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ABSTRACT 

The thermo-viscous fingering instability associated with miscible displacement through a 

porous medium is studied numerically, motivated by applications in upstream oil industries 

especially enhanced oil recovery (EOR) via wells using hot water flooding and steam flooding. 

The main innovative aspect of this study is the inclusion of the effects of viscous dissipation 

on thermal viscous fingering instability. An Arrhenius equation of state is employed for 

describing the dependency of viscosity on temperature. The normalized conservation equations 

are solved with the finite element computational fluid dynamics code, COMSOL (Version 5) 

in which glycerol is considered as the solute and water as the solvent and the two-phase Darcy 

model employed (which couples the study Darcy flow equation with the time-dependent 

convection-diffusion equation for the concentration). The progress of finger patterns is studied 

using concentration and temperature contours, transversely averaged profiles, mixing length 

and sweep efficiency. The sweep efficiency is a property widely used in industry to characterize 

how effective is displacement and it can be defined as the ratio of the volume of displaced fluid 

to the total volume of available fluid in a porous medium in the displacement process. The 

effects of Lewis number, Brinkman number and thermal lag coefficient on this instability are 

examined in detail. The results indicate that increasing viscous dissipation generates significant 

enhancement in the temperature and a marked reduction in viscosity especially in the displaced 

fluid (high viscous phase). Therefore, the mobility ratio is reduced, and the flow becomes more 

stable in the presence of viscous dissipation. 
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1. INTRODUCTION 

Saffman-Taylor instability is one of the well-known hydrodynamic instabilities which arises in 

the displacement of fluids through porous media. This instability is observed when a high 
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viscosity fluid is displaced by a low viscosity one. This instability actually should be referred 

to as the “Hill instability” since the chemical engineer Hill [1] was historically the first to 

identify and analyze this phenomenon. Indeed, the viscous mismatch at the interfaces between 

fluids involved in displacement is the main factor behind this instability. On other hand, this 

instability manifests itself in the form of finger-shaped penetrations of the displacing fluid into 

the displaced one. Consequently, it is also referred to as viscous fingering instability and is 

observed in a wide variety of industrial processes including enhanced oil recovery (EOR), 

filtration, packed bed regeneration, geothermal reservoir recharge and electrochemical 

deposition. In most applications, this instability is an undesirable phenomenon since it reduces 

the sweep efficiency which in turn causes a significant reduction in, for example, enhanced oil 

recovery processes [1, 2]. Therefore, any methodology which can lead to the elimination or 

mitigation of this instability or control of its growth rate is technically important. This goal has 

led to a large amount of studies that focus on both theoretical and computational analysis of 

instability.  

The seminal work concerning Saffman-Taylor instability has been presented by Hill [3]. An 

excellent review of viscous fingering in permeable media (of relevance to petroleum 

engineering) has also been produced by Homsy [3]. Since then, numerous other investigations 

have been presented in the scientific literature. These studies can be classified into two 

categories: isothermal or non-isothermal flows. Indeed, a change in the flow temperature leads 

to variation in viscosity which is a main characteristic of fingering instability. However, the 

vast majority of studies have been restricted to isothermal fingering instability.  

Tan and Homsy [4, 5] studied the stability of isothermal miscible rectilinear and radial 

displacement processes in porous media. They used the quasi-steady-state approximation to 

predict accurately the growth rate of disturbances. Singh and Azaiez [6, 7] investigated the 

viscous fingering in miscible displacement, considering shear-thinning fluids using both a 
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pseudo-spectral numerical technique based on the Hartley transform and a linear stability 

analysis. In addition to the patterns already known for purely Newtonian flow displacements, 

several new mechanisms were observed in their nonlinear simulations. Their results of linear 

stability analysis also identified that a flow where the displacing fluid is shear-thinning is 

always more unstable than its Newtonian counterpart. More recently, Norouzi and Shoghi [8] 

examined the effect of anisotropic porous media on viscous fingering in miscible 

displacements. Their results demonstrated that the flow is more stable for larger values of the 

anisotropic permeability ratio and also for smaller values of anisotropic dispersion ratio. Shoghi 

and Norouzi [9] also simulated miscible displacements in the presence of permeability 

heterogeneity for a displacing shear-thinning fluid, noting that the differences between 

Newtonian and non-Newtonian flows are amplified for higher degrees of heterogeneous porous 

media. The viscous fingering instability of miscible displacement involving a viscoelastic fluid 

was also investigated by Shokri et al. [10, 11]. They found that the elasticity of viscoelastic 

fluid has a stabilizing effect on the flow field. Their results also showed that the flow becomes 

more stable by increasing the permeability of porous media in the longitudinal direction relative 

to the transverse direction.  

In addition to the vast amount of studies which have considered the isothermal fingering 

instability, a few studies addressing non-isothermal fingering instability have also been 

communicated in the literature. The viscosity of fluids, the main factor behind the fingering 

instability, is a function of temperature. Consequently, the difference in temperature of two 

fluids involved in displacement flows can have a significant influence on fingering instability. 

Under such conditions, the instability is called thermo-viscous fingering. In miscible 

displacement, the concentration and thermal diffusion rates may also differ from one another. 

Therefore, there are two fronts in the flow: the thermal front and the concentration front. The 

thermal front is usually slower than concentration front due to heat transfer between fluids and 
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porous media. The thermal front therefore invariably lags behind the concentration front. The 

thermo-viscous fingering instability can be seen in many petro-chemical engineering processes 

such as hot water flooding, steam flooding and Steam Assisted Gravity Drainage (SAGD).  

The pioneering study in thermo-viscous fingering instability was reported by Kong et al. 

[12]. They experimentally investigated the displacement of both synthetic (Dutrex 739) and 

natural heavy oils by steam under various conditions in vertical and horizontal rectilinear Hele-

Shaw cells. Saghir et al. [13] studied two-dimensional nonlinear double diffusive convection 

in a multi-porous cavity, both numerically and experimentally. They deployed glycerin and 

water in their experiments and observed that the difference between the tip and the base of the 

displacement front decreases when hot water is injected into the system. Their results further 

showed that the buoyancy force opposed the growth of fingers. Sheory et al. [14] presented a 

numerical reservoir simulation model for the study of enhanced oil recovery. Their results show 

that oil recovery can be improved when the formation temperature is higher, or both the 

injection temperature and pressure are raised. Holloway and Bruyn [15] studied the fingering 

instability for the scenario in which hot glycerin displaces cold more viscous glycerin in a radial 

Hele-Shaw cell and concluded that the wavelength of the fingering instability is proportional 

to the cell width for thin cells. An experimental study of the displacement of a high-viscosity 

fluid at low temperature by the same fluid at high temperature and with low viscosity in 

cylindrical capillary tubes has been presented by Kuang and Maxworthy [16]. They studied 

three different regimes in their work: the diffusion dominated regime, viscously dominated 

regime and transition regime. A linear stability analysis for viscous fingering instability of the 

double-front system was presented by Pritchard [17] in which it was found that the properties 

of each front (thermal or mass front) contribute to the tendency of the system to become 

unstable. Islam and Azaiez [18, 19] studied the thermo-viscous fingering instability in miscible 

displacement in a Hele-Shaw cell using both linear stability analysis and numerical simulation. 
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Their results show that an increase in thermal mobility ratio leads to more unstable flow. 

Additionally, a decrease in thermal-lag coefficient decreases the instability. Azaiez and Sajjadi 

[20] presented a paradigm on the stability of two-component miscible displacement in a 

homogeneous porous medium. In their study, the components had different mobility ratios, 

were able to diffuse at different rates and convected at different speeds. Sajjadi and Azaiez [21] 

also investigated the non-isothermal miscible viscous flow via nonlinear simulation. They 

focused on the effect of heat transfer between the displacing fluid and the solid matrix on the 

thermo-viscous instability. Their results indicated that the rate of heat transfer with the medium 

is a significant factor contributing to this instability. More recently, Jackson et al. [22] 

investigated the immiscible radial displacement in a Hele-Shaw cell with a temperature- 

dependent viscosity using two coupled high resolution numerical methods (i.e. an auxiliary 

radial basis function-finite collocation (RBF-FC) method and a boundary element - RBF-FC 

method) .  

In the present paper, the miscible thermo-viscous fingering instability in porous media is 

studied numerically with COMSOL multi-physics computational fluid dynamic (CFD) 

commercial software. Viscous dissipation effects are included since this important 

phenomenon characterizing real flows has been omitted in previous works. The viscosity of 

most liquids is severely decreased by increasing the temperature and furthermore viscous 

dissipation is also directly dependent on the viscosity. Therefore, it is anticipated that the 

viscous dissipation could markedly influence the thermo-viscous fingering instability. In the 

simulations, it is assumed that the two fluids are miscible and the porous media is homogenous. 

An Arrhenius equation of state for describing the dependency of viscosity on temperature is 

implemented. The effects of Brinkman number, Lewis number and thermal lag coefficient on 

this instability are studied in detail. The concentration and temperature contours, transversely 

averaged profiles, mixing length and sweep efficiency are computed for different scenarios 



6 
 

with viscous dissipation. The mechanisms of growth of the fingers under different flow 

conditions are also discussed.  

  

2. GOVERNING EQUATIONS 

In this study, miscible displacement in a homogenous porous medium is studied. A hot low-

viscosity fluid ( 1 , 1T ) displaces a cold high viscosity liquid ( 2 , 2T ).  The governing 

equations comprise the conservation of mass, Darcy’s law (representing the momentum 

conservation equation for flow through permeable media), the convection-dispersion equation 

for concentration (species) and the energy (heat conservation) equation with viscous dissipation 

for porous media [23]: 
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where V is the velocity vector, C  is the concentration, T is the temperature,   is the 

dynamic viscosity as a function of concentration and temperature. Dc, DT, K and 
p  designate 

respectively the mass (species) and thermal diffusion coefficient, permeability and porosity of 

the porous medium, 𝜆 is the thermal lag coefficient (embodying the ratio of the speed of the 

thermal front to that of the concentration front) and is mathematically defined as follows: 
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where   and 
pC  are the density and specific heat capacity and the indices of f and s refer to 

the fluid and solid phase, respectively. Due to the heat dissipation, the thermal front always 

lags behind of the concentration front so 𝜆 ≤ 1. It is worth mentioning that the Brinkman term 

is neglected in the momentum equation since when permeability and porosity are low (as our 

study), the Darcy-Brinkman law is not valid [24-26] and Darcy law is used instead of it.  

The boundary and initial conditions are defined as follows: 
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where ( , )f x y  is a random function.  

In order to non-dimensionalize the governing equations, the following scaling is used: 
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The dimensionless governing equations can be expressed based on Eqns. (1) - (4) and Eqn. 

(10): 

(11) * *

* *
0

u v

x y

 
 

 
 

(12) * * *

* *

p u

x K

 



 

(13) * * *

**

p v

y K

 



 

(14) 
2 2

* * * 2 * 2 *
* *

* * * * *
( )

C C C C C
u v

t x y x y

    
   

    
 

(15) 2 2

2 2

* * * 2 * 2 * *
* * * *

* * * ** *
( ) ( ) . ( )u v Le Br Le u v

t x y Kx y

     


    
     

    
 

where / /C T T CLe Pe Pe D D   is the Lewis number ( /C x CPe UL D and /T x TPe UL D  

respectively define the mass and thermal Péclet numbers). Br  is the Brinkman number which 

embodies the ratio of heat produced by viscous dissipation and heat transported by molecular 

conduction. Here, the Brinkman number is defined as follows: 
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where k is the thermal conductivity of fluid.  

The boundary and initial conditions can then be written as follows: 
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(21) 

where, rand is random number between 0 and 1,   is the magnitude of the disturbance and 

 can be construed as the penetration of the disturbance from the front.  

In non-isothermal miscible displacements, the viscosity depends on temperature and 

concentration of the fluid. Therefore, to complete the model, the relation between viscosity and 

concentration and temperature should also be determined. Here, the dimensionless Arrhenius 

equation is used as the equation of state for viscosity: 
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(22) * * * * *( , ) exp( (1 ) (1 )))C TC C        

where 𝛽𝐶 = 𝐿𝑛(µ2/µ1)   is the mobility ratio and µ1 and µ2 are the displacing and displaced 

fluid viscosities respectively. 𝛽𝑇 = 𝐿𝑛(µ𝑇2/µ𝑇1)   is the thermal mobility ratio and µT1
 and µT2

 

designate the dynamic viscosities of a single fluid at two different temperatures (T1, T2). 

 

3. COMSOL COMPUTATIONAL FLUID DYNAMIC (CFD) SIMULATIONS  

In this study, the classical model of miscible thermal viscous fingering has been examined 

using the COMSOL multi-physics CFD code (version 5). Here, the miscible thermal viscous 

fingering displacement in a homogeneous porous medium is successfully simulated. The 

mapped mesh is applied for discretization of the domain. In our simulations, we assumed that 

glycerol is the solute and water is the solvent. The problem is solved by employing the two-

phase Darcy law and heat transfer in porous media models. Two-phase Darcy law couples the 

steady Darcy flow equation with the time-dependent convection-diffusion equation for the 

concentration. The model equations are discretized with the finite element method. The 

resulting system of non-linear equations is solved using the non-linear solver MUMPS [24]. 

MUMPS (MUltifrontal Massively Parallel sparse direct Solver) is a very efficient parallel 

sparse direct solver, similar to that employed in ADINA finite element software, and is more 

robust than conventional iterative solvers which achieves significant active memory reduction 

and lowers computational costs. For the temporal evolution, the backward Euler method is 

deployed. It is important to mention that the numerical solution is obtained in a Eulerian 

system. Further numerical details are available in Bathe [25] and Zimmerman [26] 
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4. COMPUTATIONAL DOMAIN 

The computational domain and boundary conditions for the problem under study are shown in 

figure 1. At * 0t  , domain-1 is completely filled with fluid-1 and the rest of the 

computational domain (domain-2) is filled with fluid-2. At the inlet, the fluid-1 enters with 

uniform velocity and temperature. Here, a solution with viscosity near to that of water and a 

80:20 solution of glycerin and water are considered for fluid-1 and fluid-2, respectively. In 

other words, the dimensionless groups are calculated based on the properties of these fluids 

and the defined geometry. The properties of medium are selected near the oil well (oil sand) 

[27]. Typical values of physical and geometrical parameters used for estimating the 

dimensionless parameters in the present study are summarized in Table1.  

 

Fig. 1. Schematic of computational domain 
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Table 1. Typical values of physical and geometrical parameters used for 

estimating the dimensionless parameters in the present study. 

Parameter  Value Unit 
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It is worth mentioned that considering values of Table 1, could the viscous dissipation be  

ignored? If we return to equation 4, the RHS of Eq.4 contains conduction and viscous 

dissipation terms. The order of magnitude of these terms are 
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other words, 
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*/ 100Br K  , therefore, for this situation, the viscous dissipation could not be ignored.  

5. LINEAR STABILITY ANALYSIS 

Prior to present the results of nonlinear simulations, we will first examine the linear stability 

of thermal viscous fingering. This leads to an initial view of the effect of the main parameters 

on the flow instability. For this purpose, as same as many studies in this field [7-11, 18] , a 

Lagrangian reference frame is chosen that moves with the superficial velocity. In addition of 

convenience, this is useful to more detailed analysis (By creating the possibility of examining 

the effect of Brinkman number). Then, a base state solution is considered for the governing 

equations and a set of small disturbances is added to them as follows:  
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In the above equations, the primed quantities represent small disturbances and the base states 

are denoted by zero subscript. 

The linearized equations are: 

* *

* *
0

u v

x y

  
 

 
 

(24) 



14 
 

* ** *

0

* * *

up

x K K

  
  


 

(25) 

* **

0

* *

vp

y K

 
 


 

(26) 

2 2

** 2 * 2 *
* 0

* * * *

dCC C C
u

t dx x y

    
  

    

(27) 

 2 2

** * 2 * 2 *
* * * *0

0* * * ** *

.
( 1) (2 )

Br Le
u Le u

t x x Kx y

   
   

       
                 

(28) 

* * *

0 ( * )C TC        
 

(29) 

The equations (24-26) can be combined as: 
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Thus, the linearized equations can be expressed in terms of only the concentration disturbance

*C    , the temperature disturbance *    and the streamwise velocity disturbance *u  .  

Considering the base state solution of the governing equations, the base state concentration, 

temperature and viscosity are obtained as follows: 

*
*

0
*

1
1

2 2

x
C erf

t

  
    

  
 

(31) 

 * *

*

0
*

11
1

2 2

x t
erf

Let




   
    

  

 

(32) 

* **

0 0 0exp( (1 ) (1 )))C TC        (33) 
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Using the quasi-steady state approximation, the disturbances are expanded in terms of Fourier 

components as: 

*
0( ) *( *, *, *) ( , , )( *)

t t ik yC u C U x e e
 

     
(34) 

Where k   and 0( )t are the wave number of the disturbances in the   direction and growth rate 

of the disturbance, respectively.  

Substituting equation (34) into linearized equations, we have: 

* *2
2 20 0

*2 * * *
( ) ) ( ) 0C T C T

dC dd d
k U k C

dx dx dx dx


            

(35

) 

*2
2 0

0 *2 *
( ( ) )

dCd
t k C U

dx dx
      

(36

) 

 
*2

2 *0
0 0* *2 * *

.
( ( ) ( 1) ( )) ( ) 2C T

dd d Br Le
t Le k U C U

dx dx dx K


                 

 

(37

) 

The above eigenvalue differential system is solved numerically using the sixth order shooting 

method. The largest eigenvalues in the computational domain is only reported. We chose this 

domain to be sufficiently wide to capture all the eigen-solutions. In order to compare and check 

the validity of the present model, the comparisons between the predictions of our analysis with 

0Br   and the results of Islam and Azaiez [18] are shown in Figure 2. In this figure, the 

results obtained from our simulations are shown with line and the results of Islam and Azaiez 

[18] are represented as circles for 2T   and square for 1T   where 1C   , 1   , 

20Le   , 500CPe   and 0 10t  . 
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Fig. 2 Instability characteristic for 1C   , 1   , 20Le   , 500CPe   and 0 10t  : 

comparison between the present results and Islam and Azaiez [18]. 

Figure 3 shows the variation of the growth rate of disturbance as a function of the thermal lag 

coefficient (λ) and the wave numbers for 3C  , 2T  , 1Le  ,
1010Br   and *

0 0.1t  . It 

can be seen that the flow becomes more stable by decreasing λ. This is attributable to a decrease 

in the destabilizing effect of the thermal front on the concentration front when their distance 

from each other is increased.  
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Fig.3 Instability characteristic at different values of λ for 3C  , 2T  , 1Le  ,
1010Br   and *

0 0.1t  . 

 

The variation of the growth rate of disturbance σ for 3C  , 2T  , 0.75  , 1010Br   and 

*

0 0.1t   versus the wave number for different Lewis number ( Le ) is shown in Figure 4. 

According to the figure, the flow is more stable by increasing the Lewis number. The effect of 

the Brinkman number on the growth rate and wave number at 3C  , 2T  , 0.75  , 1Le   

and *

0 0.1t   is shown in Figure 5. It can be seen that the Brinkman number has a stabilizing 

effect on the flow. However due to neglection in higher order terms, this method could not 

completely show the effect of this parameter and nonlinear simulation will therefore be more 

efficient. 
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Fig.4 Instability characteristic at different values of Le  for 3C  , 2T  , 

0.75  , 1010Br   and *

0 0.1t  . 
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Fig.5 Instability characteristic at different values of Br  for 3C  , 2T  , 0.75  , 1Le   

and *

0 0.1t  . 

6. NUMERICAL RESULTS AND DISCUSSION 

In this section, the results of the nonlinear simulations of thermal viscous fingering are 

presented and the effect of viscous dissipation on this instability is investigated. The results 

include concentration and temperature contours, transversely averaged profiles, mixing length, 

sweep efficiency. Furthermore, the effects of Lewis number and the thermal lag coefficient on 

this instability is studied in detail. Unless otherwise mentioned, as presented in Table 1, the 

flows are analyzed for 1300, 2, 3C T CPe      and Br = 10−10 

a.  Grid Study and Verification 

To obtain a grid-independent solution, we consider various structured grids. Table 2 lists the 

grids utilized and the corresponding grid numbers. Due to the random nature of viscous 

fingering instability, the sweep efficiency is used to determine the level of dependency of 

numerical solution to grid numbers. This parameter is an average result of CFD simulation that 

is obtained from all the computational grids. The sweep efficiency of different meshes at 1Le   

and 1   are shown in Figure 6. It is evident that sweep efficiency is approximately equal for 

grids M-3, M-4 and M-5. To ensure that the obtained solution is grid-independent and in order 

to avoid heavy computational cost, we used the grids M-4 for all subsequent CFD simulations 

since these will guarantee the necessary resolution of the flow field and adequate accuracy. 

Table 2. Characteristics of the computational meshes for grid study 

Grid 
Number of cells for 

domain-1 

Number of cells for 

domain-2 

Total number of 

cells 

M-1 6600 22650 29250 

M-2 14850 51075 65925 

M-3 26400 90600 117000 
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M-4 59400 203850 263250 

M-5 105600 362400 468000 

 

 

Fig. 6. The sweep efficiency obtained from different grids at 1Le   and 1   

 

Prior to analyzing the effects of different parameters on the thermal fingering instability, it 

is necessary to verify the results. For this purpose, a comparison between numerical simulation 

and linear growth rate analysis is done to validate our numerical code. Here, as in the earlier 

study of Tan and Homsy [28], the concentration perturbation are considered as a single mode 

in the transverse direction and 0.1% in magnitude and the average growth rate of the discrete 

mode is computed at an early time and compared with linear growth rate analysis results. 

Figure 7 shows this comparison. Inspection of the figure reveals that the results obtained from 

the COMSOL CFD simulations demonstrate very close correlation with those predicted by 

linear stability analysis over a range of wave numbers. Confidence in the COMSOL 

computations is therefore justifiably high. 
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Fig. 7 Comparison of the initial growth rate between the full simulation and the linear 

stability analysis ( 0.75  , 1Le   and 
*

0 10t   ) 

 

b.  Concentration and temperature contours 

We first study the role of viscous dissipation on the growth of instability. For this purpose, the 

obtained results of nonlinear simulation with viscous dissipation included ( 0Br  )are 

compared with the equivalent flow without this term ( 0Br  ). Figure 8 shows the 

concentration and temperature contours for both dissipative and non-dissipative cases with 

Le=1 and λ=1. It is noted that in the absence of viscous dissipation, the fingers grow faster and 

reach the end of the domain. However, in the case of with viscous dissipation, the fingers grow 

more regularly but distinctly more slowly. This is due to the fact that viscous dissipation 

increases the temperature of the flow and hence its viscosity (which is a function of 

temperature) decreases. Since the displaced fluid has a higher viscosity than the displacing one 

(µ1 <µ2), it is faced with stronger viscous hydrodynamic resistance than the displacing fluid. 

Therefore, the ratio of viscosity and the intensity of viscous fingering instability are decreased. 

The delay in reaching the displacing fluid to the end of the path also encourages the entry of a 

supplementary volume of displacing fluid to the area. As a result, more displaced fluid is forced 
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to migrate out of the domain. From comparison between contours, it can be concluded that 

decreases the length of fingers. It can also be seen that the concentration and temperature fronts 

are similar and bunched together at 1 . In this condition, there is no heat transfer between 

the solid and the fluid phases and the convection-diffusion and energy equations act similar to 

each other at λ = 1 and Le = 1. For the case of 0Br  , the double coalescence mechanism is 

identified by a circle in the frame at * 515t  . In this mechanism, two fingers slowly bend to 

their middle finger and merge into its body thereby creating a wider finger. 

 

Fig. 8 The effect of viscous dissipation on concentration and temperature 
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contours ( 1Le   ) 

 

Figure 9 depicts the concentration and temperature contours for Le = 1 and two values of 

the thermal lag coefficient, λ = 0.5 and λ = 0.75. According to the figure, the thermal front 

lags behind the concentration front for 1  . Indeed, decreasing λ leads to an increase in the 

rate of heat dissipation. Therefore, the velocity of thermal front decreases (UT = λU) and it lags 

behind the concentration front. The destabilizing effect of the thermal front on the 

concentration front is decreased and the flow becomes more stable by decreasing 𝜆. The double 

coalescence mechanism is identified by a circle in the frame at * 550t  and the spreading 

mechanism is observed in the frame at * 700t  . In this mechanism, the finger morphs from 

its   horizontal form and becomes wider.  

 

Fig. 9 The effect of thermal lag coefficient on concentration and temperature contours 

)1010Br and 1Le (  

The effect of Lewis number on the concentration and temperature contours is shown in Figure 

10. The Lewis number expresses the ratio of heat diffusion to the molecular diffusion. Via 

comparing temperature contours, it is observed that by increasing the Lewis number, the 

thermal front diffuses with a weakly wavy front and no major fingers are featured. A 

comparison between the concentration contours at the same time shows that the intensity of 

instability decreases by increasing the Lewis number. Indeed, it can be concluded that by 



24 
 

increasing the Lewis number, the destabilizing effect of the thermal front on the concentration 

front is decreased and the level of instability is reduced. A specific type of the tip-splitting 

mechanism is observed in the frame at * 1000t  . Herein the tip of the finger bifurcates 

whereas the penetrating adjacent finger in its body (the coalescence mechanism at * 1100t  ) 

re-vitalizes this finger and prevents the subsequent creation of two branching-fingers at this 

tip. Additionally, the spreading mechanism is identified by an ellipse in the frame at * 1450t 

. 

 

and 0.75( concentration and temperature contourson  Lewis numberThe effect of  10Fig. 

)1010Br  

 

c. Transversely Averaged Profiles 

Inspecting the transversely averaged profile is a classical tool employed for measuring the 

intensity of viscous fingering instability in experimental and theoretical studies. Indeed, the 

study of results obtained from measurement of different parameters in one spatial dimension is 

a suitable approach for understanding the flow behavior in different media. Transversely and 

longitudinally averaged one-dimensional concentration profiles have been presented by 

Zimmerman and Homsy [29] to investigate the fingering instability in porous media with 

anisotropic dispersion. In the present study, the transversely averaged concentration and 

temperature profiles are investigated for some scenarios both with and without viscous 
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dissipation. These parameters as a function of time and longitudinal position can be defined as 

follows: 

* * * * * * *

0
( , ) ( , , )

C

p

Pe
p A

C

A
C x t C x y t dy

Pe



   

(38) 

* * * * * * *

0
( , ) ( , , )

C

p

Pe
p A

C

A
x t x y t dy

Pe



    

(39) 

The transversely averaged concentration profiles at 1010Br   and 1Le    for 

different times are shown in figure 11. According to the figure, at the initial times, the diagrams 

exhibit no oscillations. With time elapse the fingers grow upwards and some peaks are created 

in the profiles. An increasing number of peaks in the transversely average profiles implies that 

the flow becomes more unstable. 

 

 

 .1Le  and  
1010Br Transversely averaged concentration profiles for Fig11  

 

Figure 12 shows the transversely averaged temperature profiles at different time instants. As 

seen in the figure, the temperature is enhanced with the passage of time. This increase in 
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temperature is higher in the displaced fluid since it possesses a higher viscosity and the viscous 

dissipation is also higher. Distortion of curves also increases as the time increases resulting in 

increasing instability in the flow.   

 

 

. 1Le  and  
1010Br Transversely averaged temperature profiles for  12Fig.  

 

The transversely averaged concentration and temperature profiles at 0Br  , 1010Br   and 

* 640t   are shown in Figure 13. As mentioned before and visualized in the concentration and 

temperature contours, viscous dissipation increases the temperature, decreases the viscosity 

ratio and reduces the level of hydrodynamic instability. The same deduction may be made from 

Fig. 9. According to the figure, the transversely averaged temperature profile for 1010Br   is 

located above the case for 0Br   which indicates a higher temperature for 1010Br  .  
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on the transversely averaged concentration and  viscous dissipationThe effect of . 13Fig. 

)1Le  ( 
* 640t temperature profiles at  

 

Figure 14 shows the variation of the transversely averaged concentration and temperature 

profiles as a function of the thermal lag coefficient ( ). The curves apparently have fewer 

distortions for lower values of thermal lag coefficient i.e. the flow becomes more stable by 

decreasing this parameter. The transversely averaged temperature profiles show that the 

increase in fluid temperatures is less for the lower value of  . This is due to an increase in heat 

transfer between the solid and the fluid phases at lower values of the thermal lag coefficient. 

Additionally, by comparing the diagrams of temperature and concentration, the thermal delay 

can be observed distinctly. This delay is more obvious at 0.5  . The transversely averaged 

concentration and temperature profiles for different Lewis numbers are shown in Figures 15 

and 16, respectively. The curves become smoother by increasing Le and therefore, it can be 

concluded that the flow becomes more stable at higher values of Lewis number. Additionally, 

increasing the temperature of fluids resulting from viscous dissipation is less at large Lewis 

numbers. 
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Fig. 14 The effect of thermal lag coefficient on the transversely averaged concentration 

) 1010Br and 1Le ( 
* 640t rofiles at and temperature p 

 

 

on the transversely averaged concentration profiles  Lewis numberThe effect of  5Fig. 1

) 1010Br and 0.75 ( * 640t at  
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Fig. 16 The effect of Lewis number on the transversely averaged temperature profiles at
* 640t    ( 0.75   and

1010Br   ) 

d. Mixing Length 

The degree of penetration of the advancing low viscous fluid through high viscous fluid is 

called the mixing length. This quantity is used to show the level of progressive movement of 

fingers through porous media. Indeed, the mixing length shows the length of the longest finger 

in porous media. In this study, this parameter is measured through the proposed method by 

Zimmerman and Homsy [27]. In this method, the distance between the specific values of the 

averaged concentration is considered as the mixing length. 

* *

1C C
L x x    

   (40) 

Where,   is a small positive number and here it is considered equal to 0.01.  

The variation of mixing length for different values of Br is shown in Figure 17. In the 

previous sections, it was observed that the viscous dissipation has a stabilizing effect. In other 

words, the fingers grow at a slower rate for 0Br   and penetration through the high viscosity 

fluid is slower than the case with 0Br  . Therefore, the mixing length should be lower for 

0Br  . It can be seen that the mixing length decreases by increasing the Brinkman number. 

The variation of mixing length for different values of 𝜆 is shown in Fig. 18. A decrease in 

thermal lag coefficient leads to more stable flow and a reduction in the mixing length. 
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)1Le  on the mixing length ( Brinkman numberThe effect of  Fig. 17. 

)1Le on the mixing length ( thermal lag coefficientThe effect of . 8Fig. 1  

  

 

Figure 19 shows the distribution of the mixing length versus time for different values of Lewis 

number. As mentioned before, at lower values of Lewis number, the fingers are generated and 
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grow faster. For this reason, the mixing length is also high for small Lewis numbers.  

 

 

)0.75 on the mixing length ( Lewis numberThe effect of  9Fig. 1 

 

e.  Sweep efficiency 

The ratio of the volume of displaced fluid to the total volume of available fluid in a porous 

medium in the displacement process is called the sweep efficiency. There are several 

alternative definitions for this parameter. In petroleum engineering, sweep efficiency is defined 

as the ratio of the swept volume of oil by displacing fluid to the total oil in the reservoir and is 

generally used to quantify the effectiveness of the displacement in enhanced oil recovery 

process. In this study, this parameter is defined as the ratio of displacing fluid volume to the 

volume of displaced fluid. The maximum sweep efficiency is obtained when the fingers reach 

the end of the domain. Following Ghesmat and Azaiez [30], this parameter is defined as: 

Sweep efficiency= (the number of grid points where the concentration is equal to or larger than 

0.5)/ (the total number of grid points that are located behind the front defined by * 0.5C  ) 

The variation of sweep efficiency with 𝜆 for different Brinkman numbers is shown in 

Figure 20. According to the figure, the sweep efficiency is enhanced by increasing the viscous 
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dissipation while increasing the thermal lag coefficient induces the opposite effect. These 

trends are consistent with the results of temperature and concentration contours in which the 

level of instability is reduced by increasing Br and decreasing 𝜆. 

Fig. 20. The effect of Brinkman number on the sweep efficiency ( 1Le  ) 

 

Fig. 21 shows the evolution of the sweep efficiency in terms of thermal lag coefficient for 

different Lewis numbers. According to the contours of transversely averaged and mixing 

length, increasing Lewis number and decreasing thermal lag coefficient leads to more stable 

flow. Therefore, the sweep efficiency increases by increasing Lewis number and decreasing 

the thermal lag coefficient. 
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Fig. 21 The effect of Lewis number on the sweep efficiency 

  

f. Breakthrough time 

Sajjadi and Azaiez [20] introduced the breakthrough time as a moment in which the displacing 

fluid is produced at the production end. In the current study, this parameter represents the time 

taken for the fingers in the concentration front to reach the end of the domain and it is measured 

as the time elapsed for the concentration front with * 0.01C   to reach the last grid in the 

longitudinal direction. Figure 22 shows the variation of breakthrough time versus thermal lag 

coefficient for different Brinkman numbers. According to the figure, viscous dissipation 

increases the breakthrough time and this increase is larger with greater values of λ. Since the 

viscous dissipation increases the temperature and subsequently reduces the viscosity ratio, the 

flow becomes more stable and therefore, the growth rate of fingers reduces. Additionally, 

decreasing thermal lag coefficient also leads to an increase in breakthrough time. 

The effect of Lewis number on breakthrough time is depicted in Figure 23. As mentioned 

earlier, the flow becomes more stable by increasing the Lewis number. In light of the 

interpretation already given, the breakthrough time increases.   
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)1Le ( breakthrough timeon the rinkman number BThe effect of Fig. 22  

 

 

Fig. 23 The effect of the Lewis number on the breakthrough time.  
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7. CONCLUSIONS 

In this study, the thermal viscous fingering instability of miscible displacement through porous 

media is investigated. Here, it is assumed that a cold high viscosity liquid is displaced by a hot 

low viscosity one. The non-dimensional conservation equations using a two-phase Darcy 

formulation are solved with the COMSOL CFD software. The hydrodynamic and thermo-

solutal characteristics are explored based on the concentration and temperature contours, the 

averaged concentration and temperature profiles, mixing length and sweep efficiency. The 

main innovative aspect of the present article is the incorporation of the viscous dissipation 

effect in thermo-viscous fingering instability simulation. Viscous dissipation acts as a heat 

source and increases the temperature of both phases. In non-isothermal displacements, due to 

the viscosity dependence on temperature, viscous dissipation may exert an important role on 

Saffman-Taylor instability. The results show that the flow is more stable in the presence of 

viscous dissipation. Additionally, the effect of Lewis number (Le) and thermal lag coefficient 

(𝜆) are investigated in detail. It is found that increasing Lewis number and decreasing thermal 

lag coefficient lead to an increase in sweep efficiency and decrease in mixing length. 

Decreasing 𝜆 manifests in a boost in the heat transfer between fluids and solid phases and as a 

result, the velocity of thermal front decreases and it lags behind the concentration front. Thus, 

the destabilizing effects of the thermal front on the concentration front decreases.  
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