Evaluating the Effect of multi-tenancy Patterns in
Containerized Cloud-hosted Content Management
System

Abstract—Multi-tenancy in cloud computing describes the
extent to which resources can be shared while guaranteeing
isolation among components (tenants) using these resources.
There are three multi-tenancy patterns: shared, tenant-isolated
and dedicated component patterns. These patterns have not
previously been formally specified. So how do we choose an
appropriate multi-tenancy pattern for a multi-tenant applica-
tion? To address this question, we have created a formalized
description of each multi-tenancy pattern in Z language. We
formalize the multi-tenancy pattern using fixed semantics, firstly,
to verify each of the patterns, secondly, to provide a precise
interpretation of the pattern and finally, to choose a suitable
multi-tenancy pattern for a multi-tenant application. We then
empirically evaluate each pattern using the data-tier of a cloud
hosted distributed content management application, WordPress,
deployed in a Docker container. Experimental results show that
the dedicated pattern performed best with varying tenant needs
while shared and tenant-isolated patterns performed variably the
same depending on how much data were involved. Based on the
empirical evaluation, we provide a selection algorithm to choose
suitable multi-tenancy pattern for software deployment.

I. INTRODUCTION

Cloud computing uses the Internet to distribute computing
resources as a utility [1] [2] [3]. It provides scalable: resource
provisioning, IT infrastructure, development platforms, data
storage and software applications [4] [5] [6]. In recent years,
there has been an increase in the number of users served
by software applications on cloud [7] commonly known as
Software-as-a-service (SaaS).

SaaS, a cloud computing model for accessing software
applications over the Internet [4], it eliminates installation
on client infrastructures, centralises maintenance, reduces total
cost of ownership [8] and are easy to use since they already
come with best practices. However, to effectively support SaaS
users, a multi-tenant application is required, where groups of
users are classified as tenant [7] and multiple tenants shares
application and database instances of a SaaS. A multi-tenant
application is actualised through a technology called multi-
tenancy.

Multi-tenancy is a software architecture where a single
instance of software runs on a server and is used to serve mul-
tiple groups of users, called tenants [7]. Tenants share common
access to the software instance and are granted specific access
privileges [7]. Multi-tenancy improves resource utilisation and
the cost of service provision can be spread across multiple
tenants using a shared application and database instances [7].

It also centralises application and database instances thereby
simplifying software upgrades and deployment [6].

Three multi-tenancy deployment patterns have been defined
[9] [10]: shared, tenant-isolated and dedicated pattern. In this
research we formally specify each of these patterns for the
first time. This leads us to the research question: which multi-
tenancy pattern is suitable for a multi-tenant application? We
then experimentally evaluate each multi-tenancy pattern by
using a case study cloud hosted distributed content manage-
ment application, WordPress, deployed in a Docker container.
Furthermore, we present a novel selection algorithm to choose
suitable multi-tenancy pattern for software deployment.

The rest of this paper is structured as follows. Section 2
describes the three variants of multi-tenancy patterns. Section
3 reviews related work on multi-tenancy in cloud environment.
Section 4 describes our experimental setup, results and com-
parison of performance with WordPress application. Section 5
provides the algorithm for choosing the right pattern. Section
6 concludes the paper, provides recommendations on the right
multi-tenancy pattern to use based on users’ requirements, and
also talks about the scope for further work.

II. VARIANTS OF MULTI-TENANCY PATTERNS

This section describes the three multi-tenancy patterns.

A. Shared Pattern

shared pattern is the first variant of the multi-tenancy pat-
tern. It is the basic minimum requirement for resource sharing
in a SaaS application. This pattern is implemented to share
resources by serving different tenants without maintaining a
notion of tenant itself, and because of this reason, a tenant
activity can influence another tenants’ functionality especially
data intrusion [11] [10].

This pattern makes tenants to share the same database
instance, schema and tables. Each tenant is identified using
a variable called the tenant ID, this allows the database to
group users with the same tenant ID as belonging to the same
tenant.

We present shared pattern using Z language in Figures 1 -
5. The formal definition describes shared pattern in terms of
the basic CRUD operations that can be performed on it. Figure
1 describes how shared pattern should be created in the data-
tier level of a SaaS application. Figure 2 shows how a new
table item called tenant item would be added to the shared
database; it checks if a database and the table exists before

__SharedDB
known : P SysDBName

SharedDBItem : SysDBName —+ SharedTableltem
-+ TenantID

known = dom SharedDBltem

Figure 1. Z Representation of the Overall Shared Pattern

__SharedDB.AddTenantltem
ASharedDB
name? : SysDBName

name? ¢ known

SharedDB' = name? U name?U
SharedTableName? U TenantID?

Figure 2. Z Representation of Creating Tenant in Shared Pattern

adding in any data. Figure 3 shows how data is read from
tables in the database, it verifies database, table and tenant
details before data is read. Figure 4 shows how data can be
updated in this pattern, it verifies database, table and tenant
details; it also check that the data to be updated already exist.
Figure 5 shows how tenant data can be deleted.

B. Tenant-Isolated Pattern

Tenant-isolated pattern is the second variant of the multi-
tenancy pattern. It helps to address a large number of cus-
tomers, effectively utilize resources among these customers,
and in turn leverage economies of scale.

It enables sharing of resources with intermediate levels of
performance, security, privacy and resource overheads. This
means influences of tenants regarding assured performance,
available storage capacity and accessibility can be avoided.
It can be used for authentication isolation, access control
isolation, information protection isolation, performance, fault
and administration isolation.

__SharedDB.ReadTenantltem
TableName? : SysDBTableName
SharedTableltem? : SharedDB U
TenantID? : SharedDB

SharedDB' = SharedDb : SharedDb' o

if SharedDB.SysDBName = SharedDB?.SysDBName
then SharedDB?

else SharedDB

Figure 3. Z Representation of Reading Tenant’s Data in Shared Pattern

__SharedDB.UpdateTenantltem
ASharedDB

name? : SysDBName
SysDBName? : SharedDB U
SharedTableltem? : SharedDB U
TenantID? : SharedDB

SharedDB’' = SharedDb : SharedDb’ e

if SharedDB.SysDBName = SharedDB?.SysDBName
then SharedDB?

else SharedDB

Figure 4. Z Representation for Data Update in Shared Pattern

__SharedDB.DeleteTenantltem
ASharedDB
name? : SysDBName

name? € known

SharedDB' = SharedDB : SharedDB' |
name? © {name? — name?}

Figure 5. Z Representation of Deleting Data in Shared Pattern

Tenant-isolated implementation in the data-tier of a SaaS
features sharing of the same database instance, while database
schema and tables are dedicated to each tenant.

We present tenant-isolated pattern using Z language in
Figures 6 - 7. Figure 6 depicts how a tenant-isolated database
can be created while Figure 7 shows how tenant and tenant
items can be added to a tenant-isolated database.

_TenantlsolatedDB
known : P SysDBName
TenantDBItem : SysDBName —+ TenantlsolatedTableltem
-» SchemalD

known = dom TenantlsolatedDBItem

Figure 6. Z Representation of Tenant-Isolated Pattern

__Tenantlsolated .AddTenantltem
ATenantlsolatedDB
name? : SysDBName

TenantName? ¢ known

TenantlsolatedDB' = name? U name?U
SchemalD -+ TenantlsolatedTableName? U SchemalD?

Figure 7. Z Representation of Creating New Tenant in Tenant-Isolated Pattern

— DedicatedDB
known : P SysDBName
DedicatedDBltem : SysDBName —+ DedicatedTableltem
-+ SysDBName

known = dom DedicatedDBItem

Figure 8. Z Representation of Dedicated Pattern

__DedicatedDB.AddTenantltem
ADedicatedDB
name? : DedicatedDBName

TableName? ¢ known

TenantlsolatedDB' = name? U name?U
SchemalD -+ TenantlsolatedTableName? U SchemalD?

Figure 9. Z Representation of Creating Tenants and Data in Dedicated Pattern

C. Dedicated Pattern

The third variant of multi-tenancy pattern is the Dedicated
pattern. This pattern provides exclusive access to components
that features critical functionality [10] while other components
can still be shared. The motivation behind this pattern is the
need to fulfill some data and application protection rule that
requires that data or application be kept secured without being
compromised by other tenants’ data or application.

On the data-tier of a SaaS, a dedicated database instance
is allocated to the tenant to support critical component of the
application, other parts of the application data can be safely
stored in a multi-tenant implementation of a database.

The Z representation of this pattern is depicted in Figures
8 - 10. Figure 8 depicts how an overall database using the
dedicated pattern should be created. It defines an application
specific database name with dedicated table items that contains
zero or more rows. Figure 9 describes how tenant and tenants’
data are added to a dedicated database. It checks that the
database and table exists, and checks for changes in the
database when tenants’ data are added. Figure 10 represents an
update of tenants’ data in the database. It checks for changes
in the tenants’ table when an update is made.

III. RELATED WORK

The multi-tenancy concept has birthed several researches on
enabling an effective use of this architectural pattern.

DedicatedDB.UpdateTenantltem
ADedicatedDB
name? : DedicatedDBName

Figure 10. Z Representation of Deleting Data in Dedicated Pattern

Previous work on multi-tenancy architecture have focused
on performance, data isolation, and robustness of multi-tenant
systems. However these research lacked a formal description
of the multi-tenancy pattern itself, which is suppose to be
the foundation on which the architecture can be effectively
used and built. This paper aim to close this gap by formally
describing the multi-tenancy pattern using Z language and then
present a selection algorithm to choose suitable multi-tenancy
pattern when building a multi-tenant application.

Multi-tenancy, an approach to share an application instance
between multiple tenants is a key architectural pattern for a
multi-tenant SaaS application. In general, it yields cost benefits
in cloud environments and it is most efficient on level of
application instances [6]. [6] explored the challenges of per-
formance isolation in the context of multi-tenant SaaS applica-
tions and they proposed a middleware architecture to enforce
performance isolation based on the tenant-specific SLAs using
a tenant aware profiler and a scheduler. They identified the
greatest challenge of performance isolation as being able to
offer application-level multi-tenancy while performance isola-
tion between different tenants is not hampered.The experiment
in this research reviewed mainly performance isolation and did
not compare the performance of the different multi-tenancy
patterns.

Further research was done by [12] by describing multi-
tenancy as a key enabler in building cloud middleware that
maximizes sharing and support of application. Their primary
contributions are motivating work-flow multi-tenancy, design
and architecture of a multi-tenant work-flow engine that en-
ables multiple users to run their work-flow securely within the
same work-flow engine instance and a performance evaluation
of the architecture. The evaluation carried out in this contest
did not compare the variants of multi-tenant architecture, it
only evaluated the multi-tenancy pattern used in the work-flow
application.

[13] evaluated the robustness of cloud-based system after
being inspired by Ecology. Their solution is built upon an
analogy between species extinction and component failures.
They identified three robustness indicators namely: overall
robustness, the most sensitive components and the most threat-
ening failure sequence. They also built an app to show how
their identified robustness indicators can help to sort out
architectural decisions regarding robustness of which multi-
tenancy is key.

[14] modeled customizable SaaS applications using feature
modeling. They identified one disadvantage of multi-tenancy
as being difficult to create customizable applications. Based on
this premise,they describe an approach for the development
and management of highly customizable multi-tenant cloud
applications. This approach applied software product line en-
gineering techniques and dynamic feature placement algorithm
to applications composed of multiple interacting components.
They evaluated the results of this algorithm and concluded that
it helps to manage customized applications up to 77% of the
time.

[15] developed a highly adaptable and scalable monitoring

architecture for multi-tenant Clouds. They identified the need
for cloud administrators to design better cloud provisioning
strategies so that they can avoid SLA violations while they
provide services to multiple tenants. Their solution is a dis-
tributed architecture for resource management and monitoring
in clouds, a distributed cloud monitoring architecture to dis-
seminate resource monitoring information while keeping a low
overhead. They also reported experimental results to assess the
architecture and quantitatively compare it with a selection of
other cloud monitoring tools similar to their implementation,
they were able to show that their implementation outperforms
these tools and introduces very limited overhead when moni-
toring the applications.

[8] Developed a multi-tenancy performance benchmark for
web application platforms. It highlights lack of performance
guarantee as a major obstacle to the adoption of cloud comput-
ing and Mutli-tenant application in particular. In an attempt to
solve this issue, they present an extended version of an existing
accepted application benchmark(TPC benchmark) by adding
support for the Multi-tenant platform features. The extended
benchmark focuses on evaluating maximum throughput and
the amount of tenants that can be served by a platform.
This in turn will help cloud providers to provide realistic
performance guarantee and can also help them monitor and
scale performance of any multi-tenant application they on their
platform.

[16] Identified performance isolation as key requirement
for application level multi-tenant sharing hosting environment.
This will in-turn allow centralization of infrastructure in
locations with lower cost and on the long run reduce oper-
ational and delivery costs. They proposed a novel approach
to dynamically estimate application level CPU consumption
based on Kalman filter. They implemented their research using
three approaches for multi-tenant deployment: shared infras-
tructure, shared middle-ware and shared application. Having
implemented their tool on the three different sharing levels,
they concluded that controlling resource consumption such as
CPU and memory of each tenant is extremely valuable for
performance isolation in all the three levels of multi-tenant
deployment approaches they have earlier identified.

[17] Explored different kinds of typical multi-tenant data
tier implementation patterns on aspects of isolation, security,
customization and scalability. They also evaluated the perfor-
mance of these patterns through a series of experiments and
summarize a set of valuable conclusion and best practices on
how to design a multi-tenant data model.

[18] evaluated the degree of isolation among tenants using
a component based approach to multi-tenancy through re-
routing. This evaluation followed an empirical studies ap-
proach, where they implemented the three identified multi-
tenancy patterns in a multi-tenant component of Hudson’s file
system. Their result provides extensive report on each pattern
and the degree of Isolation it is able to give. They were
also able to give recommendation to software architects on
choosing the right pattern that implements a required isolation
in cloud hosted version control system.

| | Web tier- Business tier- Data tiel

%

| | Web Server App Server Database Serve
|
nternet | | APACHE PHP MysQL
1 WordPress

Figure 11. Architectural Setup of WordPress

Having considered these research work, our research differs
from them because this paper’s focus is to create a foundation
on which multi-tenancy pattern can be used.

1V. METHODOLOGY
A. Case Study

We implemented the multi-tenancy pattern in the data-tier of
a cloud hosted dockerized WordPress application. We choose
WordPress as the benchmark application because it is an open
source and distributed content management system that is
widely used and accepted. It powers 27 percent of the Internet
through websites, and blogs and is usually offered freely on
two main levels: content management software with default
settings, features and customisable core; or as an SaaS via
wordpress.com [19].

1) WordPress Installation: WordPress is developed in PhP
and backed up by MySQL database. It is usually deployed on
a web server such as Apache and accessed via a web browser
as seen in figure 11.

This research used the first distributed level of WordPress
to evaluate the three multi-tenancy patterns, because it opens
up more control and flexibility on modifying different param-
eters to suit our experimental setup. To install and dockerize
WordPress, docker and it’s accompany tools were installed on
three virtual machines, docker-compose was used to pull and
modify docker images of WordPress and MySQL database as
seen in Figure 12, and docker command was then used to run
containers from these images.

2) Multi-tenancy Pattern Implementation: We examined
WordPress’ business logic to identify its default data-tier pat-
tern and found the dedicated pattern to be its default data-tier
implementation. So, we created three separate docker images
of WordPress, each image represents a WordPress instance
with one of the multi-tenancy pattern implemented in it. We
implemented the tenant-isolated and shared pattern by chang-
ing the config.php and functions.php file of two WordPress
instances. This creates database tables that corresponds to the
formal description of the multi-tenancy patterns in Figures 1
- 10 and also adjust the business logic to save data in the
format represented by the database. The diagram in Figure
13 shows how some database tables are setup to represent a
tenant-isolated implementation in WordPress.

3) Experimental Setup: The goal of this experiment is to
evaluate the performance of the three multi-tenancy patterns in
WordPress. Three virtual machines with these configurations:

wordpress:
image: guss77/docker-wordpress-multisite
links:
- wordpress_db:mysql
ports:
- 8080:80
volumes:
- ~/wordpress/wp_html_wpdata :/var/www/html
wordpress_db:
image: mariadb
volumes:
- ~/data/:/var/lib/mysql
environment:
MYSQL_ROOT PASSWORD:
MYSQL_DATABASE:
MYSQL_PASSWORD:

* ok Kok K

wordpress

* Kok kK

Figure 12. Docker-Compose for Pulling and Running WordPress - Tenant-
Isolated Pattern Implementation

500GB HDD, 3GB memory, and Ubuntu 16.04 LTS operating
system were setup and the following tools were installed on
each of them: WordPress 4.8.2, MySQL 5.7.21, Apache Jmeter
3.2, docker 1.8.0 and Apache web server.

B. MySQL
MySQL is an open source relational database management
system (RDBMS) that use the structured query language to

add, access and manage data in a database [20]. It is the default
RDBMS used by WordPress.

C. Docker

Docker is a light weight virtualization concept that package
software into a standardized units for development, shipment
and deployment called container [21]. Containerized soft-
ware applications will always run the same regardless of the
environment and infrastructure. We use docker to package
WordPress so as to leverage virtualisation technique of cloud.

D. Apache Web Server

Apache web server is a free and open source cross platform
HTTP server for hosting and/or serving web sites [22]. We
used Apache web server to host the WordPress installation.

E. Apache Jmeter

Apache Jmeter is an open source software developed in Java
to load test functional behaviour and measure performance of
static and dynamic resources [23]. We used Apache Jmeter to
write scripts that load test WordPress, these scripts contains
Jmeter samplers and parameters that translates to web pages,
actions performed, number of users performing the actions
and how they are performed in WordPress. Three scripts each
representing a load test script for each of the multi-tenancy
patterns were created. The script simulates group of users
(tenants) sending requests to create blog-posts in WordPress.
Requests sent is termed a business process as shown in table
L.

_| wp_posts v
ID BIGINT{20)

post_author BIGINT(20)
post_date DATETIME
posl_date_gmt DATETIME
post_content LONGTEXT
post_titke TEXT

post_excempt TEXT

post_status VARCHAR(20)
comment_status VARCHAR(20)
ping_status VARCHAR(20)
post_password VARCHAR(255)
post_name VARCHAR(200)
to_ping TEXT

pinged TEXT

| wp_2 term taxonomy ¥
termn_taxonamy_id BIGINT (20)
term_id BIGINT (20)
taxonomy VARCHAR(32)
description LONGTEXT
parant BIGINT{20)

count BIGINT(20)

~ | wp_2 posts v
ID BIGINT(20)
post_author BIGINT(20)
post_date DATETIME
post_date_gmt DATETIME
post_contant LONGTEXT
post_title TEXT
post_excempt TEXT
post_status VARCHAR(20)
commenl_status VARCHAR (20}
ping_status WYARCHAR(20)
post_password VARCHAR(255) |
posl_name VYARCHAR(200)
to_ping TEXT
pinged TEXT

_| wp_term_taxonomy v
term_taxonomy_id BIGINT (20)
terrn_kd BIGINT (20)
taxonomy VARCHAR(32)
description LONGTEXT
parant BIGINT(20)
count BIGINT(20)

Figure 13. Tenant-Isolated Database Implementation of WordPress

Table 1
BUSINESS PROCESS 2
S/N | Business Process | BytesofData
1 Login 1110.33
2 Create Post 2220.67
4 Log out 1110.33

Tenants were grouped into sets of 20 users and the scripts

increased the number of users progressively till it reached 200.
Each request from a user sends data of not less than 5kb at
once, this data contains the content of a blog post such as
texts, tables, pictures and links.

We also setup three database instances as docker containers,
each instance represents one of the multi-tenancy patterns and
backs up the WordPress instance for that variant.

The overall experimental setup as shown in Figure 14

—Server

Apache Jmeter
Wordpress
Instance

Application Container

SSH Client

Database

I

Database Container

Figure 14. Architecture of Experimental Setup

represents how each WordPress instance is setup to implement
the multi-tenancy pattern.

V. RESULT

We ran the experiment to measure response times of the
business process carried out on each instances of our Word-
Press installation. We averaged 5 runs of each group of user
requests to determine the groups’ average response time of
the business process for each experimental setup of WordPress.
Equation 1 depicts how the average response time is calculated
for each tenant:

1 (E)
MED

Avg.ResponseTimeforNruns = N

N = Number of runs, 7, = Number of tenants, E = Elapsed
time

Figure 15 depicts the average response time of creating
blog-posts in the three experimental setup of WordPress im-
plementing the multi-tenancy pattern. These response times
were as a result of increase in the number of tenants that were
being served; the number of tenants increased from 20 to 200
in each of the three experimental setup.

The average response time for the dedicated pattern ranged
from 1 minute 20 seconds to 2 minutes 30 seconds to create
blog-posts. Average response time for tenant-isolated pattern
ranged from 2 minutes 10 seconds to 7 minutes 20 seconds.
Average response time for shared component pattern ranged
from 1 minute 35 seconds to 6 minutes 45 seconds. The result
in Figure 15 also showed that the average response times of
shared and tenant-isolated pattern reached a peak at 6 minutes
45 seconds and 7 minutes 20 seconds respectively before it
dropped. The drop in the response time reflects the presence of
errors in the number of requests being handled by WordPress.

Figure 16 shows the number of failed requests that occurred
while evaluating the multi-tenancy patterns in each of the
experimental setup of WordPress. We see an increase in
number of failed requests when the average response time
peaked for both tenant-isolated and shared pattern.

Figure 16 shows the number of errors encountered during
the experiments for each of the pattern.

I

— —e— D

é ——TI

5 6,000 [S

£

=

2

(=]

o

24,000 |-

(]

~

()

2

3

< 2,000}

¢ | | |
50 100 150 200

Tenants
D - Dedicated Pattern

TI - Tenant-Isolated Pattern
S - Shared Pattern

Figure 15. Average Response Time Graph for the three Multi-tenancy Pattern
when Creating Blog-Posts

120 T T T

100 |-

80 |-

60 -

40

Number of Errors

20

_o—o—¢
50 100
Tenants

Py 9. o

150

200

D - Dedicated Pattern Errors
TI - Tenant-Isolated Pattern Errors
S - Shared Pattern Errors

Figure 16. Errors from Request in Multi-tenancy Pattern Implementation
when Creating Blog-Posts

VI. DISCUSSION

In other to address our research question: which multi-
tenancy pattern is suitable for a multi-tenant application? we
analyse our experimental results. The experimental results
show that dedicated pattern performed better in WordPress
than Shared and tenant-isolated patterns under varying number
of tenants and can handle 140 tenants creating blogs on
WordPress within 2 minutes.

Shared and tenant-isolated patterns performed almost the
same and can handle 140 tenants in 6 minutes 30 seconds
before their performances starts to dwindle. The shared and

tenant-isolated patterns used longer times to handle tenants’
requests, because tenants of this pattern implementation refer
to multiple groups of users that do not belong to the same
wider group.

So what does this mean for WordPress? From one per-
spective, dedicated pattern suits WordPress applications used
within an organisation where users are all grouped as a tenant,
however from another perspective, tenant-isolated pattern suits
WordPress applications in two different instances: tenants are
groups of users within an organisation or tenants are different
groups of users that are not part of the same organisation.
The tenant-isolated pattern approach of sharing resources will
allow more groups of tenants to share the same WordPress
instance with different customisation and database schema.
The shared pattern performs well in WordPress when tenants
do not exceed 100 users; however we recommend that this
setup be used for handling less critical data such as setting up
user data of a SaaS application.

A. Strength and weakness of the Selected Multi-tenancy Pat-
tern

The three multi-tenancy patterns represent the full range of
multi-tenant needs in a SaaS. The shared pattern reduces the
use of resources to the barest minimum, however this is at
the expense of data, performance and process isolation [11],
hence it should be used when data and performance capability
is not a major concern.

Tenant-isolated pattern represents a compromised imple-
mentation between the shared and dedicated patterns [10]. This
pattern promotes privacy and data security as tenants will not
have their data mixed with other tenants’ data. However, there
is an increase in the cost of database connection and reduced
utilisation of resources as compared to the shared component
pattern. This pattern is usually featured in most multi-tenant
application database. Example of this is a payroll application
used by multiple divisions in a large company, where each di-
vision is implemented as a tenant-isolated component. Another
example is its usage in the multi-site database implementation
of WordPress, where each site has its own schema and tables.

Dedicated pattern features the highest form of privacy and
data security; however, this is at the expense of high usage of
available resources and nothing to less benefit from economies
of scale. This pattern should be used when there is sufficient
reason for data not to be mixed with other tenants’ data.

B. Performance and Errors

The performance of the three multi-tenancy patterns differed
under varying tenants’ needs, with their average response
times steadily increasing as the number of tenants increased.
Dedicated pattern performed best with a maximum average
response time of 2 minutes 30 seconds. However, Figure 16
shows some slight errors while using this pattern, though the
amount of errors encountered are quite negligible and can
be attributed to the fact that connections speed may vary at
specific times.

Tenant-isolated pattern implementation performed well con-
sidering the tenants’ complexity it handled as explained in
section VI. Figure 15 shows that the average response time
peaked when the number of users was 140 and then dropped
afterward. The drop in average response time indicates that
WordPress was not able to handle all the requests from
Jmeter, hence it dealt with a reduced number of requests and
this reflects in the number of errors generated (requests not
handled) as shown in Figure 16.

The shared pattern performed variably the same as tenant-
isolated pattern, however the time at which its average re-
sponse time peaked and the amount of errors recorded as com-
pared with tenant-isolated pattern shows that tenant-isolated
pattern performed better than shared pattern by the time the
number of tenants exceeded 120 because Figure 15 showed
that more requests were being handled by tenant-isolated
pattern at that point.

C. Recommendation

The experiment helped to identify multi-tenancy pattern that
suits different cloud hosted content management application
setup. Figure 1 is a selection algorithm that will help to choose
a suitable multi-tenancy pattern in a multi-tenant content
management application

Algorithm 1: Algorithm to Choose Multi-tenancy Pattern

if SaaS then
if data sent per request < 5kb then
if data privacy # important then
Shared Pattern ;
else If data sent per request > 5kb and

data privacy # important then

‘ Tenant-isolated pattern ;
else

L Dedicated Pattern ;

VII. CONCLUSION

Multi-tenancy is an important and frequently used architec-
ture in SaaS. It improves resource utilisation, reduces the effort
in deploying applications on cloud and total cost of ownership.
However, choosing the correct multi-tenancy pattern for a
multi-tenant application is a challenge. To solve this challenge,
We present the multi-tenancy patterns using Z, we evaluated
the performance of the three multi-tenancy patterns in order
to access its suitability in WordPress and we provide a novel
selection algorithm to choose a suitable multi-tenancy pattern
for a multi-tenant content management system.

Our experimental setup used docker to package WordPress
and its dependencies into containers that were deployed onto
an Open stack cloud, and Jmeter to create experimental harness
to test the performance of the three multi-tenancy patterns
in WordPress. We empirically evaluate the performance of
the three multi-tenancy patterns by measuring the throughput

of a commonly used business process - blog creation, in
WordPress.

We found that the dedicated pattern performed best even
with varying user needs, while tenant-isolated and shared
patterns performed variably same depending on how much
data were involved.

In the future, we aim to extend this research to evaluate the
effect of multi-tenancy patterns in other containerized cloud
deployment scenarios such as cloud storage systems.

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]
[10]
(1]

[12]

[13]

[14]

[15]

REFERENCES

I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid com-
puting 360-degree compared,” in 2008 Grid Computing Environments
Workshop, Nov 2008, pp. 1-10.

L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
break in the clouds: Towards a cloud definition,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 1, pp. 50-55, Dec. 2008. [Online]. Available:
http://doi.acm.org.salford.idm.oclc.org/10.1145/1496091.1496100

B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” INC, IMS and IDC, pp. 44-51, 2009.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “Above the clouds: A berkeley view of cloud computing,”
EECS Department, University of California, Berkeley, Tech. Rep., Feb
2010. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/
2009/EECS-2009-28.html

B. P. Rimal and M. Maier, “Workflow scheduling in multi-tenant
cloud computing environments,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 1, pp. 290-304, Jan 2017.

S. Walraven, T. Monheim, E. Truyen, and W. Joosen, “Towards
performance isolation in multi-tenant saas applications,” in Proceedings
of the 7th Workshop on Middleware for Next Generation Internet
Computing, ser. MW4NG ’12. New York, NY, USA: ACM, 2012,
pp. 6:1-6:6. [Online]. Available: http://doi.acm.org/10.1145/2405178.
2405184

L. Fan, B. Gao, Z. Wang, W. An, and Y. Wang, “A semi-automatic
approach of transforming applications to be multi-tenancy enabled,”
IEEE Transactions on Services Computing, vol. 9, no. 2, pp. 227-240,
March 2016.

R. Krebs, A. Wert, and S. Kounev, “Multi-tenancy performance
benchmark for web application platforms,” in Proceedings of the 13th
International Conference on Web Engineering, ser. ICWE’13. Berlin,
Heidelberg: Springer-Verlag, 2013, pp. 424-438. [Online]. Available:
http://dx.doi.org/10.1002/spe.2320

C. E F Leymann, R. Retter, W. Schupeck, and P. Arbitter, “Cloud
computing patterns,” Springer, Wien. doi, vol. 10, pp. 978-3, 2014.
AA, “Omitted for blind review,” in Omitted for blind review, Nov 2015,
pp. 53-58.

——, “Omitted for blind review,” in Proceedings of the World Congress
on Engineering and Computer Science, vol. 1, 2015.

M. Pathirage, S. Perera, I. Kumara, and S. Weerawarana, “A multi-tenant
architecture for business process executions,” in 2011 IEEE International
Conference on Web Services, July 2011, pp. 121-128.

F. Chauvel, H. Song, N. Ferry, and F. Fleurey, “Evaluating robustness of
cloud-based systems,” Journal of Cloud Computing, vol. 4, no. 1, p. 18,
2015. [Online]. Available: http://dx.doi.org/10.1186/s13677-015-0043-7
H. Moens, B. Dhoedt, and F. D. Turck, “Allocating resources for
customizable multi-tenant applications in clouds using dynamic feature
placement,” Future Generation Computer Systems, vol. 53, pp. 63 — 76,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X15002010

J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler, A. Corradi,
and L. Foschini, “Dargos: A highly adaptable and scalable monitoring
architecture for multi-tenant clouds,” Future Generation Computer
Systems, vol. 29, no. 8, pp. 2041 - 2056, 2013, including
Special sections: Advanced Cloud Monitoring Systems and The
fourth IEEE International Conference on e-Science Applications and
Tools and Cluster, Grid, and Cloud Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X 13000824

[16]

(17]

(18]

[19]
[20]
[21]
[22]

[23]

W. Wang, X. Huang, X. Qin, W. Zhang, J. Wei, and H. Zhong,
“Application-level cpu consumption estimation: Towards performance
isolation of multi-tenancy web applications,” in 2012 IEEE Fifth Inter-
national Conference on Cloud Computing, June 2012, pp. 439-446.

Z. H. Wang, C. J. Guo, B. Gao, W. Sun, Z. Zhang, and W. H. An, “A
study and performance evaluation of the multi-tenant data tier design
patterns for service oriented computing,” in 2008 IEEE International
Conference on e-Business Engineering, Oct 2008, pp. 94-101.

L. C. Ochei, A. Petrovski, and J. M. Bass, “Evaluating degrees of tenant
isolation in multitenancy patterns: A case study of cloud-hosted version
control system (vcs),” in 2015 International Conference on Information
Society (i-Society), Nov 2015, pp. 59-66.

WordPress. (2002) Wordpress features. [Online]. Available: https:
/lcodex.wordpress.org/WordPress

Siteground. (2004-2017) What is mysql. [Online]. Available: https:
/Iwww.siteground.co.uk/tutorials/php-mysql/mysql.htm

Docker. (2017) What is docker. [Online]. Available: https://www.
docker.com/what-docker

Wikipedia. (2017) Apache http server. [Online]. Available: https:
/len.wikipedia.org/wiki/Apache_HTTP_Server

A. S. Foundation. (1999-2017) Apache jmeter. [Online]. Available:
http://jmeter.apache.org/

