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ABSTRACT 

 

Nonlinear, steady-state, viscous flow and heat transfer between two stretchable rotating disks spinning at 

dissimilar velocities is studied with a non-Fourier heat flux model. A non-deformable porous medium is 

intercalated between the disks and the Darcy model is employed to simulate matrix impedance. The conservation 

equations are formulated in a cylindrical coordinate system and via the Von Karman transformations are rendered 

into a system of coupled, nonlinear ordinary differential equations. The emerging boundary value problem is 

controlled by number of dimensionless dimensionless parameters i.e. Prandtl number, upper disk stretching, lower 

disk stretching, permeability, non-Fourier thermal relaxation and relative rotation rate parameters. A perturbation 

solution is developed and the impact of selected parameters on radial and tangential velocity components, 

temperature, pressure, lower disk radial and tangential skin friction components and surface heat transfer rate are 

visualized graphically. Validation of solutions with the homotopy analysis method is included. Extensive 

interpretation of the results is presented which are relevant to to rotating disk bioreactors in chemical engineering. 

 

Key words: Rotating disk flow; stretching; heat transfer; viscous hydrodynamics; non-Fourier model; 

permeability; perturbation method; shooting quadrature; skin friction; radial and tangential flow. 

 

1. INTRODUCTION 

The viscous flow from a rotating disk (often termed “Von Karman swirling flow”) or in the gap between a dual 

rotating disk system arises in many intriguing applications in the chemical and process engineering industries. 

These include biological filtration (where porous media feature) [1], spacecraft landing gear lubrication [2], 
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rotating cathode electro-chemistry [3], hybrid swirl magnetohydrodynamic propulsion engines [4], photo-catalytic 

environmental water purification [5], polymer rheometry (for drag reduction studies) [6], hydrogenation processes 

[7], thermal magnetic materials processing [8], biofuel manufacture [9] and atomization systems [10]. These 

systems provide a rich arena for hydrodynamic studies. Early investigations of swirling disk flows considered 

purely viscous hydrodynamics and noteworthy communications in this regard (with a focus on engineering) 

include Lance and Rogers [11]. Mellor et al. [12] conducted a seminal theoretical (asymptotic), numerical and 

experimental (hot wire anemometry) investigation of the viscous flow in the region between two coaxial, infinite 

disks, one rotating and one stationary, identifying that a family of solutions can exist including one-, two- and 

three-flow cells in the meridional plane. They also demonstrated that the third solution comprises an inward-

flowing boundary layer on the stationary disk and an outward-flowing boundary layer on the rotating disk with a 

core flow intercalated between these two zones which revolves with a constant angular velocity. Furthermore, 

they obtained the classical single rotating disk solution for infinite Reynolds number as the “free-disk von Kármán 

solution”.  More recently Srinivasan and Karra [13] considered the flow between parallel rotating discs with 

distinct axes as a model of the operation of an orthogonal rheometer. Closed-form solutions for hydromagnetic 

non-Newtonian flow between off-centred rotating disks were presented by Ersoy [14]. Sha et al. [15] presented 

asymptotic and computational solutions for the torque and shear stress distributions in dual static-rotating disk 

flows. Bég et al. [16] computed the velocity and magnetic field distributions in  viscous hydromagnetic smart 

squeeze film flow between rotating disks with the Adomian decomposition method (ADM) for a range of 

Batchelor magnetic induction numbers. 

The above studies did not consider heat or mass transfer. Thermo-solutal transport phenomena are fundamental 

to numerous chemical engineering processes. The initial work in heat and mass transfer from a rotating disk was 

presented by Sparrow and Gregg [17] who considered gaseous media and also considered wall suction/blowing 

effects at the disk surfaces and showed that heat transfer rate is diminished with strong wall injection (blowing). 

Dorfman [18] presented the first major monograph on boundary layer heat transfer from rotating bodies including 

disks, cones, spheres and cylinders. Arora and Stokes [19] presented computational solutions for steady 

axisymmetric flow and dissipative heat transfer of an incompressible Newtonian fluid in the gap between two 

parallel infinite rotating disks, for different relative rates of rotation and rotational Reynolds numbers up to 125 

and Prandtl numbers between 0.7 (air) and 7.5 (water). Hudson [20] derived perturbation solutions for laminar 

axially symmetric flow and heat transfer between two horizontal disks rotating with a common angular velocity 

with the upper disk hotter than the lower. He showed that the centrifugal body force generates a tangential flow 
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in the thermal layer near the lower disk, that Ekman boundary layers are created at the surface of each disk and 

that thermal energy is convected by the secondary axial flow. Ming et al. [21] used a multi-shooting method to 

compute the steady thermal convection flow in non-Newtonian fluid Von Karman swirling flow, observing that 

the radial velocity is modified with rheological power- law index and that stronger heat conduction to the wall 

arises with increasing Prandtl number the heat conducts more strongly. Yen and Wang [22] used an orthogonal 

collocation method to study the combined flow and mass diffusion from a rotating disk against an external forced 

flow and derived two asymptotic mass-transfer formulae viable for Schmidt number less than 0.1 and greater than 

unity. Rahman and Postelnicu [23] studied thermophoresis on the forced convective laminar viscous flow from a 

rotating disk with surface temperature less than the ambient fluid, noting that axial particle deposition velocity 

increases with thermophoretic coefficient and Schmidt number. Sahoo et al. [24] investigated swirling Von 

Karman thermal convection flow of a non-Newtonian Reiner–Rivlin fluid. Basu and Cetegen [25] presented an 

integral analysis of heat transfer in isothermal or iso-flux thin liquid film rotating disk flow surface showing that 

at weak rotation, surface heat transfer rate decays radially whereas at high rotation, heat transfer peak is displaced 

radially outwards with greater film Reynolds number. Further studies include Helcig et al. [26] and Jiji and 

Ganatos [27]. 

In these studies, the disk boundary has invariably been non-deformable. However, in numerous bio-chemical 

materials operations (e.g. rotating disk photo-catalytics, bio-membrane manufacture etc), the surface may be 

stretched or contracted. Important examples of the significance of stretching on hydrodynamics and also 

thermal/mass diffusion characteristics are provided by Weinstein and Gros [28] (for polymeric extrusion coating 

systems), Termonia [29] (for heat bonding of non-woven composites for industrial containers) and Khan et al. 

[30] for high-temperature nano-materials processing. Many theoretical and computational studies of multi-

physical stretching boundary transport phenomena have been communicated in recent years. These include Ali et 

al. [31] (thermal polymer processing), Bég et al. [32] (magnetic materials processing with cross-diffusion), Abel 

et al. [33] (time-dependent non-isothermal hydromagnetic extrusion flows), Ahmad et al. [34] (variable thermal 

conductivity stretching thermal flow), Gupta et al. [35] (unsteady micropolar sheet stretching with wall suction), 

Yam et al. [36] (rheological flow from stretching wedge geometries), Uddin et al. [37] (high-temperature 

nanofluid boundary layer slip flows from extending/contracting sheets). Further numerical studies include Sajid 

et al. [38] (Newtonian viscous flow from curved stretching sheets), Latiff et al. [39] (time-dependent micropolar 

nanofluid biological slip flows from shrinking or contracting sheets), Hayat et al. [40] viscous thermo-solutal 

transport from oblique extending cylindrical bodies), Bég et al. [41] gyrotactic nano-bioconvection fully-
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developed flow in stretching/shrinking microchannels, Ali [42] (transpiring heat transfer from a stretched sheet) 

and Basir et al. [43] (external transient axisymmetric nano-bioconvection slip boundary layers from a stretching 

pipe). In these studies, different models for stretching were utilized including linear, quadratic, exponential and 

also power-law and it was shown that stretch rates have a significant influence on skin friction and heat and mass 

transfer rates at the wall. However, attention was confined to planar (longitudinal) stretching i.e. radial stretching 

was generally ignored. In disk stretching problems, radial stretching is of primary importance. Several researchers 

have considered radial stretching effects in both stationary disk flows and Von Karman swirling flows. Bég et al. 

[44] used a Zhou differential transform algorithm to analyse entropy generation and radial stretching effects on 

magnetized boundary layer convection from a spinning disk. Hashmi et al. [45] studied the reactive axisymmetric 

magnetohydrodynamic mixed convection of a viscoelastic nanofluid between two infinite isothermal stretching 

disks. Fang and Zhang [46] developed closed-form solutions for steady flow between two stretchable infinite disks 

with accelerated stretching velocity. They noted that a transition in the flow arises from creeping type flow to 

boundary layer type flow with increasing stretching Reynolds numbers and furthermore that the upper wall 

stretching parameter markedly influences the velocity distribution. Yin et al. [47] used the Liao homotopy analysis 

method to compute the impact of disk stretching rate on swirl heat transfer of nanofluids from a rotating disk for 

a variety of metallic nano-particles. They noted that radial and axial flow and local Nusselt number are enhanced 

with increasing stretching parameter whereas the tangential flow and thermal boundary layer thickness are 

reduced. Further studies include Ellahi et al. [48] on magnetic nanofluid flow, heat and mass transfer from an 

oscillating stretchable rotating disk. Hayat et al. [49] analyzed the dissipative magneto-convective non-Newtonian 

nanofluid between two rotating stretchable disks.  

The classical approach to modelling heat transfer in viscous flows has been the Fourier thermal conduction 

equation. This approach however reduces the heat conservation formulation to a parabolic energy equation which 

shows that the medium under observation experiences an initial disturbance. In order to overcome this difficulty, 

Cattaneo [50] introduced a relaxation time term in Fourier’s law of heat conduction which results in the physically 

realistic finite-speed heat conduction and a hyperbolic model. Following further modification, a modern form of 

the non-Fourier model which has emerged and has been embraced in engineering sciences is the Cattaneo–

Christov heat flux model. Many excellent studies have utilized this model successfully in a variety of applications 

including metallurgical solid body heat transfer [51], radiative conduction in solar cells [52], heterogenous 

materials processing simulations [53] (which identified that a hyperbolic conduction model is appropriate in the 

bulk material heat transfer), thermal injection moulding polymer processing [54], homogenization of solids [55], 
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thermal wave propagation in metallic solids [56].  The Fourier model exhibits infinitesimal heat disturbances 

which propagate at an infinite speed and is essentially a macroscopic description of solid body heat transfer. 

However, when there are time delays in heat transfer (in real materials), the non-Fourier (Cattaneo-Christov) 

model has been shown to accurately capture these effects. Recently this approach has been deployed to simulate 

thermal conduction effects in thermal convection flows via the inclusion of a thermal relaxation term.  Elsayed 

and Bég [57] used He’s variational iteration and Chebyshev’s spectral method to compute the non-Fourier effect 

on biophysical ultrasonic tissue heating. Liu et al. [58] also studied non-Fourier heat conduction in biological 

materials. Herwig and Beckert [59] considered non-Fourier thermal conduction in complex metallic 

configurations. Singh et al. [60] presented closed-form solutions for non-Fourier heat transfer in longitudinal fins 

and heat exchanger systems. Ai and Li [61] used a discontinuous Galerkin finite element method to simulate ultra-

short pulsed laser thermal processing of thin films with a non-Fourier heat conduction model, observing significant 

boundary thermal wave reflection/interactions. Akbar et al. [62] used fourth order Runge-Kutta shooting 

quadrature to compute the hydromagnetic flow of nanofluids from a stretching surface with the Cattaneo–Christov 

heat flux model noting that heat transfer rates are substantially altered with non-Fourier thermal relaxation effects. 

Further studies include Bhatti et al. [63] who simulated the multi-mode non-Fourier heat transfer in electrically-

conducting viscoelastic boundary layer flow from an extending sheet noting that increasing thermal relaxation 

decreases the thermal layer boundary layer thickness. Hayat et al. [64] used the Liao homotopy analysis method 

to investigate non-Fourier thermal convection in swirling flow between two stretching isothermal disks with a 

homotopy method.  

In the present work, we re-visit and significantly extend the simulations of Hayat et al. [64] to consider the steady-

state Newtonian thermal convection flow in the homogenous, high permability, porous medium-filled gap 

between two stretchable spinning disks rotating at different velocities with the Cattaneo-Christov non-Fourier heat 

flux model. Viscous-dominated flow is considered and the Darcy model is deployed which is suitable for low 

Reynolds number regimes. The transformed dimensionless conservation equations are solved subject to 

appropriate boundary conditions with a perturbation method and evaluated using a Runge-Kutta shooting 

technique in symbolic software . Further validation with the homotopy analysis method solutions of Hayat et al. 

[64] is included. The impact of rotational Reynolds number (based on the spin velocity of the lower disk) , Prandtl 

number, upper disk stretching parameter, lower disk stretching parameter, permeability parameter, non-Fourier 

thermal relaxation parameter and relative rotation rate parameter on radial and tangential  velocity components, 

temperature, pressure, lower disk radial and tangential skin friction components and surface heat transfer rate are 
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visualized graphically and interpretated at length. The solutions provide a solid benchmark for further 

computational fluid dynamics simulations of relevance to rotating disk bioreactor flows in chemical  engineering.  

 

2. MATHEMATICAL MODEL 

The physical model under consideration is illustrated in Fig.1. We study the axisymmetric viscous thermal 

convection Von Karman swirling flow in the gap between two stretchable rotating disks in a cylindrical coordinate 

systems (r, , z). The gap contains an isotropic, homeogenous, high permeability porous medium and Darcy’s law 

is valid. The upper (z = 0) and lower disks are separated by a distance h. The two disks rotate in the anti-clockwise 

direction with rotational velocities 1, 1. The disks are deformable and are stretched radially with  rates a1 (lower) 

and a2 (upper). Forced convection takes place between the two disks and the upper disk is maintained at 

temperature T2 and the lower disk at a lesser temperature of 1T . To more accurately simulate heat transfer effects 

Cattaneo-Christov model for thermal conduction is used. This is a non-Fourier model with additional thermal 

relxation terms not featured in the classical Fourier model. Edge effects are neglected as are thermal dispersion 

and stratification.  Assuming laminar conditions, the  conservation equations for mass (continuity), radial, 

tangential and axial momentum, and energy conservations with porous medium body forces (Darcian drag) and 

thermal relaxation, may be shown to take the form [64]: 
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Here w,v,u  are the radial, tangential and axial velocity components in the (r, , z) directions respectively, T

is the temperature,  is the kinematic viscosity, p  is hydrodynamic pressure of the fluid,  is the density of the 

fluid and q  is heat flux. The following initial and boundary conditions are prescribed at disk surfaces [64]:  



7 
 

( )

( )

, , 0, , 0 1
1 1 1

, , 0, , 2
2 2 2

u r a v r w T T at z disk

u r a v r w T T at z h disk

= =  = = =

= =  = = =





                                                                                     (6) 

The Cattaneo- Christov [58-64] model defines the heat flux, q, according to: 
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Here   is the relaxation time for heat flux and k  is the temperature-dependent thermal conductivity. Implementing 

Eqn. (7) in Eqn (5), the modified heat conservation (thermal) equation assumes the form: 
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Following Fang and Zhang [46], the von Karman similarity transformations may be invoked:  
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Here the quantities denote respectively dimensionless radial, tangential and axial velocity components, 

temperature, pressure and axial coordinate. Eqns. (2)-(4), (6) and (8) readily reduce thereby to the following 

nonlinear, coupled system of ordinary differential equations (the continuity equation is automatically satisfied and 

also the axial momentum equation is replaced by a pressure equation):  
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The corresponding boundary conditions (6) at the lower and upper disk transform to:  

Lower disk: f(0) = 0, f /(0)=A1, g(0) = 1, (0) =1, P(0) =0 

Upper disk: f(1) = 0, f /(1)=A2, g(1) = , (1) =0                    (14)
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Here the non-dimensional parameters are defined as follows: 
2

Re /
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h v
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21 = / is relative rotation parameter and  is the pressure parameter. Following Fang 

and Zhang [46] Eqn. (10) may be further simplified by differentiation w.r.t transformed axial coordinate,, leading 

to:  
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The pressure parameter  may be obtained via Eqn. (10) and conditions (14) as follows [46, 64]: 
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The pressure function is easily thereafter derived via integration of Eqn. (12) as follows: 
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Several important engineering design quantities may also be defined. The total shear stress at each disk surface is 

given by: 
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Here v/hrrRe 1= is a local rotational Reynolds number. 
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3. PERTUBATION SOLUTION  

 
The non-dimensional ordinary differential Eqns. (10)- (13) along with boundary conditions (14) are initially 

perturbed into a set of differential equations using the rotational Reynolds number, Re, as the perturbation 

parameter ( Re 1 ), following Van Dyke [65]. Defining the expansions for each transformed variable, f, g, p 

and , we have:  
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Inserting Eqn. (21) into Eqns. (10) – (13) and the disk surface boundary conditions (14) and equating the 

coefficient of zeroth, first and second order for Re, yields the following differential equations and corresponding 

boundary conditions: 
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f f f f f f f f f f







        

     + + − + − = 

    − + + + − = 

   = − + −


          + + − + + + + =


  (26) 

2 2 2 2 2

2 2 2 2

( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, 0

( ) 0, ( ) 0, ( ) 0, ( ) 0 1

f f g p at

f f g at

      

     

= = = = = = 


= = = = = 

    (27) 

The set of perturbation Eqns. (22)- (24) and (26) with the boundary conditions (23), (25) and (27) are solved 

analytically as follows:  

Zeroth order solution 

3 2

0 3 4 1

0

2

0 3 4

0

( )

( ) ( 1) 1

( ) 6 4

( ) 1

f A A A

g

p A A

   

  

  

  

= + +


= − + 


= − − 
= − 

         (28) 

First order solution 

9 1 1 1 1 12 7 6 5 4 3 2
( )

5 71 3 6 8 9210 120 60 24 6 2

1 1 1 15 4 3 2
( )

1 10 11 12 13 1420 12 6 2

1 1 1 12 6 5 4 3 2
( ) 2 2

0 3 15 16 17 18 85 4 3 2

2 1 1 1 12 7 6 5 4 3
( ) Pr

0 3 19 20 21 227 30 20 12 6

f A A A A A A

g A A A A A

p A A A A A A

A A A A A

      

     

      

       

= + + + + +

= + + + +

= − + + + + −

= − + + + +
23

A +













   (29) 

Second order solution 
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11 10 9 8 7 6 5 4 3 2

2 24 25 26 27 28 29 30 31 32 33

9 8 7 6 5 4 3

2 34 35 36 37 38 39 40 41

10 9 8 7 6 5 4 3 2

2 42 43 44 45 46 47 48 49 32 33

0 50

( )

( )

( ) 6 4

1
( )

156

f A A A A A A A A A A

g A A A A A A A A

p A A A A A A A A A A

A

          

        

          

  

= + + + + + + + + +

= + + + + + + +

= + + + + + + + − −

= 13 12 11 10 9

51 52 53 54

8 7 6 5 4 3

55 56 57 58 59 60 61

1 1 1 1

132 110 90 72

1 1 1 1 1 1

56 42 30 40 12 6

A A A A

A A A A A A A

   

      









+ + + + +



+ + + + + + 


 (30) 

Here the following definitions apply: 

2 2
/ 6, / 6, 12 12 , 4 6 12 ( 1) 3 / ,53 4 1 3 4 3 6 4 1 3 3 4 3

A A A A A A A A A A A A A A   = = − = − = + − − − +  

92 2 5 6 7 84 12 2( 1) 2 / , / , ,7 1 4 1 3 4 8 1 1 9 3105 60 30 12 3

A AA A
A A A A A A A A A A A  = − − − + = + = − + + + +

 
 
 

 

1 10 131 11 124 ( 1), 2 ( 1) 6 , ( 1), 2 , ,
10 3 11 4 3 12 13 1 14 20 12 6 2

A AA A A
A A A A A A A A A  

 
= − = − + = − = + = − + + +

 
 
 

2 2 22 2
20 18 , 16 8 2 , 12 2 , 4 2 ,

5 715 3 4 3 16 1 3 4 3 17 1 4 6 4 18 4 1
A A A A A A A A A A A A A A A A A A A

  
= − − = − − − + = − − + = − − +

2
8 Pr( ), Pr (2 4 8 ), Pr (2 12 ), Pr (2 4 ),

19 3 4 4 20 3 1 4 21 4 1 22 1 1
A A A A A A A A A A A A A A    = − − = − − = − = −

2 27 3 182 2 219 20 21 22Pr , , ,
523 3 24 3 25 3 3 47 30 20 12 6 35 10 7

A A A A
A A A A A A A A A= − + + + + = = − −  

2 2
2 44 ( 1) 9 ( 1)73 6 5 3 1 10 3 3 4 6 5 10 54 1 11, ,

26 2715 3 15 10 30 2 15 10 10 6 20

A A A A A A A A A A AA A A A A A
A A

 

 

− −
= − − − + = − + + − − +

2
44 2( 1) 27 1 6 3 1 16 7 3 8 74 12 11 1 12, ( 1) ,

28 3 8 29 3 9 132 2 15 3 6 12 3 3 3 6

A A A A A A AA A A A A A A A
A A A A A A A




 

−
= − − − − − − + = − − + + − − +

13 8 92 3 2( 1) , 2 2 , ,
30 1 8 4 9 3 9 14 31 1 9 14 32 1 92 2 2

A A A
A A A A A A A A A A A A A A A

 
= − − − − − − + = − − = +  

18( 1)
25 26 27 28 29 30 31 32 3 1024 11, ,

33 34990 720 504 336 210 120 60 24 6 5 35

A A A A A A A A A AA A
A A

 −
= − + + + + + + + + = − +

 
 
 

 

2
3 9 2 2( 1)( 1)3 11 4 10 3 5 1 10 6 5 104 11, ,

35 366 10 15 12 3 5 15 10 20

A A A A A A A A AA A A A
A A





−−
= − − + − = − − + + +  

2( 1)( 1) 27 6 8 74 12 1 11 11 1 12 12, ,
37 3 13 38 3 143 2 4 6 12 3 3 3 6

A AA A A A A A A A A A
A A A A A A



 

−−
= − − + + + = − − + +  
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13 34 35 36 37 38 39 40142 ( 1) , 2 , ,
39 4 14 1 13 9 8 40 9 412 72 56 42 30 20 12 6

A A A A A A A AA
A A A A A A A A A A

 
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 
 
 

3 2 2
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
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2 10 51 6 6 4 8 7 714 84 , 10 60 ,745 3 8 4 28 46 3 9 295 30 3 6 12

A A A A A A A A
A A A A A A A A A A

 
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47 4 9 30 48 1 9 31 49

8
8 40 , 6 24 , ,

3 3 10 9 8 7 6 5 4 3

A A A A A A A A A AA A
A A A A A A A A A

 

 
= − − − + = − − + = − + + + + + + + 

 
 

2 2 4 2 2 3 2 3 3 2

50 3 51 3 19 3 4 52 3 3 1 3 4 19 3 20

24 12 57 8
Pr , Pr 24 Pr , Pr 8 Pr 3 ,

13 5 21 5
A A A A A A A A A A A A A A A A    

 
= − = − = − − + + 

 
 

3 3 2

3 19 3 3 4 1 19 4 3 1 19 3 4 20

53

2 2

3 5 3 4 3 4 3 5

2 8 12
4Pr 48 Pr 8 Pr 3

5 5 5
Pr ,

1 8 36 1

5 15 105 10

A A A A A A A A A A A A A A

A

A A A A A A A A

 




 
− + − − + + + 

=  
 − − − − 
 

 

2 2 2 2 2

3 20 4 19 3 1 3 3 19 4 3 1 3 4 1 19

54

2 2

4 1 19 3 1 20 3 4 21 3 22 3 6 4 5 3 1

1 2 8 8
4Pr 4 48 Pr 8 Pr

2 5 5 5
Pr ,

4 20 8 4 144
6

5 3 15 15 105

A A A A A A A A A A A A A A A A

A

A A A A A A A A A A A A A A A A A

 
  



 
− − + + + − − + 

=  
 + + + + − − − 
 

 

2

3 21 4 20 1 19 3 20 5 4 19 1 3 1 3 21

2 2 2

55 4 3 22 4 1 20 4 21 3 1 1 4 20 1 3 21 3 7 1 5

1 5 4 6 3 7

2 1 2 1 4
4Pr 4 48 Pr

3 2 5 60 3

14 8 2 1
Pr 4 8 Pr 2 4 ,

3 3 3 5

1 2 1

30 15 2

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A A A A A A

A A A A A A


   

 

 
− − − + + + − − 
 
 = + + + − + + − −
 
 
 − − − 
 

2

3 22 4 21 1 20 3 21 6 4 20 1 19 1 3 1 3 22

56

2 2 2

4 22 4 1 21 1 3 22 4 1 1 20 3 8 4 7 1 6

1 2 1 1
4 4 4 12 2

3 2 30
Pr ,

4 8 4
4 6 4

3 3 15

A A A A A A A A A A A A A A A A A A

A

A A A A A A A A A A A A A A A A A A

   


 
− − − + + + + + + 

=  
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 

4 22 1 21 7 3 22 4 21 1 20 4 3 23 4 1 22

57

2

1 21 3 9 4 8 7 1

1 2 1
4 4 4 20 4

3 12
Pr ,

4 10 5
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5 3 6

A A A A A A A A A A A A A A A A A

A

A A A A A A A A

  


 
− − + + + + + + 

=  
 + − − − 
 

58 3 23 1 22 7 3 23 1 22 4 9 1 8

2 1 1 8
Pr 4 4 8 ,

12 3
A A A A A A A A A A A A A A

  

 
= − − + + + − − 

 

59 4 23 9 1 22 1 4 23 1 9 60 1 23

2 1
Pr 4 6 6 , 2A A A A A A A A A A A A A A

 

 
= − + + + − = − 

 

50 51 52 53 54 55 56 57 58 59 60
61 .

156 132 110 90 72 56 42 30 20 12 6

A A A A A A A A A A A
A

 
= − + + + + + + + + + + 

 
              (31) 
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To validate the present perturbation solutions, we compare with the homotopy solutions of Hayat et al. [64]. For 

selected values of all the key parameters, we have computed the tangential skin friction component and the wall 

heat transfer rate (Nusselt number function) in Table 1. Very good correlation is achieved demonstrating high 

confidence in the present perturbation method. 

 

4. RESULTS AND DISCUSSION 

Comprehensive solutions have been plotted for all the key fluid and thermal characteristics in Figs. 2-13 and 

Table 2. Default values have been prescribed as follows for the seven dictating parameters:  = 0.01 (weak 

pressure effect), β =0.9 (high permeability corresponding to industrial metal foams, highly fibrous filtration media 

etc), Pr = 0.7 (air), A1 = 0 (lower disk not stretched),  = 0.8 (upper disk rotates faster than lower disk),   = 0.2 

(low thermal relaxation) and Re = 0.01 (low rotational Reynolds number).  

 
 

 

It is important to note that three rotation scenarios are possible, as simulated via the relative rotation parameter, . 

These are incorrectly defined in Hayat et al. [64]. They are dis-ambiguated here. For the case  >0, both disks co-

rotate i.e. they rotate in the same direction. When  = 0, the upper disk is stationary (2→0) and only the lower 

disk rotates. When  < 0 both disks rotate in opposite directions to each other i.e. counter-rotate. The most relevant 

of these scenarios to biochemical disk reactors is the first scenario i.e. co-rotation and is therefore the only one 

considered here. Also, we note that the upper disk radial stretching rate is fixed at A2 = 0.4 since the lower disk is 

of primary interest here.  

Radial flow characteristics  

Figs 2-5 illustrate the response in radial stream function and radial velocity function (i.e. gradient of radial stream 

function) to modifications in various parameters. Increasing rotational Reynolds number (fig. 2) is observed to 

significantly elevate the stream function across the gap. However, there is an increase in skewness of profiles 

towards the upper disk. The increase in lower disk rotational velocity (to which Re is proportional for constant 

gap width, h, and dynamic viscosity, f) generates strong inertia in the lower half space. This leads to an 

accentuation in the radial velocity magnitudes (fig. 3) in this zone and a corresponding deceleration in radial flow 

in the upper half space, in accordance with conservation of momentum. This is characteristic of swirl flows and 

has been identified in many other studies including Arora and Stokes [19] and Hudson [20]. The negative radial 

velocities in the upper half space of the gap in fig. 2 imply that the flow is reversed here i.e. backflow is induced 
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and this effect is naturally maximized at the upper disk, as noted also by Lance and Rogers [11]. The trends also 

confirm the findings of Mellor et al. [12] namely that there is an inner core flow which is rotating with constant 

angular velocity irrespective of the rotational Reynolds number. The lower disk is surrounded by an outward-

flowing boundary layer whereas the upper disk is associated with an inward-flowing boundary layer structure. 

The fluid structure is therefore similar to an axial fan configuration, although it is asymmetrical in nature due to 

the dissimilar disk rotation velocities. An increase in rotational Reynolds number is observed to strongly depress 

radial stream function (fig. 4) across the gap although the distributions morph from simple parabolic growths 

(from the lower to the upper disk) to oscillatory profiles with very strong pressure parameter. Forcing of the flow 

is therefore evidently intensified with greater pressure parameter which disturbs the regime. The radial velocities 

are also significantly stifled in the lower half space with increasing rotational Reynolds numbers (fig. 5) with 

substantial backflow induced which is amplified in the region near the centre line; however, as we progress 

towards the upper disk there is an acceleration in radial flow and peak radial velocity is located at the upper disk 

for maximum pressure parameter value of 5. Fig 6 demonstrates that increasing the rate of radial stretching (of 

the lower disk) i.e. A1, markedly accentuates the radial stream function. There is a corresponding acceleration in 

the radial flow in fig. 7; however, this pattern is again confined to the lower half space. The stretching of the disk 

certainly aids in momentum and encourages radial flow at the lower disk. However, this boost in radial momentum 

at the lower zone of the gap is compensated for with a depletion in radial momentum at the upper disk region. The 

re-distribution is however not identical and the acceleration in the lower disk area is significantly stronger than 

the deceleration in the upper disk region – this is representative of asymmetric flow structures in differential disk 

rotation systems. The backflow in the upper half space of the gap is distinctly present and of course strongest at 

the upper disk surface with highest Re value of 1.6 for which the rotational inertial force is greatest compared with 

the viscous hydrodynamic force in the regime. Significant manipulation in the structure of the gap flow is therefore 

achieved by alteration in the rotational velocity of the lower disk and adjustment of the pressure effect in the 

regime. 

Tangential flow characteristics  

Figs 8 and 9 depict the tangential velocity distributions with variation in rotational Reynolds numbers (Re) and 

relative rotation rate (). Notable deceleration in the tangential flow arises throughout the gap i.e. across the entire 

depth from the upper to the lower disk. The dual rotating disk system acts much like a fan system drawing fluid 

axially inward from the surrounding medium towards the lower disk surface. Since no transpiration occurs at this 

disk surface i.e. it is solid (suction= injection = 0), therefore the incoming fluid is re-directed turned and discharged 
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in the radial direction along the lower disk. This accelerates the radial flow and since conservation of momentum 

cannot be violated, there is a corresponding reduction in tangential momentum, as confirmed in the tangential 

flow depletion in fig. 8 with greater lower disk-based rotational Reynolds number values. However, no backflow 

is induced in the tangential field as testified to by the consistently positive values of g(). Fig 9 shows that with 

an increase in relative rotation rate () there is a significant elevation in tangential velocity magnitudes which 

again are consistently positive in nature throughout the gap. For the case  = 0, the upper disk is stationary (2→0) 

and only the lower disk rotates – therefore tangential velocity is a minimum for this scenario since there is an 

absence in the contribution (Coriolis force) from the upper disk. For  >0, both disks co-rotate and there is a 

progressive acceleration in tangential flow. The rotational velocity of the lower disk relative to that of the upper 

disk steadily increases as   increases from 0.2 through 0.4 to 0.6; however, the case of equal disk rotational 

velocities (  =1) is not considered as it is not relevant to bioreactor designs [1,3,5,7]. Interestingly the tangential 

flow exhibits a linear decay from the lower disk to the upper disk, which is distinctly different from the parabolic 

and undulatory profiles characterizing the radial velocity distributions discussed earlier.  

Pressure characteristics  

Figs 10, 11 illustrate the response in pressure distribution to a change in rotational Reynolds number (Re) and 

lower disk radial stretching ratio (A1). Pressure is weakly depressed in the lower half space (fig. 10) with greater 

Re values (since radial flow is accelerated there and in viscous or inviscid fluid dynamics there is generally an 

inverse relationship between pressure and velocity) whereas it is strongly enhanced in the upper half space (where 

radial flow deceleration arises). Maximum pressure is computed at the upper disk surface for Re = 1.2 (maximum) 

whereas the minimum pressure always arises at the lower disk surface. A substantial enhancement in pressure 

magnitudes accompanies an increase in lower disk radial stretching ratio (fig. 11). The radial stretching generates 

a pressure ascent from the lower disk to the upper disk (linear profiles) and this can be exploited in rotating disk 

bioreactor designs to great advantage, as noted by Qiu et al. [9]. 

Temperature characteristics  

Figs 12, 13 present the evolution in temperature across the gap with a change in values of rotational Reynolds 

number (Re) and Prandtl number (Pr). There is a slight depression in temperature across the gap with a 

considerable rise in Re. The radial flow acceleration implies that momentum diffuses faster and this overcomes 

thermal diffusion rate in the regime leading to a reduction in transfer of thermal energy in the fluid and a decrease 

in temperatures. With increasing Prandtl number 𝑃𝑟 there is a more significant depletion in temperatures in 

particular in the core flow region. Prandtl number signifies the ratio of momentum diffusivity to thermal 



16 
 

diffusivity. Smaller values of Pr  are equivalent to an increasing thermal conductivity, and therefore heat is able 

to diffuse away from the heated surfaces (disks) more rapidly than at higher values of Pr. Hence the boundary 

layer becomes thicker and the rate of heat transfer is reduced at the disk surface. The thermal boundary layer 

thickness is the distance from the body at which the temperature is 99% of the temperature found from an inviscid 

solution. The ratio of the two thicknesses is dictated by the Prandtl number. For Prandtl number of unity, both the 

hydrodynamic and thermal boundary layers are of the same thickness and the energy and momentum diffusion 

rates are equal also. However, when Prandtl number exceeds unity, the thermal boundary layer is thinner than the 

velocity boundary layer (at the disk surfaces) whereas the converse is the case when Prandtl number is less than 

unity. Generally, higher Pr fluids will have relatively low thermal conductivities which will suppress thermal 

conduction heat transfer from the disk surfaces and reduce thermal boundary layer thicknesses at the disks, 

resulting in lower temperatures throughout the gap region, as demonstrated in Fig. 13.  Physically the values of 

Pr = 1, 4, 7, 10 correspond respectively to low molecular weight gases (1,4), water and light lubricants (oils). 

Shear stress and heat transfer rate characteristics  

Table-2 presents the perturbation solutions (numerically computed in symbolic software, MATLAB) for lower 

disk radial [- (0)f  ] and tangential [- (0)g ] shear stress and also lower disk surface heat transfer rate (Nusselt 

number function i.e. (0) − ) for various values of characterizing parameters. With increasing values of the 

permeability parameter (  ) and pressure parameter (). A weak decrease in radial and tangential skin friction at 

the lower disk is induced with increasing permeability parameter whereas no tangible modification in heat transfer 

rate is generated. A strong enhancement in radial skin friction at the lower disk is generated with an increase in 

pressure parameter. With decreasing Prandtl number there is a strong increase in radial skin friction at the lower 

disk and a weak elevation in tangential skin friction. However there is a marked increase in heat transfer rate at 

the lower disk surface with a reduction in Prandtl number. The radial and tangential skin friction components are 

both elevated with increasing values of stretching parameter (A1) and decrease with greater relative rotational 

parameter (). Additionally, it is evident that increasing non-Fourier (thermal relaxation) parameter ( ) there is 

a decrease in the rate of heat transfer i.e. the Nusselt number function decreases. This is attributable to the fact 

that as thermal relaxation time increases the viscous fluid takes longer to transfer thermal energy to the walls (disk 

surfaces). Hence the non-Fourier model demonstrates that when thermal relaxation effects are neglected (as in the 

Fourier model) heat transfer -rates are over-predicted and temperatures within the viscous fluid are also under-

predicted.  
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5. CONCLUSIONS 

Perturbation solutions have been presented for non-dimensional, coupled, nonlinear ordinary differential 

boundary value problem describing the steady-state Newtonian thermal convection flow in the homogenous, high 

permability, porous medium-filled gap between two stretchable spinning disks rotating at different velocities with 

the Cattaneo-Christov non-Fourier heat flux model. The Darcy porous media drag has been employed which is 

valid for low Reynolds number regimes. Verification of the perturbation method solutions has been conducted 

against the earlier (although phsyically limited) homotopy analysis solutions of Hayat et al. [64]. A parametric 

study of the influence of emerging hydrodynamic, thermophysical and geometric parameters on flow and heat 

transfer characteristics has been conducted. The computations, which are relevant to the transport phenomena in 

rotating disk bioreactors, have shown that: 

• With increasing rotational Reynolds number (corresponding to greater intensity of rotation of the lower disk), 

the radial flow is strongly accelerated in the disk gap lower half space whereas it is decelerated in the upper 

half space.  

• With increasing rotational Reynolds number a strong retardation in tangential flow is induced across the entire 

gap between the disks. 

• With greater pressure parameter  there is a strong radial flow deceleration in the lower half space of the gap 

and a significant acceleration in the upper half space which is maximized at the upper disk surface.  

• Greater radial stretching of the lower disk induces strong radial flow acceleration (and also an elevation in 

hydrodynamic pressure) in the lower half space with significant deceleration in the upper half space.  

• With increasing relative rotation rate a gradually weaker linear decay is computed in tangential velocity from 

the lower disk to the upper disk.  

• Temperature is weakly reduced with greater rotational Reynolds number and more significantly decreased 

with increasing Prandtl number.  

• Heat transfer rate (Nusselt number function) at the lower disk is reduced with greater non-Fourier (thermal 

relaxation parameter) effect owing to the delay in thermal diffusion in the fluid.  

• The present analysis is of relevance in rotating disk bio-reactors,  thermal rheometry and mixing processes in 

chemical engineering systems.  
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• A weak decrease in radial and tangential skin friction at the lower disk is induced with increasing permeability 

parameter whereas there is no substantial alteration in heat transfer rate.  

• A strong enhancement in radial skin friction at the lower disk is generated with an increase in pressure 

parameter.  

• With decreasing Prandtl number there is a strong increase in radial skin friction at the lower disk and a weak 

elevation in tangential skin friction. However there is a marked increase in heat transfer rate at the lower disk 

surface with a reduction in Prandtl number.  

• The radial and tangential skin friction components are noticeably enhanced with increasing values of lower 

disk stretching parameter and decrease with greater relative rotational parameter. 

 

The current simulations have considered a no-slip hydrodynamic wall condition for velocity. Future studies will 

investigate both isotropic and anisotropic hydrodynamic slip [30, 37, 39, 41] and furthermore will also address 

non-Fourier heat transfer in non-Newtonian fluids e.g. viscoelastic fluids [65], which are of great relevance to 

rotating disk bioreactor flows in chemical  engineering since such systems feature complex fluids. Additionally 

the current study could be extended to consider variable thickness of the disk [66], chemical reactions [67] and 

magnetohydrodynamics when the working fluids are electrically-conducting  [68]. 
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TABLES 

 

Table-1: Comparison table for various values of pertinent parameters with HAM solutions of Hayat et al. [65] 

  Re  Pr A1   (0)g−  

HAM [65] 

Perturbation 

Solution 
(0) −  

HAM [65] 

Perturbation 

Solution 

0.9 0.01 5 0.7 0.2 0.8 0.2 0.204878519 0.204473994 0.99993028 0.9998387 

 

 

 

Table-2: Radial shear stress, tangential shear stress and wall heat transfer rate variation with all key parameters 

β Re  Pr  A1   (0)f −  (0)g−  (0) −  

0.9 0.01 5 0.7 0.4 0.8 0.2 2.063586 0.2044739 0.9998387 

1       2.06361049 0.20395608 0.99983868 

1.1       2.0636302 0.20353227 0.99983865 

0.9 0.1      2.03625273 0.24473276 0.998474622 

 0.2      2.00670264 0.289449591 0.997143526 

 0.01 4     1.73032617 0.204762517 0.999920029 

  3     1.397087102 0.205050952 0.99999985 

  5 1    2.0635864 0.20447399 0.9997696 

   3    2.0635864 0.2044739 0.9993096 

   0.7 0.4   2.46413517 0.20520703 1.0000765 

    0.6   2.86495 0.205939675 1.0003068 

    0.2 0.9  2.0634301 0.104653583 0.99983878 

     1  2.063267 0.0048331 0.9998388 

     0.8 0.4 2.0635864 0.2044739 0.9998321 

      0.6 2.0635864 0.204473 0.9998255 
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Fig.1 Swirling heat transfer in the porous medium gap between two rotating disks 

 

 
Fig.2 Radial stream function distribution with different rotational Reynolds numbers for  = 0.01, β =0.9, Pr = 

0.7 (air), A1 = 0,  = 0.8,  = 0.2. 
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Fig.3 Radial stream function evolution with different rotational Reynolds numbers for  = 0.01, β =0.9, Pr = 0.7 

(air), A1 = 0,  = 0.8,  = 0.2. 

 

 
Fig.4 Radial stream function profiles with different pressure parameters for Re= 0.01, β =0.9, Pr = 0.7 (air), A1 = 

0.2 (lower disk radial stretching),  = 0.8,  = 0.2. 
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Fig.5 Radial velocity variation with different pressure parameters for Re= 0.01, β =0.9, Pr = 0.7 (air), A1 = 0.2 

(lower disk radial stretching),  = 0.8,  = 0.2. 

 

 
Fig.6 Radial stream function variation with lower disk radial stretching rate for Re= 0.01, β =0.9, Pr = 0.7 (air), 

 = 4,  = 0.8,  = 0.2. 
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Fig.7 Radial velocity profiles with lower disk radial stretching rate for Re= 0.01, β =0.9, Pr = 0.7 (air),  = 4,  = 

0.8,  = 0.2. 

 

 
Fig.8 Tangential velocity profiles with different rotational Reynolds numbers for  = 0.01, β =0.9, Pr = 0.7 (air), 

A1 = 0.2,  = 0.8,  = 0.2. 
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Fig.9 Tangential velocity profiles with different relative rotation rate for Re = 0.01,  = 0.01, β =0.9, Pr = 0.7 

(air), A1 = 0.2,  = 0.2. 

 

 
Fig.10 Pressure distribution with different rotational Reynolds numbers for  = 0.01, β =0.9, Pr = 0.7 (air), A1 = 

0.2,  = 0.8,  = 0.2. 
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Fig.11 Pressure distribution with different lower disk radial stretching rate for  = 0.01, β =0.9, Pr = 0.7 (air), Re 

= 0.01,  = 0.8,  = 0.2. 

 

 
Fig.12 Temperature distributions with different rotational Reynolds numbers for  = 0.01, β =0.9, Pr = 0.7 (air), 

A1 = 0.2,  = 0.8,  = 0.2. 
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Fig.13 Temperature distributions with different Prandtl numbers for  = 0.01, β =0.9, Re = 0.2 0.7 (air), A1 = 

0.2,  = 0.8,  = 0.2. 
 

 

 


