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ABSTRACT 
Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar 

cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal 

efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in 

solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently 

employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. 

Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics, the 

present article presents a mathematical and computational study of the steady, two-dimensional, non-

aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol 

gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal 

slip is analysed at the wall. A temperature-dependent viscosity is also considered. The conservation 

equations for mass, normal and tangential momentum and energy are normalized via appropriate 

transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value 

problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with 

shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a 

Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging 

dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), 

thermal slip parameter (𝛼), viscosity parameter (m), nanoparticles volume fraction (𝜙) on non-

dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux 

and streamline distributions is visualized graphically. Shear stress and temperature are boosted with 

increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter 

depletes temperatures.  

 

Keywords: non-orthogonal stagnation-point flow; thermal slip; variable viscosity; thermal radiation 

flux model; solar nano-polymer coating manufacture; copper volume fraction. 

 

1.INTRODUCTION 

In recent years nano-technology has had a profound impact on many technologies including 

medicine, aircraft components, rocket propulsion and also renewable energy systems [1]. In 

the latter area solar energy remains the best prospect for sustainable, clean, inexpensive power 

mailto:rashid.mehmood@hitecuni.edu.pk


2 
 

 
 

systems. Although significant progress has been made in refining the working fluids in solar 

collectors via nano-particle doping, only recently have engineers focused on revolutionizing 

the coating materials for solar cells and photovoltaics. Among the most promising of these 

developments is organic solar paint. This environmentally-friendly technology takes the form 

of coatings or flexible polymeric sheets that are precision-designed to contain a nano-particle 

fluid that is essentially water-based paint. The presence of the nano-particles has been 

confirmed to enhance durability, anti-corrosion and anti-abrasion characteristics of solar 

coatings which may be regarded as smart thermochromic materials [2]. With organic solar 

coatings, the solar collector (usually glass—based housings) accumulate significantly less dry 

dust than untreated solar glass. Significant less dust on solar panels leads to less maintenance, 

lower cost per unit power generated over long periods of operation and higher overall energy 

production. Coating solar panels with these so-called sol gels and paints leads to a more 

consistent and predictable power output and sustained efficiency. These coating protects the 

glass from erosion, and from stubborn staining from salt and mineral deposits and furthermore 

have confirmed properties which can permit efficient performance in harsh environmental 

conditions from sub-zero to extreme hot environments. Solar gel coated systems constitute 

third generation solar designs (organic polymer-based nano-coatings) which are superceding 

the earlier first generation (silicon-based) and second generation (thin film) solar cells. Second 

Generation solar coatings have the disadvantage of susceptibility to contamination and also 

require very expensive and rare metals (Selenium, Cadmium, Tellerium etc).  

Nano-polymeric solar gel coatings have several significant further advantages including solid 

active layers, anti-reflection properties, light weight and high flexibility, high transparency 

(active layer is approximately 100 nm), can be 3-D printed and easily produced in large area 

and with low cost fabrication. Many excellent studies have been communicated on these novel 

solar gel coatings in recent years including Joly et al. [3] on copper, cobalt, magnesium and 

silicon hybrid doped water nan-solar gels. World-leading research has also been conducted at 

the California NanoSystems Institute of UCLA in the USA by Chen et al. [4] on the most 

advanced designs in transparent organic nano-polymer solar coatings. Important manufacturing 

studies have been reported also with regard to the high-quality synthesis of nano-solar gel 

coatings. Relevant studies in this regard include Joly et al. [5] on sol-gel dip stagnation flow 

coating, Schueller et al. [6] on multi-wafer sol-gel deposition fabrication and Joly et al. [7] on 

nano-gel coating production with both orthogonal and non-orthogonal stagnation fluid 

processes. 
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The core science on which solar nano-gels are founded is that of nanofluids. Introduced by 

Argonne energy laboratory pioneers, Choi and Eastman [8] in the 1990s, a nanofluid is a 

suspension of nano-sized particles (usually metallic) introduced into a base fluid (water, 

ethylene glycol, air, lubricant etc) which boosts the effective thermal conductivity of the 

composite medium and even at relatively low volume fractions, the heat transfer enhancement 

is considerable. Many analytical studies of nanofluid dynamics have been communicated in the 

last decade or so. These have included external boundary layer flows, internal developing 

flows, swirling flows, squeezing flows, wedge (Falkner-Skan flows), peristaltic pumping, 

magnetohydrodynamics and helical flows. Many of these works have been reviewed recently 

by Bég [9]. The vast majority of these studies deploy either the Buongiorno two-component 

model (which invokes a species diffusion equation for nano-particles) or the simpler Tiwari-

Das model (which allows volume fraction and different nanofluid properties to be simulated). 

A particular category of flows of special relevance to nanomaterial coating dynamics processes 

is stagnation-point flow. Such flows may involve either viscous (or inviscid) fluids impinging 

on solid surfaces and manifest in a vanishing of the local velocity and an associated peak in 

stagnation pressure. They are fundamental to materials processing operations but also arise in 

other areas of technology including aircraft wing aerodynamics, nuclear reactor ducts, polymer 

extrusion, vapour deposition in chemical engineering, analytical microfluidic chemistry 

(production and analysis of emulsions, single-cell systems, substrate patterning, and chip-

integrated devices) [10] etc. Stagnation flows may be either orthogonal or non-orthogonal 

which refer respectively to the case where the impinging fluid is perpendicular or inclined (i.e. 

oblique) to the solid surface. Bachok et al. [11] investigated the time-dependent transverse 

nanofluid flow at a stagnation-point. They noted double solutions for values of unsteadiness 

constant less than zero. Uddin et al. [12] simulated stagnation-point bioconvection nanofluid 

flow with anisotropic hydrodynamic and thermal slip effects.  Hamid et al. [13] considered 

nanofluid stagnation-point flow from a non-aligned pervious extending/shrinking sheet, noting 

that symmetry of the problem is disturbed by the transverse flow and that wall suction reduces 

the non-alignment of the flow.  

In high-temperature materials processing, of which sol gel synthesis is an example, thermal 

radiation is significant. Generally, two modelling approaches are employed for simulating 

radiative heat transfer effects, namely linear and nonlinear models. Nonlinear radiation is valid 

for both high and low temperature differences whereas linear radiation is valid only for low 

temperature difference. Thermal radiation is critical in modern nano-polymer processing 

industry to control heat transfer processes which has a dramatic influence on the constitution 
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of materials including nano-gels [14] and organic solar collector coatings [15]. Viskanta [16] 

has elaborated on the many complex phenomena intrinsic to radiative materials processing 

operations including the radiative properties of the material or nano-material (opaqueness, 

semi-transparency, absorption, reflection, transmissivity etc), spectral and directional radiation 

characteristics, radiative heat source (flames, lasers etc). The most general approach for 

simulating thermal radiative heat transfer is the integro-differential equation which is extremely 

difficult to solve in real applications [17]. Many simplifications of this general approach have 

been developed which broadly fall into two categories. The first, i.e. deterministic approach 

includes Hottel’s Zone Method, Chandrasekhar’s Discrete–Ordinate (Sn) Approximation and 

differential or algebraic flux models. A more rigorous approach is the statistical methodology 

which includes the Monte Carlo Ray–Trace Method (MCRT). In multi-physical fluid dynamics 

simulations, since many phenomena occur in conjunction with radiative heat transfer (e.g. 

convection, conduction, viscous flow etc), the most pragmatic approach has been to deploy 

algebraic flux models which include the Cogley-Vincenti-Giles non-gray flux model, Milne-

Eddington flux model, Schuster-Schwartzchild two-flux model, Traugott P1 differential flux 

model and the Rosseland diffusion flux model [18]. The last of these models remains the most 

popular and although relatively simple, has been shown to valid for both gas and viscous liquid 

flows with high optical thickness. Rosselands’s diffusion model leads to the incorporation of 

an extra derivative in the heat conservation equation and captures the physics quite well. It is 

based on the premise that optical thickness i.e. depth (a quantification of how opaque a medium 

is to radiation passing through it) is significantly larger than unity, for which the exponential 

integral in the radiative source decays speedily over a short geometrical distance) and 

furthermore that the fluid is a gray, absorbing-emitting but non-scattering media. Rosseland’s 

flux model assumes an analogous form to the Fourier heat conduction equation and also the 

Fickian mass diffusion equation, making it more amenable for analysis. Numerous 

investigations have deployed this radiative flux model in multi-mode nanofluid mechanics. 

Ferdows et al. [19] analysed unsteady magnetized nanofluid extensional flow with wall suction 

and Rosseland radiative flux effects using an explicit finite difference procedure. Bég et al. 

[20] used network electro-thermal and spectral methods to study the thermos-solutal 

hydromagnetic time-dependent flow with Rosseland radiative flux and Soret/Dufour effects. 

Thumma et al. [21] used a Galerkin variational method to derive computational solutions for 

magnetized nanfoluid oscillatory oblique flow with radiative flux and thermo-physical effects. 

The rheological nature of nanofluids (e.g. sol gels) has also been established firmly by many 

key studies. Perse et al. [22] conducted detailed experiments on thickness sensitive spectrally 
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selective (TSSS) coatings observing that they exhibit liquid-like viscoelastic behavior and are 

adequate mobility for proper leveling, uniform distribution of pigment particles inside dry 

coating and in addition achieve excellent solar absorptivity. Perse et al. [23] further conducted 

detailed tests on TISS sol-gel coatings, showing that rheology has a major influence on the 

spectral selectivity of TISS paints consisting of metallic nano-particles of Alumnium and small 

inorganic oxide pigment (<500 nm) embedded in a resin. Thermal radiation effects on 

rheological sol gel paints were considered in laboratory studies by Wijewardane and Goswami 

[24] and Atkinson et al. [25]. Many researchers have also employed a diverse spectrum of non-

Newtonian models to analyse nanofluid flows. Uddin et al. [26] used MAPLE quadrature to 

simulate the power-law nanofluid transport in a porous matrix with Buongiorno’s model. Bhatti 

and Rashidi [27] investigated thermo-diffusion and thermal radiation effects in rheological 

nanofluid flow from a stretching sheet using a successive linearization technique (SLM) and 

Chebyshev spectral collocation scheme (CSC).  Hayat et al. [28] analyzed the Powell-Eyring 

nanoliquid flowing upon an elongating cylinder with magnetic field and thermal radiation. At 

the surface variation in concentration and temperature was taken into account.  Huda et al. [29] 

employed the Reynolds variable-viscosity rheological model to compute the peristaltic flow 

and heat transfer of nano-polymers in biomimetic micro-pumps. Rana et al. [30] utilized the 

Reiner-Rivlin second grade fluid model and a finite element method to simulate dissipative 

rheo-nanofluid transport from an extruding sheet. Prasad et al. [31] employed an implicit finite 

difference method and Eringen’s micropolar rheological model to study enrobing nano-

rheodynamics of a cylinder.  

The above studies generally neglected slip phenomena at the nano-material/solid interface. Slip 

effects are known to arise in industrial polymeric systems including nano-gels and nano-

polymers [32] and constitute non-adherence of fluids to boundaries at the molecular level. Even 

for the isotropic slip case the momentum and thermal characteristics may be dramatically 

modified at the wall. Various approaches have been developed to analyse both hydrodynamic 

(momentum) slip and this area has been extensively studied. However thermal slip which 

involves the inclusion of a slip parameter in the modified boundary conditions or the use of a 

Knudsen number has been less investigated in nano-polymer interfacial dynamics. Pal et 

al. [33] considered the dynamics of three different types of nanoliquids over an expanding 

sheet with thermal radiation and thermal slip conditions at the boundary, noting that  

temperature is depressed with a rise in thermal slip parameter whereas increasing 

hydrodynamic slip elevates temperatures.  Latiff et al. [34] analysed the micropolar nanofluid 
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time-dependent flow from a contracting/expanding sheet with gyrotactic micro-organism 

dynamics. Uddin et al. [35] studied numerically the bioconvection nanofluid boundary layer 

flow from a corrugated boundary with multiple slip effects. Turkyilmazoglu [36]  presented 

asymptotic solutions for magnetic nanofluid flow thermosolutal convection boundary layers 

along extending/shrinking surfaces with thermal slip effects. Nagendra et al. [37] employed a 

Casson model to investigate magnetic viscoplastic nano-polymer enrobing flow on a vertical 

conical body with velocity and thermal slip effects. Ibrahim et al. [38] analyzed the radiative-

convective heat and mass transfer from a Newtonian nanofluid in Sakiadis flow with thermal 

and concentration slip effects. They showed that local Nusselt number is depleted with greater 

thermal slip effect whereas local Sherwood number is enhanced with increasing solutal slip. 

Hakeem et al. [39]  computed the influence of second order velocity slip effect on magneto-

convective radiative, incompressible nanofluid extending/contracting sheet flow impact of 

magnetic field. At the boundary slip condition of second order is assumed. Dhana et al. [40]  

discussed the mixed  convective flow of a nanoliquid with thermal slip condition over an 

inclined cylinder, highlighting that wall heat transfer rate is suppressed with a rise in thermal 

slip parameter whereas the opposite effect is induced in wall mass transfer rate. Prabhakar et 

al. [41] studied reactive magnetic viscoplastic nanofluid flow from an exponentially-

elongating sheet subjected to oblique magnetic field and wall momentum and thermal slip. 

In the present article we investigate time-independent two-dimensional, non-aligned (oblique) 

slip flow of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. 

Reynolds temperature-dependent viscosity model is employed as are the Tiwari-Das nanofluid 

volume fraction model and Maxwell-Garnet model for the nanofluid thermal conductivity. 

Such a simulation, although greatly relevant to nano-sol gel manufacturing processes has not 

thusfar received any attention in the literature. The transformed ordinary differential 

conservation equations are solved with the Runge-Kutta-Fehlberg scheme and shooting 

quadrature in MATLAB symbolic software. Validation of solutions is conducted with a 

Variational Iterative Method (VIM). The response in non-dimensional normal and tangential 

velocity components, temperature, wall shear stress, local heat flux and streamline distributions 

to variation in obliqueness parameter, radiation-conduction Rosseland number, thermal slip 

parameter, Reynolds viscosity parameter, nanoparticles volume fraction is described and 

interpreted at length.  It is envisaged that the current effort will provide a good compliment to 

experimental and more complex computational fluid dynamics simulations of solar collector 

gel coating synthesis [42]. 
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2. MATHEMATICAL MODEL  

Two-dimensional, oblique stagnation flow of viscous, incompressible variable viscosity sol gel 

nano-polymer under steady-state conditions is considered. The objective is to model the 

manufacturing dynamics of sol gel copper-based nano-polymer paints which are used in 

organic third generation solar collectors. Interfacial slip is analyzed via a thermal slip boundary 

condition. All other properties of the nano-polymer are taken as constant except viscosity 

which is temperature-dependent and simulated via Reynolds model. High-temperature invokes 

appreciable thermal radiative heat transfer. To facilitate numerical analysis of the radiative 

contribution, only unidirectional radiation flux, q*r, is considered and it is assumed that 
∂q̂r

∗

∂ŷ∗  

>>  
∂q̂r

∗

∂x ∗. This model assumes that the radiative intensity is the actual black-body intensity at 

the nano-polymer temperature. The principal basis for this approximation is to consider that the 

irradiation is diffused inside the medium and that optical properties inside the polymer are 

incorporated via the Rosseland conductivity, as elaborated by Cess [43]. The effect of radiation is 

manifested in the form of enhanced thermal diffusivity. The radiative heat flux component on 

the wall is expressed with the help of Stefan-Boltzmann law. The Rosseland approximation 

permits the simplification of the governing integro-differential equation for radiative energy 

balance into a Fourier-type diffusion equation analogous to that describing heat conduction, 

potential flow or electrostatic potential (Coulomb’s law) which is valid for optically-thick 

media in which radiation only propagates a limited distance prior to experiencing scattering or 

absorption. The local intensity is generated by thermal radiation emanating from nearby 

locations in the vicinity of which the emission and scattering are comparable to the location 

under consideration. For zones where conditions are appreciably different, the radiation has 

been shown to be greatly attenuated prior to arriving at the location being analyzed. The energy 

transfer depends only on the conditions in the area near the position under consideration. 

Intrinsic to Rosseland’s model is that the radiation intensity is uniform and isotropic in the 

nano-polymer, refractive index is invariant and medium optical thickness exceeds three. It is 

also pertinent to note that the Rosseland model is a special case of the more elaborate P1 

differential approximation [44] which itself is obtained by a truncated expansion of the general 

radiative equation to fourth order terms. Although we restrict attention to isotropic nano-

polymers, the Rosseland model does allow for anisotropic scattering using a phase function 

and this is the subject of a subsequent study [45]. Justification for employing Rosseland’s 
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model is strong as endorsed by excellent studies on radiative thermo-coating polymer dynamics 

where the model has been shown to yield sufficiently accurate results but with less 

computational expense and more easy incorporation into coupled nonlinear convective-

conductive-radiative transport [46, 47]. It has however been identified that since the Rosseland 

diffusion approximation is not valid at the interface (wall), it is recommended to deploy a 

temperature slip boundary condition, as in the present model [48] which is accommodated well 

by the incompressible laminar boundary layer theory (as considered in the present oblique 

stagnation flow regime). Two equal and opposite forces are applied along the x̂∗-axis in order 

to extend (stretch) the nano-polymer surface, with the  origin fixed. The two-dimensional 

model for the sol gel nano-polymer stagnation flow problem is displayed in 𝐅𝐢𝐠. (𝟏). Gravity 

force acts in the negative x̂∗-direction. The nano-polymer is assumed to be gray, and emits and 

absorbs but does not scatter radiation. Since stagnation flows are typically slow and viscous-

dominated, viscous dissipation may be neglected. The nano-polymer is assumed to be a dilute 

suspension containing equal sized copper nano-particles and ballistic collisions are ignored. 

The basic model equations for the steady-state problem in an (x̂∗, ŷ∗) coordinate system, are 

the conservation laws of mass, momentum, energy which may be formulated as follows: 

 

 

Fig. (1). Physical description of sol gel nano-polymer oblique stagnation flow processing. 

 

∂û∗

∂x̂∗ +
∂v̂∗

∂ŷ∗ = 0,                                                                                                                      (1) 

 

Radiative flux q*r 

Copper-doped 

Sol gel nano-

polymer 
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û∗ ∂û∗

∂x̂∗ + v̂∗ ∂û∗

∂ŷ∗ +
1

ρ̂nf

∂p̂∗

∂x̂∗ =
μnf(T̂∗)

ρ̂nf

∂2û∗

∂ŷ∗2 +
1

ρ̂nf

∂û∗

∂ŷ∗

∂μnf(T̂∗)

∂T̂∗

∂T̂∗

∂ŷ∗ 
,                                                      (2)    

                 

û∗ ∂v̂∗

∂x̂∗ + v̂∗ ∂v̂∗

∂ŷ∗ +
1

ρ̂nf

∂p̂∗

∂ŷ∗ =
μnf(T̂∗)

ρ̂nf

∂2v̂∗

∂ŷ∗2 +
1

ρ̂nf

∂v̂∗

∂ŷ∗

∂μnf(T̂∗)

∂T̂∗

∂T̂∗

∂ŷ∗ 
,                                                 (3) 

 

û∗ ∂T̂∗

∂x̂∗ + v̂∗ ∂T̂∗

∂ŷ∗ = α̂nf
∗ ∂2T̂∗

∂ŷ∗2 −
1

(ρ̂cp̂)
nf

∂q̂r
∗

∂ŷ∗ ,                                                                               (4) 

 

Here μnf(T̂∗) =
μ0e−d(T̂∗−T̂∞)

(1−ϕ)2.5  is the nano-particle modified viscosity function based on 

Reynolds model in which the viscosity varies exponentially with temperature and 𝑑 is Reynolds 

viscosity variation exponent, 𝑇̂∗ denotes the temperature, 𝜙 indicates the nanoparticles volume 

fraction, 𝜇0 is the reference viscosity and 𝑇̂∞ signifies the ambient temperature of nanofluid. In 

eqns. (1)-(4), û∗, v̂∗ are  x̂∗ , ŷ∗ components of velocity, p̂∗ represents the pressure, ρ̂nf denotes 

the nanofluid (sol gel nano-polymer) density and α̂nf
∗ =

k̂nf

(ρ̂cp̂)
nf

  signifies the effective thermal 

diffusivity of nanofluid. q̂∗
r

= − (
16δ̂∗T̂∞

3

3K∗ )
∂T̂∗

∂ŷ∗ characterizes the radiative thermal linearized 

heat flux with 𝛿̂∗ and 𝐾∗ denoting Stefan-Boltzmann constant and Rosseland mean absorption 

coefficient. Optical properties inside the nano-polymer are taken into account via the Rosseland 

conductivity which is defined by kRoss = 
16𝛿̂∗𝑇̂∞

3

3𝐾∗ . It is important to note that K* i.e. Rosseland 

mean absorption coefficient is derived analytically as a function of temperature via integration 

over the frequency [46]. Furthermore, the nanofluid effective density and thermal capacitance 

are given by the following formulae [47]: 

ρ̂nf = (1 − ϕ)ρ̂f + ϕρ̂s,                                                                                                                      (5) 

 

(ρ̂cp̂)
nf

= (1 − ϕ)(ρ̂cp̂)
f

+ ϕ(ρ̂cp̂)
s
,                                                                                             (6)  

 

Here ρ̂s and ρ̂f  indicate the densities of nanoparticles and base fluid respectively. Nano-

polymer thermal conductivity, k̂nf is approximated by employing the Maxwell-Garnet model 

[47, 48] defined as: 

  

k̂nf

k̂f

=
k̂s + 2k̂f − 2ϕ(k̂f − k̂s)

k̂s + 2k̂f + ϕ(k̂f − k̂s)
,                                                                                                        (7) 
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Here thermal conductivities of the carrier (base) fluid i.e. water and the copper nanoparticles 

are denoted by k̂f and k̂s. Some relevant properties of copper and water are shown as below: 

 

Thermo-physical 

properties 
𝛒̂ (

𝐤𝐠

𝐦𝟑
) 𝐜𝐩 (

𝐉

𝐤𝐠. 𝐊
) 𝐤̂ (

𝐖

𝐦. 𝐊
) 

𝐇𝟐𝐎 997.1 4179 0.613 

𝐂𝐮 8933 385 400 

Table. 1: Thermo-physical characteristics of copper-water sol gel nano-polymer 

The following boundary conditions are enforced at the wall (nano-polymer-solid interface) and 

in the free stream: 

û∗ = cx̂∗, v̂∗ = 0, T̂∗ = T̂w + D̂
∂T̂∗

∂ŷ∗   at ŷ∗ = 0,                                                                           (8)                                                           

 û∗ = ax̂∗ + bŷ∗,   T̂∗ = T̂∞    as ŷ∗ → ∞ .                                                                                      (9)                                                       

Here D̂ is thermal slip factor, 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 are constants with inverse time dimensions and T̂w 

signifies the wall temperature.  To normalize the model, it is pertinent to invoke the following 

similarity transformations: 

 

x̂ = x̂∗√
c

ν̂f
 , ŷ = ŷ∗√

c

ν̂f 
 , û = û∗ 1

√ν̂fc
 , v̂ = v̂∗ 1

√ν̂fc
, p̂ =

p̂∗

(ρ̂ν̂)fc
 , T̂ =

 T̂∗−T̂∞

T̂w−T̂∞
 ,                   (10) 

 

Here the effective kinematic viscosity of the base fluid (water) is denoted by ν̂f. Implementing 

the transformations given in Eqn. (10), into the nano-polymer boundary layer Eqns. (1) −

(4),  with associated boundary conditions (8) − (9) yields the following dimensionless partial 

differential boundary value problem: 

 

∂û

∂x̂
+

∂v̂

∂ŷ
= 0,                                                                                                                                  (11) 

 

û
∂û

∂x̂
+ v̂

∂û

∂ŷ
+

ρ̂f

ρ̂nf

∂p̂

∂x̂
=

ρ̂f

ρ̂nf
(

e−mT̂

(1−ϕ)2.5 (
∂2û

∂ŷ2 − m
∂û

∂ŷ

∂T̂

∂ŷ
)),                                                                (12)            

                            

û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ
+

ρ̂f

ρ̂nf

∂p̂

∂ŷ
=

ρ̂f

ρ̂nf
(

e−mT̂

(1−ϕ)2.5 (
∂2v̂

∂ŷ2 − m
∂v̂

∂ŷ

∂T̂

∂ŷ
)),                                                          (13) 

 



11 
 

 
 

û
∂T̂

∂x̂
+ v̂

∂T̂

∂ŷ
= (

α̂nf

ν̂f
+

16δ̂∗T∞
3

3ν̂f(ρ̂cp̂)
nf

K∗
)

∂2T̂

∂ŷ2 ,                                                                                  (14) 

 

û = x̂, v̂ = 0, T̂ = 1 + α
∂T̂

∂ŷ
  at ŷ = 0,                                                                                (15) 

 

û =
a

c
x̂ +

b

c
ŷ, T̂ = 0  at ŷ → ∞.                                                                                           (16) 

 

The new parameter  𝑚 = d(T̂w − T̂∞) represents the Reynolds viscosity parameter (for nano-

polymer rheology) and 𝛼 = D̂√
c

ν̂f
 is the thermal slip parameter. It is further of benefit to define 

a dimensional stream function as follows [49]: 

 

û =
∂ψ

∂ŷ
, v̂ = −

∂ψ

∂x̂
.                                                                                            (17) 

Using the above relation in Eqns. (11) − (16) and eliminating the pressure term p̂ by virtue 

of the fact that 𝑝̂𝑥𝑦̂ = 𝑝̂𝑦̂𝑥, the following equations emerge: 

 

ρ̂f

ρ̂nf
 

e−mT̂

(1−ϕ)2.5
(

−m
∂T̂

∂ŷ

∂

∂ŷ
(∇2ψ) +

∂2

∂ŷ2
(∇2ψ) + m2 ∂2ψ

∂ŷ2 (
∂T̂

∂ŷ
)

2

− m
∂3ψ

∂ŷ3

∂T̂

∂ŷ

−m
∂2T̂

∂ŷ2

∂2ψ

∂ŷ2 − m
∂T̂

∂x̂

∂3ψ

∂ŷ2 ∂x̂
+ m2 ∂T̂

∂x̂

∂2ψ

∂ŷ ∂x̂

∂T̂

∂ŷ
− m

∂2ψ

∂ŷ ∂x̂

∂2T̂

∂ŷ ∂x̂

) +
∂(ψ,∇2ψ)

∂(x̂,ŷ)
= 0, (18)         

                       

∂ψ

∂ŷ

∂T̂

∂x̂
−

∂ψ

∂x̂,

∂T̂

∂ŷ
= (

α̂nf

ν̂f
+

16δ̂∗T∞
3

3ν̂f(ρ̂cp̂)
nf

K∗
)

∂2T̂

∂ŷ2,                                                                              (19)     

 

ψ = 0,
∂ψ

∂ŷ
= x̂, T̂ = 1 + α

∂T̂

∂ŷ
 at ŷ = 0,                                                                                     (20)                                                         

ψ =
a

c
x̂ŷ +

1

2
γŷ2, T̂ = 0  at ŷ → ∞.                                                                                    (21) 

 

Here 𝛾 =
b

c
  signifies the obliqueness parameter i.e. secondary (tangential) stretching ratio. 

Stream function is re-defined [49] as:  

 

ψ(x̂, ŷ) = x̂F(ŷ) + G(ŷ), T̂(x̂, ŷ) = θ(ŷ),                                                                            (22) 

 



12 
 

 
 

F(ŷ)
 and G(ŷ)  are normal and tangential (oblique) velocity components. Introducing Eqn. (22) 

in the Eqns. (18) − (21), with subsequent integration, generates the following non-

dimensional, eighth-order system of coupled, nonlinear, multi-degree ordinary differential 

equations system: 

Normal momentum 

ρ̂f

ρ̂nf

e−mθ

(1 − ϕ)2.5
(F′′′ − mθ′F′′) + FF′′ − (F′)2 + C1 = 0,                                                          (23) 

 

Tangential momentum 

 
ρ̂f

ρ̂nf

e−mθ

(1−ϕ)2.5
(G′′′ − mθ′G′′) + FG′′ − F′G′ + C2 = 0,                                                              (24) 

 

Energy (heat) 

 

(
k̂nf

k̂f
+

4

3
Rd) θ′′ + Pr (1 − ϕ +

(ρ̂cp̂)
s

(ρ̂cp̂)
f

ϕ) Fθ′ = 0.                                                               (25) 

 

Here 𝐶1 and 𝐶2 are integration constants and derivatives with respect to 𝑦̂ are designated by 

primes. 𝑅𝑑 =
4δ̂∗T∞

3

k̂fK∗  signifies the radiation-conduction parameter (also known as Stark number 

or Rosseland-Boltzmann number). The boundary conditions are transformed as: 

 

F(0) = 0, F′(0) = 1, G′(0) = 0 ,

F′(∞) =
a

c
, G′′(∞) = γ, θ(0) = 1 + αθ′(0), θ(∞) = 0     

}.                                    (26) 

 

In the limit, 𝑦̂ → ∞, in Eq. (23)  and with the boundary condition F′(∞) =
a

c
  we get 𝐶1 =

(
a

c
)

2

. 𝐹(𝑦̂) = (
a

c
) ŷ + A is obtained by analysing the boundary layer Eq. (23) when ŷ → ∞, 

where the constant A designates boundary layer displacement. Similarly using 𝐺′′(∞) = γ in 

Eq. (24) after applying the limit ŷ → ∞, we obtain 𝐶2 = −Aγ. Hence Eqns. (23) and (24) 

become: 

e−mθ

(1 − ϕ)2.5
(F′′′ − mθ′F′′) +

ρ̂nf

ρ̂f
(FF′′ − (F′)2 + (

a

c
)

2

) = 0,                                              (27) 

e−mθ

(1 − ϕ)2.5
(G′′′ − mθ′G′′) +

ρ̂nf

ρ̂f

(FG′′ − F′G′ − Aγ) = 0,                                                  (28) 
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Proceeding with the analysis, introducing the relation: 

 

G′(ŷ) = γH(ŷ),                                                                                                                 (29) 

 

Using Eq. (29) in (28) leads to: 

 

e−mθ

(1−ϕ)2.5
(H′′ − mθ′H′) +

ρ̂nf

ρ̂f
(FH′ − F′H − A) = 0,                                                        (30) 

 

The associated tangential velocity boundary conditions emerge as: 

H(0) = 0 ,  H′(∞) = 1.                                                                                                    (31) 

 

Therefore the final ordinary differential boundary value to be solved reduces in summary to: 

 

e−mθ

(1 − ϕ)2.5
(F′′′ − mθ′F′′) +

ρ̂nf

ρ̂f
(FF′′ − (F′)2 + (

a

c
)

2

) = 0,                                              (32) 

e−mθ

(1−ϕ)2.5
(H′′ − mθ′H′) +

ρ̂nf

ρ̂f
(FH′ − F′H − A) = 0,                                                        (33) 

(
k̂nf

k̂f
+

4

3
Rd) θ′′ + Pr (1 − ϕ +

(ρ̂cp̂)
s

(ρ̂cp̂)
f

ϕ) Fθ′ = 0.                                                          (34) 

F(0) = 0, F′(0) = 1, H(0) = 0 ,

F′(∞) =
a

c
, H′(∞) = 1, θ(0) = 1 + αθ′(0), θ(∞) = 0     

}.                                  (35) 

 

In the above system, a/c is the primary (normal) sheet stretching ratio, A i.e. the boundary 

layer displacement is computed as explained from the condition, F(ŷ) = (
a

c
) ŷ + A when ŷ →

∞, and is internally computed in Matlab numerical quadrature during the execution of the 

program (since this so-called constant actually is only constant when all other parameters are 

fixed. It will vary and be re-computed when there is variation in other parameters and this 

automatic updating is executed in the syntax programming of MATLAB and also the VIM 

code, VIMSIM, discussed in due course). Furthermore, there are is the density ratio, 

𝜌̂𝑛𝑓

𝜌̂𝑓
, arising in all three momentum and energy conservation Eqns. (32) - (35). The denominator 

is known from Table 1 (i.e. base fluid density). The numerator is computed from the relation 

given earlier, namely 𝜌̂𝑛𝑓 = (1 − 𝜙)𝜌̂𝑓 + 𝜙𝜌̂𝑠. Solution of Eqns. (32) - (35) provides 
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fundamental primitive dependent variable characteristics i.e. tangential and normal velocity 

and temperature distributions in the nano-polymer stagnation-point regime. However in 

materials synthesis, gradients of these functions are also of interest since they have a profound 

influence on the constitution of final products in polymeric processing [50]. Key gradients are 

the wall shear stress (normal velocity gradient) and local heat flux (a function of the 

temperature gradient and radiative flux contribution. These are defined, respectively as follows: 

 

                                 τ̂∗
w = [μnf(T̂∗)

∂û∗

∂ŷ∗
]

ŷ∗=0
                                      (36) 

 

                          Q̂∗
w = −k̂nf (

∂T̂∗

∂ŷ∗)
ŷ∗=0

+ (q̂∗
r
)

ŷ∗=0
.                                                 (37) 

In dimensionless form these functions become: 

 

                        τ̂w =
e−mθ(0)

(1−ϕ)2.5
(x̂F′′(0) + γH′(0))      (38) 

                               Q̂w = − (
k̂nf

k̂f
+

4

3
Rd) θ′(0).       (39) 

 

In the MATLAB and VIMSIM computations, dimensionless local heat flux, Q̂w, requires 

values for the thermal conductivity ratio, 
𝑘̂𝑛𝑓

𝑘̂𝑓
. Clearly from Eqn. (7), 

𝑘̂𝑛𝑓

𝑘̂𝑓
=

𝑘̂𝑠+2𝑘̂𝑓−2𝜙(𝑘̂𝑓−𝑘̂𝑠)

𝑘̂𝑠+2𝑘̂𝑓+𝜙(𝑘̂𝑓−𝑘̂𝑠)
, the numerator must be evaluated first since the denominator is already 

prescribed in Table 1. By simple substitution of the volume fraction (first column of Table 2) 

into Eqn. (7) we readily obtain the values given in the second column of Table 2. 

 

𝝓 𝑘̂𝑛𝑓

𝑘̂𝑓

 

0 1 

0.05 1.157133128 

0.1 1.331636623 

0.2 1.745707932 

Table. 2: Thermal conductivity of nanofluid against 𝜙 with 𝑘̂𝑓 = 0.613, 𝑘̂𝑠 = 400. 

3. NUMERICAL SOLUTION WITH MATLAB R-K-F QUADRATURE 

The transformed ordinary differential boundary layer equation system is strongly non-linear. 

Analytical solutions are intractable. Recourse is therefore made to a numerical scheme. Many 
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such methods are appropriate for the present stagnation-flow nano-polymer regime including 

finite element methods, homotopy methods, variational iterative methods (VIMs) and symbolic 

code quadrature. The last of these methods i.e. numerical quadrature includes numerous 

variants of which the Runge-Kutta-Fehlberg method of order four [51] is one of the most 

reliable and accurate when used with a shooting scheme. Here the shooting 

parameters b1, b2 and b3 will be calculated by the Newton-Raphson iterative method. Stability 

and convergence aspects have been lucidly reviewed by Keller [52]. The boundary value 

problem is converted to an initial value problem and then solved. Let us introduce the following 

substitutions in Eqs. (32) − (35): 

F = y1, F′ = y′
1

= y2,  F′′ = y′2 = y3, H = y4, H′ = y′
4

= y5, θ = y6, θ′ = y′
6

= y7, (40) 

Here for the present problem we have : 

y′3 = my7y3 − ξemy6 (y1y3 − y2
2 + (

a

c
)

2
),                                                                            (41)                               

y′
5

= my7y5 − ξemy6(y1y5 − y2y4 − A),                                                                                 (42)                

y′7 = −
Pr

(
k̂nf
k̂f

+
4

3
Rd)

(1 − ϕ +
(ρ̂cp̂)

s

(ρ̂cp̂)
f

ϕ) y1y7,                                                                                (43)

                                           

y1(0) = 0, y2(0) = 1, y3(0) = b1, y4(0) = 0, y5(0) = b2

y6(0) = 1 + αb3, y7(0) = b3
}.                                                (44)           

Where 𝜉 = (1 − ϕ +
ρs

ρf
ϕ) (1 − ϕ)2.5. 

Computations are executed in Matlab software via the appropriate subroutine. 

4. VALIDATION WITH VARIATIONAL ITERATIVE METHOD (VIM)  

Benchmarking with simpler versions of the general model to published results in the literature 

achieves only limited validation. In order to validate the general model which includes all the 

physical parameters i.e. Eqns. (32)-(35), an alternative algorithm must be used to solve the 

entire boundary value problem. We elect here to employ a powerful and very versatile and 

easily coded semi-computational method known as the variational iteration method (VIM). 

Introduced by He [53], the VIM technique can be employed in a direct way without using 

linearization, perturbation or restrictive assumptions. VIM avoids sensitivity to the degree of 
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the nonlinear terms arising in nonlinear polymer processing multi-physical fluid dynamics (and 

general engineering) problems and also drastically decreases the size of calculations compared 

with other methods. This method has been deployed very efficiently to resolve numerous 

nonlinear engineering science problems over the past decade including radiative heat transfer 

[54], thermoelastic burn injury simulations [55], rocket gel propulsion thermofluid dynamics 

[56] and ultrasonic heat transfer in biological tissue [57]. VIM is infact a special case of the 

more general homotopy analysis method. This wide spectrum of applications confirms the 

exceptional versatility of VIM in modern nonlinear transport phenomena. It is therefore ideal 

also for nanofluid rheological flows. Here we provide a brief perspective of the technique. 

Consider the following nonlinear differential equation: 

Lf (x,y,t) + Rf (x,y,t) + Nf (x,y,t) = g(x,y,t)      (45) 

Using VIM, to solve the ordinary differential Eqns. (32) - (34) with boundary conditions (35), 

we denote here Lf (x,y,t) and Rf (x,y,t)  as linear operators,  Nf (x,y,t) as  the nonlinear operator 

and g(x,y,t) as He’s heterogenous term. VIM uses a correction functional. A successive 

approximation is established by determining a general Lagrangian multiplier, which can be 

identified optimally via the variational theory.  The first step of employing VIM is to establish 

the Lagrange multiplier,, which is achieved optimally via integration by parts. The successive 

approximations of the VIM solution can thereafter be readily obtained via judicious selection 

of the Lagrange multiplier and by using any selective function, after which several 

approximations will naturally follow immediately. The correctional assumes the form:  

   dtyxNftyxRftyxLftyxftyxf

t

nnnnn  +++=+

0

1 ),,ˆ(),,ˆ(),,(),,(),,(   (46) 

Here is general Lagrange multiplier which can be identified optimally via variational theory, 

nfR̂   and nfN̂  are considered as restricted variations i.e.  

0ˆ,0ˆ == nn fNfR       (47) 

Algebraic details are omitted for brevity. The computations are executed in Mathematica 

symbolic software on a HP Workstation and take tens of seconds to converge. Selected values 

for nano-polymer thermal conductivity ratio for different nano-particle volume fractions are 

presented in Table 2.  
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Rd R-K-F  
Quadrature 

 

𝝓 = 𝟎 

VIM 
 
 

𝝓 = 𝟎 

R-K-F 
Quadrature 

 

𝝓 = 𝟎. 𝟎𝟓 

VIM 
 
 

𝝓 = 𝟎. 𝟎𝟓 

R-K-F 
Quadrature 

 

𝝓 = 𝟎. 𝟏 

VIM 
 
 

𝝓 = 𝟎. 𝟏 

0 1.505504 1.505601 1.597741 1.597698 1.693085 1.693102 

5 2.959719 2.959432 2.890633 2.890594 2.861669 2.861684 

9 3.524343 3.523998 3.408865 3.409032 3.349474 3.349489 

Table. 3: Shear stress for various Rd and 𝜙 with 
𝑎

𝑐
= 0.1, 𝑚 = 0.1 , α = 0.1. 

Rd R-K-F  
Quadrature 

 
𝝓 = 𝟎 

VIM 
 
 

𝝓 = 𝟎 

R-K-F 
Quadrature 

 
𝝓 = 𝟎. 𝟎𝟓 

VIM 
 
 

𝝓 = 𝟎. 𝟎𝟓 

R-K-F 
Quadrature 

 
𝝓 = 𝟎. 𝟏 

VIM 
 
 

𝝓 = 𝟎. 𝟏 

2 2.295769 2.295688 2.292533 2.292469 2.311067 2.311091 

4 2.773922 2.774011 2.722204 2.722197 2.705276 2.705301 

Table. 4: Local heat flux against 𝑅𝑑 with 
𝑎

𝑐
= 0.1, 𝑚 = 0.1 , α = 0.1. 

The comparisons for numerical quadrature (Matlab) and VIM are documented in Table 3 and 

Table 4 for dimensionless shear stress and local heat flux with various radiation-conduction 

parameters (Rd) and nano-particle volume fractions () and with secondary stretching ratio i.e. 

obliqueness parameter () prescribed as 0.1, Reynolds viscosity exponent (m) fixed as 0.1 and 

thermal slip parameter () constrained as 0.1. Excellent correlation is achieved. Confidence in 

the numerical quadrature solutions (R-F-K MATLAB code) is therefore justifiably high.  

 

5. RESULTS AND DISCUSSION 

Copper nano-particles doped polymers are considered i.e. in which copper nano-particles are 

added in water-based polymer (sol gel). 𝐹𝑖𝑔𝑠. (2) − (7) are plotted to explore the influence of 

solid volume fraction of nanoparticles 𝜙, radiation parameter 𝑅𝑑 and thermal slip parameter α 

on velocity and temperature profiles. Fig (8) depicts a histogram of shear stress versus nano-

particles volume fraction 𝜙 for various values of radiation parameter 𝑅𝑑. Local heat flux 

− (
k̂nf

k̂f
+

4

3
Rd) θ′(0) for numerous values of radiation parameter 𝑅𝑑 is presented in the 

histogram in 𝐹𝑖𝑔. (9). Two-dimensional streamlines with obliqueness parameter (secondary 

stretching and contracting ratio) values of 𝛾 = 10 and 𝛾 = −10 for radiation parameter and 

thermal slip parameter are presented in 𝐹𝑖𝑔𝑠. (10) − (13). We note that in Figs 2, 3, 5 we have 

also further validated the R-K-F MATLAB solutions with the VIM code for at least one profile 

(designated with the logo    ). Again, it is evident that excellent agreement is achieved. 
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Fig 2. Normal velocity profile 𝐹′(𝑦) with nano-particle volume fraction (𝜙). 

𝐹𝑖𝑔. (2) exhibits that normal velocity profile F′(y) decreases with increase in Cu nanoparticles 

volume fraction. The presence of nano-particles alters the viscosity of the sol-gel. Increasing 

rheological effects are generated with greater volume fraction, as corroborated experimentally 

by Chen et al. [58]. The shear-thinning behaviour of nano-sol gels is strongly influenced by 

the effective particle concentration, the range of shear rate and viscosity of the base liquid. 

Greater viscosity generates higher viscous resistance forces which manifest in deceleration in 

the stagnation flow. Greater flow control in the stagnation manufacturing regime is therefore 

achieved comfortably with increased doping with copper nano-particles. The enhanced thermal 

conductivity of the nano-polymer also means that heat is diffused faster than momentum. The 

ratio of momentum and thermal diffusivities is expressed via the Prandtl number which is fixed 

when these two diffusivities are fixed. Prandtl number however is also proportional inversely 

to thermal conductivity for a prescribed dynamic viscosity and specific heat capacity (isobaric). 

Most water-based sol gels even with low nano-particle doping will have approximately a 

Prandtl number of 6-8. However, this will be decreased considerably with increasing thermal 

conductivity as the nano-particle volume fraction is increased. In fact, nano-polymers may be 

categorized in four groups depending on the extent of volume fraction i.e. dilute, semi-dilute, 

semi-concentrated and concentrated nanofluids depending on particle concentration and 
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particle structuring, although in our analysis we have assumed dilute suspensions in thermal 

equilibrium. Enhanced nano-doping clearly will result in faster conduction of thermal energy 

in the nano-polymer and slower vorticity diffusion and therefore retardation in the flow i.e. 

decreasing velocities. In all the profiles asymptotic smooth decays are computed from the wall 

(solid/nano-polymer interface) to the free stream outside the stagnation zone. This confirms the 

imposition of an adequately large infinity boundary condition in the free stream (edge of the 

boundary layer) verifying that the numerical solutions exhibit indeed the correct nature. 

Maximum influence of the nano-particle volume fraction arises at intermediate distance from 

the wall since here the nano-particles can cluster in greater concentrations. The influence is 

consistent on velocity (i.e. deceleration) throughout the stagnation-flow boundary layer regime, 

concurring with the experimental and theoretical findings of Wedgewood and Joshi [59]. It is 

however not-worthy that since steady state flow has been considered in the current model, the 

time-dependent phenomena cannot be captured. Transient models reveal that in the stagnation 

region the nano-polymer is not completely stagnant but follows a non-streamwise motion. 

These aspects will be studied in the future as they are beyond the scope of the current work. 

Nevertheless, the present model still retains validity in actual coating flows and generalizes the 

conventional orthogonal case (featuring only a normal impingement velocity) to the 

industrially relevant scenario of oblique flow, as elaborated by Lee and Tallmadge [60]. 

 

Fig. (3): Oblique (tangential) velocity profile 𝐻′(𝑦) with nanoparticles volume fraction (𝜙). 
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Fig. (4): Tangential velocity profile 𝐻′(𝑦) with various conduction-radiation parameters (Rd). 

 

 

Fig. (5): Temperature profiles, 𝜃(𝑦), with variation in nanoparticle volume fraction (𝜙). 
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Fig. (6): Temperature profiles, 𝜃(𝑦), for various thermal slip parameters (𝛼). 

 

 

Fig. (7): Temperature profiles, 𝜃(𝑦), with various conduction-radiation parameters (𝑅𝑑). 
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Fig. (8): Shear stress 
e−mθ(0)

(1−ϕ)2.5
(F′′(0) + γH′(0)) for various nano-particle volume fractions (𝜙) 

and conduction-radiation parameter values (𝑅𝑑) at  𝑥̂ = 1. 

 

Fig. (9): Local heat flux − (
k̂nf

k̂f
+

4

3
Rd) θ′(0) against nano-particle volume fraction ϕ. 
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Fig. (10): Streamlines for conduction-radiation parameters (𝑅𝑑) with obliqueness (𝛾) = 10. 

 

Fig. (11): Streamlines for conduction-radiation parameters (𝑅𝑑) with obliqueness (𝛾) = −10.  
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Fig. (12): Streamlines for thermal slip parameters (𝛼) with obliqueness (𝛾) = 10. 

 

Fig. (13): Streamlines for thermal slip parameter α with 𝛾 = −10. 
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𝐹𝑖𝑔. (3) shows that the oblique velocity component (tangential) velocity profile 𝐻′(𝑦) near the 

surface is enhanced by increasing 𝑐𝑜𝑝𝑝𝑒𝑟 nanoparticle volume fraction; however deeper into 

the boundary layer transverse to the solid surface, there is a reversal in this effect. This is 

intimately associated with the re-distribution in the dual momentum field, analogous to some 

extent to that encountered in Von Karman swirling flows. The destruction in normal 

momentum is compensated for with an accentuation in tangential momentum in particular near 

the solid surface. The distinction is however that while the depletion in normal momentum 

(Fig. 2) is consistent everywhere in the boundary layer with increasing nano-particle volume 

fraction, in the tangential momentum the corresponding accentuation is only localized in the 

lower structure of the boundary layer. As we proceed to the free stream, the external effects 

dominate and reverse the tangential momentum escalation encountered earlier. Effectively 

there is a sustained increase in normal momentum boundary layer thickness whereas there is a 

dual response in the tangential momentum boundary layer thickness which is initially thinner 

(for acceleration near the wall) and thicker subsequently (for deceleration towards the free 

stream). The stream function infact splits into a Hiemenz and a tangential component. 

Furthermore, it is pertinent to mention that while a stability analysis could be conducted for the 

stagnation flow, this has already been done for similar regimes by a number of other workers. 

Notable among these studies is the analysis of Paullet and Weidman [61] and Mahapatra et al. 

[62] (although attention was restricted to purely viscous Newtonian fluids in these two studies) 

and later Lok et al. [63] who considered micropolar fluids, not nanofluids.  Generally, in these 

studies it has been shown that multiple solutions can be derived for non-orthogonal stagnation 

flows. For primary (normal) sheet stretching ratio, a/c > 1, the range of solutions is lower than 

the stable solutions (i.e. it is encompassed in the stable solution range) due to an increase in a/c 

whereas for a/c < 1 the range of unstable solution become larger than the stable solution.  They 

found that first solution is applicable physically while the second solution is not. Since we are 

concerned with physically realizable nano-polymer processing in this study, as engineering 

scientists, we restrict our attention to the second family of solutions within which the present 

computations fall. In the case studied (a/c< 1) the correct physical behaviour i.e. vorticity 

external to the boundary layer is present, not within the boundary layer.  

𝐹𝑖𝑔. (4)  exhibits the evolution in tangential velocity profile 𝐻′(𝑦) for both cases of pure water-

based polymer and also copper (Cu)-water nano-polymer fluid with variation in conduction-

radiation parameter (𝑅𝑑). It is evident that tangential velocity profile of copper (Cu)-water 

nano-polymer exceeds markedly in magnitude than that of the pure water-based polymer fluid. 
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However further from the solid surface the converse behavior is computed i.e. deceleration is 

induced with nano-particle doping of the polymer towards the free stream. The figure also 

clearly demonstrates that increasing the conduction-radiation parameter 𝑅𝑑 generally enhances 

the tangential velocity 𝐻′(𝑦) magnitudes. Radiative heat transfer is crucial when the radiant 

heat flux, is large compared to the heat transfer rate due to convection or conduction. Typically, 

this will occur under high-temperature conditions, associated with nano-polymer synthesis in 

solar coatings [64] for which the fourth-order dependence of the radiative heat flux on 

temperature implies that the radiation heat transfer will dominate. The parameter, 𝑅𝑑 =
4𝛿̂∗𝑇∞

3

𝑘̂𝑓𝐾∗ , 

quantifies the importance of conduction versus radiation within the fluid. The parameter Rd 

arises in the augmented energy Eqn. (35) i.e. in the term(
k̂nf

k̂f
+

4

3
Rd) θ′′. Rosseland’s model 

assumes radiative equilibrium and that the nanofluid has gray properties which are physically 

viable in nano-polymer sol gel processing under uni-directional radiative thermal loading as 

described by Said et al. [65]. Furthermore, Rosseland’s model assumes that the intensity is the 

black-body intensity at the nano-polymer temperature and since it is generally confined to 

incompressible flows it is particularly appropriate for viscous-dominated manufacturing 

processes. Conductive heat transfer dominance is ensured in the thermal boundary layer, when 

Rd → 0 i.e.  the radiative contribution vanishes. With Rd>0 thermal radiation influences the 

regime i.e. a progressively greater quantity of radiation heat transfer is received within the 

nano-polymer which results in energization of the fluid and a rise in temperatures. This 

behaviour is indeed captured in Fig. 7 (described later). The energization of the flow regime 

will serve to enhance thermal diffusion and therefore elevates temperatures and also thermal 

boundary layer thickness. This will deplete the primary (normal) momentum field i.e. 

decelerate the normal velocity component but will enhance the secondary (tangential) velocity 

component manifesting in the acceleration observed in Fig. 4, again largely in the near-wall 

region of the boundary layer. Significant manipulation of the dual momentum fields in the 

oblique stagnation nano-polymer flow regime is therefore attained with the imposition of 

radiative heat transfer.  

𝐹𝑖𝑔. (5)  presents the distributions in nano-polymer temperatures with an increase in copper 

nanoparticle volume fraction 𝜙. The trend confirms the principal benefit of doping with nano-

particles, namely the enhancement in nano-material thermal conductivity which results in a 

exacerbated thermal conduction and a boost in temperatures. There will also be a corresponding 

elevation in thermal boundary layer thickness. Although the Tiwari-Das model studied does 
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not possess the framework to simulate advanced nanoscale phenomena e.g. thermophoresis and 

Brownian motion, these do nevertheless contribute greatly to the global effect of nano-particle 

doping, irrespective of the mathematical model employed. Different nanoparticle types 

transport differently under the thermophoretic force which is associated with migration of 

nano-particles from hot to cold surfaces. This is of great utility in designing nano-polymers and 

indeed contributes tremendously to their improved performance in solar coating applications 

compared with conventional first or second generation solar coatings [66]. Via selection of 

specific nano-particles, customized performance may be achieved. It is further of interest to 

consider the mechanism of thermal enhancement in nanofluids under solar radiative conditions. 

Since Brownian dynamics is inevitably present, the nanofluid molecules are organized into an 

ordered layer at the nano-particle solid-liquid interface which results in thermal conductivity 

in that ordered layer being lower than thermal conductivity of the solid nano-particles but 

larger than that of the base fluid.  As recently emphasized by Bég [67] and earlier suggested 

by Buongiorno [68], this interfacial layer is a solid-like structure, and it is referred to as 

nanolayer. This hypothetical nanometre size layer is considered as a thermal layer between the 

solid particle surface and the base fluid and to the current state of knowledge of nanofluid 

mechanics, this nanolayer is one of the most probable mechanisms producing the popular 

thermal conductivity enhancement. Infact, the existence of even a thin nanolayer with strong h 

Brownian motion (likely at even low nano-particle volume fractions) still may contribute 

markedly to the elevation in thermal conductivity of nanofluids, mainly when the particle 

diameter is smaller than 10 nm. In conjunction with thermophoresis, the extra energy transport 

of nanoparticles is due to result of Brownian motion. The relative motion between 

nanoparticles and base fluid molecules generates micro-convection which when summated 

over the entire body of the nano-polymer results in an effective boost in heat transfer i.e. 

temperatures. The present theoretical results confirm these observations. However, it is 

sincerely hoped that experimental solar engineering researchers will be motivated to verify 

actual computations with laboratory models and scale-up processes to actual implementation 

of the current solar nano-polymer model. 

𝐹𝑖𝑔. (6) illustrates the response in nano-polymer temperature profile 𝜃(𝑦) with various values 

of thermal slip parameter () for both pure water polymers and copper-water nano-polymers. 

Consistently the copper-water nano-polymer achieves significantly higher temperatures than 

the pure water polymer. With greater thermal slip (jump) there is a strong reduction in 

temperature and therefore thermal boundary layer thickness. The necessity of including thermal 
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slip is both related to actual interfacial solid/nano-polymer effects and also to the shortcomings 

of the Rosseland model which requires modification with thermal slip boundary conditions. 

Clearly with weak thermal slip (or indeed in the absence of thermal slip) higher temperatures 

are computed. The implication is that in models which neglect thermal slip, the temperature 

generated in nano-polymers is over-predicted and not realistic even with relatively low thermal 

radiation present (Rd =0.1). Thermal slip has a particularly strong impact at the wall, as 

expected. The influence decays progressively with distance into the boundary layer regime 

transverse to the solid surface (wall). Temperature distributions eventually merge in the free 

stream where the temperature field is essentially unaffected by the thermal slip since the latter 

is a boundary condition and not associated with the mass of the nano-material. Again, very 

smooth convergent profiles are achieved in the free stream confirming that a sufficiently large 

infinity boundary condition has been employed in the computations.  

𝐹𝑖𝑔. (7) presents the temperature profile variation with a change in conduction-radiation 

parameter (Rd). For Rd >1 thermal radiation dominates over thermal conduction. When Rd <1 

thermal conduction dominates. When Rd = 1 both thermal conduction and thermal radiation 

contributions are equal. Increasing Rd clearly strongly boosts temperatures since divergence of 

the radiative heat flux increases and the greater the radiative flux imparts greater thermal energy 

to the nano-polymer. Thermal boundary layer thickness is therefore also strongly increased. It 

is also noticed that temperature profile of fluid with copper nanoparticles is substantially higher 

than pure fluid due to the thermal conductivity strength of nanofluid. Therefore, thinner thermal 

boundary layers are produced in the stagnation flow regime with lower values of Rd since in 

this case there is a minimal augmentation of the overall thermal diffusivity of the nano-

polymer. Similar findings have been reported recently by Uddin et al. [69].  

𝐹𝑖𝑔𝑠. (8) and  (9) present bar charts for the variation in respectively normal shear stress 

(gradient of normal velocity component at the wall) and heat flux with various values of nano-

particle volume fraction (𝜙) and conduction-radiation parameter (Rd). 𝐹𝑖𝑔. (8) indicates that 

in the absence of radiation effects (Rd=0), primary (normal) shear stress 
e−mθ(0)

(1−ϕ)2.5
(F′′(0) +

γH′(0)) increases at the surface with greater 𝜙  values. However, normal shear stress is found 

to decline with increasing 𝜙 values when radiation effects are incorporated. There is ostensibly 

therefore a trade-off between the nano-particle doping and intensity of radiative thermal 

loading. Non-radiative heating leads to acceleration at the wall with greater nano-particle 

doping whereas strongly radiative heating manifests in a deceleration in the stagnation flow 
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normal component. From 𝐹𝑖𝑔. (9) it is apparent that an enhancement in local heat flux is 

generated with increasing conduction-radiation parameter. An important feature computed here 

is that rate of heat transfer i.e. local heat flux decreases with increasing nano-particle volume 

fraction  ϕ when thermal radiation is present (Rd>0). However, the converse effect is observed 

i.e. local heat flux is consistently elevated with increasing nano-particle volume fraction ϕ  in 

the absence of thermal radiative heat transfer (Rd =0).  

𝐹𝑖𝑔𝑠. (10) −(13) visualize the two-dimensional streamline distributions with variation in 

obliqueness (secondary stretching) parameter (𝛾), and conduction-radiation parameter (Rd) and 

thermal slip parameter (). Clearly there is a strong skewness of the stagnation nano-polymer 

flow towards the left in Fig. (10) with obliqueness parameter 𝛾 = 10. However, with 𝛾 = −10, 

(Fig. 11) the opposite response is generated and the streamlines are strongly skewed towards 

the right hand side. Similar computations have been reported by Nadeem et al. [70] although 

they considered viscoplastic nano-polymers. 

With increasing thermal radiation contribution, the streamline magnitudes are noticeably 

reduced in Fig. 10 and again a similar response is computed in Fig. 10. The obliqueness 

therefore does not exert any tangible effect on the impact of thermal radiation in these two 

figures. 𝐹𝑖𝑔. (12) shows that streamlines of the nanofluid flow with obliqueness parameter 𝛾 =

10 and without thermal slip effects are orientated strongly towards the left side when compared 

with the streamlines of the flow with thermal slip effects. The contrary behaviour is observed 

in 𝐹𝑖𝑔. (13) with γ = −10. However in both cases there is a slight enhancement in streamline 

magnitudes with thermal slip parameter. The positive obliqueness is associated with an increase 

in pressure and straining motion near the stagnation point which results in thinning of velocity 

boundary layer and thickening of the thermal boundary layer. 

 

6. CONCLUDING REMARKS 

Thermal slip has been studied in obliquely impinging radiative flow of a copper (Cu)-water 

nano-polymeric solar coating on a stretching surface. Viscosity of the nano-polymer is assumed 

to be dependent upon temperature and a Reynolds exponential viscosity model is deployed to 

this effect. A two-dimensional steady state model has been developed for the non-orthogonal 

stagnation flow with a Rosseland radiative flux model which is valid for gray media. The 

present study has been motivated by analysing in detail the characteristics of non-aligned nano-
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polymer manufacturing flows. The Tiwari-Das nano-particle volume fraction model has been 

used in which nano-polymer thermal conductivity, density and specific heat capacity can be 

computed for different concentrations of nano-particles. The normalized ordinary differential 

boundary value problem, which is strongly nonlinear and features both normal and tangential 

momentum equations and a heat (energy) conservation equation has been solved with both 

Matlab-based Runge-Kutta-Fehlberg numerical quadrature and a variational iteration method 

(VIM). Very good correlation of the computations has been achieved. The principal findings 

of our investigation can be summarized as below: 

• Temperatures are elevated with increasing volume fraction of copper nanoparticles and 

increasing thermal radiation effects whereas they are suppressed with increasing 

thermal slip parameter.  

• Temperatures of the copper water nano-polymer are consistently greater in magnitude 

than those achieved with pure water polymer. 

• Shear stress and heat flux are markedly boosted with increasing thermal radiation 

parameter. 

• Streamlines are more tilted towards the left-hand side with thermal radiation present as 

compared to usual streamline patterns for positive obliqueness parameter. The converse 

behaviour is computed for negative obliqueness parameter. 

• For both positive and negative obliqueness parameter (secondary stretching ratio) 

However in both cases there is a slight enhancement in streamline magnitudes with 

thermal slip parameter. 

The current investigation has been confined to steady state, two-dimensional oblique flow with 

a simple non-Newtonian viscosity variation. Future simulations will consider time-dependent 

effects in three-dimensional oblique nano-polymer flows and will also incorporate more 

sophisticated non-Newtonian (rheological) models for the nano-polymer e.g. viscoelastic and 

viscoplastic. The results of these studies which may also utilize computational fluid dynamics 

codes e.g. ANSYS FLUENT. Furthermore, an important aspect not considered in the current 

model is the stability of the nano-particles. This is a complex issue which has been addressed 

notably by Shi et al. [72] for Fe3O4 CNT nanoparticles and again computational fluid 

dynamics and also experimentation would be good pathways to investigate this. 
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