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ABSTRACT

The research presented in this MSc thesis is concerned with understanding the way incoming
electromagnetic waves are diffracted by various different types of scattering screens. These
classes of problem are fundamental in the laser optics community, and within the arena

of wave physics more generally. They are also of potential interest to applied mathematics
researchers, particularly those concerned with describing scattering through boundary integral
equations.
Analysis begins with revisiting Lamb’s ingenious solution to the classic knife-edge problem,
known for over a century. Maxwell’s equations are solved for an incoming plane wave (subject
to appropriate boundary conditions on a perfectly-conducting semi-infinite screen of negligible
thickness) and this building-block calculation is then generalized to allow for incident and
scattered waveforms that have multiscale characters. A candidate model used throughout is the
Weierstrass function. In its original form, this function is well known to be continuous everywhere
but differentiable nowhere and it was dubbed a ‘monster’ by Charles Hermite. Two distinct
families of solution are derived which, for the first time, provide a fairly rigorous description of
pre-fractal electromagnetic waves scattering from a single knife-edge.
Subsequent investigations consider plane waves scattering from conducting screens that can have
a multi-scale character, such as a pre-fractal Cantor set (that is, a diffraction grating modelled on
any finite iteration of the Cantor set). Previous related studies have been concerned predominantly
with regimes wherein the outgoing waves are observed in the far field (that is, at large distances
from the screen), and where recourse has typically been made to the scalar approximation.
Here, a more general formulation is developed that is based on Rayleigh-Sommerfeld diffraction
integrals, and the scattered waves are connected more directly to Maxwell’s equations in terms of
calculating the corresponding magnetic-field components.
Finally, the first steps are taken toward modelling a physical scenario where an incident pre-
fractal wave scatters from a pre-fractal Cantor set. Research into this regime is still ongoing,
largely due to the computationally-expensive nature of the required calculations.
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INTRODUCTION

1.1 Research context

The research in this thesis is concerned with investigating how electromagnetic waves,

particularly those with a pre-fractal character (known colloquially as monsters), can

scatter from obstacles that may be either simple (as in the case of a single knife edge) or

complex. In this sense, the complex domain of the thesis title pertains to a scattering obstacle

that can possess structure over potentially many decimal orders of spatial scale. The candidate

complex domain used throughout this thesis is based on the famous Cantor set, but other equally

well-known examples might be the von Koch snowflake or the Sierpinski triangle, for instance.

From the outset, it is noted that some substantial early (and still unpublished) work has already

been undertaken in this general area, beginning in around 2013 [3–5]. All the preceding analysis

has been based upon the assumption that the paraxial approximation holds true and that the

framework of scalar wave optics is sufficient to describe the multi-scale scattering phenomena

under consideration. Adoption of the simpler paraxial-based model is desirable for a number

of reasons, most obviously that the governing partial differential equations (PDEs) are vastly

reduced in complexity (going from the elliptic Helmholtz equation to the parabolic paraxial diffrac-

tion equation), boundary conditions play only a marginal role in the ensuing diffraction-integral

formulation, and exact continuous-wave (cw) solutions can be immediately written down in the

form of Fresnel integrals. Finally, through deployment of Hastings’s rational approximations, the

paraxial description of diffraction patterns can be readily interpreted in the context of Young’s

edge waves – clearly a major advantage when grappling with such complicated systems. It is

also helpful that all those paraxial patterns can be parametrized quite conveniently by a single

dimensionless constant, namely the aperture Fresnel number.
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Here, the research programme is effectively ‘reset’ and the diffraction problem is attacked from

an altogether different direction. Starting from scratch, the assumptions underlying previous

work will be re-examined and any mathematical approximations kept to a minimum. The mo-

tivation for such a re-consideration comes from several gradual realizations. Firstly, there is

a dawning that the paraxial approximation is not necessarily a feasible starting point for de-

scribing high-frequency regimes defined by the inequality |k⊥|
k ≈O (1), where k⊥ is the magnitude

of the transverse projection of the wavevector and k = 2π
λ

is the wavenumber—we return to

this point shortly. The Fresnel approximation tends to be valid in low-frequency regimes only,

where |k⊥|
k ¿O (1). It works best under conditions of normal incidence, scalar diffraction, and for

describing waves travelling in the forward longitudinal sense only [6]. It cannot be expected to

provide quantitatively reliable results whenever deviating from these constraints. There is also

an acceptance that paraxial theory inherently is unlikely to provide a satisfactory prediction

for the high-frequency cut-offs which are such a crucial part of physically realistic pre-fractal

structures. The reason is that the cut-off condition is based on geometrical considerations in-

volving propagation angles close to 90◦ and that are hence in violation of the small-angle (i.e.,

low-frequency) assumption.

The remainder of Chapter 1 provides a summary of some key concepts used throughout the

rest of the thesis. These concepts fall broadly into two categories: mathematical and physical.

The mathematical background introduces the reader to the concept of fractals, particularly

the Cantor set and dust, and the notion of dimension with particular focus on the Hausdorff

dimension. The Weierstrass function is reviewed and a brief description of four mainstream

fractal-dimension estimation measures for real (finite) data sets is provided (variogram, power

spectrum, roughness-length, and rescaled-range). There is also a discussion on how the standard

Weierstrass function must be truncated if it is to represent a physically-meaningful electromag-

netic field. The physical background provides an overview of the free-space Maxwell equations

and details how the subsequent electric and magnetic components of a wave may be derived for

cw solutions. The chapter concludes with an asymptotic analysis to show how earlier (paraxial)

work must emerge as a special case.

In Chapter 2, attention is paid to Sommerfeld’s classic knife-edge problem where an incoming

wave impinges on a semi-infinite, perfectly-conducting screen of negligible thickness and where

electromagnetic energy is scattered into the far field. Lamb’s solution is considered, derived in

detail, and subsequently generalized to allow for incoming waves that are pre-fractal in nature

and where a truncated form of the Weierstrass function is used as a model for multiscaledness.

The results of that analysis are the fundamental Weierstrass-Lamb waves: exact vector solutions

to Maxwell’s equations (in both transverse-electric, TE, and transverse-magnetic, TM, families)

that describe the linearly-polarized cw electromagnetic field at all points in space and time and

that fully respect the boundary conditions on the screen. These novel solutions are still naturally

described in terms of Fresnel integrals because of some interesting properties of the underlying
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Helmholtz equation. As a consequence, one of the Weierstrass-Lamb waves captures as a limit

the known paraxial Weierstrass-type wave for a knife edge. That is, a paraxial solution emerges

when the assumptions of paraxial theory are satisfied (as should be the case): one requires small

angles relative to the reference axis (i.e., at large longitudinal and small transverse distances),

observation to be in the forward half-plane only, and when the incoming electric field is polarized

parallel to the screen’s edge. A preliminary attempt has been made to quantify the fractal dimen-

sion of the Weierstrass-Lamb solution by deploying the BENOIT software package, but limited

available computational resources have, to some extent, hindered that analysis (and also at other

points throughout the research).

Chapter 3 begins the formal investigation of how normally-incident electromagnetic plane waves

are diffracted by complex apertures, and where the scattering obstacle is modelled as iterations

of the Cantor set. The motivation for this work, and the particular choice of a Cantor-set grating,

arises from recent developments in the Applied Mathematics community [7, 8] (waves interacting

with complex domains is becoming a research area with increasing momentum) and where some

attention is focused on fractal-type generalizations of classic sound transmission problems in

acoustics. Here, the thesis prescribes a similar scattering problem (though in electromagnetics

and for TE waves only) by applying a Rayleigh-Sommerfeld (RS) diffraction-integral approach

that is essentially exact in the case of a single transverse dimension. Some very encouraging

agreement has been found with the more computationally rigorous boundary-element method

developed by other researchers. Preliminary results for the RS scattering of plane waves from

the Cantor dust (a variation of the Cantor set but with two transverse dimensions) are given

in Appendix E, but the strong time constraints on the 12-month MSc programme and a high

number of computationally-expensive calculations have not yet permitted a fuller development of

that research strand.

Chapter 4 continues with the RS diffraction-integral approach by considering a single slit aperture

(in essence, the zero-order iteration of a Cantor-set initiator-generator algorithm) illuminated by

a truncated Weierstrass-type input wave. An advantage here is that the results are unconstrained

by the paraxial limitations of earlier analyses, numerical solutions are computed that are formally

valid in essentially all of the forward half-plane, and they are free from the sub-wavelength fea-

tures that typically plague paraxial predictions for the diffracted electric field. Further dimension

estimations are carried out using BENOIT for a variety of parameter regimes, and fast Fourier

transforms uncover some surprising results for both the intensity (typically the object of principle

concern in scalar wave optics due to its ease of observation in the laboratory) and also the electric

field (which tends to be of more fundamental interest to the Applied Mathematics community, as

solutions to a set of PDEs with boundary conditions).

Chapter 5 begins to extend the analysis of Chapter 4 through the generator hierarchy, applying

truncated Weierstrass-type input waveforms to increasing iterations of the Cantor set. Of particu-

lar interest here is that two different constructions are used. Considered first is the classic Cantor
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set from fractal geometry, where each application n = 1,2,3. . . of the generator algorithm reduces

the initial slit width by a factor of 3n (so that as n →∞, the slits tend toward zero width) and all

the slits remain within a fixed region of space. A second construction is also considered, wherein

for n = 1,2,3. . . the slits have constant width (i.e., are independent of n) but are increasingly

separated in space (this is the configuration typically favoured in the early optics experiments).

Analysis in BENOIT looks for trends in the datasets when estimating the fractal dimension.

Conclusions about the research undertaken here are drawn in Chapter 6, and some suggestions

are given for future avenues of investigation.

1.2 Fractals

One of the first things we learn during childhood is the concept of dimension. The world is

inherently three-dimensional (3D), the paper you see this thesis written on is two-dimensional

(2D) and a line is one-dimensional (1D). This is very simple to comprehend; the problem is

when dimension becomes non-integer. These entities with a non-integer dimension are commonly

referred to as fractals. Anyone can appreciate their underlying beauty through pictures however

the mathematics behind such structures is abstruse. Mandelbrot, in his seminal essay “The

Fractal Geometry of Nature” [9], defined a fractal as such:

“A fractal is by definition a set for which the [Hausdorff] dimension strictly exceeds

the topological dimension.”

The Hausdorff dimension mentioned here is the go-to dimension of an object. It is by no means

the only dimension but it is useful since it can be defined for every set [10]. In this thesis, two

different fractals are considered in detail: the Cantor set and the Weierstrass function.

1.2.1 Cantor set

The Cantor set is a fractal that is easily recognisable and although it may not look as exciting as

others such as the von Koch curve or the Mandelbrot set [10], it remains extremely important to

the field. The traditional Cantor set is constructed through an iterative process. To begin, one

takes a unit length (this is the zeroth iteration, or initiator, n = 0) and then removes the middle

third of this length (the generator). One then takes the middle third out of the remaining two

lengths, n = 1. As n →∞, what is left is an infinite uncountable set (see Fig 1.1). The Cantor set

is self similar; it can be regarding as being made of scaled versions of itself. One can hence use

the Hausdorff scaling property to state that a given Cantor set, F, can be split into two parts –

FL and FR , where FL ⊂ F[0, 1
3 ] and FR ⊂ F[2

3 ,1]. If D0 denotes the dimension and H D0(F) is the

D0-dimensional Hausdorff measure of F (where one assumes that 0<H D0(F)<∞) [10] then

(1.1) H D0(F)=H D0(FL)+H D0(FR)= 2
(1
3

)D0
H D0(F).
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Dividing by H D0 gives 1= 2
(1

3
)D0 , which then yields the Hausdorff dimension of the traditional

(middle third) Cantor set as D0 = log2
log3 ≈ 0.6309.

Figure 1.1: The first four iterations of the pre-fractal Cantor set.

1.2.2 Cantor dust

The 2D analogue of the Cantor set is Cantor dust. Similar to the aforementioned Cantor set, one

takes the generator square and replaces it by four versions of itself – each scaled down to a ninth

of its original size. This process is repeated ad infinitum.

Figure 1.2: The first three iterations of the Cantor dust.

1.2.3 Weierstrass functions

In 1886 Karl Weierstrass presented a function that was different from all others – it was

everywhere continuous but nowhere differentiable [11],

(1.2) W(t)=
∞∑
ν=0

λ−(2−D0)ν sin(λνt),

where 1< D0 ≤ 2 and is shown graphically in Fig. 1.3. Essentially, it is a weighted superposition

of periodic patterns with a scale-length of 2π
λν

. It is now known that there is a whole family of

functions that holds these properties,

(1.3) W(t)=
∞∑
ν=0

λ−(2−D0)νg(λνt),

if g is a suitable periodic function (such as a sine or cosine). As D0 increases, the graph gets more
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Figure 1.3: A plot of the Weierstrass function given by Eq. (1.2), for D0 = 1.37 and γ= 1.5.

erratic – more space filling. Weierstrass functions can be represented in a multitudes of ways, for

example a formulation used in the literature [12, 13] is

(1.4) W(t)=
∞∑
ν=0

1
γ(2−D0)ν cos

(
2π
Λ
γνt+φν

)
,

where the parameter γ> 1 is chosen so that the values of γν determine the Weierstrass spectrum

of frequencies, Λ > 0 fixes the largest scalelength and φν is a phase that may be 0, chosen

deterministically or be random. Equation (1.4) is shown graphically in Fig. 1.4. The parameter

D0 has been proven to be the capacity dimension [14] as well as the packing dimension [15].

Hunt [13] has proven that the Hausdorff dimension of W(t) is D0 for “almost every sequence

Θ= {θ0,θ1, ...}” as long as the parameter g from Eq. (1.3) is Lipschitz and periodic.

1 1.5 2 2.5 3 3.5 4 4.5 5
t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

W
(t

)

Figure 1.4: The Weierstrass function, from Eq. (1.4), for D0 = 1.37, γ= 3 and Λ= 2.
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1.2.4 Dimension analysis

An important aspect of the work undergone in this thesis requires an estimation of fractal

dimension. The software package BENOIT [16, 17] can analyse self-affine fractals by the use of

multiple methods: the variogram method, power spectrum, roughness-length and finally rescale-

range. All are designed to work well on various self-affine fractals and each have their own

strengths and weaknesses.

1.2.4.1 Variogram background

The variogram is the mean-squared increment of the points in the series [18, 19],

(1.5) γ(∆t)= 1
2N

N∑
i=0

[Y (t)−Y (t+∆t)]2,

where Y (t) is the sampled data at a given t value, where t is the independent variable. ∆t is the

“lag distance” – the increment along t and N is the number of points in Y (t) measured for the

given ∆t value. The Hurst exponent, H, can be obtained from the proportionality γ(∆t)∝ (∆t)H ,

[19] i.e.,

(1.6) H = 1
2

lnγ(∆t)
ln∆t

,

where the dimension, D, can be simply calculated via D = 2−H.

1.2.4.2 Power spectrum method

If p(k) is defined as the discrete Fourier transform [20] of the time series Y ,

(1.7) p(k)=
N−1∑
j=0

Y ( j)exp
(
− 2πi

N
k j

)
,

then the parameter β is [21]

(1.8) β= ln[|p(k)|]
ln(k)

.

The dimension of the self-affine series can then be obtained for a topologically 1D sequence from

[22]

(1.9) D = 5−β
2

.

The power spectrum method is widely used in the Physics community due to its simplicity, ease

of use and interpretation.
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1.2.4.3 Roughness-length method

The roughness-length estimation works on the principle of (as the name suggests) calculating

the roughness of self-affine series [1]. The “roughness” here is defined as the root mean squared

(RMS) of the residues (z j) [23], so that

(1.10) RMS(w)= 1
nw

nw∑
i=1

√
1

mi −2

∑
j∈wi

(z j − z̄)2 ,

where nw is the total number of windows (of length w), mi is the number of points in the window,

z j is the particular residual of the window, and z̄ is the mean residual of the window.

The window lengths vary in size from being at least 10 points wide to around 20% of the total

length of the total series. Results in [24] suggest the method is reliable when there are roughly

between 5 and 50 data points per unit length and is best when the estimated D is between 1.3

and 1.7. The Hurst exponent, H, can be determined from the gradient of the logorithmic plot of

the RMS(w) and w, i.e.

(1.11) H = ln[RMS(w)]
ln(w)

,

and, as with the variogram method, D = 2−H.

w

z j

Figure 1.5: Adapted from Fig. 2 in [1].

1.2.4.4 Rescaled-range method

The rescaled-range method was originally developed by Hurst [25] to calculate how large reser-

voirs in Egypt needed to be in order to store an adequate amount of water. Since then, it has

found many uses in engineering and finance. The R/S (rescale-range) method for a discrete time

8
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series X t is defined as [26]

(1.12) R/S(τ)= R(τ)
S(τ)

,

where R(τ) is a measure of average deviation,

(1.13) R(τ)= max
0≤t≤τ−1

Y (t,τ)− min
0≤t≤τ−1

Y (t,τ).

Here, τ is the range and Y (t,τ) is defined such that

(1.14) Y (t,τ)=
t−1∑
i=0

∣∣∣X i −〈X 〉τ
∣∣∣,

where 〈X 〉τ is the mean of the time series, while S(τ) is the time averaged standard deviation,

(1.15) S(τ)=
√√√√(

1
τ

τ−1∑
t=0

(X t −〈X 〉τ)2
)

.

It follows that

(1.16)
R
S

∝ τH

and hence the Hurst exponent H = ln
(

R
S

)
ln(τ) and the estimated D can be determined once again from

D = 2−H.

1.2.5 Truncation of the Weierstrass function

The formal Weierstrass function involves a summation over an infinite number of terms, but

this object naturally cannot be calculated computationally. Therefore one must instead look for a

summation over a large, but finite, number of terms N. An important task is hence to calculate

exactly how large N is allowed to be. In order to do this, one must use a method of estimating the

dimension of a given data-set, such as the the aforementioned truncated-Weierstrass function,

(1.17) W(t)≡ lim
N→∞

wN (t),

where

(1.18) wN (t)=
N∑
ν=0

1
γ(2−D0)ν cos

(
2π
Λ
γνt+φν

)
.

What, too, must be considered is the growth of computation time with N. It is therefore necessary

to find a compromise between the two. Another important aspect is to decide on which estimation

method to use (as shown in Section 1.2.4) – all have pros and cons. After experimenting with

different N values, it was found that N = 7 provided a reasonably faithful representation of W(t)

for moderate D0 values (i.e., D0 not close to 2). For γ= 3, selecting N = 7 is equivalent to retaining

9
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Figure 1.6: Estimated D0 values for given dimensions of D0 = 1.1 to 1.9 for multiple dimension
estimation methods.

just over two decimal orders of scale in W(t). For D0 → 2, one requires much larger N values to

reproduce W(t) with any degree of reliability. However, a numerical grid with ∆x = λ
32 (i.e., spatial

resolution sufficiently sampling the smallest scale-length Λmin ≡ Λ
γN ) requires extensibility large

array sizes to capture W(t) even just across the range Λ
2 ≤ x ≤ Λ

2 . As shown in Fig. 1.6 both the

rescaled-range and roughness-length methods tend to give good approximations for lower D0

values but which start to falter at D0 = 1.6 where all three methods begin to underestimate the

given dimension. That is expected – if they were exact they would not be estimation methods! The

variogram does give a better evaluation for higher D0 values, however this is paired with the fact

that it overestimates the dimension for lower D0 values. The limitations of the power-spectrum

method will be discussed within the context of the diffractive-optics problem at hand in Section

3.4. Hence, roughness-length is the method of choice for all the data analysed in this thesis. An

important point is that the numerical data considered during this testing phase of the different

methods are more complex than the wave-scattering data that will be analysed later on (which

has no sub-wavelength structure) and therefore it is likely that all methods would give better

estimations of the diffracted waveforms.
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1.3 Electromagnetics background

Electromagnetism is governed by Maxwell’s equations [27]. In free space, Maxwell’s equations

are as follows, firstly with Faraday’s law,

(1.19) ∇×E =−∂B
∂t

,

the Maxwell-Ampére equation,

(1.20) ∇×B =µ0ε0
∂E

∂t
,

Gauss’s law,

(1.21) ∇·E = 0,

and Gauss’s magnetic law,

(1.22) ∇·B = 0,

where E and B are the electric field and magnetic flux density, respectively, ε0 is the permittivity

of free space and µ0 is the permeability of free space. The constitutive relations are

(1.23) D = ε0E ,

and

(1.24) B =µ0H ,

where D is the displacement electric field and H is the magnetic field. Each quantity can be

broken down into continuous-wave (cw) structure such as

(1.25) E (x, t)=E(x)exp(−iωt)+E∗(x)exp(iωt),

where x denotes space, ∗ is the complex conjugate, t the time, and ω the temporal frequency.

Combining Eqs. (1.20) and (1.25) one arrives at

(1.26) B(x)= 1
iω

∇×E(x),

where components in Cartesian coordinates are

(1.27) B(x)= 1
iω

{(
∂

∂y
Ez − ∂

∂z
E y

)
êx +

( ∂
∂z

Ex − ∂

∂x
Ez

)
êy +

( ∂
∂x

E y − ∂

∂y
Ex

)
êz

}
,

and for cylindrical polar coordinates,

(1.28) B(x)= 1
iω

{(
1
r
∂

∂φ
Ez − ∂

∂z
Eφ

)
êr +

( ∂
∂z

Er − ∂

∂r
Ez

)
êφ+ 1

r

(
∂

∂r
(rEφ)− ∂

∂φ
Er

)
êz

}
.

14



CHAPTER 1. INTRODUCTION

On the other hand, B(x) is given by

(1.29) E(x)= c2

iω
∇×B(x)

so that the individual components of E in Cartesian coordinates are,

(1.30) E(x)= c2

iω

{(
∂

∂y
Bz − ∂

∂z
By

)
êx +

(
∂

∂z
Bx − ∂

∂x
Bz

)
êy +

(
∂

∂x
By − ∂

∂y
Bx

)
êz

}
,

and in cylindrical polar coordinates,

(1.31) E(x)= c2

iω

{(
1
r
∂

∂φ
Bz − ∂

∂z
Bφ

)
êr +

(
∂

∂z
Br − ∂

∂r
Bz

)
êφ+

(
∂

∂r
(rBφ)− ∂

∂φ
Br

)
êz

}
.

The Poynting vector, S (x, t), is defined as [28]

(1.32) S (x, t)= c2 ε0E (x, t)×B(x, t),

so that for a configuration where the electric field is linearly-polarized along the z direction, (i.e.

the TE solution),

(1.33) S (x, t)= c2ε0
[− êxEz(x, t)By(x, t)+ êyEz(x, t)Bx(x, t)

]
.

The intensity of the diffracted field can be obtained from the time-average of the Poynting vector.

A large part of this thesis is considering how light diffracting from a simple 1D aperture (e.g., see

Fig 1.10) can be calculated via the the 1D Rayleigh-Sommerfeld (RS) integral [28],

(1.34) Ez(x, y)= i
ky
2

∫ ∞

−∞
dx′Ez(x′,0)

H(1)
1 (kR)

R
,

where R ≡
√

(x− x′)2 + y2 and Ez(x′,0) is the known field across the aperture. The axes x and

y are aligned in the manner given in Fig. 1.10, so that x and y are coordinates transverse and

longitudinal to the aperture, respectively, and H(1)
1 (kR) is the Hankel function of the first kind

[29]. The RS formation is only valid in the forward half-plane (i.e. y> 0). A full derivation of Eq.

(1.34) can be found in Appendix A.

z

x

a0
−a0

y

Figure 1.10: The typical set-up for a single slit experiment, where the slit is at y = 0 and
x =−a0 → a0 and extends from −∞→∞ in z.
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CHAPTER 1. INTRODUCTION

A 2D analogue of Eq. (1.34) is the 2DRS equation, which is used to calculate the approximate

field diffracted from a closed aperture in the (x, z) plane,

(1.35) Ez(x, y, z)= −1
2π

∫ ∞

−∞

∫ ∞

−∞
dx′dz′Ez(x,′ z′,0)

∂

∂y
exp(ikR)

R
,

where R ≡
√

(x− x′)2 + (z− z′)2 + y2 .

z

x
y

Figure 1.11: A 2D aperture at y= 0.

1.3.1 The paraxial limit of the Rayleigh-Sommerfeld integral

Paraxial methods are ubiquitous in physics. Assuming that the argument of the Hankel function,

kR ÀO(1), the H(1)
1 (kR) can be approximated by [30]

(1.36) H(1)
1 (kR)≈

√
2
πkr

[
P(1,kR)+ iQ(1,kR)

]
exp(iχ),

where χ= kR− 3π
4 . Then, assuming the small angle approximation [i.e. that |x−x′|

y ¿O(1)] one

can then consider how R behaves:

(1.37) R ≈ y
[
1+ 1

2
(x− x′)2

y2 − 1
8

(x− x′)4

y4

]
.

Substituting Eq. (1.37) back into Eq. (1.34),

Ez(x, y)= exp
(−iπ

4

)
exp(iky)

y
2

√
2k
π

∫ ∞

−∞
dx′Ez(x′,0)

1

R
3
2

[
P(1,kR)+ iQ(1,kR)

]
exp

[ ik
2

(x− x′)2

y
− ik

8
(x− x′)4

y3

]
.

(1.38)

Assuming that the contribution in Eq. (1.38) from k
8

(x−x′)4

y3 is much less than the contribution

from k
2

(x−x′)2

y , it can be determined that the distance y downstream from the aperture plane must

satisfy yÀ Lchar, where

(1.39) Lchar ≡
(kb4

8

) 1
3
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CHAPTER 1. INTRODUCTION

and b is the largest length-scale associated with the aperture (i.e. the width). Returning back to

Eq. (1.38) one can rearrange so that

(1.40)

Ez(x, y)≈ exp
(−iπ

4

)ky
2

√
2
π

exp(iky)

k
1
2

∫ ∞

−∞
dx′Ez(x′,0)

1

R
3
2

[
P(1,kR)+ iQ(1,kR)

]
exp

[
i
k(x− x′)2

2y

]

where the exp
[

ik(x−x′)2

2y

]
is the Fresnel factor for a 1D aperture. The R− 3

2 factor is approximated

by

(1.41)
1

R
3
2

≈ 1

y
3
2

[
1− 3

4
(x− x′)2

y2

]
.

The 3
4

(x−x′)2

y2 component is assumed to be negligible and hence

(1.42) Ez ≈ 1+ i
2i

√
k
πy

exp(iky)
∫ ∞

−∞
dx′Ez(x′,0)[P(1,kR)+ iQ(1,kR)]exp

[
i
k(x− x′)2

2y

]
.

Hankel’s asymptotic expansions, P(1,kR) and Q(1,kR), are

(1.43) P(1,kR)=
∞∑
j=0

(−) j (1,2 j)
(2kR)2 j = 1+ 15

2!(8kR)2 − 14175
4!(8kR)4 −·· · ,

and

(1.44) Q(1,kR)=
∞∑
j=0

(−) j (1,2 j+1)
(2kR)2 j+1 = 3

8kR
− 315

3!(8kR)3 +·· · ,

respectively [30]. For our assumption of kR À O(1), P(1,kR) ≈ 1+O(kR)−2 and Q(1,kR) ≈
O(kR)−1. Substituting these back into Eq. (1.42) one ends up with,

(1.45) Ez(x, y)≈ 1+ i
2i

√
k
πy

exp(iky)
∫ ∞

−∞
dx′Ez(x′,0)exp

[ ik(x− x′)2

2y

]
.

Referring to the Helmholtz equation [Eq. (B.1) from the full 1DRS derivation in App. B], then

using a substitution of Ez(x, y)= u(x, y)exp(iky), one finds an equation for u:

(1.46)
∂2u
∂y2 + i2k

∂u
∂y

+ ∂2u
∂x2 = 0.

Assuming the slowly-varying envelope approximation (SVEA),

(1.47)
∣∣∣∂2u
∂y2

∣∣∣¿ ∣∣∣2k
∂u
∂y

∣∣∣,
Eq. (1.46) then becomes the paraxial diffraction equation,

(1.48) 2ik
∂u
∂y

+ ∂2u
∂x2 = 0.
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CHAPTER 1. INTRODUCTION

The Fresnel integral is an exact solution to Eq. (1.48) for one transverse dimension,

(1.49) u(x, y)≡ 1+ i
2i

√
k
πy

∫ ∞

−∞
dx′Ez(x′,0)exp

[ ik(x− x′)2

2y

]
.

Paraxial methods are valid, assuming normal incidence, small angle approximation, scalar

approximation and diffraction in the forward half-plane only. Equation (1.49) is widely used in

the optics community for a broad range of areas including diffraction of plane waves by fractal

objects. Examples of this include Berry’s paper on the Talbot effect [31], and the study of plane

wave diffraction from fractal phase screens [32]. A measure of the relative error between the RS

and Fresnel diffraction patterns can be seen in Fig. 1.12. While the amplitude of each pattern

tends to zero as y→∞, their difference becomes negligible since the Fresnel result must always

emerge asymptotically from the RS prediction.
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2
THE SOMMERFELD PROBLEM

The Sommerfeld problem is one that has been around for many years. Its premise is

simple to understand – calculate the electromagnetic field diffracted from an infinitely-

thin, perfectly-conducting screen. It is named as such due to the first full mathematical

derivation by Sommerfeld in 1896 [33]. Numerous techniques have been used to derive the results

when the electric field is linearly-polarized in an orientation parallel to the edge of the screen (the

TE solution) or when the magnetic field is linearly-polarized parallel to the edge of the screen (the

TM solution) [34]. In the TE solution E= (0,0,Ez) and B= (Bx,By,0), where Bx is the dominant

component in B whereas in the TM solution B = (0,0,Bz) and E = (Ex,E y,0), where Ex is the

dominant component in E. A full derivation of the TE result is given in Appendix B.

2.1 Half-plane diffraction of a plane wave

x

y

θinc

Figure 2.1: A single plane-wave, at an incidence angle of θinc, diffracting from a semi-infinite
screen.
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CHAPTER 2. THE SOMMERFELD PROBLEM

In the TE solution, the total transverse electric field, Ez, is a linear superposition of the input

wave, E0 exp(ikinc ·x), and the scattered field, ΨTE, i.e.,

(2.1)
Ez

E0
= exp(ikinc ·x)+ΨTE

E0
,

where,

(2.2)
ΨTE = −E0

1+ i
2i

[
exp(ikinc ·x)F(χ−)−exp i(kref ·x)F(χ+)

]
− E0

2

[
exp(ikinc ·x)+exp(ikref ·x)

]
,

and F(α) = ∫ α
0 dsexp

(
i π2 s2)

, χ± = (2kr
π

) 1
2
[

cos
(
φ±θinc

2

)
± sin

(
φ±θinc

2

)]
, kinc ·x = −2π

λ
[sin(θinc)x −

cos(θinc)y], and kref ·x = −2π
λ

[sin(θinc)x+ cos(θinc)y]. Equation (2.1) is physically equivalent

to that given by Durgin [35]. The two solutions are connected by complex conjugation and where

the angle of incidence has been redefined (compare Fig. 2.1 to Fig. 1 in [35]). The Fresnel integral

has also been rescaled (to bring it in-line with the more traditional representation [30]) and its

limits manipulated to remove the infinite domain of integration. The polar components of the

magnetic flux density are then [see Eq. (1.28)],

(2.3)

Br

B0
= cos(φ−θinc)exp(ikinc ·x)− 1+ ip

πkr
exp(ikr)cos

(φ
2

)
cos

(θinc

2
+ π

4

)
− 1+ i

2i

[
cos(φ−θinc)exp(ikinc ·x)F(χ−)+cos(φ+θinc)exp(ikref ·x)F(χ+)

]
− 1

2

[
cos(φ−θinc)exp(ikinc ·x)−cos(φ+θinc)exp(ikref ·x)

]
,

and

(2.4)

Bφ

B0
= −sin(φ−θinc)exp(ikinc ·x)+ 1+ ip

πkr
exp(ikr)sin

(φ
2

)
cos

(θinc

2
+ π

4

)
+ 1+ i

2i

[
sin(φ−θinc)exp(ikinc ·x)F(χ−)+sin(φ+θinc)exp(ikref ·x)F(χ+)

]
+ 1

2

[
sin(φ−θinc)exp(ikinc ·x)−sin(φ+θinc)exp(ikref ·x)

]
.

In the TM solution, the total transverse magnetic field, Bz, is (akin to its TE counterpart) a linear

superposition of the input wave, B0 exp(ikinc ·x), and the scattered field, ΨTM ,

(2.5)
Bz

B0
= exp(ikinc ·x)+ΨTM

B0
,

where

(2.6)
ΨTM = −B0

1+ i
2i

[
exp(ikinc ·x)F(χ−)+exp(ikref ·x)F(χ+)

]
− B0

2

[
exp(ikinc ·x)−exp(ikref ·x)

]
,
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CHAPTER 2. THE SOMMERFELD PROBLEM

and the polar components are [Eq. (1.31)],

(2.7)

Er

E0
= −cos(φ−θinc)exp(ikinc ·x)+ 1+ ip

πkr
exp(ikr)sin

(φ
2

)
cos

(θinc

2
− π

4

)
+ 1+ i

2i

[
cos(φ−θinc)exp(ikinc ·x)F(χ−)−cos(φ+θinc)exp(ikref ·x)F(χ+)

]
+ 1

2

[
cos(φ−θinc)exp(ikinc ·x)+cos(φ+θinc)exp(ikref ·x)

]
,

and

(2.8)

Eφ

E0
= sin(φ−θinc)exp(ikinc ·x)− 1+ i

2i
exp(ikr)cos

(φ
2

)
cos

(θinc

2
− π

4

)
− 1+ i

2i

[
sin(φ−θinc)exp(ikinc ·x)F(χ−)−sin(φ+θinc)exp(ikref ·x)F(χ+)

]
− 1

2

[
sin(φ−θinc)exp(ikinc ·x)+sin(φ+θinc)exp(ikref ·x)

]
.
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CHAPTER 2. THE SOMMERFELD PROBLEM

2.2 The Weierstrass-Lamb solutions

The Weierstrass function from Eq. (1.4) can be interpreted physically as the summation of a

normal-incidence plane wave and pairs of plane waves at specific incident angles, ±θν, obtained

from

(2.9) θν = sin−1
(
λγν

Λ

)
,

where ν= 0,1, ...N and N =
⌊

log
(
Λ
λ

)
log(γ)

⌋
(i.e., the N that gives the largest possible non-complex angle,

θN ), and the angle for the complementary plane-wave is −θν. The total input field is now taken

to be

(2.10)
Ez

E0
= exp(iky)+ ε

2

N∑
ν=0

1
γ(2−D0)ν

{
exp[ik(ν+)

inc ·x]+exp[ik(ν−)
inc ·x]

}
,

where k(ν+)
inc = k[−êx sin(θν)+ êy cos(θν)], k(ν−)

inc = k[êx sin(θν)+ êy cos(θν)] and ε determines the

strength of the pre-fractal modulation. Values of Λ and γ can be determined so that N = 7, as

previously mentioned in Subsection 1.2.5. Evaluating Eq. (2.10) at y= 0 (the plane of the edge)

gives

(2.11)
E inc

E0
= 1+ε

N∑
ν=0

1
γ(2−D0)ν cos(Kνx),

where Kν = ksinθν = 2π
Λ γ

ν. In this way the incident wave at y= 0 can be mapped onto a bandwidth-

limited Weierstrass function (c.f. Eq. (1.4)) [36]. Moreover, when γ> 0 is an integer, the incident

wave itself is periodic in x (at all y) with period Λ.

x

y

+θν

x

y

−θν

Figure 2.4: The linear superposition of pairs of plane-waves, each at the angles ±θν.

Firstly for the TE solution for the diffraction of a truncated-Weierstrass waveform (i.e., the
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addition of a normally-incident plane wave plus the summation of oblique plane waves),

(2.12)
Ez

E0
= exp

(
i
2π
λ

y
)
−cos

(2π
λ

y
)
− 1+ i

2i

[
exp

(
i
2π
λ

y
)
F(χ−)−exp

(
− i

2π
λ

y
)
F(χ+)

]
+ ε

2

N∑
ν=0

1
γ(2−D0)ν

{
exp(ik(ν+)

inc ·x)− 1+ i
2i

[
exp(ik(ν+)

inc ·x)F(χ(ν+)
− )−exp(ik(ν+)

ref ·x)F(χ(ν+)
+ )

]
− 1

2

[
exp(ik(ν+)

inc ·x)+exp(ik(ν+)
ref ·x)+exp(ik(ν−)

inc ·x)+exp(ik(ν−)
ref ·x)

]
+exp(ik(ν−)

inc ·x)− 1+ i
2i

[
exp(ik(ν−)

inc ·x)F(χ(ν−)
− )−exp(ik(ν−)

ref ·x)F(χ(ν−)
+ )

]}
,

where χ(ν+)
± =

(
2kr
π

) 1
2
[

cos
(
φ±θν

2

)
± sin

(
φ±θν

2

)]
, χ(ν−)

± =
(

2kr
π

) 1
2
[

cos
(
φ∓θν

2

)
± sin

(
φ∓θν

2

)]
, k(ν±)

inc ·x =
−2π

λ
[sin(±θν)x− cos(θν)y], k(ν±)

ref ·x = −2π
λ

[sin(±θν)x+ cos(θν)y] and ε = 1. The magnetic compo-

nents are

(2.13)
Br

B0
= cosφexp

(
i
2π
λ

y
)
− 1+ ip

2πkr
exp(ikr)cos

(φ
2

)
− 1

2

[
cosφexp

(
i
2π
λ

y
)
−cosφexp

(
− i

2π
λ

y
)]

− 1+ i
2i

[
cosφexp

(
i
2π
λ

y
)
F(χ−)+cosφexp

(
− i

2π
λ

y
)
F(χ+)

]
+ ε

2

N∑
ν=0

1
γ(2−D0)ν

{
cos(φ−θν)− 1+ ip

πkr
exp(ikr)cos

(φ
2

)
cos

(θν
2

+ π

4

)
− 1+ i

2i

[
cos(φ−θν)exp(ik(ν+)

inc ·x)F(χ(ν+)
− )+cos(φ+θν)exp(ik(ν+)

ref ·x)F(χ(ν+)
+ )

]
− 1

2

[
cos(φ−θν)exp(ik(ν+)

inc ·x)−cos(φ+θν)exp(ik(ν+)
ref ·x)

]
+cos(φ+θν)− 1+ ip

πkr
exp(ikr)cos

(φ
2

)
cos

(
− θν

2
+ π

4

)
− 1+ i

2i

[
cos(φ+θν)exp(ik(ν−)

inc ·x)F(χ(ν−)
− )+cos(φ−θν)exp(ik(ν−)

ref ·x)F(χ(ν−)
+ )

]
− 1

2

[
cos(φ+θν)exp(ik(ν−)

inc ·x)−cos(φ−θν)exp(ik(ν−)
ref ·x)

]}
,
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and

(2.14)
Bφ

B0
= −sinφexp

(
i
2π
λ

y
)
+ 1+ ip

2πkr
exp(ikr)sin

(φ
2

)
+ 1

2

[
sinφexp

(
i
2π
λ

y
)
−sinφexp

(
− i

2π
λ

y
)]

+ 1+ i
2i

[
sinφexp

(
i
2π
λ

y
)
F(χ−)+sinφexp

(
− i

2π
λ

y
)
F(χ+)

]
+ ε

2

N∑
ν=0

1
γ(2−D0)ν

{
−sin(φ−θν)exp(ik(ν+)

inc ·x)+ 1+ ip
πkr

exp(ikr)sin
(φ

2

)
cos

(θν
2

+ π

4

)
+ 1+ i

2i

[
sin(φ−θν)exp(ik(ν+)

inc ·x)F(χ(ν+)
− )+sin(φ+θν)exp(ik(ν+)

ref ·x)F(χ(ν+)
+ )

]
+ 1

2

[
sin(φ−θν)exp(ik(ν+)

inc ·x)−sin(φ+θν)exp(ik(ν+)
ref ·x)

]
−sin(φ+θν)exp(ik(ν−)

inc ·x)+ 1+ ip
πkr

exp(ikr)sin
(φ

2

)
cos

(
− θν

2
+ π

4

)
+ 1+ i

2i

[
sin(φ+θν)exp(ik(ν−)

inc ·x)F(χ(ν−)
− )+sin(φ−θν)exp(ik(ν−)

ref ·x)F(χ(ν−)
+ )

]
+ 1

2

[
sin(φ+θν)exp(ik(ν−)

inc ·x)−sin(φ−θν)exp(ik(ν−)
ref ·x)

]}
.

For the TM solution,

(2.15)
Bz

B0
= exp

(
i
2π
λ

y
)
− 1+ i

2i

[
exp

(
i
2π
λ

y
)
F(χ−)+exp

(
− i

2π
λ

y
)
F(χ+)

]
− isin

(2π
λ

y
)

+ ε

2

N∑
ν=0

1
γ(2−D0)ν

{
exp(ik(ν+)

inc ·x)− 1+ i
2i

[
exp(ik(ν+)

inc ·x)F(χ(ν+)
− )+exp(ik(ν+)

ref ·x)F(χ(ν+)
+ )

]
− 1

2

[
exp(ik(ν+)

inc ·x)−exp(ik(ν+)
ref ·x)+exp(ik(ν−)

inc ·x)−exp(ik(ν−)
ref ·x)

]
+exp(ik(ν−)

inc ·x)− 1+ i
2i

[
exp(ik(ν−)

inc ·x)F(χ(ν−)
− )+exp(ik(ν−)

ref ·x)F(χ(ν−)
+ )

]}
,

(2.16)

Er

E0
= −exp

(
i
2π
λ

y
)
cosφ+ 1+ ip

2πkr
exp(ikr)sin

(φ
2

)
+cosφcos

(2π
λ

y
)

+ 1+ i
2i

[
cosφexp

(
i
2π
λ

y
)
F(χ−)−cosφexp

(
− i

2π
λ

y
)
F(χ+)

]
− ε

2

N∑
ν=0

1
γ(2−D0)ν

{
−cos(φ−θν)exp(ik(ν+)

inc ·x)+ 1+ ip
πkr

exp(ikr)sin
(φ

2

)
cos

(θν
2

− π

4

)
+ 1+ i

2i

[
cos(φ−θν)exp(ik(ν+)

inc ·x)F(χ(ν+)
− )−cos(φ+θν)exp(ik(ν+)

ref ·x)F(χ(ν+)
+ )

]
+ 1

2

[
cos(φ−θν)exp(ik(ν+)

inc ·x)+cos(φ+θν)exp(ik(ν+)
ref ·x)

]
−cos(φ+θν)exp(ik(ν−)

inc ·x)+ 1+ ip
πkr

exp(ikr)sin
(φ

2

)
cos

(−θν
2

− π

4

)
+ 1+ i

2i

[
cos(φ+θν)exp(ik(ν−)

inc ·x)F(χ(ν−)
− )−cos(φ−θν)exp(ikref ·x)F(χ(ν−)

+ )
]

+ 1
2

[
cos(φ+θν)exp(ik(ν−)

inc ·x)+cos(φ−θν)exp(ik(ν−)
ref ·x)

]}
,
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and finally

(2.17)

Eφ

E0
= sinφexp

(
i
2π
λ

y
)
− 1+ ip

2πkr
exp(ikr)cos

(φ
2

)
−sinφcos

(2π
λ

y
)

− 1+ i
2i

[
sinφexp

(
i
2π
λ

y
)
F(χ−)−sinφexp

(
− i

2π
λ

y
)
F(χ+)

]
+ ε

2

N∑
ν=0

1
γ(2−D0)ν

{
sin(φ−θν)exp(ik(ν+)

inc ·x)− 1+ i
2i

exp(ikr)cos
(φ

2

)
cos

(θν
2

− π

4

)
− 1+ i

2i

[
sin(φ−θν)exp(ik(ν+)

inc ·x)F(χ(ν+)
− )−sin(φ+θν)exp(ik(ν+)

ref ·x)F(χ(ν+)
+ )

]
− 1

2

[
sin(φ−θν)exp(ik(ν+)

inc ·x)+sin(φ+θν)exp(ik(ν+)
ref ·x)

]
+sin(φ+θν)exp(ik(ν−)

inc ·x)− 1+ i
2i

exp(ikr)cos
(φ

2

)
cos

(
− θν

2
− π

4

)
− 1+ i

2i

[
sin(φ+θν)exp(ik(ν−)

inc ·x)F(χ(ν−)
− )−sin(φ−θν)exp(ik(ν−)

ref ·x)F(χ(ν−)
+ )

]
− 1

2

[
sin(φ+θν)exp(ik(ν−)

inc ·x)+sin(φ−θν)exp(ik(ν−)
ref ·x)

]}
.
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2.3 Intensity

Here, the intensity of a field is defined as the electromagnetic energy delivered per unit area

per unit time (power density) crossing the (x, z) plane. In order to find the intensity of the TE

solution, one must first employ the use of the Poynting vector,

(2.18) S (x, t)= c2ε0E (x, t)×B(x, t).

The projection of the Poynting vector in the y direction for the TE solution is hence

(2.19) Sy(x, t)= c2ε0Ez(x, t)Bx(x, t).

The intensity is defined as the time-average of the Poynting vector,

(2.20) I ≡ lim
T→∞

1
T

∫ t+ T
2

t− T
2

dt′Sy(x, y, t′),

where the sampling time T is much larger than the period of oscillation, 2π
ω

. Substituting Eq.

(2.19) into Eq. (2.20) one gets

(2.21) I = c2ε0 lim
T→∞

1
T

∫ t+ T
2

t− T
2

dt′
[
Ez(x, y, t′)B∗

x (x, y, t′)+E ∗
z (x, y, t′)Bx(x, y, t′)

]
.

From Ambramowitz and Stegun [30]

(2.22) lim
T→∞

1
T

∫ t+ T
2

t− T
2

dt′ exp(±i2ωt′)= 0,

and therefore

(2.23) I(x, y)= c2ε0[Ez(x, y)B∗
x (x, y)+E∗

z (x, y)Bx(x, y)].

The intensity of the TE field diffracted from a screen is hence

(2.24) I(x, y)= c2ε02ℜe[Ez(x, y)B∗
x (x, y)].

Comparison of the plane-wave and truncated-Weierstrass surface intensity plot (Fig. 2.6) may

lead one to conclude that there is little to no difference (other than in magnitude) between the two

diffraction patterns. This, however, on closer inspection is not the case when one compares 1D

cross-sections through each pattern. By doing this, one finds that there is a profound quantitative

difference, as shown in Figs. 2.7 and 2.8.
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2.4 Dimension analysis of the Weierstrass-Lamb solution

In this subsection, attention is paid to estimating the dimension of the TE Weierstrass-Lamb

solution at various longitudinal positions downstream from the screen (distances from 10−1λ

to 103λ in the forward half-plane, linearly spaced on the logarithmic scale). The parameters of

the truncated-Weierstrass function are set to Λ= 2500λ and γ= 3 – these are the same values

used in subsequent chapters and ensures that N is sufficiently large that the input field may be

considered to be pre-fractal.

One of the first findings here is that the estimated dimension of the electric field can change

substantially during a single cycle in the time period, 2π
ω

= T0 (see Fig. 2.9). It is desirable to

estimate the dimension of a quantity that remains stationary in time (i.e., is not subject to

temporal fluctuations) and hence attention will focus on intensity I (related to the time-averaged

Poynting vector), as defined in Eq. (2.24). For cw solutions, the intensity is time-independent (it

is also the physical quantity most easily measured in a laboratory) so one may associate I with a

single estimated dimension at any longitudinal position y.

In scalar wave optics, one usually assumes that |By|¿ |Bx| so that the electromagnetic field is

approximately transverse [i.e. an (E,B,k) triad]. In that regime, a measure of the intensity is

typically taken to be |Ez|2 and the detailed consideration of the Poynting vector is, to a large

extent, neglected (this is also true for earlier paraxial-based analysis of pre-fractal diffraction

phenomena by Christian et. al.). Here the full electromagnetic character of the wave scattering

problem is addressed and non-trivial qualitative differences are found. For instance, Fig. 2.10

shows a noticeable difference between the estimated dimensions for
∣∣ Ez

E0

∣∣2 and the formal intensity

from Eq. (2.24). Although the qualitative features of the two curves are similar,
∣∣ Ez

E0

∣∣2 is typically

associated with a higher dimension than I
c2ε0E0B0

.
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Figure 2.9: The estimated dimension for ℜe
(

Ez
E0

)
for the diffraction of a truncated-Weierstrass

function with D0 = 1.5 at y= 10−1λ as a function of time.
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Looking at Fig. 2.11 the most immediate thing to notice is the connection between the erratic-ness

of the estimated dimension of the intensity,
∣∣∣ Ez

E0

∣∣∣2, and D0 values – the smaller D0 values have

a much smoother curve compared to the various peaks and troughs which start appearing for

D0 = 1.5 and become more and more prominent as D0 rises. What is important to state is that

the aforementioned fluctuations are at the same distances no matter what the D0 values are. An

interesting quirk of the dimensions calculated is that when the y values are small/ around the

distances of λ, the higher D0 values (1.7, 1.9) actually have a lower estimated dimension. Only as

y increases does the estimated dimension of the higher D0 values become larger. The estimated

dimension of the lower D0 values falls steadily towards unity as the distance increases. This

pattern also appears in Fig. 2.12. In both the intensity and real electric field plots, the difference

in the estimated dimension in the D0 = 1.9 and the others is large.
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Figure 2.10: Comparison of the estimated dimension for D0 = 1.5 for the intensity, I
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, and∣∣∣ Ez
E0

∣∣∣2.
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2.5 Paraxial Theory

To establish the paraxial limit of the Weierstrass-Lamb TE wave, is it necessary to discard any

component associated with the reflected wave, exp(ikref ·x). An approximate wave travelling in

the forward y direction from contribution ν is then given by

(2.25)
Ez

E0

∣∣∣(ν+)

fwd
≈ 1
γ(2−D0)ν exp(ik(ν+)

inc ·x)
[1

2
− 1+ i

2i
F(χ(ν+)

− )
]
.

In the paraxial regime, one views the wave at a large distance from the knife-edge in the forward

direction, and where the range of x is small. That is, where y> 0 and yÀ|x|. It then follows that

(2.26) kinc ·x=−kincxx+kincy y≈−kincxx− k2
incx y
2k

+kincy,

since ky =+
√

k2 −k2
x and |kx|¿ k. By applying the same sort of analysis to χ(ν+)− , it follows that

(2.27) χ(ν+)
− ≈

( k
πy

) 1
2
(
x− kx y

k

)
≡ χ(ν+)par

− .

Hence, one finds that Ez
E0

∣∣∣(ν+)

fwd
may be approximated as

(2.28) E(ν+)
z ≈ exp(iky)u(x, y),

where

(2.29) u(x, y)≡ E0

2

[
1− 1+ i

i
F(χpar)

]
exp

(
− ikxx− i

k2
x y

2k

)
,

satisfies the paraxial diffraction equation [cf Eq. (1.48)] exactly. This type of approximation

procedure can be applied to each component of the Weierstrass-Lamb solution.

Figure 2.13 shows that for |x|/y¿O(1), the paraxial solution mimics almost exactly the formal

Weierstrass-Lamb solution when the input field corresponds to a normally-incident plane wave.

For a fixed distance y, the paraxial approximation begins to break down for increasing |x| since

the assumption of small propagation angles is violated. It is now natural so consider whether or

not the paraxial approximation yields reliable results once one allows for a pre-fractal input field

(e.g. Weierstrass-type illumination).
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Figure 2.13: A comparison between the TE and paraxial solutions for the electric field of a
plane-wave at y= 103λ downstream from the screen.
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Figure 2.14: A comparison between the TE Weierstrass-Lamb and paraxial solutions for the
electric field of a truncated-Weierstrass wave with D0 = 1.1, Λ= 2500λ, γ= 3 and ε= 1 at y= 103λ

downstream from the screen.
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Figure 2.15: A comparison between the TE Weierstrass-Lamb and paraxial solutions for the
electric field of a truncated-Weierstrass wave with D0 = 1.5, Λ= 2500λ, γ= 3 and ε= 1 at y= 103λ

downstream from the screen.
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Figure 2.16: A comparison between the TE Weierstrass-Lamb and paraxial solutions for the
electric field of a truncated-Weierstrass wave with D0 = 1.9, Λ= 2500λ, γ= 3 and ε= 1 at y= 103λ

downstream from the screen.
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The paraxial approximation holds for input waves with low complexity (e.g. D0 = 1.1; see Fig.

2.14). However, one can see that this agreement begins to falter for mid-range dimensions (e.g. in

Fig 2.15 where D0 = 1.5). For these mid-range D0 values, one can see that the general trend of

the diffraction pattern is similar for both Weierstrass-Lamb and paraxial solutions, but there are

obvious quantitative differences. For large D0 values (e.g. D0 = 1.9; see Fig. 2.16), the paraxial

solution fails entirely and one may therefore conclude that the small-angle approximation

underpinning earlier work is potentially problematic. Subsequent chapters in this thesis will

dispense almost entirely with the paraxial approximation on the basis that it does not provide a

quantitatively accurate picture of how fractal and pre-fractal waves diffract.
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PLANE WAVE ILLUMINATION ON A CANTOR GRATING

This chapter begins the formal analysis of plane waves scattering from complex domains.

The candidate multi-scale object that will be used is the Cantor set [10] or, more precisely,

a slightly modified version of what might be interpreted as the ‘traditional’ Cantor set

from Sec. 1.2.1. Here, one takes the traditional ‘13 ’ Cantor set and, in a sense, inverts it so that all

the regions that originally corresponded to gaps are filled in, and all the filled-in regions become

gaps. At the initiator stage (n = 0), one now has a slit that maps easily onto a simple optics

experiment. At the first pre-fractal level (n = 1), the central third of the initial slit is filled-in, and

so produces a double-slit experiment where the slit width and separation happen to be equal

to one another. The pre-fractal level n = 2 then produces four slits, and so on, (see Fig. 3.1). As

n →∞, a Cantor-type diffraction grating is produced where all the constituent sub-apertures

have the same size, but which are non-uniformly separated and also occupy a region of space that

is bounded by the initial n = 0 slit. Hence, the Cantor-type grating is fundamentally different

from classic gratings considered in optics, which tend to be periodic and thus be of infinite extent

(a good example being the Talbot effect, [31, 37, 38]).

Figure 3.1: The first four pre-fractal levels of the Cantor grating.
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The purpose of this chapter, then, is to investigate the diffraction patterns obtained as a normally-

incident plane wave illuminates increasing levels of the Cantor grating. Having detailed the

complex domain of interest, attention must now be turned to which analytical framework to

deploy. Far-field studies of the Cantor-set diffraction problems typically require only Fourier

transforms through the Fraunhofer approximation [34, 39, 40]. Nearer-field considerations must

use the Fresnel approximation [28, 34]. Here, the RS diffraction-integral formulation will be

used.

3.1 The Cantor-type grating

For every pre-fractal level n = 1,2,3. . . the individual slit half-width, an, is taken to be a0
3n , where

a0 is the half-width of the initiator slit (typically specified here in units of wavelength), and the

total number of slits at stage n is simply 2n. Evaluation of the diffraction integral requires one to

know the location of all the constituent slit edges in the x′ coordinate.

Figure 3.2: The second pre-fractal level of the Cantor grating.

For example, Fig. 3.2 shows the second pre-fractal level of the Cantor set. The midpoint of each

slit is labelled Ξ0, Ξ1, Ξ2 . . .Ξn−1 and the subscript index is subsequently converted into a binary

representation:

0→ (000),

1→ (001),

2→ (010),

3→ (011).

Those binary representations are then treated as an array of numbers in the style of (bn bn−1 . . .

b0), which can be used to derive an equation for the location for each slit midpoint:

(3.1) Ξ j = 2a0

n−1∑
j=0

(−1)b j

3 j .

For the example in Fig. 3.2, the midpoints are calculated to be Ξ0 = −8a0
9 , Ξ1 = −4a0

9 , Ξ2 = 4a0
9 , and

Ξ3 = 8a0
9 . It is then simply a matter of adding and subtracting an to find the locations of each slit

edge.

From the Eq. (1.34), one can show that the expression for the electric field diffracted by pre-fractal

level n of a Cantor-type grating is

(3.2) Ez(x, y)= iky
2

E0

2n−1∑
j=0

∫ a+(Ξ j)

a−(Ξ j)
dx′

H(1)
1 (kR)

R
,
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where E0 is the (complex) amplitude of the incident wave. For definiteness, the Cantor-type

grating is oriented so that the longitudinal extent of the slits is aligned along the z axis. Further-

more, TE illumination is considered so that the spatial part of the cw electric field is described by

E= (0,0,Ez) throughout.

Here, attention of paid solely to the Dirichlet problem, where the electric field Ez must vanish ev-

erywhere on the surface of the screen (assumed to be perfectly conducting and with zero thickness)

[34]. In the aperture regions (transparent parts), the Kirchhoff approximation Ez(x′,0)≈ E0 is

used, where E0 is the complex amplitude of the incident plane wave. This level of approximation

holds true generally, except in regions close to the edges of the obstructions that make up the

screen. Hence, one may expect the Kirchhoff approximation to break down close to the screen

and when the constituent sub-apertures are smaller than the wavelength. In other words, the

approach used here cannot access the regime of a fully-fractal screen where one finds |Ez|→ 0

for y> 0 as n →∞ [c.f. Eq. (3.2)]. Such a regime can be described, however, with deployment of

functional analysis methods and boundary-integral equations [7].

3.1.1 Computational Method

All integration within this thesis has been performed with the built-in MATLAB integral

subroutine. This ‘off-the-shelf ’ method was chosen over a custom (in-house) algorithm due to its

robust and generally very reliable performance. The absolute and relative error tolerances were

kept to default settings (10−10 and 10−6, respectively). In practice, one integrates over each finite

sub-domain [as suggested by Eq. (3.2)] rather than integrating over an implicitly pre-fractal

domain directly. Another benefit of using integral is its ability to self-identify whenever the

numerical result fails to converge as desired.
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From Fig. 3.3, it seems clear that when a0 is comparable to the wavelength, the diffraction

pattern quickly converges. No matter how much one moves up the pre-fractal levels of the Cantor

slit, almost the same pattern would still appear (although the amplitude tends to fall off). For a

larger a0 it takes more iterations in n for the pattern to converge. No matter the size of a0, there

will always eventually be convergence due to the lack of presence of sub-wavelength structure.

Figure 3.4 shows the field from the first, second and third pre-fractal level of a Cantor-type

grating with a0 = 10λ. After the third level, the diffracted pattern converges and almost no

additional complexity is found as n increases further. Although the pattern converges at n = 3,

the actual converged pattern formed is a rather interesting.

Figure 3.4: A zoomed comparison between 2ℜe
(

Ez
E0

)
for the first (left), second (middle) and third

(right) pre-fractal level of the Cantor grating for a0 = 10λ (general plots can be found in Figs.
C.24, C.26, and C.28).

To map the predictions of Eq. (3.2) onto an experiment (e.g. in a typical undergraduate optics

laboratory), one might consider a single-slit aperture with a width of around 0.2mm so that,

for green laser light with a wavelength of 534nm, a0 ≈ 250λ. Figure 3.5 shows the intensity

(i.e., what would be observed visually) for the zeroth (i.e., single slit), third, and fifth pre-fractal

level. The corresponding electric field distributions vary extremely rapidly on the spatial scales

considered here and are not shown here. However, they can be found in Appendix C, along with a

wide selection of illustrative results.
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3.2 Roughness-length dimension estimation

In order to seek a quantitative measure of both the intensity and the electric field, one must once

again consider dimension estimation using the roughness-length measure. Figure 3.6 shows a

fundamental flaw of dimensional estimation – non-integer dimension is assigned to an object that

is inherently non-complex, such as one can see in the diffraction of a plane wave from a single slit

(such as the n = 0 line in Fig. 3.6). This phenomenon has already been found in laser optics when

using the power-spectrum method of dimension estimation in single-slit configurations [41] and

will be generalized to the Cantor-type grating (i.e., a multi-slit problem) in a later section. After

consideration, it was decided that a domain x ∈ [−2a0,2a0] was most appropriate – even when

approaching the far-field regime effectively all of the diffraction pattern is captured. A spatial

resolution of ∆x = λ
32 was chosen so that the field at the wavelength scale is sufficiently sampled

for the BENOIT analysis.
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Figure 3.6: Roughness-length estimation of dimension of
∣∣∣ Ez

E0

∣∣∣2 due to a Cantor grating with
a0 = 250λ.

The results shown in Figs. 3.6 and 3.7 can be used in Chapters 4 and 5 to help establish which
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features of the roughness-length plots are due to the multi-scaledness of the complex input wave,

and which are due to the estimation method itself. The a0 in Figs. 3.6 and 3.7 is fixed at 250λ and

hence as n increases, naturally an will decrease. For n = 5, the half-width of the individual slits

is then an ≈ 1.03λ wide. As discussed in Chapter 1, an exact Helmholtz solution away from the

screen contains no sub-wavelength structure and hence diffraction from so narrow a slit would

certainly destroy detail otherwise found in patterns from broader slits. This effect can also be

seen in Fig 3.3, where the pattern quickly converges with n. It is hence extremely important to

confirm if any perceived dimensionality is an effect of the grating itself or from the size of the

constituent slits.
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Figure 3.7: Roughness-length estimation of dimension 2ℜe
(

Ez
E0

)
due to a Cantor grating with

a0 = 250λ.

In order to find out whether the changes in dimension are due to n increasing or the individual

slit sizes, a modified construction of the Cantor set was introduced whereby an is held fixed (e.g.

at 250λ) for all pre-fractal levels. In this alternative structure, the “effective a0 size” is equal

to an3n. An important factor to maintain is the numerical extent of screen on either side of the

outer slits. Figure 3.8 shows how quickly a0 grows with n. Since ∆x = λ
32 must be preserved (to

49



CHAPTER 3. PLANE WAVE ILLUMINATION ON A CANTOR GRATING

ensure consistency in the BENOIT output), the computation time quickly ramps up with n.

n = 0

n = 1

n = 2

Figure 3.8: A modified Cantor grating with a static an value. One can see how quickly the overall
grating size grows as n increases.

Unfortunately, when one deploys the modified Cantor set one quickly hits a computational wall;

when keeping ∆x = λ
32 fixed, for n = 4 and n = 5 one would require x array sizes of 2,592,001 and

7,776,001 points respectively (and where the a0 values in the traditional Cantor set would be

20,250λ and 60,750λ) – far too large for conventional desktop computers to handle in realistic

time-scales! Therefore, at this time, only results up to n = 3 can be analysed for the modified

Cantor set.

n x domain size Approx. time for one calculation No. of calculations Approx. overall time

0 48,001 150s 1 150s
1 96,000 450s 1 450s
2 288,001 1450s 2 48mins
3 864,001 2600s 4 240 mins

Table 3.1: Approximate computation times for the calculation of the diffracted field at y ≈ 8λ
(the middle y value for logarithmically evenly-spaced y array) for a modified Cantor set with
an = 250λ. “No. of calculations” refers to the number of constituent diffraction patterns that must
be computed at pre-fractal level n = 1,2,3 (divided by 2 for n > 0 due to the spatial symmetry of
the system).

Deploying the modified Cantor set changes the datasets entirely: instead of an increase of erratic-

ness (cf. Fig. 3.6) Fig. 3.9 presents a similar parabolic shape which is largely preserved in n.

Before this second analysis was undertaken, it was completely unknown whether the estimated

dimension would be higher or lower as n increases. This work shows that generally it seems to

gets lower and therefore it can be said that merely diffracting a plane-wave from a pre-fractal

grating does not tend to produce a complex diffracted field. It is difficult to draw any solid

conclusions from studying the electric-field results. Both Figs. 3.7 and 3.10 are similar in nature

to Fig. 2.12. One could assume that no matter what is studied the estimated dimension appears

to be dominated by phase effects [if one wishes to quantify the electric field with distance from

the slit, one is probably going to be presented with a graph full of peaks and troughs]. This is a

shame as it means one cannot have a good quantitative measure of how electric fields diffracted

from complex domains vary in space.

50



CHAPTER 3. PLANE WAVE ILLUMINATION ON A CANTOR GRATING

10
-1

10
0

10
1

10
2

10
3

y/

1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

Dimension estimated by the Roughness-Length method

n 
=

 0
n 

=
 1

n 
=

 2
n 

=
 3

F
ig

ur
e

3.
9:

R
ou

gh
ne

ss
-l

en
gt

h
es

ti
m

at
io

n
of

di
m

en
si

on
of

∣ ∣ ∣E
z

E
0

∣ ∣ ∣2
fo

r
a

m
od

ifi
ed

C
an

to
r

gr
at

in
g

w
it

h
a n

=
25

0λ
.

51



CHAPTER 3. PLANE WAVE ILLUMINATION ON A CANTOR GRATING

10
-1

10
0

10
1

10
2

10
3

y/

1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

Dimension estimated by the Roughness-Length method

n 
=

 0
n 

=
 1

n 
=

 2
n 

=
 3

F
ig

ur
e

3.
10

:R
ou

gh
ne

ss
-l

en
gt

h
es

ti
m

at
io

n
of

di
m

en
si

on
of

el
ec

tr
ic

fie
ld

,2
ℜe

( E
z

E
0

) fo
r

a
m

od
ifi

ed
C

an
to

r
gr

at
in

g
w

it
h

a n
=

25
0λ

.

52



CHAPTER 3. PLANE WAVE ILLUMINATION ON A CANTOR GRATING

3.3 Magnetic flux density

From knowing the electric field E, one can determine the components of magnetic flux density B
through Maxwell’s equations. Since E= (0,0,Ez), where for a single-slit aperture

(3.3) Ez(x, y)= iky
2

E0

∫ a0

−a0

dx′
H(1)

1 (kR)
R

,

it follows that B may be obtained from

(3.4) B= 1
iω

∇×E= 1
iω

∣∣∣∣∣∣∣∣
êx êy êz
∂
∂x

∂
∂y

∂
∂z

0 0 Ez

∣∣∣∣∣∣∣∣ .

Combining Eqs. (3.3) and (3.4), one can show that the Bx and By components of the electromag-

netic field in the forward half-plane y> 0 are given by

(3.5) Bx(x, y)= 1
iω

∂

∂y
Ez(x, y)

and

(3.6) By(x, y)=− 1
iω

∂

∂x
Ez(x, y),

so that

(3.7) Bx(x, y)= B0

2

∫ a0

−a0

dx′
H(1)

1 (kR)
R

− y
B0

2

∫ a0

−a0

dx′ky
H(1)

2 (kR)
R2

and

(3.8) By(x, y)= y
B0

2

∫ a

−a
dx′

k(x− x′)
R2 H(1)

2 (kR).

For the TE solution to Maxwell’s equations, one immediately sees that Bz must necessarily vanish.

Also, one expects Bx to be the dominant part of B (which is verified numerically). The cylindrical-

polar components can be obtained from Bφ = cos(φ)Bx +sin(φ)By and Br =−sin(φ)Bx +cos(φ)By

[20]. Finally, it can be shown that ∇·B= 0.

Equations (3.7) and (3.8) can simply be generalized for diffraction from a Cantor-type grating:

(3.9) Bx(x, y)= B0

2

2n−1∑
j=0

[∫ a+(Ξ j)

a−(Ξ j)
dx′

H(1)
1 (kR)

R
− y

∫ a0

−a0

dx′ky
H(1)

2 (kR)
R2

]
,

and

(3.10) By(x, y)= y
B0

2

2n−1∑
j=0

∫ a

−a
dx′

k(x− x′)
R2 H(1)

2 (kR).

Results for the electric and magnetic fields (in Cartesian and cylindrical polar forms) for both the

traditional and modified Cantor sets (the former with a0 = 1.5λ and latter with an = 1.5λ) are

given in the following five pages.

53



CHAPTER 3. PLANE WAVE ILLUMINATION ON A CANTOR GRATING

F
ig

ur
e

3.
11

:A
co

m
pa

ri
so

n
be

tw
ee

n
of

th
e

2ℜ
e( E

z
E

0

) fo
r

th
e

ze
ro

th
(l

ef
t)

,fi
rs

t
(m

id
dl

e)
an

d
se

co
nd

(r
ig

ht
)p

re
-f

ra
ct

al
le

ve
lo

ft
he

C
an

to
r

gr
at

in
g

fo
r

a 0
=

1.
5λ

(t
op

ro
w

)a
nd

a n
=

1.
5λ

(b
ot

to
m

ro
w

).

54



CHAPTER 3. PLANE WAVE ILLUMINATION ON A CANTOR GRATING

F
ig

ur
e

3.
12

:A
co

m
pa

ri
so

n
be

tw
ee

n
of

th
e

2ℜ
e( B

x
B

0

) fo
r

th
e

ze
ro

th
(l

ef
t)

,fi
rs

t
(m

id
dl

e)
an

d
se

co
nd

(r
ig

ht
)p

re
-f

ra
ct

al
le

ve
lo

ft
he

C
an

to
r

gr
at

in
g

fo
r

a 0
=

1.
5λ

(t
op

ro
w

)a
nd

a n
=

1.
5λ

(b
ot

to
m

ro
w

).

55



CHAPTER 3. PLANE WAVE ILLUMINATION ON A CANTOR GRATING

F
ig

ur
e

3.
13

:A
co

m
pa

ri
so

n
be

tw
ee

n
of

th
e

2ℜ
e( B

y
B

0

) fo
r

th
e

ze
ro

th
(l

ef
t)

,fi
rs

t
(m

id
dl

e)
an

d
se

co
nd

(r
ig

ht
)p

re
-f

ra
ct

al
le

ve
lo

ft
he

C
an

to
r

gr
at

in
g

fo
r

a 0
=

1.
5λ

(t
op

ro
w

)a
nd

a n
=

1.
5λ

(b
ot

to
m

ro
w

).

56



CHAPTER 3. PLANE WAVE ILLUMINATION ON A CANTOR GRATING

F
ig

ur
e

3.
14

:A
co

m
pa

ri
so

n
be

tw
ee

n
of

th
e

2ℜ
e( B

r
B

0

) fo
r

th
e

ze
ro

th
(l

ef
t)

,fi
rs

t
(m

id
dl

e)
an

d
se

co
nd

(r
ig

ht
)p

re
-f

ra
ct

al
le

ve
lo

ft
he

C
an

to
r

gr
at

in
g

fo
r

a 0
=

1.
5λ

(t
op

ro
w

)a
nd

a n
=

1.
5λ

(b
ot

to
m

ro
w

).

57



CHAPTER 3. PLANE WAVE ILLUMINATION ON A CANTOR GRATING

F
ig

ur
e

3.
15

:A
co

m
pa

ri
so

n
be

tw
ee

n
of

th
e

2ℜ
e( B

φ

B
0

) fo
r

th
e

ze
ro

th
(l

ef
t)

,fi
rs

t
(m

id
dl

e)
an

d
se

co
nd

(r
ig

ht
)p

re
-f

ra
ct

al
le

ve
lo

ft
he

C
an

to
r

gr
at

in
g

fo
r

a 0
=

1.
5λ

(t
op

ro
w

)a
nd

a n
=

1.
5λ

(b
ot

to
m

ro
w

).

58



CHAPTER 3. PLANE WAVE ILLUMINATION ON A CANTOR GRATING

3.4 Intensity power spectrum

It is well known that in scalar wave optics, where the Fresnel approximation holds true, the

power spectrum for the diffracted electric field in the forward half-plane y> 0 beyond the aperture

of half-width a0 is

(3.11) |FT[Ez(x, y)]|2 = |E0|2 sinc2 (kxa0)
π2 ,

where kx is the transverse spatial frequency and FT is the Fourier transform across the x-domain

for a fixed y value. In Fourier space, the spectrum extends infinitely along the kx axis and is

independent of y. However, New and Albaho [2] were able to show that the power spectrum for

the diffracted intensity has a well-defined cut-off at a spatial frequency kc = 2ka0
y such that

(3.12) P(kx, y)= |FT(|Ez|2)|2
|E0|2

sin2[kxa0(1− kx
kc

)]
(kxπ)2 , kx < kc

0, kx > kc

.

The intensity power spectrum is often of importance to physics, for instance in the modelling of

unstable-resonator modes. It has previously been shown by New et. al. [2, 41, 42] that the 1
k2

dependence of P(kx, y) leads to a power-spectrum fractal dimension of DPS = 1.5, even though

there is no source of multi-scaledness in the problem at hand (namely normal incidence of a plane

wave on a single slit). One therefore has to be rather careful when interpreting results even from

well-known fractal dimension measures (in particular, the power spectrum method tends to be

most widely applicable to random fractals [43, 44]). The idea of New and Alberto, of considering

diffracted intensity, may now be applied to the Cantor-grating problem. Figure 3.16 shows the

intensity power spectrum,

(3.13) P(kx, y)= ∣∣FT[|Ez(x, y)|2]
∣∣2

for a single slit with a0 = 250λ at a distance of y= 103λ. The general trend of the log-log plot is

evidently a straight line with gradient

(3.14) β≡ d log[P(kx, y)]
d log(kx)

and which corresponds to a power spectrum dimension of DPS = 5−β
2 ≈ 1.5. The recovery of this

result demonstrates that the same caution must be exercised when considering RS solutions

(where a fractal dimension is obtained for an inherently non-fractal object). Light numerical

evidence has been obtained to show that the power-spectrum method fails to give a meaningful

prediction for DPS not only for uniform illumination [2] (i.e., in the absence of multiscaled

features), but also in the more general case where the input waveform possesses multiscale

(pre-fractal) structure. The power spectrum model is unfortunately ever-present in Physics, both

theoretical and experimental, even with its shortcomings. More information on exactly why and

where it fails is given in [21].
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Figure 3.16: Power spectrum of the diffracted intensity for a single slit, width a0 = 250λ at a
distance of y= 103λ. The cut-off is at λkc ≈π which is broadly in line with the prediction in [2]
(which is not surprising for this quasi-paraxial regime).
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Figure 3.17: The power spectrum of the diffracted intensity for the first three pre-fractal levels of
the modified Cantor set with an = 250λ at a distance of y= 103λ.
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Figure 3.17 shows that even for diffraction from multiple slits, the intensity power spectrum

gives largely the same quantitative result as for the single slit – the average trend of each of

these lines is the same, even if the actual results are shifted slightly. The intensity cut-offs (where

the gradients suddenly drop off at around k =πλ−1) for each n are different. This is perhaps due

to the quadratic nature of the intensity calculation and the presence of multiple slits. However, it

can be seen that the average trend in the gradients is essentially independent of n.
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DIFFRACTION OF THE WEIERSTRASS FUNCTION ON A SINGLE SLIT

The previous chapter considered physical geometries concerning the scattering of a normally-

incident plane wave from pre-fractal Cantor-set gratings. These scenarios pertain to one

particular class of complex-domain problem, where a simple input wave (that is, one with

typically uniform, or at most slowly-varying parameters) encounters a multi-scale obstacle.

Here, attention is now paid to a different class of problem, namely that where a multi-scale input

wave encounters a simple aperture (in this case, a single slit). The single-slit configuration is

where most of the early paraxial analyses of fractal diffraction, based on the Fresnel approxi-

mation, have been focused. That formulation was in terms of Eq. (1.48), where it was possible

to write down an expression for the diffracted field in terms of auxiliary Fresnel functions and

Hastings’s rational approximations [5, 30]. As discussed in Chapter 2, the paraxial description of

the fractal generalization of the knife-edge problem failed in a number of ways. It is not difficult to

see that the same level of approximation will also inevitably fail for the single-aperture geometry.

In this chapter, Weierstrass illumination of a single slit is revisited but using the RS diffraction

integral instead. The deployment of that foundation eliminates altogether the prospect of finding

semi-analytical solutions analogous to these of paraxial theory. However, the benefit is that the

predictions it makes stand some chance of being quantitatively accurate. For all computations in

this chapter, Λ= 2500λ, γ= 3 and ε= 1.

4.1 Illumination with a truncated-Weierstrass wave

The illuminating field Ez(x′,0) is taken to be E0 across the domain of the single slit, −a0 ≤ x′ ≤ a0

and where Ez(x′,0)= 0 outside that region. By choosing a truncated-Weierstrass wave at y= 0,

62
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the RS diffraction integral of Eq. (1.34) becomes

(4.1) Ez(x, y)= iky
2

E0

∫ a0

−a0

dx′
H(1)

1 (kR)
R

[
1+ε

N∑
ν=0

1
γ(2−D0)ν cos

(2π
Λ
γνx′+φν

)]
,

where, recall, ε controls the strength of the pre-fractal modulation and N determines the cut-off

spatial frequency. In contrast to the Fresnel case [5], the RS problem is predominately numerical

because one cannot evaluate exactly the constituent integrals (involving products of 1
R , Hankel

functions and cosines); moreover, to introduce approximations at this stage would undermine

the purpose of the research. However, one may, of course, recover all the previous analytical

predictions from paraxial theory in the limit kR À O(1) and |x|
y ¿ O(1) (see the asymptotic

analysis of Section 1.3.1), beginning with

(4.2) u(x, y)≈ E0

√
k
πy

1+ i
2i

∫ a0

−a0

dx′ exp
[ ik(x− x′)2

2y

][
1+ε

N∑
ν=0

1
γ(2−D0)ν cos

(2π
Λ
γνx′+φν

)]
.

Previously, it has been argued that the Weierstrass summation must have a cut-off (here, at

ν= N) to avoid an unphysical (i.e., complex) propagation angle, θν (see Sec. 2.2). Another reason

is that for N →∞, the integrand becomes continuous everywhere but differentiable nowhere.

This second feature is potentially problematic from another physical perspective, since it would

seem to rule out the possibility of an arbitrarily “rough” electromagnetic wave having a magnetic

component. That is, in the TE solution, the component By = 1
−iω

∂Ez
∂x is unlikely to exist and ∇·B

would be undefined in the plane of the screen. However, the RS integral would appear to smooth

out structure even on vanishingly-small scales so that, away from the screen, the components of

the electromagnetic field become well-behaved and uniformly differentiable.

Figure 4.1: Intensity
∣∣∣ Ez

E0

∣∣∣2 for a diffracted Weierstrass-type wave with D0 = 1.5 at a single-
slit aperture with a0 = 250λ. A section of the (x, y) forward half-plane (left) and magnification
beginning to show some smaller-scale features (right).
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For illustrative purposes, one might compare the predictions of Eq. (4.1) that are shown in Fig. 4.1

to the left hand plot in Fig 3.5. There are some noticeable differences. Firstly, the peak intensity is

much greater for the case of pre-fractal illumination – this is not surprising due to the relatively

large amplitude coefficients at low ν and when D0 is moderate to large. Secondly, one can perceive

a ‘knotted structure’ running through the intensity pattern (cf right-hand pane of Fig. 4.1).
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Figure 4.2: 1D slices of the diffraction of the Weierstrass-type input wave at a0 = 250λ and

y= 10−1λ. Intensity
∣∣∣ Ez

E0

∣∣∣2 (left) and electric field 2ℜe
(

Ez
E0

)
(right).

The more detailed magnifications shown in Figs. 4.3 to 4.5 reveal how as D0 grows, the ‘knotted’

structure becomes increasingly prevalent.
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4.2 Dimension estimation

A preliminary analysis of the dimension associated with RS intensity patterns begins by con-

sidering the relative importance of the plane-wave component in isolation (i.e., where one sets

ε= 0). The roughness-length dimension in that case is relatively smooth and well-behaved when

seeking variations with distance y (see Fig. 4.6); one finds essentially the same curve as the n = 0

result in Fig. 3.6, as expected.

One might then consider the dimension associated solely with the Weierstrass-type component

of the illumination. The corresponding curve is much more erratic, with a region of fairly rapid

fluctuations. Perhaps the more striking feature is that, beyond y≈ 3λ, the estimated dimension

of the pattern associated with a complex waveform is actually less than that associated with the

uniform waveform. This result is unexpected and, at present, no obvious explanation for such

a strange feature is immediately apparent. It might, for instance, be regarded as a limitation

inherent to the roughness-length dimension measure, just as the power-spectrum is potentially

problematic is assessing dimension for a diffracted plane wave. But whatever the explanation, it

is a good example to illustrate the difficulties found when trying to quantify the complexity of

scattered pre-fractal waves.

Figure 4.6 also shows the combined effect of the estimated dimension for the total field (including

plane wave and Weierstrass components). The curve lies somewhere between the ‘plane-wave

only’ and the ‘Weierstrass-only’ results. Similar qualitative effects have been observed for the

electric field (see Fig. 4.7).
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Attention is now turned to estimating the roughness-length dimension for complete intensity

patterns (when both plane-wave and Weierstrass components are included) (see Fig. 4.8). For

lower D0 values, the curve follows quite closely the pure plane-wave result. This is not surprising

since the amplitudes in the Weierstrass function γ−(2−D0)ν fall off rapidly with ν. However, as D0

increases, the curves start to become more erratic, developing quite profound peaks and troughs

whose position in y appear to be largely independent of D0. Some trends in the dataset can now

be identified from Figs. 4.8 and 4.9:

• As distance from the slit increases, the dimension estimation seems to begin converging (of

course, longer distances are required to test that idea more rigorously). However, one may

reasonably expect the dimension to approach 1 as y→∞. This is because in the far-field

limit, the diffraction pattern must approach a sequence of geometrically-separated sinc

functions, each of which has the same scale-length. Such a pattern, by any measure, cannot

be fractal.

• The estimated dimension at very short distances (e.g. y = 10−1λ) is always less than D0.

This feature is perhaps to be expected whenever one truncates the Weierstrass at any

finite N. That is, the truncated series wN (x) from Eq. (1.18) can never be as complex or

area-filling as the curve W(x) in Eq. (1.3) for N <∞.

• Beyond a distance of y = 102λ, the erratic fluctuations in the curves tend to settle down

and the estimated dimension appears to be slightly better behaved.
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4.3 Variations of the Weierstrass single slit problem

All the numerical work considered in the previous section has been, specifically, for the case of

φν = 0 – i.e., all the phase shifts in the Weierstrass summation were inherently set to zero. There

were two main reasons for that. Firstly, the parameter D0 has been proven to be the Hausdorff

dimension for the Weierstrass function for the case of φν = 0, ∀ν. Secondly, non-zero phases

generally produce an asymmetric function; diffraction will then transform one asymmetric signal

into another similarly asymmetric signal (and therefore it is difficult to identify the effect of

diffraction). Two particular cases for non-vanishing phases are given in Fig. 4.10.
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Figure 4.10: Diffracted field at y= 10−1λ for φ= π
2 (left) and a φν chosen uniformly at random in

the interval [0,2π) (right).

Results are shown in Figs. 4.11 and 4.12 for D0 = 1.3 when the phase shifts change. In each

graph, seven of the eight curves are for cases where φν all assume the same value, whereas

the last curve in each graph has randomly chosen {φν}. This ‘misfit’ result happens for φν = π,

whose effect with regards to the input wave is to simply implement the inversion ε→−ε (and

therefore the Weierstrass-type wave is in anti-phase relative to the normally-incident plane wave

component). All the other results for the different φν values generally follow the results of the

φν = 0 curve and show a very strong qualitative and quantitative similarities – even when the

input waves look rather different.
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4.4 Fractal dimension and limits

At this juncture, it seems appropriate to consider and comment on the notion of fractal dimension

and how it pertains to the work in this thesis (particularly in this chapter). The BENOIT analysis

of Sections 4.2 and 4.3 have been concerned with trying to quantify the complexity of diffracted

Weierstrass-type waves at various distances downstream from the slit in the forward-half plane.

The results so far obtained have proved extremely difficult to interpret physically. One possibility

is that such an endeavour is bound to fail, in the sense that it can never be accomplished

satisfactorily based on the following argument.

The dimension D0 of the input Weierstrass-wave holds only in the limit that N →∞. That is,

the Hausdorff dimension is as asymptotic property of a fractal set that has meaning only in the

limit. The question should be – by how much can one truncate W(x) and still have the value of D0

accurately reflect the complexity of wN (x)? This is, in effect, always a question one must consider

when trying to estimate the dimension of any real (i.e., finite) datasets such as those considered

here.

The parameters considered in this thesis have imposed a physical small-scale limit of λ (the

optical wavelength), and the largest scale-length is Λ = 2500λ. This range captures just over

three decimal orders of scale contained in the input fields whereas the true Weierstrass function

(which more rigorously accommodates D0) comprises an infinite number of scales. There is, hence,

a discrepancy between what may be allowed physically and what one might expect to be the case

mathematically. Going much beyond three decimal orders of spatial scale was not practical (or

possible), given the available computational resources. The case might be that the ‘diffracted

fractals’ scenario considered here falls short of what may be required for a fuller analysis. This

point will be revisited at the end of the next chapter.

4.5 Intensity power spectrum

In Section 3.4, a preliminary numerical analysis was undertaken which demonstrated, at least

in quasi-paraxial regimes, that the average trend of the log-log intensity power spectrum for

normally-incident plane waves diffracted by a Cantor-type grating was linear in nature. More

precisely, the (negative) gradient of β≈−2 was found to be more-or-less insensitive to the pre-

fractal level n, and which is indicative of a power-spectrum dimension D ≈ 1.5, irrespective of n.

One might now consider a similar analysis for the single-slit aperture illuminated by a truncated-

Weierstrass input wave. Figure 4.13 shows a selection of results for the intensity power spectrum

across a range of D0 values. The average trends of the log-log graphs are found to be largely

insensitive of D0 and again they have a gradient of β ≈ −2. This type of behaviour (which, it

turns out, is also present in paraxial analysis of single slit diffraction patterns) suggests that the

intensity power spectrum dimension for Weierstrass waves is always going to be approximately

1.5, irrespective of D0. The spatial frequency cut-off, kc, is found to be λkc ≈π, in good agreement
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Figure 4.13: Comparison of the intensity power spectra for a single slit of half width a0 = 250λ
computed at distance y= 103λ for different D0 values. The plane-wave result (ε= 0) provides a
reference.

with New and Albaho [2] in this quasi-paraxial regime.
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5
DIFFRACTION OF THE WEIERSTRASS FUNCTION ON CANTOR

GRATINGS

In this final chapter, attention is paid to a new class of problem – the scattering of a pre-

fractal input wave by a pre-fractal obstacle. For modelling this type of scenario, the obvious

way forward is to combine the Weierstrass illumination deployed in Chapter 4 with the

Cantor sets identified in Chapter 3 (firstly the traditional version, with fixed a0, then the modified

version with fixed an). For consistency with that earlier work, the half width in question is 250λ.

Other parameters (such as Λ= 2500λ, γ= 3 and ε= 1) are also preserved in order to keep the

corresponding numerical calculations comparable.

When the incident waveform is TE-polarized, the electric field Ez(x, y) at some distance y > 0

beyond the Cantor grating is given by

(5.1) Ez(x, y)= iky
2

E0

2n−1∑
j=0

∫ a+(Ξ j)

a−(Ξ j)
dx′

H(1)
1 (kR)

R

[
1+ε

N∑
ν=0

1
γ(2−D0)ν cos

(
2π
Λ
γνx′+φν

)]
,

where R ≡
√

(x− x′)2 + y2 . In Chapter 4, it was found that most {φν} values had little impact

towards the complexity of the diffracted pattern and hence the phase parameters are kept as

zeros in this chapter.

5.1 Diffraction from the traditional Cantor set

The numerical analysis begins by restricting the parameter space in the problem to a slightly

more manageable size. The initiator single-slit of the Cantor set is chosen to have a0 = 250λ and

D0 values have been chosen in the range of D0 = 1.1 to D0 = 1.9.

Some of the same general trends are uncovered here are remarkably similar to those encountered
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earlier in the thesis. Most notably, the BENOIT plots for the electric field tend to be somewhat

irregular in comparison to those for the intensity plots. Moreover, after a distance of around

y= 102λ, the latter seem to settle down a little, behaving less erratically. At low D0 (e.g. D0 = 1.1

and 1.3) the estimated dimension changes relatively slowly as one progresses up through the hi-

erarchy of Cantor-set pre-fractal levels. As n increases, the constituent slits become narrower and

the corresponding dimension estimations increasingly irregular. Qualitatively similar phenomena

appear in Chapter 3 (cf. Fig. 3.6). A prevalent feature to emerge can be seen in Fig. 5.1, where

at pre-fractal level n = 5 of the Cantor-set algorithm there is some evidence of a convergence

phenomena. At n = 5, the slit widths are an = 250λ
35 ≈ 1.03λ. Hence for n = 6 the apertures will all

be sub-wavelength and one then may expect no further significant diffraction effects. Only the

curve for D0 = 1.9 shows any discriminable deviation and even then, only in two regimes – near

y≈ 10−1λ and y≈ 102λ. A similar kind of convergence is also found for the estimated dimension

result for the electric field (Fig. 5.2), where again only the curve for D0 = 1.9 deviates slightly

from the general trend.

The existence of the general convergence property is a desirable feature from a physical per-

spective: one does not expect arbitrarily-small changes to the scattering obstacle to produce

arbitrarily large changes in the diffraction patterns.
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Figure 5.1: Estimated roughness-length dimension of intensity,
∣∣∣ Ez

E0

∣∣∣2, for a pre-fractal Weierstrass-
type incident wave for pre-fractal level n = 5 of the traditional Cantor set grating.
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5.2 Diffraction from the modified Cantor set

After analysing the results from the traditional Cantor set one must now look at the modified

Cantor set (akin to in Chapter 3). Once again, the half-width of the individual slits is kept at

an = 250λ. The main difficulty here (which was largely unforeseen at the start of the research

project) is the ‘wall’ that is encountered very rapidly in terms of required computational times.

Unlike for the traditional Cantor set, it has not been possible to progress beyond pre-fractal

level n = 3 for the modified Cantor set. To preserve the integrity of the sampling (i.e., keeping

the resolution of the plot, ∆x = λ
32 , fixed - this is essential to keep the roughness-length analysis

in BENOIT as consistent as possible as discussed in Subsection 1.2.4.3) and to accommodate

a sufficiently wide transverse domain, the number of x grid points ramps up geometrically.

For n = 3, the number of x points is 864,001. This increase in points is augmented by the

fact that, for regimes with pre-fractal illumination (i.e., a Weierstrass wave with N = 7 and

Λ= 2,500λ), multiple diffraction patterns need to be computed for each n. This type of double-

barrelled fractality has largely exceeded available computational resources and resulted in

exhaustive wait times (effectively six months to generate the data in this chapter!). Unfortunately,

there does not seem to be any short-cut to performing numerical calculations with Weierstrass

functions: increasing ∆x to speed-up calculations risks under-sampling the higher frequencies,

while truncating the summation before reaching N eliminates these contributions altogether

(neither scenario is satisfactory).

n x domain size Approx. time for one calculation No. of calculations Approx. overall time

0 48,001 180s 9 27 minutes
1 96,001 600s 9 90 minutes
2 288,001 2000s 18 10 hours
3 864,001 5000s 36 50 hours

Table 5.1: Approximate computation times for the diffracted field at a single y value with a modi-
fied Cantor-grating and truncated-Weierstrass illumination (here, times are given for the patterns
at ν = 4). The parameters are D0 = 1.5 and y ≈ 8.6λ (the middle value of the logarithmically-
spaced y array). “No. of calculations” refers to the number of constituent diffraction patterns
that must be computed at pre-fractal level n = 1,2,3, . . .. For N +1 contributions from truncated-
Weierstrass illumination, and the normally-incident plane wave, a total of (N +2)×2n−1 patterns
must be calculated.

Some typical computation times are shown in Table 5.1 for a single value of y. These numbers

depend critically upon both y and the index ν. The time required to compute any particular

integral increases as y→ 0 and for increasing ν (see Fig. 5.13). Either of these parameters can

give rise to a very rapidly-varying integrand in x′ and desired convergence of the MATLAB

library function integral takes longer and longer to reach. Sources of long computation times

thus include:
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• High number of points in x (needed to preserve the integrity of the calculation and avoid

under-sampling),

• High number of slits (with a geometric divergence 2n),

• High number of spatial-frequency components in Ez(x′,0).
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Figure 5.13: The contributions for ν= 3,4,5 and 6 of intensity of the diffracted field at y= 1λ for
a D = 1.5.

It is true to say that similar considerations were present, to some extent, in the analysis of

Chapter 4, which addressed the single-slit problem (or pre-fractal level n = 0 of the Cantor

set). The computation time really becomes problematic with combining pre-fractal waves with

pre-fractal scattering obstacle which leads to prospect that studying such a phenomena in any

detail, and for high n, is likely not possible with currently-available computing measures. One

way of knocking down the computation wall is to use the natural symmetry of the Cantor grating

so that patterns from only half of the total number of slits need to be calculated and the result

mirrored. Even then, the time required to calculate the diffraction at a single y value is on the

scale of days. Some qualitatively similar effects are found for the modified Cantor set as with

the traditional Cantor set (see Figs. 5.14 to 5.19). Illuminating waves with low D0 tend to have

roughness-length dimensions that are generally better behaved [variations in estimation with

y are again smoother and more gradual for
∣∣ Ez

E0

∣∣2 than for 2ℜe
( Ez

E0

)
]. There is also some mild

evidence for convergence, however it has not been possible to progress onto higher n values here.
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6
CONCLUSIONS AND FURTHER WORK

The programme of work undertaken in this MSc has been intended to re-start some of the

research activity on ‘fractal diffraction’ that had ended in 2016, but exploring different pos-

sible directions. This approach has involved beginning from scratch, essentially replacing

the paraxial approximation with a new formulation based on the RS diffraction integral (which is

free from angular limitations and hence much more appropriate for modelling high-frequency

problems). While closed-form mathematical predictions are not so forthcoming from this more

sophisticated and predominantly numerical approach, one can reasonably expect the results to

be more physically meaningful.

The classic knife-edge problem has been solved, and the solution first derived by Sommerfeld

revisited in rather a high level of detail. This type of preparatory detailed investigation provided

the mathematical ‘blueprint’ for how to approach generalizing the knife-edge problem in order

to accommodate illuminating and scattered fields that are complex in nature (in the sense of

comprising structure across, in principle, many decimal order of scale). Fundamental TE and

TM Weierstrass-Lamb waves have been obtained, wherein the incident phase fronts are always

perpendicular to the (x, y) plane, and a provisional analysis using BENOIT has also considered

the fractal-dimension properties of the TE wave. In the somewhat restrictive parameter regimes

allowed by paraxial theory, a known solution first derived in 2013 emerges asymptotically. In

terms of taking this work forward, there are two main outstanding tasks: (i) for maximum

generality, it is desirable to derive Weierstrass-Lamb waves where the constituent waveforms

may be polarized in any arbitrary direction relative to the screen (one might use, for instance,

the methods found in tomes by Born and Wolf [34] or Stamnes [28] as a starting point). (ii)

The BENOIT analysis needs to be extended. Here, the range of x considered has been limited

by available computer resources and also the 12-month duration of the MSc programme. A
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wider spatial domain needs to be considered (for instance, allowing for x to be bounded between

−Λ≤ x ≤Λ to ensure that all scales in the Weierstrass waveform are captured), and these larger

datasets may well provide some more conclusive insight. There is also the question of how (if at

all) the fractal-dimension characteristics change between the TE and TM waves.

Scattering of normally-incident plane waves by a Cantor set-type complex domain has been

addressed. While this geometry has previously been considered in the literature, more analy-

ses appear to be concerned with the far-field region [39, 40] where diffraction patterns can be

described using Fourier transforms. In this thesis, a prescription was developed based on the

RS diffraction integral and interesting qualitative agreement has been found with the boundary

element numerical method used by other research groups considering Neumann screens [45].

While gratings based on the traditional Cantor set generated some fascinating patterns, a greater

level of complexity was often present when using a modified Cantor-set construction (one where

the constituent slits have a fixed width across all pre-fractal levels). BENOIT analysis also

suggested more regular behaviour in the estimated dimension when using this alternative type

of grating. Finally, numerical work using FFTs demonstrated that the power-spectrum dimension

remained fixed at around 1.5, irrespective of the pre-fractal level n for the Cantor set. This

result suggests that the single-slit analysis by New and Albaho [2] has scope to be generalized to

complex domains such as those modelled by the Cantor set but that its key physical prediction

(i.e., the spatial-frequency cut-off) will likely survive.

Preliminary investigations using a 2DRS method have been initiated for considering plane-wave

scattering by complex domains such as the Cantor dust. These results are given in Appendix E,

but they have not been further developed due to a lack to time and computing resources.

A first attempt has been made to go beyond the assumptions underpinning the early (paraxial)

analyses that considered the diffraction of the Weierstrass-type waveform at a single aperture.

The entire problem has been reformulated with closer attention now being paid to the high-

frequency nature of pre-fractal waves (these considerations are outside the scope of paraxial

theory). The chosen formulation lies with a RS diffraction integral, which is formally an exact

solution to the underlying 2D Helmholtz equation. There naturally remains a small level of

approximation here, wherein the precise form of the input wave Ez(x′,0) may only ever be spec-

ified approximately (e.g., as a uniform wavefront) but this feature is also shared by the more

familiar Fresnel integral approach. It was hoped, initially, that basing the field description on the

Helmholtz equation – where unphysical sub-wavelength structure is eliminated – might remove

some of the difficulties interpreting the BENOIT dimension-estimation curves (e.g., smoothing

the graphs, reducing variability, etc.). While such difficulties evidently still persist, some new

results have been uncovered that will require closer scrutiny.

Finally, the first steps have been taken towards modelling the physical regime of a pre-fractal

wave scattering from a pre-fractal obstacle. To pursue this particular class of problem, the same

types of mathematical model and computational techniques deployed elsewhere in the thesis
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have been used: the RS diffraction integral, Weierstrass-type illumination, and gratings based on

pre-fractal levels of traditional and modified Cantor sets. This work is very much provisional,

and it certainly merits further development. Computation times required for these types of calcu-

lations, particularly once one goes from the traditional Cantor set to its modified counterpart,

have tended to become prohibitive. The number of points requirement in the x domain (in order

to avoid under-sampling) increases dramatically with n, and these numerical calculations rapidly

start becoming impractical. Within the MSc time-scale, it has been possible to generate results

only up to the third pre-fractal level.

The computation time may be reduced significantly by altering the approach to the numerics. For

instance, one might use specialised oscillatory quadrature methods that are tailored to these sorts

of problems (e.g., where there is a frequency-independent computational cost in high-frequency

regimes) [46]. Such methods might be deployed to compute full boundary-element solutions, which

is a topic reserved for future research. The main roadblock encountered has been extracting

physically-meaningful results from the systematic BENOIT analysis of many large datasets. The

inconclusive nature of these investigations suggest that other methods may be required in order

to fully understand the dimension of the pre-fractal diffraction patterns. One obvious candidate

approach is to consider band-averaging in the fourier domain, as considered by Uozumi et. al.

[44]. In conclusion, this thesis has attacked a suite of wave propagation problems with regards to

various combinations of pre-fractal waves and a variety of scattering obstacles: from the single

knife-edge to a single slit and pre-fractal levels of Cantor sets. The results presented here are

just the ‘tip of the iceberg’, and while some solid progress has clearly been made there remains

much research to be followed-up for each of the four main strands.
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A
DERIVATION OF THE 1-DIMENSIONAL RAYLEIGH-SOMMERFELD

EQUATION

The 1D Rayleigh-Sommerfeld formulation is given by [28] to be

(A.1) Ez(x, y)= iky
2

∫ ∞

−∞
dx′Ez(x′,0)

H(1)
1 (kR)

R
.

This can be shown by first taking the Helmholtz equation,

(A.2)
∂2Ez

∂y2 + ∂2Ez

∂x2 +k2Ez = 0.

Setting Ez(x, y)= E0 exp[i(kxx+ky y)], one then arrives at the dispersion relation,

(A.3) k2
y +k2

x = k2.

The general solution for Ez(x, y) is a linear superposition of a forward and backward-propagating

waves, where ky > 0 is the forward solution and ky < 0 is the backward one, so that

(A.4) Ez(x, y)= E(+)
0 exp[i(kxx+k(+)

y y)]+E(−)
0 exp[i(kxx+k(−)

y y)].

Next, one needs to find an equation for the y-dependence of the Fourier transform Ẽz(kx, y) [20],

where

(A.5) Ẽz(kx, y)= 1
2π

∫ ∞

−∞
dxEz(x, y)exp(−ikxx).

Combining Eqs. (A.2) and (A.5) one gets the equation for the y-dependence of the Fourier

Transform,

(A.6)
∂2

∂y2 Ẽz(kx, y)+ (k2 −k2
x)Ẽz(kx, y)= 0.
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Looking at only the forward solution,

(A.7) Ez(x, y)=
∫ ∞

−∞
dkxẼz(kx,0)exp[i(kxx+ky y)].

ky(kx)≡
√

k2 −k2
x , therefore

(A.8) Ez(x, y)=
∫ ∞

−∞
dkxẼz(kx,0)exp[iky(kx)]exp(ikxx),

Defining exp[−iky(kx)y] through its Fourier transform,

(A.9) h̃(kx, y)= 1
2π

∫ ∞

−∞
dxh(x, y)≡ exp[−iky(kx)y],

and therefore

(A.10) Ez(x, y)=
∫ ∞

−∞
dkxẼz(kx,0)h̃(kx, y)exp(ikxx).

Ẽz(kx,0)= 1
2π

∫ ∞

−∞
dxEz(x,0)exp(−ikxx)→ 1

2π

∫ ∞

−∞
dx′Ez(x′,0)exp(−ikxx′)(A.11)

h̃(kx,0)= 1
2π

∫ ∞

−∞
dxh(x, y)exp(−ikxx)→ 1

2π

∫ ∞

−∞
dx′′h(x′′, y)exp(−ikxx′′)(A.12)

Substituting Eq.s (A.11) and (A.12) into Eq. (A.9), one then gets

(A.13) Ez(x, y)= 1
2π

∫ ∞

−∞
dx′Ez(x′,0)h(x− x′, y).

One needs to redefine h(x, y) so that,

(A.14) h(x, y)=
∫ ∞

−∞
dkx exp[iky(kx)y]exp(ikxx),

hence,

(A.15) Ez(x, y)=
∫ ∞

−∞
dx′Ez(x′,0)h(x− x′, y)≡ Ez(x,0)∗h(x, y)

(A.16) h(x, y)= 1
i
∂

∂y

∫ ∞

−∞
dkx

ky
exp[i(kxx+ky y)]

I =
∫ ∞

−∞
dkx

exp
{
i[kxx+

√
(k2 −k2

x) y]
}√

(k2 −k2
x)

=
∫ ∞

−∞
dkx

ky
exp(ik ·x)

(A.17)
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kx

ky

k

x
γ

k′
x

k′
y

kx γ

Figure A.1: The coordinate transformation undergone in order to have k ·x in terms of k′
x and k′

y.

From the transformation shown in figure A.1 it is shown that

(A.18) I =
∫ − π

2 +i∞
π
2 −i∞

dγexp(ikr cosγ).

Next is another substitution of α=−γ− π
2 so that the integral is in the form of

(A.19) I =−
∫ −π−i∞

−i∞
dαexp(−ikrsinα),

and therefore [30]

(A.20) I =πH(1)
0 (kr).

Substituting Eq. (A.20) back into Eq. (A.14),

h(x, y)= 1
2i

∂

∂y
H(1)

0 (kr),

= −ky
2ir

H(1)
1 (kr),

(A.21)

where r =
√

x2 + y2 and substituting Eq. (A.21) back into Eq. (A.13) gives the 1DRS equation,

(A.22) Ez(x, y)= iky
2

∫ ∞

−∞
dx′Ez(x′,0)

H(1)
1 (kR)

R
,

where R =
√

(x− x′)2 + y2 .
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B
DERIVATION FOR THE KNIFE-EDGE DIFFRACTION FROM AN

OBLIQUE INCIDENCE ANGLE

In this work, the derivations for two specific incidences of the Sommerfeld solution have been

worked through. Firstly, the solution where electric field is transverse to the screen (the TE

solution) is considered, and afterwards the solution where magnetic field is, instead, transverse

to the screen is derived.

B.1 Derivation of the electric field components for a transverse
electric field

In this section, Initially one must consider the Helmholtz equation,

(B.1) (∇2 +k2)Ez(x, y)= 0,

where Ez is a summation of an incident field, E0 exp(ikinc ·x) and a scattered field, Ψs(x, y).

(B.2) Ez(x, y)= E0 exp(ikinc ·x)+Ψs(x, y),

The scattered field Ψs(x, y) is composed of an incident part and a reflected part so that,

(B.3) Ψs(x, y)=Ψinc exp(ikinc ·x)+Ψre f exp(ikref ·x),

so that

(B.4)
( ∂2

∂x2 + ∂2

∂y2 +k2
)[
Ψinc exp(ikinc ·x)+Ψre f exp(ikref ·x)

]
.
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x

y

kinckre f
θinc

Figure B.1: kinc and kref.

where kre f = k(−sinθinc). Focusing, for now, on the incident part,

∂

∂x
=

(∂Ψinc

∂x
+ ikincxΨinc

)
exp(ikinc ·x),

∂2

∂x2 =
(∂2Ψinc

∂x2 + i2kincx

∂Ψinc

∂x
−k2

incx
Ψinc

)
exp(ikinc ·x),

∂

∂y
=

(∂Ψinc

∂y
+ ikincyΨinc

)
exp(ikinc · x),

∂2

∂y2 =
(∂2Ψinc

∂y2 + i2kincy

∂Ψinc

∂y
−k2

incy
Ψinc

)
exp(ikinc · x).

From this, one can see that,

(B.5)
( ∂2

∂x2 + ∂2

∂y2 +k2
)[
Ψinc exp(ikinc ·x)

]= [
∂2Ψinc

∂x2 + ∂2Ψinc

∂y2 + i2
(
kincx

∂Ψinc

∂x
+kincy

∂Ψinc

∂y

)]
.

Looking at Fig. B.2, it is shown that

(B.6)

(
x′

y′

)
=

(
cosθinc sinθinc

−sinθinc cosθinc

)(
x

y

)
,

and therefore

x′ = xcosθinc + ysinθinc,(B.7)

y′ = ycosθinc − xsinθinc.(B.8)

The Helmholtz equation is covariant under transformation and hence

(B.9)
(∂2Ψinc

∂x′ 2 + ∂2Ψinc

∂y′ 2 + i2k
∂Ψinc

∂y′
)
= 0.
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x′

y′

x

y

Figure B.2: Coordinate transformation (x, y) to (x′, y′).

For a coordinate transformation of the reflected plane,

(B.10)

(
x′′

y′′

)
=

(
−cosθinc sinθinc

−sinθinc −cosθinc

)(
x

y

)
.

As with B.9,

(B.11)
(∂2Ψinc

∂x′′ 2 + ∂2Ψinc

∂y′′ 2 − i2k
∂Ψinc

∂y′′
)
= 0.

Going from Cartesian to Parabolic-Cylindrical coordinates, the transformations are as follows

[20]:

(B.12) ξ′ =
p

kr cos
φ′

2
, η′ =

p
kr sin

φ′

2
,

(B.13) ξ′′ =
p

kr cos
φ′′

2
, η′′ =

p
kr sin

φ′′

2
,

where φ′ = φ−θinc and φ′′ =φ+θinc. From this definition, one can see that

∂Ψinc

∂x′
= ξ′

∂x′
∂Ψinc

∂ξ′
+ ∂η′

∂x′
∂Ψinc

∂η′
(B.14)

= η′

2r
∂Ψinc

∂ξ′
− ξ′

2r
∂Ψinc

∂η′
,

∂Ψinc

∂y′
= ∂ξ′

∂y′
∂Ψinc

∂ξ′
+ ∂η′

∂y′
∂Ψinc

∂η′
(B.15)

= η′

2r
∂Ψinc

∂ξ′
+ ξ′

2r
∂Ψinc

∂η′
,
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y′′

x′′

x

y

Figure B.3: Coordinate transformation (x, y) to (x′′, y′′).

(B.16)
∂2Ψinc

∂x2 = ∂ξ′2

4r2
∂2Ψinc

∂ξ′2
+ η′2

4r2
∂2Ψinc

∂η′2
− η′ξ′

4r2
∂2Ψinc

∂η′∂ξ′

and

(B.17)
∂2Ψinc

∂y2 = η′2

4r2
∂2Ψinc

∂ξ′2
+ ξ′2

4r2
∂2Ψinc

∂η′2
+ η′ξ′

4r2
∂2Ψinc

∂η′∂ξ′
.

All is the same for Ψre f and therefore

(B.18)
∂2Ψinc

∂ξ′2
+ ∂2Ψinc

∂η′2
+4i

[
η′
∂Ψinc

∂ξ′
+ξ′ ∂Ψinc

∂η′

]
= 0

and

(B.19)
∂2Ψre f

∂ξ′′2
+ ∂2Ψre f

∂η′′2
−4i

[
η′′
∂Ψre f

∂ξ′′
+ξ′′ ∂Ψre f

∂η′′

]
= 0.

Taking Ψinc,Ψre f (ξ,η)= f (η∓ξ)≡ f (ζ), Eqs. (B.18) and (B.19) then become

(B.20)
d2Ψinc

dζ′2
+2iζ′

dΨinc

dζ′
= 0

and

(B.21)
d2Ψre f

dζ′′2
+2iζ′′

dΨre f

dζ′′
= 0.

Eqs. (B.20) and (B.21) are standard integrals which integrate to [30]

(B.22) f (ζ)= ainc +binc

√
π

2

∫ p
π
2 (η′−ξ′)

0
dζexp

(
i
π

2
ζ2

)
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and

(B.23) f (ζ)= are f +bre f

√
2
π

∫ p
π
2 (η′′+ξ′′)

0
dζexp

(
i
π

2
ζ2

)
respectively. To find the constants ainc, are f , binc and bre f , two boundary conditions must be

considered. Firstly the case on the boundary far away from the coordinate origin is considered,

i.e. x →−∞ and y¿O (1). As x →−∞, φ=π, Ψs is negligible and hence,

(B.24) ainc +binc

√
2
π

∫ ∞

0
exp

(
i
π

2
ζ2

)
dζ= 0,

and

(B.25) are f +bre f

√
2
π

∫ ∞

0
exp

(
i
π

2
ζ2

)
dζ= 0.

Next, the solution on the half place is considered. On the half-plane, Ez = 0, φ = 0 and x > 0,

hence kinc · x→−ksinθincx and kref · x→−ksinθincx. At the screen,

(B.26) η′−ξ′
∣∣∣
screen

=−
p

kx
[

sin
θinc

2
+cos

θinc

2

]
and

(B.27) η′′+ξ′′
∣∣∣
screen

=
p

kx
[

sin
θinc

2
+cos

θinc

2

]
.

Substituting these into Eq. (B.24) and Eq. (B.25) yields

(B.28) 1+ainc +are f + (binc −bre f )

√
2
π

∫ √
πkx

2

[
cos θinc

2 +sin θinc
2

]
0

exp
(
i
π

2
ζ2

)
dζ= 0.

The boundary conditions can therefore be deduced as

(B.29) binc = bre f ,

and

(B.30) ainc +are f =−E0.

Therefore,

Ez(x, y)
E0

= exp(ikinc ·x)− 1+ i
2i

[
exp(ikinc ·x)F(χ−)−exp(ikref ·x)F(χ+)

]
− 1

2
[
exp(ikinc ·x)+exp(ikref ·x)

]
,

(B.31)
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B.2 Magnetic field components for parallel polarization of a
plane incident wave

Equation (B.31) can be represented as

(B.32) Ez(x, y)= E0 exp(ikinc ·x)+Ψs(x, y).

In order to find the B components of the solution, one must look at the Maxwell equation

(B.33) ∇×E+ ∂B
∂t

= 0.

For a cw solution,

(B.34) B= −i
ω

∇×E.

(B.35) B= −i
ω

[(1
r
∂Ez

∂φ
− ∂Eφ

∂z

)
êr +

(∂Er

∂φ
− ∂Ez

∂z

)
êφ+ 1

r

( ∂
∂r

(rEφ)− ∂Er

∂φ

)
êz

]
,

and therefore the r and φ components of B are

(B.36) Br = −i
wr

[ ∂

∂φ
E0 exp(ikinc · x)+ ∂Ψ

∂φ

]
,

and

(B.37) Bφ = −i
w

[ ∂
∂r

E0 exp(ikinc · x)+ ∂Ψ

∂r

]
.

∂Ψ

∂φ
= −E0

1+ i
2i

exp(ikinc ·x)
∂

∂φ
F(χ−)−E0

1+ i
2i

F(χ−)
∂

∂φ
exp(ikinc ·x)

+E0
1+ i
2i

exp(ikref ·x)
∂

∂φ
F(χ+)+E0

1+ i
2i

F(χ+)
∂

∂φ
exp(ikref ·x)

− E0

2

[ ∂

∂φ
exp(ikinc ·x)+ ∂

∂φ
exp(ikref ·x)

]
.

(B.38)

(B.39)
∂F(χ−)
∂φ

=−exp(i π2χ
2−)

2

√
2kr
π

[
cos

(φ−θinc

2

)
+sin

(φ−θinc

2

)]
,

(B.40)
∂F(χ+)
∂φ

= exp(i π2χ
2+)

2

√
2kr
π

[
cos

(φ+θinc

2

)
−sin

(φ+θinc

2

)]
,

(B.41)
∂

∂φ
exp(ikinc ·x)= ikr cos(φ−θinc)exp(ikinc ·x)

and

(B.42)
∂

∂φ
exp(ikref ·x)=−ikr cos(φ+θinc)exp(ikref ·x).
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∂Ψ

∂φ
= −E0 ikr

{
− 1+ ip

πkr
exp(ikr)cos

(φ
2
+ π

4

)
+ 1+ i

2i
[
F(χ−)cos(φ−θinc)exp(ikinc ·x)+F(χ+)cos(φ+θinc)exp(ikref ·x)

]
+ 1

2
[
cos(φ−θinc)exp(ikinc ·x)−cos(φ+θre f )exp(ikref ·x)

]}
(B.43)

Therefore the r component of the magnetic field, B, is

Br

B0
= cos(φ+θre f )− 1+ i

2i

[
F(χ−)cos(φ−θinc)exp(ikinc · x)+F(χ+)cos(φ+θinc)exp(ikref · x)

]
− 1+ ip

πkr
cos

φ

2
cos(

θinc

2
+ π

4
)− 1

2

[
cos(φ−θinc)exp(ikinc · x)+cos(φ+θinc)exp(ikref · x)

]
(B.44)

(B.45)
∂

∂r
E0 exp(ikinc · x)= iksin(φ−θinc)E0 exp(ikinc)

∂Ψ

∂r
= −E0

1+ i
2i

exp(kinc · x)
∂

∂r
F(χ−)−E0

1+ i
2i

F(χ−)
∂

∂r
exp(kinc · x)

+E0
1+ i
2i

exp(kref · x)
∂

∂r
F(χ+)+E0

1+ i
2i

F(χ+)
∂

∂r
exp(kref · x)

− E0

2

( ∂
∂r

exp(kinc)+ ∂

∂r
exp(kref )

)
.

(B.46)

(B.47)
∂

∂r
F(χ−)= exp(i π2χ

2−)
2r

χ−,

(B.48)
∂

∂r
F(χ+)= exp(i π2χ

2+)
2r

χ+,

(B.49)
∂

∂r
exp(kinc · x)= iksin(φ−θinc)exp(kinc · x),

and

(B.50)
∂

∂r
exp(kref · x)=−iksin(φ+θinc)exp(kref · x).

Therefore the φ component of the magnetic field, B, is

Bφ

B0
= −sin(φ−θinc)exp(ikinc · x)+ 1+ i

2i
exp(ikr)

2ikr
(χ−−χ+)

+ 1+ i
2i

[
sin(φ+θinc)exp(ikinc · x)F(χ+)+sin(φ−θinc)exp(ikinc · x)F(χ−)

]
+ 1

2

[
sin(φ−θinc)exp(ikinc · x)−sin(φ+θinc)exp(ikinc · x)

]
.

(B.51)
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PLANE-WAVE DIFFRACTION FROM CANTOR GRATINGS

This appendix presents a fairly wide selection of results predicting the diffraction patterns

from pre-fractal levels 0 through 5 for the traditional and modified Cantor-set illuminated by a

normally-incident plane wave. The slit widths (the overall slit size a0 in the traditional Cantor-set

case and the individual an for the modified case) are in the rage of 1.5λ to 250λ.
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Due to the excessive computation times required to solve the ‘pre-fractal on complex

domains’ class of problem, higher pre-fractal levels for the modified Cantor-set gratings

(such as n = 4 and n = 5) became unattainable. Also, while running, it become apparent

(as days turned into weeks and weeks turned into months) that generating 32 results for each

D0 value was an unrealistic goal. As a partial remedy, results for D0 = 1.3 and 1.7 at n = 2 were

allowed to finish but n ≥ 3 had to be abandoned.
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Figure D.1: Estimated roughness-length dimension for diffracted intensity,
∣∣∣ Ez

E0

∣∣∣2, of a truncated-
Weierstrass waveform with D0 = 1.3 from a modified Cantor set with an = 250λ.
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Figure D.2: Estimated roughness-length dimension for diffracted electric field, 2ℜe
(

Ez
E0

)
, of a

truncated-Weierstrass waveform with D0 = 1.3 from a modified Cantor set with an = 250λ.
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Figure D.3: Estimated roughness-length dimension for diffracted intensity,
∣∣∣ Ez

E0

∣∣∣2, of a truncated-
Weierstrass waveform with D0 = 1.7 from a modified Cantor set with an = 250λ.
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Figure D.4: Estimated roughness-length dimension for diffracted electric field, 2ℜe
(

Ez
E0

)
, of a

truncated-Weierstrass waveform with D0 = 1.7 from a modified Cantor set with an = 250λ.
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A fter focusing on a 1D aperture in the main body of the thesis it is natural to be curious

about how to develop the analysis for a 2D aperture. A few examples of 2D fractal

apertures have been studied in the past, mostly focusing on the Sierpinki Triangle and

Von Koch curve, however in this Appendix the 2D generalization of the Cantor set will be studied

– the Cantor dust. Looking at these diffraction patterns is an attractive proposition and the

results that come from studying the intensity can be visually appealing.

E.1 Mathematical background

The 2DRS formulation is [28]

(E.1) Ez(x, y, z)=− 1
2π

∫ ∞

−∞

∫ ∞

−∞
dx′dz′Ez(x′,0, z′)

∂

∂y
exp(ikR)

R

∣∣∣∣
y=0

,

and therefore the 2DRS formulation for the Cantor dust is

(E.2) Ez(x, y, z)=− 1
2π

22n−1∑
j=0

∫ b+(Ξ j)

b−(Ξ j)

∫ a+(Ξ j)

a−(Ξ j)
dx′dz′Ez(x′,0, z′)

∂

∂y
exp(ikR)

R

∣∣∣∣
y=0

,

where R =
√

(x− x′)2 + (z− z′)2 + y2 , a±(Ξ j) is the edge of the slit on the x axis and b±(Ξ j) is the

edge of the slit on the z axis.
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Figure E.1: The zeroth (left), second (middle) and fourth (right) pre-fractal level of the Cantor
dust. The black is the screen (opaque region) and white is the aperture (transparent region)

For each iteration of the pre-fractal, the half width of the individual square apertures is kept

at 250λ and the overall size of the total slit grows accordingly. There is an inherent four-fold

symmetry in the Cantor-dust aperture which can hence be exploited – calculating merely the

diffraction pattern from the top-right (or any) quarter of dust and mirroring the result saves

a lot of computation time, which is wonderful. The distances are kept in terms of Lchar, where

Lchar = ( k(2an)4

8 )
1
3 (from Eq. 1.39).

E.2 Results

This Appendix features many figures produced looking at the diffraction of a plane wave from a

pre-fractal Cantor dust. The computations are for n = 1,2 and 3, y= 10Lchar, 15Lchar, 20Lchar,

25Lchar, 50Lchar, 75Lchar ,100Lchar and 200Lchar. Numerical calculations are performed on

a grid of 1024x1024 points, with the 2D integrals evaluated using the integral2 routine in

MATLAB.
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