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In the present paper, we analyzed the laminar boundary layer flow and heat transfer from a horizontal cylinder in a
nanofluid-saturated non-Darcy porous medium in the presence of thermal radiation. This is the first paper presenting
non-similar solutions for such a regime. The boundary layer conservation equations, which are parabolic in nature, are
normalized into non-similar form and then solved computationally with an efficient, implicit, stable Keller-box finite-
difference scheme. Non-Darcy effects are simulated via a second-order Forchheimer drag force term in the momentum
boundary layer equation. The model used for the nanofluid incorporates the effects of Brownian motion, buoyancy
ratio, and thermophoresis. A non-similarity solution is presented that depends on the Brownian motion number (Nb),
buoyancy ratio (Nr), thermophoresis number (Nt), Forchheimer parameter (Λ), and radiation parameter (F). Veloc-
ity is reduced with increasing Forchheimer parameter, whereas temperature and nanoparticle concentration are both
enhanced. The model finds applications in energy systems and thermal enhancement of industrial flow processes.

KEY WORDS: Keller-box method, nanofluids, thermal radiation, horizontal cylinder, Brownian motion,
Forchheimer number

1. INTRODUCTION

Transport processes in porous media can involve fluid, heat, and mass transfer in single or multi-phase scenarios.
Such flows with and without buoyancy effects arise frequently in many branches of chemical engineering, and owing
to their viscous-dominated nature are generally simulated using the Darcy model. Applications of such flows in-
clude chip-based microfluidic chromatographic separation devices (Dorfman and Brenner, 2002). Porous media flow
simulations are also critical in convective processes in hygroscopic materials (Turner et al., 1998), such as electro-
remediation in the soil decontamination technique wherein an electric field applied to a porous medium generates the
migration of ionic species in solution (Pomès et al., 2002). Both Darcian and Darcy–Forchheimer (inertial) models
have been employed extensively in radiative–convective flows in porous media. Takhar et al. (1998) used an implicit
difference scheme and the Cogley–Vincenti–Giles non-gray model to simulate the radiation–convection gas flow in
a non-Darcy porous medium with viscous heating effects. Nagaraju et al. (2001) used the Schuster–Schwartzchild
two-flux radiative model and the Blottner finite-difference scheme to investigate the combined radiative and con-
vective heat transfer in a medium with variable porosity. Takhar et al. (2003) employed a Runge–Kutta–Merson
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shooting quadrature and the Rosseland diffusion algebraic radiation model to analyze the mixed radiation–convection
flow in a non-Darcy porous medium, showing that temperature gradients are boosted with radiative flux. More re-
cently, Chamkha et al. (2004) studied the influence of thermal radiation on steady natural convection in a viscoelastic
fluid–saturated non-Darcian porous medium using the Keller-box numerical scheme. Temperatures were seen to be
substantially boosted with an increase in radiative parameter. Hossain and Pop (2001) studied radiation effects on free
convection over a flat plate embedded in a porous medium with high porosity. Takhar et al. (2002) reported natural
convection on a vertical cylinder embedded in a thermally stratified high-porosity medium.

Nanofluids are engineered colloids comprising a base fluid (e.g., air and water) and nanoparticles. Nanoparti-
cles range in diameter between 1 and 100 nm. Nanofluids typically employ metal or metal oxide nanoparticles, such
as copper and alumina, and the base fluid is usually a conductive fluid, such as water or ethylene glycol. Nanoflu-
ids commonly contain up to a 5% volume fraction of nanoparticles to ensure effective heat transfer enhancements.
Nanofluids are studied due to their heat transfer properties: they enhance the thermal conductivity and convective
properties over the properties of the base fluids. Typical thermal conductivity enhancements are in the range of 15%–
40% over the base fluid and heat transfer coefficient enhancements have been found up to 40% (Yu et al., 2008).
Increases in thermal conductivity of this magnitude cannot be solely attributed to the higher thermal conductivity of
the added nanoparticles, and other mechanisms attributable to the increase in performance. Fluid heating and cooling
techniques are important in many industries such as power, manufacturing, transportation, and in particular the next
generation of thin film solar energy collector devices. Effective cooling techniques are greatly needed for cooling any
sort of high-energy device. Common heat transfer fluids such as water, ethylene glycol, and engine oil have limited
heat transfer capabilities due to their low heat transfer properties. In contrast, metals have thermal conductivities up
to three times higher than these fluids; therefore, it is naturally desirable to combine the two substances to produce
a heat transfer medium that behaves like a fluid but has the thermal conductivity of a metal. Innovative heat transfer
fluids containing suspended nanometer-sized solid particles (i.e., nanofluids) can therefore beneficially change the
transport and thermal properties of the base fluid and offer great promise for modern heat transfer engineering. A
comprehensive survey of convective transport in nanofluids was made by Buongiorno (2006), who considered seven
slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid: inertia, Brownian
diffusion, thermophoresis, diffusiophoresis, Magnus effect, fluid drainage, and gravity. Of all of these mechanisms,
only Brownian diffusion and thermophoresis were found to be important. In the analysis, Buongiorno (2006) used a
two-component equilibrium model for mass, momentum, and heat transport in nanofluids, and showed that energy
transfer by nanoparticle dispersion is negligible and cannot explain the abnormal heat transfer coefficient increases.
An excellent assessment of nanofluid physics and developments has been provided by Das et al. (2007). Buongiorno
and Hu (2005) observed that although convective heat transfer enhancement has been suggested to be due to the
dispersion of suspended nanoparticles, this effect however is too small to explain the observed enhancement. They
further assert that turbulence is not affected by the presence of nanoparticles, thus this cannot explain the observed
enhancement.

The aforementioned studies did not consider transport in porous media. Such flows are very important, for ex-
ample, in fuel cell technologies, geothermics, materials processing, trickle bed chromatography, etc. Coupled heat
and mass transfer in free convection boundary layer flows in porous media arise in many such applications. A large
proportion of studies utilize the Darcy model, which is valid for low Reynolds number flows (Bear, 1988). Important
studies in this regard have been made by Bejan and Khair (1985), Lai and Kulacki (1991), and Murthy and Singh
(1999). Further analyses include stretching sheet hydromagnetic flow in porous media (Bég et al., 2009), Reiner–
Rivlin differential fluid transport in a porous regime (Bég et al., 2008), viscoelastic convection from a wedge in
Darcy–Brinkman porous media (Bég et al., 2004), chemically reactive thermo-micropolar transport in porous media
(Bég et al., 2007), and two-phase magneto-convection in porous media (Zueco and Bég, 2009). Other recent studies
employing non-Darcy transport models have been conducted within the context of chemical process and medical
engineering (B́eg et al., 2012), nanofluids and porous medium (Xiao et al., 2013; Cai and Yu, 2011; Rashidi et al.,
2014a,b,c), and radiation (Rashidi et al., 2014d).

To the authors’ knowledge no studies have thus far been communicated with regard to nanofluid thermal con-
vection from a cylinder in non-Darcian porous media. The objective of the present paper is therefore to analyze the
development of steady boundary layer flow and heat transfer in nanofluid-saturated, isotropic, homogenous porous
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media and radiation, for the case of a horizontal cylinder. A non-similarity solution is developed. The Keller-box dif-
ference scheme is used to solve the normalized boundary layer equations and the effects of the Forchheimer parameter
(Λ), Brownian motion number (Nb), thermophoresis number (Nt), buoyancy ratio parameter (Nr), and thermal radia-
tion parameter (F ) on the relevant flow variables are described in detail. The present study is of immediate interest in
next-generation solar film collectors, heat exchanger technology, and also geothermal energy storage systems using
spherical subterranean tanks. The present problem has to the authors’ knowledge not appeared thus far in the scientific
literature and is relevant to polymeric thermal enrobing processes immersed in a porous medium.

2. MATHEMATICAL MODEL

Consider the steady, laminar, two-dimensional, incompressible heat and mass transfer flow of a nanofluid past a
horizontal permeable cylinder embedded in an isotropic, homogenous, fully saturated porous medium. Unidirectional
radiative flux is present. The regime constitutes an enrobing flow scenario. Figure 1 illustrates the flow geometry and
physical coordinate system. Thex-coordinate is measured along the circumference of the horizontal cylinder from
the lowest point and they-coordinate is measured normal to the surface, witha denoting the radius of the horizontal
cylinder. Here,Φ = x/a is the angle of they-axis with respect to the vertical (0≤ Φ ≤ π). The gravitational
accelerationg, acts downward. We also assume that the Boussineq approximation holds, i.e., density variation is only
experienced in the buoyancy term in the momentum equation.

Both the horizontal cylinder and the nanofluid are maintained initially at the same temperature. Instantaneously,
they are raised to a temperatureTw (> T∞) and concentrationCw (>C∞), which remain unchanged. The Oberbeck–
Boussinesq approximation is employed. Homogeneity and local thermal equilibrium in the porous medium is as-
sumed. We consider a porous medium with porosity denoted byε and permeability (hydraulic conductivity) denoted
byK. The following equations embody the conservation of total mass, momentum, thermal energy, and nanoparticles,
respectively. The field variables are velocityv, temperatureT , and nanoparticle volume fractionC:

∇ · v = 0 (1)

ρf

ε

∂v

∂t
= −∇p− µ

K
v − Γv2 + [Cρp + (1− C) {ρf [1− β (T − T∞)]} sin (x/a)] g (2)

(ρc)m
∂T

∂t
+ (ρc)f v · ∇T = km

[
∇2T +

∂qr
∂y

]
+ ε (ρc)p [DB∇C · ∇T + (DT /T∞)∇T · ∇T ] (3)

∂C

∂t
+

1
ε
v · ∇C = DB∇2C + (DT /T∞)∇2T (4)

FIG. 1: Physicalmodel and coordinate system
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wherev = (u, v); ρf , µ, andβ are the density, viscosity, and volumetric volume expansion coefficient of the fluid,
respectively;ρp is the density of the particles; andΓ is the Forchheimer inertial coefficient representing second-
order (quadratic) inertial drag effects in the porous medium. The gravitational acceleration is denoted byg. We
have introduced the effective heat capacity(ρc)m, and the effective thermal conductivitykm of the porous medium.
The coefficients that appear in Eqs. (3) and (4) are Brownian diffusion coefficientDB and thermophoretic diffusion
coefficientDT . Details of the derivation of the Eqs. (3) and (4) are given in Buongiorno (2006), Tzou (2008), and
Nield and Kuznetsov (2009).

The boundary conditions are taken to be

u = v = 0, T = Tw, C = Cw at y = 0 (5)

u = 0, T → T∞, C → C∞ as y → ∞ (6)

We consider a steady-state flow. In keeping with the Oberbeck–Boussinesq approximation and an assumption that
the nanoparticle concentration is dilute, and with a suitable choice for the reference pressure, we can linearize the
momentum equation and write Eq. (2) as

0 = −∇p− µ

K
v − Γv2 + [(ρp − ρf∞) (C − C∞) sin (x/a) + (1− C∞) ρf∞β (T − T∞) sin (x/a)] g (7)

We now make the standard boundary layer approximation, based on a scale analysis, with extra body force terms
incorporated for Darcy impedance and Forchheimer drag (for the porous medium) and this leads to the following
equations:

∂u

∂x
+

∂v

∂y
= 0 (8)

u
∂u

∂x
+ v

∂u

∂y
= [(1− C∞) ρf∞βg (T − T∞) sin (x/a)− (ρp − ρf∞) g (C − C∞) sin (x/a)]

+ ν
∂2u

∂y2
− µ

K
u− Γu2

(9)

u
∂T

∂x
+ v

∂T

∂y
= αm∇2T + τ

[
DB

∂C

∂y

∂T

∂y
+

(
DT

T∞

)(
∂T

∂y

)2
]
− 1
ρcp

∂qr
∂y

(10)

1
ε

(
u
∂C

∂x
+ v

∂C

∂y

)
= DB

∂2C

∂y2
+

(
DT

T∞

)
∂2T

∂y2
(11)

where

αm =
km
(ρc)f

, τ =
(ρc)p
(ρc)f

(12)

in which the former is the thermal diffusivity of the nanofluid, and the latter is the ratio between the effective heat
capacity of the nanoparticle material and heat capacity of the fluid. Defining the stream function,ψ:

u =
∂ψ

∂y
, v = −∂ψ

∂x
(13)

theRosseland diffusion flux model is used and is defined following Modest (1993) as follows:

qr = −4σ∗

3k∗
∂T 4

∂y
(14)

wherek∗ is the mean absorption coefficient andσ∗ is the Stefan–Boltzmann constant. We further note that the current
radiative model is valid for high optical thickness (optical depth), for which thermal radiation is better attenuated in
the medium and is known to induce significant heating within boundary layers. Following Raptis and Perdikis (2004),
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we can express the quadratic temperature function in Eq. (14) as a linear function of temperature. The Taylor series
for T 4, discarding higher-order terms, can be shown to give

T 4 ∼= 4T3
∞T − 3T4

∞ (15)

Substituting this expression into Eq. (14) and then into heat conservation Eq. (10), eventually leads to the following
form of the energy equation:

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ τ

[
DB

∂C

∂y

∂T

∂y
+

(
DT

T∞

)(
∂T

∂y

)2
]
+

16σ∗T 3
∞

3k∗ρcp

∂2T

∂y2
(16)

Equation(8) is therefore satisfied identically. Proceeding with the analysis we introduce the following dimensionless
variables:

ξ =
x

a
, η =

y

a
4
√

Gr, f (ξ,η) =
ψ

νξ
4
√

Gr

Gr =
(1− ϕ∞) ρf∞gβ(Tw − T∞)a3

ν2
, θ (ξ,η) =

T − T∞

Tw − T∞
, ϕ (ξ,η) =

C − C∞

Cw − C∞

(17)

Substituting Eq.(17) into Eqs. (8)–(11), we obtain the coupled, nonlinear, dimensionless partial differential equations
for momentum, energy, and species conservation for the regime:

f ′′′ + ff ′′ − (1+ ξΛ) f ′2 +
sin ξ

ξ
(θ−Nrϕ)− 1

Da
f ′ = ξ

(
f ′ ∂f

′

∂ξ
− f ′′ ∂f

∂ξ

)
(18)

(
1+

4
3F

)
θ′′

Pr
+ fθ′ +Nbθ′ϕ′ +Nt (θ′)

2
= ξ

(
f ′ ∂θ

∂ξ
− θ′ ∂f

∂ξ

)
(19)

ϕ′′ + Scfϕ′ +

(
Nt

Nb

)
θ′′ = ξ

(
f ′ ∂ϕ

∂ξ
− ϕ′ ∂f

∂ξ

)
(20)

The transformeddimensionless boundary conditions are:

At η = 0 : f ′ = 0, f = 0, θ = 1, ϕ = 1
As η→ ∞ : f ′ → 0, θ→ 0, ϕ→ 0

(21)

In the previous equations, the primes denote the differentiation with respect toη, the dimensionless radial coordinate
(η); ξ is the dimensionless tangential coordinate;Φ is the azimuthal coordinate;Λ = Γa is the local inertia coef-

ficient (the Forchheimer parameter); Da= K/
(

Gr1/2a2
)

is the Darcy number;Nr = [(ρp − ρf∞) (Cw − C∞)]

/[ρf∞ (1− C∞)β (T − T∞)] is the buoyancy ratio parameter;Pr = ν/αm is the Prandtl number; Sc= ν/Dmε is
the Schmidt number;Nb = [τDB (Cw − C∞)]/ν is the Brownian motion parameter;Nt = [τDT (Tw − T∞)]/νT∞
is the thermophoresis parameter; andF = Kk∗/4σ∗T 3

∞ is the radiation parameter.
The engineering design quantities of physical interest include the skin-friction coefficient (see Table 1), Nusselt

number, and Sherwood number, which are given by

1
2
Cf

4
√

Gr = ξf ′′ (ξ, 0) (22)

Nu
4
√

Gr
= −θ′ (ξ, 0) (23)

Sh
4
√

Gr
= −ϕ′ (ξ,0) (24)
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6 Rao etal.

TABLE 1: Values of the local skin-friction coefficientCf for various values ofξ and Pr with
Nb= Nt = Nr = 0

ξ

Pr = 0.72 Pr = 5.0
Merkin et al. Prasad etal. Present Merkin et al. Prasad etal. Present

(1988) (2014) Results (1988) (2014) Results
0.0 0.000 0.000 0.000 0.000 0.000 0.000
0.4 0.609 0.608 0.610 0.301 0.304 0.303
0.8 1.160 1.157 1.159 0.572 0.567 0.569
1.2 1.602 1.598 1.600 0.787 0.784 0.784
1.6 1.885 1.880 1.882 0.922 0.919 0.920
2.0 1.971 1.968 1.970 0.954 0.949 0.951
2.4 1.824 1.820 1.821 0.865 0.861 0.863
2.8 1.404 1.400 1.402 0.629 0.625 0.626
π 0.739 0.702 0.713 0.230 0.225 0.228

3. NUMERICAL SOLUTIONS WITH THE KELLER-BOX IMPLICIT METHOD

The system of Eqs. (18)–(20) subject to boundary conditions (21) have been solved numerically by a very efficient
implicit finite-difference scheme called the Keller-box method, which was introduced and succinctly reviewed by
Keller (1978). This method remains among the most powerful, versatile, and accurate computational finite-difference
schemes employed in modern viscous fluid dynamics simulations. Recent applications in nanofluid dynamics are
provided in Yacob et al. (2011) and Tham et al. (2012). Further details are available in Prasad et al. (2014) and
Subba Rao et al., (2016a,b). The superior efficiency of this method for parabolic boundary layer flows was also
reviewed in B́eg et al. (2012) for non-Newtonian magneto-hydrodynamic flows. The method has been validated by
numerous published results and allows excellent mesh sensitivity experimentation to optimize the best grid spacing
for computing rapidly converging solutions for boundary layers.

In the present study the accuracy of the Keller-box code has been verified by grid independence tests. The key
stages are the following:

1. Reduction of theN th order partial differential equation system toN × first-order equations;

2. Finite-difference discretization;

3. Quasilinearization of the nonlinear Keller algebraic equations; and

4. Block-tridiagonal elimination of the linear Keller algebraic equations.

3.1 Phase A: Reduction of the N th Order Partial Differential Equation System to the N First-Order
Equations

Equations (18)–(20) subjected to boundary conditions (21) are first written as a system of first-order equations. For
this purpose, we reset Eqs. (18)–(20) as a set of simultaneous equations by introducing the new variablesu, v, andt:

f ′ = u (25)

f ′′ = v (26)

θ′ = t (27)

ϕ′ = p (28)
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v′ + fv − (1+ ξΛ)u2 +
sin ξ

ξ
[s−Nr (g)]− 1

Da
u = ξ

(
u
∂u

∂ξ
− v

∂f

∂ξ

)
(29)

1
Pr

(
1+

4
3F

)
t′ + ft+Nb (pt) +Nt

(
t2
)
= ξ

(
u
∂s

∂ξ
− t

∂f

∂ξ

)
(30)

1
Sc

p′ + fp+
1
Sc

(
Nt

Nb

)
t′ = ξ

(
u
∂g

∂ξ
− p

∂f

∂ξ

)
(31)

where theprimes denote differentiation with respect toη. In terms of the dependent variables, the boundary conditions
become

At η = 0 : u = 0, f = 0, s= 1, g = 1
As η→ ∞ : u → 0, s→ 0, g → 0

(32)

3.2 Phase B: Finite-Difference Discretization

A two-dimensional computational grid is imposed on theξ-η plane as sketched in Fig. 2. The stepping process is
defined by

η0 = 0, ηj = ηj−1 + hj , j = 1,2, . . . , J, ηJ ≡ η∞ (33)

ξ0 = 0, ξn = ξn−1 + kn, n = 1,2, . . . , N (34)

wherekn andhj denote the step distances in theξ andη directions, respectively. Ifgnj denotes the value of any
variable at(ηj , ξn), then the variables and derivatives of Eqs. (25)–(30) at

(
ηj−1/2, ξ

n−1/2
)

are replaced by

g
n−1/2
j−1/2 =

1
4

(
gnj + gnj−1 + gn−1

j + gn−1
j−1

)
(35)

(
∂g

∂η

)n−1/2

j−1/2

=
1

2hj

(
gnj − gnj−1 + gn−1

j − gn−1
j−1

)
(36)

(
∂g

∂ξ

)n−1/2

j−1/2

=
1

2kn

(
gnj − gnj−1 + gn−1

j − gn−1
j−1

)
(37)

Wenow state the finite-difference approximation of Eqs. (25)–(30) for the mid-point
(
ηj−1/2, ξ

n
)

as follows:

h−1
j

(
fn
j − fn

j−1

)
= un

j−1/2 (38)

h−1
j

(
un
j − un

j−1

)
= vnj−1/2 (39)

FIG. 2: Grid meshing and a Keller-box computational cell
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(
vnj − vnj−1

hj

)
+ (1+ α)

(
fn
j−1/2v

n
j−1/2

)
− (1+ ξΛ + α)

(
un
j−1/2

)2
+B

[
snj−1/2 −Nr

(
gnj−1/2

)]
−
(

1
Da

)
un
j−1/2 + αv

n−1
j−1/2f

n
j−1/2 − αf

n−1
j−1/2v

n
j−1/2 = [R1]

n−1
j−1/2

(40)

h−1
j

(
θnj − θnj−1

)
= tnj−1/2 (41)

1
Pr

(
1+

4
3F

)(
tnj − tnj−1

hj

)
+(1+α)

(
fn
j−1/2t

n
j−1/2

)
+Nb

(
pnj−1/2t

n
j−1/2

)
+Nt

(
tnj−1/2

)2
+αsn−1

j−1/2u
n
j−1/2

− α
(
un
j−1/2s

n
j−1/2

)
− αun−1

j−1/2s
n
j−1/2 − αf

n−1
j−1/2t

n
j−1/2 + αt

n−1
j−1/2f

n
j−1/2 = [R2]

n−1
j−1/2

(42)

h−1
j

(
ϕn

j − ϕn
j−1

)
= gnj−1/2 (43)

1
Sc

(
pnj − pnj−1

hj

)
+ (1+ α)

(
fn
j−1/2p

n
j−1/2

)
+

1
Sc

(
Nt

Nb

)(
tnj − tnj−1

hj

)
+ αgn−1

j−1/2u
n
j−1/2

− α
(
un
j−1/2g

n
j−1/2

)
− αun−1

j−1/2g
n
j−1/2 − αf

n−1
j−1/2p

n
j−1/2 + αp

n−1
j−1/2f

n
j−1/2 = [R3]

n−1
j−1/2

(44)

where we have used the abbreviations

α =
ξn−1/2

kn
, B =

sin ξ

ξ
(45)

[R1]
n−1
j−1/2 = −

[(
vn−1
j − vn−1

j−1

hj

)
+ (1− α)

(
fn−1
j−1/2v

n−1
j−1/2

)
− (1+ ξΛ− α)

(
un−1
j−1/2

)2

+B
[
sn−1
j−1/2 −Nr

(
gn−1
j−1/2

)]
− 1

Da
un−1
j−1/2

] (46)

[R2]
n−1
j−1/2 = −

[
1
Pr

(
1+

4
3F

)(
tn−1
j − tn−1

j−1

hj

)
+ (1− α)

(
fn−1
j−1/2t

n−1
j−1/2

)
+Nb

(
pn−1
j−1/2t

n−1
j−1/2

)
+Nt

(
un−1
j−1/2

)2
+ α

(
un−1
j−1/2s

n−1
j−1/2

)] (47)

[R3]
n−1
j−1/2 = −

[
1
Sc

(
pn−1
j − pn−1

j−1

hj

)
+ (1− α)

(
fn−1
j−1/2p

n−1
j−1/2

)
+ α

(
un−1
j−1/2g

n−1
j−1/2

)
+

1
Sc

(
Nt

Nb

)(
tn−1
j − tn−1

j−1

hj

)] (48)

The boundaryconditions are

fn
0 = un

0 = 0, θn0 = 1, ϕn
0 = 1, unJ = 0, θnJ = 0, ϕn

J = 0 (49)

3.3 Phase C: Quasilinearization of Nonlinear Keller Algebraic Equations

If we assumefn−1
j , un−1

j , vn−1
j , sn−1

j , tn−1
j , gn−1

j , andpn−1
j to be known for 0≤ j ≤ J , then Eqs. (38)–(44) are a

system of 7J+ 7 equations for the solution of 7J + 7 unknowns:fn
j , un

j , vnj , snj , tnj , gnj , andpnj (j = 0, 1, 2, . . . ,J).
This nonlinear system of algebraic equations is linearized by means of Newton’s method as explained in Prasad et al.
(2013).
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3.4 Phase D: Block-Tridiagonal Elimination of Linear Keller Algebraic Equations

Linear system (38)–(44) can now be solved by the block-elimination method, since they possess a block-tridiagonal
structure. Commonly, the block-tridiagonal structure consists of variables or constants, but here, an interesting feature
can be observed, namely, that it consists of block matrices. The complete linearized system is formulated as a block
matrix system, where each element in the coefficient matrix is a matrix itself. Then, this system is solved using the
efficient Keller-box method. The numerical results are affected by the number of mesh points in both directions.
After some trials in theη-direction a larger number of mesh points are selected, whereas in theξ-direction (tangential
coordinate) significantly less mesh points are utilized. Theηmax value has been set at 10 and this defines an adequately
large value at which the prescribed boundary conditions are satisfied. Theξmax value is set at 1.0 for this flow domain.
Mesh independence is therefore achieved in the present computations. The computer program of the algorithm is
executed in MATLAB running on a PC. The method demonstrates excellent stability, convergence, and consistency,
as elaborated by Keller (1978).

4. RESULTS AND DISCUSSION

Extensive computations are presented in Figs. 3–21. A much smaller range is necessary for the dimensionless tan-
gential coordinate (ξ). Computations have been conducted (unless otherwise stated) at a general point on the curved
surface of the cylinder, i.e.,ξ = π/3, located at some distance from the lower stagnation point (ξ ∼ 0).

Figures 3–5 present typical profiles for velocity, temperature, and concentration for various values of ther-
mophoretic parameter Nt. It can be observed that an increase in thermophoretic parameter Nt leads to a decrease
in velocity. The most prominent variation in the profiles arises at intermediate distances from the cylinder surface.
However, increasing Nt generates substantial enhancement in both fluid temperature and nanoparticle concentration
values. Thermophoresis effectively heats the boundary layer and simultaneously assists particle deposition away from
the fluid regime (on to the cylinder surface), thereby accounting for the elevated concentration (nanoparticle) magni-
tudes in Fig. 5. For Nt= 0.1 there is a monotonic decay in nanoparticle concentration from the cylinder wall into the
free stream. However, for Nt> 0.1, a concentration peak is observed that is progressively displaced further from the
cylinder surface, with profiles thereafter decaying to the free stream.

Figures 6–8 depict the influence of Brownian motion parameter Nb on velocity, temperature, and concentration,
where the velocity in the boundary layer increases with rising Brownian motion parameter Nb. Temperature is also
slightly elevated. However, the nanoparticle volume fraction profile (ϕ) decreases with an increase in Brownian mo-
tion parameter Nb. Keblinski et al. (2002) elaborated on various mechanisms that may contribute to enhancement

FIG. 3: Influenceof Nt on the velocity profiles FIG. 4: Influenceof Nt on the temperature profiles
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10 Rao etal.

FIG. 5: Influenceof Nt on the concentration profiles FIG. 6: Influenceof Nb on the velocity profiles

FIG. 7: Influenceof Nb on the temperature profiles FIG. 8: Influenceof Nb on the concentration profiles

FIG. 9: Influenceof Nr on the velocity profiles FIG. 10: Influenceof Nr on the temperature profiles
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FIG. 11: Influenceof Nr on the concentration profiles FIG. 12: Influenceof Λ on the velocity profiles

FIG. 13: Influenceof Λ on the temperature profiles FIG. 14: Influenceof Λ on the concentration profiles

FIG. 15: Effect ofF on the skin friction coefficient results FIG. 16: Effect ofF on the local Nusselt number results
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FIG. 17: Effect ofF on the local Nusselt number results FIG. 18: Effect of Nt on the Sherwood number results

FIG. 19: Effect of Nt on the local Nusselt number results FIG. 20: Effect of Nb on the local Nusselt number results

FIG. 21: Effect of Nr on the Sherwood number results
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in temperatures via augmentation of thermal conductivity with nanoparticles. These include Brownian motion of
nanoparticles, ballistic transport of energy carriers within individual nanoparticles and between nanoparticles that are
in contact, nanoparticle distribution, and also the interfacial ordering of liquid molecules on the surface of nanopar-
ticles. Brownian motion of nanoparticles may elevate thermal conduction either directly via nanoparticles carrying
thermal energy or alternatively via an indirect contribution due to micro-convection of fluid surrounding individual
nanoparticles. However, it has been shown that the direct contribution of Brownian motion is less significant since the
timescale of the Brownian motion is about two orders of magnitude larger than that for the thermal diffusion of the
base liquid. The indirect effect is also argued (Keblinski et al., 2002) to be less significant. Nanoparticles frequently
are in the form of agglomerates and/or aggregates. For small particles, Brownian motion is strong and parameter Nb
will have high values; the opposite will apply for large particles. Clearly, Brownian motion does exert an effect on
both temperature and concentration profiles, as well as on the momentum field. Flow acceleration is clearly achieved
with increasing Nb values.

Figures 9–11 illustrate the effect of buoyancy ratio parameter Nr on the velocity(f ′), temperature, and concen-
tration distributions through the boundary layer regime

Nr =
(ρp − ρf∞) (Cw − C∞)

ρf∞ (1− C∞)β(T − T∞)

which representsthe relative contribution of the nanoparticle concentration buoyancy force to the thermal buoyancy
force. This parameter arises only in momentum boundary layer Eq. (15), in the term(sin ξ/ξ) (θ−Nrϕ), and cou-
ples the momentum equation to thermal and concentration boundary layer Eqs. (16) and (17), respectively. Velocity is
significantly suppressed with increasing Nr. Conversely, both temperature and concentration are markedly enhanced
with increasing buoyancy ratio. Therefore, buoyancy forces aid in the diffusion of heat and species (nanoparticles) in
the regime, whereas they induce deceleration in the flow regime.

Figures 12–14 show the influence of the Forchheimer inertial parameter (Λ) on the flow variables. This parameter
is associated with the second-order Forchheimer resistance term,ξΛ (f ′)

2, in momentum Eq. (15). Forchheimer drag
is directly proportional to parameterΛ. An increase inΛ markedly decelerates the flow, as illustrated in Fig. 12, for
some considerable distance into the boundary layer transverse to the cylinder surface. However, a certain point neg-
ligible effects are observed and these may be attributable to the more prominent role of inertial quadratic drag closer
to the wall. Kaviany (1992) indicated that Forchheimer effects are associated with higher velocities in porous media
transport. However, Forchheimer drag is second order and the increase in this form of drag effectively swamps the
momentum development, thereby decelerating the flow, in particular near the cylinder surface. The term non-Darcian
does not allude to a different regime of flow but to the amplified effects of Forchheimer drag at higher velocities, as
elaborated by Whitaker (1996). With a dramatic increase inΛ there is also a slight elevation in temperature (Fig. 13)
in the regime. The deceleration in the flow generates a decrease in momentum boundary layer thickness, which aids
in energy diffusion and thickening in the thermal boundary layer. The influence on the concentration (nanoparticle
species diffusion) field (Fig. 14) is similar to that of the temperature field. However, with the same increment in the
Forchheimer parameter, greater disparity in concentration profiles is caused. Concentration is markedly increased, in
particular at some distance from the cylinder surface, with an increase in Forchheimer parameterΛ. As with tem-
perature response, the concentration profiles exhibit a monotonic decay from the cylinder surface to the edge of the
boundary layer regime.

Figures 15–17 depict the influence of radiation parameterF on the velocity, temperature, and concentration
profiles, whereF = Kk∗/4σ∗T 3

∞ defines the ratio of the thermal conduction contribution relative to the thermal
radiation, and for the radiative heat transfer dominance in the boundary layer regime,F → 0. For finite values of
F there will be a simultaneous presence of thermal conduction and radiative transfer contribution. ForF = 1 both
modes will contribute equally. ForF →∞, in Eq. (16), the term 4/3F → 0 and the energy conservation equation are
reduced to the conventional steady conduction–convection equation, i.e.

1
Pr

t′ + ft+Nb (pt) +Nt
(
t2
)
= ξ

(
u
∂s

∂ξ
− t

∂f

∂ξ

)
(50)
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An increase inF from 0.1 to 0.5, 0.1 to 1.0, and 3.0 to 5.0 causes a significant increase in velocity with distance
into the boundary layer, i.e., it accelerates the flow. Therefore, thermal radiation flux has a retarding effect on the
flow regime. This is important in polymeric and other industrial flow processes since it shows that the presence of
thermal radiation, while increasing temperature, will affect flow control from the cylinder surface into the boundary
layer regime. As expected, temperature values are also significantly enhanced with an increase inF since there is
a progressive increase in the thermal radiation contribution accompanying this. Overall, the correct response for
temperature is computed with higher radiative flux (lowerF values). By increasing theF values, there is a significant
decrease in the concentration profiles, as shown in Fig. 17.

Figures 18 and 19 present typical profiles for the dimensionless skin friction coefficient[ξf ′′ (ξ, 0)], heat transfer
rate[θ′ (ξ, 0)], and mass transfer rate[ϕ′ (ξ, 0)] for various values of thermophoretic parameter Nt. It is evident that
the dimensionless skin friction increases very slightly with Nt, whereas the heat transfer rate (local Nusselt number)
is considerably increased with an increase in Nt. An increase in thermophoretic parameter Nt leads to a decrease in
the mass transfer rate (local Sherwood number). Therefore, thermophoresis exerts a significant effect on both the heat
and mass transfer characteristics at the cylinder surface.

Figures 20 and 21 show the influence of Brownian motion parameter Nb on the dimensionless heat transfer
rate [θ′ (ξ, 0)], and buoyancy ratio parameter Nr on the mass transfer rate[ϕ′ (ξ, 0)], at the cylinder surface. It is
observed that the heat transfer rate is substantially enhanced with increasing Nb. There is also a progressive depletion
in the heat transfer rate with increasing the transverse coordinate, i.e., theξ value. This agrees with the corresponding
enhancement in temperature in the boundary layer owing to the nanofluid properties as represented by the Brownian
diffusion effect. A decrease in the heat transfer rate at the wall will imply less heat is convected from the fluid
regime to the cylinder, thereby heating the boundary layer. The mass transfer rate is enhanced with an increase in the
buoyancy ratio since the species buoyancy is accentuated with an increase in the Nr value, and this aids in boosting the
nanoparticle mass transfer rates (the local Sherwood number). In order to verify the accuracy of our present method,
we have compared our results with those of Merkin and Pop (1988) and Prasad et al. (2014).

5. CONCLUSIONS

A finite-difference numerical solution has been developed for the free convection laminar boundary layer flow from a
horizontal cylinder in a nanofluid-saturated non-Darcy porous medium. The computations have shown that the flow is
decelerated with an increase in the Forchheimer parameter, whereas the temperature and nanoparticle concentration
are both enhanced. An increase in the Brownian motion effect is also found to accelerate the flow and enhance the
temperature, whereas the nanoparticle concentration is strongly suppressed. An increase in the thermophoretic param-
eter induces significant retardation in the flow, whereas it elevates both temperatures and nanoparticle concentrations.
Furthermore, an increase in the buoyancy parameter decelerates the flow, whereas it elevates both temperatures and
nanoparticle concentrations in the boundary layer regime. The present study has been confined to steady-state flow
and ignored swirling effects in nanofluids.
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