowest Re value (0.05). For the case of the mass transfer function, (figure 5), the  profiles also 

decay but less sharply than temperature profiles. In both figures a very low Prandtl number has 

been used (Pr = 0.05) which could characterize a liquid metal ambient fluid or heavily 

sediment-laden suspension i.e. hyper-concentrated flow. The Schmidt number Sc is set at 1.0. 

This parameter defines physically the ratio of momentum diffusivity (viscosity) and mass 

diffusivity. For a unity value both momentum and species diffuse at the same rate. Prandtl 

number however defines the ratio of momentum diffusivity to thermal diffusivity implying that 

for Pr = 0.05 i.e. heat conduction is very effective compared to convection: thermal diffusivity 

is dominant. For larger Pr fluids e.g. molten chocolate, creams etc, convection is very effective 

in transferring energy from an area, compared to pure conduction i.e. in this case momentum 

diffusivity is dominant. The Prandtl number controls the relative thickness of the momentum 

and thermal boundary layers. Reynolds number has a much less dramatic effect on mass 

transfer field compared with the thermal field.  values are reduced as Re increases from 0.05 

to 2 but only marginally.   

 

  

http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Convection
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Boundary_layers
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8.2 Micropolarity Effects 

Figures 6 – 8 illustrate the distribution of axial velocity, azimuthal velocity and microrotation 

function with the effect of micropolar parameter, R. The results for R = 0 correspond to a 

Newtonian viscous fluid. Figure 6 indicates that axial velocity, h, increases with an elevation 

in the micropolar parameter, R; profiles also reduce in their curviness as R increases. R defines 

the ratio of the vortex (micropolar) viscosity to the product of fluid density and Newtonian 

kinematic viscosity. It is observed that velocity for Newtonian (Navier-Stokes viscous fluid, R 

= 0) is noticeably less than the micropolar fluid cases (R > 0). This physically implies that by 

the addition of more and more microconstituents to the fluid, axial velocity can be increased. 

Such a characteristic may be exploited in industrial operations. Figure 7 depicts the effect of 

micropolar parameter, R, on the azimuthal velocity. Azimuthal velocity decreases as the 

micropolar parameter increases from 0 to 3. Profiles assume S-shaped configurations for the 

different values of micropolar parameter, R; a steep increase in velocity is witnesses in the 

vicinity of the boundary i.e. at  = 0 (cylinder edge center). Microrotation function, g, versus 

, is illustrated in figure 8, for different values of micropolar parameter, R. g is seen to increase 

in magnitude with a rise in the micropolar parameter. For R = 0 the peak magnitude of g at  

= 0 is about 0.025; for R = 3.0 it is 0.037. As expected, near the boundary ( = 0) a fast change 

is observed i.e. a sharp rate of change of micro-rotation or micro-rotation gradient (dg/d) is 

seen here. In the free stream, the gradient however decreases, and the profiles tend very 

smoothly (almost horizontally in the case of R = 0 i.e. Newtonian fluid) to zero.  It therefore 

appears that micro-rotation is greater in the fluid regime nearer the cylinder edge and curved 

surface but decays considerably in the far field zone.  

8.3 Thermal Conductivity Variation Effects 

 Figures 9 illustrates the temperature function, , distributions with . Figure 9 shows the effect 

of thermal conductivity parameter, , on temperature function. Temperature increases as the 
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thermal conductivity parameter increases. The characteristic of variable thermal conductivity 

is very common in many engineering processes encountered in the metallurgical and chemical 

processing industries e.g. enrobing, gold-plating, electroplating etc. Where temperature attains 

very high values, the thermal conductivity parameter can be used to control the temperature 

fields. We also observe that the rate of change of temperature function (d/d) is very high in 

the region 0 < < 11, at which  values become zero instantaneously.   

8.4 Schmidt Number Effects 

Figure 10 illustrates the mass transfer profile for different value of Schmidt number. Schmidt 

number regulates the mass diffusion phenomena in the flow regime. Schmidt number as 

defined earlier represents the ratio of momentum diffusivity to the molecular diffusivity. As 

the Schmidt number increases, from 0.5 (species diffuses twice as fast as momentum) to 3 

(momentum diffuses at 3 times the rate of species), the mass transfer function, , decreases; 

however, for moderate value of the Schmidt number it decreases slowly i.e. Sc = 0.5 the 

decrease is much more gradual than for higher values. 

We have also tabulated in Table 1 the variation of the skin friction and heat transfer with respect 

to Reynolds number, micropolar parameter and thermal conductivity parameter. Our 

computations obtained with both finite element and finite difference methods, show that the 

skin friction coefficient increases with a rise in Reynolds number and surface parameter but 

falls with an increase in micropolar parameter. The rate of heat transfer is depressed with rising 

thermal conductivity parameter () and surface parameter (s) but conversely boosted with an 

increase in the Reynolds number. An increase in the heat transfer rate implies faster cooling of 

the cylinder surface. Thus, the rate of heat transfer can be controlled effectively by regulating 

the thermal conductivity parameter. 
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9. Conclusions  

A mathematical model has been presented for the micropolar heat, mass and momentum 

transfer in the stagnation region of an infinitely long horizontal cylinder, using Eringen’s 

micro-continuum theory and boundary layer physics. Both finite element and finite difference 

computations have been performed. The simulations indicate that:   

• The axial velocity increases with a decrease in the Reynolds number and micropolar 

parameter. 

• Thermal conductivity parameter (  ) and Reynolds number (Re) can be used effectively 

for controlling the rise in the temperature. 

• Skin friction increases with increase in Reynolds number but decreases with micropolar 

parameter. 

• Heat transfer rate decreases with an increase in the thermal conductivity parameter and 

surface parameter whereas it is elevated with Reynolds number.  

• With higher Reynolds number, micro-rotation (angular velocity) values are enhanced. 

• With greater Schmidt number the mass transfer function (species concentration) decreases. 

The rate of heat transfer is depressed with rising thermal conductivity parameter  

• The rate of heat transfer thus can be regulated by the conductivity parameter which can be 

exploited in commercial metallurgical operations and also may have significance in ocean 

pipeline bed contamination releases near hydrothermal vents. 

FEM has been shown to provide excellent stability and accuracy for non-linear stagnation point 

micropolar enrobing flow simulations. The technique, again based on the variational 

formulation, is presently being applied to consider nonlinear micropolar nanofluid transport 

from cylindrical curved bodies (Prasad et al., 2015) and also heat and mass transfer from 

rotating and spherical or conical bodies (Bég et al., 2015; Bég et al., 2012). The results of these 

investigations will be communicated imminently. 
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TABLES 

Table 1: Comparison of FEM, FDM and SCM solutions for skin friction and heat transfer rate 

with various Reynolds numbers (Re) [

3.0,0.1,1.0,1.0,0.1Pr,0.1,5.0 =======  ScRBs ]. 

Re )0(''f−

FEM 

)0(''f−

FDM 

)0(''f−

SCM 

(0)−  

FEM 

(0)−  

FDM 

(0)−  

SCM 

0.05 -0.134636 -0.134635 -0.134636 0.221291 0.221292 0.221291 

0.5 -0.072500 -0.072501 -0.072500 0.380056 0.380055 0.380055 

1.0 -0.051311 -0.051310 -0.051311 0.435477 0.435476 0.435478 

2.0 -0.041134 -0.041133 -0.041134 0.465138 0.465137 0.465137 

 

Table 2: Comparison of FEM, FDM and SCM solutions for skin friction and heat transfer rate 

with various micropolar parameters (R) [

3.0,0.1,1Re,1.0,0.1Pr,0.1,5.0 =======  ScBs ]. 

R )0(''f−

FEM 

)0(''f−

FDM 

)0(''f−

SCM 

(0)−  

FEM 

(0)−  

FDM 

(0)−  

SCM 

0 -0.058804 -0.058803 -0.058805 0.459696 0.459695 0.459698 

1 -0.065023 -0.065022 -0.065025 0.478699 0.478697 0.478698 

2 -0.072874 -0.072871 -0.072873 0.501579 0.501576 0.501580 

3 -0.077873 -0.077874 -0.077875 0.515571 0.515568 0.515572 

 

Table 3: Comparison of FEM, FDM and SCM solutions for skin friction and heat transfer rate 

with various surface parameters (S) [ 3.0,0.1,1.0,1Re,1.0,0.1Pr,0.1 =======  ScRB

]. 

s )0(''f−

FEM 

)0(''f−

FDM 

)0(''f−

SCM 

(0)−  

FEM 

(0)−  

FDM 

(0)−  

SCM 

0.0 -0.034827 -0.034826 -0.034826 0.484482 0.484480 0.484481 

0.25 -0.034588 -0.034587 -0.034586 0.484594 0.484590 0.484592 

0.5 -0.034891 -0.034894 -0.034892 0.484762 0.484759 0.484763 

0.75 -0.034923 -0.034927 -0.034924 0.484887 0.484879 0.484889 

1.0 -0.034955 -0.034951 -0.034957 0.485041 0.485038 0.485040 

 

Table 4: Comparison of FEM, FDM and SCM solutions for skin friction and heat transfer rate 

with various thermal conductivity parameters () 

[ 5.0,0.1,1.0,1Re,1.0,0.1Pr,0.1 ======= sScRB ]. 

  )0(''f−

FEM 

)0(''f−

FDM 

)0(''f−

SCM 

(0)−  

FEM 

(0)−  

FDM 

(0)−  

SCM 

0.05 -0.051311 -0.051309 -0.051311 0.591326 0.591322 0.591325 

0.0 -0.051311 -0.051309 -0.051311 0.566993 0.566990 0.566992 

0.3 -0.051311 -0.051309 -0.051311 0.435477 0.435474 0.435475 

1.0 -0.051311 -0.051309 -0.051311 0.170602 0.170600 0.170601 

1.5 -0.051311 -0.051309 -0.051311 -0.123647 -0.123642 -0.123647 
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FIGURE CAPTIONS 

Schematic. 1: Physical model and coordinate system 

Figure.  1:  Axial Velocity for different Re (R=0.5, Sc=1.0) 

Figure.  2:  Azimuthal velocity for different Re (R=0.5, Sc=1.0). 

Figure.  3: Microrotation for different Re (R=0.5, Sc=1.0). 

Figure.  4: Temperature for different Re (R=0.5, Sc=1.0) 

Figure.  5: Mass transfer for different Re (R=0.5, Sc=1.0) 

Figure.  6: Axial velocity for different R (Re=0.5, Sc=1.0) 

Figure.   7: Azimuthal velocity for different R (Re=0.5, Sc=1.0) 

Figure.  8: Microrotation for different R (Re=0.5, Sc=1.0) 

Figure.  9: Temperature for different  (Re=0.5, R=0.5, Sc=1.0) 

Figure. 10: Mass transfer for different Sc (Re=0.5, R=0.5,  =1.0) 
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SCHEMATICS AND FIGURES 

 
Schematic. 1: Physical model and coordinate system 

 

         
        FIG. 1: Axial Velocity for different Re (R=0.5, Sc=1.0) 

 

Fig. (1) - Axial velocity for different Re

(R=0.5,Sc=1.0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41


h

Re

0.05

0.5

1

2

 
z = 0 (stagnation 

point) 

Stagnation line 

2a 

Micropolar fluid 
Horizontal cylinder 



33 
 

 

          

       FIG. 2: Azimuthal velocity for different Re (R=0.5, Sc=1.0) 

 

         

      FIG. 3: Microrotation for different Re (R=0.5, Sc=1.0) 

 

 

 

 

Fig. (2) - Azimuthal velocity for different Re

(R=0.5,Sc=1.0)
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FIG. 4: Temperature for different Re (R=0.5, Sc=1.0) 

 

       

FIG. 5: Mass transfer for different Re (R=0.5, Sc=1.0) 
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FIG. 6: Axial velocity for different R (Re=0.5, Sc=1.0) 

 

 

        

     FIG. 7: Azimuthal velocity for different R (Re=0.5, Sc=1.0) 

 

 

 

 

 

 

Fig. (6) - Axial velocity for different R

(Re=0.5,Sc=1.0)
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Fig. (7) - Azimuthal velocity for different R

(Re=0.5,Sc=1.0)
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     FIG. 8: Microrotation for different R (Re=0.5, Sc=1.0) 

 

 

 

          

     FIG. 9: Temperature for different   (Re=0.5, R=0.5, Sc=1.0) 

 

 

 

 

Fig. (8) - Micro rotation for different  R

(Re=0.5,Sc=1.0)
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Fig. (9) - Temperature for different 
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         FIG. 10: Mass transfer for different Sc (Re=0.5, R=0.5,  =1.0) 

 

 

Fig. (10) - Mass transfer for different Sc

(Re=0.5,R=0.5,=1.0)
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