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Abstract
The study of live cells using Fourier transform infrared spectroscopy (FTIR) and FTIR microspectroscopy (FT-IRMS) intrinsi-
cally yields more information about cell metabolism than comparable experiments using dried or chemically fixed samples.
There are, however, a number of barriers to obtaining high-quality vibrational spectra of live cells, including correction for the
significant contributions of water bands to the spectra, and the physical stresses placed upon cells by compression in short
pathlength sample holders. In this study, we present a water correction method that is able to result in good-quality cell spectra
from water layers of 10 and 12 μm and demonstrate that sufficient biological detail is retained to separate spectra of live cells
based upon their exposure to different novel anti-cancer agents. The IR brilliance of a synchrotron radiation (SR) source
overcomes the problem of the strong water absorption and provides cell spectra with good signal-to-noise ratio for further
analysis. Supervised multivariate analysis (MVA) and investigation of average spectra have shown significant separation be-
tween control cells and cells treated with the DNA cross-linker PL63 on the basis of phosphate and DNA-related signatures.
Meanwhile, the same control cells can be significantly distinguished from cells treated with the protein kinase inhibitor YA1
based on changes in the amide II region. Each of these separations can be linked directly to the known biochemical mode of
action of each agent.
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Introduction

The use of Fourier transform infrared spectroscopy (FTIR) for
the study of biological materials such as tissue, cells, plasma
and serum is well established. Infrared (IR) spectra of

biological materials have been used to obtain diagnostic and
prognostic information on a range of diseases [1–7], as well as
for the study of the effectiveness and mode of action of novel
treatments [8–10]. Cancer has been a particular focus, with
FTIR explored as a means to both improve diagnosis and
inform the design of new treatments.

A significant body of work has demonstrated the ability of
IR spectra to provide information on the mode of action of
novel chemotherapy agents and assess their effectiveness
against different cancer cells [11–13]. Additional work has
also investigated drug-resistant cell lines and examined the
effects of cell cycle on the uptake of certain drugs [14, 15].

Historically, the majority of cell studies using FTIR have
relied on chemically fixed, dried samples. The benefits of this
are clear; samples can be easily handled post fixation, and the
same sample can be returned to multiple times for repeat mea-
surement, given that IR is a non-destructive method of
investigation.

However, chemical fixatives have been shown to have an
effect on various structures within the cell, limiting the
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interpretation of resulting spectra [16–18]. Studies of sample
dehydration also note changes in peak position, intensity and
ratio across the spectrum [19–21]. Cell dehydration can par-
ticularly affect DNA bands, with the broader, weaker A-form
DNA bands being more prevalent in dehydrated cell spectra,
making DNA signatures harder to separate from other spectral
contributions from proteins, RNA and carbohydrates [22, 23].
While the biochemical nature of the cell may be broadly
maintained, subtle differences within a sample or as a
result of stimuli may be lost. Studies of living cells have
been able to yield biological and morphological details
that were not accessible using fixed samples, particularly
when combined with the brilliance of synchrotron radia-
tion (SR) as a source [24–28].

The requirement of an aqueous environment tomaintain cell
viability is a significant constraint to FTIR analysis of live cells.
This introduces the strong absorbance pattern of water into the
spectrum in the ~ 1650 and 3000–3500 cm−1 wavenumber
ranges, due to OH bending and stretching modes, respectively,
which obscures much of the cell spectrum and makes extrac-
tion of biochemical information extremely difficult [29].

The water spectrum is a problem for analysts for two pri-
mary reasons: (1) the strength of the water absorptions causes
insufficient light to penetrate to the sample, giving a signal
that is too low to obtain quality data, and (2) the position of the
water absorption signatures obscures key biological informa-
tion relating to the amide and lipid bands arising from cellular
species [30, 31].

Some work using living cells in aqueous environments has
simply ignored the spectral regions most affected by water
[32], but this is clearly severely limiting due to the significant
amount of biochemical information being lost.

The removal of water from the acquired spectrum is a non-
trivial issue. The subtraction of a pure water spectrum is not
ideal, as the spectrum of separate bulk water will be different
from that of water interacting with a biological system [33].
Likewise, removing the entire water contribution from the
spectrum is also imperfect, as structural water accounts for
approximately 70% of the mass of an average cell [34]. A
number of water correction methods have been proposed,
but with a lack of consensus over a single preferable method.

One method, published by Vaccari and colleagues [18, 35],
removes a scaled water spectrum, in which the scaling factor
is determined by an algorithm that optimises baseline flatness
in the 1800–2500 cm−1 region, which contains no biochemical
information but does contain the water combination band. The
region containing the water combination band can, however,
be heavily influenced by baseline variations.

Quaroni et al. were able to track a range of cellular metab-
olites by taking a reference spectrum through a cell-free area
of growth medium, removing a fraction of the water contribu-
tion by a ratio to the background taken through an empty
sample holder and then analysing the IR images in second

derivative in order to highlight small spectral changes [36].
However, this does not take into account the different quanti-
ties of water present across the field of view of several cells
and is therefore prone to under-/over-correcting for the bulk
water contribution.

In separate work, Gelfand et al. [37] attempt to account for
this over-correction by iteratively re-adding water contribu-
tions to their corrected spectra until the differences in baseline
on either side of the C-H alkyl stretch at 2900 cm−1 was
minimised. However, this work relied on a spacer of just
4 μm, which is a significant compression for the majority of
cells, thereby likely to be picking up biochemical changes due
to cellular stress and not mode of action of drug alone.

Deuterated water (D2O) has been proposed by some as a
possible alternative medium to remove the water problem, due
to its similar physical properties but significantly shifts ab-
sorption bands, allowing both a clear interpretation of the
amide I band and a thicker bulk fluid layer of up to 20 μm
[38]. With the exception of studies focused on isotopic ex-
change, such as deuterated protein or lipid content in D2O-
resilient cells, the resulting red shift in the amide I band [39]
and the overall toxic effects of culture viability and biochem-
istry over time [40–43] render D2O an unsuitable bulk fluid
for drug-cell interaction studies.

In this study, we have tested an in-house water correction
algorithm on spectra obtained from different thicknesses of
bulk aqueous solution. There is little consensus on an opti-
mum spacer size for IR analysis of living cells, with work
published featuring spectra from spacers as small as 4 μm
[37] and as large as 20 μm [36]. While the precise effects on
cell viability and biochemistry will vary with the natural size
of the cell and other factors, it is known that compression of
the cell can have an effect on the resulting spectra [35]. This
includes variations in the amide I/II peak height ratio and
changes in protein and lipid concentrations, which, under se-
vere deformation, can be permanent. Therefore, reducing the
compression of the cell as much as possible, without sacrific-
ing spectral quality, is important to maintaining the cell in as
close to a natural environment as possible.

The problem of strong water absorption can be overcome
through the use of a synchrotron source. The improved quality
of spectra, in terms of both spatial and spectral resolution [44]
and signal-to-noise ratio [26, 27], is well known, while the
increased brightness generated by a synchrotron source rela-
tive to a thermal source [45] provides sufficient brilliance of
light to penetrate a bulk water layer and still provide a cell
spectrum with good signal-to-noise ratio.

Using an in-house water correction algorithm and working
wi th the B22 Mul t imode Infra red Imaging and
Microspectroscopy (MIRIAM) beamline at Diamond Light
Source (DLS), we have tested our water correction procedure
on hydrated, but chemically fixed, LNCaP prostate cancer cells
in 6 and 12 μm spacers to evaluate the effect of pathlength on
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resulting biological spectra. Furthermore, we have studied the
action of two novel drug treatments on live, hydratedK562 acute
myeloid leukaemia (AML) cells with a pathlength that reduces
compression of the living cells during analysis.

By using fixed LNCaP cells, in a liquid sample holder, we
reduce the potential for biochemical variation between sample
replicates, and therefore, differences in spectra should be the
result of differences in sample holder loading alone. This
gives an indicator of the reproducibility of our method over
multiple experiments/replicates.

Meanwhile, poor response rates to conventional chemo-
therapy and low overall survival rates [46] make AML a
focus for new and redeployed therapies [47], especially
due to the high toxicity of conventional chemotherapy to
older, frailer patients, who make up a significant propor-
tion of sufferers [48].

Colleagues at the University of Salford provided two novel
anti-cancer compounds for evaluation of drug-induced bio-
chemical changes at the cellular level: PL63, which is a
DNA cross-linking agent and analogue of the commercial
anti-cancer drug busulfan [49], and YA1, which is a protein
kinase inhibitor [50]. Due to their significantly different
modes of action, cells treated with each of these agents should
be distinguishable from each other based on their IR spectra
and therefore allows us to demonstrate a workflow fit for
purpose for FTIR analysis of drug-induced changes at the
cellular level in hydrated/living cells.

Methodology

Cell culture

Spacer evaluation LNCaP prostate cancer cells were grown to
approximately 90% confluency using RPMI 1640 medium,
supplemented with 10 vol.% bovine serum, 1% L-glutamine,
1 mM sodium pyruvate and 10 mM HEPES solution, with
1 μg/ml of puromycin and 2.5 μg/ml of blasticidin antibiotics
in T25 culture flasks. Flasks were incubated at 37 °C and 5%
CO2. Cells were harvested using trypsin, washed three times
with phosphate-buffered saline (PBS) and fixed in 4% forma-
lin solution.

Novel drug studyK562AML cells were grown in RPMI 1640
medium (+L-glutamine) with 10 vol.% bovine serum and
1 vol.% penicillin-streptomycin at 37 °C and 5% CO2 in
T25 cell culture flasks.

Drug treatment

Novel drug study Twelve to twenty-four hours prior to drug
treatment, cells were passaged to ensure they were in expo-
nential growth when the drug was introduced. Flasks were

treated with drug compounds as follows: PL63 was adminis-
tered at a concentration of 21 nM, equivalent to the IC50 value
of busulfan [51], as no reported IC50 specific to PL63 in K562
cells was available; YA1 was administered at the reported
IC50 value of 6.2 μM [52]. Solutions of each drug compound
were made up in dimethyl sulphoxide (DMSO) such that a
dose of 1 μl/ml was added to the culture flask for both treat-
ments; control flasks were administered the equivalent
amount of DMSO.

Preparation of cells

Spacer evaluation Formalin-suspended LNCaP cells were
centrifuged at 500 g to pellet the cells. The pellet was then
washed three times with PBS to remove residual formalin, and
the supernatant was discarded after the third wash, leaving the
cell pellet in residual PBS. To ensure a suitable concentration
of cells for analysis, the measured sample was taken directly
from this residual.

Novel drug study Drug-treated and control cells were re-
moved from the incubator and harvested after 1, 10, and
20 h. The sample was centrifuged at 500 g to pellet cells, from
which the growth medium was discarded. The pellet was then
washed twice with PBS to remove residual medium and any
residual extracellular drug. After the second wash, the super-
natant was poured away to leave a cell pellet in a residual
amount (~ 0.5 ml) of PBS, from which the measured sample
was taken.

Loading of liquid sample holder

Spacer evaluation Samples were measured using 6 and 12 μm
spacers in the modified liquid sample holder available on the
B22 MIRIAM beamline at Diamond. In each case, an amount
of sample slightly less than the calculated volume was pipet-
ted onto a clean 25 mm diameter, 1 mm thick calcium fluoride
(CaF2) window. Using less than the calculated volume pre-
vents completely filling the available space, thereby ensuring
a dry area is available for taking a background measurement
once the sample holder has been assembled. The sample hold-
er is assembled with o-rings (3 mm) at the base, the CaF2 slide
onto which the spacer and sample are placed, followed by a
second CaF2 slide of the same proportions, and a final o-ring
(1 mm). This configuration ensures that pressure is evenly
distributed across the holder.

Novel drug study Samples were measured using a 10 μm
spacer in the modified liquid sample holder available on the
B22MIRIAMbeamline at Diamond. Cell sample (1.5 μl) was
pipetted onto a clean CaF22 window of 25 mm diameter and
1 mm thickness. The sample holder was then assembled in the
same configuration as described above.
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SR-FTIR measurements

For both studies, data were acquired in transmission using the ×
36 objective/condenser optics on a Hyperion 3000 microscope
coupled to a Bruker Vertex 80 FTIR spectrometer at the
MIRIAM beamline B22 at DLS, using a liquid nitrogen (LN2)-
cooled mercury-cadmium-telluride (MCT), high-sensitivity 50
μm pitch detector and 15 × 15 μm2 slit size at the sample.

Two hundred fifty-six co-added scans (circa 35 s) were
used for both background and sample measurements. A dry
area of the sample was used for the background scan. A min-
imum of 65 cells per sample loading were selected for mea-
surement using OPUS 7 software, with a corresponding mea-
surement of the bulk PBS layer taken from a cell-free area
adjacent to each selected cell for use in water correction.
This gave a minimum of 130 spectra in each measurement
and equates to approximately 90 min measuring time for op-
timal spectral quality.

FTIR data processing

Spacer evaluation The spectral contribution of the bulk aque-
ous solution must be removed before any other processing or
analysis of the data can be carried out. This is done with an in-
house MATLAB-based water correction algorithm, which
performs a least-squares fit of the 1500–1700 cm−1 range of
the sample spectrum to a Matrigel reference. This is used to
determine a coefficient by which the corresponding PBS spec-
trum is multiplied to give the ‘water to be removed (TBR)’,
taking account of the different quantities of aqueous solution

present in the cell and PBS spectra. The water TBR spectrum
was then subtracted.

The water-corrected LNCaP spectra were then quality con-
trolled, smoothed using a Savitzky-Golay filter with nine
points of smoothing and vector normalised. Note that the close
refractive index matching of the CaF2, water and cell means
that reflection artefacts are minimised in the FTIR spectra and
resonant Mie scattering from the cell is very much reduced
compared with fixed, dried samples. As such, RMieS correc-
tion is not required [53–55].

Novel drug study Following water correction, data were qual-
ity controlled, vector normalised, converted to the second de-
rivative and then smoothed using a Savitzky-Golay filter,
using a third-order polynomial with 13 smoothing points.

The effects of saturation of the water bending mode were
observed in the amide I region of a number of spectra with
thicker spacers. For simplicity, it was decided to remove this
region from all of the spectra. The second derivative spectra
were cut to the 1100–1575 and 2750–3000 cm−1 wavenumber
regions; this removes the saturated water region, the region
below 1100 which is noisy due to the lowwavenumber cut-off
resulting from the use of 2 mm equivalent CaF2 thick material,
and the 1800–2800 cm−1 range which contains no biochemi-
cal information.

Spectral analysis

Spacer evaluationMean spectra were computed for each load-
ing in the 6 and 12 μm spacers. These were investigated for

Fig. 1 Schematic to show data processing workflow for the water correction algorithm
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variations in peak height, position, shape and any noticeable
baseline variations between each of the three replicate load-
ings using each spacer.

Novel drug study After conversion to the second derivative,
mean spectra were computed for each drug treatment and
sampling time point. These were investigated for variations
in protein, lipid and nucleic acid signatures, both over time
(intra-sample) and between different treatments (inter-sample)
at the same time point. The data were also analysed using
canonical variate analysis (CVA) [56], retaining 21 principal
components (PCs), equivalent to 95% of the variation in the
lower wavenumber region of the second derivative spectra.
Similar methodology, retaining 95% of the variance, has pre-
viously been employed for the classification of FTIR and
Raman spectra [57, 58]. Fivefold cross-validation was applied
to the spectra of control and drug-treated cells; this involves
the dataset being split into five groups, with four used for
training a classification model and the fifth then projected in
as a test dataset. This is repeated five times, with each group
acting as the test set once.

Results and discussion

Evaluation of spacer thickness for the analysis
of single cells in an aqueous environment

Development of our in-house water correction procedure in-
volved testing on a range of cell types and experimental set-
ups, as well as testing with a number of fitting ranges in order
to optimise the procedure. Figure 1 shows a simplified sche-
matic of the correction procedure using a single SR-FTIR
example spectrum of a LNCaP cell.

The effectiveness of this in-house procedure on the spectra
of formalin-fixed LNCaP cells, which were suspended in PBS
and measured using both 6 and 12 μm spacers using SR-
FTIR, is subsequently demonstrated. Figure 2 shows mean
spectra for each loading of LNCaP cells using the 6 μm
(Fig. 2a) and 12 μm (Fig. 2b) spacers. Firstly, this demon-
strates the ability of our water correction procedure to extract
good quality IR spectra from a water layer approaching the
saturation limit, allowing us to reduce the compressive stress-
es on the cells by operating with a larger spacer.

The mean spectra from the 12 μm spacer show excellent
reproducibility across the 2800–3000 cm−1 lipid region, con-
sistent peak heights and positions across the amide I and II
peaks and also show good consistency throughout the finger-
print region. There is some variation in the replicates in the
lower wavenumbers of the fingerprint region, but the overall
consistency and reproducibility of the spectra are consistent
with the 6 μm repeat loadings, despite the significantly in-
creased water contribution. Key cellular features have also

been retained throughout the spectrum, despite measurements
being taken at close to the water saturation limit.

Observation of novel chemotherapeutic drug modes
of action in hydrated cells at the single cell level

Having developed a water correction procedure and sample
loading conditions that are able to consistently retain impor-
tant spectral features, as demonstrated by Fig. 2, the next stage
of our study is to test the algorithm on a live cell system. We
selected two novel chemotherapy agents, PL63 and YA1, and
monitored their effect on live K562AML cells after 1 and 20 h
of treatment.

Having determined through our analysis of spacer thick-
nesses that good-quality spectra could be obtained at a
pathlength above 10 μm, the K562 cells were measured using
a 10 μm spacer to reduce the risk of cell movement during
measurement. This is due to the slight difference in the aver-
age size of LNCaP cells compared to K562; LNCaP cells have

Fig. 2 Vector-normalised mean spectra of 65 LNCaP cells from three
repeat loadings of (a) a 6 μm spacer and (b) a 12 μm spacer. The
12 μm loadings show comparable quality and reproducibility, despite
the significantly increased water contribution to be removed
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been observed to be up to 20 μm in diameter [59], while K562
cells are generally 15 μm in diameter [60].

Figure 3 shows normalised mean spectra of PL63-treated
cells after 1 and 20 h, and DMSO control and drug-treated
spectra after 20 h (Fig. 3a, b), along with the second derivative
of each (Fig. 3c, d).

Examination of Fig. 3a, b shows no obvious regions of
difference between the spectra, either over time or between
the control and drug-treated spectra after 20 h. Conversion to
the second derivative to enhance spectral features, however,
removes any remaining baseline variations and highlights
some more interesting biochemical changes. In Fig. 3c, the
second derivative spectra are consistent across the majority
of the range, apart from in the 1170–1250 cm−1 wavenumber
range, where the signal from the 20 h spectrum is more intense
than at 1 h. This region contains a number of features, includ-
ing the amide III region and other proteins, but the two stron-
gest signatures, at 1217 and 1244 cm−1, relate to phosphate
stretching in DNA and RNA. This is of particular interest, as

PL63 and busulfan—the commercial drug from which it is
derived—are known DNA cross-linkers. These differences
occurring in the mean spectra over time appear to be directly
linked to the mode of action of the agent.

In Fig. 3d, the variations between the control and drug-
treated mean spectra are more varied across the spectrum, with
greater variation in some of the protein bands than in Fig. 3c,
but the specific variations in the phosphate DNA/RNA peaks
can still be seen, again linking these variations to the action of
the drug.

Figure 4 shows the mean spectra of YA1-treated cells after
1 and 20 h (Fig. 4a), alongside the mean spectra of DMSO-
treated control cells and YA1-treated cells after 20 h (Fig. 4b),
with the corresponding second derivative spectra shown be-
low (Fig. 4c, d).

The underivatised spectra do not show signs of obvious
biochemical differences; the variations in the spectra in
Fig. 4a, b could be attributed to baseline variations.
However, in the second derivative spectra in Fig. 4c, d,

Fig. 3 Normalised mean spectra of 120 cells, from three replicates,
overlaid for PL63-treated cells after 1 and 20 h of drug treatment (a)
and after 20 h of incubation with DMSO and drug (b). The corresponding

second derivative spectra are shown in (c) and (d) to enhance spectral
features corresponding to biological changes with drug treatment. The
standard deviation of each mean spectrum is shown by the shaded area
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differences again become more apparent. Significantly, the
variations in the DNA/RNA bands noted in the PL63-treated
cells are less pronounced, particularly in Fig. 4c when com-
pared to Fig. 3c. The variations in Fig. 4c, d are less specific
than those in the PL63-treated spectra but do include the am-
ide II region at 1480–1560 cm−1. This is significant, given that
YA1 is known to be a protein kinase inhibitor and would
therefore be expected to induce changes in protein structure.

Figures 5 and 6 show the second derivative mean spectra of
PL63- and YA1-treated cells, respectively, after 1 and 20 h of
treatment, enlarged to the particular region of interest in each
case—the phosphate and DNA/RNA bands in Fig. 5 and the
amide II region in Fig. 6. The variations in mean spectra over
time can be clearly seen in these enlarged images. Of particu-
lar interest is the variation in Fig. 5 of the spectra of PL63-
treated cells at 1217 and 1244 cm−1, which corresponds with
variations in DNAwhich would not be accessible if studying
dehydrated cells.

CVAwas employed to assess differences in the response to
the K562 cells to each drug. Figure 7 shows a CVA score plot,

retaining 21 PCs, comparing spectra from control, PL63-
treated cells, and YA1-treated cells after 20 h. Examination

Fig. 4 Normalised mean spectra of 120 cells, from three replicates,
overlaid for YA1-treated cells after 1 and 20 h of drug treatment (a) and
after 20 h of incubation with DMSO and drug (b). The corresponding

second derivative spectra are shown in (c) and (d) to enhance spectral
features corresponding to biological changed with drug treatment. The
standard deviation of each spectrum is shown by the shaded area

Fig. 5 Enlarged region of mean spectra overlaid for PL63-treated cells
after 1 and 20 h of drug treatment. Apparent drug-induced changes can be
observed particularly at 1217 and 1244 cm−1 as well as from 1180 to
1210 cm−1
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of the score plot shows discrimination between control and
drug-treated cells across CV1, with grouping evident between
the drug-treated classes across CV2. Spectra from 120 individual
cells, from three combined replicates, were used in each class.

Multivariate analysis therefore demonstrates that the bio-
chemical changes observed at the single cell level from each
of the novel compounds tested can be classified in IR spectra
relative to a control. Crucially, it is clearly demonstrated that
that cells treated with each compound can be distinguished
from each other. This is strongest indication that our live,
hydrated cell system, with in-house water correction and using
a 10 μm spacer, is able to differentiate between the modes of
action of novel chemotherapy agents.

To further investigate the observed grouping in the CVA
score plot, a fivefold cross-validation was performed on the
data. The percentage of correctly classified spectra of each
class, for each of the five folds, is shown in Table 1.

Consistent with the score plot shown in Figure 7, fivefold
cross-validation clearly shows the ability of SR-FTIR to dis-
tinguish between control and drug-treated cell spectra and also
between cells treated with compounds with different modes of
action. Fivefold cross-validation is able to correctly identify
between 75 and 88% of control cells, 75–88% of PL63-treated
cells, and 79–83% of YA1-treated cells. This is based on a
relatively small sample size of 120 cells per class, giving five
test sets of 24 spectra for each of the three classes, but clearly
demonstrates clear spectral differences between control cells
and cells undergoing different drug treatments. Given that all

Fig. 7 CVA score plot describing
95% of the variance of the second
derivative data, showing grouping
of DMSO-treated control cells
(black) and cells treated with
PL63 and YA1 (blue and red,
respectively) after 20 h of
incubation time

Table 1 Summary of percentage of test spectra correctly classified
using k-fold cross-validation of second derivative spectra in the low
wavenumber region, showing averages of 80% or greater correctly clas-
sified for each group

k % correctly classified

DMSO T20 PL63 T20 YA1 T20

1 79 88 83

2 83 79 79

3 88 88 83

4 75 88 79

5 75 75 79

Range (%) 75–88 75–88 79–83

Mean (%) 80 84 81
Fig. 6 Enlarged region of mean spectra overlaid for YA1-treated cells
after 1 and 20 h of drug treatment. Apparent drug-induced changes can
be observed across the 1480–1560 cm−1 range, covering the amide II
region

5786 Doherty J. et al.



three sets of samples have been exposed to DMSO, some
degree of similarity in the spectra is to be expected. By using
effective water correction and then using the second derivative
to highlight small variations in the spectra, we are able to
observe spectral differences as a result of the exposure to
different novel compounds. This is a promising development
in our live cell methodology and demonstrates an ability to
gain insight into the effectiveness and mode of action of novel
compounds in living cells.

Conclusions

This study has demonstrated an experimental protocol and
water correction procedure that is able to obtain high-quality
IR spectra from cells in a relatively thick aqueous layer, offer-
ing a significant improvement onmany reported sample thick-
nesses for similar studies.

The key measure of any water correction is its ability to retain
relatively subtle spectral changes between spectra. With our live
cell study of K562 AML cells, we have been able to observe
spectral changes in the second derivative between control and
drug-treated cells, which can be directly related to the mode of
action of that particular drug. Crucially, we have been able to
observe differences in drug-treated spectra over time in spectral
regions that would not have been observable if using dehydrated
cells. For live cell analysis to continue to develop, a more in-
depth level of analysis must be available when compared to fixed
cells, to compensate for increased experimental complexity.

This experiment is the first employing our new protocol for
hydrated cell studies using FTIR, developed in collaborationwith
the MIRIAM beamline at DLS. Future experiments will expand
the range and type of cells investigated using the methodology.

Live cell analysis using SR-FTIR offers the ability to gain
new insights into cell behaviour that cannot be obtained from
fixed cells, despite the increased experimental complexity.
Reducing the physical stress on cells is a significant step to-
wards measurements in close to in vivo conditions as possible,
thereby providing more reliable data for understanding drug-
induced biochemical changes at a cellular level.

We have also been able to demonstrate the effectiveness of
two novel anti-cancer agents on a particularly aggressive can-
cer type. This indicates, once again, the ability of FTIR to
assess drug effectiveness and mode of action.
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