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ABSTRACT 20 

Biochar materials originated from sewage sludge mat contain elevated levels of potentially toxic 21 

elements. There was a lack of information on the mobility of biochar-borne elements, as driven by 22 

low-molecular-weight organic acids (LMWOAs) contained in plant root exudates. A batch 23 

experiment was conducted to examine the effects of three common LMWOAs on the release of 24 

major elements and trace elements with a focus on various potentially toxic trace elements. The 25 

results showed that substantial amounts of Al, Mn, Fe, K, Na and Mg were extracted from two 26 

sewage sludge-derived biochar materials by the LMWOAs. A much higher release rate of potentially 27 

toxic trace elements was observed in the presence of LMWOAs, as compared to reported data using 28 

extractants not encountered in root exudates. The LMWOA-driven releasibility of various potentially 29 

toxic trace elements was in the following decreasing order: Zn > Ni > Pb > Cu > Cr > Co = Cd. 30 

Other trace elements that are subject to mobilization in the presence of LMWOAs included B, Ba, In, 31 

Li and Sr except Ba under oxalic acid extraction. Among the three LMWOAs, oxalic acid showed a 32 

generally stronger capacity to mobilize these metals. The findings obtained from this study provides 33 

new information that can be used for better evaluating the phyto-availability of trace elements bound 34 

to sewage sludge-originated biochar materials.  35 

Keywords: Sewage sludge, trace elements, biochar, low-molecular-weight organic acids, phyto-36 

availability 37 

 38 

 39 

 40 

 41 
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1 Introduction 42 

Pyrolysis is viewed as an effective approach for the treatment of sewage sludge while simultaneously 43 

generating bio-energy (Hossain et al., 2011; Agrafioti et al., 2013). The residue of sewage sludge 44 

pyrolysis could also be used as biochar for various environmental applications (Yuan et al., 2015). 45 

However, owing to generally elevated concentration of trace elements in the feedstock (van 46 

Wesenbeeck et al., 2014), biochar materials originated from sewage sludge may be a source of trace 47 

elements to the environments (Hossain et al., 2010), which may limit its beneficial utilization given 48 

the potential environmental impacts from the release of the biochar-borne trace elements of potential 49 

toxicity. Therefore, it is important to understand the releasability of sewage sludge biochar-borne 50 

trace elements in order to evaluate the environmental risk associated with a given beneficial 51 

application. The mobility of sewage sludge biochar-borne trace elements was tested by various 52 

researchers using different extractants e.g. distilled water (Gondek et al., 2014; Gondek and 53 

Mierzwa-Hersztek, 2017), NH4NO3 (Mierzwa-Hersztek et al., 2018), dilute H2SO4 and HNO3 54 

(Zhou et al., 2017), DTPA-CaCl2-TEA (Liu et al., 2014; Lu et al., 2016; Huang et al., 2017).  Liu et 55 

al (2014) found sewage sludge biochar had an elevated level of total Cd, Cr, Cu, Pb and Zn but only 56 

a small fraction of these metals was available for plant uptake and their bioavailability was in the 57 

following decreasing order:  Zn > Cr > Cu > Pb > Cd. Similarly, Gondek and Mierzwa-Hersztek 58 

(2017) reported low bioavailable forms of trace elements to the order of Zn > Pb > Cd > Cu. A TCLP 59 

study by Agrafiotiet al. (2013) revealed that leachate from sewage sludge biochar contained < 0.74 60 

mg/kg of heavy metals.   61 

Soil application represents a major avenue for biochar utilization (Ahmad et al., 2014). In the 62 

rhizosphere, various low-molecular-weight organic acids (LMWOAs) are present due to root 63 

exudation (Jones and Darrah, 1994). Therefore, the added biochar materials are likely to be exposed 64 

to these naturally occurring LMWOAs, which may cause liberation of the biochar-borne elements 65 
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through acidification, reduction or/and complexation (Onireti and Lin, 2016; Alozie et al., 2018). 66 

While mobilization of trace elements from sewage sludge biochar materials has been investigated 67 

using chemical reagents that are not encountered in rhizosphere as mentioned above, there is 68 

currently no information on the chemical behaviour of sewage sludge biochar-borne elements in the 69 

presence of LMWOAs that are frequently encountered in rhizospheric soils. This represents a 70 

knowledge gap for understanding the phyto-availability of sewage sludge biochar-borne elements in 71 

the soils amended with sewage sludge biochar materials. In this short communication, we report the 72 

observed release of various elements from two selected sewage sludge-originated biochar materials 73 

produced using the same feedstock but at different pyrolysis temperatures in the presence of three 74 

common root-released LMWOAs (citric acid, oxalic acid and malic acid). The objective was to gain 75 

a preliminary understanding of the role of these three common LMWOAs in mobilizing various 76 

elements from the two selected sewage sludge biochar materials, which will provide a basis for 77 

guiding further investigations to obtain insights into the biochemical mechanisms responsible for 78 

plant uptake of sewage sludge biochar-borne elements. 79 

2 Materials and Methods 80 

The two sewage sludge biochar materials (labelled as SS550 and SS700 for that produced under low-81 

oxygen conditions at a pyrolysis temperature of 550 
o
C and 700 

o
C, respectively) used in the 82 

experiment were purchased from the United Kingdom Biochar Research Centre (UKBRC). The basic 83 

physical and chemical characteristics of the biochar materials provided by the manufacturer are 84 

given in Table S1 in the Supplementary Materials. The functional groups on the biochar surfaces 85 

were identified using a Fourier transform infrared spectrometer (FTIR). 86 

A batch experiment was conducted with one control and three treatments being set for each biochar 87 

material. For the controls, 2 g of the respective biochar was extracted by 20 mL of deionized water. 88 

For the treatments, 20 mL of 0.02 M citric, malic or oxalic acid solution was used, respectively. The 89 
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concentration of LMWOAs set for this study is within the concentration range encountered in 90 

rhizosphere (Jones and Darrah, 1994). Details on the experimental set-up are provided in Table S2 in 91 

the Supplementary Materials.  92 

After adding all the ingredients, the batch reactors were shaken in a rotary shaker at 150 rpm for 1 93 

hour. After shaking, the pH and electrical conductivity (EC) in the solution were measured using a 94 

calibrated pH meter and an EC meter, respectively. The solution was then filtered for determination 95 

of various elements using an inductively coupled plasma atomic emission spectrometer (Varian 96 

720ES ICP-OES).  97 

The experiment was performed in triplicate. All chemical reagents used in the experiment were of 98 

analytical reagent grade. Ultrapure water (18.2 MΩ/cm) was used throughout the entire course of the 99 

experiment. One-way analysis of variance (ANOVA) and Duncan’s multiple range tests were used to 100 

determine the statistically significant difference between the means of the controls/treatments.  101 

Values were reported as the mean ± standard error of the mean. Different letters indicate statistical 102 

significance (p<0.05) and where no statistical significance between treatments were identified 103 

(p>0.05), no letters were reported. 104 

The release rate of a biochar-borne element by each of the LMWOAs is calculated using the 105 

following formula: 106 

Release rate (%) = ELMWOA/Etotal x 100  107 

Where ELMWOA stands for the concentration of an extracted element by an LMWOA and Etotal 108 

denotes the total concentration of that biochar-borne element.  109 

 110 

 111 
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3 Results and Discussion 112 

The spectra of the two-biochar materials used for the study are shown in Fig. 1. No major changes in 113 

surface functionality for the biochar materials produced under different pyrolysis temperature were 114 

observed. This suggests that the biochar materials were relatively stable at these production 115 

temperatures in terms of functionality (Song et al., 2014). The broad stretch observed between 3200-116 

3500 cm
-1 

can be assigned to –OH stretching (Keiluweit et al., 2010) and a slight decrease in 117 

intensity can be observed with increased pyrolysis temperature which is indicative of increased 118 

dehydration of the biochar material (Kim et al., 2012). At around 2921 cm
-1

 a small vibration can be 119 

observed for SS700 which is attributable to a CH aliphatic stretch (de Jesus et al., 2017). Another 120 

stretch, which indicates the presence of a C=O bond of amide I at ~1617 cm-1 (Lu et al., 2013; Fan 121 

et al., 2016). The strong peak observed for both biochar at ~1385 cm
-1

 is most likely aliphatic CH3 122 

deformation (Özçimen and Ersoy-Meriçboyu, 2010). A broad stretch present between 1000-1200 123 

cm
-1 

can be assigned as aliphatic ether C–O and alcohol C–O stretching (Özçimen and Ersoy-124 

Meriçboyu, 2010), which becomes more pronounced with increased pyrolysis temperature. There 125 

was only a slight difference in absorbance between the pre-extraction and post-extraction FTIR 126 

spectra (data not shown), indicating that no removal or formation of new functional groups on the 127 

reacted biochar materials. Scanning electron micrographs revealed a porous structure with substantial 128 

amounts of the precipitates for both biochar materials (Fig. S1).  129 
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 130 

Figure 1  FTIR spectra of the two biochar materials (SS550 and SS700) used in the experiment. 131 

 132 

After the reaction, the mean pH in the control for SS550 was 7.20, which was significantly (P <0.05) 133 

lower than that (pH 8.87) in the control for SS700 (Table 1). This was expected because the former 134 

was less alkaline, as compared to the latter (Table S1 in the Supplementary Materials). For each 135 

biochar material, the mean pH in any LMWOA treatment was always lower than that in the 136 

respective control. This was due to acidification by the added organic acids. EC in the solutions also 137 

generally increased after addition of citric and malic acids (Table 1), reflecting the dissolution of the 138 

biochar-borne compounds.  139 

 140 

 141 
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Table 1 pH and electrical conductivity in the solution    142 

Treatment pH EC (µS/m) 

SS550 7.20±0.01b 259±1.67ab 

SS700 8.87±0.06a 185±6.84b 

SS550-C 6.44±0.12f 411±69.55a 

SS550-M 6.43±0.04f 385±116.43a 

SS550-O 6.57±0.02ef 258±6.00ab 

SS700-C 6.66±0.02de 254±0.67ab 

SS700-M 6.77±0.03d 258±9.60ab 

SS700-O 7.02±0.02c 144±1.76b 

Values are means ± standard error of the mean (n=3). Means in each column with different letters 143 

indicate statistical significance (P<0.05)  144 

 145 

In both controls (SS550 and SS700), no Al was detected. For Fe, only a trace amount was detected 146 

for SS700 and none was detected for SS550. These are expected since the solubility of aluminium 147 

and iron oxides is low at neutral and slightly alkaline pH. Significantly more (P <0.05) K was 148 

released from SS550, as compared to SS700. For both biochar materials, oxalic acid tended to extract 149 

more Al, as compared to either citric acid or malic acid. More Al tended to be extracted from SS550, 150 

as compared to SS700 (Table 2). It is likely that the biochar-borne Al was mainly in hydrolysed 151 

form. Given that the solution pH was above 6, the mobilization of biochar-borne Al was likely to be 152 

driven by complexation rather than acidification. Under the set experimental conditions, oxalic acid 153 

is more effective in terms of solubilizing aluminium hydroxides. The same trend (oxalic acid 154 

treatment > citric acid and malic acid treatments) for Fe was observed only for SS700. For SS550, 155 

citric acid tended to extract more Fe, as compared to malic acid and oxalic acid despite that there was 156 

no statistically significant difference being observed (P >0.05). The concentration of K, Na and Mg 157 

was all lower in the controls than in the treatments (Table 2), suggesting a release of exchangeable 158 

K, Na and Mg by H
+
 from the organic acid. At the same molar concentration, oxalic acid has a 159 

stronger pKa value as compared to the other two LMWOAs (citric acid pKa= 3.13, malic acid pKa= 160 

3.46 and oxalic acid pKa= 1.25, respectively) (Strobel, 2001).  This may partially explain why 161 

significantly more K and Na (P<0.05) were extracted in the oxalic acid treatment than in the other 162 
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organic acid treatments for SS550. Unlike other basic cations, Ca showed no significant difference 163 

between the control and the treatments (Table 2), suggesting that Ca in the solution was from the 164 

dissolution of water-soluble calcium compounds and no exchangeable Ca was released from the 165 

biochar materials. The high level of water-extractable Mn in the controls indicated the presence of 166 

water-soluble Mn
2+

, which is relatively stable in a pH less 8 (McBride, 1994).  In general, the added 167 

LMWOAs significantly enhanced the release of Mn from the biochar materials, especially for SS550 168 

(Table 2). This may be attributed to cation exchange (replacement of exchangeable Mn by H
+
 from 169 

the added organic acids), and dissolution of manganese compounds via complexation to form soluble 170 

manganese-citrate/malate/oxalate complexes and reduction to form soluble Mn
2+

 (Onireti and Lin, 171 

2016; Alozie et al., 2018).  172 

 173 

Table 2 Comparison of extractable major elements (mg/kg) in the biochar materials among the 174 

controls and treatments 175 
Treatment Al (mg/kg) Ca (mg/kg) Fe (mg/kg) K (mg/kg) Mg (mg/kg) Mn (mg/kg) Na (mg/kg) 

SS550 0.00±0.00d 859±3.77a 0.00±0.00d 1216±63.4d 533±17.2e 5.91±0.00cd 1122±138c 

SS700 0.00±0.00d 797±2.33a 3.55±3.55d 310±41.4e 1623±128c 0.35±0.65e 276±13.1e 

SS550-C 5098±1252bc 707±90.9a 18165±4413a 2317±601ac 4043±988b 504±0.26b 1421±367bc 

SS550-M 4524±396bc 806±8.00a 11245±3516ac 2634±14.4ab 5163±703b 419±120bc 1749±111b 

SS550-O 9032±2491a 823±23.8a 11132±5452ac 2725±227a 4769±51.7b 772±45.4a 2384±26.8a 

SS700-C 3641±134bc 824±1.81a 6636±249bcd 1952±21.3bcd 7483±6.33a 272±71.2cd 827±24.9d 

SS700-M 2440±49.1cd 823±2.55a 3603±54.9cd 1669±45.2cd 7217±92.6a 200±2.85d 914±6.01d 

SS700-O 6561±304ab 823±7.35a 13420±761ab 1877±80.6cd 7397±138a 467±4.41b 1006±43.7cd 

Values are means ± standard error of the mean (n=3). Means in each column with different letters indicate statistical 176 
significance (P<0.05)  177 

 178 

For common heavy metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) of environmental importance, none was 179 

detected in the controls for all these heavy metals. Due to the alkaline conditions, the surfaces of 180 

biochar and oxides tended to be negatively charged, which favoured the binding of cationic heavy 181 

metals but or anionic heavy metals. Therefore, it was unlikely that the biochar-borne Cr was in 182 

anionic forms such as CrO4
2-

 and Cr2O7
2-

. Cd and Co were not detected in the treatments either (data 183 

not shown). Different patterns were observed for Cr, Cu, Ni, Pb and Zn (Fig. 2). Addition of 184 
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LMWOAs tended to result in the release of Cr from the biochar materials though the citric acid 185 

treatment was more effective, especially for SS550. Gabriel and Salifoglou (2005) found that Cr 186 

could favourably form a soluble complex with citrate. For Cu, nothing was detected for any of 187 

LMWOA treatments for SS550. For SS700, the amount of Cu released from the biochar was in the 188 

following decreasing order: citric acid > malic acid > oxalic acid (significant at P <0.05). Biochar 189 

contains dissolved organic compounds, which increase with decreasing pyrolysis temperature (Smith 190 

et al., 2016). Perhaps, the relatively abundant presence of biochar-borne dissolved organic 191 

compounds in SS550 was responsible for the immobilization of Cu, which has a strong affinity to 192 

organic matter.  The amount of Ni released was greater for SS700 than for SS550, which had no 193 

detected Ni for the oxalic acid treatment and only a trace amount of extracted Ni for the malic and 194 

citric acid treatments.  The amount of extracted Ni from SS700 was smaller (significant at P <0.05) 195 

in the malic acid treatment than in the other two treatments. The extracted Pb tended to decrease 196 

from citric acid treatment to malic acid treatment to oxalic acid treatment for both biochar materials 197 

though not all of them are statistically significant. Zn was the most abundant heavy metal released 198 

from the biochar materials in this experiment. The amount of extracted Zn was significantly (P 199 

<0.05) greater in the oxalic acid treatment than the other two organic acid treatments for both biochar 200 

materials (Fig. 2b).  201 
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 202 

 203 

Figure 2 Comparison of extractable (a) Cr, Cu, Ni, Pb and (b) Zn in the biochar materials 204 
among the controls and treatments. Different letters above the bars indicate statistically 205 

significant difference (P <0.05) for each metal.  206 
 207 

Liberation of several other trace elements from the biochar materials was also observed (Table 3). 208 

The water- and LMWOA-extractable B tended to be higher in SS700 than in SS550. There was a 209 

significant (P <0.05) difference in the released B for the SS550 citric acid treatment but no 210 
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significant difference (P>0.05) for malic or oxalic acid treatments. Significantly (P <0.05) more B 211 

was released from SS700 compared to SS550 and the SS700 control to the order of citric acid > 212 

malic acid > oxalic acid. More Ba was released by citric acid and malic acid than by oxalic acid and 213 

for SS700, oxalic acid even caused immobilization of soluble Ba. This may be attributed to the 214 

formation of relatively insoluble Ba-oxalate complexes (Kravchenko et al., 2014) following the 215 

release of biochar-borne Ba by H
+
 through cation exchange. Such complexes can precipitate, leading 216 

to the rapid removal of the extracted Ba from the solution (Strathmann and Myneni, 2004). Although 217 

no water-extractable In was presence for both biochar materials, relatively large amount of In was 218 

extracted by the LMWOAs for SS550 and SS700 with oxalic acid showing significantly stronger (P 219 

<0.05) capacity to extract In, as compared to the other two organic acids. Water extractable Li was 220 

present in both controls (SS550 > SS700) and a significant increase in concentration existed for 221 

oxalic acid treatments only (P>0.05). However, for SS700 nearly ten times more Li was extracted by 222 

oxalic acid (significant at P <0.05). Similarly, high amounts of Li were also extracted for the 223 

remaining LMWOA treatments. The presence of LMWOAs led to a further release of Li, probably 224 

through cation exchange. Extractable Sr was detected in the control for both biochar materials. The 225 

presence of LMWOAs led to significant (P <0.05) release of Sr from the biochar materials with more 226 

Sr being released from SS500 than from SS700.  227 

Table 3 Comparison of extractable boron, barium, indium, lithium and strontium in the 228 
biochar materials among the controls and treatments 229 
Treatment B Ba In Li Sr 

SS550 0.07±0.07d 2.56±0.05d 0.00±0.00e 4.16±0.15c 14.1±0.17c 

SS700 5.11±0.89cd 0.27±0.06cd 0.00±0.00de 1.92±0.07e 4.11±0.19d 

SS550-C 6.40±3.20c 170±40.9c 15.7±5.33b 6.55±1.58c 87.3±20.5a 

SS500-M 2.73±0.32cd 152±16.8cd 12.2±1.87bc 7.34±0.18bc 88.9±1.60a 

SS550-O 5.15±1.00cd 0.00±0.00cd 26.2±2.52a 11.0±0.05a 51.5±23.1b 

SS700-C 29.5±0.97a 88.1±1.39a 7.00±0.18cd 8.58±0.11b 54.2±0.24b 

SS700-M 24.64±1.66ab 66.62±2.42ab 3.07±0.15de 7.39±0.16bc 45.17±0.96bc 

SS700-O 22.51±3.11b 0.00±0.00b 14.67±0.80b 10.50±0.55a 25.08±2.86bd 

Values are means ± standard error of the mean (n=3). Means in each column with different letters 230 

indicate statistical significance (P<0.05)  231 

 232 
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The release rate (%) of Cd, Co, Cr, Cu, Ni, Pb and Zn for the two biochar materials tested in this 233 

study can be seen from Fig. 3. The releasibility of Zn was evident with over 30% of the biochar-234 

borne Zn being liberated and oxalic acid tending to mobilize more Zn. The release rate of the 235 

biochar-borne elements by the LMWOAs generally followed the order Zn > Ni > Pb > Cu > Cr > Co 236 

= Cd. While the high mobility of Zn observed in this study was comparable to what were reported by 237 

other authors using other extracting agents, the LMWOA-driven release rate of trace elements was 238 

much higher and the order of mobility for various trace elements was also different, as compared to 239 

their reported rate (Liu et al., 2014; Gondek and Mierzwa-Hersztek, 2017).  240 

 241 

Figure 3 Release rate (%) of biochar-borne Cd, Co, Cr, Cu, Ni, Pb and Zn among the controls 242 

and treatments 243 

 244 

Since extraction of biochar-borne trace elements by LMWOAs better simulates the soil conditions in 245 

the rhizosphere, the findings from this study provide new information that can be used for better 246 

evaluating the phyto-availability of trace elements bound to sewage sludge biochar materials.  247 



14 
 

 248 

4 Conclusion 249 

Substantial amounts of Al, Mn, Fe, K, Na and Mg could be released from the sewage sludge biochar 250 

materials in the presence of LMWOAs through dissolution and cation exchange with oxalic acid 251 

showing a generally stronger capacity to mobilize these metals. There was a much higher release rate 252 

of potentially toxic trace elements in the presence of LMWOAs, as compared to that mobilized by 253 

chemical substances not encountered in root exudates. The LMWOA-driven releasibility of various 254 

potentially toxic trace elements was in the following decreasing order: Zn > Ni > Pb > Cu > Cr > Co 255 

= Cd. Other trace elements that are subject to mobilization in the presence of LMWOAs included B, 256 

Ba, In, Li and Sr except for Ba under oxalic acid extraction. 257 

 258 
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Table S1 Basic characteristics of the two biochar materials used in the experiment  

Property  SS550 SS5700 

Moisture (%) 2.48 1.69 

Ctot (%) 29.53 29.55 

H (%) 1.33 0.83 

O (%) 6.5 2.75 

H:C 0.54 0.34 

O:C 0.17 0.07 

Total Ash (%) 58.89 63.91 

Total N (%) 3.75 3.79 

pH 8.29 9.12 

Electrical Conductivity (dS/m) 0.280 0.113 

PAH (mg/kg) 3.76 1.4 

As (mg/kg) <0.72 <0.72 

Cd (mg/kg) 11.69 12.36 

Cr (mg/kg) 275.69 292.72 

Co (mg/kg) 11.58 12.68 

Cu (mg/kg) 255.22 296.63 

Pb (mg/kg) 201.19 195.97 

Hg (mg/kg) <0.23 <0.23 

Mo (mg/kg) 5.59 4.67 

Ni (mg/kg) 57.19 66.25 

Se (mg/kg) <1.40 <1.4 

Zn (mg/kg) 835.69 896.21 

Polarity Index (O+N)/C 0.35 0.22 

 

 

Table S2 Details on experimental set-up 

Treatment Biochar 

(g) 

0.02 M citric acid 

(mL) 

0.02 M malic acid 

(mL) 

0.02 M oxalic acid 

(mL) 

Deionized Water 

(mL) 

SS550-C 2 0 0 0 20 

SS700-C 2 0 0 0 20 

SS550-CA 2 20 0 0 0 

SS550-MA 2 0 20 0 0 

SS550-OX 2 0 0 20 0 

SS700-CA 2 20 0 0 0 

SS700-MA 2 0 20 0 0 

SS700-OX 2 0 0 20 0 
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Figure S1 Scanning Electron Micrograph of (a) SS550 and (b) SS700 
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