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ABSTRACT  

In the present article, the transient rheological boundary layer flow over a stretching sheet 

with heat transfer is investigated, a topic of relevance to non-Newtonian thermal materials 

processing. Stokes couple stress model is deployed to simulate non-Newtonian characteristics. 

Similarity transformations are utilized to convert the governing partial differential equations into 

nonlinear ordinary differential equations with appropriate wall and free stream boundary conditions. 

The non-dimensional boundary value problem emerging is shown to be controlled by a number of 

key thermophysical and rheological parameters, namely the rheological couple stress parameter (𝛽), 

unsteadiness parameter (𝐴), Prandtl number (Pr), buoyancy parameter (𝜆). The semi-analytical 

Differential Transform Method (DTM) is used to solve the reduced nonlinear coupled ordinary 

differential boundary value problem. A numerical solution is also obtained via the MATLAB built-

in solver ‘bvp4c’ to validate the results. Further validation with published results from the literature 

is included. Fluid velocity is enhanced with increasing couple stress parameter whereas it is decreased 

with unsteadiness parameter. Temperature is elevated with couple stress parameter whereas it is 

initially reduced with unsteadiness parameter. The flow is accelerated with increasing positive 

buoyancy parameter (for heating of the fluid) whereas it is decelerated with increasing negative 

buoyancy parameter (cooling of the fluid). Temperature and thermal boundary layer thickness are 

boosted with increasing positive values of buoyancy parameter. Increasing Prandtl number 

decelerates the flow, reduces temperatures, increases momentum boundary layer thickness and 

decreases thermal boundary layer thickness. Excellent accuracy is achieved with the DTM approach. 
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1. INTRODUCTION 

     Convective heat transfer is a rich area of engineering science and has been extensively studied 

both experimentally and theoretically for many decades. Convective heat transfer occurs whenever a 

fluid approaches in contact with a surface whose temperature is different from its own. Convective 

heat transfer in general refers to heat movement in fluids (liquids and gases). It is a process which 

takes place in fluid flow over a hot or cold surface whereby the fluid flow acts as a carrier for energy. 

As such convective heat transfer is fundamental to many diverse applications in technology, medicine 

and nature. These include flows in automobile radiators, domestic and industrial heating or cooling 

devices (heaters, condensers and boilers), electronic component cooling, crystal growth, direct 

absorption solar collectors, geophysical plumes, blood flows, diffusion flames in fire dynamics etc. 

When buoyancy forces are dominant natural (free) convection occurs and in the absence of buoyancy 

forces forced convection prevails.  

From an industrial viewpoint, the analysis of the flow driven by a stretching surface is of significant 

practical interest. It features in glass crystal growing, fibre drawing, continuous casting, plastic 

extrusion, drawing of copper wires, coating of components etc. The viscous fluid flow problem for a 

continuous moving sheet was first examined in the context of chemical processing by Sakiadis [1]. 

Crane [2] extended the Sakiadis model work for two-dimensional stretching surface flow and 

presented an exact solution. Subsequently many researchers have further extended the Sakiadis and 

Crane models to present similarity solutions for mixed convection [3], stagnation-point convection 

[4], heat generation/absorption effects on convection flows [5] and stagnation flows in permeable 

media [6]. On the other hand, in many stretching flows, time-dependent behaviour arises. This 

characterizes for example the flow from an impulsive stretching of the sheet or the flow induced by 

a step change of the temperature. When the surface is stretched suddenly with a definite velocity, the 

flow is developed instantaneously. Interesting simulations of transport phenomena associated with 

the impulsive stretching of a sheet have been reported in [7] (for vertical surfaces), [8] (for liquid 

film dynamics), [9] (stretching with wall cooling), [10] (multiple methods of solution given including 

perturbation for small times, numerical integration, and asymptotic analysis for large times), [11] 

(thermo-convection over a wide range of Prandtl numbers), [12] (stretching stagnation flow with 
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stretching velocity proportional to the distance from the stagnation point) and [13] (thermo-solutal 

convection).  

The above studies were all confined to Newtonian fluids i.e. they ignored rheological (non-

Newtonian) characteristics which are important in for example polymer processing, coating 

protection, extrusion of plastics, glass blowing, etc., An extensive range of non-Newtonian models 

have been developed which accurately mimic many complex features of real industrial fluids 

including relaxation, retardation, visco-plasticity, viscoelasticity, spurt, normal stress differences etc. 

Rajagopal et al. [14] examined the flow of a second order Reiner-Rivlin viscoelastic fluid over a 

stretching sheet. Bég et al. [15] used a network simulation method to compute the stretching flow of 

a magnetic Walters-B viscoelastic fluid with time-dependent wall suction in Darcy-Forchheimer 

porous media. Chen et al. [16] also used the Walters-B (“short memory”) viscoelastic model to study 

the non-Newtonian thermal convection flow from a stretching plate, noting that temperature 

decreases with lower values of the viscoelastic parameter. Abel et al. [17] scrutinized the power law 

fluid flow over a stretching sheet. Sahoo [18] examined the flow of third grade fluid from stretching 

sheet. Recently the flow of non-Newtonian Williamson fluid due to a stretching surface was analysed 

by Hamid et al. [19]. The rheological models utilized in these studies however neglected an important 

characteristic of many technological fluids, namely micro-structure. Amongst non-Newtonian fluids, 

the Stokes couple stress fluid is the simplest generalization of the classical theory of fluids which 

allows for polar effects such as the presence of couple stresses and body couples [20]. Lubricant oils 

with long chain additives, blood, polymeric suspensions, slurries, colloids and other industrial liquids 

constitute some common examples of couple stress fluid. The couple stress fluid model extends the 

conventional Cauchy stress featured in Navier-Stokes (Newtonian) models and invokes length 

dependent effects which are associated with particles suspended in industrial fluids (polymers). These 

give rise to couple stresses which can exert a non-trivial influence on shear (and other) characteristics 

of such liquids which in turn can influence heat transfer characteristics. Couple stress or “polar” fluid 

models therefore provide a more elegant formulation than the classical non-polar models. They also 

have the advantage that although they lead to boundary value problems with higher order than the 

Navier–Stokes, the supplementary terms are linear. This feature has stimulated considerable interest 

among engineers and mathematicians. Many complex industrial systems have been analysed using 

the couple stress model. Bég et al. [21] investigated magnetic centrifugal blood processing devices 

using Stokes couple stress model noting that couple stresses have a profound influence on wall shear 

stress, swirl and heat transfer characteristics. Ramana Murthy et al. [22] studied multi-mode heat 

transfer in channel flow of two immiscible couple stress fluids using second law thermodynamic 
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optimization. Tripathi et al. [23] derived analytical solutions for electrokinetic peristaltic pumping of 

couple stress physiological fluids under an axial electrical field in microfluidic systems. The couple 

stress fluid theory has also been applied to a number of stretching sheet flow problems. Khan et al. 

[24] studied heat transfer in couple stress fluid from a nonlinearly stretching sheet for prescribed 

surface temperature and prescribed heat flux with a shooting method. Hayat et al. [25] investigated 

chemically-reacting couple stress stretching sheet flow. Hayat et al. [26] presented homotopy 

solutions for melting in stagnation flow of couple stress fluids, observing that temperature and surface 

heat transfer are elevated with couple stress effect whereas the flow is decelerated. Mahabaleshwar 

et al. [27] derived power series and Kummer confluent hyper-geometric function solutions for 

magnetohydrodynamic couple stress flow and convection from a linearly stretching sheet under a 

variety of different boundary conditions. These studies all confirmed the significant impact that 

couple stresses exert on heat and momentum transfer characteristics. 

     Most phenomena in fluid mechanics are essentially nonlinear in nature and are described by 

nonlinear partial or ordinary differential equations. Purely analytical methods cannot solve these 

nonlinear equations exactly. Other methods which are semi-analytical/numerical in nature therefore 

must be implemented and some popular methods are the Homotopy Analysis Method (HAM), 

Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Optimal 

Homotopy Asymptotic Method (OHAM) and the Differential Transformation Method (DTM).  

These methods are frequently used owing to their high accuracy and simplicity in yielding solutions. 

In the present article we employ the Differential Transformation Method (DTM) [28] which is a 

robust semi-exact method and is not based on the existence of small or large parameters.  A close 

inspection of the previous literature study indicates that very limited studies have been reported on 

the application of DTM to nonlinear time-dependent flows of couple stress fluids from a stretching 

sheet. Hence, the current study aims to apply DTM to the boundary layer flow of couple stress fluid 

with heat transfer from a stretching sheet. Extensive details of the mathematical model, 

transformation, boundary conditions, DTM solution and graphical results for various emerging 

parameters are included. A rigorous discourse on the physical implications of the computed solutions 

is provided with validation of solutions (where possible) with previous studies and a shooting 

numerical method. The present work aims to provide a deeper insight into the thermofluid 

characteristics of rheological materials processing and has not been reported thus far in the technical 

literature.  
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2. MATHEMATICAL FORMULATION  

      Time-dependent, two-dimensional, laminar, incompressible couple stress fluid flow and thermal 

convection heat transfer from a stretching sheet is considered as depicted in Fig. 1. At the outset i.e., 

t = 0, the sheet is impulsively stretched with velocity 𝑈𝑤(𝑥, 𝑡) along the x-axis, keeping the origin 

fixed in the fluid which has a free stream temperature 𝑇∞. The temperature of the sheet 𝑇𝑤(𝑥, 𝑡) is 

assumed to be a linear function of the x-coordinate. The fixed Cartesian coordinate scheme has its 

origin positioned at the foremost verge of the sheet (slit where the sheet emerges) with the positive 

x-axis extending along the upward direction of sheet and the y-axis orientated normal to the surface 

of the sheet. Under these assumptions (with the boundary layer and Boussinesq approximations), the 

governing equations for the mass, momentum and energy conservation in mixed convective flow and 

heat transfer of the couple stress fluid, obtained by adding couple stress and heat effects to the models 

of [1], [2] are:  

      
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                           (1) 

 𝜌 (
 𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) =   𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝜇

𝜕2𝑢

𝜕𝑦2 − 𝜂1
𝜕4𝑢

𝜕𝑦4                                                         (2) 

 
 𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2                                                                                                           (3)  

The associated boundary conditions on the stretching sheet (wall) and in the free stream (edge of the 

boundary layer) are given by:  

              𝑇 = 𝑇𝑤 , 𝑣 = 0, 𝑢 = 𝑈𝑤         at  𝑦 =  0                                                                                                                              

                𝑇 → 𝑇∞ , 𝑢 → 0                as  𝑦 → ∞                                                                       (4) 

     
𝜕2𝑢

𝜕𝑦2 = 0  at  𝑦 =  0, 𝑢 → 0  and    
𝜕𝑢

𝜕𝑦
→ 0 as  𝑦 →  ∞                                                           

We assume that the stretching velocity 𝑈𝑤(𝑥, 𝑡) and the surface temperature 𝑇𝑤(𝑥, 𝑡)  are of the form  

                   𝑈𝑤(𝑥, 𝑡) =
𝑎𝑥

(1−𝑐𝑡)
   and   𝑇𝑤(𝑥, 𝑡) = 𝑇∞ +

𝑏𝑥

(1−𝑐𝑡)2 ,                                                (5) 

where a and c are constants (with 𝑎 > 0 and 𝑐 ≤ 0, where 𝑐𝑡 < 1), and both have dimension of 

frequency (inverse of time), while 𝑏 is a constant and has dimension temperature/length, with 𝑏 > 0 
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and 𝑏 < 0 relate to the assisting and opposing flows, respectively. Furthermore 𝑏 = 0 corresponds 

to forced convection limit (absence of buoyancy force). It is noteworthy that at 𝑡 = 0 (initial motion), 

these particular forms of 𝑈𝑤(𝑥, 𝑡) and 𝑇𝑤(𝑥, 𝑡) have been preferred in order to extract a new similarity 

transformation, which converts the governing partial differential Eqns.  (1) – (3) into a set of ordinary 

differential equations. Progressing with the analysis, let us introduce the following dimensionless 

functions 𝑓and 𝜃, and similarity variable 𝜂 as follows [7, 8]:  

          𝜂 = √
𝑎

𝜐(1−𝑐𝑡)
 𝑦 ,  𝜓 = √

𝑎𝜐

(1−𝑐𝑡)
 𝑥𝑓(𝜂) ,  𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
 ,                                                   (6) 

Here 𝜓(𝑥, 𝑦, 𝑡) is the stream function defined as (𝑢, 𝑣) = (
𝜕𝜓

𝜕𝑦
 , −

𝜕𝜓

𝜕𝑥
)  which identically satisfies the 

continuity (mass conservation) equation (1). Substituting Eqn. (6) into (2) and (3) we obtain: 

                       𝛽𝑓𝑣 − 𝑓′′′ + 𝑓′2
− 𝑓𝑓′′ + 𝐴 (

1

2
𝜂𝑓′′ + 𝑓′) − 𝜆𝜃 = 0                                         (7) 

                                  
1

𝑃𝑟
𝜃′′ + 𝑓𝜃′ − 𝜃𝑓′ − 𝐴 (

1

2
𝜂𝜃′ + 2𝜃) = 0,                                               (8)  

Here prime denotes differentiation with respect to 𝜂, β = 𝑎𝜂1/𝜐2𝜌(1 − 𝑐𝑡) is the couple stress (non-

Newtonian) parameter, 𝐴 = 𝑐/𝑎 is the unsteadiness parameter, 𝑃𝑟 = 𝜐/𝛼 is the Prandtl number. 

Also, λ is the buoyancy parameter which is defined as λ = 𝐺𝑟/𝑅𝑒2 where 𝐺𝑟 = 𝑔𝛽𝑇(𝑇𝑤 − 𝑇∞)𝑥3/

𝜐2 denotes local Grashof number and 𝑅𝑒 = 𝑈𝑤𝑥/𝜐 denotes the local Reynolds number. Here, 𝜆 is 

dimensionless constant with 𝜆 < 0 and 𝜆 > 0 associated respectively with opposing flow and 

assisting flow cases, whereas λ = 0 relates to the forced convection flow situation (vanishing 

buoyancy force).  The boundary conditions transform to:  

                              𝑓(0) = 0, 𝑓′(0) = 1, 𝑓′′′(0) = 0, 𝜃(0) = 1    at  𝜂 = 0 

                                  𝑓′(𝜂) → 0, 𝑓′′(𝜂) → 0, 𝜃(𝜂) → 0               as  𝜂 →  ∞                             (9) 

The local skin-friction coefficient 𝐶𝑓 and local Nusselt number Nu are important wall gradient 

characteristics associated with thermal rheological materials processing. They are defined as follows: 

The surface shear stress τw is given by [28-32]: 

                                               𝜏𝑤 = (𝜇 (
𝜕𝑢

𝜕𝑦
) − 𝜂 (

𝜕3𝑢

𝜕𝑦3))
𝑦=0

   

Using similarity transformation from Eq. (6), the shear stress τw becomes  
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                            𝜏𝑤 = 𝜐√
𝑎

(1−𝑐𝑡)

𝑎𝑥

(1−𝑐𝑡)
(𝑓′′(0) −

𝑎𝜂1

𝜌𝜐2(1−𝑐𝑡)
𝑓′′′′(0))  

The local skin-friction coefficient  𝐶𝑓 is given by 

         𝐶𝑓 =
𝜏𝑤

𝜌𝑈𝑤
2/2

  ,           
1

2
𝐶𝑓𝑅𝑒1/2 = 𝑓′′(0) − 𝛽𝑓′′′′(0)                                                  (10a) 

        𝑁𝑢 =
𝑞𝑤

𝑇𝑤−𝑇∞
(

𝑥

𝑘
), 𝑞𝑤 = −𝑘 (

𝜕𝑇

𝜕𝑦
)

𝑦=0
  then 𝑁𝑢/𝑅𝑒1/2 = −𝜃′(0)                         (10b)  

3. SOLUTION OF THE PROBLEM 

The nonlinear non-dimensional ordinary differential boundary value problem defined by Eqns. (7)-

(9) is solved with DTM. The concept of DTM was first suggested by Zhou in 1986 [33] and it was 

applied to elucidate linear and non-linear initial value problems in electric circuit analysis. DTM is 

based on a Taylor-series method and constructs an analytical solution in the form of a polynomial. 

The main benefit of this method is that it can be applied directly to nonlinear differential equations 

without requiring discretization, linearization, and therefore, it is not affected by errors associated 

with discretization. This method has been successfully implemented in numerous multi-physical 

mechanics, fluid dynamics and heat transfer problems in recent years. These include nonlinear 

thermal conduction [34], hypersonic heating in boundary layers [35], haemotological filtration 

dynamics [36], swirl vortex nuclear magnetic propulsion thermodynamics [37], digestive transport 

modelling [38], thermo-solutal convection in porous media [39], nanoscale fluid dynamics [40], 

micropolar fluid flows [41,42], chemically-reacting flows in permeable materials [43] and 

biomagnetic entropy generation in hemodynamics [44]. DTM has been shown to be very efficient in 

these studies. Although convergence may be accelerated with modifications of this method e.g. Padé 

approximations, it is not necessary.  The method and its application to the current problem are now 

described. The differential transformation of the kth derivative of function 𝑓(𝜂) is defined as follows: 

                                                    𝐹(𝑘) =
1

𝑘!
[

𝑑𝑘𝑓(𝜂)

𝑑𝜂𝑘
]

𝜂=𝜂0

                                                           (11) 

where 𝑓(𝜂) is the original function and 𝐹(𝑘) is the transformed function. The inverse differential 

transformation is as follows: 

                                               𝑓(𝜂) = ∑ 𝐹(𝑘)(𝜂 − 𝜂0)𝑘∞
𝑘=0  ,                                                     (12) 

In real applications, the function 𝑓(𝜂) is expressed by a finite series and Eqn. (12) can be written as:  
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                                                 𝑓(𝜂) = ∑ 𝐹(𝑘)(𝜂 − 𝜂0)𝑘𝑚
𝑘=0  .                                                  (13) 

Eqn. (13) implies that ∑ 𝐹(𝑘)(𝜂 − 𝜂0)𝑘∞
𝑘=𝑚+1  is negligibly small. In fact m is dictated by the 

convergence in this study. Some of the properties of DTM are shown in Table 1. These properties 

are derived from Eqns. (12) and (13). Applying DTM to the non-linear governing conservation Eqns.  

(7) and (8) along with boundary conditions (9) we obtain following recurrence relations: 

β(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)(𝑘 + 4)(𝑘 + 5)𝐹(𝑘 + 5) − (𝑘 + 1)(𝑘 + 2)(𝑘 + 3)𝐹(𝑘 + 3) + 

∑ (𝐹[𝑘 − 𝑟](𝑘 + 1)(𝑘 + 2)𝐹(𝑘 + 2)) 𝑘
𝑟=0  − ∑  ((𝑘 − 𝑟 + 1)𝐹[𝑘 − 𝑟 + 1](𝑘 + 1)𝐹(𝑘 + 1))𝑘

𝑟=0 +

𝐴 (
1

2
∑ (𝛿(𝑘 − 𝑟 + 1)𝑘

𝑟=0 (𝑘 + 1)(𝑘 + 2)𝐹(𝑘 + 2)) + (𝑘 + 1)𝐹(𝑘 + 1)) − 𝜆𝑇[𝑘] = 0          (14) 

1

𝑃𝑟
(𝑘 + 1)(𝑘 + 2)𝑇(𝑘 + 2) − 𝐴 (

1

2
∑ (𝛿(𝑘 − 𝑟 + 1)𝑘

𝑟=0 (𝑘 + 1)𝑇(𝑘 + 2)) + 2𝑇(𝑘)) 

 + ∑ (𝐹[𝑘 − 𝑟 + 1](𝑘 + 1)𝑇(𝑘 + 1))𝑘
𝑟=0 − ∑ (𝑇[𝑘 − 𝑟 + 1](𝑘 + 1)𝐹(𝑘 + 1)) = 0𝑘

𝑟=0              (15) 

                          𝐹[0] = 0, 𝐹[1] = 1, 𝐹[2] =
𝑛1

2
, 𝐹[3] = 0, 𝐹[4] =

𝑛2

24
                                       (16a) 

                                      𝑇[0] = 0, 𝑇[1] = 𝑛3                                                           (16b) 

where 𝐹(𝑘), 𝑇[𝑘] are the differential transform of 𝑓(𝜂), 𝜃(𝜂) and 𝑛1, 𝑛2, 𝑛3 are constants which can 

be obtained through boundary conditions i.e. Eqn. (9).  

Table 1: Properties of DTM [33] 

Original function                                    Transformed function 

𝑓(𝜂) = 𝑔(𝜂) ± ℎ(𝜂)  𝐹(𝑘) = 𝐺(𝑘) ± 𝐻(𝑘) 

𝑓(𝜂) = 𝑐𝑔(𝜂)                              𝐹(𝑘) = 𝑐𝐺(𝑘) 

𝑓(𝜂) =
𝑑𝑛𝑔(𝜂)

𝑑𝜂𝑛                            𝐹(𝑘) =
(𝑘+𝑛)!

𝑘!
𝐺(𝑘 + 𝑛)  

𝑓(𝜂) = 𝑔(𝜂)ℎ(𝜂)  
 
𝑓(𝜂) = 𝜂𝑛  

                        𝐹(𝑘) = ∑ 𝐺(𝑟)𝐻(𝑘 − 𝑟)𝑘
𝑟=0   

 

                            𝐹(𝑘) = 𝛿(𝑘 − 𝑛) = {
1,   𝑖𝑓  𝑘 = 𝑛
0, 𝑖𝑓  𝑘 ≠ 𝑛  

 

 

Using the transformed boundary conditions (16a) and (16b) we obtained following recurrence 

relations: 
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      𝐹[5] =
λ−1−A

120β
 ,          

   𝐹[6] =
λ𝑛3+𝑛2−𝑛1(1+A)

720β
 ,  

  𝐹[7] = (
λ−(1+A)

2β
 +  

1

2 
Pr λ(1 + 2A) −

𝑛1
2

2
) /2520β ,  

 𝐹[8] = (
λ 𝑛3+𝑛2−𝑛1(1+A)

6β
+

1

6
Pr λ (𝑛1 + 2A 𝑛3) +

𝑛2

6
−

A𝑛2

6
) /6720β , 

𝐹[9] = (

λ−(1+𝐴)

2β
 + 

1

2 
Pr λ(1+2A)−

𝑛1
2

2

12β
−

A(λ−1−A)

24β
+

λ−(1+A)

12β
+

1

12
Pr2 λ A(1 + 2A)

−
1

24
Pr2 λ (1 + 2A) +

Pr2 λ 𝑛1𝑛3

24
−

𝑛1𝑛2

24

) /15120β    (17a-e)    

𝑇[2] =
1

2
(1 + A)Pr  , 

 𝑇[3] =
1

6
(𝑛1 + 2 A 𝑛3) Pr , 

𝑇[4] =
Pr 𝑛1𝑛3

24
−

1

24
Pr2 (1 + 2A) +

1

12
Pr2 A (1 + 2A), 

𝑇[5] =
Pr 𝑛2

120
−

1

60
Pr2 (𝑛1 + 2 A 𝑛3) +

1

60
Pr2 A (𝑛1 + 2 A 𝑛3)  

𝑇[6] =
Pr 𝑛2𝑛3

24
−

1

360
Pr2 𝑛1 (𝑛1 + 2 A 𝑛3) −

Pr2 𝑛1𝑛3

240
+

1

240
Pr3 (1 + 2A) −

1

120
Pr3 A(1 + 2A)  

             +
Pr2 A 𝑛1𝑛3

360
−

1

360
Pr3 A (1 + 2A) +

1

360
Pr3 A2(1 + 2A) +

Pr (λ−(1+A))

720β
 , 

𝑇[7] =
Pr2 𝑛2 (1+2A)

1008
−

Pr2 𝑛1
2𝑛3

1008
+

Pr3 𝑛1 (1+2A)

1008
−

Pr3 𝑛1 A (1+2A)

1008
−

Pr2 𝑛2 

1260
 +

1

630
Pr3 (𝑛1 + 2 A 𝑛3)  

             +
1

630
Pr3 A (𝑛1 + 2 A 𝑛3) +

Pr2A 𝑛2 

2520
−

1

12600
Pr3(𝑛1 + 2 A 𝑛3) +

1

12600
Pr3 A (𝑛1 + 2 A 𝑛3)  

              +
Pr 𝑛3(λ−(1+A))

12600β
+

λ 𝑛3+𝑛2−𝑛1(1+A)

50400β
                                                                                (18a-f) 

The above procedure is continuous. By substituting Eqns. (17) and (18) in Eqn. (13) based on DTM, 

the closed form of the solutions can be written as: 
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 𝑓(𝜂) = 𝜂 +
𝑛1𝜂2

2
+

𝑛2𝜂4

24
+

(λ−1−A)𝜂5

120β
+

(λ𝑛3+𝑛2−𝑛1(1+A))𝜂6

720β
+

(
λ−(1+A)

2β
 + 

1

2 
Pr λ(1+2A)−

𝑛1
2

2
)𝜂7

2520β
 

                 +
(

λ 𝑛3+𝑛2−𝑛1(1+A)

6β
+

1

6
Pr λ (𝑛1+2A 𝑛3)+

𝑛2
6

−
A𝑛2

6
)𝜂8

6720β
 +…………..                                        (19) 

𝜃(𝜂) = 1 + 𝑛3𝜂 +
1

2
Pr(1 + A)𝜂2 +

1

6
Pr(𝑛1 + 2 A 𝑛3) 𝜂3       

             + (
Pr 𝑛1𝑛3

24
−

1

24
Pr2 (1 + 2A) +

1

12
Pr2 A (1 + 2A)) 𝜂4  

             + (
Pr 𝑛2

120
−

1

60
Pr2 (𝑛1 + 2 A 𝑛3) +

1

60
Pr2 A (𝑛1 + 2 A 𝑛3)) 𝜂5 +………….               (20) 

From the above Eqns. (19) and (20) the unknown values 𝑛1, 𝑛2, 𝑛3 can be calculated by utilizing 

boundary conditions mentioned in eqn. (9). Afterwards, substituting obtained values of 𝑛1, 𝑛2, 𝑛3 into 

the Eqns. (19) and (20) for particular values of physical parameters (𝐴 = 0.5, 𝑃𝑟 = 1.0, 𝜆 = 1.0, 𝛽 =

0.2), the expressions of 𝑓(𝜂) and 𝜃(𝜂) can be written as follows:  

𝑓(𝜂) = 𝜂 − 0.4304956992669373𝜂2 + 0.04749727973586565𝜂4   

            −0.020833333333333332𝜂5 + 0.006664688591255408𝜂6     

            −0.0012314545519338464𝜂7 + 0.0003764688851289184𝜂8 +……….             (21) 

𝜃(𝜂) = 1 − 1.4717066543208086𝜂 + 1.0𝜂2 − 0.3887830088091138𝜂3        

               +0.052796948772303454𝜂4 + 0.02893860638762883𝜂5            

             −0.0195612055133296𝜂6 + 0.005149209805037258𝜂7          

              −0.000410892698247331𝜂8 + ……………                                                             (22) 

In order to validate the present solution of the problem and confirm accuracy, the DTM solutions are 

compared with existing numerical results. Numerical solution of the problem is executed in the 

symbolic code, MATLAB. A good agreement between the present technique and numerical solution 

is achieved in Table 2 for the selected case (𝐴 = 0.5, 𝑃𝑟 = 1.0, 𝜆 = 1.0, 𝛽 = 0.2). Also, skin-friction 

values for Newtonian fluid and couple stress fluid are depicted in Table 3. Furthermore, the present 

DTM solutions are compared in Table 4 with the earlier Newtonian results (𝛽 = 0) of Ishak et al. 

[7] when the buoyancy term 𝜆𝜃 in Eqn. (7) is absent and A = 0 (steady-state flow) with Pr = 1.0. 

Again, excellent correlation is attained which confirms the validity of the DTM computations.   
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Table2: Comparison of the present results and numerical solution for  𝐴 = 0.5, 𝑃𝑟 = 1.0, 𝜆 = 1.0, 𝛽 = 0.2  

𝜼                    

             

                DTM 

𝒇(𝜼) 

 

   Numerical  

 

 

      Error 

 

 

    DTM 

𝜽(𝜼) 

 

 Numerical  

 

 

        Error 

0                 0.0          0.0          0.0          1.0          1.0          0.0 

0.1           0.09909      0.09954      0.00045      0.86149      0.86190      0.00040 

0.2           0.19639      0.19658      0.00018      0.74105      0.74161      0.00056 

0.3           0.28900      0.28924      0.00024      0.63672      0.63708      0.00036 

0.4           0.37604      0.37620      0.00014      0.54641      0.54657      0.00015 

0.5           0.45638      0.45650      0.00012      0.46785      0.46879      0.00093 

0.6           0.52891      0.52963      0.00071      0.40170      0.40183      0.00013 

0.7           0.59498      0.59531      0.00033      0.34093      0.34179      0.00086 

0.8           0.65288      0.65349      0.00060      0.29288      0.29373      0.00083 

0.9           0.70358      0.70426      0.00067      0.28933      0.28988      0.00085 

1.0           0.74698      0.74786      0.00087      0.24256      0.24555      0.00099 

 

Table 3: Values of  
1

2
𝐶𝑓𝑅𝑒1/2 for viscous fluid ( β = 0) and couple stress fluid ( β > 0)  for                                           

Pr = 1.0 

 

          𝜷       A                 𝝀                       −
𝟏

𝟐
𝑪𝒇𝑹𝒆𝟏/𝟐  

0 0 0 1.042045 

  1 0.633587 

 1 0 1.420100 

0.5  1 1.347786 

1.0   1.507633 

1.5    1.654082 
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Table 4: Values of −𝜃′(0)  for Pr = 1.0 and 𝛽 = 0. 

    A  𝝀   Ishak et al. [7] Numerical results       Present results  

        n = 9                  n = 10 

 

    0   0         1.0000 1.0581         1.0499               1.0579 

   1         1.0873 1.1090         1.1199               1.0006 

   2         1.1423 1.1514         1.1710               1.1411 

   3         1.1853 1.1880         1.2227               1.1735 

     1   0         1.6820 1.6860         1.7096               1.6989  

   1         1.7029 1.7058         1.7396               1.7189     

 

4. RESULTS AND DISCUSSION 

Flow and heat transfer characteristics for various fluid and geometric parameters have been computed 

and are presented graphically (Figs. 2 - 5). The influence of couple stress parameter 𝛽 on velocity 

𝑓′(𝜂) and temperature 𝜃(𝜂) profiles are shown in Fig. 2(a)-(b). Fig. 2(a) depicts the variation of β on 

velocity.  From this figure it is observed that an increase in β values results in an upsurge in the 

velocity. This augmentation is due to presence of couple stresses which accelerate the flow and is 

consistent through the boundary layer transverse to the sheet. The momentum boundary layer 

thickness is increased substantially with couple stress. Also, it is observed that as β become higher 

the thickness of the velocity boundary layer reduces.   

Fig. 2(b) specifies the influence of β on temperature profile.  From this figure it is evident that a rise 

in β values corresponds to increase in temperature and this behaviour is most pronounced at some 

distance from the sheet i.e. towards the free stream. The thermal boundary layer thickness is 

decreased for varying values of β. Although the couple stress effect does not arise in the thermal 

boundary layer Eqn. (8), via coupling with the momentum Eqn. (7) through the buoyancy term, 𝜆𝜃, 

and the convective terms in the energy Eqn. (8) i.e. +𝑓𝜃′ − 𝜃𝑓′, a strong effect is induced in the 

thermal field. The coupling of the two boundary layer equations vanishes for the forced convection 

case (𝜆 = 0). Overall the weak couple stress fluid (β = 0.5 and this is closer to the Newtonian case) 

achieves lower velocity and temperatures than the strong couple stress fluid (β > 1). Couple stress 

effects therefore produce non-trivial effects in polymer heat transfer and this has also been confirmed 

by Stokes [45], Cowin [46] and Eringen [47] among others. From above two figures it is concluded 

that influence of β on velocity profile is greater compared to that on the temperature profile.    
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Figs. 3(a)-(b) depict the effect of parameter 𝐴 on velocity and temperature profiles through the 

boundary layer. The parameter, 𝐴, characterise the unsteadiness in the stretching sheet flow. 

Inspection of Fig. 3(a) reveals that velocity shows a decreasing trend for variation of unsteadiness 

parameter. As the parameter 𝐴 increases, the velocity decreases and reaches to zero along stretching 

sheet. This is due to fact that 𝐴 is inversely proportional to the stretching coefficient 𝑎. Thus, 

elevation in values of 𝐴 decreases the stretching ratio. As a result the velocity reduces. The variation 

of temperature profiles is shown in Fig. 3(b). It is noticed that influence of rising values of 𝐴 reduces 

the temperature field and augments the boundary layer thickness.  In general it is noticed that effect 

of unsteadiness parameter 𝐴 on the temperature profile is more compared to velocity profile.    

Figs. 4(a)-(b) respectively describes the influence of buoyancy ratio parameter 𝜆 on velocity and 

temperature variables. From Fig. 4(a) it is seen that the influence of increasing values of 𝜆 is to 

escalate the velocity. Physically 𝜆 > 0 denotes assisting flow (heating of the fluid), 𝜆 < 0 reveals 

opposing flow (cooling of the fluid) and 𝜆 = 0 implies forced convection flow (absence of free 

convection currents). Also, as 𝜆 augments results the increase in the temperature difference. This 

leads to an augmentation of the velocity and a corresponding reduction in momentum 

(hydrodynamic) boundary layer thickness. Also, as 𝜆 augments results the increase in the temperature 

difference (𝑇𝑤 − 𝑇∞). This leads to an augmentation of the velocity and a corresponding increase in 

momentum (hydrodynamic) boundary layer thickness.  

The variation of convection paramater 𝜆 on temperature profile is depicted in Fig. 4(b). Initially, as 

𝜆 increases, the temperature decreases drastically which leads to thinner boundary layer due 

domination of conduction. Also, an increasing 𝜆 produces a marked decrease in temperatures i.e. the 

regime is heated significantly, and the thermal boundary layer thickness is lessened and this result in 

an increase in the magnitude of the wall temperature gradient. This in turn produces the upsurge in 

the wall heat transfer rate (see Table 3). 

Figs. 5(a)-(b) illustrate the impact of Prandtl number Pr on flow-field profiles. Fig. 5(a) demonstrates 

the velocity profile. From this graph it is noticed that with greater values of Pr (lower thermal 

conductivity) the flow is decelerated, and the momentum boundary layer thickness is decreased. 

Similarly, temperature profiles are diminished with increasing Pr values as seen in Fig. 5(b). Also, 

the variation in the temperature profiles is more significant for small values of Pr when compared 

with higher values. It is remarked that the small values of Pr (< 1) represent liquid-like materials, 

which have high thermal conductivity but low viscosity. However, high-viscosity oils are represented 

by large values of Pr (> 1). For the case of Prandtl number of unity both momentum and thermal 



 
 

14 
 

diffusion rates are equal. For Pr < 1 thermal diffusion rate exceeds momentum diffusion rate and vice 

versa for Pr>1.  

5. CONCLUSIONS 

Motivated by simulating thermal non-Newtonian polymer stretching flows, a mathematical model 

has been developed for unsteady couple stress rheological boundary layer flow over a stretching sheet 

with heat transfer. Via an appropriate similarity transformation, the governing nonlinear time-

dependent partial differential boundary layer equations have been rendered into nonlinear ordinary 

differential equations with appropriate wall and free stream boundary conditions. The semi-analytical 

Differential Transform Method (DTM) has been employed to solve the reduced nonlinear coupled 

ordinary differential boundary value problem. A numerical solution is also obtained via the 

MATLAB built-in solver ‘bvp4c’ to validate the results. Further validation with published results 

from the literature is included. The present computations reveal that: 

(i)The flow is accelerated (and hydrodynamic boundary layer thickness reduced) with increasing 

couple stress parameter whereas it is decelerated (and hydrodynamic boundary layer thickness 

increased) with unsteadiness parameter.  

(ii) Temperature is elevated (and thermal boundary layer thickness enhanced) with couple stress 

parameter whereas temperature is depleted (and thermal boundary layer thickness reduced) with 

unsteadiness parameter.  

(iii)The flow is accelerated with increasing positive buoyancy parameter (for heating of the fluid) 

whereas it is decelerated with increasing negative buoyancy parameter (cooling of the fluid).  

(iv) Temperature and thermal boundary layer thickness are boosted with increasing positive values 

of buoyancy parameter.  

(v) Increasing Prandtl number decelerates the flow (and increases hydrodynamic boundary layer 

thickness) whereas it reduces temperatures (and decreases thermal boundary layer thickness). 
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(vi) Excellent accuracy is achieved with the DTM approach which holds significant potential for 

multi-physical thermal fluid dynamics modelling. 

The current work has considered the Stokes couple stress model and has been confined to electrically 

non-conducting flow in the absence of electrical or magnetic fields. Future studies will examine 

Eringen micropolar non-Newtonian liquids [47] and consider electrohydrodynamic and 

magnetohydrodynamic heat transfer [48] for Sakiadis stretching sheet flows. 
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Fig. 1. Geometry of the present investigated problem 
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     2(b) 

Fig. 2a, b. Simulated velocity and temperature profiles for various values of couple stress parameter. 
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 3(a) 

 

 

 

 

 

 

 

 

                                                                             3(b) 

Fig.3a,b. Simulated velocity and temperature profiles for different values of unsteadiness parameter.  
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                                                                                  4(b) 

 Fig.4a,b. Simulated velocity and temperature graphs for various values of convection parameter. 
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                                                                              5(b) 

         Fig.5a, b. Simulated velocity and temperature profiles for various values of Prandtl number. 


