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Abstract 

Walking aids (WAs) aim to improve stability and are used by up to 50% of older 

Europeans. Paradoxically, their use has been linked to a 2-3-fold increase in the 

risk of falling. The reasons of this association are unknown, indeed WA use 

remains poorly understood as clinicians have no objective assessment method to 

identify how stable a person is with a particular WA. This gap in the knowledge 

base justifies further research into what constitutes stable/safe use of WAs.  

This PhD presents the development and demonstration of a novel approach to the 

assessment of stability of WA users. The approach used introduces the concept of 

the combined Stability Margin, which considers the user and their walking aid as a 

single combined system and provides an indication of how close the system is to 

“tipping-over” and, hence, falling. To calculate the combined Stability Margin, the 

Salford Walking Aid System (SWAS) was developed, which comprises force 

sensors (one in each WA leg), two pressure-sensing insoles, infrared cameras, 

and custom-written software. The approach was implemented for three different 

WAs: a pick-up Zimmer frame, a rollator, and, towards the end of the PhD, a front-

wheeled Zimmer frame.  

The SWAS allow for investigation of the combined Stability Margin in relation to 

key factors such as movement patterns, activity type, device loading, and 

environment. Results show that stability is reduced during performance of complex 

tasks such as turning or stepping up a kerb as compared to straight line walking 

and that the strategy used to perform a given task also affects stability. 
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Furthermore, the combined Stability Margin depends on user-specific factors such 

as the amount of body weight transferred onto the device, suggesting that absolute 

values of the combined Stability Margin may not provide a comprehensive measure 

of stability.  Hence, additional analyses are undertaken to explore how the 

combined Stability Margin can be used to distinguish between more and less stable 

users and inform on the most appropriate type of walking aid for a given user. 

Longer term, this research provides the foundations for future prospective falls 

studies, focusing on the role of walking aids in falls and provides a basis for more 

informed WA prescription and user training.
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1 Introduction 

1.1 PhD rationale and overarching objective 

Falls in older adults are a major global health problem due to their incidence, 

severity of consequences and associated costs. Indeed, more than 30% of older 

adults fall every year, and the percentage rises up to 50% for those aged 75 and 

over and those placed in permanent care (Tinetti, Speechley et al. 1988, 

Rubenstein and Josephson 2002, Organization 2007). As a result, those who have 

fallen, often suffer from serious consequences such as depressive syndromes and 

fear of falling (Tinetti, Mendes de Leon et al. 1994, Vellas, Wayne et al. 1997, 

Bloem, Steijns et al. 2003), loss of independence (Age UK 2011), hip and head 

fracture (Campbell, Borrie et al. 1990, Poór, Atkinson et al. 1995, Bloem, Steijns et 

al. 2003, Lisk and Yeong 2014), and even death (Barry, Galvin et al. 2014). 

Moreover, falls result in high medical and socioeconomic costs, which make them 

not only a threat to the health and quality of life of older adults, but also a matter of 

great concern for the government and society. For instance, it was estimated that, 

in 2013, the total cost to the UK Government of falls in the population aged over 

60 was over £2.3 billions (NICE 2013). 

Walking aids are designed to provide structural support for improved stability, to 

help their users remain mobile and independent as long as possible and reduce 

their falls-risk. Hence, older adults considered at increased risk of falling are often 

advised by their clinicians, family, and/or friends to use walking aids:  to date, up 

to 50% of older people in Europe use some type of walking aid (Lofqvist, Nygren 

et al. 2005). However, rather counter-intuitively, walking aid use has been 
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associated with a 2-3 fold increased falls-risk (Deandrea, Lucenteforte et al. 2010), 

which is both surprising and extremely concerning considering the high prevalence 

of walking aid users among the oldest and most frail adults of the population. 

The exact reasons underlying this association are unknown as walking aid use as 

a mean of fall prevention remains an under-researched area. Specifically, there 

are three major gaps in the current knowledge base, each of which need 

addressing in order to improve the effectiveness of walking aids. 

First, the current understanding of walking aid use is very limited. For example, 

previous research in the area has characterised use of a walking aid as a simple 

“yes/no” based on either self-report or whether the person has been seen with one 

by a clinical professional during an appointment (Van der Esch, Heijmans et al. 

2003, Hefflin, Gross et al. 2004, Andersen, Roos et al. 2007, Stevens, Thomas et 

al. 2009). Clearly, these approaches are extremely crude providing no details on 

when or where the device is used, nor for which activities.  Patterns of WA use are 

highly likely to be very complex and influenced by both context and individual 

circumstances, (e.g., the user might or might not use their device to walk to the 

toilet during the night). Moreover, exactly how walking aids are used is also 

unknown, e.g., whether guidance (where provided) from clinicians on how to use a 

WA safely is adhered to. 

Second, and partly a consequence of walking aid use being ill-defined, there is no 

understanding of the link (if any) between falls and walking aid use. Indeed, with 

many older adults denying having fallen (Campbell, Borrie et al. 1990) or being 

unable to recall how the fall happened (Stevens, Thomas et al. 2009), it has not 

yet been established whether walking aids were being used at the time of the fall, 
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and, if so, how (e.g. was the walking aid being used according to guidance? Did 

the fall result from a collision between the device and the surrounding environment 

or between the user and the device?). 

Finally, clinicians have no objective way of quantifying stability of walking aid users 

other than their personal experience and they rely heavily on visual observation. 

Even though it has been reported that most falls occur during walking (Berg, 

Alessio et al. 1997), and that the oldest old, who are the most likely to fall and suffer 

from severe injuries (Tinetti, Speechley et al. 1988, Rubenstein and Josephson 

2002, DH/SC 2009), (Scuffham, Chaplin et al. 2003), are also the most likely to 

use walking aids (Lofqvist, Nygren et al. 2005), research in the field of walking 

stability has focused almost entirely on unassisted walking; to date, no gold 

standard outcome measure of stability exists which adequately considers the user 

and their walking aid. Yet, we argue that to appropriately define “correct” and 

“incorrect” use of walking aids, usage patterns must first be assessed in relation to 

stability. Furthermore, quantification of stability may provide much needed insights 

into underlying mechanisms of the reported falls-risk of walking aid users. Hence, 

the aim of this PhD is to develop a novel, objective outcome measure of stability 

which can be used to narrow the following research question: “What constitutes 

stable walking aid use?”.  

Findings from this work have the potential to inform walking aid prescription and 

user training, and may therefore contribute to one of the key priorities for the 

devolved Greater Manchester Health and Social Care organisation: reducing the 

incidence of falls in older adults. 
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1.2 Thesis structure 

This thesis includes 7 chapters. 

Chapter 2 provides a comprehensive and critical review of the relevant existing 

literature; it aims to highlight the gap in the current knowledge base, leading into 

the overall objective of this PhD, and corresponding research questions, which, 

when answered individually, contribute to meeting the overall objective and 

narrowing the gap in the literature. 

Chapter 3 describes the development of a novel, objective methodology for the 

assessment of walking aid user stability which is generalizable to different types of 

walking aids; specifically, it introduces the concept of the combined Stability 

Margin, which considers the user and their walking aid as a single combined 

system. It subsequently discusses the development of corresponding technology 

required to obtain the necessary measurements for the calculation of the combined 

Stability Margin, and establishes proof-of-concept for the example of a pick-up 

walker, highlighting why this approach is advantageous compared to previous 

methods which looked at either the user or the device alone. Finally, Chapter 3 

demonstrates the application of the proposed methodology in one healthy young 

adult and one older user of a pick-up walker. 

Chapter 4 presents the design, development, and validation phases of an 

instrumented rollator to be used to assess stability of rollator users. The objective 

of this chapter is to explain the design choices and selected instrumentation, to the 

degree of accuracy that can be considered fit for purpose (i.e., the suitability of the 

newly instrumented rollator to serve as a stability assessment tool).  
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Chapter 5 demonstrates the application of the general methodology and 

instrumented rollator developed in the previous chapters in a cohort of rollator 

users and aims to investigate how 1) the type of walking task 2) the amount of body 

weight supported by the walking aid, and 3) the strategy used to perform a 

particular task affect users’ stability. 

As it was observed in Chapter 5 that the Stability Margin is influenced by user-

specific factors and, for this reason, may not provide a comprehensive measure of 

stability, Chapter 6 extends the work undertaken in previous chapters to investigate 

different approaches to interpreting the Stability Margin data. The approaches are 

evaluated on the basis of their ability to distinguish between more and less stable 

users (as judged using gait speed and visual observation). 

Chapter 7 brings together all the outcome measures and analysis techniques 

introduced during this PhD in a final case study, and aims to explore how the type 

of device used and how the environment affect stability of the user-device system. 

For this, one participant who regularly uses 2 types of walking aids (a pick-up 

walker and a front wheeled walker) was tested in 2 different environments (a lab, 

which simulates the open space of a clinic, and a home environment). 

Chapter 8 concludes the thesis as it summarises the novelty, key findings, and 

impact of the work undertaken during this PhD. It further discusses some of the 

issues encountered along the way and elaborates on the limitations of the work. 

Finally, it concludes with a recommendation for future research, to overcome 

limitations and progress towards the long-term aim of improving fall-prevention in 

users of walking aids. 
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2 Literature review 

2.1 Falls literature 

2.1.1 Prevalence, consequences, & associated costs of falls 

The number of older adults in the world has been rapidly increasing during the last 

few decades and this ageing of the world population is set to continue  in the future: 

the number of older adults has been estimated to increase by 56% in the next 15 

years and by 100% by 2050 (United-Nations 2015). Moreover, the “oldest-old” 

group, comprised of those older than 85 years, is growing even faster and is 

projected to increase by 61% in the next 15 years (United-Nations 2015). Population 

estimates for the UK are perfectly in line with these global projections (Large 2015, 

ONS-Digital 2016). 

It is well known that ageing has been associated with several health-related 

problems, including falls and fall-related injuries. More than 30% of community-

dwelling people aged 65 and over fall every year, and the percentage rises up to 

40-50% for those aged 75 and over and those placed in care (Tinetti, Speechley et 

al. 1988, Rubenstein and Josephson 2002, DH/SC 2009). In the United Kingdom 

as many as 700,000 calls for falls in older adults are reported annually by the 

ambulance services (which account for approximately 10% of total calls), and over 

30% of these result in hospital admissions (Scuffham, Chaplin et al. 2003, DH/SC 

2009). 
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 Especially among older people falls lead to serious consequences. About 40% of 

all injury-related deaths occur due to a fall (Barry, Galvin et al. 2014); moreover, 

even if most falls do not cause death directly, their occurrence has been associated 

with significantly reduced survival even beyond the period of injury, especially for 

those fallers who sustained a severe injury such as head trauma or hip fracture 

(Campbell, Borrie et al. 1990, Poór, Atkinson et al. 1995, Bloem, Steijns et al. 2003, 

Lisk and Yeong 2014), which occur in five to ten percent of all falls (Deandrea, 

Lucenteforte et al. 2010). Indeed, 90% of hip fractures are caused by a fall (Baker 

and Harvey 1985, Zuckerman 1996). Subsequent to fracturing their hip, patients 

need complex surgical procedures followed by long and hard rehabilitation 

programmes, and they often develop delirium which increases the risk of 

institutionalisation (Schaafsma, Giladi et al. 2003, Ungar, Rafanelli et al. 2013).  

Less serious fractures are common too: the number of all fall-related fractures is 

higher than the number of strokes/TIA and heart attacks and has increased over 

recent years (Age UK 2011). Furthermore, even without experiencing a physical 

trauma, those who have fallen are likely to develop depressive syndromes and fear 

of falling which may lead to reduced activity levels, loss of independency (50% of 

those who sustained hip fracture can no longer live independently (Age UK 2011)), 

and an increased risk of being institutionalised (Bloem, Steijns et al. 2003, Ungar, 

Rafanelli et al. 2013, Barry, Galvin et al. 2014). Recent studies have also 

established an association between fear of falling, as a negative consequence of 

previous falls, and abnormal protective responses and stiffening, which may 

consequently lead to the degeneration of postural control and loss of stability 

(Bloem, Steijns et al. 2003). In addition, reduced physical activity increases the risk 

of developing new pathologies and further deterioration of existing ones such as 
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cardiovascular diseases or osteoporosis, which increases the likelihood of fracturing 

again. 

Interestingly, in agreement with several epidemiology studies which showed that 

the risk of falling increases with age (Campbell, Borrie et al. 1989, Campbell, Borrie 

et al. 1990, Deandrea, Lucenteforte et al. 2010), it was calculated that, in 1999, the 

rate of A&E attendences for fall related injuries of people aged  75 and older was 

three times higher than for those aged between 60 and 64 (Scuffham, Chaplin et al. 

2003). However, the underlying reasons for this finding are unknown; it may be that  

more people over age 75 fell, or that those of age 75 and over are more likely to get 

injured, or a combination of both. It is known, however, that only 12.6% of A&E 

attendees in the age group 60-64 became in-patients in comparison to 39.0% of 

those in the older age group (Scuffham, Chaplin et al. 2003). One may therefore 

conclude that, similarly to fall risk, the risk of contracting severe injuries also 

increases with age. 

Furthermore, because of the high medical and socioeconomic costs resulting from 

falls, falls are not only a threat to the health and quality of life of older adults, but 

also a matter of great concern for the government and society. It was estimated that 

the total cost to the UK Government of unintentional falls in the population aged 

over 60 was over £2.3 billions in 2013, 59% of which were incurred by the National 

Health Service (NHS) and the remaining 41% covering long term care costs (NICE 

2013). The costs of falls are an issue in most developed countries. In 2009, for 

instance, costs related to falls accounted for the 0.85-1.5% of the total healthcare 

expenses in the UK, EU, USA, and Australia (Hamacher, Singh et al. 2011), and 

costs are expected to further rise by a factor of 1.6 in the next 20 years (Barry, 

Galvin et al. 2014). 
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Considering the costs of falls to the individual and society, it is not surprising that 

increasing efforts are being made to identity effective fall prevention strategies.  For 

example, in Europe alone there are currently four EU funded projects focusing on 

fall prevention in older people, namely ProFouND, E-NO FALLS, the pilot European 

Innovation Partnership on Active and Healthy Ageing, and ProFaNE (Richardson 

2013). However, despite these initiatives, no universally accepted fall prevention 

strategy exists to date.  

2.1.2 Risk factors of falls 

Falls are known to have a multifactorial aetiology (Tinetti 2003). Over 400 risk 

factors for falls have been reported (Hamacher, Singh et al. 2011), and those can 

be grouped into two categories: extrinsic and intrinsic factors.  

Intrinsic factors can be quite complicated to identify. They depend on the person’s 

physical abilities and include age, sex, cognitive impairment, chronic diseases, poor 

balance, muscle weakness, and gait disorders (Deandrea, Lucenteforte et al. 2010). 

Moreover, statistics proved that the risk of falling increases with age (Campbell, 

Borrie et al. 1989, Scuffham, Chaplin et al. 2003, Deandrea, Lucenteforte et al. 

2010) and pathological conditions such as visual impairments, arthritis, and history 

of stroke (Campbell, Borrie et al. 1989).  

Extrinsic factors, on the other hand, comprise environmental hazards both indoors 

(Campbell, Borrie et al. 1990) and outdoors (Li, Keegan et al. 2006, Kamp, Santos 

et al. 2014), use and number of medications (particularly sedatives, 

antihypertensives, antiepileptics, and antidepressants (Rubenstein 2006)), and 

activity-related factors such as dual-tasking (Shumway-Cook, Woollacott et al. 

1997, Bloem, Steijns et al. 2003, Hyndman and Ashburn 2004, Bautmans, Jansen 
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et al. 2011, Baetens, De Kegel et al. 2013). Finally, and the motivation for this 

dissertation, the use of walking aids has been associated with increased falls-risk: 

in particular, it has been estimated that falls-risk is 2-3 times higher when using a 

walking aid (Deandrea, Lucenteforte et al. 2010). This association is surprising, 

considering that walking aids are designed to provide structural support for 

enhanced mobility and stability. Research yet needs to investigate possible reasons 

for this paradox. 

2.2 Walking aids 

This section is concerned with walking aids such as walking sticks, crutches, and 

walking frames (with and without wheels), which provide structural support and 

thereby assist a person to walk. Walking aids are also often referred to as 

“ambulatory assistive devices”, “mobility aids” or “mobility devices”, but walking aid 

will be used throughout this thesis to include all related work.  

The main purpose of walking aids is to provide structural support for improved 

stability and mobility, to enable their user to better perform the principal activities of 

daily living, enhance independence and engagement with society, and 

consequently to postpone admission to a care home or hospital. This is achieved 

through the “legs” of walking aids providing additional contact points with the 

ground, thereby increasing the base of support “BoS” which is the area outlined by 

the feet in contact with the ground (Figure 2.1). In general, the larger the BoS is, the 

easier it is to maintain the vertical projection of one’s centre of mass “CoM” (the 

point where the entire mass of the body is concentrated) within the boundaries of 

the BoS, and in standing balance this is associated with good stability. Today, a 

wide range of walking aids are commercially available to meet different user needs 
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and preferences. This section discusses types of walking aids available and their 

prescription, as well as benefits and problems associated with their use.  

 

Figure 2.1: Base of support “BoS” shaded in red and vertical projection of the centre of 
mass “CoM” (dashed line) without and with an ambulatory assistive device. 

2.2.1 Types of walking aids and their prevalence  

In those of age 75-89, 12-25% use a walking aid indoors, exact numbers pending 

on the country of origin (Foley, Prax et al. 1996, Lofqvist, Nygren et al. 2007, Cetin, 

Muzembo et al. 2010). For walking outdoors, percentages of users have been 

reported as high as 47%, and over time numbers generally increase in this 

population, and with changes from less to more structurally supportive walking aids 

(Lofqvist, Nygren et al. 2005). The different types of walking aids available and their 

respective prevalence are discussed in the following sections.  

2.2.1.1 Walking sticks  

Walking sticks, sometimes referred to as ‘canes’, (Figure 2.2A-D), are used in 

European countries by 15-28% of community-dwelling adults aged over 75, and are 

the most common walking aid (Lofqvist, Nygren et al. 2005). In the United States, 

10% of those age 65 and over have been reported to use a walking stick (Kaye, 
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Kang et al. 2000), with the total number of users approximately being 3,200,000. 

The proportion of users increases to about 27% in those age 85 and above (Kaye, 

Kang et al. 2000). Walking sticks are easy to use, manoeuvrable, suitable for indoor 

and outdoor environments, lightweight, and, equally important, socially well 

accepted (Lam 2007). Different types exist, including standard walking sticks 

(Figure 2.2A) and offset walking sticks (Figure 2.2B), the latter of which have a 

curved handle that helps distribute the weight directly over its shaft. Some have 

three or four feet and those are referred to as tripod (Figure 2.2D) and 

tetrapod/quadripod walking sticks, respectively. Multiple feet have the advantage 

that the walking stick can stand on its own, allowing the person to use his or her 

hands without having to find a stable support to lean the device on, thereby 

minimizing the chance of tripping and falling. 

 

Figure 2.2: A) Standard walking stick, B) Offset walking stick with curved handle to 
distribute the weight over the shaft, C) Standard walking stick with an ergonomic Fisher 
handle, and D) Tripod walking stick with curved handle. 

2.2.1.2 Crutches  

A European study showed that, depending on country, 0.03% to 4% of those age 

75 and older use crutches (Lofqvist, Nygren et al. 2007). In the United States, an 
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estimated 155,000 people age 65 and over report to use crutches, which is about 

0.5% of this age group, and this percentage remains largely unaffected when 

looking at those age 85 and above (Kaye, Kang et al. 2000). As for walking sticks, 

there are different types of crutches available for purchase, including forearm, 

axillary, and platform crutches (Figure 2.3). In addition to the fact that they can be 

used both indoors and outdoors and can support the user to climb stairs, the main 

advantage of using these devices is that they can provide 100% weight bearing 

support if two of them are used, while one crutch is able to provide up to 80% weight 

bearing support (Joyce and Kirby 1991, Bradley and Hernandez 2011).  

 

Figure 2.3: A) Forearm crutches, B) Axillary crutches, and C) Platform crutches. 

2.2.1.3 Walking frames  

Walking frames, also referred to as “walkers”, are increasingly owned by older 

adults as their age increases: it was estimated that only 2% of people aged under 

75 own a walking frame, while up to 9% of those aged 75 and over (Edwards and 

Jones 1998, Lofqvist, Nygren et al. 2005) have one (with a peak of 26% in Sweden) 
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(Lofqvist, Nygren et al. 2005). Numbers are similar in the United States where 

walking frames, being the second most common walking aid after walking sticks, 

are used by approximately 4.6% of those age 65 and older (total number of users 

approximately being 1,421,000)  (Kaye, Kang et al. 2000). Moreover, as for walking 

sticks, prevalence of walking frames in the United States increases with age, with 

approximately 17% of adults aged 85 and over reporting to use a walking frame  

(Kaye, Kang et al. 2000). In general, through their four, or, less commonly, three 

legs, walking frames offer a high degree of stability and provide the greatest base 

of support of all walking aids. As for the other devices described previously, different 

types can be purchased. Walking frames can be divided into two main categories: 

pick-up walkers and wheeled walking frames (Figure 2.4A-D). Pick-up walkers have 

no wheels and must be lifted forward by their user (Figure 2.4A), thereby 

significantly altering the gait cycle since the user has a prolonged stance phase 

during which the frame is lifted forward. Those with wheels can have two wheels in 

the front but none at the rear (front-wheeled walking frames, Figure 2.4B), or may 

have a total of three or four wheels, with a wheel at the end of each of their legs, 

and these are also referred to as “rollators” (Figure 2.4C & D). Since pick-up walkers 

do not have wheels they cannot roll away from their user, hence are providing 

greater structural support when grounded. Front-wheeled walkers with wheels 

attached only to the front legs of the frame, have also a reduced risk of rolling away 

as long as all four legs are on the ground. Pick-up walkers and front-wheeled 

walking frames are primarily designed for indoor use where it is less likely that their 

legs without wheels get caught on ground irregularities, whilst rollators with three or 

four wheels can be used indoors and outdoors and are able to overcome small 

bumps and cracks in the pavement. Rollators often include a seat, and furthermore 
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may contain a food tray or a basket for shopping bags and other items. Hand breaks 

allow the user to stop them from rolling away on slopes or when sitting down on the 

seat.  

 

Figure 2.4: A) Pick-up Walker, B) Front wheeled walker, C) Three wheeled walker, and 
D) Four wheeled walker. 

It must be noted that the reported prevalence of walking aids somewhat differs 

between countries and this may in part be due to the fact that walking aids can be 

purchased without a prescription, making gathering accurate data on ownership 

extremely difficult. In fact, self-purchase without medical consultation has been 

reported as high as 80% of the total number of users of rolling frames (Liu 2009). 

Finally, it is noteworthy that walking aid ownership has shown to be different in men 

and women: one study showed that in the UK 35% of older men own a walking stick, 

as compared to 27% of women, yet 1% of older men own a walking frame, as 

compared to 5% of women (Edwards and Jones 1998).  

In summary, a range of walking aids exist, including different types of sticks, 

crutches and frames, and a generally increased use and use of more supportive 

devices can be observed over time  (Lofqvist, Nygren et al. 2007). Prescription can 
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support device selection, i.e. matching walking aids to users, and user guidance 

may facilitate effective usage of the chosen walking aid.  

2.2.2 Prescription of walking aids and user guidance  

2.2.2.1 Device prescription  

Prescription of walking aids is a complex issue: a range of walking aids exist, for 

diverse groups of users ranging from generally healthy older adults to stroke 

survivors and older adults with conditions such as dementia, multiple sclerosis, and 

similar.  

Standard walking sticks (Figure 2.2 A) may improve stability in case of a moderate 

level of impairment such as mild sensory or coordination problems (Bateni and Maki 

2005, Bradley and Hernandez 2011), however, they are generally not suitable for 

patients who need to transfer some of their weight through the walking aid  (Bradley 

and Hernandez 2011). When more body weight support is required, then other types 

of walking sticks may be preferred. For example, for those who need to occasionally 

offload their lower limbs to get relief from pain due to knee or hip osteoarthritis, an 

offset cane (Figure 2.2 B) is considered appropriate (Lam 2007, Bradley and 

Hernandez 2011) as its handle helps distribute the weight directly over its shaft. 

Moreover, sticks with multiple feet allow for a wider base of support of the device, 

therefore providing greater stability to those people who require substantial weight 

bearing such as hemiplegic patients (Bradley and Hernandez 2011).  

Crutches are suitable for patients who are only partially or not at all able to bear 

weight on one leg, often as a result of an injury, and who need to transfer 

considerable weight to their arms, generally to an extend above what is possible 
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with walking sticks. However, since crutches require substantial oxygen 

consumption and arm and shoulder strength, they are often inappropriate for frail 

older adults (Bradley and Hernandez 2011).  

Perhaps with the exception of rollators, walking frames, and especially pick-up 

walkers, are predominantly for those that have a severe level of disability (Edwards 

and Jones 1998). Pick-up walkers (Figure 2.4 A) remain the most appropriate 

solution for those who need significant structural support when standing and 

walking. Examples of users include patients recovering from hip replacements or 

lower limb amputation, and older adults who have lower extremity weakness due to 

cardiovascular or musculoskeletal impairments (Pardo, Deathe et al. 1993, Pardo, 

Winter et al. 1993, Tsai, Kirby et al. 2003), severe myopathy, or neuropathy (Bradley 

and Hernandez 2011) - but who still have enough upper body strength to lift the 

pick-up walker up and move it forward (weight of which is approximately 2 Kg) 

before stepping. This movement pattern requires attention and also energy costs, 

as suggested by the increased heart rate of users compared to unassisted walking 

and/or wheeled walker use (Foley, Prax et al. 1996, Cetin, Muzembo et al. 2010), 

and further requires good coordination and balance control whilst the device is 

airborne: collisions with third objects may perturb the user’s postural control, and 

the device itself may interfere with the user’s limbs during balance recovery (Bateni, 

Heung et al. 2004, Bateni and Maki 2005). Front-wheeled walkers (Figure 2.4B), on 

the other hand, require that the user lifts the rear legs in time with their stepping, 

especially when turning (Kloos, Kegelmeyer et al. 2012); however, the reality is that 

often users let the rear legs slide along the floor (Nekoukar and Erfanian 2013) and 

this has been implemented in recent clinical guidance documents. Front-wheeled 

walkers stay steady when their rear legs are on the ground. Such walkers are 
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therefore appropriate for those who need substantial support but are unable to fully 

lift a pick-up walker (Bradley and Hernandez 2011). In addition, they are of particular 

benefit to patients with Parkinson Disease, as they may reduce “freezing” of gait 

induced by pick-up walkers (Bradley and Hernandez 2011). However, it is important 

that the user is able to control the distance of the device to their body, to stop it from 

“rolling away”.  

Three or four wheeled walking frames (rollators) (Figure 2.4 C & D) are particularly 

suitable for those people with reduced balance but who do not need to transfer 

considerable weight, to have support and gain confidence, and potentially enable 

them to walk longer distances outdoors. People with respiratory diseases who often 

need to stop walking to rest are an example of patients for whom a rollator may be 

suitable (Bradley and Hernandez 2011), especially because most rollators include 

a seat on which the user may sit when a break is needed. However, rollator use 

increases attentional demands, especially when negotiating slopes or obstacles 

such as kerbs: if the brakes are not hit promptly due to a slowed reaction or hand 

weakness, or if the user does not remember to lock the brakes before sitting, a 

rollator may cause its owner to fall.  

The purpose of all these walking aids is to provide structural support for enhanced 

mobility and stability when standing and walking throughout the day. Hence it seems 

logical that at the time of prescription the user’s general physical abilities and, quite 

critically, walking stability with a given walking aid should be considered, together 

with personal preferences and needs that, if ignored, may lead to device 

rejection/disuse. Some guidance is available that aims to support prescription of a 

single type of walking aid, for example (Lam 2007). Others have drawn up more 

comprehensive decision diagrams that consider various pathologies and a range of 
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devices (Van Hook, Demonbreun et al. 2003, Elmamoun and Mulley 2007). 

However, quantitative validation of any of these proposed guidelines in relation to 

improved walking stability and reduced falls-risk is lacking. At this time healthcare 

professionals’ approach to prescription of WAs heavily relies on clinical experience 

and remains unsupported in terms of objective and established outcome measures 

(Martins, Santos et al. 2015). As a result, the prescription process can vary between 

different assessors and may, or not, include eyesight, hearing, cognition, grip 

strength, sitting balance, and leg strength to reach their decision. Moreover, 

prescription by a clinician is not the most common way of acquiring a WA; a sample 

of wheeled walker user residents in the US revealed that only 39% of them obtained 

their walker through a health care professional’s prescription, while the remaining 

61% based their decision on friends’ or family’s advice. Another study of rollators 

reported numbers of self-purchase without medical consultation being as high as 

80% of the total number of users (Liu 2009).  

 

2.2.2.2 User guidance  

A vast amount of clinical and manufacturer leaflets exists that aim to provide 

guidance to users of walking aids. Guidance tends to be brief, although leaflets that 

inform on use of rollators are generally more comprehensive in comparison to those 

of other walking aids, and this may be due to their more versatile use, especially 

outdoors. A summary of the most common instructions found in leaflets from clinics 

and manufacturers is shown in Figure 2.5, although the level of detail differs 

between clinical trusts and/or manufacturers.  
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Whilst these basic instructions appear sensible, they do not address everyday 

challenges such as avoidance of door frames/furniture or crossing of obstacles such 

as tree roots. Most importantly, their merit has to date not been validated in relation 

to user stability. Moreover, 81% of the total number of users, including those who 

received theirs following prescription, declared to never have received any 

instruction on how to use it (Liu 2009). At this time it is unknown whether the match 

between user and device as is presently achieved in clinical practice or through self-

purchase, and current user guidance and training, do indeed facilitate frequent, 

stable device use in the real world. Nevertheless, a range of benefits of walking aids 

have been reported.  
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Figure 2.5: Common user guidance for walking aids as can be found in clinical and 
manufacturers’ leaflets. 
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2.2.3 Benefits and effectiveness of walking aids  

Walking aids such as walking sticks and walking frames have been designed to 

reduce falls-risk and enhance mobility (Bateni, Heung et al. 2004), yet only a few 

studies have investigated their benefits and effectiveness. Walking aids have shown 

to improve functional independence (Mann, Hurren et al. 1995), walking speed and 

confidence (Balash, Hadar-Frumer et al. 2007, Lucki, Bach et al. 2009), and 

performance of clinical mobility tests (Lucki, Bach et al. 2009).  

One study assessed standing balance on a balance platform in patients with 

peripheral vestibular disorder with and without a walking stick, and found sway to 

be reduced with the stick (Nandapalan, Smith et al. 1995). Use of a walking stick 

has also shown to reduce muscular effort (Buurke, Hermens et al. 2005), and a 

simple walking stick with an ergonomic handle, as compared to a quadripod walking 

stick, has shown to be more beneficial in terms of walking velocity (Allet, Leemann 

et al. 2009). One study reported on the relationships among walking stick fitting, 

function and falls (Dean and Ross 1993), however, the authors relied on self-report 

regarding subjects’ ability to perform standardized clinical assessment tests that 

characterize balance, and also relied on self-report of falls, despite self-report being 

often compromised in older adults (Levy, Holmes et al. 2003, Chase 2013). 

Nevertheless, they considered relationships between different factors, thereby 

recognizing the complexity of what contributes to effective walking aid use, i.e. 

recognizing it is a multifactorial issue.  

More recently, it has been reported that rollator-usage during self-paced outdoor 

walking improved distance walked and time taken to walk that distance in individuals 

with chronic obstructive pulmonary disease (Vaes, Meijer et al. 2015). The same 
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patient group showed reduced disability (assessed using the Barthel Index) 

following rollator use (Yohannes and Connolly 2003). Moreover, rollators generally 

impact less on the user’s gait pattern as they allow for a faster walking speed and 

require less energy (Tsai, Kirby et al. 2003, Bateni and Maki 2005). Yet it must be 

noted that these studies involved only a single type of assessment, or a single 

patient group or device (Nandapalan, Smith et al. 1995, Tsai, Kirby et al. 2003, 

Vaes, Meijer et al. 2015).  

It seems reasonable to assume that walking aid effectiveness is reflected in frequent 

device usage, associated high levels of upright mobility, and a stable walking 

pattern with the device. However, to date these key factors of walking aid 

effectiveness are poorly understood.  

Regarding frequent use of walking aids, it is largely unknown how often and for what 

tasks walking aids are used outside the clinic, and when they are not being used. 

Previous research defined walking aid use as a simple “yes/no” based on either 

self-report,  hospital records (Van der Esch, Heijmans et al. 2003, Hefflin, Gross et 

al. 2004, Stevens, Thomas et al. 2009), whether the person attended a clinical 

appointment with a walking aid, or whether they had been previously seen using 

one (Andersen, Roos et al. 2007). However, such approaches are limited as they 

depend on the accuracy of users’ self-report and hospital staff’ note-taking or are 

based on observations made during a very narrow time window, which may or may 

not reflect everyday use. Indeed, self-report on general daily walking aid use 

provides, at best, a summary of patterns of use and may be compromised, 

especially among those in the most vulnerable and oldest-old groups who have 

difficulties with accurate recall (Chase 2013). Moreover, it is unknown to what extent 

user satisfaction influences frequent device use. Finally, at this time we do not 
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understand what constitutes stable walking with walking aids. Considering the scale 

of the health problem (an increase in walking aid users in our ageing population), 

this lack of understanding regarding the effectiveness of walking aids is a concern, 

as is the number of problems that have been reported in relation to usage of walking 

aids.  

2.2.4 Problems with walking aids and falls-risk  

2.2.4.1 Problems with walking aid use  

Specific drawbacks are associated with each walking aid. For example, the 

increased width of multi-footed walking sticks represents a potential tripping hazard 

according to clinical experience (Independent-Living-Centre 2013), and also 

increases stance phase duration and gait asymmetry (Laufer 2003). Hence, 

although tri- and quadripod sticks enhance stability and safety through their free 

standing property, they also demand additional attention during walking and require 

good cognitive ability. Incorrect use of axillary crutches, on the other hand, may 

cause nerve or axillary artery compression (Faruqui and Jaeblon 2010), and 

generally crutches require substantial oxygen consumption and arm and shoulder 

strength (Bradley and Hernandez 2011). Furthermore, three-wheeled rollators have 

shown to increase step time as well as variability in the gait pattern, and it has been 

proposed that this may be due to their triangular shape which provides less 

mediolateral stability as compared to four-wheeled models (Kloos, Kegelmeyer et 

al. 2012). Finally, there is some evidence that walking aids may cause tripping, 

either over the device itself (Bateni, Heung et al. 2004) or through collision with other 

objects such as doorframes (Bateni and Maki 2005, Tung, Chee et al. 2015, 

Lindemann, Schwenk et al. 2016) which can compromise the user’s postural control 
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(Andersen, Roos et al. 2007, Stevens, Thomas et al. 2009). Moreover, aspects of 

design have shown to increase the risk of collision of the lower limbs with the aid 

(Maki, Cheng et al. 2008).  

Furthermore, a survey of walking frame users showed that 42 out of 69 users report 

problems related to their frame, and more than half of the problems were classified 

as “difficult and/or dangerous”  (Mann, Hurren et al. 1995). Another study reported 

concerns such as “…could it [the walking frame] overturn when used; was it really 

stable?” (Skymne, Dahlin-Ivanoff et al. 2012). Moreover, walking frames are 

perceived to be heavy and tiring to use (Tsai, Kirby et al. 2003), and difficulties on 

slopes have been reported (Lindemann, Schwenk et al. 2016, Lindemann, Schwenk 

et al. 2017). It is noteworthy that a reported 30% to 50% of people abandon their 

device, some as soon as they receive it (Van der Esch, Heijmans et al. 2003, Bateni 

and Maki 2005), hence device rejection/disuse is a major problem that limits 

effectiveness of walking aids.  

In summary, all walking aids have certain drawbacks associated with their use. Yet, 

to date problems with their use have received only little attention in the 

biomechanics and movement science literature, and what is known is primarily the 

result of clinical experience and users’ feedback. This gap in the knowledge base is 

of particular concern considering that use of walking aids has been linked to an 

increased falls-risk. 

2.2.4.2 Falls-risk in users of walking aids  

While walking aids can enhance mobility via provision of additional support through 

the upper extremities, their prescription alone does not eliminate risk of falling (Todd 

and Skelton 2004, Dionyssiotis 2012), in fact, for reasons unknown, use of a walking 



 

26 
 

aid has shown to be an indicator of increased falls-risk. Research in a group of 100 

hospitalized patients found that those who fell were more likely to have used walking 

aids (Morse, Tylko et al. 1987), and a recent meta-analysis reported their use to be 

a risk factor for falls in community-dwelling older people (Deandrea, Lucenteforte et 

al. 2010). Interestingly, falls-risk of rollator users has been reported to be 7 times 

that of users of walking sticks (Stevens, Thomas et al. 2009). In agreement with 

these findings, adverse events such as lacerations, fractures, and contusions have 

been directly linked to falling with walking sticks, crutches and walkers (Hefflin, 

Gross et al. 2004). In the United States it has been estimated that 47,312 fall-related 

injuries treated annually in the emergency departments are associated with use of 

walking aids at the time of the fall, and of these 78.3% are related to walkers 

(Stevens, Thomas et al. 2009).  

Only few circumstances leading to falls of users of walking aids have been reported, 

for example, whilst use of only one crutch makes it easier to manoeuvre around, 

doing so has been associated with an increased falls-risk (Gil-Agudo, Perez-Rizo et 

al. 2009). Unfortunately, regarding the reporting of walking aid-related falls, 

circumstances are often reported as “walking, not otherwise specified” (Stevens, 

Thomas et al. 2009), and, to date, no objective data exist on whether or not a 

walking aid was being used at the time when the fall occurred, preventing a thorough 

understanding of the underlying causes. At this time, we therefore cannot infer that 

walking aids are directly placing patients at increased falls-risk, however, their 

association with an elevated falls-risk does indicate that their effectiveness merits 

further study. As discussed above (Section 2.1.2), falls in general have a multi-

factorial aetiology, involving a range of intrinsic (e.g. muscle weakness) and 

extrinsic (e.g. uneven ground) factors. Use of walking aids itself has been classified 
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as a “nonspecific” factor in relation to falls-risk, which cannot be prevented 

(Deandrea, Lucenteforte et al. 2010). Whilst users of walking aids are without doubt 

intrinsically vulnerable and hence likely to fall, this statement remains debatable 

considering that at this time it is unknown what influences stable use of walking aids. 

To improve current understanding of the relationship between use of walking aids 

and falls, specific factors that may play a unique role in the falls-risk of users yet 

require investigation: 1) bad design (Maki, Cheng et al. 2008), 2) ineffective 

(“incorrect”) match between user and device (Todd and Skelton 2004); 3) ineffective 

(“incorrect”) use of device (Morse, Tylko et al. 1987), for example use of walkers on 

steps and stairs (Stevens, Thomas et al. 2009), 4) device rejection/disuse (Morse, 

Tylko et al. 1987, Andersen, Roos et al. 2007), 5) defect devices, 6) increased 

activity following prescription (enhancing risk exposure), or any combination of 

these may limit their effectiveness. However, to which extend each of these factors 

contributes to occurrence of falls in walking aid users is presently unknown; there 

remains a need for additional research regarding walking aids to improve fall 

prevention (Kuan, Tsou et al. 1999, Tsai, Kirby et al. 2003, Bateni and Maki 2005, 

Gil-Agudo, Perez-Rizo et al. 2009, Stevens, Thomas et al. 2009, Kloos, Kegelmeyer 

et al. 2012, Wang, Merlet et al. 2016). 

2.3 Characterizing stability for walking aid use  

Prompted by the above reported links between walking aid use and falls, Section 

2.3 will discuss the current knowledge base concerned with assessment of walking 

stability of both, the person and their walking aid.  

From the manufacturers’ point of view, international ISO standards (ISO11199-1 for 

walking frames, ISO11199-2 for rollators, and ISO11334-4 for walking stick with 

three or more legs) specify requirements and methods to test static stability of 
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walking aids. The procedure, which is similar for all types of walking aids mentioned, 

requires to firmly place the walking aid on a plane that can be tilted, apply a static 

vertical force equal to 250 N through the handgrips, and increase the inclination of 

the plane until such point when the walking aid “tilts” (i.e., tips over). The tests are 

repeated in different directions (i.e., forward, backwards, and sideways) and the 

angle between the plane and the horizontal at which the walking aid tilts is recorded. 

The force applied to the walking aid, although not justified, seems reasonable based 

on recommended weight bearing ability of the individual walking aids (Disabled 

Living Foundation 2018), however, these tests involve static conditions only, and 

their relevance to everyday use or clinical practice is not discussed. 

In contrast to simplistic manufacturers’ tests, most studies of assisted gait to date 

have largely focused on the gait parameters of the individual, assuming that the 

more the kinematics/kinetics resemble those of a healthy individual, the more stable 

the user is (Kuan, Tsou et al. 1999, Tsai, Kirby et al. 2003, Bateni and Maki 2005, 

Gil-Agudo, Perez-Rizo et al. 2009, Kloos, Kegelmeyer et al. 2012, Wang, Merlet et 

al. 2016). Comparisons of standard temporal and spatial gait parameters and 

walking speed obtained for walking with walking aids to values typically expected in 

unassisted walking are generally based on the underlying hypothesis that the 

walking aid which most successfully restores a natural gait pattern resembling 

unassisted, healthy walking is to be preferred (Hreljac 1993, Kuan, Tsou et al. 1999, 

Kloos, Kegelmeyer et al. 2012). However, these standard gait measures do not 

provide a clear link to stability. Walking at a slower speed may, for example, 

enhance stability when using a walking aid, as it allows the user more time to better 

control their own movements in combination with moving the device (Crosbie 1994, 

Yeung, Chow et al. 2012). The following sections will hence go beyond study of 
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basic gait parameters and discuss stability, specifically: 1) stability measures 

developed for assessment of the individual alone walking unassisted, 2) stability 

measures for assessment of the walking aid alone, and 3) stability measures 

developed for multi-legged robots, because the user and their walking aid  may be 

considered a combined multi-legged system which, depending on the type of 

walking aid, has a minimum of 3 feet (user’s two anatomic feet + the foot of a walking 

stick) and a maximum of 6 feet (user’s two anatomic feet + four feet of a walking 

frame). 

2.3.1 Stability of the individual  

Although falls with walking aids are reported, the biomechanics literature concerned 

with quantification of walking stability has largely focused on unassisted walking, 

i.e. measuring stability of the person. For example, research demonstrated that 

standing balance requires control of the position and velocity of the body’s centre of 

mass within the stability limits, i.e. the boundaries of the base of support (Pai and 

Patton 1997) (see also Figure 2.1), while dynamic balance during walking is more 

complex since control of the momentum of the body mass occurs in relation to the 

continuously changing base of support (Lee and Chou 2006, Chen and Chou 2010). 

Studies of unassisted walking have reported that centre of mass movement 

characteristics are associated with balance impairments in older persons (Kaya, 

Krebs et al. 1998, Lee and Chou 2006, Chen and Chou 2010) and acceleration 

patterns of the head, torso & pelvis have shown to be indicative of falls-risk (Moe-

Nilssen 1998, Menz, Lord et al. 2003, Marschollek, Wolf et al. 2008, Narayanan, 

Redmond et al. 2010). Furthermore, in unassisted walking, linear and non-linear 

variability of basic gait parameters such as stride, swing, and stance time have been 
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used to infer on stability as such measures have shown to discriminate between 

fallers and non-fallers (Hamacher, Singh et al. 2011). Critically, these methods 

assume periodicity of the gait cycle and large numbers of strides are generally 

required to calculate meaningful variability outcomes (Jordan, Challis et al. 2007, 

Toebes, Hoozemans et al. 2012, Bisi, Riva et al. 2014, Riva, Bisi et al. 2014). In 

contrast, Hof et al., have assessed stability in unassisted walking using the concept 

of the stability margin computed from the position and velocity of the centre of mass 

“CoM” (Hof, Gazendam et al. 2005). Such method, however, is only valid under the 

assumption that human walking can be described using inverted pendulum models 

(Hof, Gazendam et al. 2005, Hak, Houdijk et al. 2013).  

In conclusion, basic gait measures such as walking speed do not inform on stability, 

whilst more complex measures are often based on the assumption that gait is 

periodic or that gait can be modelled as an inverted pendulum. Walking aids, 

however, impose a movement pattern that affects the periodicity of gait and 

generally invalidates the assumption of inverted pendulum balance, as two or more 

legs (of user and/or device) are in contact with the ground for parts of the movement 

cycle. Hence measures previously used to characterize stability of unassisted 

walking are not transferable to walking with a walking aid. For assessment of 

assisted walking stability, measures must consider the unique movement patterns 

walking aids impose upon their user as well as the dynamics of the walking aid itself: 

the interaction between the user and their device must be taken into account. The 

following sections discuss methodologies that have been specifically developed for 

stability assessment of walking aid users.  
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2.3.2 Stability of walking aids  

In contrast to methods which focused entirely on the user, methodologies that were 

concerned with stable use of walking aids relied predominantly on interpreting 

movements and loading of the walking aid alone to infer on the user’s stability 

(Pardo, Deathe et al. 1993, Pardo, Winter et al. 1993, Deathe, Pardo et al. 1996, 

Wu, Au et al. 2008, Ming, Bai et al. 2009). For example, the SmartCane is a modified 

walking stick that includes load cells, accelerometers and rate gyroscopes, and 

which informs on usage patterns with regard to weight dependence, hand grip force, 

and walking stick orientation (Au, Wu et al. 2008, Wu, Au et al. 2008), however, it 

does not directly measure stability. Similarly, different types of walking frames have 

been instrumented with force sensors to obtain the frame’s vertical ground reaction 

force “Fz” and its location, the frame’s centre of pressure “CoP”, which together 

regulate device stability. Specifically, Pardo et al. were the first to integrate strain 

gauges into the legs of a frame, which, in combination with foot switches, allowed 

for labelling of walker-assisted gait phases and events and subsequent calculation 

of device loading and device CoP (Pardo, Winter et al. 1993). Stability can then be 

quantified by calculating the distance from the device’s CoP to the nearest edge of 

the device’s BoS, which is often referred to as the stability margin: the smaller this 

distance, the less stable the device is, and if zero, the device is at the point of tipping 

over. It is surmised that the user’s overall stability is reduced at smaller device CoP-

BoS distance values, and increasingly so for higher levels of device dependency, 

i.e. when the device supports substantial amounts of body weight. Subsequently, 

the authors derived the Walker User Risk Index which informs on the amount of 

support that the user would lose, should the device suddenly be removed (Pardo, 

Deathe et al. 1993) and their methodology has been further adapted since: Ming et 
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al. built on their approach and defined the Walker Tipping Index (WTI) that estimates 

the tendency of the device to tip over in both, anterior-posterior and mediolateral 

direction (Ming, Bai et al. 2009). Tung et al. then developed the iWalker (Tung, Chee 

et al. 2015), a rollator which contains load cells inside each leg and similarly 

measures the total vertical load applied to the device, from which the device CoP 

may be calculated. The iWalker additionally includes video cameras that record foot 

positioning as well as the environment, to inform on device collisions with the user’s 

feet or environmental features such as door frames. In line with his predecessors, 

the iWalker evaluates stability based on excursions of the device’s CoP and the 

user’s reliance on their device in terms of body weight support. However, these 

approaches which measure only the forces on the device alone cannot inform on 

stability during those periods where the device is airborne, e.g., when crutches, a 

walking stick, or a pick-up walker are lifted up and forward by their user. Moreover, 

even when grounded, situations do exist where inference on stability based on the 

device’s CoP-BoS relationship alone is misleading, as will be discussed in Chapter 

3. 

2.3.3 Characterizing stability of multi-legged robots 

Building on approaches that focused on the device alone, the user and device can 

be treated as a multi-legged system, comparable to a multi-legged robot (Figure 

2.6) which at any time can have between 1 or 6 feet in ground contact depending 

on the type of walking aid, whether the user is in single support or dual support, and 

whether their device is airborne or partially or fully grounded. For example, a walking 

stick user during the swing phase of their walking stick generally has only one 

anatomic foot in contact with the ground, but as soon as the walking stick and swing 
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leg are no longer airborne, a total of three feet are grounded: two anatomic feet plus 

the foot of the walking stick. A rollator user, on the other hand, has five feet in ground 

contact during the swing phase of gait: their stance foot plus the 4 wheeled “feet” of 

the rollator; once dual support begins, a total of six feet will be grounded: the two 

feet of the user plus the four wheeled “feet” of the device.  

 

Figure 2.6: Simplified schematic of a multi-legged robot: the red shaded area represents 
the base of support for the 3 legs in ground contact. 

Therefore, the principal outcome measures used to assess and control stability in 

walking robots have been explored to identify the ones, if any, that may be applied 

to walking with a walking aid. One common method used in robotics to assess and 

control walking stability utilizes the concept of the stability margin. Different 

definitions of the stability margin exist in the associated literature, some of which 

are described below: 

1) The stability margin is defined as the shortest distance between the vertical 

projection of the Centre of Mass (CoM) and the edge of the Base of Support 

(BoS), defined as the convex polygon connecting all feet in the support 

phase, in any direction. A variation of such measure is the per cent stability 

margin which is the stability margin normalised by the maximum achievable 
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stability margin (Ting, Blickhan et al. 1994). For static stability to be verified, 

CoM must fall inside BoS (Kar 2003), and the closer it is to the edges of the 

BoS, the less stable the robot is, which means that the stability margin is 

directly proportional to the level of stability. 

2) The longitudinal stability margin is defined as the shortest distance between 

the vertical projection of the Centre of Mass (CoM) and the edge of the Base 

of Support (BoS) in the walking direction (Kar 2003).  

3) The wide stability margin is defined as the shortest distance between the  

Centre of Pressure (CoP) and the edge of the Base of Support (BoS), which, 

in turn, is defined as the convex polygon connecting all feet in the support 

phase and further including the vertical projection of those airborne (Hiroshi 

Kimura 2007). This adapted concept of the stability margin accounts for the 

fact that, during walking, any given leg could land immediately if needed to 

maintain stability and avoid a fall.  

However, the most commonly used stability measure is the zero-moment-

point (ZMP) which was firstly introduced by Vukobratović and Stepanenko in 1972. 

The authors defined the concept of ZMP as follows: in Figure 2.7 “an example of 

force distribution across the foot is given. As the load has the same sign all over the 

surface, it can be reduced to the resultant force R, the point of attack of which will 

be in the boundaries of the foot. Let the point on the surface of the foot, where the 

resultant R passed, be denoted as the zero-moment point, or ZMP in short” 

(Vukobratović and Stepanenko 1972). It appears evident from Figure 1.7 that the 

ZMP is equivalent to the Centre of Pressure (CoP).  
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Figure 2.7 : Illustration of the ZMP adapted from Vukobratović and Stepanenko 
(Vukobratović and Stepanenko 1972). Individual arrows indicate the force distribution 
across the foot; R represents the resultant ground reaction force acting on the foot; and 
the zero-moment point ‘ZMP’ is the point of application of R.  

Whilst the stability margin based on the CoM was originally proposed to describe 

static stability, for dynamic walking robots the stability margin can be defined as the 

shortest distance between ZMP and the edge of the BoS (Kajita and Espiau 2008). 

In addition, ZMP was used by Vukobratović and Stepanenko, and by many other 

groups since, to successfully control the gait of their recently developed biped 

robots, which establishes confidence in the validity of such method to assess the 

stability of the system.  

Also, provided that CoP can be calculated, this method is of direct relevance to this 

problem as treating user and their device as a single multi-legged system allows for 

stability assessment of all user-device configurations, including when the walking 

aid is airborne, at which time the user may be particularly vulnerable to a loss of 

balance; moreover, with the CoP being a basic mechanical principle, it directly 

reflects stability and does not make assumptions on the nature of the walking 

system as done in those approaches that are based on a model-based approach, 

R
ZMP
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such  as the inverted pendulum (Hof, Gazendam et al. 2005) or which consider the 

gait cycle as strictly periodic (Hamacher, Singh et al. 2011). These assumptions 

may be valid in unassisted walking but not when walking with a walking aid as the 

gait pattern changes drastically and is much more complex. 

 

2.4 Discussion and conclusions 

In this chapter, we discussed how falls in older adults are a major global health 

problem for both the individual and the society due to their high incidence, severe 

consequences, and associated costs. Moreover, this problem is expected to 

become even more relevant in the next few decades due to the rapid increase of 

the older population, and especially of the oldest-old group, worldwide. 

Older adults at risk of falling often use a walking aid to improve their balance and 

mobility; in Europe specifically, 29-49% of older adults use some type of walking aid 

either indoors and/or outdoors (Lofqvist, Nygren et al. 2005). Alarmingly, there is 

some evidence that use of walking aids is associated with 2-fold to 3-fold risk of 

falling (Deandrea, Lucenteforte et al. 2010).   

This finding may be a result of non-use of the walking aid at the time of a fall, or the 

user interacting with the device in an unstable manner, but, at this stage, the exact 

causes of the relationship between walking aid use and increased risk of falling 

cannot be established due to several limitations in the current literature. First, 

everyday walking aid usage is still very poorly understood, and this is both surprising 

and concerning considering the high number of walking aid users in our population. 

Such lack of understanding concerns all aspects of walking aid use, i.e.: how often, 

if at all, is the walking aid used?; for which daily activities is the walking aid used/not 
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used?; specifically, how is the walking aid used? As mentioned in section 2.2.3, no 

objective data is available to date to help better understanding walking aid use. 

Second, the frequency and circumstances of falls are also often unclear as many 

older adults deny having fallen (Campbell, Borrie et al. 1990), are unable to recall 

how the fall happened (Stevens, Thomas et al. 2009), or even whether the walking 

aid was being used at the time of the fall. Finally, it seems surprising that, despite 

the high prevalence of walking aid users amongst the fall-prone older old, the 

majority of studies on walking stability focus on unassisted walking. Previous work 

concerned with walking aid stability has either focused on the walking aid alone or 

the person alone, without considering the frame and the person as a coupled 

system. Such approaches, as will be outlined in more detail in Chapter 3, can lead 

to incorrect conclusions. To date, no gold standard approach to the measurement 

of stability in either unassisted or assisted walking exists, and this is surprising and 

concerning, but also an indicator of the complexity of this research topic. 

Considering the current gaps in the literature, we argue that being able to measure 

stability in assisted walking is one essential step towards the understanding of 

walking aid use and its alarming association with falls and, hence, is the motivation 

for this PhD. Specifically, this PhD aims to explore the following overarching 

research question: “What constitutes stable walking aid use?”. To do so, the 

following objectives have been set: 

Objective 1: To develop a novel, objective, and generalizable measure for the 

assessment of stability of walking aid users, which, in order to consider both the 

user and the walking aid, is inspired by methods from the robotics literature.  
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Objective 2: To design and develop corresponding technology and software 

necessary for the calculation of the selected outcome measure. 

Objective 3: To establish confidence in the ability of the stability assessment 

methodology developed through objectives 1 and 2 to describe the stability of users 

of walking aids in relation to: 

 the type of task performed (e.g., straight line walking task versus turning or 

stepping up a kerb); 

 the environment (i.e., lab versus real-world representative environment); 

 the type of walking aid used. 

 To do so, three representative walking aids have been selected: a pick-up 

walker without wheels, a front wheeled walker (both of which are used by 

the least mobile users), and a rollator with four wheels (generally used by 

the most mobile users).  

Objective 4: To investigate whether it is possible, using the methodology developed 

through objectives 1 and 2 and/or other associated metrics, to inform on relative 

stability of WA users
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3 Design and validation of a new 

stability measure and associated 

technology 

This chapter has been published in the Journal of Medical Engineering and Physics 

in 2017 with the title: “A generalizable methodology for stability assessment of 

walking aid users”.  

3.1 Introduction 

Falls in older adults are a major global health problem as more than 30% of 

community-dwelling people aged 65 and over fall every year (Rubenstein 2006),  

consequences of which range from reduced activity and fear of falling to injuries and 

death (Bloem, Steijns et al. 2003). Moreover, falls are also a matter of great concern 

for society as a whole: in 2013, for instance, it was estimated that falls cost the UK 

government over £2.3 billion (NICE 2013). Older frail people with an unstable gait 

are often advised by their clinician to use walking aids, which are designed to help 

them maintain their balance through an increase in the effective base of support 

area, and through provision of structural support and haptic sensory information 

(Jeka 1997, Maeda, Nakamura et al. 2001). Indeed, walking aids are used by 29-

49% of older people (Lofqvist, Nygren et al. 2005). However, paradoxically, use of 

walking aids (versus non-use) has been associated with a 2-fold to 3-fold increase 

in risk of falling (Deandrea, Lucenteforte et al. 2010). There are a number of possible 
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explanations for this finding: one is that walking aids are prescribed to the most frail 

part of the population who, when falls occur, are most likely to suffer injury and, 

hence, appear in the statistics; another is that prescription of a walking aid increases 

the period spent upright or mobile and, hence, reduces time spent in a safer sitting 

or lying posture. However, in studies by Mann et al. (Mann, Hurren et al. 1995) and 

Skymne et al. (Skymne, Dahlin-Ivanoff et al. 2012), 60% of walker users reported 

problems with using their walker and quotations from users included “[the walker 

was] difficult and/or dangerous to use” and “…could it [the walker] overturn when 

used; was it really stable?”. Such concerns suggest that another possible 

explanation and the motivation for this work, is that incorrect device usage, as a 

result of inappropriate device selection and/or training, may be contributing to 

instability and falls in walker users.  

Surprisingly, despite the large number of walking aid users amongst the older 

population, there are no objective, generalizable methods for assessing their 

stability. Previous work to date has often focused on the kinematics/kinetics of the 

user only, presuming that the more the gait pattern resembles that of a healthy 

subject, the more stable the user is (Kuan, Tsou et al. 1999, Tsai, Kirby et al. 2003, 

Bateni and Maki 2005, Gil-Agudo, Perez-Rizo et al. 2009, Kloos, Kegelmeyer et al. 

2012, Wang, Merlet et al. 2016). Such an approach ignores any direct effects of the 

walking aid on the user’s stability, which is clearly incorrect (Yeung, Chow et al. 

2012). Others focused on the device alone (Wu, Au et al. 2008, Sardini, Serpelloni 

et al. 2014): Pardo et al., for instance, developed an instrumented pick-up walker to 

detect lift-off/touch-down events of the device itself and to calculate device loading 

and device Centre of Pressure (CoP) (Pardo, Winter et al. 1993). They inferred 

stability by assuming that, if the device CoP approaches the boundaries of its Base 
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of Support (BoS) and, therefore, if the pick-up walker becomes unstable, then, the 

higher the loading on the device, the higher the risk of falling. To quantify stability, 

they derived the Walker Tipping Index (which gives an indication of how close the 

device is from tipping) from the horizontal and vertical forces applied to the pick-up 

walker, and then normalised such index to the percentage of body weight 

transferred onto the device (Pardo, Deathe et al. 1993). However, the walker and 

user are mechanically coupled and determining when tipping is imminent based on 

a measure of either the mechanics of the user alone, or their walker alone, is 

incorrect.  For example, when the pick-up walker is being lifted, initially only two 

pick-up walker feet remain in contact with the ground, and the device CoP lies on 

the boundary of the device BoS, which is reduced to the line connecting the two 

grounded feet. A measure that only considers the pick-up walker would interpret 

this scenario as being unstable, whilst this is, in fact, a natural part of pick-up walker 

use. Therefore, although it is true that tipping of the walker might mean that the user 

has fallen, it is more likely to indicate that the user is beginning to lift the walker. 

Similarly, measures based on the walker alone cannot inform on stability when the 

device is fully airborne which is likely to constitute a particularly challenging situation 

to the user. Conversely, when the user is relying on the walker, it is likely that the 

CoP of the user alone is under the user’s toes and, hence, very close to the edge 

of the user’s BoS; however, this doesn’t mean that the user is unstable, rather that 

they are leaning on the device. Only one study to date collected data on both user 

and their device (a rollator) (Tung, Chee et al. 2015). Whilst their approach is 

praiseworthy, stability of the overall system (defined as person and walking aid) was 

not adequately addressed because the mechanics of the user and their walking aid 



 

42 
 

were treated separately and stability was evaluated on the basis of reliance on the 

device and excursions of the device centre of pressure.  

The whole system, comprising user and walking aid may be considered to be a 

configurable multi-legged device, similar to a multi-legged walking robot. Methods 

for the calculation of stability of multi-legged robots based on the CoP kinematics 

are well established (Vukobratović and Stepanenko 1972, Kar 2003, Kajita and 

Espiau 2008, Liu 2009) and are directly applicable to this problem. Yet stability 

methods from the robotics literature have not been previously reported in the context 

of walking aid usage. Considering user and device as a combined system has the 

advantage of allowing for the correct assessment of stability under all user-walker 

configurations, including when the device is airborne, which may be particularly 

critical.  

This paper proposes an objective and generalizable method for the 

assessment of stability of walking aid users, based on methods from the robotics 

literature. Given that there are more walker users than users of crutches (Kaye, 

Kang et al. 2000) and since seven times as many injuries are associated with 

walkers compared with walking sticks (Stevens, Thomas et al. 2009), we here 

introduce our method for the assessment of stability of walker usage, specifically for 

a walker without wheels (a pick-up walker). We demonstrate the application of the 

methods for walking in a standardized home environment, the University of Salford 

Activities of Daily Living (ADL) flat. 

3.2 Methods 
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3.2.1 Stability of the system 

The novel methods proposed here consider the user and their four legged pick-up 

walker (PW) as a combined system. We define the combined centre of pressure 

(CoPsystem) of user and PW to be the point through which the resultant ground 

reaction force for all feet of both the PW and user acts if the resultant moment acts 

only around an axis perpendicular to the ground plane. 

The instantaneous position of the combined CoP is calculated as follows:    

𝑪𝒐𝑷𝒙 = 
∑ (𝑭𝒗𝒊𝒙𝒊)
𝒏
𝒊=𝟏

∑ 𝑭𝒗𝒊
𝒏
𝒊=𝟏

,           𝑪𝒐𝑷𝒚 = 
∑ (𝑭𝒗𝒊𝒚𝒊)
𝒏
𝒊=𝟏

∑ 𝑭𝒗𝒊
𝒏
𝒊=𝟏

𝑬𝒒. 3. 1 

where: 

 CoPx,y are the coordinates of the CoP in the mediolateral and anteroposterior 

direction, respectively; 

 Fvi is the vertical load on the ith supporting foot (either anatomical or of the 

PW); 

 xi, yi  are the coordinates of the ith foot of the PW, or of the CoP for the ith 

anatomical foot; 

 n is the number of feet in contact with the ground. When all the feet are on 

the ground, n=6 (2 anatomic feet, 4 PW feet). 

Therefore, according to 𝑬𝒒. 3.1, at any instant in time, we must know the magnitude 

and position of the vertical load acting on each foot of the PW and acting on each 

anatomical foot of the person. 

We also define the instantaneous combined BoS to be the convex polygon formed 

by the boundaries of the anatomical and PW feet in contact with the ground and 

interconnecting lines between them. Finally, in accordance with the walking robot 
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literature (Liu 2009), we define the instantaneous combined stability margin 

(SMsystem) as the shortest distance between the combined CoP and the nearest 

edge of the combined BoS. It should be noted that, from the definition of CoP alone, 

it can be proven that, when the CoP reaches an edge of the BoS, the load under all 

feet, except those forming that edge, will be zero (i.e. when SMsystem =0 tipping 

begins). 

 Furthermore, we also introduce into our analysis the rate of change of the 

stability margin. When the instantaneous SMsystem is low, but the rate of change 

shows that SMsystem is rapidly increasing, then it could be concluded that the user is 

unlikely to fall because they are becoming more stable. Conversely, if the rate of 

change shows a rapid decrease in the SMsystem, then their risk of falling may be 

higher than SMsystem suggests. 

Finally, SMsystem is likely to be misinterpreted when, for example, SMsystem is 

close to zero because the user is in the process of transferring their body weight 

from one foot to another that has not yet touched the ground. Conversely, if a foot 

is in the process of taking off, the user may be less stable than SMsystem suggests. 

Therefore, we also calculate the “projected” stability margin (SMp) which we define 

to be the shortest distance between the combined CoP and the nearest edge of the 

“projected” combined BoS. The “projected” combined BoS is calculated post-hoc to 

be the position of the combined BoS at a point in time t seconds later. The time t for 

each individual is the average duration of the terminal swing phase (or landing 

phase), calculated as 13% of the user’s own mean gait cycle duration (Merker, 

Hartmann et al. 2015).    
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3.2.2 Instrumentation development 

To measure the required data, the Salford Walking Aid System (SWAS) was 

developed consisting of: 

a) A purpose-designed instrumented pick-up walker (PW) to measure the 

vertical force acting through each of its “feet”;  

b) Commercial in-shoe sensors (medilogic®insole, T&T medilogic 

Medizintechnik GmbH, Schönefeld, Germany) to measure the pressure 

distribution and hence the resultant vertical force and the corresponding CoP 

location for each anatomical foot; 

c) An optoelectronic motion capture system to capture the position of both, the 

anatomical feet and walker feet. For this study, a mobile 6 camera system 

(Qualisys Oqus300, Qualisys AB, Göteborg, Sweden) was used.  

The instrumented PW was modified to accommodate a single axis load cell (Futek 

LCM300, Futek Advanced Sensor Technology Inc., Irvine, CA, USA) in each leg of 

the device in order to measure the vertical ground reaction forces (Figure 3.1). The 

force data are sent to a laptop by wireless transmitters (Mantracourt T24-ACMi, 

Mantracourt Electronics Limited, Exeter, UK) fixed onto the walker.  
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Figure 3.1: A) Model of an instrumented foot of the PW with integrated load cell. B) 
Instrumented foot with adjustable vertical axis of the load cell configuration, i.e., set to 
be perpendicular to the ground. 

Design requirements included the necessity to be able to adjust the walker height 

for a range of users, to ensure that the axis of each load cell was perpendicular to 

the ground during the PW stance phase, and to minimise the weight added to the 

walker. Currently, the total weight of the instrumentation is 1 kg, which includes load 

cells, transmitters, batteries, and titanium connectors needed to integrate the load 

cells into the PW legs.  

Equipment synchronisation 

To obtain the selected outcome measures, PW load cells, pressure insoles, and 

optoelectronic camera data collection needed to be synchronised; this was done as 

follows:  

 The Medilogic system was modified to receive a sync pulse through a trigger 

to allow for time alignment of foot pressure data with load cell data and 

position data; 

 A reflective marker was attached to the top of a spare load cell; 
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 The Medilogic trigger was manually hit with the spare load cell with a fast, 

vertical movement: this action generates a trigger pulse in the Medilogic 

system, a force pulse in the load cell, and a minimum in the marker position 

data (Figure 3.2); 

 Finally, the synchronisation pulses were used to align the data from the three 

systems in post-processing. 

 

Figure 3.2: Manual synchronisation setup between 3D cameras, Futek load cells, and 
Medilogic pressure sensing insoles. The Medilogic trigger was manually hit with the 
spare load cell with a fast, vertical movement: this action generates a trigger pulse in 
the Medilogic system, a force pulse in the load cell, and a minimum in the marker 
position data allowing for time alignment of the synchronisation pulses and, therefore, 
of the three systems, in post-processing. 

Load cell testing 

The instrumented PW was first tested using a force-plate to verify the accuracy of 

the load cells as follows: 

 Three of the four feet were each placed on a force plate (Figure 3.3), and a 

wooden board was placed across the lower crossbars of the PW;  

 Force plates and load cells were then zeroed;  

“Bang” 

Spare load cell

Reflective marker

Medilogic trigger 
button
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 Five trials were recorded during which the walker was first gradually loaded by 

adding known weights onto the board and subsequently gradually unloaded 

taking off the same weights;  

 The same experiment was repeated rotating the walker to place the remaining 

foot onto a force plate which could not initially be fitted due to the arrangement 

of force plates in the gait lab.  

Pressure insole system testing 

To ensure that the sampling frequency of the insole system, which is a maximum s 

of 60 Hz, was suitable for the planned experiments, the frequency content of the 

centre of pressure of a healthy subject was analysed and compared to the frequency 

content of the CoP signal obtained using a force plate. A MATLAB script was written 

for this purpose. 

 

Figure 3.3: Configuration of force plates in the gait laboratory and positioning of the 
PW for validation of the load cells accuracy. 

FP1 FP2

FP3

PW foot

Force plate



 

49 
 

Next, the accuracy of the user’s centre of pressure and the resultant vertical 

load acting on the user’s feet as calculated from the insole data was determined as 

follows: 

 A subject was asked to wear a standard pair of shoes (with 4 reflective 

markers on each shoe located in correspondence of the first, second, 

and fifth metatarsal head and on the heel) in which Medilogic pressure 

insoles had been previously placed; 

 The subject was then asked to stand on a force plate; 

 Five trials we recorded during which the subject stepped on to the 

adjacent force plate and stood still; 

 Positon and force data were collected using a motion capture system, 

force plates, and pressure insoles data. 

The trajectory of the centre of pressure and the total vertical ground reaction force 

were calculated from pressure insoles data as follows: 

 First, the sensor map for each insole including sensor area and distance in 

anteroposterior and mediolateral direction between sensors was provided 

by the supplier; 

 In order to obtain the resultant vertical load measured by the insoles, the 

pressure value in N/cm2 of all sensors at a given time was summed and 

converted into N.  

 The position and orientation of the insoles in space was estimated using  the 

position data of the reflective markers attached to the shoes; 

 Finally, knowing the pressure measured by all sensors and their relative 

position, the trajectory of the centre of pressure was calculated. 



 

50 
 

A recalibration of the insole system has also been attempted in order to 

improve its accuracy: the TRUBLU calibration device has been used to apply 

gradually increasing an equally distributed pressure to each insole. In this way, all 

sensors should, ideally, measure a pressure equal to that applied by the calibration 

device. The applied pressure ranged from 0.2 to 1 bar at 0.2 bar intervals and from 

1 to 6 bar at 0.5 bar intervals. Successively, a 7th order calibration equation (as this 

order allowed the best fitting of the experimental data) was created for each sensor 

in MATLAB using a linear regression method.  

Combined Centre of Pressure accuracy testing 

Finally, data from both the SWAS and force plate were recorded from a user picking 

up the walker, placing it forward onto the force plate, then stepping into it (a large 

600 x 900 mm AMTI BP600900 force plate normally used for sprinting was used to 

allow for simultaneous contact with all 4 PW feet and both anatomical feet). This 

allowed the CoPsystem calculated from load cell, insole and camera data to be 

compared against that calculated from force plate data.  

3.2.3 Data processing 

In order to process the force and position data, software written in MATLAB was 

developed to: 

 Detect when each of the PW and user’s feet are on the ground (supporting feet) 

through identification of individual touch-down (TD) and lift-off (LO) events of 

each foot of the device from load cell data, and TD (i.e. heel-strike) and LO (i.e. 

toe-off) events of the user’s feet from force/insole data; load cell and insole 

signals were lowpass filtered at 6 Hz with a 4th order Butterworth filter;  
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 Define the base of support at any time instant as the convex polygon formed by 

the boundaries of the anatomical and PW feet in contact with the ground and 

interconnecting lines between them;  

 Calculate the resultant vertical force and the corresponding CoP location for 

each anatomical foot. This uses the individual pressure value from each sensor 

within each insole, together with the relative position of each sensor in each 

insole, and the global position of the insole itself; 

 Apply (Eq 3.1) using 3D position data, load cell data of the PW feet, and the 

magnitude and coordinates of the resultant load that acts on each anatomical 

foot (calculated previously);  

 Calculate the stability margin as the perpendicular distance from CoPsystem to the 

nearest edge of BoSsystem; 

 Calculate the rate of change of the stability margin by differentiating the stability 

margin curve; 

 Calculate the projected stability margin as the perpendicular distance between 

CoPsystem and the nearest edge of the projected combined BoS, at a participant-

specific instant t seconds forward in time; 

 Calculate device loading as the percentage of body weight transferred by the 

user onto the device; 

 Determine the movement sequence of the walker in relation to the user’s foot 

placements. 

3.2.4 Subjects 

One young adult (age=27) and one older PW user (age=83) were recruited to test 

the feasibility of the protocol and to establish proof-of-concept for the method. The 
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older subject met the inclusion criteria of being able to walk household distances 

with a walker but not being able to walk such distances unaided. A description of 

the participants’ basic gait parameters is provided in Supplement A. Written 

informed consent was obtained and the experimental protocol was approved by the 

University of Salford Ethics Committee (HSCR13-48). 

3.2.5 Protocol 

To test our method, the young adult and the older PW user were asked to walk with 

the SWAS in a home-setting: the University of Salford Activities of Daily Living (ADL) 

flat (furnished, and equipped with 6 optoelectronic cameras). Here participants 

walked 3 times with the SWAS at their self-selected speed from the kitchen to the 

bathroom (6 metres). This pathway was selected as it included two consecutive 90 

degree turns (through two doorways: kitchen to lounge, lounge to bathroom) and 

transitions between different flooring conditions (vinyl to carpet, carpet to vinyl), 

therefore representing real-world challenges seen in users’ homes. For all trials, 

subjects were asked to walk with the PW as recommended by clinical guidance: to 

lift the device forward and, only once it is grounded, to then step into the device. 

3.3 Results 

3.3.1 Instrumentation development 

Equipment synchronisation 

Figure 3.4 shows an example of time alignment of position, load cell, and pressure 

insole data during post-processing. 
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Figure 3.4: example of synchronisation pulses and time alignment of the three systems 
based on the manual synchronisation as shown in Figure 3.2.  Units on the y axis are: 
m/s2 for acceleration data (top), N/cm2 for pressure insole data (middle), and N for load 
cell data (bottom). 

Load cell testing 

A Maximum error of 5% and Root Mean Square value of 0.46N were obtained when 

comparing the vertical force recorded by each load cell to the corresponding data 

recorded with a force plate (Figure 3.5). 

Acceleration from 
position data

Pressure insole 
system

Load cell
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Figure 3.5: Example of comparison between the vertical force recorded by the load cell 
placed into one of the PW feet and the vertical force measured by the force plate. 

Pressure insole system testing 

With regard to the frequency content of the centre of pressure, based on the results 

of our analysis and in agreement with previous studies (Fitzpatrick, Gorman et al. 

1992, Carpenter, Frank et al. 2001, Chiari, Rocchi et al. 2002, Vieira, Oliveira et al. 

2009), it can be concluded that the CoP sway is restricted to low frequencies (<2.5 

Hz), and that, therefore, a sampling frequency of 60 Hz is sufficiently high. 

With regard to the total vertical load, the value measured by the insoles was 

approximately 4 times smaller than that measured by the force plate. It is believed 

that forces being transmitted through the gaps between sensors and the edges of 

the insoles may be the primary cause of this inaccuracy.  

Figure 3.6 shows an example of the comparison between the trajectory of the centre 

of pressure calculated by the insoles and that calculated by the force plate. The 
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RMS value of the difference between force plate and insoles measurements was 

calculated: maximum RMS values of 20 mm in anteroposterior and 18 mm in 

mediolateral direction were found. 

 

Figure 3.6: Comparison between the CoP trajectory calculated by the force plate and 
that calculated by the Medilogic pressure insole system. On the x and y axes are the 
coordinates of the CoP in mediolateral and anteroposterior direction, respectively. 

After the recalibration of the insoles, the average error between sensed and applied 

pressure decreased from 60% to 6.6% at 0.2 bar and from 9.7% to 1.03% at 6 bar 

with the average error of all sensors across all applied pressures decreasing from 

18% before the calibration to 3.1% after the calibration. Nevertheless, after applying 

the generated calibration curves to previously collected insoles data, and checking 

their accuracy again, it was found that the maximum RMS difference between 

insoles and force plate CoP position did not significantly decrease (Table 3.1 shows 

the RMS difference between insoles and force plate CoP position before and after 
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the calibration); there are several explanations for this: first, although the error at 

low pressures is very high (over 50%), it decreases considerably at higher pressures 

(comparable to those acting on the insoles while standing or walking); it was also 

observed that the error decreases when the average pressure measured by small 

groups of adjacent sensors are considered instead of the single sensors. 

Table 3.1: Accuracy of the CoP calculated by Medilogic pressure insoles relative to that 
calculated by the force place before and after the calibration for four different trials (A-
D). 

 Before After 

 RMSx (mm) RMSy (mm) RMSx (mm) RMSy (mm) 

A 6.02 10.09 5.21 7.88 

B 18.33 20.56 18.51 19.38 

C 10.35 9.72 8.68 8.75 

D 17.77 13.09 16.4 12.53 

 

Combined Centre of Pressure accuracy testing 

Finally, with regard to the accuracy of the CoPsystem calculated with our sensor 

system, a maximum error of 25 mm in mediolateral and 17 mm in anteroposterior 

direction was found, which we consider acceptable being equal, respectively, to 

4.24% and 2.07% of the maximum width and length of the combined BoS in the 

testing conditions studied. 

3.3.2 Characterization of Foot-Ground Contact Events and Movement Sequence 

Walking with a pick-up walker differs significantly from unassisted walking in that 

the user needs to coordinate the movements of the device together with their own 

foot movements. Specifically, TD and LO gait events exist for the feet of both, the 

user as well as the PW, and the sequence in which they occur may vary greatly 

from one movement cycle to the next (see Figure 3.7).  
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Figure 3.7: Examples of lift-off and touch-down sequence of  user’s and device feet for 
one movement cycle when walking with a PW in accordance with clinical guidance (A) 
and when walking with a phase of single support during which only one anatomical 
foot is on the ground, followed by a mediolateral rolling of the device at touch-down 
(B). Foot prints indicate gait phases (black foot prints indicate stance; white foot prints 
indicate swing), and dashed lines represent touch-down/lift-off events of anatomical 
and/or PW feet. 

 

Figure 3.8 and Figure 3.9 show four examples of the timings of PW movements in 

relation to foot movements for one gait cycle obtained during straight line walking 

and one during turning for both the young adult (Figure 3.8) and the PW user (Figure 

3.9). For the purpose of this study, the gait cycle is defined as the period starting 

when the first PW foot is lifted off the ground and finishing at the following first lift-

off event of the PW. According to clinical guidance, Figure 3.8 represents an 

example of correct use as the young user only steps after the PW is firmly on the 

ground. Similarly, the older PW user demonstrates correct use of the device during 
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straight line walking (Figure 3.9 A), however, during turning (Figure 3.9 B) the older 

user steps while the PW is still airborne (creating a single support phase). This 

contradicts clinical guidance and Figure 3.13 B shows that stepping while the walker 

is airborne greatly decreases the stability margin during that phase. 

 

Figure 3.8: Movement sequence: horizontal lines indicate times where feet of user 
and/or PW are grounded. Young adult following clinical guidance to only move 
themselves once the walker is solid on the ground for both, straight line walking (A) and 
turning (B). Dashed lines represent touch-down/lift-off events of anatomical and/or PW 
feet. 
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Figure 3.9: Movement sequence: lines indicate times where feet of user and/or device 
are grounded. Older PW user following clinical guidance to only move themselves once 
the walker is solid on the ground for straight line walking (A) but lifting and moving 
their right foot whilst the walker is still in the air during turning (B). Dashed lines 
represent touch-down/lift-off events of anatomical and/or PW feet. 

3.3.3 Characterization of System Stability 

Table 3.2 summarises the number of movement cycles for the young adult and the 

PW user in the ADL flat and presents terminal swing phase duration, minimum 

SMsystem, and mean rate of change of SMsystem, all averaged over the total number 

of gait cycles for both participants.  
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Table 3.2: Number of movement cycles and descriptive statistics for the Stability Margin 
and its rate of change. 
 

Total 
number 
of cycles 

Num. 
Straight line 
walking 
cycles 

Num. 
Turning 
cycles 

Average 
cycle 
duration 
(s) 

Min 
SMsystem 
(mm) 

Pos. Mean 
rate of 
change of 
SMsystem 
(m/s) 

Neg. Mean 
rate of 
change of 
SMsystem 
(m/s) 

YA  18 8 10 3.42 77.76 0.24 -0.37 
PW user 16 10 6 4.82 64.9 0.15 -0.23 

 

Figure 3.10 A-B and Figure 3.11 A-B illustrate the CoPs of the PW (CoPPW), the 

user (CoPUser), and the combined system (CoPsystem) – each in relation to their 

respective BoS for two different time instants of the overall movement cycle.  Figure 

3.10 A shows CoPPW on the edge of BoSPW, which, if viewed on its own, would 

indicate instability. However, this is because the PW is about to be lifted, which is 

part of the general movement cycle. When looking at CoPsystem in Figure 3.10 B, it 

becomes clear that it is very close to CoPUser and well within BoSsystem and, 

therefore, the system is stable even though the device alone appears unstable. 

Similarly, in Figure 3.11 A, CoPUser is near the outer edge of BoSUser (right foot single 

support) due to leaning onto the device, however, as the device is providing 

substantial support, CoPsystem is well within BoSsystem  (Figure 3.11 B) and therefore 

one can conclude that the overall system is stable, even though the user alone 

appears unstable. 
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Figure 3.10: Illustration of (A) Pick-up walker centre of pressure (CoPPW) alone in 
comparison to (B) combined centre of pressure (CoPsystem)  for an instant in time during 
which only two feet of the pick-up walker are on the ground, highlighting the 
importance of CoPsystem in relation to the combined base of support (BoSsystem) for 
accurate evaluation of the moving system’s stability. Grey foot prints indicate stance; 
white foot prints indicate swing. 

 

 

Figure 3.11: Illustration of (A) user’s centre of pressure (CoPUser) alone in comparison to 
(B) combined centre of pressure (CoPsystem) for an instant in time during which only the 
user’s right foot is on the ground and the user is leaning forward onto the pick-up 
walker, highlighting the importance of CoPsystem in relation to the combined base of 
support (BoSsystem) for accurate evaluation of the moving system’s stability. Grey foot 
prints indicate stance; white foot prints indicate swing. 

 By graphically representing the variation of the instantaneous stability margin 

(SMsystem) over time, the user’s overall stability in relation to different movement 

BoS

CoPPW

CoPsystem

SM

BA
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patterns and walking conditions can be characterized. Figure 3.12 A-B respectively 

illustrate the SMsystem for the same straight line walking and turning gait cycles 

represented in Figure 3.8 A-B for the young adult. Similarly, Figure 3.13 A-B 

illustrate the SMsystem for the same straight line walking and turning gait cycles 

represented in Figure 3.9 A-B for the PW user. It is evident that, for both the young 

adult and the PW user, SMsystem reaches its maximum when the PW is grounded. 

During turning however (Figure 3.13 B) the SMsystem for the PW user drops to 12.7 

mm and is approximately 5 times lower than during straight line walking (Figure 3.13 

A) and 6.5 times lower than the minimum SMsystem for the young adult during turning 

(Figure 3.12 B).  It should also be noticed that, in Figure 3.13 B, the SMsystem reaches 

its minimum when the PW user is in single support. Nevertheless, the rate of change 

of the SMsystem indicates that, although the instantaneous Stability Margin value 

during single support appears to be low, it is increasing, suggesting that the 

CoPsystem is moving towards a more stable position. Similarly, the projected stability 

margin predicts that an imminent change of BoSsystem will cause the SMsystem to 

increase, thereby improving the stability of the system (Figure 3.13 C). In contrast, 

in Figure 3.13  A, SMsystem decreases drastically at the onset of the second step 

reaching the value of 66 mm (45 mm lower than that relative to the same event in 

Figure 3.13 B), thus suggesting increased instability probably due to the user’s 

posture being excessively upright.  
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Figure 3.12: combined stability margin (SMsystem) over a gait cycle for a young adult A) 
walking in a straight line in the ADL flat, and B) for a 90 degree turn in the ADL flat. The 
grey area shows SMrate (i.e., the rate of change of SMsystem) in units of cm/s (note that 
the 0 value has been shifted to lie on top of SMsystem),  whilst SMp represents the 
projected Stability Margin in mm, which takes into account not just the feet already in 
contact with the ground, but also those where touch-down/lift-off is imminent. It can 
be observed that SMrate presents very high peaks (low troughs) in correspondence to 
touch-down (lift-off) events of one or more feet: this is due to the instantaneous change 
in the BoS. For clarity of illustration, only phases that last longer than 0.1 s are 
represented by footprints. 
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Figure 3.13: combined stability margin (SMsystem)  over a gait cycle for a PW user A) 
walking in a straight line in the ADL flat and B) performing a 90 degree turn in the ADL 
flat. C) The grey area shows SMrate (i.e., the rate of change of SMsystem) in units of cm/s 
(note that the 0 value has been shifted to lie on top of SMsystem), whilst SMp represents 
the projected Stability Margin in mm, which takes into account not just the feet already 
in contact with the ground, but also those where touch-down/lift-off is imminent. It can 
be observed that SMrate presents very high peaks (low troughs) in correspondence to 
touch-down (lift-off) events of one or more feet: this is due to the instantaneous change 
in the BoS. For clarity of illustration, only phases that last longer than 0.1 s are 
represented by footprints. 
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3.3.4 Characterization of Device Loading 

Figure 3.14 shows a greater device loading for the PW user as compared to the 

young subject during straight line walking: whilst the young adult uses the device 

only for light touch support, the older PW user uses it for structural support.  

 

Figure 3.14: Device loading over a single gait cycle: A) using the device for light touch 
support (young adult) versus B) structural support (PW user) in the ADL flat when the 
device is grounded. 

 

A

B
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3.4 Discussion 

We have developed and then demonstrated a novel method for the investigation of 

stability in walking aid users in a standardized home setting. Specifically, we have 

introduced a novel outcome measure which is generalizable to a range of walking 

aids, the stability margin of the combined system (user + device), and we have 

demonstrated that the stability margin of the combined system should be used for 

making inferences on PW user stability. Our stability margin was adapted from the 

walking robot literature (Vukobratović and Stepanenko 1972, Kar 2003, Kajita and 

Espiau 2008, Liu 2009) but, in order to take full account of weight, acceleration 

(linear and angular), and externally applied forces, the CoP was used instead of the 

vertical projection of the centre of mass. Indeed, although these two measures 

correspond when there is negligible acceleration and no external forces applied, in 

dynamic situations, tipping begins when the CoP, not the centre of mass, reaches 

the boundary of the base of support. Previous authors have investigated the 

kinematics of the CoPPW and device loading for their inferences on stability and have 

concluded that, when the PW is on the ground, the user’s loading of the device is 

directly proportional to the risk of falling (Pardo, Deathe et al. 1993, Tung, Chee et 

al. 2015). Their approach did not correctly quantify stability, relied on all four feet 

being on the ground making it inapplicable to cases when the PW was airborne or 

in the process of touching-down/lifting-off, and could not distinguish tipping from 

lifting of the device. Conversely, our approach is able to assess stability during all 

phases of gait, including when the PW is fully or partially grounded, but also when 

it is completely airborne (in which case BoSsystem reverts automatically to BoSUser).  
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In this study, to calculate the stability margin, we recorded load cell, insole, and 3D 

position data of the device feet and anatomical feet. Moreover, although the stability 

margin is normally sufficient to describe PW use, in order to also take into account 

dynamic situations (e.g., when the user is in single support) or those situations in 

which a low SMsystem does not indicate instability but is due to imminent touch-down 

of the PW or heel-strike of the next stance foot, the rate of change of the SMsystem 

and the projected Stability Margin are also calculated. In addition, our system 

informs on the user’s device loading based on the percentage of their body weight 

supported by the device. This information is expected to be particularly useful for 

clinicians who, especially during rehabilitation programmes, recommend their 

patients to transfer a specific amount of body weight onto the device as this is 

supposed to optimise the healing and recovery process. However, without any 

means of measurement, it is extremely difficult for the patient to follow such 

instructions and for the physiotherapist to evaluate the patient’s compliance with 

these. Finally, the system further informs on the timings of user and device 

movements individually and in combination with one another to assess whether the 

movement sequence conforms with clinical guidance. Since our approach is 

generalizable to other walking aids, including crutches and walking sticks, it opens 

up significant opportunities to investigate stability in users of other devices. 

However, it should be noted that, although the methodology introduced in this paper 

(i.e., the use of the combined stability margin) is generalizable, device-specific 

modifications to accommodate the load cells in such a way as to accurately measure 

vertical ground reaction forces may be required.  

 Moreover, at this stage, the SWAS is designed to report on stability only 

and cannot be utilized as a long-term monitoring or fall detection tool. Therefore, 
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although it is able to detect a reduction in stability, it cannot inform on the 

circumstances that caused such reduction. For this, additional instrumentation such 

as video cameras or inertial sensors would be needed to identify underlying causes 

such as collisions of the walker with either the user’s feet or objects of the 

environment.  

 Finally, to calculate the stability margin, the SWAS system relies on knowing 

the location of the CoP of each anatomical foot with respect to the PW. At present, 

we use optoelectronic cameras to obtain the required position data of the 

anatomical and walking aid feet, but in future a more portable solution based on 

dedicated position sensing is required for home use.  

 Longer term, this method is expected to contribute to improved device 

prescription, user training & monitoring, and device design, all of which should 

impact positively on the quality and the frequency of use.  

3.5 Supplement A 

The table below shows the basic gait parameters for the pick-up walker user (PW 

user) and the young adult (YA). All parameters are presented as mean ± SD 

calculated over the total number of gait cycles (16 for the PW user and 18 for the 

young adult). 

Walking speed has been derived from the displacement, in the walking direction, of 

a heel marker over time. Step time has been calculated as the time between two 

consecutive heel strikes, whilst swing time as the time between consecutive heel 

strike and toe off of the same foot. 
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As it can be seen, the standard deviation values of most parameters are large 

compared to their respective mean values. In addition, the young adult has 

considerably greater step length, walking speed, and foot clearance (mainly seen 

on the left foot) and considerably lower step time than the PW user.  

When using a pick-up walker, the user generally moves the device forward, then 

steps with the “leading” foot, and, finally, with the “trailing” foot, ending the gait cycle 

with both feet parallel and on the ground. As expected, a slight difference in the 

swing time of left and right foot of both subjects was found which could be explained 

by the fact that the trailing foot only closes-in on the first foot, which is a quicker 

action then the initial step forward with the leading foot. In both participants, the step 

time of the left and right foot differ greatly: this is likely due to the characteristic 

movement of the user, which typically involves two steps towards the pick-up 

walker, followed by a pause in stepping, during which the walker is moved forward. 

Table 3.3: Basic gait parameters for the pick-up walker user (PW user) and the young 
adult (YA). All parameters are presented as mean ± SD calculated over the total number 
of gait cycles (16 for the PW user and 18 for the young adult). 
 

Step 
Width 
(mm) 

Step 
Length  
left 

(mm) 

Step 
Length 
right 
(mm) 

Walking 
speed 
(m/s) 

Foot 
clearan
ce left 
(mm) 

Foot 
clearan
ce right 
(mm) 

Swing 
time 
left 

 (s) 

Swing 
time 
right 
(s) 

Step 
time 
left 

 (s) 

Step 
time 
right  

(s) 

PW 
user 

135.88 
± 27.86 

140.71 ± 
88.7 

138.04 ± 
55.49 

0.08 ± 
0.39 

47.90 ± 
18.93 

44.18 ± 
11.97 

0.47 ± 
0.18 

0.40 ± 
0.13 

2.05 ± 
1.4 

3.94 ± 
1.81 

YA 
129.28 
±47.23 

301.09 ± 
108.28 

301.14 ± 
129.38 

0.20 ± 
0.77 

59.59 ± 
12.48 

46.70 ± 
33.26 

0.41 ± 
0.05 

0.30 ± 
0.06 

0.57 ± 
0.08 

2.68 ± 
0.96 
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4 Design and development of a 

smart rollator for the 

assessment of stability of 

rollator users 

4.1 Introduction 

As discussed in Chapter 3, we have developed and then demonstrated a novel 

method for the investigation of stability in walking aid users which is generalizable 

to a range of walking aids. The advantage of our method over current falls-risk 

tests and clinical interventions that almost entirely focus on unassisted walking is 

that it is designed to directly reflect stability of walking aid users. In addition, it is 

based on an objective mechanical principle, the concept of the centre of pressure, 

and does not rely on clinicians’ subjective judgement. 

Given that there are more walking frame users than users of crutches (Yeung, 

Chow et al. 2012) and since seven times as many injuries are associated with 

walking frames compared with walking sticks (Stevens, Thomas et al. 2009), this 

PhD had an initial focus on pick-up walkers. Moreover, the work started with pick-

up walkers as they are used by extremely frail older adults who, in the event of a 

fall are likely to suffer severe consequences. 
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Nevertheless, to further demonstrate the generalizability of our novel methodology, 

we have instrumented a second type of walking aid, a 4-wheeled walker, also 

known as rollator. A rollator is a device with four wheeled legs, manual brakes, and 

often a seat and a basket to store personal belongings and/or shopping in (Figure 

4.1). For these reasons, rollators are particularly convenient to use outdoors, and, 

although the exact number or rollator users is unknown, previous studies have 

found that, depending on the country, rollators are the most or second most used 

walking aid (Finkel, Fernie et al. 1997, Samuelsson and Wressle 2008). 

Instrumenting a rollator hence allows for any subsequent work to have an impact 

on a large proportion of walking aid users. 

 

Figure 4.1: Typical rollator for outdoor use with bicycle-style brakes, a seat and a 
basket. Source: https://www.rollator-experts.nl/caremart-basic-rollator. 

Furthermore, discussions with clinicians from various local organisations such as 

Pennine Acute Hospitals NHS Trust, Brain And Spinal Injury Centre (BASIC), or 

AgeUK revealed that, apart from extreme circumstances, they prefer to prescribe 
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wheeled walkers rather than pick-up walkers as such devices help the user 

maintain a more “fluid” walking pattern, thereby supporting the decision to develop 

an instrumented rollator.      

The following sections present the work undertaken to design and validate an 

instrumented rollator to be used to characterize the biomechanics of rollator use 

and corresponding user stability. The work was planned in collaboration with the 

Geriatric Rehabilitation Clinic of the Robert-Bosch-Hospital in Stuttgart, Germany, 

which has been leading previous research concerned with effectiveness of 

rollators, has access to a wide range of rollator users, and offered us the 

opportunity to collect data on users’ stability with our instrumented rollator in their 

gait laboratory. 

4.2 Design similarities with pick-up walker 

This section outlines the design specifications based on the work outlined in 

Chapter 3. As our approach to stability of walking aid users is generalizable, the 

instrumentation requirements generally were common to both the pick-up walker 

and the rollator.  Hence, the device must support: 

1) Characterisation of device loading; 

2) Characterisation of device and user movement; 

3) Characterisation of system stability, where the system is defined as the 

combination of user and device. 

4.2.1 Characterisation of device loading  

In order to calculate device loading, the total load acting through the rollator needs 

to be known and can be calculated through use of suitable load cells. As is the 
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case for pick-up walker users, some may only use the rollator to help with their 

balance, whilst others may rely heavily on it for body weight support. We assume 

an average adult mass of 80 kg and that the total externally applied vertical load 

acting on the frame may vary from zero to 70% of body weight (550 N) as estimated 

in previous work (Ogden 2014). We also assume that this load is evenly distributed 

amongst the 4 legs. The estimated maximum vertical load (excluding the weight of 

the frame itself) through any given leg is therefore 137 N and the minimum is 0 N. 

These considerations are the same previously made for the pick-up walker as the 

users are likely to be similar in terms of age, height, and body weight. 

 

4.2.2 Characterisation of device and user movement 

Although the movement of a rollator does not require the picking-up and moving 

forward of the device at every step as is the case for the pick-up walker, 

identification of associated events such as wheel lift-off and touch-down are 

relevant when characterising rollator use in specific circumstances such as when 

going up a step/kerb or walking on uneven ground. Consistent with the approach 

described in Chapter 3, detection of rollator wheel contact events can be achieved 

through use of suitable load cells, whilst infrared cameras will be used to detect the 

position of reflective markers on the rollator and person’s feet, and therefore the 

capture of these position data is not considered part of the design specification. 
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4.2.3 Characterisation of system stability, where the system is defined as the 

combination of user and device. 

 As for the pick-up frame, to be able to infer on the system’s stability, the load acting 

on each ‘foot’, either the anatomical foot or the rollator wheel, as well as the 

coordinates of all ‘feet’ need to be known for the calculation of the combined centre 

of pressure. The load acting on the rollator wheels can be measured through use 

of suitable load cells, whilst the same equipment as described in Chapter 3 will be 

used to capture the anatomical feet loads and locations of anatomical and rollator 

feet and, hence, is not considered part of the design specification. 

Finally, all systems need to be battery-powered and able to transmit data wirelessly 

to guarantee freedom of movement whilst avoiding an increased risk of tripping. 

 

4.3 Assessment of forces and moments acting on the device 

It seems clear that the design requirements are similar to those previously 

identified for the pick-up walker. Therefore, the possibility of using the same load 

cells, which could be transferred between devices as required, hence avoiding the 

need to purchase new instrumentation, was explored.  However, although only the 

vertical forces are of interest to calculate device loading and centre of pressure, 

given the necessity to locate any load sensing instrumentation above the wheels, 

the horizontal ground reaction forces must be also considered to estimate the 

resultant bending moments acting on the load cells, which, if too high, may cause 

damage (see Section 4.4 for details of the load cells). 

To this end, Figure 4.2 shows the free body diagram of the rollator. To simplify the 

problem, we assume that the wheels are only in contact with smooth, level flooring. 
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This is a reasonable assumption for the lab work presented here, but further work 

would be needed before attempting to collect data in the real world. From the free 

body diagram, the sum of the vertical ground reaction forces equals the sum of the 

percentage of body weight transferred by the user onto the device through the 

handles plus the rollator weight (𝐸𝑞. 4.1). 

𝐹𝑧
𝐹𝐿 + 𝐹𝑧

𝐹𝑅 + 𝐹𝑧
𝑅𝐿 + 𝐹𝑧

𝑅𝑅 = 𝐵𝑊𝐿 + 𝐵𝑊𝑅 +𝑊 𝐸𝑞. 4. 1 

 

Where: 

𝐹𝑧
𝐹𝐿 = Vertical ground reaction force through the front left leg; 

𝐹𝑧
𝐹𝑅 = Vertical ground reaction force through the front right leg; 

𝐹𝑧
𝑅𝐿 = Vertical ground reaction force through the rear left leg; 

𝐹𝑧
𝑅𝑅 = Vertical ground reaction force through the rear right leg; 

BWL   = load applied through the user’s left hand;  

BWR   = load applied through the user’s right hand; 

W = Rollator weight. 

It should be noted that, as the rollator weight is known, the vertical ground reaction 

forces allow the total load applied by the user to the device to be calculated. 
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Figure 4.2: Free body diagram of a rollator. 

 

With regard to the horizontal ground reaction forces, these vary depending on 

whether or not the brakes are activated. If the rollator is accelerating/decelerating 

the resultant force in the walking direction is given by 𝐸𝑞. 4.2 and 𝐸𝑞. 4.3:  

𝑃𝑥
𝐿 + 𝑃𝑥

𝑅 − (𝐹𝑥
𝐹𝐿 + 𝐹𝑥

𝐹𝑅 + 𝐹𝑥
𝑅𝐿 + 𝐹𝑥

𝑅𝑅) = 𝑚𝑎 𝐸𝑞. 4. 2 

 

𝑚 = 
𝐵𝑊𝐿+ 𝐵𝑊𝑅+𝑊

9.81
𝐸𝑞. 4. 3

        

Where: 

𝐹𝑥
𝐹𝐿,

 = Horizontal ground reaction forces due to friction through the front left leg; 

𝐹𝑥
𝐹𝑅,

 = Horizontal ground reaction forces due to friction through the front right leg; 
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𝐹𝑥
𝑅𝐿,

 = Horizontal ground reaction forces due to friction through the rear left leg; 

𝐹𝑥
𝑅𝑅,

 = Horizontal ground reaction forces due to friction through the rear right leg; 

m = mass of the loaded rollator; 

a = acceleration of the centre of mass of the loaded rollator in the walking direction; 

𝑃𝑥
𝐿 = Pushing force applied by the user through the left handle; 

𝑃𝑥
𝑅 = Pushing force applied by the user through the right handle. 

 When the rollator is either moving at a constant velocity, or static, the 

acceleration of the rollator can be considered equal to zero (𝐸𝑞. 4.4). 

𝐹𝑥
𝐹𝐿 + 𝐹𝑥

𝐹𝑅 + 𝐹𝑥
𝑅𝐿 + 𝐹𝑥

𝑅𝑅 = (𝑃𝑥
𝐿 + 𝑃𝑥

𝑅) 𝐸𝑞. 4. 4 

 

 As there is no rolling or sliding in the mediolateral direction, then the 

horizontal lateral ground reaction forces equal the force applied by the user in this 

direction (𝐸𝑞. 4.5): 

𝐹𝑦
𝐹𝑅 + 𝐹𝑦

𝑅𝑅 − 𝐹𝑦
𝐹𝐿 − 𝐹𝑦

𝑅𝐿 = (𝑃𝑦
𝐿 − 𝑃𝑦

𝑅) 𝐸𝑞. 4. 5

     

4.4 Rollator design 

4.4.1 Load cell tolerance of bending moments 

The relevant specifications of the load cells currently used as provided by the 

manufacturer are summarised in Table 4.1.  
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Table 4.1: Load cell specifications as provided by the manufacturer. 

Manufacturer  Device 

name 

Number 

of axes 

Capacity Safe overload  Measuring 

range 

Futek LCM300 Single-

axis 

1112.5 N 1668 N (equal 
to 150% the 
load cell 
capacity  

0 – 220 N 

 

Furthermore, upon request, the manufacturer also provided a basic equation to 

determine if the total external stress applied to each load cell is acceptable 

(𝐸𝑞. 4.6).  

𝜎𝑚𝑎𝑥 − (𝐴)|𝐹𝑥|  + (𝐵)|𝐹𝑦|  + (𝐶)|𝐹𝑧|  + (𝐷)|𝑀𝑥|  + (𝐸)|𝑀𝑦|  + (𝐹)|𝑀𝑧| ≥ 0     𝐸𝑞. 4. 6 

Where 𝜎𝑚𝑎𝑥 is a unitless number that the load cell can withstand and takes into 

consideration the maximum load that the load cells can withstand in each direction, 

the operation temperature and/or other factors. The value is supplied by the 

manufacturer for each model of load cell. Fx,y,z  and Mx,y,z are, respectively, the 

forces and moments in lb and in-lb acting on the load cell in the x, y, and z direction, 

and the coefficients A,B,C,D,E,F are reported in Table 4.2. The coefficients A-F 

should be used as multiplication factors only as related units were not provided. 

The complete product datasheet can be found in Appendix B. 
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Table 4.2: Coefficients for the calculation of the maximum stress that the load cell can 
withstand and maximum external stress acceptable (𝝈𝒎𝒂𝒙 ) as provided by the 
manufacturer. 

Device 

name 

Capacity A B C D E F σmax 

LCM300 250 lb 770 770 220 1955 1955 1380 87000 

 

It is clear from 𝐸𝑞. 4.6 that, in order to conclude on the suitability of the load cells, 

all forces and moments acting on each one of them need to be known. 

 For this purpose, a young healthy adult was asked to walk with a rollator of 

identical design to the one purchased-to-be-instrumented along 4 force plates 

transferring onto the device a percentage of body weight varying between 30% and 

50%. Since previous data on rollator users is scarce, the choice of such percentage 

was based on typical values observed in pick-up walker users; however it is 

believed to be sufficient to represent this new population as a previous study by 

Tung et al. on 3 rollator users reported percentages of device loading not greater 

than 12% (Tung, Chee et al. 2015). 

Two different walking conditions were tested: 

1) Brakes OFF: the user walked continuously without ever activating the 

brakes; 

2) Brakes ON: for each movement cycle, the user pushed the rollator 

forward by a small distance, activated the brakes, and then stepped 

twice towards the rollator. This usage pattern, although not common 

(according to clinicians), has been previously observed in some rollator 

users (Cheng, Kenney et al. 2016). 
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It should be noted that, in order to calculate the rollator GRF, the user walked in 

such a way that only the rollator wheels made contact with the force plates and not 

the user’s feet. Also, periods during which more than one wheel was in contact with 

the same force plate were excluded. 

After collection, force data were lowpass filtered at 6 Hz using a 4th order 

Butterworth filter, and Figure 4.3 shows the filtered ground reaction forces acting 

on one front and one rear wheel of the rollator with the brakes activated (A-B), and 

not activated (C-D).  

 

Figure 4.3: Ground reaction forces (GRFx,y,z) acting on one front and one rear wheel of 
the rollator when the brakes are activated (A-B), and when the brakes are not 
activated (C-D). X, Y, Z indicate anteroposterior, mediolateral, and vertical direction, 
respectively. Force plate data have been placed equal to zero for those periods during 
which both (front and rear) feet are on the same force plate. 

From these data, the maximum ground reaction forces acting on one front and one 

rear wheel of the rollator in both measuring conditions were recorded and are 

reported in Table 4.3. 

A C

B D

time (s) time (s)

time (s)time (s)

Front leg
Brakes ON

Rear leg

Front leg
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R
F 

(N
)
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R

F 
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G

R
F 

(N
)
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Table 4.3: Maximum ground reaction forces acting on one front and one rear wheel of 
the rollator when the brakes are activated and when the brakes are not activated. X, Y, 
Z indicate anteroposterior, mediolateral, and vertical direction, respectively. 

 Brakes ON Brakes OFF 

 Front leg (N) Rear leg (N) Front leg (N) Rear leg (N) 

X 0.5 23.5 2.1 20.6 

Y 0.2 3.8 5.8 7.4 

Z 50.5 77 87.5 103.8 

 

It is evident that the maximum vertical ground reaction force acting on one wheel 

of the rollator is well within the measuring range (0 - 220 N). Nevertheless, a safety 

factor of 3 has also been calculated to ensure that the load cells are not damaged 

by excessive load (𝐸𝑞. 4.7):  

103𝑁 × 3 = 309𝑁  ≪  1688 𝑁 𝐸𝑞. 4. 7 

 

Where: 

103 N = maximum vertical ground reaction force acting on one wheel of the rollator 

as measured by the force plate; 

1668 N = safe overload equal to 1.5 x 1112.5 N, i.e., 1.5 times the capacity of the 

load cell (see Table 4.1). 

 Subsequently, the maximum ground reaction forces obtained above have 

been used to calculate the bending moments for different potential design 

configurations (see Section 4.4.2). Finally, 𝐸𝑞. 4.6 has been calculated for each 

potential design configuration to determine suitability of a given design. 
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4.4.2 Rollator design 

The original rollator required modification to accommodate the single axis load cells 

needed for the measurement of the vertical load acting on each wheel of the 

device. The rollator is shown in Figure 4.1  and, as the geometries of the front and 

rear legs of the rollator differ, the design of the load cell connectors had to be 

considered separately.  

Front leg design 

 As the front leg is connected to the rest of the rollator through a vertical tube, 

it initially seemed reasonable to consider the possibility of simply screwing the load 

cell to each tube (Figure 4.4). To verify the suitability of such design, the moments 

that would act on the load cell have been calculated as shown in 𝐸𝑞. 4.8: 

�⃗⃗� = 𝑟  ×  𝐹 = [
𝑖̂ 𝑗̂ �̂�

0.05 0 0.25
2.1 5.8 87.5

] = [1.45 3.85 − 0.29] 𝐸𝑞. 4. 8 

 

Where 𝐹  is the force vector representing the maximum ground reaction forces in 

the x, y, and z directions as reported in Table 4.3, and 𝑟  is the position vector 

indicating the distance in space between the point of application of the ground 

reaction forces and the load cell in metres. After that, 𝐹  and �⃗⃗�  have been converted 

into lb and in-lb to calculate calculated the total stress, σ, acting on the load cell 

(𝐸𝑞. 4.9): 

𝜎 =  (𝐴)|𝐹𝑥|  + (𝐵)|𝐹𝑦|  + (𝐶)|𝐹𝑧|  + (𝐷)|𝑀𝑥| + (𝐸)|𝑀𝑦|  + (𝐹)|𝑀𝑧| = 

= 770 ∙ 0.47 + 770 ∙ 1.30 + 220 ∙ 19.67 + 1955 ∙ 1.45 + 1955 ∙ 3.85 + 1380 ∙ 0.29 = 
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=  100940 𝐸𝑞. 4. 9 

Considering that the maximum stress allowed (σmax) is equal to 87000 (see  

Table 4.2), it became clear that the stress applied to the load cell due to the bending 

moments (100940) would exceed the maximum stress allowed, and this is due to 

the excessive distance between the point of application of the ground reaction 

forces, which is the point of contact between the wheel and the ground, and the 

load cell. 

 

Figure 4.4: Geometry of the front wheel showing the distance in both vertical and 
horizontal direction between the point of application of the ground reaction forces Fx 
and Fz and the load cell for the case of a load cell screwed to the rollator leg. Note that 
the ground reaction force in the mediolateral direction, Fy, is not represented as it lies 
on the plane perpendicular to that shown in the figure. 

 

Therefore, another solution was developed with the aim to reduce or, ideally, 

cancel the bending moments acting on the load cell. Figure 4.5A illustrates how, in 

the non-modified rollator, the wheel is connected to the rest of the device through 
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a steel piece (1) which is inserted into a sleeve (2) (to allow the wheel to swivel) 

and is constrained to it by a bolt (3).  

Without modifying the original design, and in order to maintain the swivelling 

function of the wheel, a connector (4) was designed in collaboration with the 

Commercial Enterprise Unit to which the load cell could be fixated. In this 

configuration, the load cell (5) is in contact with (1) but is not screwed into it, which 

means that (1) restrains the load cell in the vertical direction only and is free to 

translate horizontally and rotate with respect to the load cell. Hence, only the 

vertical force is transmitted to the load cell but not any horizontal force or moment. 

A free body diagram of the front leg configuration is shown in Figure 4.5B. 

 

Figure 4.5: Side view and free body diagram of the design of the rollator front leg. In 
the free body diagram, x and z indicate the walking and vertical direction, respectively. 

 

 

Load cell

Rollator foot

a

b

A

B

𝐹𝑧
𝑅𝐿

 𝑥
𝑅𝐿

𝐹𝑥
𝑅𝐿

M

 𝑧
𝑅𝐿

 𝑧
𝑅𝐿

 𝑧
𝑅𝐿

𝐹𝑦
𝑅𝐿

 𝑦
𝑅𝐿

1
2

3

5

4



 

85 
 

From the free body diagram, we have the following equations of equilibrium: 

 𝑥
𝐹𝐿 = 𝐹𝑥

𝐹𝐿 

 𝑦
𝐹𝐿 = 𝐹𝑦

𝐹𝐿 

 𝑧
𝐹𝐿 = 𝐹𝑧

𝐹𝐿 

Finally, the moment about the point of contact between (1) and (2) is given by:  

𝑀 = |𝑟  × 𝐹 | = |[
𝑖̂ 𝑗̂ �̂�

0.05 0 0.25
2.1 5.8 87.5

]| = 4.12 𝑁𝑚 𝐸𝑞. 4. 10 

Where 𝐹  is the force vector representing the maximum ground reaction forces in 

the x, y, and z directions as reported in Table 4.3, and 𝑟  is the position vector 

indicating the distance in space between the point of application of the ground 

reaction forces and the load cell in metres. However, according to the design 

configuration, M acts on the sleeve and not on the load cell, which therefore, is not 

at risk of damage. 

 It may be argued that with this design configuration, the amount of vertical 

load sensed by the load cell will be influenced by the friction between the rollator 

wheel bracket and the sleeve which are both made of steel. Considering a friction 

coefficient for lubricated steel-steel, μ, which ranges between 0.16 and 0.2, the 

amount of friction (𝐸𝑞. 4.11) is equal to approximately 1.23 N, which can introduce 

a maximum error of 1.4% on the measure of the vertical load. 
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𝐹𝑓 =  𝜇√𝐹𝑥
2 + 𝐹𝑦

2 = 1.23 𝑁 ≈ 0.014 𝐹𝑧 𝐸𝑞. 4. 11 

 

Fx,y,z are the ground reaction forces at the instant in time in which the horizontal 

forces, and therefore the friction, reach their maximum value.  

Rear leg design 

As with the front leg design, the bending moment due to the offset wheel precluded 

a simple solution. In addition, it was thought preferable to not modify the brake 

system that runs inside the tubing of the rear legs.  

Therefore, a first design was proposed that would preserve the original leg 

configuration and would not affect the brake; corresponding drawing and free body 

diagrams of the proposed design are shown in Figure 4.6. 

This design consists of placing the load cell in parallel to a connecting rod so that 

the load cell would be subject to axial force only, removing any risk of being 

damaged by bending moments. In order to calculate the axial load acting on the 

load cell, we can open the structure as shown in Figure 4.6C and calculate the 

moments around B: 
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Figure 4.6: A) Side view and B) free body diagram of the first proposed design for the 
rollator rear leg. 

 

 ∙ 𝑐 + 𝐹𝑥 ∙ 𝑎 − 𝐹𝑧 ∙ 𝑏 = 0 𝐸𝑞. 4. 12 

 

 =
𝐹𝑧 ∙ 𝑏 − 𝐹𝑥 ∙ 𝑎

𝑐
𝐸𝑞. 4. 13 

It should be noted that the horizontal forces acting in the mediolateral direction are 

not represented as they are significantly smaller compared to those in the vertical 

and anteroposterior direction; nevertheless, two complications emerged from 

𝐸𝑞. 4.13: 

1) It became clear that, with this configuration, the load cell will sense not only 

the vertical load but also the horizontal ground reaction forces and, 

considering that, based on the values represented in Table 4.3, Fx can reach 

values equal to 
1

3
∙ 𝐹𝑧 = 23.5 𝑁 when the brakes are activated, this would 
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lead to unacceptably inaccurate results (a maximum error in the 

measurement of the vertical load lower or as close as possible to 5% is 

desirable in order to achieve a level of accuracy comparable to that 

previously obtained for the instrumented pick-up walker, and which is known 

to lead to errors in the calculation of the combined centre of pressure of less 

than 5% (Section 3.3.1)). 

2) Even if the horizontal forces were negligible, the load cell would sense an 

axial load equal to over 3 times the value of the vertical ground reaction 

force, which, considering a maximum vertical ground reaction force equal to 

approximately 100 N (Table 4.3, “brakes-off” condition), would be outside 

the measurement range.  

Different design alternatives had to be considered: for example, in order to 

solve 2), the distance c between the load cell axis and the rollator leg could be 

increased, thereby reducing the axial load acting on the load cell. In addition, if it 

were possible to measure Fx, perhaps adding two extra load cells horizontally in 

the rollator handles, both the vertical and anteroposterior ground reaction forces 

could be determined providing information not only on device loading, but also on 

braking strategies. However, these options proved unfeasible in terms of bending 

moments and complications due to the presence of the brakes in the handles. 

It was finally decided to adopt a solution similar to that for the front leg. Figure 

4.7A-C shows 3D view, section view, and free body diagrams of the proposed 

design. It can be observed that the load cell (1) is fixated to the wheel bracket (2) 

and to the rollator leg (3) which, in turn, allows the rollator bracket to translate 

vertically but prevents it from rotating or translating horizontally. Hence, only the 

vertical load is transmitted axially to the load cell. Again, the interface between (2) 
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and (3) is lubricated steel-steel, which may introduce inaccuracy in the 

measurement of the vertical load due to friction. 𝐸𝑞. 4.11 can be used to calculate 

the maximum friction force. Since, due to the brakes acting on the rear wheel, the 

horizontal ground reaction force in the anteroposterior direction is significantly 

higher than that experienced by the front leg, the error in the calculation of the 

vertical load due to friction can reach values equal to 6.2%. Use of linear ball 

bearings (which have a coefficient of static friction equal to 0.005) at the interface 

with the rollator wheel bracket were considered to decrease the friction, but this 

would have required modification or removal of the brake system. The former 

proved too expensive and time consuming whilst the latter would have removed a 

core function of the rollator, which would have compromised the user’s safety. 

Hence the 6.2% error was accepted.  

 

Figure 4.7: Rollator rear leg design. A) shows the 3D view, B) a section view from which 
it is possible to see how the load cell is connected to the rollator wheel, and C) the free 
body diagram. 
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4.5 Rollator development and manufacturing 

The load cell connectors are made of steel and were manufactured by Ryder & 

Wallace Ltd. (Manchester, UK, http://www.ryderandwallace.co.uk/index.php), 

whilst the assembly of the modified rollator was carried out by the Commercial 

Enterprise Unit at the University of Salford.  

Figure 4.8 shows a picture of the finished instrumented rollator. 

 

Figure 4.8: A) finished instrumented rollator. B) Detail of one instrumented ’leg’. 

 

4.6 Validation of the instrumented rollator 

Following the design phase, the accuracy of the vertical load and combined centre 

of pressure measured by the instrumented rollator was tested in the lab using a 

large 600 x 900 mm AMTI BP600900 force plate (normally used for sprinting) to 

allow for simultaneous contact with all 4 rollator wheels and both anatomical feet. 

A B

http://www.ryderandwallace.co.uk/index.php
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Methods and results of the validation of the instrumented rollator are described in 

the following paragraphs. 

4.6.1 Accuracy of the total vertical load measured by the instrumented rollator 

Methods 

Data on the total vertical load measured by the load cells mounted on to the rollator 

and by the force plate were collected using the following procedure: 

 With the rollator lifted off the floor, the 4 load cells were zeroed; 

 The force plate was zeroed; 

 The rollator was then placed with all 4 wheels onto the force plate;  

 Instrumented rollator and force plate were synchronised using the 

synchronisation method described in Section 3.2.2; 

 Five trials were recorded during which the rollator was gradually 

loaded by a young healthy adult standing outside the force plate. The 

load applied varied between 0% to approximately 40% of the 

subject’s body weight (equal to 75 kg). 

All data were processed and analysed in MATLAB R2016a as follows: 

 The synchronisation pulses were used to time-align load cell and 

force plate data; 

 Data were lowpass filtered at 6 Hz using a 4th order Butterworth filter 

(the power spectrum of force plate signals was computed in order to 

choose the correct cutoff frequency; moreover, results were in 

agreement with Winter who found that, for normal walking, 99.7% of 

signal power is contained below 6 Hz (Winter) and other previous 
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studies (Fitzpatrick, Gorman et al. 1992, Carpenter, Frank et al. 2001, 

Chiari, Rocchi et al. 2002, Vieira, Oliveira et al. 2009)); 

 Maximum and Root Mean Square values of the difference between 

the vertical force recorded by each load cell and the corresponding 

data recorded with a force plate were calculated. 

Results 

A Maximum error of 5.8% and Root Mean Square value of 14.5 N were obtained 

when comparing the total vertical load recorded by the load cells to the 

corresponding data recorded with the force plate (Figure 4.9). 

 

Figure 4.9: Example of comparison between the total vertical load recorded by the load 
cells placed into one of the rollator legs, and the corresponding force measured by the 
force plate. 
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4.6.2 Accuracy of combined centre of pressure 

Methods 

The data necessary for the calculation of the combined centre of pressure from 

both the instrumented rollator and the force plate were collected using the following 

procedure: 

 A subject was asked to wear laboratory shoes (with attached 

reflective markers) in which Medilogic pressure insoles had been 

previously placed; 

 Reflective markers were also attached to the rollator wheels; 

 With the rollator lifted off the floor, the 4 load cells were zeroed; 

 The force plate was zeroed; 

 The rollator was then placed with all 4 wheels onto the force plate;  

 The subject was asked to stand on the same force plate holding the 

rollator; 

 Motion capture system, force plates, instrumented rollator and 

pressure insoles data were then synchronised using the 

synchronisation method described in Section 3.2.2; 

 Five trials were recorded during which the young healthy adult leaned 

forward, backwards, left, and right while still holding the rollator. 

When leaning to the left/right, the subject was also asked to lift their 

right/left foot off the floor. 

The trajectory of the combined centre of pressure was obtained from both the 

instrumented rollator (using the software developed in Chapter 3) and the force 

plate; after that, Maximum and Root Mean Square values of the difference between 
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the coordinates in AP and ML direction of the combined centre of pressure as 

calculated by the instrumented rollator, and the corresponding data recorded with 

a force plate, were calculated. 

Results 

A Root Mean Square difference equal to 10.18 mm in AP direction and 11.93 mm 

in ML direction were obtained when comparing the combined centre of pressure 

as calculated by the instrumented rollator to the corresponding data recorded with 

the force plate. With regard to the maximum difference, this was equal to 24.83 

mm in AP direction and 19.8 mm in ML direction, which we considered acceptable 

being equal, respectively, to 3.67% and 3.36% of the width and length of the 

combined BoS in the testing conditions studied. An example of the comparison 

between the combined CoP calculated by the instrumented rollator and that 

calculated by the force plate is shown in Figure 4.10. 
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Figure 4.10: Comparison between the combined CoP calculated by the instrumented 
rollator and that calculated by the force plate. A) combined CoP trajectory; B) 
combined CoP coordinates in AP direction; C) combined CoP coordinates in ML 
direction. 

4.7 Discussion and conclusions 

This chapter presented the work undertaken to design, develop, and validate an 

instrumented rollator for the characterisation of stability of rollator users following 

the methodology developed in Chapter 3.  

By modifying the design of the rollator legs it was possible, despite the substantial 

difference between the geometry of rollators and that of pick-up walkers, to re-use 

the same load cells, which was highly desirable in order to contain costs. 

However, this also meant that a lower accuracy in the measurement of the vertical 

load acting through the rollator legs had to be accepted. A simple design such as 

A

CB
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that used for the pick-up walker, which consisted of the load cell being screwed 

directly into the device’s leg, would have damaged the load cell due to excessive 

bending moments, hence a design that avoids bending moments to be transferred 

to the load cell had to be adopted with the downside of introducing errors in the 

measurement due to friction. To overcome this issue, the use of linear ball 

bearings, which have a lower coefficient of friction compared to lubricated steel, at 

the interface with the rollator wheel bracket was also considered, but this would 

have required further expensive and risky (in terms of user’s safety) modification 

or complete removal of the brake system. Therefore a 6.2% maximum error in the 

measurement of the total vertical load was accepted. 

Moreover, we acknowledge that the current load cells only measure the load acting 

through the vertical axis and ignore horizontal forces, hence preventing a complete 

characterisation of the interaction between user and device. However, the vertical 

forces are sufficient for the calculation of the centre of pressure. 

Finally, the tests performed to verify the accuracy of the total vertical load (needed 

for the calculation of both device loading and combined stability margin) as 

measured by the instrumented rollator confirmed that the difference between 

rollator and force plate measurements was consistent with and slightly lower than 

the maximum error estimated during the design phase. Regarding the accuracy of 

the combined centre of pressure, this was also acceptable (<4% in both AP and 

ML direction) and comparable to that previously found for the pick-up walker. 

Hence, despite the several assumptions and limitations of the design, the newly 

developed instrumented rollator was considered suitable for assessing stability of 

rollator users in the lab. 
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5 Objective measures of rollator 

user stability and device loading 

during different walking 

scenarios. 

This chapter is under review on PLOS ONE with the title: “Objective measures of 

rollator user stability and device loading during different walking scenarios”.  

5.1 Introduction 

Falls and fall-related injuries among older people are a major health problem; 

around 40% of the over 65s living at home are estimated to fall at least once a 

year, with around one in forty of the falls leading to hospitalisation (Rubenstein 

2006). The incidence of falls and the severity of the consequences increase rapidly 

with age, and falls are leading causes of death in this age group (Rubenstein 2006, 

NHS 2014). Falls cost the NHS an estimated £2.3 billion per year (NICE 2013) and 

the social impact of falls on the individual and families can be overwhelming (Faes, 

Reelick et al. 2010). As the number of over 65s is due to double by 2050, without 

urgent action the number of fall-related injuries is certain to dramatically increase. 

Regarding the circumstances of falls, ‘walking’ has been reported as the activity 

during which 48% of community-dwelling residents came to fall (Berg, Alessio et 
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al. 1997). Walking is an activity during which a walking aid such as a walking stick 

or walking frame can provide weight-bearing support. Indeed, 22% of older adults 

in the UK use a walking aid indoors, and 44% use one outdoors (Lofqvist, Nygren 

et al. 2007). However, rather counter-intuitively and the motivation for our research, 

general walking aid use (classified on a “yes”/”no” basis) has been shown to be a 

risk factor for falling (Deandrea, Lucenteforte et al. 2010), and injuries have been 

reported due to falling “whilst using” a walking aid (Hefflin, Gross et al. 2004). 

Unfortunately, this published data fails to capture any detail on how the devices 

may have been used, in general or at the time of the fall. To date, walking aid use 

as a means of fall prevention remains an under-researched area. Without doubt 

users of walking aids are intrinsically vulnerable and therefore likely to fall. For a 

walking aid to be effective in preventing a fall, it first and foremost must be used in 

a stable and safe manner. However, at this time it is unknown whether walking aids 

are used according to the user guidance and training currently provided, and 

whether that guidance/training indeed facilitates stable, and therefore safe, use of 

walking aids. 

Nevertheless, a vast number of clinical and manufacturer leaflets exist that aim to 

provide straight-forward instructions to users of walking aids. Guidance is generally 

brief, with varying levels of detail between clinical trusts and/or manufacturers. 

Basic instructions appear sensible, however, they fail to address everyday tasks 

such as turning in confined spaces, opening doors, and negotiating obstacles and 

changes in flooring level, some of which have previously been reported to be 

problematic (Lindemann, Schwenk et al. 2016). Moreover, adherence to guidance 

is only judged via visual inspection, and the value of this is doubtful since “good 

use” is based entirely on subjective observation, often for only a small number of 
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steps taken in a straight line. To date, guidance has not been validated in relation 

to user stability when performing a range of everyday walking tasks, and this is of 

concern, especially considering the rise in numbers of walking aid users within the 

ageing population (Lofqvist, Nygren et al. 2007). 

In this context, we recently developed a novel, objective measure of stability of 

walking aid users (Costamagna, Thies et al. 2017). The measure, termed the 

combined (or system) Stability Margin (SMsystem), is calculated using force 

measurements taken from each of the walking aid legs and the user’s shoes, 

together with the position of the anatomical feet relative to the walking aid. The 

smaller SMsystem, the closer the system is to the point of tipping over, and the more 

susceptible it is to perturbations. To measure the required forces for calculation of 

SMsystem, we initially instrumented a walking frame without wheels (“pick-up 

walker”) with load cells, which together with pressure sensing insoles and optical 

motion tracking allow for calculation of SMsystem. Our approach is novel in that it 

considers the person and their walking aid to be a single system. We proved that 

combining information of walking aid and person is vital to accurately evaluate 

overall stability (Costamagna, Thies et al. 2017), and our approach is generalizable 

to a range of walking aids, including wheeled rollator frames (‘rollators’). Rollators 

are of particular interest because their general use has been shown to be 

ineffective in terms of  preventing serious fall-related injuries (van Riel, Hartholt et 

al. 2014). Interestingly, and of direct relevance to this work, users of rollators have 

complained about lack of training (Brandt, Iwarsson et al. 2003), with as many as 

80% having received no instructions or training at all regarding the use of their 

device (Liu 2009).  
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Our approach, which provides an objective measure of stability, has the potential 

to support current clinical practice through evidence-based training. In the work 

reported here, we adapted our approach for use with a 4-wheeled rollator frame 

and, in a cohort of 10 in-patients in a geriatric ward, assessed stability across a 

range of everyday tasks. The objectives were: 

1. Investigate the effects of the task being undertaken on stability. Hypothesis: 

Stability is greatest for straight line walking as compared to more complex 

tasks such as turning or obstacle crossing.  

2. Investigate the relationship between device loading (i.e. the amount of body 

weight supported by the rollator) and stability. Hypothesis: Increased 

leaning onto the rollator causes the centre of pressure of the system to move 

forward into the base of support, thereby increasing stability. 

3. Investigate the effects of rollator use strategy on stability: Hypothesis: the 

strategy employed for performance of a single task may either facilitate or 

impede stability.         

5.2 Methodology 

5.2.1 Quantification of stability 

Stability of rollator users was quantified using the methodology developed by 

Costamagna et al. (Costamagna, Thies et al. 2017), which, for the first time, looked 

at the user and their walking aid as a single combined system and quantified 

stability by calculating the combined (system) Stability Margin (SMsystem) of user 

and device from wheel-force, insole-pressure, and position data using bespoke 

MATLAB algorithms. SMsystem is defined as the shortest distance between the 

Centre of Pressure of the combined system (CoPsystem) and the nearest edge of 



 

101 
 

the combined Base of Support (BoSsystem) (Figure 5.1) and indicates how far the 

system is from tipping; hence, the higher SMsystem, the more stable the system is. 

Figure 5.1 shows how the size of BoSsystem can vary, including double support with 

the rollator grounded, single support with the rollator grounded, and double support 

with the rollator lifted (e.g. when the user is in the process of stepping up a kerb). 

It seems reasonable to think that when BoSsystem is smaller, SMsystem is also likely 

to be smaller; but this should not be confused with an unsafe gait as BoSsystem may 

well be being sensibly utilised. For this reason, SMsystem has been normalised by a 

parameter representative of the size of BoSsystem (𝐸𝑞. 5.1).  

𝑆𝑀 =  
𝑆𝑀𝑠𝑦𝑠𝑡𝑒𝑚

√𝐴𝑟𝑒𝑎(𝐵𝑜𝑆𝑠𝑦𝑠𝑡𝑒𝑚)
𝐸𝑞. 5. 1 

 

The normalised SMsystem (which will replace SMsystem in this and all the following 

chapters and will be referred to simply as SM in this thesis) is dimensionless as it 

is the ratio of two lengths.  

Finally, to further characterise rollator use, we also present the movement pattern 

(foot placements in relation to rollator movements), and device loading (DL), 

defined as the percentage of body weight transferred to the device through the 

user’s upper limbs.   
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Figure 5.1: Examples of combined centre of pressure (CoPsystem), combined base of 
support (BoSsystem) and system Stability Margin (SM) for 3 cases: A) all 6 feet on the 
ground; B) 4 rollator feet on the ground and user in single support on their right foot; 
C) user in double support and rollator fully airborne (e.g. being lifted up a step). Grey 
foot prints indicate feet/wheels that are grounded; white foot prints indicate 
feet/wheels that are airborne. 

5.2.2 Instrumentation 

For the purpose of this study, the technology of our original instrumented pick-up 

walker (Costamagna, Thies et al. 2017) was adapted for a 4-wheeled rollator. The 

instrumentation includes 4 single axis load cells (Futek LCM300, FUTEK Advanced 

Sensor Technology Inc., Irvine, California) and corresponding transmitters 

(Mantracourt T24-ACMi, Mantracourt Electronics Ltd., Exeter, UK), a pressure-

sensing insole system (medilogic®insole, T&T medilogic Medizintechnik GmbH, 

Schönefeld, Germany), and an 8-camera motion capture system (Vicon, Oxford, 

UK). Since the geometry and the characteristics of a rollator differ significantly from 

that of a pick-up walker, device-specific design modifications were necessary to 

integrate the load cells into the rollator legs in such a way that they accurately 

measure the vertical walker ground reaction forces; Figure 5.2 illustrates the 

modified rollator design.  

A B C

SMBoSsystem CoPsystem
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Figure 5.2: Instrumented rollator system with details of: A) load cell; B) rear leg design; 
C) front leg design; D) pressure-sensing insole system; E) infrared camera. 

The accuracy of CoPsystem as derived from the load cell and insole data was tested 

by placing the device onto a force plate (600 × 900 mm AMTI BP600900) and 

asking a user to step onto the same force plate while holding the rollator. 

Subsequently, CoPsystem was calculated from “gold standard” force plate data and 

compared to CoPsystem as calculated from instrumented rollator data. Results of this 

accuracy evaluation are shown in Section 4.5.  

5.2.3 Participants 

Ten rollator users aged 84.2 ± 5 years were recruited from the Geriatric 

Rehabilitation Clinic of the Robert-Bosch-Hospital Stuttgart, Germany. Inclusion 

criteria were: 1) age 65 years or older, 2) able to walk household distances with a 

rollator, but not able to walk such distances unaided. Exclusion criteria were: 1) 

history of head injury or concussion, 2) visual disorders not correctable by glasses, 

3) diagnosed peripheral or central nerve dysfunction, 4) terminal disease, 5) 

inability to follow verbal instructions. Of the 10 participants, 8 were women, and 5 

had a previous history of lower limb fracture. Moreover, 4 participants were new 

A
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users, 2 participants had had their rollator for less than 6 months, and the remaining 

4 participants were experienced users (had used the rollator for more than 6 

months). Additional descriptive parameters are presented in Table 5.1. Written 

informed consent was obtained from all participants, and the experimental protocol 

was approved by the University of Tuebingen Medical Faculty Ethics committee 

(678/2016BO1) and the University of Salford Ethics Committee (HSCR13-48). 

Table 5.1: Descriptive parameters of study participants.  
 

AGE 
(years) 

SEX 
(M/F) 

WEIGHT 
(kg) 

HEIGHT 
(cm) 

BMI FCI FRACTURE GAIT 
SPEED 
(m/s) 

ROLLATOR 
USE 
(months) 

P1 87 F 78 154 32.9 3 no 0.61 <0.5 

P2 78 F 60 153 25.6 5 yes 0.65 0.5 - 6 

P3 85 F 54 152 23.4 3 no 0.65 0.5 - 6 

P4 83 F 71 160 27.7 4 no 0.51 <0.5 

P5 79 M 71.5 168 25.3 6 yes 0.76 <0.5 

P6 91 F 47 154 19.8 5 yes 0.48 >6 

P7 82 F 60 153 25.6 3 no 0.37 >6 

P8 77 F 80 161 30.8 4 yes 0.27 <0.5 

P9 91 F 55 154 23.2 7 yes 0.71 >6 

P10 89 M 79 158 31.6 3 no 0.50 >6 

BMI: Body Mass Index; FCI: Functional Comorbidity Index (number of diseases and 
symptoms, from a maximum of 18);  

 

5.2.4 Protocol 

The experiments took place in the gait laboratory of the Robert-Bosch-Hospital in 

Stuttgart, Germany. All participants performed 6 tasks with the instrumented 

rollator representative of activities of daily living: straight line walk (5 m); 90° turn; 

180° turn; obstacle crossing (involving pushing two wheels of the rollator over the 

end part of a long wooden beam, cross section 22 mm high and 62 mm wide, while 

the other two wheels remain on the level floor); backwards walk (2.5 m) as if to 

open a door; and negotiating a 50mm step up. Participants performed each task 

twice at their self-selected speed. As it was expected that some participants might 
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experience fatigue during the assessment, the order in which tasks 2-6 were 

performed was rotated.  

5.2.5 Data analysis 

5.2.5.1 Effects of task on stability margin 

To test whether the task has an effect on stability and, if so, which tasks are more 

or less challenging to the user’s stability, the minimum SM for each task (which 

corresponds to the instant during the whole task in which the user was the least 

stable) was compared to the minimum SM of all other tasks including straight line 

walking. For this, a Friedman test, which is robust to non-normality, followed by 

post-hoc one-sided Wilcoxon Signed-Rank Tests was run in R (R Core Team 2017) 

to analyse the effects of task on stability. Finally, to account for the fact that multiple 

conditions were tested in this study, all p-values were adjusted using a Bonferroni 

correction. 

5.2.5.2 Relationship between stability margin and device loading 

The relationship between SM and DL was investigated with a least-squares 

regression for each participant and for each task using a purpose-written 

FORTRAN program (𝐸𝑞. 5.2): 

𝑆𝑀𝑖𝑗 = 𝛼𝑖𝑗 + 𝛽𝑖𝑗𝐷𝐿𝑖𝑗 𝐸𝑞. 5. 2 

 

where i = 1,2,…,10 indicates the ith participant, j = 1,2,…, 6 the jth task, and α and 

β are, respectively, the intercept and slope of the model. 

However, since SM and DL are both time series, the assumption that observations 

are independent could not be made; therefore, the time series have been first 

differenced obtaining ΔSMij and ΔDLij, and then, since ΔSMij and ΔDLij showed 
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very low autocorrelation (<0.1), the least-squares regression without intercept was 

calculated (∆𝑆𝑀𝑖𝑗 = 𝛽𝑖𝑗∆𝐷𝐿𝑖𝑗). Finally, the overall regression coefficient, β, was 

obtained by calculating the weighted mean of all the βij with weights given by the 

computed inverse variance of βij. 

To explore whether regression coefficients vary statistically between participants 

and tasks, a general linear model computed in SPSS was used, with tasks and 

patients as fixed effects. 

5.2.5.3 Effects of step-up strategy on stability 

To explore the effects of different strategies on stability, the strategy used 

spontaneously by each participant to get up the 50mm step was recorded, together 

with the corresponding minimum SM. How the adopted strategy influenced the 

corresponding minimum SM was then examined. 

5.3 Results 

5.3.1 Illustrative data on rollator use and user’s stability 

To illustrate the measures derived from our instrumented rollator system, Figure 

5.3 shows the movement pattern, i.e. the times when wheels and feet are in contact 

with the ground, together with SM and DL data for straight line walking of two 

rollator users (P1 and P8). P8 was identified by the research team as a relatively 

frail user, who was limping due to history of hip fracture (right hip) and because he 

had the lowest gait speed (0.27 m/s) (Schoon, Bongers et al. 2014), whilst P1 was 

deemed fittest based on gait speed and functional comorbidity index. Surprisingly, 

it can be observed from the graphs that P8 has a generally higher SM (SM = 0.24 

– 0.36) than P1 (SM = 0.15 – 0.30). However, P8 also shows a much greater DL 

(up to 37% BW) than P1 (up to 10% BW), and this may affect the observed absolute 



 

107 
 

values of SM. It is further notable that P1’s DL remains approximately constant 

throughout the walking trial with a mean value of 6.8 ± 1.3% BW, whilst P8’s DL is 

less regular, showing greater variability (25.1 ± 4.6% BW).  

 

Figure 5.3: Example data sets for two rollator users (P1: fit, P8: frail) walking in a 
straight line for 5m. Top: movement pattern; red and blue lines indicate, respectively, 
times when the user’s left and right foot are grounded, black lines represent the 
rollator wheels in continuous ground contact. Middle: stability margin ‘SM’ over time 

(non-dimensional as normalised by √𝑨𝒓𝒆𝒂(𝑩𝒐𝑺𝒔𝒚𝒔𝒕𝒆𝒎) ). Bottom: device loading ‘DL’ 

defined as the percentage of body weight (%BW) transferred by the user onto the 
rollator. It can be seen that P8 shows greater task completion time, higher SM, and 
greater and more variable DL compared to P1. 
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Last but not least, it can be observed that DL considerably increases every time 

P8 is swinging the left foot forward, indicating a need for additional support from 

the  rollator when standing in single support on the limb that was previously 

fractured. 

5.3.2 Effects of task on stability 

Figure 5.4 presents the distribution of the minimum SM for each task across the 10 

participants, showing a visible difference between straight line walking and all other 

tasks. Corresponding results of the Friedman test showed that the task performed 

has a significant effect on stability (χ2 = 20.2, degrees of freedom = 5, p = 0.001), 

and the post-hoc Wilcoxon tests used to further investigate the effect of the 

individual tasks confirmed that that the minimum SM for each task is significantly 

lower than that during straight line walking (Table 5.2). Furthermore, the effect size 

|r| > 0.5 indicates that each task has a large effect on stability. Regarding the 

comparison between all other tasks, however, no further significant differences 

between the more complex tasks emerged from the Wilcoxon tests. 

Table 5.2: Group median values of the minimum stability margin ‘SMmin’ (non-

dimensional as normalised by √𝑨𝒓𝒆𝒂(𝑩𝒐𝑺𝒔𝒚𝒔𝒕𝒆𝒎) ) for each task and results of the 

Wilcoxon Signed-Rank Test. “Straight”: straight line walking, “Back”: Backwards 
walking, “Obstacle”: obstacle crossing, and “Step”: stepping up a kerb. 

 

 
median  z-score p value effect size R 

Straight 0.1665    

90° turn 0.1260 -2.8067 0.006 -0.8876 

180° turn 0.1275 -2.8031 0.012 -0.8864 

Back 0.1380 -2.6679 0.006 -0.8893 

Obstacle 0.12 -2.8031 0.006 -0.8864 

Step 0.1280 -2.8049 0.006 -0.8870 
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Figure 5.4: Box plot of the minimum SM (non-dimensional as normalised by 

√𝑨𝒓𝒆𝒂(𝑩𝒐𝑺𝒔𝒚𝒔𝒕𝒆𝒎) ) for each task across the 10 participants. The bottom and top 

edge of the boxes indicate the first and third quartile, the thicker line inside the box 
represents the median, and the whiskers below and above the box show the minimum 
and maximum values respectively. Circles denote outliers as identified automatically 
by the software R. “Straight”: straight line walking, “Back”: Backwards walking, 
“Obstacle”: obstacle crossing, and “Step”: stepping up a kerb. 

5.3.3 Relationship between stability margin and device loading 

Results of the least-squares regression confirmed that the overall weighted 

regression coefficient, β, is significantly positive (β = 0.000695 ±0.000036, z-score 

= 18.51) and, hence, that SM increases with DL. Moreover, the general linear 

model showed that β varies significantly between participants (p<0.001) but not 

between tasks (p = 0.69). The mean (weighted) values of β for the 6 tasks and the 

10 participants are shown in Figure 5.5. 
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Figure 5.5: Mean (weighted) values of the regression coefficients β for A) the 10 
participants and B) the 6 tasks. 

5.3.4 Effects of strategy used on stability margin 

Three different strategies to step onto a 50 mm-high platform were observed in the 

rollator users tested. Seven out of ten users adopted a lateral approach which 

consisted of: 

 User lifts either the right or left side of the rollator first; 

 User places the front wheel of the lifted side onto the platform; 

 User lifts the rest of the rollator and places it onto the platform. 

Two users adopted an “all together” approach (referred to as “All together V1”), 

using the handles to lift the rollator up completely in a single manoeuvre and 
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placing all 4 wheels simultaneously on top of the platform. Finally, 1 user adopted 

an alternative “all together” approach (referred to as “All together V2”) as follows: 

 User leans forward and grabs the rollator horizontal bar with one 

hand while holding one handle with the other hand; 

 User lifts the rollator up completely in a single manoeuvre. 

Of the 3 different approaches adopted by the rollator users, the lateral approach 

was the one with the highest minimum SM (0.13 ± 0.03), followed by the “All 

together V1” approach (0.12 ± 0.01) and, lowest of all, the “All together V2” 

approach (0.11; since only 1 trial is available for this approach, standard deviation 

could not be calculated). 

5.4 Discussion 

This is the first study which, in a cohort of 10 in-patients in a geriatric ward, 

assessed stability with an instrumented rollator for six everyday walking tasks. 

Stability was investigated with an objective assessment methodology previously 

developed by the authors (Costamagna, Thies et al. 2017), which treats the user 

and their rollator as a single combined system and informs on the corresponding 

stability margin, i.e. how far the system is from the point of “tipping over”. It is 

noteworthy that since its initial development (Costamagna, Thies et al. 2017), the 

method has been further refined in that SMsystem is now normalized to take into 

account the size of the BoS, because a smaller SMsystem may simply be the 

consequence of a smaller BoS. However, despite this normalization, the sample 

data of two participants (one fit and one comparatively frail) indicate that, whilst SM 

is a direct measure of stability (nearness to tipping), a larger SM (as observed for 

the more frail user) does not necessarily mean a safer gait and lower risk of falling. 
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For instance, those users who need a rollator only as a balance aid, and which do 

not transfer substantial amounts of body weight onto the device, will likely have a 

lower SM than those who need it for weight-bearing support. In future, a measure 

representative of overall stability that does not depend on absolute values of SM 

would be more informative, especially when it is the aim to characterize relative 

stability of participants.  

Investigating effects of task on SM, the data provide evidence that stability 

decreases substantially from straight line walking to all other tasks. Yet, no 

significant differences between the other tasks (90° turn, 180° turn, backwards 

walk, obstacle crossing, and step up/down) could be found, indicating that the level 

of challenge for each task may be similar or subjective. These findings provide 

initial evidence as to how safe use of a rollator may be facilitated: training should 

target daily activities other than straight line walking, and it should be customised 

to focus on those activities for which a user exhibits particularly low stability. 

Investigating stability in relation to device loading, findings showed that SM 

generally increases significantly when DL increases, thereby supporting our 

hypothesis that as more weight is transferred onto the rollator, CoPsystem moves 

forward towards the centre and away from the edges of BoSsystem. Hence, advice 

to those who show generally low SM, and especially to those whose SM is often 

directed towards the rear of BoSsystem, could include instruction to lean more onto 

the rollator. However, we acknowledge that this may not always be possible if users 

have weak upper limbs, and it may also lead to new pathologies such as tendonitis 

or osteoarthritis (Gelberman, Hergenroeder et al. 1981, Waring and Werner 1989). 

Furthermore, it must be considered that prolonged offloading of the lower limbs 

may induce lower limb weakness.  
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It must also be noted that, considering the different strategies used to stepping up 

a kerb, it may be that the relationship between SM and DL is influenced by the 

specific strategy used and this task may need to be treated separately from other 

tasks. Future work needs to investigate this further, however, at this time the 

authors did verify in a post-hoc analysis that the exclusion of the stepping-up task 

from the regression and general linear models did not change the significance of 

the models and neither the results for the remaining tasks.   

Finally, for the first time, we have shown how stability data can inform rollator use 

strategies. Specifically, when going up a step the “lateral approach” appears to be 

the most stable strategy, because the rollator never leaves the ground completely 

and hence provides the user with continued support; the “All together” approaches, 

instead, require greater strength as the user has to lift the rollator in one manoeuvre 

and leave him/her with no support during the lifting-up phase. The authors note 

that none of the participants went up the step as stated in some guidance 

documents, i.e. lifting the front wheels first, then the rear, then squeezing the 

brakes before stepping up. 

One limitation that emerges from the above discussion is that SM, despite its 

normalization by (√𝑎𝑟𝑒𝑎(𝐵𝑜𝑆)), appears to be further influenced by other factors. 

Therefore, future analysis should investigate additional factors such as DL and 

their effects on SM, and/or focus on analysis techniques that do not depend on 

absolute values of SM, for example, the regularity of the SM time series (e.g. as 

measured by autocorrelation).  
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5.5 Conclusions 

In summary, our approach provides objective data on walking stability of the 

combined system (user and rollator) for a range of everyday tasks, and provides 

first insights into how to objectively assess alternative rollator use strategies to 

inform evidence-based training. The relevance of our approach lies in an increase 

in users of walking aids within our ageing population, and the associated costs 

arising from fall-related injuries. One key insight gained is that training should not 

be limited to straight line walking alone, but should include more complex tasks 

representative of daily walking activities. Within person, the stability margin SM can 

be used to identify which tasks need to be practiced, and which strategy facilitates 

stable performance of a given task. Indeed, in principle, the use of instrumented 

rollators as assessment tools in clinics could enable person-specific guidance and 

training. Longer-term, evidence-based training should increase the benefits of 

using rollators as a means of fall prevention. 
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6 Stability of walking aid users: 

methods for the interpretation of 

combined stability margin data. 

6.1 Introduction 

Falls in older people are a major health problem due to their high incidence, severe 

consequences, and associated costs. Specifically, 30-50% of those aged over 65 

fall every year (Tinetti, Speechley et al. 1988, Rubenstein and Josephson 2002, 

Organization 2007) and suffer from associated social and physical consequences 

such as fear of falling, loss of independence, hip fracture, and even death 

(Rubenstein 2006, Age UK 2011, NHS 2014). It was estimated that, in 2013, the 

total cost to the UK government of falls in the older population was over £2.3 billion 

(NICE 2013).  

In order to improve balance and mobility and prevent falls, 29-49% of older 

Europeans use walking aids (WAs) (Lofqvist, Nygren et al. 2005); however, rather 

surprisingly, WA use has even been associated with a 2-3 fold increased falls-risk 

(Deandrea, Lucenteforte et al. 2010). At this stage, the reasons for this finding 

cannot be established, as there are few, if any objective studies of WA usage in 

the real world. Further, and of direct relevance to this chapter, there are no gold 

standard measures that objectively quantify stability in WA users. Indeed, the 
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majority of studies on walking stability focus on unassisted walking, which is both 

surprising and concerning considering that the most frail will often be users of WAs. 

To address this problem, we previously developed a generalizable methodology 

for stability assessment of WA users (Costamagna, Thies et al. 2017), which 

calculates the combined Stability Margin (SM) for the user and WA. Specifically, 

SM is a non-dimensional measure, defined as the shortest distance between the 

combined centre of pressure and the nearest edge of the combined base of support 

(BoS), normalized by √𝑎𝑟𝑒𝑎(𝐵𝑜𝑆) (Costamagna, Thies et al. 2017). In general, the 

smaller the SM, the less stable the system is, and, hence, we used the minimum 

(instantaneous) value of SM seen during the performance of a given activity to 

characterise stability.  

To obtain SM, we need to measure the vertical load through each of the points of 

contact with the ground (both anatomical feet and feet of the WA), together with 

their relative location. To capture the vertical loads through the feet of the WA, load 

cells were integrated into the ‘legs’ of both a 4-wheeled walker (rollator) and also 

a Zimmer frame without wheels (pick-up walker ‘PW’). To measure the loads 

through the anatomical feet, we use pressure sensing insoles inside the user’s 

shoes, and, to measure the relative position of the user’s feet in relation to the WA, 

we use 3D optoelectronic camera data (Costamagna E, Thies S.B.  et al. 2017, 

Costamagna, Thies et al. 2017). In our previous work, we demonstrated that, within 

subject, the minimum value of SM is lower when subjects are performing intuitively 

more challenging tasks than straight line walking  (e.g. such as obstacle crossing 

or turning)  (Costamagna E, Thies S.B.  et al. 2017).  

Nevertheless, rather counter-intuitively, it was also observed that the minimum SM 

of a young healthy adult walking with a rollator is often considerably lower than that 
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of older users. Similarly, a relatively fit rollator user showed minimum values of SM 

much lower than that of a frailer user with previous history of lower limb fracture. 

This finding may partly be explained by considering the relationship between 

device loading and SM; as seen in Chapter 5, as device loading increases, SM 

also increases. Therefore, those users who only need a WA as a balance aid (such 

as a fit rollator user) and, for this reason, do not transfer significant amounts of 

body weight onto it, are likely to have lower SM than those who use their WA for 

structural support (e.g., a frail user with a history of lower limb fracture). As one 

might expect the user who relies on light touch support for balance to be less 

vulnerable to a fall than someone who relies on the WA for support, this finding 

suggests that the minimum value of SM alone may not provide a comprehensive 

measure of stability.  

Indeed, looking at the minimum SM only is limiting as it considers a single instant 

across a whole task, while ignoring the behavior of SM over time. On the other 

hand, using differential values of SM, as compared to absolute values, may provide 

more useful insights as differential values remove the effect of user-specific factors 

(such as the amount of body weight transferred onto the walking aid) on absolute 

values of SM. Hence, additional analyses (e.g., time series analysis or differential 

measures) are needed to capture other parameters which may provide 

complementary information on stability.  

In the literature there are a number of possible techniques that may be applied to 

SM time series in order to characterise the user’s level of stability and indicate their 

proficiency in using their walking aid safely. For instance, as it is well known that 

healthy gait is highly periodic (Kobayashi, Kakihana et al. 2014), previous work 

concerned with unassisted walking used the autocorrelation technique to 
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demonstrate an association between decreased gait regularity and increased falls-

risk in older people (van Schooten, Pijnappels et al. 2016). Although it is 

recognised that walking aids impose a movement pattern that may affect the 

periodicity of the user’s gait, it seems reasonable to investigate whether, when 

considering the combined system (user + walking aid) instead of the user alone, 

SM regularity may also reflect stability.  Another technique that has often been 

used to inform on stability is the root mean square (RMS) of measures such as 

centre of pressure deviation (Jeka, Easton et al. 1996, Jeka 1997, Jeka, Schoner 

et al. 1997, Tung, Gage et al. 2014) and postural sway (Fernie, Gryfe et al. 1982) 

under the assumption that greater stability leads to lower deviation. Since SM and 

centre of pressure are closely related, this technique could be directly applied to 

this work. Furthermore, calculating the difference in a given outcome measure for 

performance of a simpler and a more complex task has been suggested to 

differentiate between subjects (Ble, Volpato et al. 2005, Bridenbaugh, Beauchet et 

al. 2013). Similarly, the difference in SM between straight line walking and more 

complex walking tasks may guide decisions on users’ level of stability based on 

the hypothesis that those who are more stable would show lower difference in SM 

between straight line walking and more complex walking tasks (e.g. turning a 

corner or stepping up a kerb) than those who are less stable. Finally, one may also 

argue that it is not just the instantaneous value of a stability measure that matters, 

but also the time over which the person is in a less stable situation. Hence those 

who spend more time further away from the tipping point (SM = 0) may be less 

likely to fall than those whose SM is consistently closer to 0; thus, the integral of 

SM over time may inform on users’ stability.  
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With the long-term aim to support clinical decision making as to who is at greater 

risk of falling within the walking aid users population, a first step towards this aim, 

and the objective of this work, is to investigate the analysis techniques introduced 

above for their merit to characterise users’ overall level of stability using an 

empirical approach. 

6.2 Methods 

6.2.1 Subjects  

Fifteen (15) WA users aged 82 ± 6 years and one young healthy adult (for 

reference) aged 29 years were recruited for this study. Of the 15 WA users, 10 

were rollator users and 5 were pick-up walker users. Inclusion criteria were: 1) age 

of 65 years or older, 2) able to walk household distances with a WA, however, not 

able to walk such distances unaided. Exclusion criteria were: 1) history of head 

injury or concussion, 2) visual disorders not correctable by glasses, 3) diagnosed 

peripheral or central nerve dysfunction, 5) inability to follow verbal instructions. 

Written informed consent was obtained from all participants, and the experimental 

protocols were approved by the University of Tuebingen Medical Faculty Ethics 

committee (678/2016BO1) and the University of Salford Ethics Committee 

(HSCR13-48). 

6.2.2 Protocol 

Since rollators are predominantly used outdoors and PWs indoors, and since PW 

users are generally considerably more frail than rollator users, two different 

experimental protocols were designed to reflect the everyday use of each device 

and the different physical conditions of the two populations. Rollator users 
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performed 6 tasks representative of everyday activities with the instrumented 

rollator developed in (Costamagna E, Thies S.B.  et al. 2017): 1) straight line walk 

(5 m); 2) 90° turn; 3) 180° turn; 4) obstacle crossing (pushing the rollator over a 

wooden beam, 22 mm high and 62 mm wide, with 2 wheels of the same side); 5) 

backwards walk (2.5 m) as if to open a door; and 6) stepping up a 50 mm kerb. As 

it was expected that some users may experience fatigue, the order in which tasks 

2-6 were performed was rotated.  

PW users walked with the instrumented PW developed in (Costamagna, Thies et 

al. 2017) in a straight line (5 m) and along a path containing two 90° turns both in 

the lab (simulating an open space or clinic), and in the University of Salford 

Activities of Daily Living (ADL) flat: a fully furnished home-setting with doorways 

and transitions between different flooring conditions (carpet and vinyl flooring). 

Finally, the young healthy adult completed both protocols with both WAs. 

Participants performed all tasks at their self-selected speed. 

6.2.3 Data analysis 

SM for each participant has been analysed using bespoke code written in MATLAB 

R2016a using 4 different techniques, labelled ‘autocorrelation’, ‘RMS deviation’, 

‘integral’, and ‘delta (difference in SM between tasks)’, as described below: 

Autocorrelation  

Autocorrelation coefficients were calculated in Matlab R2016a following the 

procedure presented by Moe-Nilssen (Moe-Nilssen and Helbostad 2004). In 

summary, the autocorrelation compares a time series of length N samples to the 

same time series delayed by n samples, where n ranges from 0 to N-1. When the 

delay is 0, the autocorrelation function is always equal to 1 as any time series is 
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identical to itself; as n increases, the autocorrelation function oscillates between 0 

and 1 depending on how periodic the time series is: for a perfectly periodic signal 

such as a sine wave, for instance, the autocorrelation function will return peaks 

equal to 1 every i·T samples where T is the period of the sine wave and i = 1, 2, 

…, ∞, meaning that the sine wave is identical to a version of itself delayed by i·T 

samples. Thus, the more periodic a real time series is, the closer to 1 the peaks of 

the autocorrelation function will be. These peaks are called autocorrelation 

coefficients. In gait analysis, the first and second peak (Ad1 and Ad2) are normally 

of interest as they indicate how similar two consecutive steps and two consecutive 

strides are, respectively. Knowing that healthy gait is highly periodic, it was 

expected that more stable users would show higher autocorrelation coefficients. 

The autocorrelation function was calculated for straight line walking only since the 

nature of other tasks such as turning, crossing an obstacle, or going up a step will 

affect gait periodicity in a difficult-to-interpret way.  

RMS deviation  

RMS deviation of SM from the mean was calculated according to Eq. 6.1 with the 

assumption that lower deviation from the mean indicates higher stability. 

dRMS = √
1

N
∑|SMn − SM̅̅ ̅̅ |2
N

n=1

𝐸𝑞. 6. 1 

where dRMS indicates the RMS deviation of SM, N the length of the SM time series, 

SMn the value of the n-th sample of SM, and SM̅̅ ̅̅  is the mean value of SM. Since 

previous work presented in Chapter 5 showed that the level of challenge for tasks 

other than straight line walking may vary between users (i.e., different users might 
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find a given task more or less challenging depending on their experience and 

abilities), RMS deviation was calculated for straight line walking only. 

Integral 

The integral of SM (𝐸𝑞. 6.2) quantifies how far and for how long the system is away 

from the tipping point (SM = 0). The hypothesis is that the greater the integral, the 

further away the system is from the tipping point and for longer time, and, hence, 

the more stable the system is. 

𝐼 = ∫ 𝑆𝑀(𝑡)𝑑𝑡
𝑇

0

𝐸𝑞. 6. 2 

         

Where I is the integral and T equals 6 seconds for rollator users and 30 seconds 

for PW users. These values of T were chosen as they correspond to the 

maximum periods of time for which SM was available for all rollator and PW 

users respectively (e.g., the fastest rollator user performed the straight line 

walking task in 6 seconds). For similar reasons as stated for the RMS deviation, 

the integral of SM was calculated for straight line walking only. 

Delta (difference in SM between tasks) 

The delta (Δ) for each participant was calculated as the mean difference between 

the minimum SM during each complex task (i.e. turning, crossing an obstacle, etc.) 

and that during straight line walking (𝐸𝑞. 6.3). This is based on the hypothesis that 

less vulnerable users will be more able to maintain stability across both, more and 

less difficult tasks, whilst less stable users would show a larger difference in 

stability between straight line walking and more difficult tasks (e.g. a young healthy 
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adult, for instance, might be almost as stable during turning as during straight line 

walking):   

∆=
1

𝑁
∑|𝑆𝑀𝑚𝑖𝑛𝑖 − 𝑆𝑀𝑚𝑖𝑛𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡|

𝑁

𝑖=1

𝐸𝑞. 6. 3 

    

where N is the total number of tasks excluding straight line walking (N=5 for rollator 

users and N=2 for PW users), SMmini is the minimum SM for the ith task (i.e., 90° 

turn, 180° turn, backwards walking, obstacle crossing, and stepping up for rollator 

users, and turning in the lab and in the ADL flat for PW users), and SMminstraight is 

the minimum SM for straight line walking with either device. 

Ranking of users 

Users were ranked in order of decreasing stability as determined through each 

analysis technique. The ability of each technique to differentiate between more and 

less stable users was assessed based on how well they could classify the healthy 

young participant to be the most stable user, and the most frail participant (based 

on clinical observation and medical history) to be the least stable user. In addition, 

detailed rankings of all participants were investigated for their agreement with gait 

speed, which is commonly used in clinical practice as an indicator of walking ability 

(Barry, Galvin et al. 2014, Schoon, Bongers et al. 2014, van Schooten, Pijnappels 

et al. 2016). Since the type of walking aid used will affect SM values, as well as 

factors such as gait pattern and gait speed, which, in turn, would influence user 

rankings based on speed and autocorrelation, two separate rankings were made 

for rollator and PW users. 
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6.3 Results 

Figure 6.1 A-B shows SM for straight line walking with the instrumented rollator for 

the healthy young adult (RYA) and one older user (R8) who was considered the 

least stable due to their visible frailty, previous history of hip fracture, and very low 

gait speed (0.2 m/s). Figure 6.2 A-B shows the equivalent data for straight line 

walking with the instrumented PW for the healthy young adult (PWYA) and one 

older user (PW1) who was one of the three slowest PW users tested (others being 

PW2 and PW5, see Table 6.2. For clarity, the young healthy adult will be referred 

to as RYA when walking with the rollator and as PWYA when using the PW. It 

should be noticed that, as it can be observed in Figures 6.1 and 6.2, despite being 

considered less stable, R8’s SM was generally higher than that of RYA and SM for 

PWYA and PW1 were comparable.   

 

Figure 6.1: A) SM time series during straight line walking with the instrumented 
rollator for A) the young healthy adult (RYA) and B) one rollator user (R8). 
Autocorrelation function for straight line walking with the instrumented rollator for C) 
RYA, Ad1 = 0.8 and D) R8, Ad1 = 0.07. It can be seen that RYA, compared to R8, shows 
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lower SM but a much higher autocorrelation coefficient indicating greater regularity of 
SM. 

 

Figure 6.2: A) SM time series during straight line walking with the instrumented PW for 
A) the young healthy adult (PWYA) and B) one PW user (PW1). Autocorrelation 
function for straight line walking with the instrumented PW for C) PWYA, Ad1 = 0.66 
and D) PW1, Ad1 = 0.06. It can be seen that PWYA, compared to PW1, shows similar SM 
but a much higher autocorrelation coefficient indicating greater regularity of SM. 

Furthermore, it is noteworthy that SM of RYA and PWYA is visibly more periodic 

as compared to R8 and PW1, respectively, and this difference in periodicity is 

quantified by the autocorrelation function (Figure 6.1 C-D and Figure C-D) and, in 

particular, by higher values of the autocorrelation coefficient Ad1. 

Table 6.1 and 6.2 show the results of all analysis techniques applied to SM for all 

participants. 
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Table 6.1: Results of the 4 analysis techniques for rollator users. 
 

Gait speed (m/s) Autocorrelation (Ad1) RMS deviation Integral (ms) Delta 

R1 0.59 0.73 0.037 0.87 0.037 

R2 0.75 0.46 0.048 0.9 0.040 

R3 0.66 0.55 0.046 0.74 0.015 

R4 0.51 0.58 0.025 0.76 0.040 

R5 0.76 0.1 0.031 0.83 0.041 

R6 0.48 0.58 0.023 1.42 0.151 

R7 0.36 0.34 0.029 0.89 0.031 

R8 0.24 0.07 0.023 1.12 0.079 

R9 0.67 0.76 0.055 1.28 0.070 

R10 0.48 0.37 0.039 0.96 0.047 

RYA 0.80 0.8 0.080 0.8 0.005 

 

 

Table 6.2: Results of the 4 analysis techniques for PW users. 
 

Gait speed (m/s) Autocorrelation (Ad1) RMS deviation Integral (ms) Delta 

PW1 0.05 0.06 0.0811 5.37 0.033 

PW2 0.04 0.39 0.0583 5.94 0.051 

PW3 0.13 0.43 0.0566 5.87 0.015 

PW4 0.15 0.54 0.0756 5.32 0.008 

PW5 0.04 0.37 0.06 5.39 0.062 

PWYA 0.16 0.66 0.086 5.39 0.005 

 

Finally, based on the values reported in Tables 6.1 and 6.2, Table 6.3 and Table 

6.4 rank, respectively, rollator and PW users in order of decreasing gait speed and 
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stability as obtained from each analysis technique. Referring to both tables, gait 

speed, autocorrelation, and delta place the young healthy adult at the top of both 

populations. Conversely, contrary to expectations, RMS deviation places the 

young adult at the very bottom, and the integral somewhere in the middle of the 

rankings. R8 was placed last in the rollator users ranking according to gait speed 

and autocorrelation and second to last according to delta. Among the PW users, 

gait speed, delta, and autocorrelation all placed the slower users PW1, PW2, and 

PW5 at the bottom of the rankings. Conversely, contrary to expectations, RMS 

deviation and the integral placed R8 and the group PW1, PW2, PW5 at the top or 

in the middle of the rankings for their respective populations. 

 

Table 6.3: Ranking of rollator users in order of decreasing stability according to each 
analysis technique, and in relation to gait speed. 

Gait speed RYA R5 R2 R9 R3 R1 R4 R10 R6 R7 R8 

Autocorrelation (Ad1) RYA R9 R1 R4 R6 R3 R2 R10 R7 R5 R8 

RMS deviation R8 R6 R4 R7 R5 R1 R10 R3 R2 R9 RYA 

Integral R6 R9 R8 R10 R2 R7 R1 R5 RYA R4 R3 

Delta RYA R3 R7 R1 R2 R4 R5 R10 R9 R8 R6 

 

Table 6.4: Ranking of pick-up walker users in order of decreasing stability according to 
each analysis technique, and in relation to gait speed. 

Gait speed PWYA PW4 PW3 PW1 PW2 PW5 

Autocorrelation (Ad1) PWYA PW4 PW3 PW2 PW5 PW1 

RMS deviation PW3 PW2 PW5 PW4 PW1 PWYA 

Integral PW2 PW3 PWYA PW5 PW1 PW4 

Delta PWYA PW4 PW3 PW1 PW2 PW5 
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6.4 Discussion 

We have developed a novel methodology (Costamagna, Thies et al. 2017) for the 

assessment of stability of walking aid users which shows potential to inform user-

specific training (Costamagna E, Thies S.B.  et al. 2017). Here we build on our 

work by investigating the merit of different analysis techniques, applied to SM, to 

evaluate users’ relative stability (i.e., autocorrelation, RMS deviation, integral, and 

delta). We have demonstrated graphically (Figure 1 A-B, Figure 2 A-B) that older 

WA users may show similar or even higher SM compared to a healthy young adult, 

indicating that absolute values of SM  do not fully explain user’s stability under all 

conditions and can produce counter-intuitive results. This observation supported 

our subsequent investigation of additional analysis techniques, which may provide 

a complementary, or better way of evaluating stability, based on the SM data.    

Within the rollator users’ population, autocorrelation of SM shows the greatest 

promise as its ranking of the most and least stable participant (RYA versus R8) 

agrees with clinical observation and gait speed. Delta also ranks RYA as the most 

stable and R8 among the least stable participants, which we argue makes it worthy 

of further investigation. Nevertheless, we acknowledge that, between the 

extremes, the agreement between autocorrelation, delta and gait speed is poor. 

RMS deviation and the integral, however, provide a very counter-intuitive ranking 

of participants with RYA and R8 being, respectively, last and first according to RMS 

deviation and third to last according to the integral. 

Within the PW users’ population, PWYA was, as expected, the fastest user, PW3 

and PW4 were slightly slower than PWYA, whilst PW1, PW2, and PW5 were the 

slowest of the group.  In this population, delta and autocorrelation both show full 
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agreement with gait speed as they classify PWYA as the most stable participant 

followed by PW4 and PW3, and PW1, PW2, and PW5 as the least stable ones. On 

the other hand, as for the rollator users, RMS deviation and the integral do not 

place the healthy participant at the top and the group of slow users 

(PW1/PW2/PW5) at the bottom. 

We conclude that autocorrelation and delta show promise for distinguishing stable 

from unstable users in groups of rollator and pick-up walker users and, hence, 

should be investigated further. We also note that, of these two analysis techniques, 

autocorrelation quantifies a feature of SM which is also very evident upon 

observation (i.e., regularity) and has the advantage of reflecting the whole time 

series, whilst delta reflects a single instant, the one at which SM reaches its 

minimum. 

A major limitation of this work is that the ability/inability of each technique to inform 

on users’ relative stability was mainly judged based on its agreement with clinical 

observation and gait speed, which is commonly used as a proxy for gait 

performance (Barry, Galvin et al. 2014, Schoon, Bongers et al. 2014, van 

Schooten, Pijnappels et al. 2016). We did this because, to date, no gold standard 

measure of walking aid users’ stability exists. However, although clinical 

observation could confidently identify the most and least stable users, it was often 

unable to rank those who showed a level of stability somewhere between the 

extremes. Furthermore, previous research has reported that gait speed does not 

necessarily inform on stability; indeed, walking at a slower speed may even 

improve stability as it allows the user more time to better control their movement 

and that of the WA (Crosbie 1994, Yeung, Chow et al. 2012). On the one hand, 

these considerations may explain the poor agreement between techniques such 
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as autocorrelation, delta and gait speed and, on the other hand, they may justify 

the need for measures that more directly and objectively reflect WA users’ stability. 

Longer-term a prospective study on falls is needed to conclude on the merit of each 

analysis technique through correlations between stability measures, such as those 

investigated here, and the actual occurrence of falls.  

Furthermore, future analyses should also consider additional factors that may 

impact on absolute values of SM and, in particular, device loading since previous 

work demonstrated that SM is strongly related to device loading (Chapter 5). 

However, when the WA is lifted - either as part of its movement cycle as is the case 

for a pick-up walker, or when going up/down a step, device loading will be 0, and, 

hence, SM/DL will approach infinity, thus rendering normalization by device loading 

inappropriate. Also, it must be considered that those who show generally low SM, 

and especially those whose SM is often directed towards the rear of the base of 

support, might benefit from leaning more onto the rollator (hence increasing DL); 

in such cases, removing the influence of DL through normalisation would limit 

insights gained.  

In summary, absolute values of SM often produce counter-intuitive results when 

comparing users (due to SM being influenced by user-specific factors) and are 

hence not suitable to distinguish between more and less stable users. This work 

presents an initial investigation of alternative SM analysis techniques.  Findings 

suggest that autocorrelation and delta of SM show the greatest potential to inform 

on the relative stability of walking aid users, whilst RMS deviation and the integral 

of SM proved unable to rank users’ stability in an intuitive way. However, the need 

for a prospective falls study remains in order to confidently conclude on the merit 
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of different stability outcome measures and corresponding analysis techniques in 

relation to falls-risk.  

Longer term, the quantification of stability in walking aid users may support the 

prescription of walking aids and training of users. The relevance of this work lies in 

the substantial costs, both social and financial, arising from falls and the increasing 

number of walking aid users. 
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7 Differences in usage and 

stability between two types of 

walking aids and two 

environments: a case study   

7.1 Introduction 

In Chapter 3, the development of a new methodology for the assessment of stability 

of walking aid users has been introduced. Subsequently, this methodology has 

been tested with a cohort of rollator and pick-up walker (PW) users, with the aim 

to investigate the user-device system’s overall stability and task related changes 

in stability in order to inform clinical practice and user-specific training. 

Nevertheless, there are still several aspects of walking aid use which have not 

been explored. For example, it is known that walking aid prescription guidelines 

are often very generic and are based on observation, pre-existing conditions, and 

upper and lower limb strength, but they are not supported by objective stability 

outcomes (see section 2.2.2.1 for additional details on prescription guidelines). 

Moreover, previous conversations with clinicians revealed that prescription of 

walking aids is often based on clinicians’ personal experience and preferences. 

Based on the inherent variation in approaches, current pairings of user and walking 

aid are highly unlikely to be optimal, with regard to supporting stable walking. 



 

133 
 

However, until now, no research has demonstrated the scale of the difference in 

stability metrics which might be seen between different Was, and hence the 

importance of prescribing the ‘right’ device. 

Moreover, there are also some alarming findings with regard to user training: for 

example, it has been reported that walking aid users often do not receive training 

(Liu 2009) or that they are only shown how to use their device in a hospital corridor 

or in a clinic. However, even in cases where people are able to use their WA 

according to guidelines in a corridor with smooth, flat flooring, it is not known 

whether the same usage pattern is adhered to at home.  

Hence, the aim of this chapter is to provide preliminary insights into how people 

use different walking aids in different environments, a lab, which simulates the 

open space of a clinic, and a home environment, the ADL flat, and to observe any 

associated changes in stability metrics. To achieve this, the stability assessment 

methodology developed in Chapter 3, together with the analysis techniques of SM 

from Chapter 6, have been brought together in this case study of one user who 

regularly uses 2 different walking aids (a PW and a FWW). 

7.2 Methods 

7.2.1 Participant’s details 

One older walking aid user (male, age=78) who regularly uses 2 different types of 

indoor walking frames (a PW and a FWW) was recruited for this case study. 

Additional inclusion criteria were: 1) age of 65 years or older, 2) able to walk 

household distances with a WA, however, not able to walk such distances unaided. 

Exclusion criteria were: 1) history of head injury or concussion, 2) visual disorders 
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not correctable by glasses, 3) diagnosed peripheral or central nerve dysfunction, 

5) inability to follow verbal instructions. Written informed consent was obtained and 

the experimental protocol was approved by the University of Salford Ethics 

Committee (HSCR13-48). 

7.2.2 Instrumentation 

In order to assess walking aid use and the system’s stability, the participant was 

required to use the instrumented PW and FWW described in Chapters 3 and in 

Appendix D, respectively. Since the participant was tested in two different 

environments, two different camera systems had to be used: a ceiling-mounted 10 

camera Vicon system was used for the lab assessment and a mobile 6 camera 

Qualisys system was used for assessment in the University of Salford Activities of 

Daily Living flat, which is described below.  Details of marker setup and camera 

positions can be found in Appendix C. 

7.2.3 Protocol 

The user walked with both the instrumented PW and the instrumented FWW in two 

different environments at the University of Salford: a gait laboratory (representing 

an open space such as a clinic or hospital corridor) and the Activities of Daily Living 

(ADL) flat, a fully furnished home-setting with doorways and transitions between 

different flooring conditions (carpet and vinyl flooring). The experimental protocol 

was the same for both devices. Laboratory and ADL flat assessment with each 

device took place on the same day, but the participant was tested with the PW and 

with the FWW on two separate occasions. 
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7.2.3.1 Laboratory assessment 

After having adjusted the height of the two instrumented walking frames to match 

the participant's own ones, the following tasks were performed:  

1) Static trial (1 trial): the participant was asked to stand still with the 

PW and the FWW for approximately 20 seconds. Position camera data 

were collected during this trial to allow our software to create a 3D map of 

the sensors for each insole.  

2) 5m straight line walk (2 trials): the participant walked with the 

PW/FWW at a self-selected speed for 5m (approximately the length of the 

lab area visible by the cameras); no instructions were given on how to use 

the device.  

3) Simulated "Kitchen to bathroom" walk (2 trials): the participant 

walked with the PW/FWW at a self-selected speed along a pathway 

marked on the lab floor using masking tape which accurately reproduced 

the dimensions of the ADL flat but without any furnishings or changes in 

flooring. The pathway included two consecutive 90 degrees turns (left and 

right). 

7.2.3.2 ADL flat assessment 

As for the lab assessment, the ADL flat assessment included the static trial and the 

“kitchen-to-bathroom” walk, which then went around furnishings and passed 

through two door frames (kitchen-to-lounge and lounge-to bathroom). The straight 

line walk was not performed in the ADL flat. 
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7.2.4 Data analysis 

Similar to previous biomechanical studies (Tsai, Kirby et al. 2003, Kloos, 

Kegelmeyer et al. 2012), the user’s gait with the two different walking aids and in 

the two environments was described calculating the following basic gait 

parameters: 

 Gait speed and mean ± SD of the following temporal gait parameters: 

stride time, step time, stance phase, swing phase, and step time symmetry 

“S”, which has been quantified according to 𝐸𝑞. 7.1 (Portnoy and Schwartz 

2013): 

 𝑆 [%] =
(𝑆𝑇𝑙 − 𝑆𝑇𝑟)

1
2
(𝑆𝑇𝑙 + 𝑆𝑇𝑟)

∙ 100 𝐸𝑞. 7. 1 

 

where STl and STr indicate the step time, in seconds, of the left and right foot, 

respectively. S ranges from 0% to 200% with 0% representing perfect symmetry 

and 200% complete asymmetry. 

After that, walking aid use and the system’s stability were characterised using the 

custom-written MATLAB software developed in Chapter 3, which calculates the 

following outcome measures for each task, device and environment: 

 Movement pattern (i.e., user’s and walking frame’s foot-ground contact 

events and the sequence in which they occur); 

 Device loading (DL) (instantaneous values and Mean ± SD); 

 Stability margin (SM) (instantaneous and minimum values): 
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Finally, to characterize relative stability of the two walking aids and, hence, to 

conclude on which device is more suitable for the specific user tested, 

autocorrelation of SM during straight line walking in the lab and delta of SM have 

also been calculated using the methodology introduced in Chapter 6.  

7.3 Results 

7.3.1 Gait speed and temporal gait parameters 

Figure 7.1 shows stride time, step time, stance phase, swing phase, and step time 

symmetry of the anatomical feet for each task/environment for the PW and the 

FWW.  

Regarding changes in gait parameters between the 2 devices, it can be noticed 

that PW use leads to greater stance phase duration across all tasks (Figure 7.1 C), 

which, in turn, also results in an increase in stride (Figure 7.1 A) and step (Figure 

7.1 B) time and translates into reduced gait speed (0.15 m/s with the PW versus 

0.4 m/s with the FWW). Moreover, PW use is also characterised by greater 

asymmetry between left and right step than FWW use across all tasks (Figure 7.1 

E). 

When comparing the 2 environments, on the other hand, no considerable 

differences can be observed in stride time, step time, stance, and swing phase 

between the same task (“kitchen to bathroom”) in the lab and in the ADL flat, 

although the user tends to spend slightly more time in the stance phase and less 

in the swing phase with both devices in the ADL flat as compared to the lab. With 

regard to step time symmetry, it can be observed that this decreases for both 
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devices from the lab to the ADL flat, although the difference is much more evident 

for the PW. 

 

Figure 7.1: Mean ± SD of A) stride time, B) step time, C) stance phase, D) swing phase, 
and E) step time symmetry “S” for each task/environment for both the PW and the 
FWW. S can range between 0% and 200% with 0% indicating perfect symmetry and 
200% indicating complete asymmetry. 
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7.3.2 Movement pattern 

Figure 7.2 shows the movement pattern of user and device while using the PW (A) 

and the FWW (B) for straight line walking in the lab. It is evident that, during PW 

use, the user only steps when all 4 feet of the device are in contact with the ground, 

and this is in accordance with guidance. During FWW use, however, the device’s 

front wheels remain constantly on the ground, whilst the rear rubber feet are mostly 

airborne and only get in contact with the ground occasionally and without a regular 

pattern. Whilst keeping the walking frame only on its front-wheels seems risky in 

terms of it running away, typical guidance does not comment on this aspect of the 

usage pattern as it only states: “Glide the frame forwards to approximately one step 

ahead. Walk towards the frame stepping one foot in front of the other” (Oxford 

Health NHS Foundation Trust). 

 

Figure 7.2: Movement pattern during straight line walking in the lab with A) the PW 
and B) the FWW. Solid lines indicate when the walking frame feet and the user’s feet 
are on the ground (whilst gaps indicate that a foot/wheel is airborne). For the PW, it 
can be seen that the user steps only when all feet of the PW are well-grounded; for the 
FWW, it can be seen that the 2 front-wheels remain constantly grounded whilst the 
rear feet are frequently airborne. Both movement patterns appear in agreement with 
clinical guidance for the corresponding walking frame, although it must be noted that 
rear-legs lifting-off in case of the FWW is not explicitly discussed in clinical leaflets. 

A B

Straight line walking

0 2                4 6    8
Time (s) Time (s)

0 2                 4 6    8
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In the ADL flat, on the other hand, the user does not adhere to the same movement 

patterns; indeed, he repeatedly steps before the PW is firmly grounded (Figure 7.3 

A) and with the FWW keeps the device periodically completely airborne or with only 

one front wheel in contact with the ground (Figure 7.3 B). 

 

Figure 7.3: Movement pattern of user and device in the ADL flat with A) the PW and B) 
the FWW. Solid lines indicate when the walking frame feet and the user’s feet are on 
the ground (whilst gaps indicate a foot/wheel is airborne). For the PW the user here 
repeatedly steps while the device is still partially airborne, although this is against 
clinical guidance; similarly, for the FWW, the user often steps while the device is fully 
airborne or in contact with ground with only one wheel. Red areas indicate these risky 
periods of the observed movement pattern. 

7.3.3 Device loading 

Figure 7.4 presents data on DL for the PW and the FWW during straight line 

walking in the lab (A) and during walking in the ADL flat (B).  

It can be seen that average DL is generally considerably higher for the PW than 

for the FWW (12.3% versus 3.6% in the lab and 9.4% versus 2.2% in the ADL flat, 

respectively).  

In addition, it should be noticed that, for both devices, DL is lower in the ADL flat 

than during straight line walking in the lab (9.4% versus 12.3% for the PW walker 

and 2.2% versus 3.6% for the FWW), indicating that the user transfers less body 

A B

ADL flat

Time (s) Time (s)
2 4               6               8 2 4               6               8



 

141 
 

weight onto the device when they have to turn corners and/or walk across different 

types of flooring. 

 

Figure 7.4: Device loading ‘DL’ in % body weight (%BW) over time for the pick-up 
walker ‘PW’ (black line) and the front wheeled walker ‘FWW’ (red line). Data are 
shown for (A) straight line walking in the lab and (B) for walking in the ADL flat. It can 
be seen that, in both environments, DL is greater when using the PW than when using 
the FWW. 

7.3.4 Stability of the system 

The SM over time for each device and for each environment is illustrated in Figure 

7.5 (PW) and Figure 7.6 (FWW). 

When comparing the 2 walking frames, it appears clear that the minimum SM is 

considerably greater when using the PW than when using the FWW both in the lab 

and in the ADL flat.  

When comparing the two environments, from the figures it is possible to see that 

the user exhibits lower SM in the ADL flat than in the lab, and this can be observed 

for both devices. 

A B PW
FWW

time (s) time (s)



 

142 
 

 

Figure 7.5: PW SM for A) straight line walking in the lab and B) walking in the ADL flat. 
In the ADL flat the minimum SM is slightly lower than that in the lab. 

 

Figure 7.6: FWW SM for A) straight line walking in the lab and B) walking in the ADL 
flat. In the ADL flat, the minimum SM is lower than that in the lab. 
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7.3.5 Autocorrelation of SM 

  Results of the autocorrelation technique show that, during straight line walking, 

PW use is characterised by greater SM regularity (PWAd1=0.54 versus FWWAd1 = 

0.1) indicating that, based on the hypothesis formulated in Chapter 6, the user is 

more stable with the PW than with the FWW. Moreover it was also noted that SM 

during PW use presents identical Ad1 and Ad2, whilst, during FWW use, Ad2 is 

more than twice the value of Ad1 (FWWAd2 = 0.23). This scale of difference 

between the two coefficients for the FWW suggests significant step asymmetry 

(Moe-Nilssen and Helbostad 2004). However, for the PW, equal Ad1 and Ad2 

should not be interpreted as equal step and stride symmetry: indeed, when using 

a PW, the movement cycle differs significantly from that of normal walking as the 

user, at each gait cycle, lifts the device, moves it forward by a small distance, puts 

it on the ground and then steps into it; thus, the autocorrelation coefficients for the 

PW are likely to be related to consecutive pick-up walker movement cycles (one 

cycle including the lift-off & touch-down of the device as well as the stepping into 

the frame), rather than to user’s steps and strides. 
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Figure 7.7: Autocorrelation functions and autocorrelation coefficients of SM time series 
for both the PW and the FWW during straight line walking in the lab. For the PW, Ad1 
= Ad2 = 0.54. For the FWW, Ad1 = 0.1 and Ad2 = 0.23. 

 

7.3.6  Delta SM 

It was found that the mean difference (i.e. Delta SM ‘Δ’) between the minimum SM 

during each complex task (i.e. the “kitchen to bathroom” task in the lab and in the 

ADL flat) and that during straight line walking  for the FWW is almost twice that 

observed for the PW (ΔPW= 0.009, ΔFWW= 0.016). Based on the hypothesis 

formulated in Chapter 6, this may suggest that the user is more stable with the PW 

than with the FWW. 

Ad1 Ad2 

Ad1 
Ad2 
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7.4 Discussion  

The objective of this chapter was to bring together the methodology, corresponding 

technology, and analysis techniques developed during the course of this PhD to 

compare walking aid use and stability for two different devices (PW, FWW), and 

for two different environments (the lab, which is comparable to the open space of 

a clinic or hospital corridor, and the ADL flat, representative of a home environment 

in which walking aids are commonly used). 

When comparing the two devices, findings are in agreement with previous basic 

biomechanical studies (Tsai, Kirby et al. 2003, Kloos, Kegelmeyer et al. 2012) and 

indicate that PW use leads to lower gait speed and greater time asymmetry 

between consecutive steps. This was expected as walking with a PW introduces 

an altered walking pattern. For instance, the movement cycle includes additional 

gait phases as compared to a normal gait cycle (i.e., PW lift-off, forward movement 

of the PW, PW touch-down, and, finally, stepping forward of the user). Also, if the 

PW is used according to clinical guidance, during each movement cycle, one of the 

user’s steps is followed by device lift-off and not by a step with the opposite leg like 

in unassisted walking, hence explaining step asymmetry. On the other hand, when 

grounded, the PW provides much greater structural support than the FWW, 

probably because its rubber feet prevent it from “rolling away”. In terms of stability, 

PW use is characterised by higher minimum SM both in the lab and in the ADL flat. 

Since it was demonstrated, in Chapter 5, that there is a positive correlation 

between DL and SM, a simple explanation for this result could be found in the 

greater DL observed in PW use compared to FWW use. However, another reason 

could be the greater steadiness of the PW during the times in which it is grounded 
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as opposite to the constant movement and, possibly, side-to-side wobbling of the 

FWW. In support of this second hypothesis, both the autocorrelation and the delta 

analyses suggest that the user is more stable with the PW than with the FWW. This 

finding is rather surprising as, according to previous conversations, clinicians prefer 

to prescribe wheeled walkers based on the fact that they allow the user to maintain 

a more “normal” walking pattern (although such statements do somewhat 

contradict the guidance, which suggests that the FWW should glide forward first, 

then the user should step, hence being similar to the PW in terms of lengthening 

the movement cycle). Finally, in agreement with previous research (Crosbie 1994, 

Yeung, Chow et al. 2012), these results also support the hypothesis that greater 

gait speed does not necessarily translate into greater stability and, thus, that gait 

speed may not be a good indicator of stability. 

When exploring how walking aid use changes from one environment to another, 

data show that the user is unable to adhere to clinical guidance with regard to 

movement patterns in the ADL flat, and also that device loading decreases when 

walking in the ADL flat as compared to the open lab with smooth flooring. Moreover, 

changes in walking aid use are also associated with changes in stability: in this 

context, decreased minimum SM in the ADL flat, as compared to the lab, are 

evident for both devices. These results suggest that the home environment may 

pose a challenge to the user due to the presence of narrow corridors and doorways, 

furniture, and transitions between different types of flooring (specifically, transition 

trims are thought to potentially destabilise the system as they represent a change 

in floor level that the user has to cross with their device). As a result, the user does 

not use their device for structural support as much as he did in the open lab 

environment with smooth flooring, and correspondingly shows reduced stability in 
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the ADL flat. Hence, since walking aids such as PW and FWW are mostly used at 

home, it is important that clinical training is not limited to the clinic but is also done 

in users’ homes. 

It is important to remember that, since this study is based on one user only, results 

should be interpreted user-specific. For example, a different person may show 

better adherence to clinical guidance and/or greater stability with the FWW than 

with the PW.  

Most importantly, a major limitation of this study is that its conclusions on stability 

are made according to the methodology developed in this work, which has not been 

validated against gold standard measures. This is due to the fact that, to date, no 

gold standard measures of stability for walking aid users exist. However, the 

agreement between all SM metrics (minimum SM, autocorrelation, and delta), in 

addition to SM reflecting the expected reduced stability in the ADL flat compared 

to the lab, establish confidence in this novel approach. In future, a prospective 

study of stability outcomes in relation to occurrence of falls is needed.   

In summary, this case study highlights several differences in walking aid use 

between different devices and environments and contributes to build confidence 

that the methodology developed during this PhD is reflective of user’s stability. 

Since the same user has been tested in a multi-factorial design, and since he was 

experienced with both walking aids, it seems sensible to conclude that the changes 

observed were directly related to the type of device used (PW, FWW) and/or the 

type of environment he walked in (lab, ADL flat). This is of clinical relevance as it 

highlights the need for both, user-specific prescription and training based on 
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objective stability outcome measures, and moreover, that training of users should 

also take place at home rather than in a clinic or hospital alone. 
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8 Discussion, conclusions, and 

future work 

8.1 PhD aims 

Falls in older adults are a major global health problem, with those in the oldest old 

group being the most likely to fall (Tinetti, Speechley et al. 1988, Rubenstein and 

Josephson 2002, DH/SC 2009) and to suffer from severe injuries (Scuffham, 

Chaplin et al. 2003). Moreover, it is known that, in order to improve stability and 

prevent falls, those in the oldest old group are also the most likely to use walking 

aids. However, walking aid use has been associated with an increased falls-risk 

(Deandrea, Lucenteforte et al. 2010). Surprisingly, given this evidence, walking aid 

use as a mean of fall prevention is an extremely under-researched area. Indeed, 

in the clinic, mobility of walking aid users is generally assessed using methods 

based simply on observation and gait speed and which are not specifically 

designed for walking aid users. This is likely due to the fact that no gold standard 

measures of stability exist (in either unassisted or assisted walking) as stability is 

an extremely complex topic, and previous research on walking stability has almost 

entirely focused on unassisted walking.  

Hence, the overall aim of this PhD was to narrow the gap in the existing literature 

with regard to the research question: “What constitutes stable walking aid 

use?”. To achieve this, the following objectives were set:  
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1. To develop a novel, objective, and generalizable methodology for the 

assessment of stability of walking aid users.  

Chapter 3 described in detail the development of a new methodology, which 

directly reflects stability of walking aid users by estimating how far user and walking 

aid are from tipping over and falling. The method is novel in that it considers the 

user and the walking aid as a coupled system. Furthermore, it is objective as it is 

based on a basic mechanical principle (the centre of pressure) and does not rely 

on clinicians’ visual observation and experience. Finally, although it was originally 

developed for pick-up walker users, it has been successfully applied to 

characterize rollator and front wheeled walker use, demonstrating its 

generalisability.  

2. To design and develop corresponding technology and software necessary for 

the calculation of the proposed outcome measure.  

Three (3) instrumented walking aid systems were designed during this PhD: a pick-

up walker (Chapter 3), a rollator (Chapter 4), and a front wheeled walker (Appendix 

D), all including the same set of sensors which can be swapped between systems 

as needed. Furthermore, custom-written MATLAB software was developed that 

uses the data collected with the instrumented walking aid systems to calculate the 

outcome measure of stability introduced in this work (the combined Stability 

Margin), and the parameters necessary for its interpretation (movement pattern of 

user and walking aid device loading). 

 
3. To establish confidence in the ability of the stability assessment methodology 

developed through objectives 1 and 2 to describe the stability of walking aid  
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users in relation to the type of walking task performed, the environment, and the 

type of walking aid used.  

The methodology and associated instrumentation developed during the course of 

this PhD were used to collect data from: 1) a cohort of 10 rollator users in a gait 

laboratory who performed several tasks representative of daily activities; 2) a group 

of 5 pick-up walker users who walked with the instrumented pick-up walker both in 

the lab and in a simulated home environment (the Activities of Daily Living flat at 

the University of Salford); and 3) a case study of 1 user walking with 2 types of 

walking aids (a pick-up walker and a front wheeled walker) in 2 environments (lab 

and ADL flat). The data collected were then analysed according to the methodology 

developed through Objective 1, and used to evaluate the ability of the combined 

Stability Margin to recognise the following:  

- a decrease in stability between a simple task (i.e., straight line walking) 

and more complex ones (e.g., turning, stepping up a kerb);  

- a decrease in stability between an open space with smooth level flooring 

(the lab) and a home environment with narrow corridors, doorways, and 

transitions between different types of flooring;  

- differences in walking aid use and corresponding stability between 

different walking aids.  

4. To investigate whether it is possible, using the methodology developed through 

Objectives 1 & 2 and/or other associated metrics, to inform on relative stability of 

WA users.  
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In chapter 6, absolute values and other metrics of the combined Stability Margin 

(autocorrelation, delta, integral and RMS deviation) were investigated with regard 

to their potential to differentiate between more and less stable users, as identified 

based on history of fracture, gait speed, and clinical observation. 

8.2 Novelty 

The main novelty of this work lies in the introduction of a new outcome measure of 

stability, the combined stability margin “SM”, which, for the first time, considers the 

user and their walking aid as a single system. Previous authors investigated 

stability of walkers by exploring the kinematics of the device’s centre of pressure 

and concluded that, when the device is on the ground, the user’s loading of the 

device is directly proportional to their risk of falling (Pardo, Deathe et al. 1993, 

Tung, Chee et al. 2015). Their approach, however, did not adequately quantify 

stability as it considered the device only and relied on the device being grounded 

with all 4 feet; hence it could not be applied at times when the walking aid was 

airborne and could not distinguish tipping from the onset of lifting/touching down of 

the device. In contrast, the method developed in this work is able to assess stability 

during all phases of gait, including when the walking aid is airborne or partially 

grounded.  

Furthermore, another advantage of SM is that it is based on a simple and basic 

mechanical principle, the centre of pressure. Whilst previous measures of stability 

were based on the hypothesis that human gait is highly periodic (Jordan, Challis et 

al. 2007, Toebes, Hoozemans et al. 2012, Bisi, Riva et al. 2014, Riva, Bisi et al. 

2014) or that it can be assimilated to an inverted pendulum (Hof, Gazendam et al. 

2005, Hak, Houdijk et al. 2013), SM does not make any assumption and, therefore, 
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its applicability is not limited by the configuration of the walking system of interest. 

Finally, in contrast to previous research which focused on one specific type of 

device (Pardo, Deathe et al. 1993, Tung 2010), the methodology developed during 

this PhD is generalizable to a range of walking aids, as has been demonstrated by 

applying it to rollator and front wheeled walker users in addition to pick-up walker 

users for which it was initially designed. Of course, device-specific modifications 

were necessary to accommodate the load cells in such a way as to accurately 

measure the forces through the ground contact points, however, given suitable 

instrumentation, the measure SM itself is generalizable.   

8.3 Key findings and contribution to knowledge  

Results of the assessment of rollator users presented in Chapter 5 showed that 

stability decreases substantially from straight line walking to more complex tasks. 

Yet, no significant differences between the other tasks (90° turn, 180° turn, 

backwards walk, obstacle crossing, and step up/down) could be found, indicating 

that the level of challenge for each task may be either similar or subjective. 

Moreover, findings of this study also suggest that stability may be influenced not 

just by the type of task, but also by the specific strategy used to perform a given 

task.  

In addition, data from the case study suggest that stability is reduced in the ADL 

flat compared to the lab, indicating that the home environment may pose a 

challenge to the user due to the presence of narrow corridors and doorways, 

furniture, and transitions between different types of flooring (specifically, transition 

trims are thought to potentially destabilise the system as they represent a change 

in floor level that the user has to cross with their device). 
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With regard to user-specific factors, it was found that both the size of the system’s 

base of support and the amount of the user’s body weight transferred onto the 

walking aid (device loading) affect stability outcome measures. With regard to the 

base of support, although it is reasonable to assume that the greater the base of 

support, the further the centre of pressure can travel before reaching the tipping 

point, it is also true that a smaller SM simply due to a smaller base of support 

should not be confused with an unsafe gait, as the base of support may well be 

sensibly utilised. Hence, it was decided to normalise SM by a parameter 

representative of the size of the base of support. With regard to device loading it 

must be noted that when the walking aid is lifted its load is 0, and hence SM/DL 

would approach infinity, thus rendering normalization by device loading 

inappropriate. Moreover, in certain circumstances, advice to those who show 

generally low SM, and especially to those whose SM is often directed towards the 

rear of the base of support, could include instruction to lean more onto the rollator; 

in such cases, removing the influence of DL through normalisation would limit 

insights gained.  

Finally, in Chapter 6, it was found that some analysis techniques of SM such as 

the autocorrelation and delta show promise to distinguish between more and less 

stable user-device systems. Analysis techniques were first applied to rollator and 

pick-up walker users to rank them in order of stability, and then to a single user of 

two devices (pick-up walker and front wheeled walker), the latter to indicate which 

system (user + pick-up walker or user + front wheeled walker) was more stable, 

and hence which walking aid was more suitable. Specifically, all the stability 

metrics used (minimum SM, autocorrelation, and delta) were consistent and 

suggested that the user may be more stable with the pick-up walker, which was 
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surprising as it is known from previous conversations that clinicians prefer to prescribe 

wheeled walkers based on the fact that they allow the user to maintain a more “fluid” 

walking pattern.  

Overall, SM proved able to reflect the expected decrease in stability between simpler 

and more complex walking tasks representative of daily activities, and between an 

open space and a home environment, building confidence that the stability 

assessment methodology developed during this PhD is able to characterise walking 

aid users’ stability.  

Furthermore, these findings provide initial evidence as to how the proposed 

methodology and associated instrumentation may facilitate safe use of walking aids. 

Firstly, device selection and prescription should be informed by objective stability 

measures and not exclusively be based on clinicians’ observation & experience or 

recommendations from family and friends. Second, training should target daily 

activities other than straight line walking, and should be customised to focus on those 

activities for which a user exhibits particularly low stability, and should not be limited 

to the clinic but should also be done in users’ homes.  

Finally, the instrumented walking aids developed during this PhD also offer the 

possibility to calculate parameters such as walking pattern and device loading, which 

were proven to influence SM and can be controlled. Thus, in future, clinicians may use 

this parameters to train users suggesting, for example, to change their walking pattern 

and/or regulate device loading in order to increase SM. 

8.4 Challenges, limitations and recommended future work 

Some important limitations must be discussed which prevent this work from having 

a direct impact on clinical practice and, in particular, on prescription and training or 

walking aid users. First of all, it must be acknowledged that the number of users 
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tested (10 rollator users, 5 pick-up walker users, and 1 user of two different types 

of walking aids) is too small to generalize findings. Nevertheless, these numbers 

are in line with previous lab-based biomechanical studies that involved older frail 

adults (Deathe, Pardo et al. 1996, Bateni, Heung et al. 2004, Tung 2010, Tung, 

Chee et al. 2015), and participation has been limited by frailty, reduced mobility, 

and cognitive decline which are common among this population. In fact, although 

several organisations including community centres, care homes, falls-clinics and 

intermediate care units were approached to identify participants, the recruitment 

rate remained low throughout the study as many eligible participants refused to 

participate as they felt uncomfortable or unable to travel to the lab.  

Moreover, the outcome measures and techniques introduced during this PhD have 

not yet been validated. However, to date, no gold standard measures of stability of 

walking aid users exist, and previous research reported that even measures 

commonly used in clinical practice such as gait speed do not necessarily inform on 

stability; indeed, walking at a slower speed may even improve stability as it allows 

the user more time to better control their movement and that of the WA (Crosbie 

1994, Yeung, Chow et al. 2012). Hence, longer-term, a prospective study on falls 

is needed to conclude on the merit of SM and associated analysis techniques of 

SM in relation to occurrence of falls.  

Finally, to facilitate clinical adoption of the stability assessment methodology and 

corresponding technology developed here, substantial improvements need to be 

made to the current instrumented walking aid systems. Indeed, at present, the 

methodology relies on the use of optoelectronic cameras to obtain position data of 

the anatomical and walking aid feet, which are necessary for the calculation of SM. 



 

157 
 

In future, a more portable solution based on dedicated position sensing is required. 

There are several technologies on the market that may be suitable for this purpose 

such as inertial measurement units (IMUs), ultrasound sensors, magnetic sensors, 

RGB cameras, and infrared cameras. Previous related work at the University of 

Salford (Voltzenlogel 2017), for example, investigated the ability of a single Kinect 

unit to track the position of the user’s feet while walking with a walking aid in the 

lab. Kinect cameras have the advantage of being considerably cheaper than 

optoelectronic cameras (£200 versus several hundred thousand Pounds); 

furthermore, they do not require markers on the user’s feet, and include both RGB 

and infrared cameras providing information on feet positions as well as on the 

surrounding environment. However, the Kinect unit used proved to be very 

sensitive to lighting conditions (making it unsuitable for use outside a controlled 

environment), and it has considerable weight and required several cables, which 

prevents it from ever being mounted onto a walking aid. Most importantly, the error 

in the measurement of feet positions (several centimetres) was too large for this 

technology to be used for the calculation of the centre of pressure. Nevertheless, 

with technology continuously getting more accurate, smaller, and wireless, future 

work should focus on improving the suitability of infrared and/or RGB cameras for 

this type of application.  

Furthermore, costs for the development of the instrumented walking aids are 

currently very high as approximately £2000 were spent to manufacture each device 

and £5000 for the purchase of the load cells and corresponding transmitters. For 

this PhD, load cells were swapped between devices as needed, to contain costs, 

but their transfer is time consuming and accelerates wear and tear of the load cell 

connectors. Hence, especially considering that clinics would need to purchase a 
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set of fully instrumented walking aids, reducing costs is essential. To this end, mass 

production would probably make the manufacturing process more cost effective, 

whilst load cells could be replaced with less expensive strain gages. 

8.5 Conclusions 

In summary, this PhD developed a novel methodology for stability assessment of 

walking aid users which is objective and generalizable to a range of walking aids. 

Furthermore, corresponding instrumentation was designed and tested, providing 

the first objective data on stability of users of 3 different walking aids during 

performance of several tasks representative of daily activities, and in 2 different 

environments (the lab and a simulated home environment). Hence, this PhD 

unlocked the potential of a novel approach to address the three major gaps in the 

knowledge base, identified in the introduction of this thesis: 1) a limited 

understanding of walking aid use, 2) lack of measures/methods that adequately 

quantify stability of walking aid users, and 3) limited understanding of potential 

mechanisms underlying the reported falls-rate in users of walking aids. Narrowing 

these gaps in the knowledge base may longer-term have a positive impact on 

clinical practice and fall prevention in this population.   
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The use of walking aids is prevalent among older people and people with mobility 

impairment. Rollators are designed to support outdoor mobility and require the user to 

negotiate curbs and slopes in the urban environment. Despite the prevalence of 

rollators, analysis of their use outside of controlled environments has received 

relatively little attention. This Letter reports on an initial study to characterise rollator 

movement. An inertial measurement unit (IMU) was used to measure the motion of 

the rollator and analytical approaches were developed to extract features 

characterising the rollator movement, properties of the surface and push events. The 

analytics were tested in two situations: first, a healthy participant used a rollator in a 

laboratory using a motion capture system to obtain ground truth. Second, the IMU was 

used to measure the movement of a rollator being used by a user with multiple 

sclerosis on a flat surface, cross-slope, up and down slopes and up and down a step. 
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The results showed that surface inclination and distance travelled measured by the 

IMU have close approximation to the results from ground truth; therefore, 

demonstrating the potential for IMU-derived metrics to characterise rollator movement 

and user’s pushing style in the outdoor environment. 

1. Introduction 

 In the United States ∼4.2 million older adults use at least one walking aid, with a view 

to reducing fall risk and/or enhancing mobility [1]. A European study that included the 

UK found that walking aids were reported to be used by 29–49% of older people [2]. 

However, as will be discussed in more detail below, we have surprisingly little objective 

data on the extent to which such devices are actually used, how they enhance mobility 

or reduce fall risk. Indeed, a rather surprising finding from a number of studies is that 

their reported use has been associated with falls. Research found that hospitalised 

patients who fell were more likely to be users of walking aids [3], and a meta-analysis 

associated walking aid use with a two–three-fold risk of falling [4]. Whilst correlation 

cannot be assumed to indicate causation, this is certainly of serious concern and 

justifies further research. 

Rollators are the most and second most common walking aids in Sweden [5] and 

Canada [6], respectively, due to the greater provision of stability support than walking 

sticks. Rollators are often fitted with seats and/or baskets to allow users to travel longer 

distances and run errands outdoors. Rollators typically have manual brakes installed 

on the rear wheels to prevent the rollator running away from the user while the user is 

moving and also to allow the user to adjust the movement of rollator in relation to their 

gait pattern. 
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A small number of studies have reported on user views on rollators. Brandt et al. [7] 

carried out a longitudinal study using the Quebec User Evaluation of Satisfaction with 

Assistive Technology (QUEST version 1) to understand the satisfaction with rollators 

among community-dwelling users (mean age of 76) in Denmark. The overall 

satisfaction with rollators was above 90%, particularly with the effectiveness, durability 

and safety of rollators. More than two-thirds of the users reported using their rollators 

at least once a day. However, rollators were reported to be too heavy to handle when 

getting over curbs and steps. A study by Lindemann et al. [8] found that rollator users 

reported walking downhill, uphill, over uneven surfaces outdoors and obstacle 

crossing to be major concerns with regard to safety. Rollator users in Denmark [7] and 

Japan [9] were found to be less satisfied with the professional and follow-up services 

including the provision of training by the physiotherapists, repairs and visits. This left 

them without enough knowledge of basic instructions, adjustments to and repairs of 

their rollator. In addition, there was a lack of channels to feedback or report problems 

with their rollator. 

From a biomechanics perspective, despite their prevalence amongst the older 

population, the literature on characterisation of rollator–user interaction is very limited. 

Kegelmeyer et al. [10] studied 27 individuals with Parkinson’s disease, finding that 

rollator use led to less variability in gait measures of velocity, stride length, per cent 

swing and double support time compared with walking sticks, walking frames, two-

wheeled walkers and U-Step walkers. Lindemann et al. [8] studied the gait of 22 rollator 

users (median age of 82) in a geriatric rehabilitation clinic in Germany. The results 

showed that with rollators, users walked faster with smaller step width and higher walk 

ratio (i.e. step length divided by step frequency) than without rollators in both forward 

and backward walking, indicating an improved walking performance. However, 
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complex walking tasks such as opening a door were found to lead to the impossibility 

to open and pass through a door with a rollator, because of the rigid rear wheels. Chee 

et al. [11] investigated the step width, the variability of step width and velocity of two 

community-dwelling rollator users with multiple sclerosis (MS) by comparing their 

performance in the laboratory and outdoor walking environment including an urban 

pavement, a ramp and pedestrian crossing, using an instrumented rollator. The results 

suggest that the outdoor walking environment may affect foot placement patterns, and 

hence potentially, trip risk. The step width variability of up-ramp walking had greater 

step-width variability than laboratory walking and down-ramp walking, indicating an 

unstable mediolateral movement which could lead to falls. Moreover, the walking 

velocity significantly increased at the pedestrian crossing as compared with walking in 

the laboratory. 

In one of the most recent papers, Tung et al. [12] studied three stroke or traumatic 

brain injury users of rollators in the laboratory and on a walking course inside a 

rehabilitation hospital containing hallways, turns, ramps, doors and lifts. A single-axis 

load cell was mounted into each leg and a three-axis accelerometer was mounted 

under the seat of the rollator to capture the performance of rollator use. High fall risk 

behaviours such as collisions with door frames and between the foot and the rollator, 

as well as stumbling and lifting the rollator, were observed in the walking course. 

Despite the recent advances in low-cost computing and sensing, there is no data  on 

the patterns of use of rollator devices outside of controlled environments, whereas in 

other areas of mobility aids research such as wheelchairs the usage and activity levels 

can be measured by accelerometers and inertial measurement units (IMUs) [13–15]. 

This is very surprising, particularly given the high prevalence of rollators amongst older 

people and recent studies that indicate the potential for increased trip or fall risk 
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outside of the laboratory [11, 12]. Indeed, even basic information on the extent to which 

prescription of such devices leads to increased mobility is absent. 

In the light of this, this Letter reports on a feasibility study to characterise rollator use 

in the laboratory using real-world surfaces. Two experiments are presented, first an 

experiment with a healthy user, and second an experiment with a user who has MS. 

The first experiment demonstrates how a single IMU mounted on the rollator frame 

together with sensors on the user’s feet can be used to characterise basic features of 

rollator use. These features are number of push events, distance travelled, average 

distance and duration of each push, and the push events in relation to the foot 

movements. The second experiment applies this technique to one rollator user with 

MS in a simulated urban environment (SUE) and demonstrates the potential to obtain 

information on the environment including surface slope and curb crossing events from 

a rollator-mounted sensor, in addition to the basic gait features. 

2. Methods  

The aim of the feasibility study was to establish the capability of the IMU to capture 

the interaction between the rollator, the user and the walking environment. To evaluate 

the capability of the IMU, the experiment was two-fold, containing (i) testing of 

protocols and software algorithm using a gold standard motion capture system and (ii) 

testing of the protocols and algorithm in an SUE. 

2.1 Participants 

 A healthy participant was recruited for understanding baseline performance. 

Subsequently, a participant with 3 years of MS participated in tasks in the SUE. Ethical 

approval was obtained from the University College London Research Ethics 

Committee (4721/002). 
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2.2 Gold standard testing in the laboratory 

 The gold standard test comprised a 6 m straight-line walking assessment with a 

rollator. The healthy participant had IMUs of Xsens MTw2 Awinda (Xsens 

Technologies Besloten Vennootschap, the Netherlands) attached to the pelvis and 

both feet, operating at a sampling frequency of 100 Hz. To obtain ground truth, the 

three-dimensional coordinate data of the pelvis and both feet were captured using an 

eight-camera VICON Motion Capture System at a sampling frequency of 100 Hz. On 

the rollator, there were an IMU horizontally attached to the frame and a cluster of 

markers to each of the left, right and front side of the frame as shown in Fig. 1. The 

orientation of the IMU on the rollator is the Y-axis for anterior–posterior movements, 

the X-axis for mediolateral movements and Z-axis for vertical movements. The IMU is 

oriented such that a negative value in the Y-axis corresponds to forward movement. 

The rollator was banged onto the force plates by the participant before the start of 

each trial to get a peak force in both VICON and Xsens to synchronise the two 

datasets. 

 

Figure A.1: Placement of the IMU, taped in white and on top of the seat and cluster 
markers, on the left, right and front side of the rollator 

2.3 Testing in the SUE 
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The tests in the simulated environment used the same IMU placement as the gold 

standard testing, but did not use the motion capture system. The tests consisted of a 

participant moving along four straight lanes including an 8.4 m flat path, an 8.4 m 4% 

cross-slope (2.29° elevation across the distance of travel), a 4.8 m 6% slope (3.44° 

elevation in the distance of travel) and a step of 80 mm, which were set up at the 

Pedestrian Accessibility Movement Environment Laboratory at University College 

London as shown in Fig. 2. The participant with MS was asked to move along each 

lane at a self-selected speed and in a way they normally moved in their everyday 

environment. In each lane, the participant performed one to three trials, depending on 

their physical capability, with a pre-experiment in which several trials were conducted 

to familiarise the user with the laboratory settings. 

3. Data analysis:  

The results of the gold standard testing from the motion capture system served as the 

ground truth to examine the analysis of the IMU data for distance travelled, whilst the 

known characteristics of the surface of the SUE served as ground truth for surface 

detection. Gait phase data was obtained from the foot-worn IMU, which was measured 

alongside the push events of the rollator. The analysis was utilised to measure the 

characteristics of rollator usage in the laboratory and SUE. 

3.1 Raw data and filtering 

The raw data in the X, Y and Z axes are vectors with length n of the form 

X = (x1, x2, x3, ..., xn). 

Y = (y1, y2, y3, ..., yn). 

             Z = (z1, z2, z3, ..., zn). 
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Figure A.2: Experiment set-up for the SUE and the property of surfaces. 

 

Two different filtering operations are applied to the data prior to subsequent 

processing, a low-pass filter and a band-pass filter, to give two differently filtered 

versions of the raw data. A fourth-order Butterworth low-pass filter at 0.2 Hz is used to 

extract the baseline from the data, as Xb, Yb and Zb, with components xb
i , yb

i and zb
i . A 

second-order Butterworth band-pass filter between 0.2 and 3 Hz is used to extract the 

motion-related component of the signal as Xm, Ym and Zm, with components xm
i , ym

i and 

zm
i . 

3.2 Surface detection 

The acceleration of the Y-axis is used to calculate the longitudinal tilt of the rollator on 

the flat surface, slope and step; the acceleration of the X-axis is used to calculate the 

cross-sectional tilt of the rollator on the cross-slope. 

The low-pass data are used for surface detection. From these data, the orientation of 

the rollator with respect to the gravitational pull of the earth is estimated, which 



 

168 
 

provides the angle of the horizontal plane of the rollator to the earth. From this angle 

the direction of the surface slope, if any, can be determined. Orientation is calculated 

as: 

Equation 1 

𝜃𝑖
𝑌
= 𝑐𝑜𝑠−1

(
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𝑏
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2
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𝑏
2
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Equation 2 
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𝑏
2
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 )

 . 

3.3 Distance travelled 

Distance travelled is obtained principally from a double integration of the 

accelerometer signal in the direction of travel. For this work, only the Y-axis 

(corresponding to the anterior–posterior orientation of the rollator) has been used. This 

axis is oriented approximately parallel to the ground in the direction of movement and 

thus captures the majority of the motion of interest. 

The band-pass filtered data were used to calculate distance travelled. After filtering, 

the signal was cumulatively, numerically integrated to obtain velocity over time, Yv. 

This is achieved using the trapezoidal rule for integration, given in this case as 

Equation 3 

𝑓(𝒀, 𝑎, 𝑏) = ∫ 𝒀 = 
𝑏 − 𝑎

2(𝑏 − 𝑎)
∑𝑦𝑖 + 𝑦𝑖+1

𝑏−𝑎

𝑖=𝑎

𝑏

𝑎

 

 

are the indices of Y between which an integral is required. Equation where a and b 

3 is then used cumulatively to provide the cumulative numeric integration as 
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Equation 4 

𝑔(𝒀, 𝛼, 𝛽) = (𝑓(𝒀, 𝛼, 𝛼), 𝑓(𝒀, 𝛼, 𝛼 + 1), 𝑓(𝒀, 𝛼, 𝛼 + 2),… , 𝑓(𝒀, 𝛼, 𝛽)) 

Owing to the high-pass filtering removing the DC component, the velocity oscillated 

around zero, which transposed the velocity downwards, which when integrated to get 

distance results in error building up cumulatively. To counteract this, an adjustment 

was made to the velocity signal based on the assumption that a person pushing a 

rollator will not maintain a constant velocity unless the rollator is stationary. Therefore, 

if the stationary periods are identified, the velocity signal can be zeroed around these 

points to get back to true velocity. 

To achieve this, a baseline signal is created by interpolating between velocity points 

where the gradient is below 0.5 × 10−3. The set of zero-points and their associated 

timestamps are interpolated to get a baseline signal with the same timestamps as the 

velocity signal using MATLAB’s pchip interpolation, which is based on work by Fritsch 

and Carlson [16] and Kahaner et al. [17]. Pchip interpolation was chosen as it is only 

based on points close to the interpolation target and is robust to local changes in 

signal. 

Once a baseline signal is created, it is added to the velocity signal to correct the offset. 

The adjusted velocity signal is then cumulatively integrated a second time, using 

Equation 4, to get distance travelled. Other parameters of interest such as push 

identification can be obtained from a simple analysis of the adjusted velocity signal or 

the cumulative distance travelled. 

4. Results 

4.1 Gold standard testing in the laboratory  
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Results from the ground truth test with the healthy participant showed that calculated 

distance travelled is a very close approximation to ground truth for both tests. Figure 

3 shows this for one of the two tests. Furthermore, a distinct push pattern, as shown 

in Figure 3, can be identified. Figure 4 shows the derived velocity signal, cumulative 

distance and orientation of the rollator over time.  

 

Figure A.3: comparison between distance calculated by IMU and known distance from 
motor capture system in the gold standard testing with the healthy participant. 



 

171 
 

 

Figure A.4: IMU data shows velocity (top) and distance travelled (middle) in relation to 
push events (red stars); and the orientation of the rollator over time (bottom) in the gold 
standard testing with the healthy participant. 

Pushes, identified as moments of peak positive velocity, are identified with red stars. 

The orientation of the rollator shows a constant orientation over the walk, indicating no 

change in orientation occurred. 

The basic features of rollator use of the healthy participant including the number of 

push events, average distance and distance of each push, and mean velocity of 

rollator movement are shown in Table 1. Fig. 5 shows a distinctive pattern of a push 

event happening around the start of a stance phase of either of the feet, demonstrating 

the healthy participant’s pushing style. 

Table 1 Basic features of rollator use including number of push events, average distance 
and distance of each push, and mean velocity of rollator movement. 

Surface types Number of 

push 

events 

Average 

distance per 

push, m 

Average 

duration per 

push, s 

Mean 

velocity, m/s 
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gold standard with the 

healthy participant 

– – – – 

4.6 m flat surface 18 0.2623 1.8062 0.1459 

SUE with the 

MS participant 

– – – – 

8.4 m flat surface 36 0.2344 1.7118 0.1367 

4% 8.4 m cross-slope 

(right) 

39 0.2311 1.3989 0.1516 

4% 8.4 m cross-slope 

(left) 

19 0.3105 1.6447 0.1904 

6% 6 m up-slope 38 0.1904 1.4522 0.1283 

6% 6 m down-slope 19 0.3248 1.6765 0.1952 

80 mm step-up on 8.4 

m path 

45 0.1973 1.5656 0.1284 

80 mm step-down on 

8.4 m path 

43 0.2154 1.5546 0.1423 

 

4.2 Testing in the SUE  

The basic features of rollator use of the MS participant measured by the analysis of 

IMU data developed in the gold standard testing and applied to the SUE data are 

presented in Table 1. 

Similar to the results in the gold standard testing, the characteristics of the rollator 

movement of the MS participant along the flat surface are comparatively steady, as 

shown in Figure 6, as opposed to other surfaces as shown in Figures 8–11. Results 

from the simulated surface testing on the flat surface, as shown in Figure 6, are 

encouraging with total distance travelled from IMU data being approximately equal to 

the known distance measured by the motion capture system. The push pattern is 

harder to identify in this data, but is likely to be the result of the MS participant’s 

particular gait pattern. The pushing style also demonstrates a similar pattern to the 

gold standard testing in which a push event happened around the start of a stance 

phase, as shown in Figure 7. 
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The mediolateral inclination of the rollator movement along the 6% cross-slope is 

identified by the degrees elevation across the distance of travel, around −2° to −3° on 

the X-axis, as shown in Figs. 8 and 9. The start and end of the 6% slope is identified 

by the change in degree elevation from around −2 to +5 on the Y-axis (Figures 10 and 

11). 

 

Figure A.5: Push events from IMU data in relation to foot movement in the 25 s segment in 
the gold standard testing with the healthy participant. 
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Figure A.6: IMU data shows velocity (top) and distance travelled (middle) relating to push 
events; the orientation of the rollator (bottom) along the flat surface with the MS 
participant in the SUE. 

 

Figure A.7: Push events from IMU data relating to foot movement in the 25 s segment 
along the flat surface with the MS participant in the SUE. 
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Figure A.8: Orientation from IMU data, between 0 and 37 s, of the rollator along the 4% 
(2.29°) cross-slope with the elevation on the right with respect to the MS participant in the 
SUE. 

 

Figure A.9: Orientation from IMU data of the rollator along the 4% (2.29°) cross-slope with 
the elevation on the left with respect to the MS participant in the SUE. 
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Figure A.10: Orientation of the rollator along the 6% (3.44°) up-slope with the MS user in 
the SUE. 

 

Figure A.11: Orientation of the rollator along the 6% (3.44°) down-slope with the MS user 
in the SUE. 

 

During the step-up and step-down, the regular movement of the rollator is shown to 

have been interfered with the step. Figures 12 and 13 show an increase of push events 

when the MS participant was encountering the step-up. The orientation data in Figures 

12 suggests that the rollator might be initially pulled close to the MS participant and 

then lifted up to the raised step, hence a dip in the orientation in the Y-axis. 
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Figures 14 and 15 show an increased interval between pushes when the MS 

participant was encountering the step-down. The orientation data in Figure 14 suggest 

that the rollator might be pushed away from the MS participant and then land on the 

lowered step, hence the peak in the orientation of the Y-axis. 

 

Figure A.12: IMU data shows velocity (top) and distance travelled (middle) in relation to 
push events; the orientation of the rollator over time (bottom) during the step-up with the 
MS participant in the SUE. 
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Figure A.13: Push events from IMU data for foot movement in the 25 s segment during the 
step-up with the MS participant in the SUE. 

 

Figure A.14: IMU data shows velocity (top) and distance travelled (middle) in relation to 
push events; the orientation of the rollator over time (bottom) during the step-down with 
the MS participant in the SUE. 
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Figure A.15: Push events from IMU data relating to foot movement in the 25 s segment 
during the step-down with the MS participant in the SUE. 

5. Discussion:  

The results of the tests in the laboratory and SUE show that it is feasible to use an 

IMU to characterise the rollator movement and measure the interaction between the 

rollator, the user and the urban environment. The results also show that by using an 

IMU alone, the travel pattern can be reconstructed offline, which can provide 

researchers and physiotherapists with insight into a user’s performance while walking 

and using a rollator. 

Past studies have demonstrated the difference in the movement behaviour between 

laboratory assessments and real environment and call for a better understanding of 

the interaction [11, 12]. This Letter clearly demonstrates, the healthy participant’s 

pushes, distance travelled, average distance and duration of each push, and the push 

events in relation to the foot movement in the laboratory through the motion capture 
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system and IMU. When the IMU and protocol were then brought to the SUE, the MS 

participant can be seen to tend to consistently initiate the push of the rollator around 

the heel strike of each foot. The MS participant demonstrates a smooth and less 

interfered gait with the help of the rollator, which has also been shown in past studies 

[8, 10]. However, the MS participant’s movement was interfered while walking up the 

step due in part to the physical constraint of lifting the rollator up or down the step. 

This is also a type of collision in the urban environment that past studies [11, 12] 

indicated and this Letter has demonstrated the capability of IMUs to record and 

measure the foot and rollator movements during these collisions. 

The property of the surface and distance travelled can be detected by the IMU by the 

degree of the inclination of the rollator and integration of the acceleration of the rollator 

movement. Along with the push events in relation to the foot movement and average 

distance and duration of each push, the user’s balance mechanism and coping 

strategy used to deal with the uneven surface in the urban environment can be further 

understood. 

Investigating the characterisation of rollator use has helped shed some light on the 

understanding of the quality, difficulty and risk of the use of rollators in the urban 

environment. Furthermore, studies need to investigate how the understanding of this 

interaction between the rollator, the user and the urban environment can help 

physiotherapists provide training, rehabilitation and assessments for rollator users of 

different physical, cognitive and sensory capabilities. 

We do, however, acknowledge several limitations of this Letter. As a pilot study 

exploring the interaction between the rollator, the user and the environment, only one 

participant was measured in each of the laboratory and SUE. This Letter does not 
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intend to demonstrate the generalisability of findings, but explore the potential and 

validation of using low cost, portable IMUs to characterise rollator use outside the 

laboratory setting. This Letter provides initial evidence to conduct future research with 

larger sample sizes, more types of surfaces and longer walking distances. 

Furthermore, work will focus on creating a generalised set of algorithms to extract 

rollator characterisation data from IMUs and the applications of this approach to 

different user groups. 

6. Conclusions:  

The work presented in this Letter provides a first examination of the interaction 

between the rollator, the user and the environment using potable IMUs to characterise 

the rollator movements. A healthy participant performed walking tests using a rollator 

on a flat surface in the laboratory to examine the IMU measures with the gold standard 

ground truth from a motion capture system. Subsequently, a participant with MS 

performed walking tests using a rollator on a flat surface, cross-slope, up and down-

slope and up and down a step in an SUE with an IMU alone attached. The use of IMUs 

to measure the pushing style, property of surface and travel distance has been 

examined by the motion capture system and can be utilised to detect these movement 

characteristics of a rollator user with MS on different surfaces. The results of this Letter 

show the potential to provide insight into the quality of the use of rollators, fall risks 

associated to rollators and quality of the provision of rehabilitation for rollator users. 
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C. Marker and equipment setup 

C.1 Marker setup 

In order to determine the combined base of support and calculate the position of the 

combined centre of pressure needed to assess system’s stability, the relative position 

of all feet of both user and walking aid at any given time must to be known, and this is 

achieved through the use of a 3D camera system (either Vicon in the lab or Qualisys 

in the ADL flat) and corresponding reflective markers.  

Positions of reflective markers on the user are shown in Figure C.1. The same marker 

setup was used for static and dynamic trials, however, , the exact marker placements 

differed for lab and ADL flat assessments. In the ADL flat, there are 3 markers attached 

to each heel in order to enhance capture as, in this environment, only the front or the 

back of the user is likely to be visible by the cameras at any given time (Section C.2). 

 

Figure C.1: Marker setup for the user in the lab and ADL flat. Red dots represent markers. 
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 Figure C.2 shows the position of the reflective markers on the walking aid: here two 

different marker setups are needed for static and dynamic trials as markers on the feet 

of the device would likely detach during use; however, since the device is a rigid body, 

their position can be easily reconstructed from the clusters on the device’s legs. For 

convenience, such clusters have been permanently glued to the device so that a static 

trial of the walking aid had to be recorded only once, and the position of the feet could 

then be estimated after every testing session without the need of recording a new 

static trial each time. As there are clusters on the front and back of the device, the 

same setup could be used in both the lab and the ADL flat. For illustrative purposes, 

only the pick-up walker is shown in the figure, but the same setup is used for the other 

two walking frames.  

 

Figure C.2: Static and dynamic marker setup for the walking aid. Red dots represent 
markers. The same marker configuration is used for all 4 feet of the device, although, in 
the drawing, the rear left foot is not visible. 
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C.2 Camera positioning in the ADL flat 

Figure C.3 illustrates the floor plan of the ADL flat, the position of the optoelectronic 

cameras, and the walking path. It should be noted that the presence of walls creates 

occlusion problems, hence the cameras had to be positioned extremely carefully in 

order to guarantee sufficient visibility of the markers. 

 

Figure C.3: Floor plan, camera position, and walking path in the ADL flat.  
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D. Design and development of an 

instrumented front wheeled walker 

D.1  Introduction 

Chapters 3 and 4 discussed the development and demonstration of a novel 

generalizable methodology (and corresponding technology) for stability assessment 

of walking aid users. Such methodology was initially  applied to a cohort of rollator and 

pick-up walker users (Chapters 3 and 4) for the following reasons: firstly, rollators are 

one of the most commonly used walking aids and hence their study is of relevance to 

a large proportion of walking aid users, (Finkel, Fernie et al. 1997, Samuelsson and 

Wressle 2008), and secondly because pick-up walker users are very frail people and 

a thorough understanding of walking aid use for improved fall prevention would be of 

great benefit to them. 

Nevertheless, it became clear through frequent conversations with clinicians that pick-

up walkers are only prescribed in exceptional circumstances and that, whenever 

possible, clinicians recommend front wheeled walkers (FWW) (Figure D.1) even to 

their most frail patients. FWW are similar in design, size, and function to a pick-up 

walker, but have the benefit that they do not need to be lifted and allow for a more 

“fluid” walking pattern which better resembles that of unassisted walking. 
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Figure D.1: Front wheeled walker. Source: http://www.simplymed.co.uk/all-
products/page/3/. 

Hence, in order to be able to apply the stability assessment methodology developed 

in Chapter 3 to a greater number of frail users, an instrumented FWW was also 

developed towards the end of this PhD, as described in this Appendix. 

D.2 Design requirements 

The same design requirements previously identified for the rollator and pick-up walker 

also apply to the FWW, as the new instrumented device must support: 

 The characterisation of device loading; 

 The characterisation of device and user movement; 

 The characterisation of system stability, where the system is defined as 

the combination of user and device; 



 

195 
 

 Wireless data collection, and therefore the instrumentation must be 

battery powered. 

Hence, it seemed reasonable to use the same set of instrumentation previously used 

for the rollator and the pick-up walker, which consists of: 

 Pressure sensing insoles (medilogic®insole, T&T medilogic 

Medizintechnik GmbH, Schönefeld, Germany) to measure the pressure 

distribution and hence the corresponding CoP location for each 

anatomical foot; 

 An optoelectronic motion capture system (either 6 Qualisys Oqus300 

cameras, Qualisys AB, Göteborg, Sweden or 10 Vicon T-series cameras, 

Vicon Motion Systems Ltd, Oxford, UK) to capture the position of both, 

the anatomical feet and walking frame feet. 

 Four single axis load cells (Futek LCM300, FUTEK Advanced Sensor 

Technology, Inc., Irvine, California) in each leg of the frame, to measure 

the vertical walker ground reaction forces, and corresponding 

transmitters (Mantracourt T24-ACMi, Mantracourt Electronics Ltd., 

Exeter, UK). 

D.3 Front wheeled walker design 

As it is possible to see from Figure D.1, the rear feet of a FWW are identical to that of 

a pick-up walker; in fact, pick-up walkers are usually sold with interchangeable front 

feet so that the same device could be used as a pick-up walker or as a FWW. Hence, 

it was thought to use the previously developed instrumented pick-up walker and to 
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simply re-design the front wheels, which could then be swapped with the front feet of 

the pick-up walker.  

Following the same process adopted for the rollator, the design phase started by 

assessing all forces acting on the front wheels of the device to ensure that the stress 

applied to the load cells for a given design configuration would not exceed the 

maximum stress acceptable. For this purpose, a healthy young adult was asked to 

walk with a FWW (of identical design to the one purchased to be instrumented) along 

4 force plates and on two types of flooring which can be commonly found in users’ 

homes, vinyl flooring and carpet, as it was expected that the ground reaction forces 

when walking on carpet would be higher due to greater friction between the wheels 

and the carpet. The participant was also instructed to transfer onto the device a 

percentage of body weight varying between 30% and 50%. Since previous data on 

FWW users is scarce, the choice of such percentages was based on typical values 

observed in pick-up walker users; however, these values are believed to be realistic 

as the two populations are similar in terms of their physical condition and amount of 

structural support needed from the device.  

From the analysis of the data collected, it was found, once again, that simply screwing 

the load cell to the FWW legs was not possible as this would have resulted in 

excessive bending moments and subsequent breakage of the load cell. Thus, a design 

configuration similar to that of the instrumented rollator was adopted, which allows for 

only the vertical load to be transmitted axially to the load cell, but not any bending 

moment. Figure D.2 and Figure D.3 show, respectively, the FWW front wheel and rear 

foot design and a picture of the final instrumented FWW. 
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Figure D.2: Side view of FWW feet design. A) Front wheel design, B) Rear foot design 
(same as pick-up walker). 

 

 

Figure D.3: A) Final instrumented FWW; B) the FWW’s front wheel.  

Load cell

Load cell

A B
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D.4  Validation of the instrumented FWW 

Following the design phase, the accuracy of the vertical load and combined centre of 

pressure measured by the instrumented FWW were tested in the lab following the 

same procedure previously adopted for the rollator (Section 4.5). 

As a result, a maximum error equal to 5.2% and Root Mean Square value of 12.04 N 

were obtained when comparing the total vertical load recorded by the load cells to the 

corresponding data recorded with the force plate.  

Also, a maximum error equal to 18.09 mm in AP direction and 19.61 mm in ML 

direction were obtained when comparing the combined centre of pressure, which we 

consider acceptable being equal, respectively, to 3.7% and 4.1% of the maximum 

width and length of the combined BoS in the testing conditions studied. 
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E. Determination of limits of 

stability 

E.1 Introduction 

Previous work has developed a novel methodology that allows for the characterisation 

of stability of walking aid users (Costamagna E 2016). Specifically, this approach 

considers the user and their walking aid as a single combined system and calculates 

the margin of stability “SM”. Subsequently, data from two groups of walking aid users 

(PW users and rollator users) have been collected and analysed in relation to task 

type and device loading. However, although valuable insights were gained from such 

data, to be able to interpret stability outcome measures in relation to falls-risk, the 

question “how small of a stability margin is too small?” (i.e. at what values of SM will 

the user either need to take a compensatory recovery step or experience a fall?) needs 

to be answered. This is of particular importance because recovery steps may lead to 

foot-frame collisions [REF Make/Bateni] and may thereby induce a fall. Previous 

research investigated limits of stability and balance recovery through experiments that 

involved leaning from standing unassisted in anteroposterior and mediolateral 

direction (Thelen, Wojcik et al. 1997, Wojcik, Thelen et al. 1999, Thelen, Muriuki et al. 

2000, Hsiao-Wecksler 2008, Carbonneau and Smeesters 2014). 

      

Moreover, in the special case of wheeled walkers, it is important to understand at what 

point the base of support of the system is becoming so large in the anterior-posterior 
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direction that a fall of the user is imminent due to the device “rolling away” from its 

user. 

 To explore the above, a study was designed that involved older healthy adults 

in a safety harness using the two instrumented walking aids previously developed 

(PW; rollator) under circumstances that challenged their stability up to the point of 

either needing a recovery step or experiencing a fall. Only healthy adults have been 

tested because it would have been unethical to test a sample of actual walking frame 

users who could have suffered serious consequences such as developing fear of 

falling through participation in this experiment. 

E.2 Methods 

E.2.1 Subjects 

Ten (10) healthy older adults aged 67.8 ± 5 years were recruited for this study. 

Inclusion criteria were: 1) being able to walk unaided; 2) not having mobility 

impairments. Exclusion criteria were: 1) a history of head injury, concussion, 

stroke/TIA, or diabetes; 2) visual disorders not correctable by glasses; 3) amputation 

of upper or lower limbs; 4) using a walking aid; 5) having chronic ankle instability. 

Written informed consent was obtained from all participants, and the experimental 

protocol was approved by the University of Salford Ethics Committee (HSR1617-105). 

E.2.2 Protocol  

The experiments took place in the Human Performance Lab at the University of 

Salford. All participants wore a safety harness and performed 20 leaning tasks with 

two instrumented walking aids (8 tasks with the instrumented rollator and 12 with the 
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instrumented PW). For each device, the individual tasks were designed to replicate 

the different foot-frame configurations that are likely to occur during normal walking. 

For example, while walking with a rollator, the user is likely to always have one 

anatomical foot in front of the other (continuous stepping) and the device should be 

grounded at all times.  

Hence, with the rollator, participants performed the following tasks: 

1) a. Right foot forward of the rollator’s rear wheels, left foot immediately behind 

right foot (toe-to-heel) (Figure E.1 A), with a comfortable stance width, and hips 

in line with handles. The participant leans to their right keeping their torso in 

line with their hips (as a tower) as much as they can until they need to step to 

recover balance.  

b. The participant then repeats the same task leaning to the left. 

2) a. Right foot in between the rollator’s rear wheels, left foot immediately behind 

right foot (toe-to-heel), and with a comfortable stance width (Figure E.1 B). The 

participant leans to their right keeping their torso in line with their hips (as a 

tower) as much as they can until they need to step to recover balance.  

b. The participant then repeats the same task leaning to the left. 

3) a. Right foot behind the rollator’s rear wheels, left foot immediately behind right 

foot (toe-to-heel), and with a comfortable stance width (Figure E.1 C). The 

subject leans to their right keeping their torso in line with their hips (as a tower) 

as much as they can until they need to step to recover balance.  

b. The participant then repeats the same task leaning to the left. 
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4) Right foot in line with the rollator’s rear wheels, left foot immediately behind right 

foot (toe-to-heel), and with a comfortable stance width (Figure E.1 B). The 

subject leans backwards keeping their torso in line with their hips (as a tower) 

as much as they can until they need to step to recover balance. 

5) Right foot in line with the rollator’s rear wheels, left foot immediately behind right 

foot (toe-to-heel), and comfortable stance width (Figure E.1 B). The subject 

pushes the rollator forward keeping their torso in line with their hips (as a 

tower) as much as they can until they need to step to recover balance. 

 

Figure E.1: Different foot-frame distance configurations illustrating the different starting 
positions of the anatomic feet in relation to the rollator’s wheels. 

While using a PW, on the other hand, the user will find themselves with a foot in front 

of the other during stepping (walker being grounded), yet with their feet approximately 

parallel when moving the device forward; the PW can be either grounded or airborne.  

Therefore, with the PW, participants performed the following tasks: 

1) Both feet in parallel in front of the PW’s rear feet and with a comfortable stance 

width (Figure E.1 A). The subject leans to their right keeping their torso in line 

A B C
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with their hips and legs (as a tower) as much as they can until they need to step 

to recover balance. 

2) Both feet in parallel in line with the PW’s rear feet and with a comfortable stance 

width (Figure E.1 B). The subject leans to their right keeping their torso in line 

with their hips and legs (as a tower) as much as they can until they need to step 

to recover balance. 

3) Both feet in parallel behind the PW’s rear feet (one user’s foot distance 

between user’s toes and PW’s rear feet to simulate position after PW touch-

down) and with a comfortable stance width (Figure E.1 C). The subject leans to 

their right keeping their torso in line with their hips and legs (as a tower) as 

much as they can until they need to step to recover balance. 

4) a. Right foot in front of the PW’s rear feet, hips  between the handles, left foot 

immediately behind right foot (toe-to-heel), and with a comfortable stance width 

(Figure E.1 D). The subject leans to their right keeping their torso in line with 

their hips (as a tower) as much as they can until they need to step to recover 

balance.  

b. The participant then repeats the same task leaning to the left. 

5) a. Right foot in line with the PW’s rear feet, left foot immediately behind right 

foot (toe-to-heel), and with a comfortable stance width (Figure E.1 E). The 

subject leans to their right keeping their torso in line with their hips (as a tower) 

as much as they can until they need to step to recover balance.  

b. The participant then repeats the same task leaning to the left. 

6) a. Right foot behind the PW’s rear feet, left foot immediately behind right foot 

(toe-to-heel), and with a comfortable stance width (Figure E.1 F). The subject 
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leans to their right keeping their torso in line with their hips (as a tower) as 

much as they can until they need to step to recover balance.  

b) The participant then repeats the same task leaning to the left. 

7) Both feet in parallel, PW airborne (to simulate swing phase of the walker), and 

with a comfortable stance width. The subject leans to their right keeping their 

torso in line with their hips and legs (as a tower) as much as they can until they 

need to step to recover balance 

8) Both feet in parallel, PW airborne (to simulate swing phase of the PW), and 

with a comfortable stance width. The subject leans backwards keeping their 

torso in line with their hips and legs (as a tower) as much as they can until they 

need to step to recover balance. 

9) Right foot in front, left foot immediately behind right foot (toe-to-heel), and with 

a comfortable stance width, PW airborne (to simulate swing phase of the PW). 

The subject leans backwards keeping their torso in line with their hips and legs 

(as a tower) as much as they can until they need to step to recover balance. 
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Each task was performed once. Only if data collection of the first trial was 

unsuccessful, a second trial was recorded. 

Finally, presentation of device to each participant was alternated (i.e. participants 1, 

3, 5, 7, 9 were tested with the PW first and with the rollator after, and vice versa for 

participants 2, 4, 6, 8, 10), and presentation of tasks within device (i.e. tasks 1-5 for 

the rollator, and tasks 1-9 for the PW) was randomized. 

E.2.3 Data analysis 

For each trial, SM at the onset (lift-off) of the recovery step was calculated using the 

software developed in Chapter 3, and this value of SM was recorded as the Limit of 

Stability (LoS) in a given direction and for a given foot-frame configuration for these 

A B C

D E F
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experiments from standing. Subsequently, mean and standard deviation (SD) of the 

LoS for each task across all participants were obtained.  

With regard to the maximum safe length of the base of support for the rollator, mean 

and SD of the base of support length at the onset of the recovery step during forward 

leaning with the rollator were calculated. 

Finally, the SM values observed in rollator and PW users previously in this PhD were 

compared to their corresponding LoS as follows: 

1) the minimum SM for a given participant performing a given walking task 

(i.e. straight line walking, 90° turn, 180° turn, backward walking, 

obstacle crossing, and step up for the rollator and straight line walking, 

turning in the lab, and turning in the ADL flat for the PW) was recorded; 

2) the foot-frame configuration at the instant in time during which the 

minimum SM occurred was analysed to identify the distance between 

user’s feet and device, and, for the PW only, whether the user’s feet 

were parallel or toe-to-heel, and whether the device was grounded or 

airborne;  

3) the edge of the combined base of support which was closest to the 

combined centre of pressure at the instant in time during which the 

minimum SM occurred (i.e. the edge used for the calculation of SM) was 

identified;  

4) based on the information obtained in 2) and 3), the value of the minimum 

SM was compared to the LoS which most closely represented the 

conditions in which the minimum SM occurred (e.g. in the case 

illustrated in Figure E.2, assuming that the user was using the rollator, 



 

207 
 

the minimum SM would be compared to LoS relative to task 2b, that is 

leaning to the left with the right foot in line with the rollator’s rear wheels 

and the left foot immediately behind the right foot (toe-to-heel)). If SM is 

greater than the corresponding LoS, then the user is stable, otherwise 

it would be concluded that a recovery step is imminent. 

 

Figure E.2: Example of foot-frame configuration. BoSsystem indicates the combined base of 
support, CoPsystem indicates the combined centre of pressure, and the red line represents 
the edge of the combined base of support which is closest to the combined centre of 
pressure (i.e. the edge used for the calculation of SM). 

E.3 Results 

Tables E.1 and E.2 report the mean ± SD values of the LoS for each task for the 

rollator and PW, respectively. It should be noticed that, for the same foot-frame 

configuration, LoS values relative to left and right leaning are often identical when 

rounded to the second decimal place. Also, both mean and SD values of LoS for 

rollator and PW are comparable and no considerable differences were noted. 

Table E.1: LoS for the rollator. Tasks are labelled as listed in Section E.2.2. 

Task Mean ± SD 

SM

BoSsystem

CoPsystem
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1a 0.18  ± 0.07 

1b 0.18  ± 0.07 

2a 0.20  ± 0.07 

2b 0.20  ± 0.07 

3a 0.16  ± 0.05 

3b 0.17  ± 0.04 

4 0.20  ± 0.11 

5 0.16  ±  0.03 

 

Table E.2: LoS for the PW. Tasks are labelled as listed in Section E.2.2. 

Task Mean ± SD 

1 0.20  ± 0.04 

2 0.18  ± 0.12 

3 0.17  ± 0.05 

4a 0.17  ± 0.06 

4b 0.17  ± 0.06 

5a 0.16  ± 0.08 

5b 0.15  ± 0.07 

6a 0.20  ± 0.06 

6b 0.20  ± 0.05 

7 0.19  ± 0.11 

8 0.14  ± 0.1 

9 0.22  ± 0.06 

 

However, looking at the minimum values of SM observed in walking aid users during 

performance of several walking tasks representative of daily activities, it was found 

that these values are often considerably lower than their corresponding LoS, and this 

is true for both older users and the healthy young adult walking with either device. As 

an example, Table E.3Table E.4 report the minimum SM during straight line walking 

for all rollator and PW users and for the healthy young adult. 
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Table E.3: Minimum SM during straight line walking for all rollator users tested and the 
young healthy adult (RYA). 
 

SMmin 

R1 0.15 

R2 0.15 

R3 0.14 

R4 0.14 

R5 0.16 

R6 0.31 

R7 0.17 

R8 0.24 

R9 0.19 

R10 0.18 

RYA 0.15 

 

Table E.4: Minimum SM during straight line walking for all PW users tested and the young 
healthy adult (PWYA). 
 

SMmin 

PW1 0.08 

PW2 0.16 

PW3 0.14 

PW4 0.10 

PW5 0.13 

PWYA 0.08 

 

Regarding the maximum safe length of the base of support, this was found to be equal 

to 1459.67 ± 351.34 mm, which is much greater than that observed in the rollator users 

tested. 

E.4 Discussion  

The main aim of this study was to identify threshold values of SM that discriminate 

between stability and instability (e.g., how small of a stability margin is too small) in 

order to inform device selection and prescription: for instance, at the time of 
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prescription, older adults may be asked to try out different walking aids and their 

minimum SM could be compared to the LoS of each device; if the system’s (person + 

given walking aid) stability margin approaches the limit when using a certain device, 

then it is probable that such device is not appropriate for that particular person. 

However, it is evident that minimum SM values of rollator and PW users and even 

those of the healthy young adult were often considerably lower than their 

corresponding LoS, which would have suggested that most users were highly unstable 

and likely to fall, but this is, clearly, incorrect as none of them fell during testing.  

Several reasons could be identified that explain why the results of this study are not 

informative as initially hoped. First, it must be observed that LoS were calculated from 

standing in double support of the anatomical feet, whilst minimum values of SM often 

occur while the user in single support. For this reason, it was thought to repeat this 

LoS study with users in single support. Nevertheless, measurement of the onset of the 

recovery step would have not been trivial, especially because the equipment (force 

plate) used relies on foot lift-off to detect the onset of the recovery step. 

Furthermore, the minimum values of SM observed in rollator and PW users during 

walking were compared to a specific LoS, which was selected based on similarities in 

the foot-frame configuration (i.e. the distance between the user’s feet and the device, 

the position of the user’s feet relative to each other, and the device being grounded or 

airborne). Although this was originally believed to be a sufficient approximation, it is 

also true that there are unlimited possible foot-frame configurations: for instance, the 

device may be only partially grounded or, especially during tasks other than straight 

line walking (e.g. 90 and 180 degree turning), the anatomical feet may be oriented 

differently in relation to the device than during the LoS testing, affecting the shape of 

the combined base of support and, hence, SM values. 
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Most importantly, it must be acknowledged that the conditions tested in this study (i.e. 

leaning from standing) ignored a fundamental part of walking, which is the momentum 

that keeps a person balanced whilst moving forward. As a result of this momentum, a 

(older) person is able to balance on one foot during walking, even though they would 

not be able to balance on one foot during standing. Hence, the lack of forward 

momentum could explain, at least in part, the low SM values observed in walking aid 

users during walking. 

Finally, another factor that was not controlled during this study is device loading “DL”, 

which, as detailed in Chapter 5, is known to have a positive effect on SM. Indeed, post-

hoc analysis revealed that participants of the LoS study generally showed higher DL 

than most rollator users. Nevertheless, neither controlling for DL, nor grouping 

participants based on DL was possible, the former due to the lack of real time DL 

feedback and the fact that DL inevitably changes during leaning, and the latter 

because of the small number of participants tested. 

In conclusion, finding threshold values of SM able to discriminate between stability 

and instability resulted to be extremely challenging due to several equipment and 

experimental limitations. Nevertheless, defining limits of stability remains essential to 

confidently conclude on stability and inform device selection and prescription. Hence, 

future work should look at alternative and more valid ways to explore this important 

gap in the current knowledge base.  
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