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ABSTRACT  

Thermal transport in porous media has stimulated substantial interest in engineering 

sciences due to increasing applications in filtration systems, porous bearings, porous layer 

insulation, biomechanics, geomechanics etc. Motivated by such applications, in this article a 

numerical investigation of entropy generation effects on the heat and momentum transfer in 

unsteady laminar incompressible boundary layer flow of a Casson viscoplastic fluid over a 

uniformly heated vertical cylinder embedded in a porous medium is presented. Darcy’s law is 

employed to simulate bulk drag effects at low Reynolds number for an isotropic, homogenous 

porous medium. Heat line visualization is also included. The mathematical model is derived and 

normalized using appropriate transformation variables. The resulting time-dependent non-linear 

coupled partial differential conservation equations with associated boundary conditions are solved 

with an efficient unconditionally stable implicit finite difference Crank Nicolson scheme.  The 

time histories of average values of momentum and heat transport coefficients, entropy generation 

and Bejan number, as well as the steady-state flow variables are computed for several values of 

non-dimensional parameters arising in the flow equations. The results indicate that entropy 

generation parameter and Bejan number are both elevated with increasing values of Casson fluid 

parameter, Darcy number, group parameter and Grashof number. To analyze the heat transfer 

process in a two-dimensional domain, plotting heat lines provides an excellent approach in 

addition to streamlines and isotherms. The dimensionless heat function values are shown to 

correlate closely with the overall rate of heat transfer. Bejan’s heat flow visualization implies that 

the heat function contours are compact in the neighbourhood of the leading edge of the boundary 

layer on the hot cylindrical wall. It is observed that as the Darcy number increases, the deviations 

of heat lines from the hot wall are reduced. Furthermore the deviations of flow variables from the 

hot wall for a Casson fluid are significant compared with those computed for a Newtonian fluid 

and this has important implications in industrial thermal materials processing operations.  

 

KEYWORDS: Casson fluid; Entropy generation; Vertical cylinder; Finite difference method; 

Heat function; Porous medium. 
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NOMENCLATURE  

Be       dimensionless Bejan number  

𝐶𝑓        dimensionless average momentum transport coefficient 

𝑐𝑝         specific heat  

Da        Darcy number 

g           acceleration due to gravity 

Gr        Grashof number 

𝑘           thermal conductivity of the fluid  

𝑘1          permeability parameter 

Ns          dimensionless entropy heat generation number  

𝑁𝑢         dimensionless average heat transport coefficient  

Pr          Prandtl number 

𝑟𝑜            radius of the cylinder   

r              radial coordinate 

R             dimensionless radial coordinate 

𝑡′             time 

t              dimensionless time 

𝑇′            temperature  

u, v          velocity components in (x, r) coordinate system 

U, V         dimensionless velocity components in (X, R) coordinate system 

x              axial coordinate 
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X             dimensionless axial coordinate 

Greek Letters 

θ              dimensionless temperature 

β              Casson viscoplastic fluid parameter  

ɛ1             dimensionless viscous dissipation parameter  

𝜇               viscosity of the fluid 

𝛼               thermal diffusivity    

Ω′              heat function 

𝜈                kinematic viscosity 

Ω               dimensionless heat function 

𝜌                density 

ψ               dimensionless stream function 

𝛽𝑇              volumetric coefficient of thermal expansion   

ɛ1Θ−1        dimensionless group parameter 

Θ                non-dimensional temperature difference 

Subscripts 

w                wall conditions 

l, m             grid levels in (X, R) coordinate system 

∞                ambient conditions 

Superscript 

n                  time level 
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1. INTRODUCTION 

  Natural convection boundary layer flows external to various bodies constitute a major area 

of interest in thermofluid dynamics. Geometries may include cylinders, ellipses, spheres, curved 

walls, wavy plates, cones etc. These feature frequently in industrial manufacturing and process 

engineering systems. The thermal buoyancy force associated with natural convection flows can 

exert a critical role in determing skin friction and heat transfer rates at the boundary. The popularity 

of cylindrical bodies in thermal engineering has motivated an exceptional interest in analysing the 

free convection boundary layer flows from cylinders. Sparrow and Gregg [1] were among the first 

researchers to investigate free convective fluid flow from a uniformly heated vertical cylinder with 

asymptotic methods. Lee et al. [2] extended the model in [1] to the non-isothermal case for a thin 

vertical cylinder. These investigations were however restricted to Newtonian viscous flows i.e. 

they did not consider rheological effects which characterize numerous working fluids and complex 

materials in for example polymer processing operations. In the past several decades non-

Newtonian transport phenomena have motivated considerable interest among engineers, 

physicists, and mathematicians. This area presents a rich spectrum of nonlinear boundary value 

problems largely due to the extremely diverse range of rheological models available for simulating 

complex flow behavior. Popular non-Newtonian models include viscoelastic models with memory 

effects (e.g. differential liquids, Maxwell upper convected fluids, Oldroyd-B fluids, Walters-B 

fluids, Johnson-Segalman fluids), shear-thinning fluids (e.g. Ostwald-DeWaele power law, Cross 

model, Ellis model etc)), viscoplastic models (e.g. Bingham plastic, Herschel-Bulkley, Mizrahi-

Berk and Vocadlo models) and polar fluid models (Eringen micropolar, Stokes polar, Bluestein-

Green dipolar etc). Rani and Reddy [3] examined the time-dependent free convection of a Stokes 

couple stress non-Newtonian fluid in external boundary layer flow from a cylinder with cross 

diffusion effects. Hirschhorn et al. [4] investigated the pseudoplastic hydromagnetic slip flow from  

a plate. A particular group of viscoplastic fluids is quite accurately simulated with the Casson 

model. These include gels, foodstuffs, certain polymers, blood under certain shear rates (due to 

presence of several substances like fibrinogen, protein and globulin in aqueous base plasma) [5] 

and also paints and inks. The Casson model fits the rheological data of many real working fluids 

more closely than alternative viscoplastic models (e.g. Bingham model). Casson fluids are shear 

thinning liquids which are assumed to have an infinite viscosity at zero rate of shear,  a yield stress 

below which no flow occurs and zero viscosity at an infinite rate of shear [6]. The Casson fluid 
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model was originally introduced to represent pigment-oil suspensions in printing ink [7]. It was 

subsequently implemented in describing the flow curves of silicon suspensions [8] and also 

hemodynamics [9, 10].  Owing to the applicability of this model also in polymer sheet processing, 

several researchers [11-12] investigated heat transfer in Casson fluid flows from a stretching 

surface/sheet under different conditions. Time-dependent flow of a Casson fluid over a cone and 

plate under the effects of chemical reaction and radiation heat flux was studied by Mythili and 

Sivaraj [13]. Das et al. [14] considered the time-dependent magnetic Casson boundary layer flow 

from a plate with chemical reaction and radiation. Hydromagnetic Casson flow over a sheet was 

investigated analytically by Nadeem et al. [15]. Raju et al. [16] analyzed the wall blowing/suction 

effects on Casson fluid flow from a permeable stretching heat surface with mass transfer. 

  Thermodynamic optimization of engineering systems has emerged as a major area of 

modern investigation, largely motivated by increasing efficiency and sustainability of 21st century 

technologies. The laws of thermodynamics and Newton's second law of motion are the basic 

principles on which all the flow and heat transfer systems are designed. The first law of 

thermodynamics provides information about the energy of the system quantitatively. On the other 

hand, the second law of thermodynamics that entire processes are irretrievable and it is a useful 

tool to examine the entropy generation to assess the irreversibility in the system. Both heat transfer 

and fluid friction generate entropy and this entropy generation has to be minimized to reduce the 

loss of available work. Entropy generation minimization (EGM) has therefore emerged as a 

fundamental modern technique for designing thermal systems. Entropy production determines the 

irreversibility related with the natural processes such as counter flow heat exchanger for gas to gas 

applications [17]. EGM assists the engineer in identifying which procedure, system or installation 

is most effectual, and it has been deployed in many sophisticated areas including turbomachinery, 

porous media, electric cooling, energy systems, combustion, refrigeration and materials 

processing. Some recent applications of entropy generation minimization analysis are pseudo-

optimization design processes for solar heat exchangers [18], minimizing lost available work 

during heat transfer processes [19] and multi-field flows [20]. The foremost of the energy-related 

applications, for example, cooling of modern electronic systems, solar energy collectors, and heat 

energy systems rely on entropy generation. Further studies include [21-23] in which entropy 

generation was conducted for several flow formations. 

Several researchers studied the entropy generation concept related to the heat transfer 
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problem for different geometries, particularly on the cylinder. Mahian et al. [24] examined the 

entropy analysis in thermal flow of electrically-conducting fluids between two vertical cylinders 

with different wall conditions in the presence of a magnetic field. Also, studies on entropy 

generation from a stretching cylinder can be found in [25]-[27]. Bassam Abu-Hijleh et al. [28-30] 

analyzed the entropy heat generation over a horizontal cylinder. Thermodynamic analysis for fluid 

flows between rotating cylinders were reported in [31]-[33]. Qing et al. [34] investigated the 

entropy generation in MHD Casson nanofluid convection flow over a porous surface.  

Fluid dynamics in porous media arises in widespread applications including thermal 

insulation systems, filtration, chemical reactor design, contaminant dispersion in soils, tissue 

biophysics etc. Non-Newtonian fluid flows in porous media with and without heat transfer feature 

in chemical engineering packed beds, gel manufacture, viscous fingering in geological transport 

(gas and oil flows in reservoirs), digestive transport in physiology and also tribological bearings 

[35-37]. A popular approach is to simulate bulk porous matrix drag effects with the classical Darcy 

law which is valid for viscous dominated flows (low Reynolds numbers) wherein inertial effects 

are negated.  Many authors have reported in simulations of non-Newtonian fluid flows through 

porous media [38-43]. Casson viscoplastic transport in porous media has also stimulated osme 

attention. Asma Khalid et al. [44] studied the transient MHD flow of Casson fluid through a porous 

medium over a vertical plate. Ramachandra Prasad et al. [45] studied the heat transfer 

characteristics in thermal convection of Casson fluids through non-Darcy porous media engulfing  

a horizontal cylinder. Transient flow of MHD Casson fluid with chemical reaction effects was  

analysed by Kataria and Patel [46]. Further studies include [47-48].  

Thusfar relatively scant attention has been directed towards mathematical modelling of 

Casson fluid flow and heat transfer from a vertical cylinder in porous media with entropy heat 

generation. The present work is therefore focused on applying second law thermodynamic analysis 

to thermal convection in Casson viscoplastic boundary layer flow from over a uniformly heated 

vertical cylinder embedded in a Darcian porous media. Wall temperature is prescribed as greater 

than that of the surrounding fluid temperature. Entropy heat generation and momentum and heat 

transport coefficients are analyzed for the effects of various thermo-physical control parameters 

using a computational finite difference method. Solutions derived are compared with the 

Newtonian fluid case. The results obtained by the implicit finite difference method are 

corroborated with the available results in the literature. 
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Conventionally thermal convection fluid dynamics problems are analyzed only with the 

aid of streamlines and isotherms. In a given domain isotherms will furnish information on the 

temperature distribution. However using them to visualize the direction and heat transfer intensity 

is not feasible. In convection flows the direction of heat flux is not normal to the temperature 

contours. In these scenarios, the heat lines provide a practical methodology for visualizing the 

intensity of heat transfer and this in turn clarifies to the engineer possible channels for thermal 

energy transfer to occur from hot to cold walls. Kimura and Bejan [49] and Bejan [50] initiated 

the heat line concept of flow visualization. For cylindrical enclosures, Aggarwal and Manhapra 

[51] employed heatlines for the unsteady natural convective heat transfer process. Rani and Reddy 

[52] studied the heat lines for couple stress flows from a vertical slender cylinder. Rani et al. [53] 

studied the solutal version of this regime and presented detailed mass line visualizations. Using 

the same idea, recently Das and Basak [54] analyzed the rate of heat transfer at different zones 

within enclosures involving discrete heaters. The deployment of the heat lines approach for 

convection problems is further elucidated in [55]. Thusfar the heat line visualization approach has 

not been employed widely in heat transfer simulations for non-Newtonian fluids. The current work 

presents for the first time accurate and detailed visualization of Casson viscoplastic heat transfer 

from a cylinder with entropy generation using this heat function concept.  

The organization of this research article is as follows: Section 2 presents the mathematical 

transport model and its non-dimensionalization for a Casson fluid flow from a semi-infinite 

vertical cylinder with uniform surface temperature embedded in a porous medium. Section 3 

presents Crank-Nicolson numerical finite difference solutions and grid generation aspects. Section 

4 includes extensive computational results (via graphs) for the transient two-dimensional flow-

field profiles, average wall and heat transfer rates, entropy heat generation and Bejan number. This 

section also includes the heat function derivation and normalization based on the overall heat 

transport coefficient at the hot wall. Extensive discussion is also presented. Furthermore a  

comparison between Casson and Newtonian fluids is given. Finally, in section 5 key findings are 

summarized and possible extensions to the investigation are described.  

 

2. MATHEMATICAL MODELLING 

Transient two-dimensional laminar buoyancy-driven boundary layer flow of a Casson 

viscoplastic fluid over a cylinder of radius 𝑟0, embedded in a porous medium, is considered, as 
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depicted in Fig. 1.  A rectangular coordinate system is chosen, in which the axial coordinate (x-

axis) is selected from the foremost verge of the cylinder, while the radial coordinate (r-axis) is 

directed normal to the x-axis. The neighboring fluid temperature is considered to be stationary and 

similar to that of free stream temperature 𝑇∞
′ . At the outset, i.e. 𝑡′ = 0, the temperature 𝑇∞

′ is 

uniform for the cylinder and surrounding fluid.  Later ( 𝑡′ > 0), the temperature of the vertical 

cylinder is augmented to 𝑇𝑤
′ (> 𝑇∞

′ ) and preserved uniformly thereafter. The influence of viscous 

dissipation is presumed to be insignificant in the thermal equation.  

The rheological equation of state for a viscous incompressible Casson fluid is given by [7]: 

                       𝜏𝑖𝑗 =  {
 2(𝜇𝐵 + 𝑝𝑦/√2𝜋)𝑒𝑖𝑗  ,   𝜋 > 𝜋𝑐

2(𝜇𝐵 + 𝑝𝑦/√2𝜋𝑐)𝑒𝑖𝑗 ,   𝜋 < 𝜋𝑐

                                       (1)  

 Here, 𝜏𝑖𝑗 and 𝑒𝑖𝑗 represent the (i, j)th component of the shear stress tensor and deformation rate 

respectively,  𝑝𝑦 is the yield stress of the fluid and 𝜋 = 𝑒𝑖𝑗𝑒𝑖𝑗 , where 𝜋  denotes product of the 

component of deformation rate with itself, 𝜋𝑐 denotes a critical value of this product based on the 

non-Newtonian model and 𝜇𝐵 is plastic dynamic viscosity of the non-Newtonian fluid. If shear 

stress is less than the yield stress applied to the fluid, the fluid acts like a solid, whereas if shear 

stress exceeds the yield stress, motion is initiated. Implementing the Boussinesq approximation 

(linear variation in density) the appropriate conservation equations for mass, momentum and heat 

transfer for thermal  free convection boundary layer flow of a Casson fluid in a Darcian porous 

medium assume the form [47-48]: 

𝜕(𝑟𝑢)

𝜕𝑥
+

𝜕(𝑟𝑣)

𝜕𝑟
 = 0                                                      (2) 

𝜕𝑢

 𝜕𝑡′ + 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑟
=  𝜈 (1 +

1

β
) (

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
) + 𝑔𝛽𝑇(𝑇′ − 𝑇′∞) −

𝜈

𝑘1
𝑢                         (3) 

𝜕𝑇′

𝜕𝑡′
+ 𝑢

𝜕𝑇′

𝜕𝑥
+ 𝑣

𝜕𝑇′

𝜕𝑟
=

𝛼

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇′

𝜕𝑟
 )                                                                                          (4) 

The associated initial and boundary conditions are given by: 

𝑡′ ≤ 0: 𝑇′ =  𝑇∞
′  , 𝑢 = 0, 𝑣 = 0 ,        ∀ x and r  

𝑡′ > 0: 𝑇′ = 𝑇𝑤
′  , 𝑢 = 0, 𝑣 = 0           at  𝑟 =  𝑟0 

            𝑇′ =  𝑇∞
′ , 𝑢 = 0, 𝑣 = 0           at  𝑥 = 0                             (5) 
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            𝑇′ → 𝑇∞
′ , 𝑢 → 0, 𝑣 → 0           as  𝑟 → ∞  

where  β = 𝜇𝐵√2𝜋𝑐/𝑝𝑦     is the Casson viscoplastic parameter. 

Introducing the following non-dimensional quantities: 

 𝑈 = 𝐺𝑟−1 𝑢𝑟0

𝜐
 ,  𝑉 =

𝑣𝑟0

𝜐
 ,  𝑡 =

𝜐𝑡′

𝑟0
2  ,  X = 𝐺𝑟−1 𝑥

𝑟0
 ,  𝑃𝑟 =  

𝜐

𝛼
 ,  θ =

𝑇′−𝑇∞
′ 

𝑇𝑤
′ −𝑇∞

′  ,  𝐺𝑟 =
𝑔𝛽𝑇𝑟0

3(𝑇𝑤
′ −𝑇∞

′ )

𝜐2  , 

  𝑅 =
𝑟

𝑟0
 ,  Θ =

𝑇𝑤
′ −𝑇∞

′ 

𝑇∞
′  ,  ɛ1 =  

𝜇𝜐2

𝑘(𝑇𝑤
′ −𝑇∞

′ )𝑟0
2 ,  𝐷𝑎 =

𝑘1

𝑟0
2 ,   𝜐 = 

 𝜇

𝜌
     (6) 

(for the above symbols refer to the nomenclature) in Eqns. (2)- (4) and also in Eqn. (5), the 

unsteady boundary layer equations reduce to the following form: 

 
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑅
+

𝑉

𝑅
= 0                                                                                                                  (7) 

𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑅
   =  θ +  (1 +

1

β
) (

𝜕2𝑈

𝜕𝑅2 +
1

𝑅

𝜕𝑈

𝜕𝑅
) −

1

𝐷𝑎
𝑈                                                    (8) 

𝜕θ

𝜕𝑡
+ 𝑈

𝜕θ

𝜕𝑋
+ 𝑉

𝜕θ

𝜕𝑅
=

1

𝑃𝑟
(

𝜕2θ

𝜕𝑅2 +
1

𝑅

𝜕θ

𝜕𝑅
)                                                                                    (9) 

𝑡 ≤ 0: θ = 0 , 𝑈 = 0, 𝑉 = 0,          ∀ X and R  

𝑡 > 0: θ = 1 , 𝑈 = 0, 𝑉 = 0           at  𝑅 =  1 

           θ = 0, 𝑈 = 0, 𝑉 = 0            at  𝑋 = 0 

           θ → 0, 𝑈 → 0, 𝑉 → 0           as  𝑅 → ∞                                                                    (10) 

3. FINITE DIFFERENCE NUMERICAL SOLUTIONS    

Analytical solutions of the time-dependent Eqns.. (7) - (9) are intractable. A computational 

approach is therefore selected based on the unconditionally stable finite difference iteration 

scheme known as the Crank-Nicolson method. The finite difference discretized versions of Eqns. 

(7)-(9) take the form: 

 
𝑈𝑙,𝑚

𝑛+1−𝑈𝑙−1,𝑚
𝑛+1 +𝑈𝑙,𝑚

𝑛 −𝑈𝑙−1,𝑚
𝑛

2Δ𝑋
+

𝑉𝑙,𝑚
𝑛+1−𝑉𝑙,𝑚−1

𝑛+1 +𝑉𝑙,𝑚
𝑛 −𝑉𝑙,𝑚−1

𝑛

2Δ𝑅
 + (𝐽𝑅)𝑉𝑙,𝑚

𝑛+1  = 0                    (11) 
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𝑈𝑙,𝑚

𝑛+1−𝑈𝑙,𝑚
𝑛

Δ𝑡
+

𝑈𝑙,𝑚
𝑛

2Δ𝑋
(𝑈𝑙,𝑚

𝑛+1 − 𝑈𝑙−1,𝑚
𝑛+1 + 𝑈𝑙,𝑚

𝑛 − 𝑈𝑙−1,𝑚
𝑛 )+

𝑉𝑙,𝑚
𝑛

4Δ𝑅
(𝑈𝑙,𝑚

𝑛+1 − 𝑈𝑙,𝑚−1
𝑛+1 + 𝑈𝑙,𝑚

𝑛 − 𝑈𝑙,𝑚−1
𝑛 )   

=  
θ𝑙,𝑚

𝑛+1+θ𝑙,𝑚
𝑛

2
+ 𝐽𝑅 (1 +

1

β
) (

𝑈𝑙,𝑚+1
𝑛+1 −𝑈𝑙,𝑚−1

𝑛+1 +𝑈𝑙,𝑚+1
𝑛 −𝑈𝑙,𝑚−1

𝑛

4(∆𝑅)
)  + 

           (1 +
1

β
) (

𝑈𝑙,𝑚+1
𝑛+1 −2𝑈𝑙,𝑚

𝑛+1+𝑈𝑙,𝑚−1
𝑛+1 +𝑈𝑙,𝑚+1

𝑛 −2𝑈𝑙,𝑚
𝑛 +𝑈𝑙,𝑚−1

𝑛

2(∆𝑅)2 ) −
1

𝐷𝑎

(𝑈𝑙,𝑚
𝑛+1+𝑈𝑙,𝑚

𝑛 )

2
             (12)  

  

  
θ𝑙,𝑚

𝑛+1−θ𝑙,𝑚
𝑛

Δ𝑡
 + 

𝑈𝑙,𝑚
𝑛

2Δ𝑋
(θ𝑙,𝑚

𝑛+1 − θ𝑙−1,𝑚
𝑛+1 + θ𝑙,𝑚

𝑛 − θ𝑙−1,𝑚
𝑛 ) + 

𝑉𝑙,𝑚
𝑛

4Δ𝑅
(θ𝑙,𝑚

𝑛+1 − θ𝑙−1,𝑚
𝑛+1 + θ𝑙,𝑚

𝑛 − θ𝑙−1,𝑚
𝑛 )   

= [
θ𝑙,𝑚+1

𝑛+1 −2θ𝑙,𝑚
𝑛+1+θ𝑙,𝑚−1

𝑛+1 +θ𝑙,𝑚+1
𝑛 −2θ𝑙,𝑚

𝑛 +θ𝑙,𝑚−1
𝑛

2𝑃𝑟(∆𝑅)2 ] + (JR)[
θ𝑙,𝑚+1

𝑛+1 −θ𝑙,𝑚−1
𝑛+1 +θ𝑙,𝑚+1

𝑛 −θ𝑙,𝑚−1
𝑛

4𝑃𝑟 (∆𝑅)
]         (13) 

 

 where  𝐽𝑅 =
1

[1+(𝑚−1)∆𝑅]
 . 

 

  The finite difference equations are solved on a rectangular grid with 𝑋𝑚𝑎𝑥 = 1, 𝑋𝑚𝑖𝑛 = 0,

𝑅𝑚𝑎𝑥 = 20 and 𝑅𝑚𝑖𝑛 = 1 where 𝑅𝑚𝑎𝑥 relates to R = ∞ which lies far away from the thermal and 

hydrodynamic (momentum) boundary layers.  

3.1 Grid Independence Study 

To attain an economical and consistent grid scheme for the simulations, a grid 

independency test has been conducted using four different grid sizes of 25 X 125, 50 X 250, 100 

X 500  and 200 X 1000. The values of the average skin-friction coefficient (𝐶𝑓) and Nusselt 

number ( 𝑁𝑢) on the boundary R = 1 are shown in Table 1. A regular grid is used for all cases. It 

is observed from Table 1 that the 100 X 500 grid compared with 50 X 250 and 200 X 1000 grids 

does not tangibly modify the results for  𝐶𝑓 and 𝑁𝑢. Hence according to this observation, a uniform 

grid size of 100 X 500 is of adequate accuracy for the current problem with the mesh stepping 

distances of 0.01 and 0.03 in axial and radial directions, respectively. Similarly to produce a 

reliable result with respect to time, a grid independent test has been performed for different time 

step sizes and is summarized in Table 2. The effective time step size Δ𝑡 (𝑡 = 𝑛Δ𝑡, 𝑛 = 0, 1, 2, … ) 

is fixed as 0.01.   
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   The finite difference procedure begins by computing the solution to the heat conservation 

(thermal boundary layer) Eqn. (9), which gives the temperature field. Following this the  

momentum transport and mass conservation Eqns. (8) and (7) are solved to yield the velocity 

solution. Eqsn. (12) - (13) at the (n+1)th stage using the known nth stage values are specified in the 

following tridiagonal form:   

                    𝑎𝑙,𝑚Φ𝑙,𝑚−1
𝑛+1 + 𝑏𝑙,𝑚Φ𝑙,𝑚

𝑛+1 + 𝑐𝑙,𝑚Φ𝑙,𝑚+1
𝑛+1 = 𝑑𝑙,𝑚

𝑛       (14) 

where 𝛷 signifies the time-dependent flow field variables 𝜃 and U . Thus, Eqns. (12) - (13) at each 

interior grid point on a precise l-level comprise a system of tridiagonal equations. For a more 

detailed description of this finite difference scheme the reader is referred to Rani et al. [56]. 

4. RESULTS AND DISCUSSION  

To study the unsteady behavior of the primary variables, such as temperature and velocity, 

their values are illustrated at one location neighboring the hot cylindrical wall. The time-

independent state temperature and velocity profiles are presented along the radial coordinate at 

X=1.0. The computed variables for the case of Newtonian fluids in the absence of a porous medium 

(𝛽 = ∞)  are similar with those of Lee et al. [2] for Prandtl number (Pr) = 0.7 and are illustrated 

in Fig. 2. Generally close correlation is achieved which confirm the validity and accuracy of the 

current numerical scheme. The simulated results are represented to describe the variation of the 

dimensionless flow variables, stream & heat functions, entropy generation number (Ns) and Bejan 

number (Be) which are examined along with average skin-friction and heat transport coefficients 

for different thermophysical control parameters. Such variations are plotted in the following 

subsections. 

4.1 Flow Variables 

Velocity:                                              

Fig. 3 displays the transient non-dimensional velocity (U) against time (t) at the location 

(1, 2.02) for different values of Casson fluid parameter (𝛽) and Darcy number (Da). Figure 3a 

shows the unsteady velocity profile for different values of β with Da = 5 and Fig. 3b for the 

variation of Da with β = 1. From Figs. 3a and 3b it is observed that the velocity is enhanced with 

time (i.e. boundary layer flow acceleration), attains the temporal peak, then marginally decreases 
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and finally leads to the time-independent state. For instance, in Fig. 3a when β = 1.0 and Da = 5, 

with time the wall velocity monotonically escalates, reaches temporal maxima and at last attains 

the asymptotic steady-state. Also, it is perceived that when t << 1, the conduction dominates the 

heat transfer. Subsequently, there occurs a time stage where the heat transfer rate is influenced by 

the effecstopt of natural convection and this accelerates the Casson fluid flow with respect to time. 

Later before attaining the steady-state, the velocities are found to overshoot. Fig. 3a also shows 

that initially transient velocity profiles concur with each other for t < 0.4 whereas subsequently 

they diverge for t ≥ 0.4. Furthermore the overshoot of the U profile is elevated as 𝛽 is increased. 

The incentive behind this increment is that increasing 𝛽 values decreases the size of the viscous 

shear diffusion diffusion terms in Eq. (7) which manifests in a reduction in resistance to the fluid 

flow in the province of the temporal peak of velocity. For all values of Da with fixed β = 1, Fig. 

3b shows that it has the similar transient characteristics as the deviation of velocity profile 

pertaining to 𝛽 as shown in Fig. 3a. As illustrated in Fig. 3a it is observed that initially transient 

velocity profiles merge with each other for t < 1 and then diverge for t ≥ 1. Also, the overshoot of 

the U profile increases as Da is enhanced, since greater Darcy number corresponds to higher 

permeability of the porous medium and an associated depletion in bulk matrix drag of the porous 

medium fibers. The flowis therefore accelerated with higher Darcy number. From Figs. 3a and 3b 

it is evident that the time to attain the temporal maxima decreases for the velocity when 𝛽 or Da 

increase. Also, from Fig. 3a it is observed that the time to attain the steady-state increases when 𝛽 

increases and the converse response is computed for increasing Da in Fig. 3b. These observations 

are confirmed in Table 3. Also, with the aid of Fig. 4, these velocity fluctuations pertaining to 𝛽 

and Da are analyzed next. Along the radial direction at X = 1.0 the time-indeendent state velocity 

(U) versus R is plotted in Fig. 4 for various values of 𝛽 and Da. Fig. 4a shows the unsteady velocity 

profile for different values of 𝛽 with Da = 5 and Fig. 4b for the effect of Da with 𝛽 = 1 (note that 

the Newtonian case is retrieved only for infinite 𝛽 𝑣𝑎𝑙𝑢𝑒𝑠). Clearly the U curves begin with zero 

value at the cylinder surface, attain the peak value and thereafter monotonically shrink to zero in 

the direction of R. It is also noticed that in the neighborhood of surface of the cylinder the 

magnitude of U along the axis of the cylinder quickly rises as the value of R is increased from Rmin 

(=1). From the Fig. 4a it is noted that near to the hot wall of the cylinder (i.e. in the region 1 < R < 

4.5) the velocity increases as 𝛽 increases and the opposite pattern is observed in the region for R 

≥ 4.5 i.e., in the zone which is away from the hot wall, the peak value of velocity moves towards 
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with augmented velocity boundary layer thickness. This is due to the fact that augmenting the 

values of 𝛽 leads to the decrease of the total viscosity of the Casson fluid thus increasing the peak 

fluid velocity. From the Fig. 4b it is noted that near to the hot wall of the cylinder the velocity 

increases as Da increases. Since Da increases the permeability of the medium is also elevated 

which as elaborated earlier reduces the bulk impedance of the solid fibers (note that the purely 

fluid case is retrieved for infinite permeability which implies a vanishing Darcian drag force in the 

momentum equation). Also Figs. 4a and 4b show that the U profiles attain their peak value nearly 

at (1, 2.4). From the above results, it can be noticed that there is a significant difference between 

the transient velocity profiles of the Casson fluid and the Newtonian fluid (𝛽 = ).  

 

Temperature: 

       Simulated transient temperature (θ) profiles are illustrated at the spatial coordinates (1, 1.53) 

against time in Fig. 5. Figure 5a shows the effect of 𝛽 with Da = 5 and Fig. 5b for the effect of Da 

with 𝛽 = 1. These profiles initially oscillate with time, and after reaching a maximum value, they 

become independent of time. This transient behavior of the temperature is observed at other 

locations also. During the early period, the periodic nature of the time-dependent temperature 

profiles is mainly noticeable. From Fig. 5a it is noticed that for different values of 𝛽, the time-

dependent temperature profiles firstly overlap with each other and then differ after a particular 

time. It is further observed that the peak temperature value decreases as the Casson fluid parameter 

increases implying that greater viscoplastic effect serves to cool the regime and to decrease thermal 

boundary layer thickness. Figure 5b illustrates that for all values of Da with 𝛽 = 1 the same 

transient features are computed in temperature distributions as encountered earlier in Fig 5a with 

Da fixed and 𝛽 varied. Also, it is observed that as the Da rises the temperature decreases. The 

decrease in presence of solid fibers in the porous medium with higher permeability (i.e. larger Da) 

results in a diminished thermal conduction effect. This cools the regime and lowers temperatures 

also decreasing thermal boundary layer thickness. From Figs. 5a and 5b it is also noted that the 

time needed to attain the temporal peak decreases as Da or β increases. 

The simulated time-independent state 𝜃 curves for various values of 𝛽 and Da against the 

R are shown in Fig. 6. Figure 6a reveals the effect of Casson fluid parameter (𝛽) with Da = 5 and 
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Fig. 6b for Da with 𝛽 = 1. These figures indicate that the temperature (𝜃) curves commence with 

a hot wall temperature and then decay progressively to the free stream zero value along the axis R. 

In Fig. 6a it is also noticed that the time-independent state temperature (𝜃) profile decreases with 

Casson viscoplastic effect i.e. with greater 𝛽 values. Larger 𝛽 gives rise to thicker temperature 

profiles since a larger 𝛽 induces deceleration in the flow which aids thermal diffusion. Also, the 

time taken to reach the time-independent state rises as 𝛽 rises. Figure 6b reveals that the time-

independent temperature value is diminished with greater Da. Also, time taken to achieve the time-

independent state decreases as Da increases. 

4.2 Friction and Heat Transport Coefficients 

The momentum and heat transport coefficients are important parameters in heat 

transfer studies due to their direct involvement in the convection process. The non-dimensional 

average momentum and heat transport coefficients are given by 𝐶𝑓 =  (1 +
1

β
) ∫ (

𝜕𝑈

𝜕𝑅
)

𝑅=1

1

0
𝑑𝑋 and  

𝑁𝑢 =  − ∫ (
𝜕θ

𝜕𝑅
)

𝑅=1

1

0
𝑑𝑋 , respectively. The values of 𝐶𝑓 for different β and Da are shown in Fig. 

7. In Figs. 7a and 7b, it is noticed that initially for all values of β and Da, skin friction 𝐶𝑓 rises with 

t, reaches the peak value, then slightly dwindles, finally attaining the asymptotically time-

independent state. This is true since the buoyancy-induced flow-field velocity is comparatively 

small during the initial time-dependent period, as indicated in Fig. 3, and the average momentum 

transport coefficient remains small, as observed in Fig. 7. It is also witnessed from Fig. 7a that, 𝐶𝑓 

decreases for escalating values of 𝛽 and the reverse trend is seen for Da in Fig.7b. It is apparent  

from Figs. 7a and 7b, that in the starting time, the influence of the Casson viscoplastic parameter 

(β) on  𝐶𝑓 is more prominent than the Darcy parameter (Da). This observation is true since the 

amplified value of Casson fluid parameter (𝛽) causes an increase in the fluid viscosity which in 

turn retards the flow i.e. decreases the U values in the boundary layer zone. Additionally Fig. 7 

demonstrates that skin friction,  𝐶𝑓 for the Casson fluid is greater than that of the Newtonian fluid. 

The average heat transport coefficient (𝑁𝑢) for several values of 𝛽 and Da is graphically 

shown in Figs. 8a and 8b, respectively. In these figures it can be noted that, for all values of 𝛽 and 

Da, in the beginning time the 𝑁𝑢 drastically decreases, then slightly increases and finally achieves 

the time-independent state. Also, for each value of 𝛽 and Da it is evident that in the starting time 
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the 𝑁𝑢   curves overlaps with each other and thereafter deviate once some time has elapsed. This 

shows that in the early intervals of time heat conduction is the dominant heat transfer mode 

whereas with further time elapsing thermal conduction is subjugated by the thermal convection 

mode.  Figures 8a and 8b demonstrates that an upsurge in 𝛽 or Da leads to increasing values of 

the 𝑁𝑢. It is apparent that escalating 𝛽 values increase the spatial decay of the temperature flow-

field in the vicinity of the hot wall owing to flow deceleration close to the surface, causing an 

increase in heat transfer rate to the wall i.e. 𝑁𝑢. Additionally the heat transport coefficient is 

influenced by the temperature gradient. In Fig. 8b, it is seen that in the early intervals of time, i.e. 

𝑡 ∈ (0, 1.9),  𝑁𝑢  is almost the same  for increasing values of Da (i.e. with higher 𝑘1) i.e. a 

variation in permeability does not markedly modify heat transfer rates at the wall. However with 

further passage of time, 𝑁𝑢  is significantly enhanced with increasing values of Da and reaches 

the time-independent state. A further pertinent point of interest is that in Fig. 8  𝑁𝑢 for a Casson 

fluid is substantially lower than that of the Newtonian fluid.  

 

4.3. Entropy heat generation analysis and Bejan number  

The entropy generation per unit volume for Casson fluid with constant density is given as:     

                   𝑆𝑔𝑒𝑛 =
𝑘

𝑇∞
′ 2 (

𝜕𝑇′

𝜕𝑟
)

2

+
𝜇

𝑇∞
′ (1 +

1

β
) (

𝜕𝑢

𝜕𝑟
)

2

+
𝜇

𝑘1𝑇∞
′ 𝑢2                                              (15)  

 

The equation (15) can be rewritten as: 

                                       𝑆𝑔𝑒𝑛 = 𝑆1 + 𝑆2 + 𝑆3                        (16)                                                      

The individual terms are defined by:  

 𝑆1 =
𝑘

𝑇∞
′ 2 (

𝜕𝑇′

𝜕𝑟
)

2

, 𝑆2 =
𝜇

𝑇∞
′ (1 +

1

β
) (

𝜕𝑢

𝜕𝑟
)

2

,    𝑆3 =
𝜇

𝑘1𝑇∞
′ 𝑢2                 (17)            

 Here 𝑆1 signifies the entropy generation produced by heat flow,  𝑆2 denotes the entropy generation 

due to viscous dissipation for a constant density Casson fluid, 𝑆3 denotes the entropy generation  

due to porous medium effects.    

The non-dimensional entropy heat generation parameter Ns is defined as the ratio of the volumetric 

entropy heat generation rate to the characteristic entropy heat generation rate. Accordingly, the 

entropy heat generation parameter is written as [57]: 
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         𝑁𝑠 = (
𝜕θ

𝜕𝑅
)

2

+
ɛ1(𝐺𝑟)2

Θ
(1 +

1

β
) (

𝜕𝑈

𝜕𝑅
)

2

+
ɛ1(𝐺𝑟)2

𝐷𝑎
𝑈2                                                       (18)  

 

where  Θ =
(𝑇𝑤

′ −𝑇∞
′ ) 

𝑇∞
′  is the non-dimensional temperature difference, and the characteristic entropy 

heat generation is  
𝑘(𝑇𝑤

′ −𝑇∞
′ )2

𝑇∞
′ 2

𝑟0
2

 . The equation (14) can be rewritten in the following form   

                                            𝑁𝑠 = 𝑁1+𝑁2                                                                             (19) 

where 𝑁1 = (
𝜕θ

𝜕𝑅
)

2

 and 𝑁2 =
ɛ1(𝐺𝑟)2

Θ
{(1 +

1

β
) (

𝜕𝑈

𝜕𝑅
)

2

+
ɛ1(𝐺𝑟)2

𝐷𝑎
𝑈2} designate the irreversibility  

owing  to heat transfer and fluid friction (viscous dissipation), respectively.       

To assess the irreversibility distribution, the parameter Be (Bejan number) is defined as the ratio 

of entropy heat generation due to heat transfer to the overall entropy heat production, and is given 

by  

          𝐵𝑒 =  
𝑁1

𝑁1+𝑁2
                                                                                                                   (20) 

 

From the Eq. (20), it is understood that the Bejan number lies between 0 to 1 i.e. 0 ≤ 𝐵𝑒 ≤ 1. 

Consequently, 𝐵𝑒 = 0 reveals that the parameter 𝑁2 dominates the parameter  𝑁1, whereas 𝐵𝑒 =

1 indicates that the parameter 𝑁1 dominates the parameter  𝑁2. It is evident that at 𝐵𝑒 = 0.5, the 

contribution of fluid friction in the entropy generation production is equal to irreversibility due to 

heat transfer i.e. 𝑁2 =  𝑁1. 

The influence of the different flow-field parameters upon entropy generation (Ns) versus 

time (t) at the location (1, 2.40) is presented in Fig. 9. The impact of Casson fluid parameter (), 

Darcy parameter (𝐷𝑎), Grashof number (Gr) and group parameter (ɛ1𝛩−1) on transient Ns profiles 

are depicted in Figs. 9a - 9d, respectively. From these plots, it is ascertained that, initially, the Ns 

curves increase radically, then decrease, then again ascend, reach a temporal peak, and finally 

become independent of time. This transient behavior of Ns is observed at other locations also. 

During the early period, the time-dependent nature of the entropy profiles is more dramatic. From 

Fig. 9a it is noticed that for different values of β, the time-dependent entropy profiles firstly overlap 

with each other and then differ after a particular time. This indicates that at initial time levels (i.e., 

t < 1.2) thermal conduction is more dominated than the convection heat transfer. After some time, 
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there occurs a stage when the rate of heat transfer is swayed by the influence of free convection 

with rising entropy production with time. As this transient period is nearing completion and just 

before reaching the time-independent state, there occur overshoots in the entropy profile. From 

Fig.9a, it is noted that the Ns increase with increasing 𝛽. In Fig. 9b it may be deduced that as Da 

increases the transient entropy heat generation number reduces strongly and becomes weak in the 

interval 𝑡 ∈ [1.6, 6.1] and the reverse trend is observed for t > 6.1. From Figs. 9a and 9b, it is 

understood that the time to achieve temporal peak decreases as 𝛽 or Da increases. In Figs. 9c and 

9d, it is evident that, initially, the Ns curves increase radically, then decrease, next upsurge, reach 

a temporal peak, and finally attain the time-independent state. The important observation noted 

here is that in the initial time phase all the Ns curves converge with each other and only deviate  

after some time for all values of the control parameters.The time taken to attain the temporal peak 

slightly decreases as Gr or ɛ1Θ−1 increases. Thus an elevation in values of Grashof number (i.e. 

stronger thermal buoyancy force relative to viscous hydrodynamic force) results in increased 

entropy production. 

 The simulated time-independent dimensionless Ns profile for different hydrodynamic and 

thermal control parameters , Da, Gr and ɛ1Θ−1 along the radial direction at X = 1.0 are presented 

in Figs. 10a - 10d, respectively. As the radial position increases, the Ns magnitudes  substantially 

increase quickly arriving at the peak value. Folllwing this there is a sharp descent  and then a 

gradual monotonic decay to zero. Ns values are sharpened at the peak value in the neighborhood 

of the hot cylindrical wall. However, the velocity curves are smoother at the peak value as shown 

in Figs. 4a and 4b. The entropy production results in a thinner boundary layer for all values of 

control parameters, which is attributable to higher entropy production adjacent to the hot wall. 

Figure 10a represents the effect of  on Ns. As viscoplastic Casson parameter, , is increased, there 

is a strong enhancement in steady-state Ns values in close proximity to the cylinder wall (i.e., in 

the interval 𝑅 ∈ [1, 3.5]), and subsequently there is a depression in NS magnitudes when R > 3.5. 

The increase in the heat transport coefficient near to the cylinder surface results in an elevation in 

entropy generation, Ns (Fig. 8a). From Fig. 10b, with increasing value of Da the entropy profiles 

are boosted near to the cylinder wall (i.e., in the interval 𝑅 ∈ [1, 3]), however they are 

subsequently decreased when R >3. It is observed that as either Da or  are increased the entropy 

curves initially merge with each but later diverge with greater values of radial coordinate, R. 
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Therefore the variation of Da on Ns is of a similar nature to the impact computed with increasing 

Cason viscoplastic parameter, . Fig. 10a further indicates that  the entropy production near to the 

hot wall (i.e. in the interval 1<R<3.51) for a Casson fluid is of lower magnitude in comparison 

with that of a Newtonian fluid (𝛽 = ∞) and the opposite tendency is computed in the interval R ≥ 

3.51. From the Figs. 10a and 10b, it is identified that the time taken to achieve the steady-state is 

elevated with increasing values of 𝛽, whereas with increasing values of Darcy number, Da, this 

trend is reversed. In other words lower viscosity of the non-Newtonian liquid and higher 

permeability of the porous medium respectively delay and quicken the time to achieve steady-state 

entropy production. Figures 10c and 10d reveal that, in the neighborhood of a hot cylindrical wall, 

the entropy increases rapidly, then decrease drastically, and approach to zero along the radial 

coordinate. It is also noted that with greater  values of Gr or ɛ1Θ−1, the Ns magnitudes are 

enhanced, which is induced by higher fluid friction at larger values of Grashof number or group 

parameter. Furthermore Figs. 10c and 10d indicate that the time needed to attain steady-state 

conditions is suppressed slightly with increasing values of ɛ1Θ−1 or Gr. 

The evolution of Bejan number (Be) with time (t) at the point (1, 2.40) is plotted in Figs. 

11a - 11d for selected ranges of the parameters β, Da, Gr and ɛ1Θ−1, respectively. These figures 

imply that initially Be commences with zero value, increases drastically and attains the peak value, 

then drops marginally, and finally becomes independent of time after a slight fluctuation. In the 

initial stages of flow the irreversibility due to heat transfer controls the entropy and when t > 0.45 

the fluid friction dominates. Fig. 11a generally demonstrates that as  is increased, there is a 

significant reduction in Bejan number in the interval 𝑡 ∈ [0, 0.4]; however this behaviour is 

reversed for t > 0.4. From Fig. 11b it is evident that increasing Da manifests in decreasing values 

in Be. Another important observation in Figs.11a and 11b is that the time taken to reach the 

temporal peak decreases as 𝛽 or Da increase. Figs.11c and 11d reveal that, as Gr or ɛ1Θ−1 rises, 

there is a resultant elevation in Bejan number and additionally it is emphasized that the time elapse 

before a temporal peak and the time-independent state are attained follows a similar behaviour to 

that computed as Gr or ɛ1Θ−1 are increased.  

Finally, Figs. 12a-d illustrate the distribution of time-independent state Bejan number, Be 

versus radial coordinate at X = 1.0 for variation in β, Da, Gr and ɛ1Θ−1, respectively. Invariably 

the steady-state characteristics of Bejan number are similar to the time-independent state entropy 
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generation (Ns) described earlier in Figs. 10a - 10d. From Fig. 12a as 𝛽 rises it is seen that the 

steady-state Be increases in the interval 𝑅 ∈ (1, 1.3), then decreases in the interval 𝑅 ∈ (1.3,

2.15)  and again increases in the interval 𝑅 ∈ (2.15, 4.6). Similarly in Fig. 12b the same trend is 

obtained for rising values of Da. Figs. 12c and 12d reveal that, in the neighborhood of the hot 

cylindrical wall, the Bejan number increases rapidly, then decrease drastically, and eventually 

approaches a vanishing value at high values of the radial coordinate. With increasing values of Gr 

or ɛ1Θ−1, Bejan numbers are clearly enhanced. A noteworthy feature of both Figs 10 and 12 is that 

the steady-state entropy production exceeds the Bejan number near the wall. This confirms that 

smaller Be yields an increase in N2, i.e., N1 < N2 (refer to Eqn. 19) and thus irreversibility due to 

heat transfer is dominated by fluid friction which results in enhanced entropy production in the 

neighborhood of the hot wall. Figs. 12c and 12d further indicate that the time needed to attain 

steady-state is almost the same with increasing values of ɛ1Θ−1 or Gr. Fig. 12b additionally shows 

that the Bejan number is consistently of lower magnitude for a Newtonian fluid compared to a 

Casson fluid. 

Figures 13a-13b present the entropy lines for different values of 𝛽, Da, ɛ1Θ−1 and Gr. In 

Fig. 13a, the variation of β is shown between (i) and (ii); & Da between (ii) and (iii). Similarly, 

the variation of control parameters  ɛ1Θ−1 & Gr is shown in Fig. 13b. From Fig. 13a [(i), (ii) & 

(iii)] it is seen that, the entropy lines becoming close to the hot wall as β or Da increases. Similarly, 

in Fig. 13b [(i) & (ii)] the entropy lines are observed to move away from the hot wall as  ɛ1Θ−1 

increases. However in Fig. 13b [(ii) & (iii)] there is no substantial variation in entropy lines as the 

flow takes place from the hot wall to the cold wall with increasing values of Gr. The important 

observation from these figures is the entropy production occurs only in the neighbourhood of the 

hot cylindrical wall for all values of β, Da, Gr and ɛ1Θ−1. 

In the same way the Bejan lines for different values of control parameters are visualized in 

Figs. 14a – 14b. For all values of β, Da, Gr and ɛ1Θ−1, it is observed that the variation of Bejan 

lines is confined to the proximity of the hot cylindrical wall only. From Fig. 14a it is seen that the 

Bejan lines approach closer to the hot wall with increasing values of  whereas they depart further 

from the all with increasing Da. Fig. 14a also indicates that the Be curves fluctuate in the 

rectangular region i.e., 0 ≤ 𝑋 ≤ 1, 2 ≤ 𝑅 ≤ 3. This fluctuation is greater for Da as compared to 

𝛽. However in Fig. 14b this type of fluctuation is absent for Be curves when Grashof number, Gr 
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or ɛ1Θ−1 increase. Finally in Fig. 14b it is apparent that the Bejan lines move away from the hot 

wall as ɛ1Θ−1or Gr increase.  

 

4.4 Stream and heat functions 

The fluid motion is simulated using the non-dimensional stream function ψ that satisfies 

the mass conservation (continuity) Eqn. (7). The relationship between U, V and  ψ  for two-

dimensional incompressible flows is given by: 

 

𝑈 =
1

𝑅

𝜕ψ

𝜕𝑅
    and   𝑉 = −

1

𝑅

𝜕ψ

𝜕𝑋
                                                                                                 (21)           

This equation yields 

𝜕2ψ

𝜕𝑋2 +
𝜕2ψ

𝜕𝑅2 = 𝑈 + 𝑅
𝜕𝑈

𝜕𝑅
− 𝑅

𝜕𝑉

𝜕𝑋
                                                                                               (22) 

 

Similarly the heat function Ω′ for the temperature is defined as: 

 

𝜕Ω′

𝜕𝑥
= 𝜌𝑟𝑣𝑐𝑝(𝑇′ −  𝑇

′ ) − 𝑘𝑟
𝜕𝑇′

𝜕𝑟
                                                                                           (23a) 

−
1

𝑟

𝜕Ω′

𝜕𝑟
= 𝜌𝑢𝑐𝑝(𝑇′ −  𝑇

′ )                                                                                                     (23b) 

 

Clearly 𝛺′ satisfies the time-independent state energy balance equation (4). The non-dimensional 

heat function Ω =
Ω′

𝑘( 𝑇0
′− 𝑇

′)𝑟0𝐺𝑟
 , renders the heat function dimensionless. It can be noted that the 

maximum value of this function equals the overall average heat transport coefficient on the hot 

wall [49, 51]. Equations (23a) and (23b) in terms of 𝛺 can be re-written as:  

 

𝜕Ω

𝜕𝑋
= 𝑃𝑟(𝑅𝑉θ) − 𝑅

𝜕θ

𝜕𝑅
                                                                                                             (24a) 

−
𝜕Ω

𝜕𝑅
= 𝑃𝑟(𝑅𝑈θ)                                                                                                                     (24b) 

Note that the above equations identically satisfy the time-independent state form of energy 

equation Eq. (9). Using Eqns. (23a, b), one can obtain the following Poisson equation which gives 

heat function field as: 
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𝜕2Ω

𝜕𝑋2
+

𝜕2Ω

𝜕𝑅2
=  𝑃𝑟 [𝑅

𝜕(𝑉θ)

𝜕𝑋
− 𝑅

𝜕(𝑈θ)

𝜕𝑅
− 𝑈θ] − 𝑅

𝜕2θ

𝜕𝑋𝜕𝑅
                                                                 (25) 

 

Figures 15a - 15c illustrate the streamlines, isotherms and heatlines at the time-

independent state for various values of β and Da, respectively. The values of ψ, θ and Ω, are 

calculated by second-order central differences. In each figure the variation of β is shown between 

(i) and (ii); similarly, Da between (ii) and (iii); and again (iii) and (iv) for Casson and Newtonian 

fluid (𝛽 = ∞) flows, respectively. The heatlines and isotherms occur very near to the hot 

cylindrical surface in comparison to the streamlines. From Fig. 15a [(i) & (ii)] it is observed that 

as Casson viscoplastic parameter, β, increases, the streamlines tend to gravitate closer to the hot 

wall. Fig. 15a [(ii) & (iii)] shows that the streamlines depart away from the hot wall as Da 

increases. It is also noticed that as Da increases the pattern of streamlines is transformed strongly. 

Similarly, from Fig. 15a [(iii) & (iv)] the streamlines are closer for the Newtonian fluid as 

compared to the Casson fluid. The streamlines are thicker around the leading edge of the cylinder 

as observed in Fig. 15a.  Also, the heat transfer intensity from the wall to the Casson fluid is 

maximum for increasing values of X, and logically therefore decreases as X decreases. From Fig. 

15b it is evident that isotherms move somewhat closer to the hot cylindrical wall as Da or β 

increases. Also, as β or Da are increased, the variation in isotherms is minimized. It is also 

important to highlight that isotherms represent the temperature levels in the domain, but they are 

weak and inadequate tools for detailed heat transfer visualization and analysis. Hence the fluid 

flow and heat transfer visualization can be done with the help of heatlines which is shown in Fig. 

15c. The heatlines are observed to have a similar trend to that of isotherms. The heatlines show 

the heat extraction from the hot cylindrical surface. The heatlines indicate bordered corridors and 

are a useful tool for heat transfer visualization and analysis, providing much more information than 

isotherms. Heatlines are found to migrate slightly towards the hot wall as Da increases and the 

reverse trend is computed with increasing seen β. Also, as β or Da increases, the maximum value 

of Ω increases, since 𝑁𝑢 increases on the hot cylindrical surface as tabulated in Table 4. The 

values of heat function Ω for the Newtonian fluid exceed those for the Casson fluid. Furthermore 

the deviation of heatlines from the hot cylindrical wall for a Newtonian fluid (𝛽 = ∞) is less 

pronounced than that computed for the Casson fluid. Finally, it is concluded that the variation in 

heatlines is intensified in the proximity of the hot cylindrical wall compared to that of streamlines 

and isotherms. 
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4.5 Comparison between Casson and Newtonian fluid flows 

         Table 3 documents the differences between Casson and Newtonian fluid flows for the flow-

field variables with their temporal peak and the time-independent state values for Da, β, Gr and 

ɛ1Θ−1. Table 3a represents Casson fluid and Table 3b corresponds to a Newtonian fluid. With 

increasing Da and β, the time required for U and 𝜃 variables to attain the temporal peak for the 

Casson fluid is higher than for Newtonian fluid and the reverse trend is observed for Ns and Be. 

Similarly, for every Da and 𝛽, the steady-state time for U, θ, Ns and Be is greater for Newtonian 

fluid as compared to that of Casson fluid. Also, for each Da and 𝛽, the peak velocity values occur 

at 𝑋 = 1.0, and these values for Casson fluid are smaller compared with those of Newtonian fluid.  

       Table 4 tabulates the differences between the Casson fluid and Newtonian fluid for average 

momentum and heat transport coefficients with various Da and β. Table 4a corresponds to the  

Casson fluid and Table 4b to a Newtonian fluid. From Tables 4a and 4b, it is observed that the 

values of the skin-friction coefficient of a Casson fluid are larger compared to the Newtonian fluid. 

However the opposite trend is noted for average Nusselt number. Thus, the characteristics of 

average momentum and heat transport coefficients of Casson fluid significantly vary from that of 

the Newtonian fluid. 

          Figs. 16a and 16b illustrate the U and 𝜃 contours for Casson and Newtonian fluid flows, 

respectively. At any given point of location in the 2-dimensional rectangular computational 

domain (X, R) except at the boundary points (X = 0, R = 1 & R = 20), the velocity of the Casson 

fluid flow is observed to be smaller than for a Newtonian fluid. However for the temperature 

profiles, the reverse trend is noticed. Also, the time-independent state velocity and temperature 

contours for a Casson fluid are slightly different with thicker hydrodynamic and thermal boundary 

layers than those of a Newtonian fluid. 

5. CONCLUDING REMARKS 

The entropy generation minimization along with Bejan’s heatline visualization technique have 

been employed in this article to examine heat transfer optimization in time-dependent free 

convective Casson fluid boundary layer flow from an isothermal cylinder embedded in a porous 

medium. The Crank-Nicolson technique has been applied to solve the normalized, partial 
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differential conservation equations for momentum and energy conservation. Bejan’s heat flow 

concept includes the heatline plots. The physical characteristics of heatlines are immensely 

beneficial in visualizing heat transfer in the two dimensional domain. Also in a given rectangular 

computational domain, the heatlines provide a powerful method for evaluating the heat transfer 

rate at all levels. A non-dimensional heat function is employed which is closely related to the 

average heat transport coefficient on the hot cylindrical wall and characterizes the overall heat 

transfer rate process from the hot to the cold wall. Also, the entropy generation and Bejan numbers 

are derived and evaluated with the help of flow-field variables. The influences of Casson fluid 

parameter and Darcy parameter on flow profiles along with average momentum and heat transport 

coefficients are discussed. Furthermore the effect of Casson fluid parameter, Darcy number, group 

parameter and Grashof number on entropy generation and Bejan numbers are analyzed. The 

pertinent deductions from the present study may be summarized as follows: 

1. The time taken to achieve the steady-state increases as Casson viscoplastic fluid parameter 

increases, and the contrary trend is computed with increasing Darcy number. 

2. The velocity increases and temperature decreases with rising values of Casson viscoplastic 

fluid parameter or Darcy number. Also averaged momentum transport coefficient (skin 

friction) is increased with greater values of Darcy number whereas it is decreased with 

increasing Casson viscoplastic fluid parameter. Similarly, the averaged heat transport 

coefficient (Nusselt number) is observed to increase with increasing values of Casson 

viscoplastic fluid parameter or Darcy number.  

3. Entropy heat generation parameter and Bejan number increase with increasing values of 

Casson viscoplastic fluid parameter, Darcy number, Grashof number or group parameter. 

4.  The time to attain temporal peak for entropy generation decrease with increasing Casson 

viscoplastic fluid parameter or Darcy number, Grashof number or group parameter. 

5. The time to accomplish the steady-state for the velocity, temperature, entropy generation 

and Bejan number increase with increasing viscoplastic fluid parameter, Darcy number or 

group parameter whereas they are reduced with increasing Grashof (free convection) 

number. 
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6. The transient and steady-state results of flow variables, average heat and momentum 

transport coefficients, entropy production, Bejan number for non-Newtonian Casson fluid 

differ significantly from those computed for a Newtonian fluid. 

7. Flow visualization indicates that the streamlines occur in the entire two-dimensional 

domain, while the isotherms and heatlines exist in a finite region which is observed 

adjacent to the hot cylindrical wall. 

The present study has provided some interesting insights in entropy generation associated with 

non-Newtonian thermal convection boundary layer flows in porous media. Future studies will 

consider thermal stratification effects in porous media [58] and alternative (e.g. Oldroyd-B 

viscoelastic) rheological models [59] and also nanofluids [60] and will be communicated 

imminently. 
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Table 2. Grid independence test for selecting time step size.                        

 

                          

 

 

Time 

step size      

(∆𝑡 ) 

 

Average skin-friction coefficient (𝐶𝑓)  

for Pr = 0.71, Da = 5.0 and  = 1.0. 

 

Average Nusselt number ( 𝑁𝑢) for 

Pr = 0.71, Da = 5.0 and  = 1.0. 

 

0.5 

 

1.0986110 

 

0.7922722 

 

0.1 

 

1.0986430 

 

0.7922800 

 

0.08 

 

1.0986480 

 

0.7922805 

 

0.05 

 

1.0985970 

 

0.7922302 

 

0.02 

 

1.0985480 

 

0.7921695 

 

0.01 

 

1.0985270 

 

0.7920794 
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Table 3. The time required for various variables U, θ, Ns & Be to attain the temporal peak and the 

time-independent state; the peak velocity for various β, Da, Gr and ɛ1Θ−1 with Pr = 0.71 for (a) 

Casson fluid; & (b) Newtonian fluid. 

 

 

       

 

           Da 

(Gr=1.0,ɛ1Θ−1=0.1)  

 

Temporal peak time (t) of 
 

U(1, 2.02)   θ(1, 1.53)  Ns(1, 2.40) Be(1,2.40) 

Steady-

state 

time (t) 

   Peak value at X = 1.0 

          U             Ns          Be 

(a)Casson fluid 

 0.5       5.0                                                                                            

1.0       5.0       

1.5       5.0             

2.0       5.0       

1.0       1.2       

1.0       1.4  

1.0       1.8  

1.0       2.2 

    6.63         6.31        7.46        6.59                 

    5.93         5.62        6.79        5.90 

    5.66         5.35        6.57        5.64 

    5.51         5.20        6.50        5.50 

    7.04         6.75        7.83        7.04 

    6.81         6.52        7.64        6.81 

    6.52         6.22        7.38        6.51            

    6.34         6.05        7.21        6.34         

   11.80 

   11.90 

   12.14 

   12.26 

   12.99 

   12.64          

   12.18 

   11.95 

     0.3065     0.4577    0.0798 

     0.3538     0.4904    0.0861 

     0.3765     0.5050    0.0889 

     0.3900     0.5134    0.0905 

     0.2667     0.3958    0.0569                                                 

     0.2795     0.4098    0.0609 

     0.2988     0.4309    0.0671 

     0.3126     0.4458    0.0717                

 Gr   ɛ1Θ−1  

(=1.0, Da=5.0)     

   

 1      0.1  

2      0.1 

3      0.1 

4      0.1 

5      0.1   

1      1.0 

1      3.0 

1      5.0 

1      7.0 

1      9.0 

                                   6.79        5.90 

                                   6.68        5.90 

                                   6.41        5.90 

                                   6.18        5.90 

                                   6.06        5.90 

                                   6.37        5.90 

                                   6.03        5.90 

                                   5.97        5.90 

                                   5.95        5.90 

                                   5.94        5.90  

  11.80 

   11.90 

   12.14 

   12.26 

   12.99 

   12.64          

   12.18 

   11.95 

   12.18 

   11.95 

                     0.4577    0.0861 

                     0.4904    0.3445 

                     0.5050    0.7751 

                     0.5134    1.3779 

                     0.3958    2.1530                                                 

                     0.4098    0.8612 

                     0.4309    2.5836 

                     0.4458    4.3060  

                     0.4309    6.0285 

                     0.4458    7.7509                              

(b)Newtonian fluid 

              Da 

          1.2 

         1.4 

         2.2 

         5.0 

    5.95          5.67       6.72        5.95                   

    5.75          5.46       6.62        5.75 

    5.35          5.05       6.56        5.35  

    5.00          4.69       5.89        5.02 

13.30 

13.07 

12.67 

12.82 

     0.3292    0.4296    0.0614 

     0.3466    0.4470    0.0662 

     0.3906    0.4913    0.0792 

     0.4945    0.5966    0.1144 
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Table 4. Comparison between (a) Casson fluid and (b) Newtonian fluid flows for various values 

of β and Da with respect to the  average values of  𝐶𝑓 and 𝑁𝑢 with  Pr = 0.71. 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

 

 

    

 

 

 

                     Da      𝐶𝑓       𝑁𝑢 

(a) 

 0.5                 1.2 

0.5                 5.0                                                                                            

1.0                 5.0       

1.5                 5.0             

2.0                 5.0    

5.0                1.2 

5.0                 5.0 

1.0                1.2       

1.0                1.4  

1.0                1.8  

1.0                2.2 

1.1139 

1.2850 

1.0985 

1.0228 

0.9813 

0.7672 

0.8981 

0.9461 

0.9701 

1.0051 

1.0293 

      0 .7203 

      0.7622             

      0.7920            

      0.8052            

      0.8127  

      0 .7764 

      0.8283 

      0.7458            

      0.7535 

      0.7645 

      0.7719 

(b) 

                   1.2 

                  1.4 

                  2.2 

                  5.0 

 0.7111         

 0.7308 

 0.7792 

 0.8349 

 

      0.7869 

      0.7961 

      0.8176 

      0.8407    
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                                         Fig. 1. Schematic of the investigated problem. 
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Fig. 2. 

Comparison of 

the velocity 

and 

temperature 

profiles. 
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Fig.3. Time-

dependent 

velocity 

profile (U) 

versus time (t) at 

the point (1, 

2.02) for the 

of (a) ; & effect 

(b) Da. 
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Fig. 4. Simulated 

time- independent 

state velocity profile 

(U) versus R at X = 

1.0 for the effect of (a) 

; & (b) Da. 
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Fig. 5. Simulated time-dependent temperature profile (θ) versus time (t) at the point (1, 1.53) for 

the effect of (a) ; & (b) Da. 
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Fig. 6. Time-independent state temperature profile (θ) versus R at X = 1.0 for the effect of (a) ; 

& (b) Da. 

 

 

 

 

 

 

 

 

 

 

 



42 
 

                                                                           (7a) 

 

 

 

 

 

 

 

 

 

 

 

                                                                            (7b) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Average 

momentum 

transport coefficient 

(𝐶𝑓
̅̅ ̅) profile against 

effect of (a) ; t for the 

& (b) Da. 
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Fig. 8. Average 

heat transport 

coefficient (𝑁𝑢 ) profile against t for the effect of (a) ; & (b) Da. 
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Fig. 9. The 

transient 

entropy 

generation 

number (Ns) 

against time 

(t) at the point (1, 

2.40) for different 

values of  (a) 

;  (b) Da; (c) 

ɛ1Θ−1; & (d) Gr. 
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Fig. 10. The steady-

state entropy generation number (Ns) against R at X = 1.0 for different values of  (a) ; (b) Da; (c) 

ɛ1θ−1; & (d) Gr. 
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Fig. 11. The transient Bejan number (Be) against time (t) at the location (1, 2.40) for different 

values of (a) ; (b) Da; (c)  ɛ1Θ−1; & (d) Gr. 
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Fig. 12. The steady-state Bejan number (Be) against R at X = 1.0 for different values of  (a) ; (b) 

Da; (c) ɛ1θ−1; & (d) Gr.  
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Fig. 13. Simulated steady-state entropy lines (Ns) in 2D coordinate system (X, R) for various values 

of  (a) β and Da; & (b) ɛ1Θ−1 and Gr. 
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                                                                     (14b) 

Fig. 14. Simulated steady-state Bejan lines (Be) in 2D coordinate system (X, R) for various values 

of  (a) β and Da; & (b) ɛ1Θ−1 and Gr. 
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Fig. 15. Time-independent state (a) streamlines (ψ); (b) isotherms (θ); & (c) heatlines (Ω) in 2D 

coordinate system (X, R) for various values of β and Da with fixed value of Pr = 0.71.  
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Fig. 16. Time-independent state contours of velocity (U) and temperature (θ) in 2D coordinate 

system (X, R) with fixed values of Pr = 0.71 and Da = 1.2 for (a) Casson fluid (β = 1.0); & (b) 

Newtonian fluid (β = ∞). 


