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Abstract 

Patellofemoral pain (PFP) is one of the major sources of chronic knee pain in young athletes, 

affecting one in four individuals. To progress further in this field, prospective studies are 

therefore needed in order to gain a better understanding of the biomechanical risk factors of 

PFP and to develop future treatment and prevention strategies. With this in mind, the main 

purpose of the present PhD thesis is to prospectively examine individuals’ lower limb 

movements with two-dimensional (2D) video analysis and muscle strength with a handheld 

dynamometer (HHD) in order to screen for PFP development, in addition to other lower limb 

injuries. Therefore, a systematic review and meta- analysis in addition to three studies were 

conducted within this thesis to investigate the factors involved in the development of PFP.  

In the first study, 15 healthy subjects (6 male and 9 female) participated in a reliability study 

(within-day, between-day, intra-rater, and inter-rater reliability) of 2D frontal plane projection 

angle (FPPA) and hip adduction (HADD) angle. They also participated in a validation study 

for 2D motion analysis against the gold standard of three-dimensional (3D) motion analysis. 

In the second study, eight healthy male subjects participated in a between-day reliability and 

validity study for 2D analysis and HHD strength tests against the gold standard of 3D analysis, 

using Qualysis Track Manager (QTM) system and an isokinetic dynamometer for the 

measurements of lower limb kinematics (FPPA, Q-angle, HADD, knee flexion, ankle 

dorsiflexion, and rearfoot angle) and strength (hip abductors and knee extensors). The main 

study was undertaken with 315 healthy male infantry cadets and recruits from King Abdul-

Aziz Military Academy (KAMA) and two other basic military training centres in Saudi Arabia. 

Lower limb kinematics and muscle strength were measured during running (RUN), single leg 

squatting (SLS), and single leg landing (SLL) in the first week of training, and were followed 

up over the participants’ 12 weeks of basic military training for the occurrence of PFP and 

other lower limb injuries.  

Participants who developed PFP had a significantly greater FPPA and Q-angle during SLS, 

SLL, and RUN, as well as a significantly greater HADD during SLS and SLL, than participants 

who did not develop PFP. In addition, the injured group had significantly lower knee extensor 

and hip abductor muscle strength during the baseline assessment when compared to the non-

injured group. The logistic regression revealed that FPPA during SLL significantly predicts the 

development of PFP. Therefore, this appears to be a suitable method for screening of PFP risk 

before joining basic military training.  
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CHAPTER 1  

Introduction  

Basic military training is considered to be the most physically demanding training courses for 

new recruits across many military institutions in the world (Wilkinson et al., 2008). Several 

musculoskeletal injuries were recorded during basic military training. These musculoskeletal 

injuries were reported as the main cause of medical discharge of recruits during the training. 

Patellofemoral pain (PFP) is one of the most common musculoskeletal injuries that affect 

young athletes and trainees during basic military training (Brody & Thein, 1998; Piva et al., 

2006). The causes of PFP are not clearly established, although it may be related to training 

load, abnormal biomechanics of lower extremity, poor physical level, previous injury, genetics, 

and psych-social factors (Lankhorst et al., 2012; Cameron & Owens, 2016; Waryasz et al., 

2008). Due to this, definitive prevention and treatment strategies remain elusive as will. Within 

the field, several researchers have attempted to understand the causes, and the mechanism 

behind this condition with low-cost equipment. This thesis aims to improve the method of 

identifying those individuals who are at risk of developing this injury, depending on the 

knowledge, the experience of positives and the limitations of previous findings.  

This introduction provides an overview of the literature relating to PFP and its risk factors, 

as well as of possible methods with which to identify those who are at risk of developing the 

injury and which can be used for large-scale screening within the field.  

Patellofemoral pain accounts between 25% - 40% of all knee joint problems investigated in 

sports medicine clinics (Bizzini et al.,  2003; Chesworth et al., 1989; Rubin & Collins, 1980). 

The primary symptom of PFP is pain arising from the anterior of the knee joint (Powers, 1998). 

It is defined according to Crossley et al., (2016) as a pain around or behind the patella. This 

pain is commonly reproduced in activities which increase the compressive forces in the 

patellofemoral joint (PFJ), such as running, walking, ascending and descending stairs, 

prolonged sitting, and squatting (Levine, 1979; McConnell, 1996; Powers, 1998). 

Patellofemoral arthritis, prepatellar bursitis, patellar stress fracture and patellar tendinopathy 

are other conditions that have been reported as having the same symptom as PFP. Hence, 

misdiagnosis of the condition is potentially troublesome (Waryasz & McDermott, 2008). 

Although there is no definitive aetiology for PFP, several previous studies have identified 

predisposing factors, such as increased knee valgus, increased Q-angle, increased hip adduction 

(HADD) angle, increase in rearfoot eversion, weakness of hip abductors and weakness of knee 
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extensors (Pappas & Wong-Tom, 2012; Thijs et al., 2007; Waryasz & McDermott, 2008). 

However, it has been stated that the cause of PFP is multifactorial (Thijs et al., 2007).  

It has been recognised that the mechanics of PFJ may be affected by the interaction of the 

segments of the lower extremity (Powers et al.,  2003; Thijs et al., 2007). Abnormal kinematics 

and kinetics of lower limb have been theorised as potential risk factors for PFP (Powers et al., 

2003; Thijs et al., 2007). Gait-related risk factors have therefore been investigated in a number 

of studies as possible predisposing factors for PFP (Buchbinder et al., 1979; Callaghan & 

Baltzopoulos, 1994; Duffey et al., 2000; Eng & Pierrynowski, 1993; Hamill et al., 1992; 

Levinger & Gilleard, 2004; Messier et al., 1991; Powers et al., 2002; Powers et al., 2003; Thijs 

et al.,  2007; Tiberio, 1987). Individuals with PFP demonstrate greater frontal plane knee joint 

motion and greater loads during dynamic activities, such as running, jumping, squatting, and 

stepping (Holden et al., 2015; Levinger & Gilleard, 2007; Nakagawa et al., 2013; Theresa et 

al., 2015; Nakagawa et al., 2012; Willson & Davis, 2008). Interactions of the hip and PFJ have 

been reported, which may contribute to PFP ( Callaghan & Baltzopoulos, 1994; Holden et al., 

2015; Laprade & Culham, 2003). A greater Q-angle leads to excessive knee valgus, which may 

increase the potential risk of PFP (Bennell et al., 2000; Holden et al., 2015). It has also been 

proposed that excessive foot pronation is predisposing for PFP (Eng & Pierrynowski, 1993; 

Thijs, Tiggelen, et al., 2007; Tiberio, 1987). 

Hip and knee muscle strength play an important role in the stability of the PFJ and muscle 

dysfunction of hip and knee joints found to be associated with PFP. Weakness of hip abductors 

and external rotators against hip adductors and internal rotators during dynamic activities may 

increase knee valgus. This leads to an increase in the lateral quadriceps muscle's force on 

the patella, causing abnormal tracking of the patella (Mizuno et al., 2001; Powers, 2003). 

A number of studies have reported a decrease in the isometric strength of the hip abductors and 

the hip external rotators of PFP subjects (Ireland & Davis, 2003; Robinson & Nee, 2007). 

Laprade and Culham (2003) found a 26% decrease in hip abductor strength and a 36% decrease 

in hip external rotation in individuals with PFP, compared with the control group. Previous 

studies have demonstrated weaknesses in the quadriceps muscles of PFP subjects compared to 

the healthy group. Boling et al. (2009), Duvigneaud et al. (2008), Witvrouw et al. (2000), and 

Van Tiggelen et al. (2004) reported significant decreases in quadriceps muscle strength in PFP 

participants. 



3 
 

The relationship between hip and knee muscle activation during dynamic postural control and 

PFP has been investigated by Brindle et al. (2003). Subjects with PFP demonstrate a shorter 

duration and delayed onset of gluteus medius activation while descending and ascending stairs, 

compared to the onset of Vastus Medialis Oblique (VMO) and Vastus Lateralis (VL) (Brindle 

et al., 2003). The delayed onset of VMO during the screening task (rocking back on the heels) 

was associated with PFP (Van Tiggelen et al., 2009).  

Most of the previous studies suggest that the PFP individuals are characterised as having an 

increase in dynamic knee valgus during functional activities, which is a result of contribution 

of several factors, including the weakness of hip abductors and hip external rotation (ER), 

the weakness of knee extensor, an increase in HADD angle and internal rotation angle, and an 

increase in knee abduction. Therefore, selecting the accurate and appropriate method is 

important in identifying the risk factors of PFP. Several tools and functional tasks for screening 

tests have been undertaken by researchers in order to evaluate dynamic knee valgus and lower 

extremity muscle strength.  

Running, double or single leg squats, single leg lands, and drop landings were the common 

functional movement screening tasks used by investigators. The majority of previous studies 

have used three-dimensional (3D) methods to quantify the biomechanics of the lower limbs. 

This enables clinicians and researchers to accurately quantify all three planes of joint motion 

during different tasks. Isokinetic dynamometers such as Cybex or Biodex have been used in 

many previous studies for strengthening assessments. These methods are considered a gold 

standard for this type of motion analysis and for strength assessments.  

However, in injury prevention programmes, there is a need for large-scale screening within the 

field in order to identify high-risk athletes. Therefore, while 3D and isokinetic dynamometers 

should ideally be used, it is not practical to use them in large screening programmes due to the 

high costs, the space required, and the extra time needed for preparation and marker placement. 

A method is therefore needed that allows for quick collection of the data in a relatively small 

space. Two-dimensional (2D) motion analysis and hand held dynamometry (HHD) may 

provide an alternative solution to 3D and isokinetic dynamometers.  

In different types of musculoskeletal injuries, there is a need to perform strengthening 

evaluations in the clinic. These enable clinicians to determine the baseline level of the 

athlete's strength in order to generate the differential diagnoses and develop a treatment plan as 

an addition to following up on the efficacy of the treatment. (Kawaguchi & Babcock, 2010; 
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Wadsworth et al.,  1987). Isokinetic dynamometers such as the Biodex were among the existing 

strength measurement methods and were accepted for the clinical use of muscle assessment 

(Martin et al., 2006). The isokinetic dynamometer provides accurate evaluations for dynamic 

as well as static muscle strength and  considered the first choice in clinical studies (Drouin et 

al., 2004). However, due to its spatial and temporal cost, lack of portability and complexity to 

set up or use, it is not practical to use for large-scale screenings in epidemiological studies, nor 

useful to sports. The HHD is therefore the alternative method for muscle strength assessment 

(Edwards & McDonnell, 1974; Kawaguchi & Babcock, 2010). 

The HHD is a device used for strengthening assessments that is preferred for clinical use due 

to the ease of application, the relatively low cost of its use, and the portability. Good validity 

and repeatability have been established and it has been used widely (Bassey & Harries, 1993; 

Martin et al., 2006). However, HHD which is fixed with the examiner hand`s is difficult be 

used for some muscle groups, particularly lower limb muscle strength assessments (Holmbäck 

et al,. 1999). Various protocols for using HHD have been developed to measure the upper and 

lower extremities’ muscle strength in order to improve their validity and reliability. 

 
Compared to the gold standard in muscle strength measurement (isokinetic dynamometry), 

several studies investigate the validity of HHD for lower extremity muscle strength. A number 

of studies report that an evaluation of lower extremity muscle strength for physically active 

individuals with HHD has some limitations related to the hand stabilisation of the instrument 

and to changing the angle of the joint. This occurs especially if the subject is stronger than the 

examiner, or in the case of large-scale screenings (Katoh et al., 2011) . However, it has been 

found that the validity and reliability of isometric muscle strength increased when using HHD 

with a stick, a steel support and a belt.  

3D motion analysis is considered the gold standard for this type of analysis, but given the 

reasons mentioned above, the use of 2D analysis is on the increase, because it is perceived as 

easy to use, portable, and less expensive compared to 3D. Previously, 2D has been used for 

quantifying the knee valgus angle in healthy, injured and athletic populations (Willson & 

Davis, 2008, Willson et al., 2006).  

The 2D frontal plane projection angle (FPPA) was identified as a potential outcome risk factor 

for the development of PFJ injury during large-scale screenings and in the clinical environment 

(Willson et al., 2006). FPPA is defined with three markers which are placed on the midpoint 

of the ankle, centre of the knee joint, and the proximal thigh .FPPA is the angle formed between 
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the line from the marker of the proximal thigh to the marker of the midpoint of the knee joint 

and the line from the marker of the knee joint to the marker of the ankle (Willson et al., 2008, 

Willson et al., 2006). McLean et al. (2005) assessed the validity of 2D video analysis by 

measuring FPPA and compared it with the gold standard 3D. Two-dimensional FPPA reflected 

58% to 64% of the variance in average peak 3D knee abduction angle in side-jump and side-

step tasks (McLean et al., 2005). Recently, Sorenson et al. (2015) investigated 2D and 3D 

relationships between knee and hip kinematics during single leg drop landings and reported 

that 2D knee FPPA had a strong relationship with 3D knee abduction angle (r2=0.72); 

additionally, 2D hip adduction angle had a strong correlation with 3D hip adduction angle 

(r2=0.52) . Willson & Davis (2008) found that hip adduction, which is one of the contributing 

factors of the dynamic knee valgus, was significantly correlated with 2D FPPA. Willson & 

Davis (2008) conclude that 2D analysis could be a useful method for quantifying knee valgus 

in order to identify high-risk athletes.  

Movement screening has been used increasingly over recent years in both sport and clinical 

practice, to provide measurements with which to evaluate athletes who return from injuries. In 

these functional tests, the athlete tries to demonstrate some common actions in sports activities 

such as running (RUN), Single Leg Squats (SLS), and Single Leg Landing (SLL), vertical 

jumping (VJ), stepping down, and sprint tests. Screening tasks provides objective 

measurements for muscle strength, agility, joint laxity, proprioception and pain (Munro et al., 

2012; Herrington et al., 2009; Reid et al., 2007; Loudon et al., 2004).  

Running, SLL and SLS are the most common tasks used to evaluate the dynamic functioning 

of the lower limbs, particularly in screening PFP. Running is the most frequently performed 

task that researchers use to evaluate the dynamic functioning of the lower limb. It has been 

suggested that the investigation into the biomechanics of running has the potential to identify 

individuals who are at risk of sustaining running related injuries (Schache et al., 1999). 

A number of studies have used SLS to distinguish between participants with and without PFP 

by demonstrating increased dynamic knee valgus (Whatman et al., 2011; Willson & Davis, 

2008). Single leg landing is one of the common tasks or techniques in sports and may be better 

suited than bilateral landing for the assessment of individuals who are at risk of knee injuries 

(Faude et al., 2005). Due to the increased demand to decelerate landing force in SLL screening 

task, appears to be more sensitive than the drop jump (DJ) in identifying individuals who 

demonstrate dynamic knee valgus. 
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The majority of previous studies investigating the biomechanical risk factors for PFP are 

retrospective studies in nature, and given the study design, it raises the question whether the 

results are the effect of the condition and not actually a causation. However, whilst there are a 

number of military prospective studies have used multiple approaches for screening such as 

3D for kinematic kinetic measurements and isokinetic dynamometer for muscle strength 

evaluation, none one of them have used 2D or stabilised HHD.  

Within the Saudi military population, it is notable that there is a high incidence rate for knee 

injuries during the first three months of military training and that it is one of the common causes 

of discharge or referral to hospital. In order to further advance the current state of research and 

gain a better understanding of the risk factors that contribute to the occurrence of PFP, the main 

aim of this thesis is to conduct the first study investigating the biomechanical risk factors of 

PFP among Saudi military individuals.  
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CHAPTER 2 

Literature review 

2.1. Introduction  

Within the rationale of this thesis, this literature review provides information about the 

definition of PFP, anatomy and biomechanics of the PFJ, incidence and prevalence, mechanism 

of PFJ injury, risk factors of PFP, 2D, screening tests, and isometric strength assessment with 

HHD.   

2.2. Patellofemoral pain   

Patellofemoral pain is one of the sources of chronic knee pain in young athletes (Brody & 

Thein, 1998; Piva et al., 2006). It accounts for 25 to 40% of all knee joint problems which have 

been investigated in sports medicine clinics (Bizzini et al., 2003; Chesworth et al., 1989; Rubin 

& Collins, 1980). Patellofemoral pain is a major problem among physically active populations, 

such as adolescents, young adults and military recruits (Duffey et al., 2000; Messier et al., 

1991; Powers et al., 2003; Witvrouw et al., 2000; Laprade et al., 2003; Cutbill et al., 1997; 

Thijs et al., 2007). McConnell, (1986) found that one in four individuals is affected by PFP. In 

a retrospective study of individuals with PFP who were assessed between four and eight years 

after the presence of injury, the results showed that knee pain was still present in 91% of 22 

individuals, while 36% were unable to continue their physical activity (Fulkerson & Shea, 

1990). Utting et al., (2005) reported a connection between PFP and the development of 

patellofemoral arthritis, and found that 22% of 118 individuals with patellofemoral 

osteoarthritis had anterior knee pain when they were adolescents. There are also high 

recurrence rates in two-thirds of injured individuals who are assessed one year after the initial 

diagnosis (Devereaux and Lachmann, 1984; Pappas & Wong-Tom, 2012). However, it has 

been suggested that PFP is one of the musculoskeletal injuries with a high rate, which is 

associated with an increase in the volume of exercise or load of physical activities, such as 

sports or basic military training (Cowan et al., 1996; Almeida, 1999).  

The risk of injury is increased with the increase of the intensity of training exercises. 

Occurrence of injury causes temporary or long-term disability for the athlete or recruit, 

resulting in loss of training time, and treatment and rehabilitation. Approximately 50% to 75% 

of lower limb injuries for both sexes occur in a variety of sports and levels of playing (Hootman 

et al., 2007; Agel et al., 2007; Rauh et al., 2007; Powell et al., 2000). Patellofemoral pain is 
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commonly diagnosed for knee injuries that are found in sports, such as running, soccer, 

football, basketball and baseball (Taunton et al., 2002; DeHaven et al., 1986; Devereaux & 

Lachman, 1984). Patellofemoral pain has high prevalence among runners compared to other 

knee injuries (DeHaven & Lintner, 1986; Devereaux & Lachman, 1984). Patellofemoral pain 

has been reported to account for 16% of all runners’ injuries and is the most commonly 

diagnosed injury (Taunton et al., 2002).  

Basic military training is considered to be the most physically demanding training courses for 

new recruits across many military institutions in the world (Wilkinson et al., 2008). It mainly 

consists of running, battle training, resistance training, and loaded marches to improve muscle 

strength, endurance and aerobic fitness, in order to reach the maximum level of physical 

readiness (Greeves et al., 2001; Blacker et al., 2008). The volume and physical load for many 

recruits is higher than they experienced previously (Cowan et al., 1996; Almeida, 1999). It has 

been claimed that the risk of musculoskeletal injury is increased due to the failure of adaptation 

to the sharp and large rise in the physical load (Knapik et al., 2011; Popovich et al., 2000; 

Sharma, 2007). 

However, training load management has been found as one of the factors that plays an 

important role in incidences of training injuries. Previous research suggested that poor training 

load management and prescription is a major risk factor for injury (Soligard et al., 2016). The 

training load injuries are preventable and should be addressed by sports medicine practitioners 

and sports science by implementing monitoring protocols (Gabbett, 2016). These monitoring 

protocols should aim to track readiness, improve performance, and prevent injuries. ‘Acute: 

chronic workload ratio’ is one of the popular protocols which have been used by practitioners 

to view a snapshot of an athlete’s training load history, in order to measure the readiness of 

their athletes, improve training periodisation, and act as a flagging value for risk of injury. 

Acute: chronic workload ratio is calculated by dividing the acute workload (training load 

information over one week, which is calculated by multiplying the session rating of perceived 

exertion by session duration in minutes) by chronic work load (the average of acute workload 

over the training period in weeks) (Hulin et al., 2016; Carey et al., 2016). Comparison between 

acute work load and chronic work load as a ratio, is a dynamic representation of an athlete`s 

preparedness (Malone et al., 2017). Therefore, training load during basic military training 

should be manged carefully with as much consideration, as possible, of previous training load 

history and level of fitness of all participants in order to prevent or reduce the development of 

injury.   
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Incidence of musculoskeletal injuries range from 20% to 59% during basic military training 

(Franklyn et al., 2011; Knapik et al., 2013; Linenger and West, 1992). The medical discharge 

rate at the Infantry Training Centre Catterick in the UK is over 8%, primarily due to 

musculoskeletal injuries (Blacker et al., 2008). Incidence of musculoskeletal injuries within 

military populations has been reported in many studies. Knee injuries were about 203 per 1000 

and lower limb injuries comprised 72% of all injuries.  

Smith et al., (2017) conducted a systematic review and meta-analysis to investigate the 

incidence and prevalence of PFP. They classified the participant’s population to adult general 

population, general adolescent population, elite athletes and military population. The incidence 

rate of PFP in the adult general population (novice female runners) over ten weeks was 

1080.5/1000 person-year. In the adolescent population the incidence rate over one season in 

females was 0.97–1.09 per 1000 athletic exposure and it was 0.51 per 1000 for mixed sex 

adolescent over one running season. In military populations PFP incidence rates ranged from 

9.7–571.4 cases per 1,000 person-years in the male population (Smith et al., 2017). Point 

prevalence was 13.5% in military populations, 12% to 13% in female general populations, 35% 

in amateur cyclists and 16.7% to 29.3% in female elite sports. It was calculated through the 

meta-analysis to be 7.2% in mixed sex adolescents, and 22.7% in female amateur athletes. 

Therefore, it is clear from the previous, PFP is a common pathology in the general population, 

adolescents and in those with high levels of activity such as military populations and elite 

athletes (Smith et al., 2017). However, knowledge of the injuries to the patellofemoral region 

is crucial for a better understanding of the pathogeneses of injury (Besier et al., 2005; Gerbino 

et al., 2006).   

2.3. Functional anatomy and biomechanics of PFJ 

The PFJ consists of the bones of the patella, anterior distal parts of the femur, surfaces of the 

articulation and surrounding supporting tissues. The patella is a sesamoid bone that helps to 

improve knee flexion efficiency by increasing the lever arm of the quadriceps and by protecting 

the tibiofemoral joint (Ficat, 1977; Hughston, 1984; Thomee et al., 1999; Tecklenburg et al., 

2006). Most of the posterior surface of the patella is covered by the thickest layer of cartilage 

in the body (Thomee, et al., 1999). The quadriceps tendon, patella tendon, medial retinaculum 

and lateral retinaculum are combined to stabilise the patella (Amis, 2007) (Figure 2.1).  
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Figure 2.1 The patella stabilization (Dixit et al., 2007) 

 

Several components contribute towards controlling the biomechanics of the PFJ dynamically. 

These components consist of the four parts of the quadriceps femoris, the adductor longus and 

magnus, the biceps femoris, the illiotibial band, and the pes anserine group (Tang et al., 2001). 

In the last 30o of knee extension, the tibia tends to rotate outward and the patella glides by the 

interacting heads of the quadriceps, moving upward through the trochlea of the femur to the 

patellar bursa. In contrast, in the first 10o to 20o of knee flexion, the distal part of the patella 

articulates with the lateral femoral condyle and the patella subsequently moves through the 

trochlea in an S-shaped curve. Medial tilt of the patella also occurs during the movement of the 

patella on the femur, proximally and distally. The average angle of this tilt is approximately 

11º to 25º within 135º of knee flexion (Norkin & Levangie, 1992; Grelsamer & Klein, 1998).  

Joint reaction forces increase with the knee flexion (Norkin & Levangie, 1992; Grelsamer & 

Klein, 1998). The quadriceps muscle group or particularly the Vastus Medialis Oblique (VMO) 

and Vastus Lateralis (VL) play an important role in the forces that affect patella tracking 

(Besier et al., 2009). During knee extension, the quadriceps muscles increase the lateral shifting 

force of the patella on the frontal plane and the tibia rotates externally in the last 30° degrees 

(Scuderi, 1995). The VMO apply resistance to this lateral force by the medial retinacular 

structure and the lateral facet of the trochlea (Herrington & Nester, 2004; Scuderi, 1995).  
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On the other hand, during knee flexion, the quadriceps action in the horizontal plane separates 

into two forces; the first acts on the lateral patellar facet and pushes the articular surface against 

the femoral trochlea, while the second tends to rotate the tibia internally by applying medial 

tension on the tibial tuberosity (Scuderi, 1995; Norkin and Levangie, 1992; Grelsamer, Klein, 

1998; Neumann, 2002; Dixit et al., 2007). To achieve normal patellar tracking, VMO and VL 

forces have to contract equivalently (Norkin and Levangie, 1992; Grelsamer, Klein, 1998; 

Neumann, 2002). During knee flexion, the articular surface of the patella that articulates with 

the femur moves proximally, while patellofemoral compression forces can reach up to eight 

times the body weight, with an increase in knee flexion up to 90º (Thomee, et al., 1999).  

2.4. Mechanism of PFJ injury   

The symptom of PFP is a pain arising from the anterior of the knee (Powers, 1998). This pain 

is commonly produced by activities which increase the compressive forces in the PFJ, such as 

running, walking, ascending and descending stairs, prolonged sitting and squatting (Powers, 

1998; Levine, 1979; McConnell, 1996). This condition is widely believed to be a stress caused 

by maltracking of the patella on the stable femur during knee movement. Patella malalignment 

in the femoral trochlea results in decreases of the contact area and leads to increases the contact 

stress underlying the cartilage of the patella (figure 2.2) (Harilainen, 2005; Powers et al., 2010 

Huberti & Hayes, 1984; Lee et al., 2001).  

 

Figure 2.2 Maltracking of the patella 

Previous studies reported an association between the increase of HADD and hip internal 

rotation (HIR), and PFP in female runners (Noehren et al., 2013; Sousa et al., 2009; Willson & 

Davis 2008). These motions were investigated using experimental models and have been 

shown by increasing the load of stress on the lateral aspect of patella. Pain may arise due to the 

repetitive exposure of the patella’s underlying cartilage to this type of stress (Huberti & Hayes, 
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1984; Li et al., 2004). McClay & Manal (1998) found that there is a relationship between 

excessive rearfoot eversion and PFP. As consequence to that, there is greater tendency to knee 

valgus results from the increase of knee flexion that associated with excessive rearfoot 

eversion. Knee valgus is associated with increase in the force of the lateral component of the 

quad, Q-angle increase and increase in the patellar lateral tracking tendency. Therefore, all 

these factors lead to greater loads on the lateral aspects of the PFJ (Tiberio, 1987).  Thus, if 

these were the theoretical aspects mechanism of injury, it is important to know, how it could 

be identified.  

2.5. Diagnosis of patellofemoral pain   

Patellofemoral pain is an overuse disorder due to increased compressive force on PFJ with 

activity and is not related to direct injury or intra-articular damage to the knee (Aminaka & 

Gribble, 2008; Bolgla & Boling, 2011; Crossley et al., 2001; Davis & Powers, 2010; Duffey et 

al., 2000; Fulkerson, 2002). It is similar to some other conditions which present similar 

symptoms and which are exacerbated by the same activities, labelled as anterior knee pain 

(AKP). The subtitle variances in improper interchanging classification therefore creates 

difficultly in the deferential diagnosis (Callaghan & Selfe, 2007; Crossley et al., 2002; Dixit et 

al., 2007). Anterior knee pain is a generic term for any source of pain from the knee region and 

has a broad differential diagnosis. Most of common diagnosis for AKP are illustrated in Table 

2.1 (Christian et al., 2006). Therefore, careful history, physical examination, and clinical 

examination are sufficient to make the diagnosis of PFP for most of individuals.   
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Table 2.1 Differential Considerations for AKP (Brukner et al., 2002) 

Couse Description 

Articular cartilage injury May with history of trauma, mechanical symptoms may occur with 
presence of loose body. If loose body,  possibility of  effusion and 
tenderness of involved structure (e.g., patella, femoral condyles) 
 

Bone tumors Tenderness may be of bony structures  
 

Chondromalacia patellae Retropatellar pain, may  with history of trauma, may with effusion on 
examination 
 

Hoffa’s disease Pain and tenderness localized to infrapatellar fat pad 
 

Iliotibial band  Pain and tenderness over and proximal lateral femoral epicondyle 
 

Loose bodies Variation in the symptoms, may with intermittent sharp pain, locking, or 
effusion 
 

Osgood-Schlatter disease Tenderness and swelling over tibial tubercle and at insertion of patellar 
tendon in an adolescent 
 

Osteochondritis dissecans Variation in the symptoms, may have intermittent pain, swelling, or 
locking 
 

Patellar instability/subluxation Intermittent pain with sensation of instability or movement of patella, 
tenderness over medial retinaculum, may have swelling, locking can 
occur due to loose body formation 
  

Patellar stress fracture Tenderness directly over patella 
 

Patellar tendinopathy Tenderness of  patellar tendon and it may be thickened if chronic 

Patellofemoral osteoarthritis crepitus or effusion 
 

Patellofemoral pain  Pain “behind” or around patella 
 

Pes anserine bursitis Pain usually described as medial rather than anterior, tenderness over 
pes anserine bursa 
 

Plica synovialis May be medial or lateral to patella, if symptomatic, tenderness can be 
found on examination 
 

Prepatellar bursitis Swelling following trauma anterior to patella  
 

Quadriceps tendinopathy Tenderness over quadriceps tendon 
 

Referred pain from the lumbar  

spine or hip joint pathology 

Knee examination usually normal and symptoms depend on origin of 
pain.  

Saphenous neuritis May be with history of surgery and pain poorly localized but usually 
medial  
 

Sinding-Larsen-Johansson  Tenderness at insertion of patellar tendon at inferior pole of patella in an 
adolescent 

Symptomatic bipartite patella May be with tenderness over patella  
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However, recently in 2016, patellofemoral pain consensus statements have suggested that: PFP 

syndrome, chondromalacia patella, anterior knee pain and/or syndrome, and runner’s knee are 

synonyms for PFP (Crossley et al., 2016).       

Individuals with PFP typically describe pain around or behind the patella. This pain is 

exacerbated by weight-bearing activities such as squatting, running, and ascending and 

descending stairs. The symptoms of PFP are presented gradually, but also in some cases it can 

be caused by trauma and could be bilateral. Symptoms include pain or stiffness, or both in 

prolonged sitting with flexed knee. Localization of the pain can be difficult to the individual. 

When asked to point the site of the pain, individuals my draw circle around the patella or place 

their hand over the anterior aspect of the knee. Pain described ranged between “achy” and 

‘sharp’ (Crossley et al., 2016; Devereaux et al., 2007; Thijs et al., 2007; Noehren et al., 2013; 

Post, 1999). In some cases, individual may complain of their knee giving away. This usually 

does not represent real patellar instability but it may be a transient inhibition of the quadriceps 

due to pain. However, determining whether patellar dislocation or subluxation has occurred is 

important, because patellar instability can be linked with PFP. Individuals may report from a 

stiffness sensation particularly when the knee is flexed describing it as a catching sensation. 

Knee locking symptoms are not associated with PFP but are likely a meniscal tear or loose 

bodies (Post, 1999).  

Given that PFP is often a consequence of overuse injury, any changes in activities, or in the 

dose, duration, and frequency of training should be considered. A change of footwear 

particularly if it was inappropriate or worn excessively, and conditioning activities or resistance 

training (especially lunges and squats), may be other possible contributors to development of 

the injury. A history of previous injuries such as patellar dislocation or subluxation, trauma, or 

surgeries, should be noted. They may cause direct injury to the articular cartilage, or alter the 

forces across the patellofemoral join, resulting in AKP (Manske & Davies 2016; Dixit et al., 

2007). The 2016 patellofemoral pain consensus statements recommended that, patellar 

dislocation or subluxation should not be included in studies of PFP, unless there are subgroups 

evaluation in the study (Crossley et al., 2016).       

Whereas, there is no definitive clinical test to diagnose PFP, a complete assessment of the knee, 

including a careful physical examination of the patellofemoral joint, should be performed. The 

assessment should aim to recognise features that may change patellofemoral mechanics. This 

physical examination should include: inspection, palpation, rang of motion, and special tests 
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such as: patellar glide, patellar tilt, and patellar grind (Nunes et al., 2013; Dixit et al., 2007). 

Patellar grinding and apprehension tests have low sensitivity and limited diagnostic accuracy 

for PFP (Crossley et al., 2016). Therefore the best available test, according to 2016 

patellofemoral pain consensus, is anterior knee pain elicited during a squatting manoeuvre. In 

this test PFP is evident in 80% of people who are positive on the test (Nunes et al., 2013; 

Crossley et al., 2016). 

In the clinical examination most individuals with PFP presented pain that was localised in the 

retinaculum (figure 2.3). Fulkerson (1983) investigated the localisation of pain in 78 knees of 

individuals affected with PFP and reported that 90% of them had pain in the lateral retinaculum 

area. In 27% of the cases, this was in the lateral epicondylopatellar band and insertion of vastus 

lateralis, whereas only 10% of the studied knees suffered pain in the medial PFJ (Fulkerson, 

1983).      

 

Figure 2.3 Sits of retinaculum pain in left knee 

Many of PFP individuals initiated the treatment based on the primarily clinical diagnosis. 

Imaging or radiography is an adjunct to the history and physical examination. It should be 

performed in individuals with effusion, or with history of surgery or trauma, or with those 

whose pain received treatment and does not improved. In addition to the usefulness of 

radiography in detecting the abnormalities that associated with PFP, it can be helpful to 

evaluate other causes of anterior knee pain, such as loose bodies, physeal injury, 

osteochondritis dissecans, and bone tumor (Elias and White, 2004; Natri et al., 1998; Dixit et 

al., 2007). Trochlear dysplasias, lateral patellar tilt, lateral patellar displacement, can cause PFP 

and also be deducted in clinical radiography. Trochlear dysplasias occurs when the Sulcus 
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angle (Figure 2.4), which is the angle of the depth of the trochlea is greater than 142º.(Davies 

et al., 2000; Fulkerson et al., 2004). Approximately 50% of individuals with PFP who are 

diagnosed with patellar maltracking were found to have emissive lateral translation of the 

patella, relative to the femur accurse in the last degrees of knee extension (figure 2.5) (DeHaven 

& Lintner, 1986).  

 

Figure 2.4 Sulcus angle (Healdove, 2017) 

 

 

Figure 2.5 Patellar lateral displacement (ShareMyRadiology, 2012)                                                                            

After knowledge of common diagnostic ways for recognising PFP, it is important in injury 

prevention programs to identify the risk factors that cause this condition. The development of 

prevention programs are considered an effective strategy in reducing the occurrence of PFP. 
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Many studies with several methodological approaches have investigated and attempted to 

explain the causal relationship for the injury, but conclusive evidence is lacking and various 

risk factors have been identified (Devereaux & Lachmann, 1984; Pappas & Wong-Tom, 2012).  

2.6. Risk factors of PFP        

The risk factors of PFP have been described in several studies and have been shown to be 

multifactorial, and linked to the pathophysiology of PFP (Lankhorst et al., 2012). Intrinsic and 

extrinsic factors are the two main factors associated with development of PFP via alterations 

in patellar tracking, increased patellofemoral joint forces, or combinations of these 

biomechanical features (Witvrouw et al., 2000). The intrinsic factors are refer to the physical 

and psychological characteristics of the individual, and extrinsic factors related to the outside 

environment of the human body, such as sport activities or the environmental conditions 

(Witvrouw et al., 2000). 

Previous studies have identified a variety of risk factors leading to abnormal tracking of the 

patella. As a consequence of this abnormal tracking, internal knee pain or PFP has developed 

(Duffey et al., 2000; Fulkerson & Arendt, 2000; Thomeé et al., 1999). The identified risk 

factors can be classified into lower limb structural and alignment abnormalities, muscle 

weakness, and dynamic malalignment. A review of these will be presented next. 

2.6.1. Lower limb structural and alignment abnormalities  
       
Quadriceps Angle 

The Q-angle is the angle formed by the quadriceps femoris force vector and the patella ligament 

force vector. The force vector of the quadriceps femoris is represented by a line connecting the 

anterior superior iliac spine (ASIS) to the centre of the patella. The force vector of the patellar 

ligament is represented by a line connecting the tibial tuberosity to the centre of the patella. 

The relative angle that is formed between these two lines defines the Q-angle (figure 2.6) 

(Livingston, 1998; Melicharek et al., 2011). A grater Q-angle is believed to change the pressure 

contact aria in the PFJ, causing in areas experiencing excessive stress that could not be 

manageable physiologically (Duffey et al., 2000). An increased Q-angle was reported as a risk 

factor of PFP by Aglietti et al., (1983); Haim et al.,  (2006); Messier et al. (1991); Emami et 

al., (2007). Same finding was found in one systematic review based on nine case control and 

cross sectional studies (Lankhorst et al., 2012). Q-angle value excess 20 degrees may increase 

development of PFP (Haim et al., 2006). 
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Figure 2.6 The Q-angle (Marra, 2013) 

 

In the literature, Four prospective studies have measured the difference between the Q-angle 

in individuals who developed PFP and in individuals who did not (Rauh et al., 2010; Boling et 

al., 2009; Thijs et al., 2011; Witvrouw et al., 2000). Only Rauh et al., (2010) found there was 

association between static Q-angle that assessed from a standing position and development of 

PFP. Participants with a right or left Q-angle ≥20° were nearly two times and more likely to 

incur a PFP injury, respectively, than recruits with a right or left Q-angle <20° (right: OR = 

2.3; 95% CI: 1.3-4.0; left: OR = 1.9; 95% CI: 1.1-3.3). No significant associations were found 

between the Q-angle and PFP in any of the other three studies. However, if the Q-angle is seen 

as a risk factor then the position in which the measurements are taken needs to be appraised. 

In the study by Witvrouw et al. (2000), the measurement was taken statically for 282 

participants from the supine position, which did not reveal changes in the alignment of the 

lower extremities during weight bearing. In an earlier study, significant differences between 

the measurement of the Q-angle in standing and supine positions were found by Woodland & 

Francis (1992) and consequently, standing position was recommended. In another study 

conducted by Thijs and colleagues, they measured Q-angle of 77 female runners statically from 

standing position and found no difference between the participants who developed injuries and 

those who did not. This could be due to the investigated sample size (77 Female runners), 

which may be too small to elicit the differences between the two groups  Thijs et al. (2011).  

Boling et al. (2009) measured the Q-angle in 1319 midshipman from a standing position and 
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40 went on to develop the injury. No association was found between the Q-angle and 

development of PFP.  The reason for this result could be the proportion of participants who 

developed PFP (only 3% of 1319), compared to the number of participants during the study, 

given the lack of information in the medical records and the self-treatment for PFP, as is stated 

in the limitations of the study (Boling et al., 2009). Additionally, static clinical measurements 

have been advocated as non-reliable measurements (Smith et al., 2008).      

While clinical Q-angle measurements appear to be not related to PFP in the previous 

prospective studies, biomechanical dynamic parameters have been proposed with respect to 

PFP development (De Oliveira et al., 2015; Witvrouw et al., 2014; Thijs et al., 2011; Boling et 

al., 2009).  However, recently several studies have reported that the mechanism of PFP can be 

better observed in dynamic rather than static position due to the higher muscular demands that 

are needed to perform the physical activities (De Oliveira et al., 2015; Graci and Salsich, 2014). 

Powers, (2010) reported that dynamic knee valgus which is corresponded with dynamic Q-

angle has been anticipated to contribute to PFP development. Therefore, it may be a useful 

method to determine the contribution of the Q-angle during performing dynamic tasks. 

However, there is a recent trend towards measuring the Q-angle dynamically during physical 

activity (Chen & Powers, 2010; Massada, Aido, Magalhães, & Puga, 2011; Melicharek et al., 

2011). Massada et al. (2011) investigated the relationship between the dynamic Q-angles 

during tasks and PFP, using 3D. The Q-angle was significantly higher in the PFP group 

compared to the control group (34.9° vs 22.3°) and the relationship between a greater dynamic 

Q-angle and PFP was (r = 0.517) (Massada et al., 2011). Therefore, the measurement approach 

should be a dynamic Q-angle measurement, but the accuracy and reliability of this 

measurement has not been established within the current literature. 

Foot pronation 

It has been proposed that an increase of foot pronation is associated with PFP (Neal et al., 

2014). The subtalar and metatarsal joints have triplanar motion, occurs simultaneously in the 

three main motion planes (Astrom et al., 1995). Movement of the subtalar joint is also coupled 

with the rotation of the tibia. It is pronated with the internal rotation of the tibia and supinated 

with its external rotation (Nawoczenski et al., 1998). It is claimed that PFP is a result of an 

alteration of the dynamic alignment of the tibiofemoral joint, which leads to a decrease in the 

area of contact in the PFJ. According to this theory, in the neutral condition, foot pronation 

occurs in the first 30% of the gait cycle in order to help the lower limb with the absorption of 

ground reaction forces (Tiberio , 1987; Powers et al.,  2002). During prolonged foot pronation 
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after the first 30%, the tibia is rotated internally and due to this rotation, the femur rotates 

internally during knee extension. This increases hip adduction and lateral PFJ stress (Powers, 

2003; Gross & Foxworth, 2003; Tiberio, 1987). Another study demonstrated that an increase 

in hip adduction is associated with excessive rearfoot eversion (Barton et al., 2012). Therefore, 

excessive foot pronation may be a risk factor of PFP. Decreases in flexibility of soleus and 

gastrocnemius muscles are considered to be another potential influencing factor. Foot 

pronation may be a result of compensatory mechanisms when there is a decrease in flexibility 

of soleus and gastrocnemius muscles, and when the ankle has to achieve the required range of 

dorsiflexion during movement (Piva et al., 2005; Witvrouw et al., 2000). However, researchers 

have measured subtalar joint pronation with several approaches, statically as with navicular 

drop, rearfoot and forefoot posture (valgus / varus), and arch index, and dynamically with 

rearfoot eversion angle during weight bearing activities (Earl et al., 2005; Powers et al., 2002; 

Duffey et al., 2000; Messier et al., 1991). 

 
Earl et al. (2005) reported that the individuals with PFP demonstrated less navicular drop 

compared to the healthy individuals, and that the same individuals with PFP demonstrated 

increased pronation during dynamic tasks. Individuals with PFP have been reported with 

significant increases in the rearfoot varus angle (8.9 vs. 6.8 degrees; P = .0002) when 

measurements were applied with the subtalar joint in neutral, from prone position (Powers et 

al., 1995). In contrast, another study found a significant decrease in arch index (F= 3.91, P = 

0.050) within the PFP group, compared to the healthy group (Duffey et al., 2000). Very limited 

evidence has indicated that individuals who exhibit increased pronated foot posture, measured 

using navicular drop, are more likely to develop patellofemoral pain (Neal et al., 2014; Dowling 

et al., 2014). These conflicting results from the previous studies may be due to the use of 

different methods for static measurements of foot pronation, which do not provide sufficient 

explanation of its connection to PFP, as during dynamic movement (Dierks et al., 2008; Duffey 

et al., 2000; Powers et al., 1995; Earl, et al., 2005).  

 
Rearfoot angle is the angle that is formed between lower leg line and calcaneus line, in 

reference to subtalar posture (Powers et al., 1995). Powers et al. (1995) describe rearfoot 

eversion as one of the anatomical factors that contribute to increases of foot pronation in PFP. 

They reported significant increases in rearfoot eversion angle during weight bearing for the 

PFP group compared to the healthy group. A rearfoot angle greater than 4º to 6º is considered 

to be excessive rearfoot eversion (Kagaya et al., 2013). Rearfoot eversion has been reported to 
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be correlated with and hip adduction and Q-angle (Dileep et al., 2017; Barton et al., 2012). It 

has been stated that hip abductor and rearfoot dysfunction are important factors for dynamic 

knee valgus (Kagaya et al. (2013).   

The association between increases in rearfoot eversion and PFP has been investigated 

prospectively in three studies (Noehren et al., 2013; Witvrouw et al., 2000; Hetsroni et al., 

2006). No association was found between rearfoot eversion and PFP in these studies. These 

results may be partly due to the fact that the measurement of lower leg-heel alignment was 

based on static measurement using photographs, as in the study of Witvrouw et al. (2000), or 

due to the fact that the measurement that was used by Hetsroni et al., (2006) was based on 

walking barefoot on the treadmill using 2D, which may not be valid as more dynamic activities 

are associated with PFP. They may also be due to the fact that walking may not offer the 

potential to detect the differences between the injured and non-injured group, or due to the fact 

that the sample size estimation was based on the potential differences of another variable, as 

stated by Noehren et al. (2013). However, dynamic rearfoot measurements would reflect the 

increased loading during activities and examine their association to increased dynamic knee 

valgus, particularly with valid and reliable measurements (Figure 2.7).  

 

Figure 2.7 Measurement of rearfoot eversion (Hall, 2012) 

2.6.2. Muscle weakness   
 

Weakness and imbalance of hip and knee muscles have been reported as a  factor of PFP 

(Dierks et al., 2008; MagalhãEs et al., 2010; Piva et al., 2005; Willson & Davis, 2008; 

Lankhorst et al., 2012). Several studies have found significant decreases in hip abductor, hip 

external rotators and knee extensors strength, in addition to decreases in explosive strength and 

vertical jump in PFP subjects (Piva et al., 2005; Willson et al., 2008). 
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Boling et al. (2009); Duvigneaud et al.,  (2008); Milgrom et al., (1991); Van Tiggelen et al., 

(2004); Witvrouw et al. (2000); Herbest et al., (2015) prospectively investigated the association 

between quadriceps muscle strength and development of PFP. Surprisingly, one of these 

studies reported a 6 % increase in isometric strength of quadriceps muscles for participants 

who developed PFP, compared to those who did not (Milgrom et al., 1991). In contrast to these 

results, Boling et al., (2009); Duvigneaud et al., (2008) Witvrouw et al., (2000) and Van 

Tiggelen et al., (2004) reported significant decreases in quadriceps muscle strength in PFP 

participants, while, Herbest et al., (2015) study was not able to detect any difference between 

the two groups. The increase of quadriceps strength that was reported by Milgrom et al. (1991) 

may due to the limitations resulting from the fact that they did not normalise the data of the 

quadriceps strength to body mass.  

Weakness of hip muscles has been theorised to affects patella movement within the femoral 

trochlea (Powers, 2003). The results of the PFP group demonstrated 15% to 36% lower strength 

values in isometric hip abduction and external rotation strength tests, compared with those of 

healthy participants (Bolgla et al., 2008; Ireland et al., 2003; Willson et al., 2008). A recent 

systematic review has reported that hip abduction weakness, evaluated by handheld 

dynamometer, was found to be a significant factor for the development of patellofemoral pain 

(Mucha et al., 2016). 

Four prospective studies have investigated the relationship between PFP and weakness of hip 

muscles (Boling et al., 2009; Youri Thijs et al., 2011 Finnoff et al., 2011 and Herbest et al., 

2015) . Boling et al., (2009) assessed isometric hip abductors and external rotators strength 

using HHD. Only 3% (40 participants, of which 24 male and 16 female) of a total of 1319 

participants developed PFP during a 2.5 years follow-up period and an increase of hip external 

rotation strength was reported as a risk factor of developing PFP (Boling et al., 2009) whereas, 

no association was found for hip abductor strength. Opposite findings were reported in Finnoff 

et al., (2011) study. They assessed isometric hip abductors and external rotators strength in 98 

athletes runners participants from 5 high schools (53 male, 45 female), five participants 

developed the injury. The baseline hip external-to-internal rotation strength ratio was lower in 

injured than in uninjured subjects (P = 0.008) and a trend towards higher baseline hip 

abduction-to-adduction normalized torque percent ratio was seen in injured subjects (P = 0.09).  

In the third prospective study Thijs et al., (2011) evaluated hip abductors and external rotators 

with the same previous approach in 77 female runners. 16 participants developed PFP injury, 

no significant difference was found between hip muscle strength in participants with the injury 
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and those without. Recent research constructed by Herbest and colleagues, evaluated isokinetic 

hip abductors and knee extensors muscle strength for 255 female basketball middle school 

participants and 38 were developed PFP. Hip abductors muscle strength with PFP group was 

greater than non-injured group (P < 0.05) (Herbest et al., 2015). 

Increases in the strength of hip abductors and hip external rotator muscles that were reported 

by prospective studies of Herbest et al., (2015);  Boling et al. (2009) in addition to negative 

results that were reported by Thijs et al., (2011) appear to contradict the previous retrospective 

studies and Finnoff et al., (2011) prospective study. These conflicting results could be due to 

errors from HHD used to measure muscle strength, or be a result of conducting measurements 

with the dynamometer being held by the experimenter, or not being stabilised or secured to 

provide steadied resistance. The stabilisation of the HHD, for instance by using an immovable 

belt, would improve the reliability of the measurements and may yield important differences 

between strength measurements in the group (Katoh & Yamasaki, 2009; Wikholm & 

Bohannon, 1991). Another reason which may have lead to these results is by testing isokinetic 

hip abductors muscle strength with fixed dynamometer from standing position which may have 

been affected from the influence of contralateral limb (Widler et al., 2009) Also the value of 

isokinetic muscle strength with a high angular velocity during assessment of knee extensors 

may be lower than the present value because the movement only contains acceleration to 

maximum velocity (Bartlett and Paton, 1996).       

In different types of musculoskeletal injuries, there is a need for a strengthening evaluation in 

the clinic. Strengthening evaluation enables clinicians to determine the baseline level of the 

athlete’s strength for the generation of deferential diagnoses and for the development of a 

treatment plan, as an addition to follow up on the efficacy of the treatment (Kawaguchi & 

Babcock, 2010; Wadsworth et al., 1987). For decades, manual muscle testing was the most 

common method for muscle strength and function assessment during the clinical evaluation in 

the presence of disease or pathology (Kendall et al., 2005). However, there are some limitations 

in using this method. One of them is the deficiency of objective grading of muscle strength 

(Wadsworth et al., 1987; Frese et al., 1987; Smidt and Rogers, 1982). Another is the difficulty 

of scale consistency in a typical grading system, particularly with an increasing number of 

measurements (Kendall et al., 2005). Many attempts have been made by researchers to develop 

the assessment method for muscle strength. The isokinetic dynamometer was one of these 

attempts that is accepted for the clinical use of muscle assessment (Martin et al., 2006; 

Kawaguchi & Babcock, 2010). The isokinetic dynamometer provides an accurate evaluation 
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for both dynamic and static muscle strength, and it is considered to be the first choice for 

clinical studies (Drouin et al., 2004; Martin et al., 2006).  However, due to its spatial and 

temporal cost, lack of portability, and complexity to set up or use, it is not practical to use in 

large-scale screening in epidemiological studies or useful to the field of sport. Thus, HHD is 

the alternative method for muscle strength assessment (Kawaguchi & Babcock, 2010; Edwards 

and McDonnell, 1974).      

Handheld dynamometer  

The HHD is a device used for muscle strength assessment and preferred for clinical use due to 

the ease of application, the relatively low cost of its use and the portability. In HHD 

assessments, examiners hold the HHD and apply force against the force of the athlete’s tested 

limb (Kawaguchi & Babcock, 2010; Edwards and McDonnell, 1974). Good validity and 

repeatability has been established and it has been used widely (Bassey and Harries, 1993; Kuh 

et al., 2002; Martin et al., 2006). However, HHD cannot be used for certain muscle groups, and 

has been more difficult particularly for lower limb strength and lower limb muscle strength 

assessment (Holmback et al., 1999; Symons 2005). Various protocols for using HHD have 

been developed to measure upper and lower extremities’ muscle strength in order to improve 

the validity and reliability.                

Compared to the gold standard in muscle strength measurement of the isokinetic dynamometer, 

validity of HHD for lower extremity muscle strength has been investigated in several studies. 

A number of studies reported that evaluating the lower extremity muscle strength for physically 

active individuals with HHD has some limitations, which are related to the hand stabilisation 

of the instrument and changing the angle of the joint, especially if the subjects are stronger than 

the examiner, or in the case of large-scale screening (Vasconcelos et al., 2009; Katoh et al., 

2011). However, it has been found that the validity and reliability of isometric muscle strength 

were increased when using HHD with a stick, steel support, or belt (Vasconcelos et al., 2009: 

Kolber et al., 2007; Gagnon et al., 2005; Johansson et al., 2005; Brinkmann, 1994; Katoh et 

al., 2009, 2010, 2011). Katoh et al., (2009) assessed the reliability of isometric muscle strength 

when using HHD with a belt for lower limbs (abduction, adduction, flexion, extension, internal 

and external rotation of the hip, knee flexion and extension, and ankle dorsiflexion and planter 

flexion) and found ICC results ranging from 0.75 to 0.97, SEM and MDD were not reported 

(Katoh et al., 2009). Interrater reliability using HHD with a belt was found ranging from 0.97 

to 0.99, whereas it ranged from 0.21 to 0.88 for measurements without a belt. When the belt 

was applied, the measurements were significantly higher with paired t-test (Katoh et al., 2009). 
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Hansen and colleagues assessed within session reliability for knee extensors using HHD with 

belt and found ICC = 0.93, SEM was 5.4 N.m with a MDD of 15.1 N.m (Hansen et al., 2015). 

Using the stabilized HHD with belt for knee extensors muscle strength evaluation, has shown 

excellent reliability and moderate to excellent reliability for knee flexors (Hansen et al., 2015; 

Toonstra and Mattacola 2017; Katoh, 2015; Kim et al., 2014; Thorborg et al., 2013). For the 

hip muscle strength, excellent reliability has been observed for flexors, extensors, abductors, 

adductors, by number of studies (Thorborg et al., 2013; Kramer, 1991; Ieiri et al., 2015).       

 

Several studies have reported the validity of isometric muscle strength measurements obtained 

with the HHD for various muscles in lower limbs, in comparison with the measurements 

obtained with the isokinetic dynamometer (Katoh et al., 2009). The knee extensors muscle 

strength with HHD displayed moderate to high correlation with isokinetic dynamometer (r 

range = 0.47 – 0.93) (Hansen et al., 2015; Kim et al., 2014; Katoh et al., 2011).  Katoh et al., 

(2012) investigated the correlation between the HHD with belt and isokinetic dynamometer for 

hip muscle and knee flexors. The investigators observed high correlation for knee flexors (r = 

0.88), and moderate to high correlation for hip muscles (r range = 0.52 – 0.86), but correlation 

was low for hip abductors (Katoh et al., 2011). Recently Martins et al., (2017) observed high 

correlation between stabilized HHD with belt and isokinetic dynamometer for knee extensors 

and hip abductors (r range = 0.78 – 0.90).  

However, despite the resistance that is provided by using an immovable belt for HHD in the 

previous studies, they have some limitations in the validity and reliability and not practical to 

use for large scale screening. It is either, due to that HHD being not stable and secure during 

maximal force tests as well as the procedure takes more time for adjustment the belt and the 

HHD position which may limit the number of participants in large scale screening, or it was 

coupled with isokinetic dynamometer and positions which will not be available in field and 

will not reflect daily clinic practise, in addition the absence of reporting SEM in some reliability 

studies or the reliability was assessed within session only, so further evaluation is needed to 

validate the suitable protocol for the current study.   

2.6.3. Kinetic Abnormalities    

It has been claimed that altered kinetics of the lower extremity during tasks contribute to the 

development of PFP. Besier et al., (2009) found that the knee extension moment during running 

was significantly lower (13 % p = 0.041) in the PFP group, compared with the healthy group. 

Kinetic variables were investigated prospectively in three studies (Boling et al., 2009; Myer et 
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al., 2010; Stefanyshyn et al., 2006). Knee valgus load was evaluated in two prospective studies 

during running and landing tasks (Myer et al., 2010; Stefanyshyn et al., 2006). Myer et al. 

(2010) investigated landing biomechanics in 240 middle and high school female athletes at the 

beginning of the competitive school sports season. Three-dimensional hip, knee, and ankle 

kinematic and kinetics during drop vertical jump (DVJ) were assessed. They reported that 

nearly 25% of the participants developed PFP and demonstrated an increase in the knee 

abduction moment at initial contact during landing in those individuals. The generalisability of 

the results of this study is limited because they are young adolescent girls and it is questionable 

whether this was true for the majority of the population. Stefanyshyn et al. (2006) investigated 

the association between knee abduction impulse and PFP prospectively in 80 runners (41 male 

and 39 female) over a six month running period. Knee abduction impulse is the time effect of 

the total knee abduction moment load during the stance phase, and is calculated by multiplying 

the load with length of time (Stefanyshyn et al., 2006). Six participants (3 male and 3 female) 

developed PFP and the prospective data showed that they had significantly (P = 0.042) higher 

knee abduction impulses (9.2 ±3.7 Nms) than those who did not develop the injury (4.7 ±3.5 

Nms) during stance phase.  

In another aspect, two studies have investigated foot plantar pressure prospectively (Thijs et 

al., 2008; Thijs et al., 2007). Thijs et al. (2007) evaluated 84 individuals (65 male and 19 

female) who entered military academy before the start of the six week basic training. In this 

study, plantar pressure measurements were used to assess participants during walking. Thirty-

six participants (25 male and 11 female, 43%) developed PFP. Statistical analysis revealed that 

there was a significant increase in the lateral pressure distribution at initial contact of the foot, 

shorter time to maximal pressure on the fourth metatarsal and slower maximal velocity of the 

change in lateromedial direction of the centre of pressure during the forefoot contact phase. In 

the second study, Thijs et al. (2008) evaluated the standing foot posture of 102 novice runners 

(13 male and 89 female) using the foot posture index (FPI) and plantar pressure measurements 

in running, before starting a 10 week running program. Seventeen participants who developed 

PFP were found to have higher vertical peak force underneath the lateral heel and metatarsals 

two and three. However, in both of the two studies, planter foot pressure was measured with 

barefoot, which may be not useful for baseline assessment for participants who will be shod 

during the follow-up period. Barefoot planter pressure will not be equal to shod planter pressure 

that may be influenced with the shoes which may also effect on the dynamic movement of foot 

and lower limb of participants. 
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In one recent study, Luedk et al., (2016) investigated the relationship between step rate and 

AKP. They measured the step rate for 68 high school cross-country runners in constant speed 

(3.3 m.s-1) and in self-selected speed (mean, 3.8 ± 0.5 m.s-1), and followed them prospectively 

during an interscholastic season. No association was found between the step rate and AKP. 

However, step rate is influenced with several factors as leg length, participants’ height, and 

other anthropometric characteristics the may have effect on the results.           

2.6.4. Kinematic Characteristics and dynamic abnormalities  

Dynamic abnormalities of the lower limb are the abnormal patterns of movement during 

functional screening tasks that may cause improper tracking of the patella within the femoral 

trochlea (Earl et al., 2010). Many studies have investigated the kinematics of the lower 

extremities during screening tasks (Barton et al., 2010; Crossley et al.,  2002; Dierks et al., 

2008; McClinton et al.,  2007; Powers et al., 1995). 

Increases in hip adduction and internal rotation during landing and running are dynamic 

malalignments that have been reported to increase the risk of injury (Powers, 2010; Willson & 

Davis, 2008; Neal et al., 2016). These dynamic malalignments contribute to an increase in knee 

valgus and affect the patella’s normal tracking in the trochlea of the femur, causing decreases 

in the PFJ contact area and increasing the forces on the joint (Powers, 2010; Salsich & Perman, 

2007; Willson & Davis, 2008). 

Dynamic knee valgus is a common pattern of the knee movement which has been found to be 

associated with PFP. It is a result of the combination of hip adduction and internal rotation, 

tibia abduction with external rotation, and foot pronation movements (Figure 2.8). Increases in 

dynamic knee valgus during tasks is an important element in identifying those who are at risk 

of developing PFP (Decker et al., 2003; Ford et al., 2003; Lephart et al., 2002; Malinzak et al., 

2001; Pollard et al., 2006). Two prospective studies have assessed the kinematic differences of 

the hip movement between the participants who developed PFP and those who did not (Boling 

et al., 2009; B. Noehren et al., 2013). Boling et al. (2009) reported an increase of hip internal 

rotation with the PFP group, 7.6º (±8.9º) injured / 7.2º (±8.4º) uninjured, and used a regression 

model which was able to significantly predict the development of PFP (P =.04) with this 

increase. Noehren et al. (2013) investigated the association between hip adduction and PFP 

prospectively in 400 female runners using 3D during running, over a two year period. 15 

participants developed PFP and the prospective data shows that they observed a significantly 
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greater HADD angle (P = 0.007), (12.1º ±2.8º) for the PFP group and (8.1º ±4.5º) for the control 

group (B. Noehren et al., 2013). 

 

Figure 2.8 Dynamic Knee valgus 

Decreased flexibility of the gastrocnemius and/or soleus muscles can cause a decreased range 

of motion (ROM) of dorsiflexion. This may lead to compensatory foot pronation in order to 

achieve the required dorsiflexion ROM at the ankle during gait and other activities (Piva et al., 

2005). Individuals with PFP demonstrate significant decreases in the length of gastrocnemius 

and soleus, compared to healthy individuals (Piva et al., 2005). It has been reported that the 

decrease in dorsiflexion ROM is correlated to increases in knee valgus as a compensatory 

movement (Sigward & Powers, 2008). Witvrouw et al. (2000) prospectively investigated 

dorsiflexion ROM and found a significant increase in the gastrocnemius tightness in 

participants who developed PFP, compared with the healthy group. Therefore, the author, 

hypothesized that any increase in gastrocnemius tightness will be translated in the kinematics 

of the ankle and foot during movements.      

Earl et al., (2005) reported an association between a decrease in knee flexion angle and PFP 

during the step down task and other studies found similar results during stair ambulation in the 

individuals with PFP (Crossley et al., 2004; Powers, 1998). Boling et al. (2009) evaluated 

dynamic knee flexion angle with 3D during a bilateral jump-landing task and reported 

significant decreases (c.4-5 degrees) in the angle in participants with PFP.  
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Two previous systematic reviews and meta-analyses in the literature have investigated the 

prospective evaluation of risk factors for the onset of PFP (Pappas & Wong-Tom, 2012; 

Lankhorst et al., 2012). Both reviews included seven studies, which were slightly different, due 

to the variation in the data sources and inclusion and exclusion criteria of the search. Pappas & 

Wong-Tom, (2012) included (Boling et al., 2009; Milgrom et al., 1991; Thijs et al., 2007; Thijs 

et al., 2008; Van Tiggelen et al., 2009; Witvrouw et al., 2000; and Myer et al., 2010) and 

Lankhorst and colleagues included (Boling et al., 2009; Milgrom et al., 1991; Thijs et al., 2007; 

Van Tiggelen et al., 2004; Van Tiggelen et al., 2009; Witvrouw et al., 2000; and Duivgneaud 

et al., 2008). Both reviews concluded that lower knee extensor muscle strength may be a 

predictor for PFP development. However, in the other risk factors, there was a lack of 

agreement amongst the studies, which are likely due to the differences in the variables 

considered and measurement methods used. More importantly, the two previous systematic 

reviews included only seven studies, so only a limited number of variables were possible to be 

pooled in a meta-analysis and several risk factors were described individually, each in a single 

study.   

Different screening tests have been undertaken by researchers to evaluate dynamic knee valgus. 

They have included running (RUN), single leg squatting (SLS), single leg landing (SLL) and 

drop landing tasks. Most of the previous studies have used 3D methods to quantify the 

biomechanics of lower limb. This enables clinicians and researchers to accurately quantify all 

three planes of joint motion during different tasks. This method is seen as a gold standard for 

this type of analysis. However, in injury prevention programmes, there is a need for large-scale 

screening within the field in order to identify high-risk athletes. Therefore, while 3D should be 

used, it is not practical to use it in a large screening programme due to the required space and 

to the extra time for marker placement. A method is needed that allows for a quick collection 

of data in a relatively small volume and in this, 2D may provide an alternative solution to 3D.   

2.7. Two-dimensional motion analysis  

Three-dimensional motion analysis is considered the gold standard for this type of analysis, 

but given the reasons mentioned above, there are increases in the use of 2D, because compared 

with 3D it is perceived as easy to use, portable and less expensive. Previously, 2D has been 

used for quantifying the knee valgus angle in healthy, injured, and athletic populations (Willson 

& Davis, 2008; Willson et al., 2006).  



30 
 

Recently, Sorenson et al. (2015) investigated 2D and 3D relationships between knee and hip 

kinematics during single leg drop landings and reported that 2D knee frontal plane projection 

angle (knee abduction angle) had a strong relationship with 3D knee abduction angle (r2=0.72); 

additionally, 2D hip adduction angle had a strong correlation with 3D hip adduction angle 

(r2=0.52).  

However, there are two major technical errors associated with the limitations of using 2D. The 

first is the parallax error, which is the error that occurs when an object moves away from the 

optical axis of the camera. However, this technical error can be minimised by positioning the 

optical axis of the camera so that it is aligned with the central part of the motion and by focusing 

on the moving part of the target by zooming the lens of the camera. The second is the 

perspective error; this occurs when the object moves out of the calibrated plane (closer or away) 

and appears different in length and angle. Keeping the camera as far from the performer as 

possible, zooming to compensate the image size and maintaining the optical axis perpendicular 

to the calibrated plane would reduce this error (Kirtley, 2006; Krebs et al., 1985).   

The 2D FPPA has been identified as a potential outcome measure for PFJ injury risk during 

large-scale screening and in the clinical environment (Willson et al., 2006). Frontal Plane 

Projection Angle is defined with three markers placed on the midpoint of the ankle, the centre 

of the knee joint and the proximal thigh. Frontal Plane Projection Angle is the angle that is 

formed between the line from the marker of proximal thigh to the marker of the midpoint of 

the knee joint and the line from the marker of the knee joint to the marker of the ankle (Figure 

2.9) (Willson et al., 2008; Willson et al., 2006).  

 
Figure 2.9 FPPA measurement 
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McLean et al. (2005) assessed the validity of 2D video analysis by measuring FPPA and 

compared it with the gold standard 3D. Two-dimensional motion analysis FPPA reflected 58% 

to 64% of the variance in average peak 3D knee abduction angle in side-jump and side-step 

tasks (McLean et al., 2005). Willson & Davis (2008) found that the two most important factors 

contributing to the dynamic knee valgus, hip adduction and knee external rotation angle, were 

significantly correlated with 2D FPPA. They concluded that 2D could be a useful method for 

quantifying knee valgus in order to identify high-risk athletes. Holden et al., (2015), reported 

a strong correlation between 2D and 3D measurements for medial knee displacement during 

DVJ and was statistically significant (r = 0.946; r2 = 0.894; P < 0.001) (Holden et al., 2015). In 

a very recent study, Räisänen et al., (2017) assessed the relationship between FPPA and lower 

extremity injuries during SLS in 306 basketball and volleyball players, they found that it was 

able to predict the incidence of injury. Athletes displaying a high FPPA were 2.7 times more 

likely to sustain a lower extremity injury (adjusted OR 2.67, 95% CI 1.23 to 5.83) and 2.4 times 

more likely to sustain an ankle injury (OR 2.37, 95% CI 1.13 to 4.98). Whereas, there was no 

statistically significant association between FPPA and knee injury (OR 1.49, 95% CI 0.56 to 

3.98).  This negative findings of knee injury may due to that SLS task was not has the potential 

to predict the injury and may be other tasks could predict the knee injury better than SLS.  

Despite the simplicity and advantages of using 2D FPPA, there are some factors that may 

contribute to affect the accuracy of measurements, in relation to either the 2D limitations or the 

dynamic movement. According to the 2D nature of FPPA, it is sensitive in motion in frontal 

and transverse planes and particularly during the single leg screening tasks (Willson et al., 

2006). Therefore, it has been claimed that 2D FPPA cannot represent the same level of accuracy 

or magnitude as 3D lower extremity joint rotation during functional tests. However, 2D FPPA 

provides a valid and reliable measurement for lower extremity kinematics in the absence of 3D 

measurement (Munro et al., 2012; Willson & Dives, 2008). Multiple attempts have been made 

by researchers to minimise the variations of 2D FPPA values during screening tasks, by 

controlling the factors that may cause the occurrence of parallax error of 2D, such as degree of 

knee flexion angle or lower limb rotation angle (Willson & Davis, 2008; and Gwynne & 

Curran, 2014; McLean et al., 2005; Maykut et al., 2015; Sorenson et al., 2015). Therefore, 

selecting the appropriate screening test is crucial, because it is supposed to have the potential 

of identifying individuals who are at risk of PFP while it is applicable to use with 2D.  
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2.8. Screening tasks  

Movement screening tasks have been used increasingly over recent years to provide an 

outcome measure to evaluate the athletes who return from injuries in both sport and clinical 

practice. In these functional movement tests, the athlete tries to mimic certain common actions 

in sport activities, such as RUN, SLS, SLL, VJ, stepping down and sprint test. Screening tasks 

provide an objective measurement for muscle strength, agility, joint laxity, proprioception and 

pain (Herrington et al., 2009; Loudon et al., 2004; Munro et al., 2012; Reid et al., 2007). 

Single leg squat is one of the most common tasks used to evaluate dynamic function of lower 

limb, particularly in screening PFP. The SLS task has previously been used in investigating the 

correlations between 2D FPPA and 3D angles of lower limb (Willson & Davis, 2008). Hip 

abductors, hip external rotators, hip extensors and core musculature has demonstrated a 

significant impact on the FPPA during the single squat (Stickler et al., 2015). Willson & Davis 

(2008) reported that FPPA values represented medial knee displacement during SLS and it was 

associated with increased HADD angle (r = 0.32 to 0.38, P < .044) and knee external rotation 

(r = 0.48 to 0.55, P < .001), two of the components of dynamic knee valgus.  Single leg squat 

has been used to distinguish between the participants with and without PFP, by demonstrating 

dynamic knee valgus (Whatman et al., 2011; Willson & Davis, 2008). Frontal Plane Projection 

Angle of the PFP group during SLS was significantly greater than FPPA of the healthy group 

(P =.012) (Willson & Davis, 2008). Furthermore, it has been suggested that this predicts the 

kinematics demonstrated during running or that it has mechanics similar to those of running 

during stance phase. Munro et al. (2012) investigated 2D FPPA for 20 participants (10 male 

and 10 female) during the SLS and found that the between-days ICC was good, (.88) for men 

and (.82) for women, with overall mean values of (8.64º) for men and (11.07º) for women. 

Running is the most frequently performed task used by researchers to evaluate the dynamic 

function of lower limb. It has been suggested that the investigation into the biomechanics of 

running has the potential to identify individuals with risk factors of running injuries (Schache 

et al., 1999). Frontal Plane Projection Angle measured from PFP participants by Willson & 

Davis (2008), demonstrated a greater HADD angle during running, jumping, and squatting, 

compared with the healthy control group. Souza and Powers (2009) found greater peak hip 

internal rotation during running in individuals with PFP. Another study has found that runners 

who developed PFP had greater HADD angle, compared with the healthy group (Noehren & 

Davis, 2007). individuals with PFP have also been reported with greater knee abduction angular 
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impulse during the stance phase of running, compared with healthy individuals (Stefanyshyn 

et al., 2006).  

Recently, Maykut et al., (2015) reported that 2D testing during running had excellent intrarater 

reliability for peak of the HADD (ICC = 0.951 – 0.963) and peak of  Knee Abduction (KABD) 

(ICC = 0.955 – 0.976). Moderate correlations were found between 2D and 3D measurements 

for peak of HADD on the left (0.539; P = .007) and the right (0.623; p = .001) and peak of 

KABD on the left (0.541; p = .006) , which were found only in the lower extremity (Maykut et 

al., 2015).  

Single leg landing is one of the common tasks or techniques in sports, and it may be better than 

bilateral landing for the assessment of individuals who are at risk of knee injuries (Faude et al., 

2005). Studies have shown that during unilateral tasks performers demonstrate an increase of 

knee valgus and HADD angle compared to bilateral tasks (Myklebust et al., 1998; Pappas et 

al., 2007). Single leg land screening task appears to be more sensitive than DJ in identifying 

individuals who demonstrate dynamic knee valgus, due to the increased demand to decelerate 

landing force, whereas this has not been investigated. The reliability of 2D FPPA during SLL 

was assessed by Munro et al. (2012), who reported good ICC in within-days and between-days 

for both men and women, with mean values of (4.69º) for men and (7.33º) for women.    

Running, SLS and SLL are three activities that require single leg stance and weight bearing. 

Mechanics based on muscle function during these types of activities show that hip abductors 

play an important role to prevent pelvic drops and HADD and angle (Hollman et al., 2009). 

During motion hip abductors primarily stabilise femur in the frontal plane (McLeish et al., 

1970). Therefore, it is logically the presence of an increased HADD angle that is associated 

with weakness of hip abductors muscles. Hip adductors have been associated with PFP (Ireland 

et al., 2003). Furthermore, individuals with PFP demonstrated an increased HADD angle and 

knee valgus (Powers, 2010; Willson & Davis, 2008). Recently, Stickler et al., (2014) 

investigated the relationship between hip strength (hip abductors, hip external rotators, hip 

extensors and core musculature) and frontal plane alignment during SLS. They reported that 

hip abduction strength was the greatest predictor of the variation in FPPA, at r2 = 0.22, p = 

0.002, with multiple regression analysis. Therefore, since weakness of hip abductors or hip 

abductors peak torque have been found to be correlated with knee valgus during SLS and 

landing, the author conclude to select hip abductors and knee extensors isometric strength to 
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be assessed with stabilized HHD, as the below methodology at the baseline of the study 

(Kagaya et al., 2013, Claiborne et al., 2006; Jacobs et al., 2007). 

2.9. Previous screening and prevention approaches 

It is assumed that 3D and isokinetic dynamometer are the gold standard for motion analysis 

and muscle strength measurement, but they are not practical to use for large scale screening for 

PFP prevention programmes due to cost, time and space required which will limit the number 

of screened individuals. Holden et al., (2015) demonstrated in a previous study that may use 

the appropriate screening measurement in terms of cost and portability of measurement 

instruments, and duration of data collection which enabled for large scale screening. They 

found that participants who developed PFP had a greater medial knee displacement. However, 

this study only used a kinematic assessment for medial knee displacement with 2D for 

adolescent girls with no strength measurement.   

 It has been suggested that there is a link between the development of PFP and biomechanical 

abnormalities (Neal et al., 2016). Several studies have investigated the biomechanical 

abnormalities thought to be associated with PFP, and targeted them for intervention and injury 

prevention programmes. Knee valgus, increased hip adduction, hip internal rotation, rearfoot 

eversion, decrease of hip abductors and external rotators, and decrease of knee extensors are 

some of the biomechanical characteristics that may lead to PFP development (Aglietti et al., 

1983; Al-Rawi & Nessan, 1997; Aliberti et al., 2010; Anderson & Herrington, 2003; Bakeret 

al., 2002; Barton et al., 2010; Barton et al., 2009; Besier et al., 2008; Callaghan & Oldham, 

2004; Cowan et al., 2002; Cowan et al., 2001; Crossley et al., 2004; Dierks et al., 2008; Dorotka 

et al., 2002; Draper et al., 2009; Noehren et al., 2013; Thijs et al., 2011; Myer et al., 2010; Van 

Tiggelen et al., 2009; Boling et al., 2009; Thijs et al., 2008; Duvigneaud et al., 2008; Thijs et 

al., 2007; Stefanyshyn et al., 2006; Van Tiggelen et al., 2004; Witvrouw et al., 2000; Milgrom 

et al., 1991; Finnoff et al., 2011; Herbst et al., 2015; Holden et al., 2015; Hetsroni et al., 2006; 

Rauh et al., 2010; Luedke et al., 2016; Neal et al., 2016). A recent study by Selfe et al., (2015) 

grouped PFP individuals into three subgroups (strong, weak and tighter, and weak and pronated 

feet) in order to be targeted for the intervention according to the findings of seven clinical tests 

based on measurements of range of motion, flexibility, strength, and FPI (Selfe et al., 2015). 

However, there was no kinematic screening or in particular FPPA screening. Therefore, lower 

limb kinematic should be included in the screening to detect the kinematic abnormalities in 

order to be one of the targeted intervention subgroups.  In two systematic reviews and meta-

analyses, aimed to guide treatment and prevent PFP, the results showed that running retraining 
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and proximal strengthening exercise for hip muscles combined with quadriceps leads to 

decreased pain, improved function, increased isometric hip strength, reduced peak hip 

adduction and decreased knee valgus variability during running (Lack et al., 2015; Neal et al., 

2016). Herrington et al., (2015) is one of the studies that has been successful with a prevention 

programme for PFP, where they investigated the effect of six weeks jump-training landing on 

FPPA and found a significant decrease during the SLL and drop jump landing after the training, 

which was further decreased in combination with strengthening.       

It has been determined that tools for screening studies are supposed to be simple, low cost, 

portable and easy to apply in order to offer the screening to a large number of individuals in 

order to identify the ones who are at risk of PFP development. Additionally, in planning for 

future prevention programmes the individuals that are at high risk of PFP should be grouped 

according to the finding of screening in order to be the targeted for a particular intervention.      

2.10. Summary of literature review   

The majority of the previous studies that have investigated the biomechanical risk factors for 

PFP have been retrospective studies (Aglietti et al., 1983; Al-Rawi & Nessan, 1997; Aliberti 

et al., 2010; Anderson & Herrington, 2003; Bakeret al., 2002; Barton et al., 2010; Barton et al.,  

2009; Besier et al., 2008; Callaghan & Oldham, 2004; Cowan et al., 2002; Cowan et al., 2001; 

Crossley et al., 2004; Dierks et al., 2008; Dorotka et al., 2002; Draper et al., 2009). But given 

the study design, the question arises of whether the results are the effect of the condition, rather 

than an actual causation. 

18 studies were found in the literature that investigated the biomechanical risk factors of PFP 

prospectively. Several methodology and measurement tools have been used in these studies 

(Noehren et al., 2013, Thijs et al., 2011; Myer et al., 2010, Van Tiggelen et al., 2009, Boling 

et al., 2009, Thijs et al., 2008, Duvigneaud et al., 2008, Thijs et al., 2007, Stefanyshyn et al., 

2006, Van Tiggelen et al., 2004, Witvrouw et al., 2000, Milgrom et al., 1991, Finnoff et al., 

2011, Herbst et al., 2015, Holden et al., 2015, Hetsroni et al., 2006, Rauh et al., 2010, Luedke 

et al., 2016). Three studies have used static measurements for lower extremities alignment and 

abnormality, such as Q-angle, genu varum/valgum, and navicular drop (Thijs et al., 2011, 

Boling et al., 2009, Witvrouw et al., 2000, Rauh et al., 2010). Muscle strength risk factors were 

assessed in eight studies (Boling et al., 2009; Duvigneaud et al., 2008; Milgrom et al., 1991; 

Thijs et al., 2011; Tiggelen et al., 2004; Witvrouw et al., 2000; Finnoff et al., 2011 and Herbest 

et al., 2015). The handheld dynamometer was used in three studies (Boling et al., 2009; Thijs 

et al., 2011; Finnoff et al., 2011) and fixed dynamometers, such as Cybex or Biodex were used 
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for strength measurement in four studies (Duvigneaud et al., 2008; Milgrom et al., 1991; Van 

Tiggelen et al., 2004; Witvrouw et al., 2000). Kinetic kinematic variables were quantified in 

four prospective studies using 3D motion analysis during RUN, jump-landing, and drop 

vertical jump (Boling et al., 2009; Myer et al., 2010; Noehren et al., 2013; Stefanyshyn et al., 

2006; Holden et al., 2015). Two studies assessed muscle activation with EMG during tasks 

(Van Tiggelen et al., 2009; Witvrouw et al., 2000). Two studies investigated the relationship 

between plantar pressure and development of PFP during running and walking using a foot-

scan pressure plate (Thijs et al., 2008; Thijs et al., 2007). One study assed the association 

between step rate and AKP during running  (Luedke et al., 2016).Finally, two studies 

investigated this association in lower extremity kinematics using 2D motion analysis (Hetsroni 

et al., 2006; Holden et al., 2015). In the first study, Hetsroni et al. (2006) assessed the 

kinematics of rearfoot motion walking on the treadmill, while Holden et al. (2015) used 2D 

FPPA for the first time for large scale screening in order to investigate the association between 

knee kinematics and incidence of PFPS during DVJ. 

2.11. Gap in the literature   

From the previous prospective studies, several possible conclusions can be drawn. It could be 

that, since these studies were based on the use of high technology, so they are not practical to 

use for large-scale screening (Boling et al., 2009; Myer et al., 2010; Stefanyshyn et al., 2006). 

Further, the results are not generalizable (Myer et al., 2010), as they are based on static 

measurements (Thijs et al., 2011; Witvrouw et al., 2000; Rauh et al., 2010), or have looked at 

a single factor or observed during a single task ( Thijs et al., 2011; Van Tiggelen et al., 2009). 

However, none of the studies reported their reliability and there is a lack of validation for the 

measurement tools (Boling et al., 2009; Thijs et al., 2011), as well as a low incidence rate of 

PFP in some of the studies (Boling et al., 2009). Only one recent study used 2D in knee valgus 

displacement during DVJ landing in adolescent females. No study has used stabilised HHD, or 

investigated the role of the 2D FPPA, dynamic Q-angle, or other lower limb kinematics during 

specific tasks in PFP risk. Additionally, none of the studies stated the time duration of data 

collection. 

In the Saudi military population, it is notable, there is a high rate of knee injuries during the 

first three months of military training and that it is one of the common reasons for discharge or 

referral to hospital. Therefore, in order to further advance the current research and improve our 

understanding of the risk factors that contribute to the occurrence of PFP, this is the first study 

established towards investigating the risk factors of PFP among Saudi recruits. It is the first to 
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employ 2D for FPPA and HHD within the military population in order to screen for potential 

PFJ injury risk. Furthermore, it will also objectively assess the HADD angle, dynamic Q-angle, 

knee flexion, dorsiflexion, and knee extensor and hip abductor muscles strength. All of these 

measures will be explored for any relationship with the incidence of PFP. Aiming to detect the 

risk factors of PFP with low cost, portable, and easy to use tools, as an alternative valid and 

reliable solution to the gold standard (3D and isokinetic dynamometer) can increase the ease 

and capacity of screening individuals who are at risk of PFP.       

This will allow for the development of more targeted intervention strategies to reduce injury 

risk, by identifying the main risk factors that contribute to the increase of the injury’s 

occurrence. This will enable us to apply our future intervention for individuals who are 

considered to be at risk of PFP, after screening their populations, and working to stop or reduce 

the predicted negative impact as a risk factor.   

2.12.Aims of the project 

 The aims of this study are therefore to: 

1- Systemically review the previous prospective studies to establish the biomechanical 

differences between individuals with and without PFP.   

2- Prospectively examine: 

a) The use of 2D in FPPA, HADD, dynamic Q-angle, knee flexion, ankle dorsiflexion, 

and rearfoot eversion during running, SLS, and SLL to screen for PFP development 

injury occurrence in addition to the other lower limb injuries. 

b)  The use of HHD in isometric strength tests of hip abductors and knee extensors to 

screen for PFP development injury occurrence in addition to the other lower limb 

injuries. 

c) Identify the risk factors that could be measured and have a clear relationship with the 

incidence of PFP more than the other risk factors  

2.13.Research questions  

The following research questions will be examined: 

1) Are systematic review and meta-analysis of previous prospective studies able to 

identify the biomechanical differences between individuals with and without PFP?  

2) Is there any difference between the kinematics of the lower limb joints in individuals 

who sustain patellofemoral pain and those who do not?  
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3) Is there any difference between hip abductors and knee extensors’ strength in 

individuals who sustain patellofemoral pain and those who do not? 

4) Which risk factor could be measured and has a clear relationship to the incidence of 

PFP more than the other risk factors?  

2.14.Hypothesis  
 

Therefore, the following null hypotheses will be tested within the study 

1. H01: systematic review and meta-analysis of previous prospective studies will not be 

able to identify the biomechanical differences between individuals with and without 

PFP. 

2. H02: There will be no significant difference between the kinematics of individuals who 

sustain patellofemoral pain and any other lower limb injuries, and those who do not. 

3. H03: There will be no significant difference in muscle strength between the individuals 

who sustain patellofemoral pain and any other lower limb injuries and those who do 

not. 

4. H04: There will be no risk factor that has a clear relationship to the incidence of PFP 

more than the other risk factors. 
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CHAPTER 3 

Biomechanical risk factors of patellofemoral pain: A systematic review                        

and meta-analysis 

This chapter will undertake a systematic review and meta-analysis of previous prospective 

studies to focus on the literature in a scientific way to reduce bias in all stages of the review, in 

order to investigate the biomechanical differences between individuals with and without PFP.  

3.1. Introduction 

Patellofemoral pain is one of the most common sources of chronic knee pain in young athletes 

(Brody and Thein, 1998; Piva et al., 2006), accounting for 25 to 40% of all knee joint problems 

investigated in sports medicine clinics (Rubin and Collins, 1980; Chesworth et al., 1989; 

Bizzini et al., 2003). Patellofemoral pain is a major problem among physically active 

populations, such as adolescents, young adults, and military recruits (Messier et al., 1991; 

Cutbill et al., 1997; Duffey et al., 2000; Witvrouw et al., 2000; Laprade et al., 2003; Powers et 

al., 2003; Thijs et al., 2007). McConnell (1986) reported that one in four individuals is affected 

by PFP. In a retrospective study of individuals with PFP who were assessed between four and 

eight years after the initial injury, the results showed that knee pain was still present in 91% of 

the 22 individuals, while 36% were unable to continue their physical activity (Fulkerson and 

Shea, 1990). Utting et al. (2005) reported a connection between PFP and the development of 

patellofemoral arthritis, where 22% of 118 individuals with patellofemoral osteoarthritis had 

anterior knee pain when they were adolescents.  

The primary symptom of PFP is pain arising from the anterior aspect of the knee joint (Powers, 

1998), a pain which is commonly the result of activities that increase the compressive forces 

in the patellofemoral joint (PFJ), such as running, walking, ascending and descending stairs, 

prolonged sitting, and squatting (Levine, 1979; McConnell, 1996; Powers, 1998). Although 

there is no definitive aetiology for PFP, previous studies have identified predisposing factors, 

such as increased knee valgus, Q-angle, hip adduction angle, and rearfoot eversion, in addition 

to a weakness of hip abductor and knee extensor muscle strength (Thijs et al., 2007; Waryasz 

& McDermott, 2008; Pappas & Wong-Tom, 2012). However, it has been stated that the causes 

of PFP is multifactorial (Thijs et al., 2007). Therefore, there is a need to identify individuals 

who are at high risk of PFP in order to develop injury prevention programmes. The purpose of 

this study is to systemically review prospective cohort studies on the predictors of PFP. 
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3.2. Materials and Methods 

3.2.1. Literature search strategy  

A comprehensive search strategy was devised from the following electronic databases: 

CINAHL, MEDLINE; PUBMED, and WEB OF SCIENCE, up to February 2017 and using the 

following keywords: (patellofemoral OR anterior knee) AND pain AND (risk OR predictor) 

AND prospective. The search was limited to full-text prospective cohort studies written in 

English.  

3.2.2. Selection of studies  

Only prospective studies with healthy participants in the baseline assessment in order to 

monitor for PFP development were included in the systematic review. No limits with regard to 

age, sex, or physical activity were placed on searching the participants’ characteristics. Single 

reviewer (H.A) screened articles based on their titles and abstracts, according to selection 

criteria. For the selected articles, a final decision about inclusion was made based on the full 

text articles.  

3.2.3. Methodological quality  

Two reviewers (H.A and H.G) independently assessed the quality of the studies using the 

Newcastle-Ottawa quality assessment scale (NOS) (Appendix A). Although several assessment 

scales for cohort studies exist, none of these have been fully validated. The Newcastle-Ottawa 

Scale is one of the assessment tools widely used by researchers for quality assessment of cohort 

studies in systematic reviews and meta-analyses. The NOS is composed of eight items for 

quality appraisal, easy to apply, in three main topics (selection, comparability, and outcome). 

However, the NOS for cohort studies was chosen in the current study because it has been found 

to be reliable and designed for the quality assessment of cohort studies (Wells et al., 2008).  

The eight assessment items of NOS rank studies with scores ranging from 0–9. The included 

studies were awarded point for each item when it is corresponded with answer has a star. The 

NOS classified the included studies as high quality (HQ) with (7 – 9) scores, moderate quality 

(MQ) with (5 – 6) scores, and low quality (LQ) with (0 – 4) (Wells et al., 2001). Disagreement 

between the two reviewers was solved by discussion and consensus or consultation with a third 

reviewer (R.J).   

3.2.4. Data extraction  

One reviewer (H.A) extracted relevant data from the included studies by means of a 

standardised form, i.e. the author, year of publication, sample size (injured/non-injured), sex, 
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age, mass, height, definition of PFP, inclusion criteria, type of participants (e.g. recruits, 

athletes, or students), follow-up time, loss of follow-up participants, and assessment methods.  

3.2.5. Data analysis 

A meta-analysis was performed to establish factors associated with the development of PFP 

that had a consistent definition, and the results were reported for the same outcome measures. 

A fixed effect model was used to inspect the forest plot. Means and standard deviations (SD’s) 

values for continuous scaled variables were extracted and used to calculate standardised mean 

differences (SMD) with 95% confidence intervals (CI’s). Review Manger 5 (RevMan5) 

software package was used for the meta-analysis of this review. Statistical heterogeneity level 

was established using I2 statistics and its P value. The heterogeneity was defined as I2 > 50%, 

p < 0.05 (Higgins et al., 2003). Levels of evidence were categorised based on the previous work 

of van Tulder et al., (2003) to: 

• Strong evidence: 

Pooled results derived from three or more studies, including at least two high quality 

studies that are statistically homogenous; may be associated with a statistically 

significant or non-significant pooled result. 

• Moderate evidence 

Significant pooled results derived from multiple studies that are statistically 

heterogeneous, including at least one high quality study; or from multiple moderate 

quality or low quality studies which are statistically homogenous. 

• Limited evidence 

Results from one high quality study or multiple moderate or low quality studies that are 

statistically heterogeneous. 

• Very limited evidence 

Results from one moderate quality study or one low quality study. 

• No evidence 

Pooled results are insignificant and derived from multiple studies regardless of quality  

but are statistically heterogeneous. 

3.3. Results  

3.3.1. Characteristics of the included studies  

560 potentially relevant articles were found from the database search. Using the Endnote 

system, 204 articles were automatically excluded due to duplication. In addition, 299 articles 
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were excluded from titles and abstracts because they are not relevant studies. Further, 42 

articles were excluded from full text (20 articles for other studies (Cumps et al., 2007, Davis, 

2007, Hanna et al., 2007, Berry et al., 2008, Wilson et al., 2009, Brennan et al., 2010, 

Echegoyen et al., 2010, Song et al., 2011, Peat et al., 2012, Wagemakers et al., 2012, Anh-

Dung et al., 2013, Collins et al., 2013, Rathleff et al., 2013, Stefanik et al., 2013, Attal et al., 

2014, Myer et al., 2014, Nielsen et al., 2014, Hsiang-Ling et al., 2015, Kastelein et al., 2015, 

Altman and Davis, 2016), 4 articles review(Barton et al., 2009a, Rathleff et al., 2014, Weiss 

and Whatman, 2015, Molloy, 2016), 2 articles with the full text not found (Mohtadi, 2001, 

Bout-Tabaku et al., 2015), 8 articles where there was no specific data for PFP (Leetun et al., 

2004, Lun et al., 2004, Rauh et al., 2007, Zazulak et al., 2007, Lehr et al., 2013, Dingenen et 

al., 2015, Davis et al., 2016, Kuhman et al., 2016), 2 treatment and intervention studies (Huang 

et al., 2015, Ramskov et al., 2015), 3 retrospective studies (Duffey et al., 2000b, Tenforde et 

al., 2011, Barton et al., 2012a), and 3 studies with no data for the control group (Hetsroni et al., 

2006a, Rauh et al., 2010, Luedke et al., 2016). Finally, 15 studies met the inclusion criteria 

(Milgrom et al., 1991, Witvrouw et al., 2000, Van Tiggelen et al., 2004, Stefanyshyn et al., 

2006, Thijs et al., 2007d, Duvigneaud et al., 2008, Thijs et al., 2008, Boling et al., 2009, Van 

Tiggelen et al., 2009, Finnoff et al., 2011, Thijs et al., 2011, Noehren et al., 2013, Herbst et al., 

2015, Holden et al., 2015, Myer et al., 2010) (Figure 3.1).  
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Figure 3.1 Flow chart of the process to select the relevant studies 
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3.3.2. Methodological quality  

Table 3.1 Methodological Quality Rating Score 

 

Study 

Selection Comparability  Outcome  Total 

Representative

ness of the 

exposed cohort 

Selection of 

non-exposed 

Ascertainment 

of exposure 

Outcome not 

present at start 
important factor  additional factor 

Assessment 

of outcome 

Follow-up 

length  

3m/1m 

Adequacy of 

follow-up 

>80% 

Total 

Milgrom 1991 1 1 1 1 1 1 0 1 1 8 

Witvrouw 2000 1 1 1 1 1 1 0 1 0 7 

Van Tiggelen 2004 1 1 1 1 1 1 0 1 1 8 

Stefanyshyn 2006 1 1 1 1 1 0 1 1 1 8 

Thijs 2007 1 1 1 1 1 1 1 1 1 9 

Thijs 2008 1 1 1 1 1 0 0 1 0 6 

Duivgneaud 2008 1 1 1 1 0 1 0 1 1 7 

VanTiggelen 2009 1 1 0 1 1 1 0 1 1 7 

Boling 2009 1 1 0 1 1 1 0 1 1 7 

Myer 2010 1 1 1 1 1 0 0 1 0 6 

Finnoff 2011 1 1 1 1 1 0 0 1 0 6 

Thijs 2011 1 1 1 1 0 0 1 0 1 6 

Noehren 2012 1 1 1 1 0 0 0 1 1 6 

Holden 2015 1 1 1 1 1 0 0 1 1 7 

Herbst 2015 1 1 1 1 1 0 0 1 0 6 
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Table 3.1 presents the data about the methodological quality of the included studies. All initial 

disagreements were discussed until a consensus was reached. The quality scores ranged from 

5 – 8 points. All the 15 studies scored positively in three items, including representativeness of 

the exposed cohort, selection of non-exposed and outcome not present at start. Only three 

studies (i.e. Stefanyshyn et al., 2006; Thijs et al., 2007; Thijs et al., 2011) obtained positive 

scores in relation to assessment of outcome and all included studies obtained positive in follow-

up length except Thijs et al., (2011). Nine studies scored high quality (HQ) (Milgrom et al., 

1991; Witvrouw et al., 2000; Van Tiggelen, 2004; Stefanyshyn et al., 2006; Thijs et al., 2007; 

Duvigneaud et al., 2008; Van Tiggelen et al., 2009; Boling et al., 2009; Holden et al., 2015) 

and six studies scored moderate quality (MQ) (Thijs et al., 2008; Myer et al., 2010; Finnoff et 

al., 2011; Thijs et al., 2011; Noehren et al., 2012; Herbest et al., 2015), and no studies scored 

low quality (LQ).  
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Table 3.2 Summary of included studies  

 

No STUDY POPULATION MEASUREMENTS FINDINGS 

1 

Milgrom et al. (1991) 

14 weeks  

390 Infantry recruits • Isometric strength of Quadriceps 

• 2-km run 

• Push-ups 

• Sit-ups in 60s 

 

 Increase of quadriceps strength 

 Increase medial tibial intercondylar 

distance 

2 

Witvrouw et al. (2000)  

2 years 

282 Physical  Education  

Students  

Age (17-21)  

(151M/131F) 

9% injured 

 

• Isokinetic strength for quad and hams 

with (Cybex)  

• EMG 

• Lower leg Alignment 

• General joint laxity 

• Physical fitness assessment  

• Static patellofemoral alignment 

• (Q-angle- genu varum/valgum) 

Physiological evaluation 

 

 Shortened quadriceps muscle 

 Altered vastus medialis obliquus 

muscle reflex response time 

 Decrease vertical jump 

 Patella hypermobility 

 Increase of gastrocnemius tightness 

3 

Van Tiggelen et al. (2004) 

6 weeks 

96 male recruits  

Age (17-27) 

31 injured   

• Isokinetic Strength (Cybex) for knee 

FLX/EXT 

 Decrease of normalised peak 

extensor torque at 60°/s 

 Decrease of Peak toque/BMI 

 

4 

Stefanyshyn (2006) 

6 months 

80 runners (41M/39F) 

Age (F 35.9 ±8.8)  

        (M 39.8 ±8.9)  

6 injured (3M/3F) 

 

• Kinetics and Kinematics (3D) during 

running  

 Increase Knee Abduction impulses 

5 

Thijs et al. (2007) 

6 weeks 

84 cadets (65M/19F) 

Age (19 ±1.54) 

36 injured (25M/11F) 

 

• Planter pressure measurement with 

Footscan pressure plate during walking 

 

 Heel strike in a less pronated position 

and roll over more on the lateral side 
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Table 3.3 Continued  

No STUDY POPULATION MEASUREMENTS FINDINGS 

6 

Thijs et al. (2008) 

10 weeks 

102 runners 

 (13M/89F) 

Age (37 ± 9.5) 

17 injured  

 

• Foot posture index (FPI) 

• Planter pressure measurements in 

running  

 Increase vertical peak force 

underneath lateral heal and 2 and 3 

metatarsals. 

 Shorter time of the vertical peak 

force underneath the lateral heel 

 

7 

Duivgneaud et al. (2008) 

6 weeks 

 

62 female recruits  

Age (18-28) 

26 injured 

 

• Isokinetic strength (Cybex) for knee 

FLX/EXT 

• Single-leg horizontal hop test 

 Decreased quadriceps strength 

8 

VanTiggelen et al. (2009) 

6 weeks 

 

79 recruits   

Age (17 – 27) 

26 32% injured 

 

• EMG for quadriceps muscles timing during 

(rocking back on the heel) 

 Delayed vastus medialis obliquus to 

vastus lateralis onset timing 

9 

Boling et al. (2009) 

2.5 years 

1319 midshipmen  

(16M / 24F)  

 (790M/489F) 

3% 40 injured 

1279 non-injured 

• Kinetics and Kinematics (3D) during jump-

landing task 

• Isometric Strength with Hand Held 

Dynamometer (HHD) for hip and knee 

muscles 

• Postural alignment (navicular drop and Q-

angle) 

 Increase Hip internal rotation angle 

 Decrease Knee flexion angle 

 Decrease Vertical ground-reaction 

force 

 Decrease Knee flexion strength 

 Decrease Knee extension strength 

 Increase Hip external rotation 

strength 

 Increase Navicular drop 

 

10 

Myer et al. (2010) 

School basketball season  

240 basketball players, 

middle and high school 

student girls 

Age (mean 13.4)    

25%  injured 

   

• Kinetics and kinematics (3D) during drop 

vertical jump (DVJ) 

• Questionnaires to determine familial 

anthropometrics utilised for maturational 

estimates    

 Increase of knee abduction moment 

during landing 
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Table 3.4 Continued   

No STUDY POPULATION MEASUREMENTS FINDINGS 

11 

Finnoff et al. (2011) 

Fall 2007 to fall 2009 

98 (53M/45F) running 

athletes  

From 5 local high schools  

5 injured (3F / 2M) 

• Isometric hip strength   Increase of preinjury hip abductors in 

relation to hip adduction  

 Decrease of preinjury hip external 

rotator in relation to hip internal 

rotation  

 

12 

Thijs et al. (2011) 

10 weeks 

77 female runners 

Age (38 ± 9) 

16 injured 

  

• Isometric Strength with Hand Held 

Dynamometer (HHD) for hip muscles  

• Q-angle   

 

 No significant deference was 

reported in this study 

13 

Noehren et al. (2013) 

2 Years 

400 female runners 

Age (18-45) years 

34 injured 

• Kinematics (3D) during running over 25 m 

3.7 (±5) speed 

• HADD 

• Hip internal rotation  

• Rearfoot eversion  

 

 Increase of HADD 

14 

Holden et al. (2015) 

2 years 

73 adolescent females 

Age (12.9 ±0.35) years 

8 injured 

• Medial knee displacement (2D) during DVJ  significantly increased in FPPA (mean 

difference = 7.79°; P = 0.002; partial 

eta squared = 0.07) 

 2D, 3D, DVJ Validity: 

(r = 0.946; r2= 0.894; P < 0.001) 

15 

Herbst et al. (2015) 

Basketball season  

329 female adolescent 

basketball players 

Middle schools   

(255 complete)   

38 injured  

• Isokinetic strength with dynamometer for 

knee flx/ext (con/con) from 90° sitting at 

300°/s and hip abduction from standing  

 

 Greater normalised hip strength  
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3.3.3. Participants  

Numbers of participants  

The total number of participants included in the 15 studies was 3,640, ranging between 62 and 

1,319 per study, and the number of individuals who developed PFP was 381, ranging between 

5 and 60. (Figure 3.2). 

 

Figure 3.2 Numbers of participants and injuries 
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3.3.4. Follow-up periods  

Follow-up periods of the included studies ranged between 6 weeks and 2.5 years (Figure 3.3). 

 

Figure 3.3 Length of the follow-up period in weeks 

3.3.5. Types of population and participants  

With regard to the participants in the selected studies, six studies included only females 

(Duvigneaud et al., 2008, Thijs et al., 2011, Noehren et al., 2013, Herbst et al., 2015, Holden 

et al., 2015, Myer et al., 2015), three studies included only males (Milgrom et al., 1991, Van 

Tiggelen et al., 2004, Van Tiggelen et al., 2009), and six studies included a mixture of males 

and females (Witvrouw et al., 2000, Stefanyshyn et al., 2006, Thijs et al., 2007, Thijs et al., 

2008, Boling et al., 2009, Finnoff et al., 2011). From a total of 1,946 female participants, 594 

were injured, while the number of injured male participants was 175 from a total of 1,694 

(Figure 3.4).  

 

The research population is divided into three main groups: military personnel, athletes >17, 

and students <17 (Figures 3.5 and 3.6). With regard to military personnel, 6 studies assessed 

2,030 participants, 219 of whom were injured (Milgrom et al., 1991, Van Tiggelen et al., 2004, 
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Thijs et al., 2007d, Duvigneaud et al., 2008, Boling et al., 2009, Van Tiggelen et al., 2009); in 

the athletes’ group, 5 studies assessed 941 participants, 98 of whom were injured (Witvrouw 

et al., 2000, Stefanyshyn et al., 2006, Thijs et al., 2008, Thijs et al., 2011, Noehren et al., 2013); 

and in the students’ or <17 group, 4 studies assessed 666 participants, 65 of whom were injured 

(Finnoff et al., 2011, Herbst et al., 2015, Holden et al., 2015, Myer et al., 2015). 

 

 

Figure 3.4 Male and female participants with percentage of injuries 
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3.3.6. Risk factors  

3.3.6.1. Demographic characteristics  

There is strong evidence from the pooled data from multiple studies, 5 HQ studies (Van 

Tiggelen et al., 2009; Duivgneaud et al., 2008; Thijs et al., 2007; Van Tiggelen et al., 2004; 

Milgrom et al., 1991) and 4 MQ studies (Holden et al., 2015; Thijs et al., 2011; Myer et al., 

2010; Thijs et al., 2008) (indicated that there is no association between height and development 

of PFP, (Figure3.7). There is strong evidence from 3 HQ studies (Thijs et al., 2007; Van 

Tiggelen et al., 2009;  Holden et al., 2015) and 4 MQ studies (Thijs et al., 2008; Myer et al., 

2010; Thijs et al., 2011;Noehren et al., 2013), showing no association between PFP and age (I2 

= 25%, SMD 0.4; 95% CI: -0.14 - 0.23) (Figure 3.8). There is strong evidence from 7 HQ 

studies (Milgrom et al., 1991; Witvrouw et al., 2000; Van Tiggelen, 2004; Thijs et al., 2007; 

Duvigneaud et al., 2008; Van Tiggelen et al., 2009; Holden et al., 2015) and four MQ studies 

( Thijs et al., 2008; Myer et al., 2010; Thijs et al., 2011; Finnoff et al., 2011), showing no 

association between PFP and mass (I2 = 0%, SMD 0.02; 95% CI: -0.12 to 0.16) (Figure 3.9).  

There is limited evidence from one HQ study (Boling et al., 2009) that females were at a higher 

risk of devoloping PFP.  

 

Figure 3.7 Forest plot: Association between PFP and height grouped according to age and sex 
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Figure 3.8 Forest plot: Association between PFP and age  

 

 

 

Figure 3.9 Forest plot: Association between PFP and mass according to age  

 

3.3.6.2. Physical fitness  

17 variables in four studies assessed the relationship between physical fitness parameters and 

PFP (Milgrom et al., 1991; Witvrouw et al., 2000; Duivgneaud et al., 2008; Myer et al., 2010). 

Pooling was possible for two variables. Pooled data showed that there is moderate evidence 

from one HQ study (Witvrouw et al., 2000) and one MQ study (Myer et al., 2010) of an 

association between PFP and decreased of height of vertical jump (I2 = 0%, SMD -0.50; 95% 

CI: -0.38 to 0.16) (Figure 3.10).  



54 
 

 

 

Figure 3.10 Forest plot: Association between PFP and vertical jump (cm)  

 

Additionally, limited evidence from one HQ study (Duivgneaud et al., 2008) identified that 

individuals who developed PFP were participated in sports fewer hours per week when 

compared with those who did not (SMD -0.73; 95% CI: -1.25 to -0.21). 

 

3.3.6.3. Lower limb alignment and static measurement  

Foot and ankle characteristics 

Static foot and ankle characteristics were assessed using 10 variables in four studies (Milgrom 

et al., 1991; Witvrouw et al., 2000; Thijs et al., 2008; Boling et al., 2009). Limited evidence 

from one HQ study (Boling et al., 2009) showed that individuals who developed PFP have a 

greater navicular drop when compared to control group (SMD, 0.33; 95% CI: 0.02 to 0.65)  

 

Lower limb length difference and lower limb angles  

Lower limb length difference was measured in two studies (Milgrom et al., 1991; Herbst et al., 

2015), and no association was found between leg length and PFP. Knee valgus, was measured 

statically in a single study (Myer et al., 2010). In study of Myer et al., (2010) knee valgus was 

measured using 3D from standing position by measuring the knee angle of the lower limbs, 

and no association was found between knee valgus and PFP. Milgrom et al. (1991) used the 

medial tibial intercondylar distance in centimetres to assess lower limb alignment and found 

that larger medial tibial intercondylar distance was a predictor of the occurrence of PFP.  

 

Q-angle 

Three studies measured the difference between the Q-angle in individuals who developed PFP 

and in those who did not (Witvrouw et al., 2000; Boling et al., 2009; Thijs et al., 2011). Pooled 

data (Figure 3.11) showed strong evidence from two  HQ studies (Witvrouw et al., 2000; 

Boling et al., 2009) and one MQ study (Thijs et al., 2011) showed no association between static 

Q-angle and development of PFP (I2 = 0%, SMD -0.02; 95% CI: -0.25 to 0.21) (Figure 3.11).  
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 Figure 3.11 Forest plot: Association between PFP and Q-angle (°)  

 

3.3.6.4. Muscle strength  

Knee muscle strength 

Peak torque of knee extensors 

The peak torque of knee extensors was examined in 16 variables in four studies (Witvrouw et 

al., 2000; Van Tiggelen et al., 2004; Duvigneaud et al., 2008; Herbst et al., 2015). Pooling data 

was possible for 12 variables in two studies (Van Tiggelen et al., 2004; Duvigneaud et al., 

2008). There is moderate evidence from two HQ studies (Van Tiggelen et al., 2004; 

Duvigneaud et al., 2008) showing that the concentric peak torque values for knee extensors at 

60°/s and 240°/s , the concentric peak torque values for knee extensors at 60°/s and 240°/s 

normalised by body mass, and the concentric peak torque values for knee extensors at 60°/s 

and 240°/s normalised   to body mass index BMI at 60°/s and 240°/s were significantly lower 

in individuals who developed PFP, compared to the control group (I2 = 0%, SMD -0.66; 95% 

CI: -0.99 to -0.32 and I2 = 17%, SMD -0.48; 95% CI: -0.81 to -0.15, respectively),  (I2 = 0%, 

SMD -0.61; 95% CI: -0.95 to -0.28 and I2 = 0%, SMD -0.53; 95% CI: -0.87 to -0.20, 

respectively), and  (I2 = 0%, SMD -0.69; 95% CI: -1.02 to -0.35 and I2 = 0%, SMD -0.51; 95% 

CI: -0.84 to -0.18, respectively) (Van Tiggelen et al., 2004; Duvigneaud et al., 2008) (Figure 

3.12 – 3.17).  

  

 Figure 3.12 Forest plot: Association between PFP and peak torque of knee extensors 60/s 
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Figure 3. 13 Forest plot: Association between PFP and peak torque of knee extensors 240/s 

 

 
Figure 3.14 Forest plot: Association between PFP and peak torque of knee extensors 60/s %BW 

 

 

 
Figure 3.15 Forest plot: Association between PFP and peak torque of knee extensors 240/s %BW 

 

 
Figure 3.16 Forest plot: Association between PFP and peak torque of knee extensors 60/s %BMI 

 

 
Figure 3.17 Forest plot: Association between PFP and peak torque of knee extensors 240/s %BMI 
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Peak torque of knee flexors  

Four studies examined the peak torque of knee flexors of 11 variables (Witvrouw et al., 2000; 

Van Tiggelen et al., 2004; Duvigneaud et al., 2008; Herbst et al., 2015). Pooling was possible 

for two variables and showed that there is limited evidence in two HQ studies (Van Tiggelen 

et al., 2004; Duvigneaud et al., 2008) showing no association between the concentric peak 

torque of knee flexors measured at 60°/s and 240°/s and the development of PFP (I2 = 0%, 

SMD -0.09; 95% CI:-0.42 to -0.24 and I2 = 0%, SMD -0.10, -0.43 to -0.22, respectively) 

(Figure 3.18 – 3.19).  

 

 
Figure 3.18 Forest plot: Association between PFP and peak torque of knee flexors 60/s  

 

 
Figure 3.19 Forest plot: Association between PFP and peak torque of knee flexors 240/s  

 

Peak torque ratio of knee flexors/extensors 

Limited evidence from one HQ study (Duivgneaud et al., 2008) identified that the peak torque 

ratios of knee flexors/extensor at 60°/s and 240°/s were statistically significantly higher in 

individuals who developed PFP when compared to the healthy group (SMD 0.59; 95% CI: 0.08 

to 1.11 and SMD 0.58; 95% CI: 0.07 to 1.10, respectively), and no association was found for 

eccentric peak torque of knee flexion and knee extension at 30°/s. 

 

Knee extensors muscle strength  

There is moderate pooled evidence from two HQ studies (Milgrom et al., 1991; Boling et al., 

2009) showing relationship between decreased of quadriceps muscle strength and the 

development of PFP (SMD -.22; 95% CI: -0.42 to -0.01) (Figure 3.20).  
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Figure 3.20 Forest plot: Association between PFP and knee extensors muscle strength 

 

Hip muscle strength 

Peak torque of hip abductors  

A moderate evidence from two MQ studies (Finnoff et al., 2011; Herbst et al., 2015) was 

identified that individuals who developed PFP have a greater peak torque of hip abductors at 

120°/s when compared to control (SMD 0.71; 95% CI: 0.39 to 1.04) (Figure 3.21).  

 
Figure 3.21 Forest plot: Association between PFP and Peak torque of hip abductors  

 

Hip muscle strength  

Two studies investigated the relationship between PFP and hip muscle strength by means of 

19 variables (Boling et al., 2009; Thijs et al., 2011; Finnoff et al., 2015). Pooling of data was 

possible for eight variables (i.e. hip abductors, extensors, external rotators, and internal 

rotators) in two studies (Boling et al., 2009; Thijs et al., 2011). There is moderate pooled 

evidence from one HQ study (Boling et al., 2019) and one MQ study (Thijs et al., 2011) 

indicating that individuals who developed PFP have lower hip abductor muscle strength (in 

Newton, normalised to body mass) than the control group (I2 = 0%, SMD -0.29; 95% CI: -0.56 

to -0.02) (Figure 3.22). In addition, moderate pooled data also shows that no significant 

association was found between hip extensor strength (I2 = 0%, SMD -0.21; 95% CI: -0.48 to -

0.07), hip external rotator strength (I2 = 0%, SMD -0.23; 95% CI: -0.51 to 0.04), and hip 

internal rotator strength (I2 = 0%, SMD -0.19; 95% CI: -0.46 to 0.09) and the development of 

PFP, (Figure 3.23 – 3.25). 
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Figure 3.22 Forest plot: Association between PFP and hip abductor strength  

 

 

Figure 3.23 Forest plot: Association between PFP and hip extensor strength  

 

 

Figure 3.24 Forest plot: Association between PFP and hip external rotator strength  

 

 

Figure 3.25 Forest plot: Association between PFP and hip internal rotation strength  

3.3.6.5. Muscle timing  

Electromyographic (EMG) onset timing between vastus medialis obliquus (VMO) and vastus 

lateralis (VL) muscles was assessed in two studies (Witvrouw et al., 2000; Van Tiggelen et al., 

2009). Limited evidence from one HQ study (Van Tiggelen et al., 2009) indicated that 

individuals with PFP demonstrated a significant delay of onset of VMO regard to the onset of 

VL electromyographic activity compared to the healthy control. Limited evidence from one 

HQ study (Witvrouw et al., 2000) showed significant alterations of response time in VMO and 
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VLO in participants who developed PFP compared with those who did not (SMD -0.50; 95% 

CI: -0.92 to -0.08 and SMD -0.64; 95% CI:-1.06 to -0.22, respectively).  

 

3.3.6.6. Kinematics 

Hip kinematics  

Five variables in two studies assessed the kinematic differences of the hip movement between 

the participants who developed PFP and those who did not (Boling et al., 2009; Noehren et al., 

2013). Boling et al. (2009) measured hip flexion during drop vertical jump (DVJ) tests. No 

association was found between hip flexion and the development of PFP (Boling et al., 2009). 

Boling et al. (2009) reported an increase (not significant) in hip internal rotation in the PFP 

group, 7.6º (±8.9º) injured/7.2º (±8.4º) in uninjured group, and used a regression model that 

was able to significantly predict the development of PFP (P = 0.04) with this increase. HADD 

was assessed in two studies (Boling et al., 2009; Noehren et al., 2013), and very limited 

evidence from one MQ study (Noehren et al., 2013) identified an association between HADD 

and PFP using 3D analysis during running. Greater HADD angle during running was a 

significant predictor for the development of PFP (SMD 0.91; 95% CI: 0.55 to 1.27) (Noehren 

et al., 2013). 

 

Knee kinematics 

The relationship between dynamic knee angles (flexion, valgus, and internal rotation) and the 

incidence of PFP was assessed in three studies during jump-landing and DVJ involving eight 

variables (Boling et al., 2009; Myer et al., 2010; Holden et al., 2015), with pooling being 

possible for three variables. There is moderate evidence from two HQ studies (Boling et al., 

2009; Holden et al., 2015) and one MQ study (Myer et al., 2010) indicating that individuals 

who developed PFP demonstrated greater knee valgus than those who did not (I2 = 98%, SMD 

2.52; 95% CI: -0.03 to 5.07 (Figure 3.26). 

 
Figure 3.26 Forest plot: Association between PFP and knee valgus (°) 
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Boling et al. (2009) evaluated dynamic knee flexion with 3D during a jump-landing task and 

reported significant decrease in knee flexion angle (c.4-5°) in participants with PFP.  

Foot and ankle kinematics  

The association between increase in dynamic rearfoot eversion and PFP has been investigated 

prospectively in a single study (Noehren et al., 2013). Noehren et al. (2013) assessed the 

rearfoot eversion angle in 400 female runners when running at a speed of 3.7 m.s-1 (±5%) along 

a 25 m runway, using 3D motion analysis. No association was found between rearfoot eversion 

and PFP in this study. 

3.3.6.7. Kinetics  

Joint moments and vertical ground reaction force  

Three studies investigated kinetic variables (Stefanyshyn et al., 2006; Boling et al., 2009; Myer 

et al., 2010). Knee valgus load was evaluated in two studies during running and landing tasks 

(Stefanyshyn et al., 2006; Myer et al., 2010). Very limited evidence from one MQ study (Myer 

et al., 2010) indicated that greater knee abduction moment at initial contact during landing was 

associated with the occurrence of PFP, (SMD 0.53; 95% CI:-0.02 to 1.09). Limited evidence 

from one HQ study (Stefanyshyn et al., 2006) showed that individuals who developed PFP had 

significantly (P = 0.042) higher knee abduction impulses during the stance phase of the baseline 

assessment than those who did not develop the injury (SMD 1.25; 95% CI: 0.34 to 2.17). 

There is limited evidence from one HQ study (Boling et al., 2009) detected that individuals 

with PFP have a reduction in the vertical ground reaction force when compared to the control 

group (SMD -0.34; 95% CI: -0.65 to -0.02).  

3.3.6.8. Plantar pressure  

Foot plantar pressure was evaluated in two studies by means of 45 variables (Thijs et al., 2007b; 

Thijs et al., 2008). Limited evidence from one HQ study (Thijs et al., 2007), showed that 

individuals with PFP had shorter time to maximal pressure on the fourth metatarsal (small SMD 

-0.45, -0.85 to -0.06), increase in the lateral pressure distribution at initial contact of the foot 

(SMD -0.36; 95% CI: -0.75 to 0.04), and slower maximal velocity of the change in lateromedial 

direction of the centre of pressure during the forefoot contact phase (SMD -0.81; 95% CI: -

1.22 to -0.41) during the baseline assessment  of walking, and  very limited evidence from one 

MQ study indicated that individuals with PFP had higher vertical peak force underneath the 

lateral heel (SMD -0.50; 95% CI: -0.02 to 1.02), metatarsal two (SMD 0.65; 95% CI: 0.12 to 

1.17) , and metatarsal three (SMD 0.60; 95% CI: 0.07 to 1.12) during running. 
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3.4. Discussion  

This review examined the risk factors that have been reported to relate to the development of 

PFP. The results show that there is moderate evidence indicating that lower knee extensor 

strength, lower hip abductor strength and greater hip abductor torque (conflicted results), 

greater knee valgus, and decreased vertical jump are significantly associated with the 

occurrence of PFP. The pooled data for the Q-angle, hip flexor, extensors, external and internal 

rotation, and peak torque of knee flexors at 240°/s and 60°/s showed no difference between the 

individuals with PFP and healthy controls. 

These findings are in accordance with two previous systematic reviews (Pappas & Wong-Tom, 

2012; Lankhorst et al., 2012), in regard to decreased knee extensors muscle strength where 

both reviews included seven studies, which were slightly different, due to the variation in the 

data sources and inclusion and exclusion criteria of the search. Pappas & Wong-Tom, (2012) 

included (Boling et al., 2009; Milgrom et al., 1991; Thijs et al., 2007; Thijs et al., 2008; Van 

Tiggelen et al., 2009; Witvrouw et al., 2000; Myer et al., 2010) and Lankhorst and colleagues 

included (Boling et al., 2009; Milgrom et al., 1991; Thijs et al., 2007; Van Tiggelen et al., 2004; 

Van Tiggelen et al., 2009; Witvrouw et al., 2000; Duivgneaud et al., 2008). Because the two 

previous systematic reviews included only seven studies and the meta-analysis was based on 

pooled results from multiple studies, a limited number of variables were possible to be pooled 

and several risk factors were described individually, each in a single study. 

In the pooled analysis of the Q-angle, three prospective studies were included, none of which 

detected a significant difference between the PFP group and the control group, whereas several 

retrospective studies reported a significantly larger Q-angle in PFP individuals when compared 

to the healthy control group (Aglietti et al., 1983; Messier et al., 1991; Haim et al., 2006; 

Emami et al., 2007). However, if the Q-angle is seen as a risk factor, then the position at which 

the measurements are taken needs to be appraised. In Witvrouw et al. (2000), the measurement 

was taken statically from a supine position, which did not reveal changes in the alignment of 

the lower extremities during weight bearing. In an earlier study, significant differences between 

the measurement of the Q-angle in standing and supine positions were found by Woodland and 

Francis (1992) and, consequently, the standing position was recommended. This could be due 

to the fact that the sample size was 77 female runners, which may be too small to elicit 

differences between the participants who developed injuries and those who did not, as in the 

study of Thijs et al. (2011). Another reason could be the proportion of participants who 
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developed PFP (only 3% out of 1,319) compared to the number of participants in the study, 

given the lack of information regarding medical records and the self-treatment of PFP, as stated 

in the study’s limitations (Boling et al., 2009).  

In addition to the significantly larger knee valgus of PFP individuals, the pooled data shows a 

large statistical heterogeneity between three studies, which may be a result of methodological 

differences in the studies, e.g. using 3D analysis in Myer et al. (2010) and Boling et al. (2009) 

while using 2D in Holden et al. (2015), or a lack of unanimity regarding the methods used to 

measure knee valgus. Such disparities may also due to the differentiation between the 

performance tasks or differences in the participants’ ages. Contradictory findings were found 

in knee valgus measurements. Only one of the three pooled studies reported a significant knee 

valgus increase in the PFP group, relative to the control group (Holden et al., 2015). The other 

two studies, Boling et al. (2009) and Myer et al. (2010), found that the knee valgus of injured 

participants was smaller (not significant) when compared to non-injured participants. In Myer 

et al. (2010), there was a significant increase in the knee abduction moment of individuals who 

developed PFP, compared to the control group (Myer et al., 2010). Therefore, it is questionable 

how this increase in moment cannot create an increase in angle. 

In the current review there is conflicting results from pooled data for muscle strength of hip 

abductors. Four studies investigated the relationship between the development of PFP and 

muscle strength of hip abductors (Boling et al., 2009; Thijs et al., 2011; Finnoff et al., 2011; 

Herbst et al., 2015). Two of these studies, one HQ study (Boling et al., 2009) and one MQ 

study (Thijs et al., 2011) assessed hip abductors muscle strength using HHD which being held 

by the assessor hand and normalized the results to body mass. Pooled data of the two studies 

indicated decreased of hip muscle strength in individuals how were developed PFP compared 

to healthy. The other two MQ studies (Finnoff et al., 2011; Herbst et al., 2015) investigated hip 

abductors muscle strength by torque using isokinetic dynamometer in Herbst and colleagues 

and HHD in Finnoff and colleagues. Both of the two studies report increase in hip abductors 

peak torque in participants with PFP and Pooled data of the two studies indicated same results 

that individuals with PFP had greater hip abductors muscle strength during the baseline 

assessment compared to control group. This result may be due to that in Herbest et al., (2015) 

assessed peak torque of hip abductors muscles with isokinetic dynamometer at 120 deg/s 

angular velocity which my higher than the normal velocity action of hip abductors and not 

revealed the real peak torque, or it may be due to that in Finnoff et al., (2011) assessed beak 
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torque of hip abductors isometricaly using HHD which was held by the hand of assessor and 

the subjects were poorly stabilized in addition to that the dynamometer was placed proximal to 

the ankle joint while the appropriate position of the HHD for hip abductor assessment is 

proximal to the knee joint. Therefore, it is may be needed further investigation to confirm the 

association between development of PFP and muscle strength of hip abductor.      

The pooled data of two studies show that the muscle strength in hip extensors is lower in 

individuals with PFP, and although it is not significant, a positive trend towards lower muscle 

strength for hip extensors in individuals with PFP. However, due to the decrease in the pooled 

studies, hip extensors appear to be a risk factor for the development of PFP injury. 

The author theorised, if we went back to the beginning and undertake the systematic review 

and meta-analysis based on only the included military studies in this review, there will only be 

six included studies (Milgrom et al., 1991, Van Tiggelen et al., 2004, Thijs et al., 2007, 

Duvigneaud et al., 2008, Boling et al., 2009, Van Tiggelen et al., 2009). The results of pooled 

data have shown that there is moderate evidence indicating that lower knee extensor muscle 

strength was a risk factor. The other risk factors could not be pooled due to the limited number 

of included studies.  

From the current review, agreement in the prospective studies’ findings could be influenced by 

several issues, such as the homogeneity of samples, the validity and reliability of the 

measurements, the variability of measurement methods, the period of data collection, and the 

length of follow-up time. 

Although there is homogeneity with regard to participants’ demographic characteristics and 

follow-up activity, there exists unknown data related to the activities undertaken by the 

participants for the rest of the day, e.g. in the studies based on athletes or runners. These 

unknown actives may be different in nature, load, and intensity, from one participant to another, 

which could affect the research findings. Recruits in basic military training at the beginning of 

military service are the most homogenised population for prospective studies, since all 

participants are undertaking almost exactly the same activates during the day. The second 

factor is the validity and reliability of the measurements. In this sense, the validity and 

reliability of the measurements for assessing muscle strength in some studies are questionable 

(Boling et al., 2009; Thijs et al., 2011; Finnoff et al., 2015), which could be due to errors 

resulting from the HHD used to measure muscle strength being held by the experimenter or not 
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being stabilised sufficiently to provide steadied resistance. The variability of measurement 

methods, e.g. measurement position, measurement tool, or screening tasks, between the studies 

is also an important factor that may cause a variety of findings.  

In addition, the length of the data collection period and follow-up times are two additional 

factors. In this sense, the data collection is expected to take months, due to the time needed 

with each participant in some large studies (e.g. when using 3D analysis), leading to an increase 

in the time between the measurement of the first participants and the measurement of the last 

participants, which will cause differentiation between each participant’s baseline test levels. 

Participants’ levels of fitness at the baseline measurements could differ from one participant to 

another due to the type and amount of activities that were received during the time gap between 

them. Findings from some studies may be influenced by long follow-up times, due to other 

factors that could occur and affect the participants, such as changes in young participants’ 

internal factors, since they are in the process of growing, or changes in any external factors. 

3.5. Conclusion 

Several issues were addressed in the literature review in chapter two and the systematic review 

in the current Chapter, that are considered as limitations of the previous prospective studies 

such as lack of validity and reliability, heterogeneity of sample, long duration of data collection, 

long follow-up time, and high cost of instruments. The meta-analysis shows that there are a 

limited number of pooled variables for each risk factor, and there was conflicting evidence in 

some cases or significant heterogeneity in others. However, it does show that there is moderate 

evidence indicating that lower knee extensor strength, lower hip abductor strength and greater 

hip abductor torque, greater knee valgus, and decreased vertical jump are significantly 

associated with the occurrence of PFP. The current systematic review divided the studies 

participants into three groups (military, athletes and students). It was focused for the first time 

on length of follow up period, duration of data collection, validity and reliability of 

measurement methods in addition to the biomechanical risk factors.   

Therefore, there is a need for further investigation into a number of variables including hip 

abductor strength due to conflicting results, knee extensors that were confirmed only with 

isokinetic dynamometer, dynamic Q-angle due to negative findings with static Q-angle, 

dynamic knee valgus due to high heterogeneity in addition to others lower limb kinematic, to 

be undertaken in future studies in order to confirm if they are related to the risk of injury. 
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In this regard, we will employ for first time 2D for FPPA and HHD within the Saudi military 

population in order to screen for potential biomechanical PFJ injury risk. This aims to detect 

the biomechanical differences between the individuals with and without PFP, with low cost, 

portable, and easy to use tools in order to increase the ease and capacity of screening individuals 

who are at risk of PFP. Thus, before the use of these measurement tools, their reliability and 

validity against the gold standard (3D and isokinetic dynamometer) will be assessed in the 

following chapter.   
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CHAPTER 4 

Validity and reliability of 2D analysis and HHD for kinematics and strength assessment 

of the lower limb 

This chapter contains two separate, though related, studies. The first study is pilot work using 

data collected by Faisal Alenezi whilst undertaking his PhD, the author analysed the 2D data 

collected but not used in Alenezi’s studies, to assess the reliability of 2D analysis for FPPA 

and HADD and its validity against the data from the 3D motion capture system using Qualysis 

Tracking Manager (QTM) which is 3D motion capture system and Visual3D which is 

biomotion modeling and analysis software. The analysis of the 3D data solely was published 

in Journal of Electromyography and Kinesiology in 2017 (Herrington et al., 2017) (Appendix 

B). 

The second study, assessed the reliability of 2D analysis for lower limb kinematics, and its 

validity against 3D system using QTM only, and assessing the reliability of HHD measurement 

for knee extensors and hip abductors muscle strength and its validity against isokinetic 

dynamometry.  

4.1. Study 1: The validity and reliability of the FPPA and HADD angle 

4.1.1. Aims 

 The aims of this section are therefore to:  

a) Assess the reliability of 2D analysis for FPPA and HADD during RUN, SLS, and 

SLL to screen for PFP development injury occurrence in addition to the other lower 

limb injuries.  

b) Assess the relationship between 2D and 3D motion analysis for FPPA and HADD 

during RUN, SLS, and SLL to screen for PFP development injury occurrence in 

addition to the other lower limb injuries.  

4.1.2. Introduction 

Patellofemoral pain (PFP) is the most common cause of knee pain in orthopaedic outpatients. 

It is defined as the pain behind or around the patella that increases with weight-bearing 

activities, such as squatting, running, and stair ambulation (Crossly et al., 2016). It is the result 

of an imbalance in the forces controlling patella tracking during knee flexion and extension, 

particularly in regard to joint overloading. In sports medicine, PFP is diagnosed in about 25% 
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of all running injuries (Devereaux and Lachmann, 1984). Patellofemoral pain has been 

suggested as a multifactorial disorder that can result in the demonstration of dynamic knee 

valgus (Hewett et al., 2005; Willson & Davis, 2008; Boling et al., 2009; Souza and Powers, 

2009). The identification of individuals who demonstrate excessive dynamic knee valgus 

during common athletic tasks may help to modify this pattern of movement or to reduce the 

risk of injury. 

Motion analysis is commonly used in sports medicine research to investigate the risk of injury. 

Due to the high accuracy and reliability of 3D analysis in quantifying kinematic variables, it is 

extensively used in athletic tasks. This method is considered as a gold standard for this type of 

analysis. However, in injury prevention programmes, there is a need for large-scale screening 

within the field in order to identify high-risk athletes. 3D motion analysis has been widely used 

to evaluate kinetic and kinematic variables during lower limb movement. It has been 

considered as the gold standard for the assessment of individuals who are at a high risk of knee 

injury (Mclean et al., 2005). Although 3D motion analysis is the gold standard for motion 

analysis, it is not used frequently in screening programmes, which may be due to the high cost 

of the equipment, the time required for processing and analysing the data collected and the 

training needed to use it effectively. As an alternative technique to 3D motion analysis, 2D 

analysis has been used to quantify hip and knee kinematics (Munro et al., 2012). However, 2D 

motion analysis has inherent limitations due to the perspective error that occurs when 

measuring kinematics not perpendicular to the camera. In this sense, 2D motion analysis is 

possibly not suitable for the assessment of any motion that is not purely uniplanar and has 

multiplane kinematics, such as dynamic knee valgus, which not only contains knee abduction 

and hip adduction in the frontal plane, but also tibial external rotation and hip internal rotation 

in the coronal plane (Malfait et al., 2014). A previous study by McLean et al. (2005) confirms 

this by noting that the 2D measurement of dynamic knee valgus angle was influenced by 

rotations in the hip and knee joints.  

The level to which the non-uniplanar can be reflected in the uniplanar knee motion, measured 

with 2D motion, has only been investigated in a limited number of studies, which have 

investigated the relationship between the 2D and 3D motion of hip and knee kinematics 

(McLean et al., 2005; Willson & Davis, 2008; Norris & Olson, 2011; Olson et al., 2011; Munro 

et al., 2012; Sorenson et al. 2015). McLean et al. (2005) assessed the relationship between 2D 

and 3D motion analysis for frontal plane knee kinematics during side-jumping, side-stepping, 

and shuttle runs and found a strong correlation between 2D and 3D motion analysis at the peak 
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of the knee abduction angle during side-stepping (r=0.76) and side-jumping (r=0.80), whereas 

the correlation was low (r=0.20) during shuttle runs (McLean et al., 2005). Sorenson et al. 

(2015) investigated the relationship between 2D and 3D analysis in knee and hip kinematics 

during single leg drop landings, and they report that the 2D knee frontal plane projection angle 

had a moderate relationship with the 3D knee abduction angle (R2=0.72), and the 2D hip 

adduction angle had a strong correlation with the 3D hip adduction angle (R2=0.52). Gwynne 

& Curran (2014) report a strong correlation between FPPA and 3D knee abduction (r=0.78) 

during single leg squats, while Willson & Davis (2008) report that 2D FPPA reflected 23 – 

30% of the variance of 3D kinematics during single leg squats. In addition, FPPA significantly 

correlated with the hip adduction angle (r=0.32). However, none of these studies examined the 

relationship between 2D FPPA and other lower limb kinematics in other planes. 

A limited number of studies that investigated 2D FPPA reliability during SLS, SLL, and RUN 

were found in the literature (Munro et al., 2012; Gwynne & Curran, 2014). 2D analysis for 

FPPA measurements was found to have good to excellent between-day reliability (ICCs=0.72-

0.91) and good within-day reliability (ICCs=0.59-0.88) during DJ, SLL, and SLS (Munro et 

al., 2012). Frontal plane projection angle has been assessed as a technique in the analysis of 

dynamic knee valgus to predict the risk of PFP injury (McLean et al., 2005; Willson & Davis, 

2008; Norris & Olson, 2011; Olson et al., 2011; Munro et al., 2012). However, none of these 

studies have reported the reliability of 2D motion analysis for the measurement of hip 

adduction angle during SLS, SLL, and RUN tasks. 

The purpose of this study was to assess the validity and reliability of 2D analysis for the 

kinematic assessment of the lower extremity; in particular, this study aims to assess the intra- 

and inter-tester, and within- and between-day reliability of the measurement of HADD and 

FPPA during SLS and SLL, in addition to assessing the validity of these measurements against 

3D motion analysis.  

4.1.3. Methods 

4.1.3.1. Participants  

Fifteen healthy and physically active individuals (six male and nine female) from the 

University of Salford’s staff and students volunteered for the study. The participants had an 

average age of 25.86 years (SD ± 5.28), an average mass of 66.27 kg (SD ± 10.25), and an 

average height of 166.95 cm (SD ± 7.6). All participants were accepted on the condition that 
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they participated in sports for at least three hours a week, had no history of knee complaints or 

surgery, and were in good physical condition. 

Procedures 

Data collection work in this study was collected as the following procedures.   

4.1.3.2. Two-dimensional motion analysis procedure  

2D Instrumentation 

One commercial video camera (Casio Exilim F1), sampling at 30Hz, was placed on a levelled 

tripod 9 m in front of the centre of the capturing area, at a height of 60cm, and set at standard 

mode (30fps) to capture the markers of FPPA and HADD angle during kinematic movements. 

A Brower Timing Gate System (TC-Timing System, USA) was used to monitor the running 

speeds. 

2D Calibration  

The video camera was adjusted with a 10x optical zoom throughout each trial in order to 

standardise the position of camera to the participants, and it was calibrated with a 100cm square 

frame (Figure 4.1) using Quintic Biomechanics software package (Version 26) for digitising 

2D. 

 
Figure 4.1 100cm square frame 

2D Marker placement and preparation  

For 2D analysis, five markers were placed on the FPPA anatomical references, which were 

employed by Willson et al. (2006). In this sense, markers were placed on the right lower limb 

at the midpoint of the ankle malleoli for the centre of the ankle joint, the midpoint of the femoral 
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condyles for the centre of the knee joint, the midpoint of the line from the anterior superior 

iliac spine to the knee marker at the proximal thigh, and two markers on both the right and left 

anterior superior iliac spine. The midpoints of the knee and ankle joints were determined 

manually using a standard tape measure. The method of placing markers to determine the centre 

of the joint has been shown to increase intra- and inter-rater reliability, in comparison to the 

approximation of joint centres with video digitisation (Bartlett et al., 2006). All markers were 

placed by the same examiner. The placement of the 2D markers is illustrated in Figure 4.2.  

 

Figure 4.2   2D markers placement 

 

4.1.3.3. Three-dimensional motion analysis procedure  

3D Instrumentation  

Ten infra-red (IR) cameras (Pro-Reflex, Qualisys), sampling at 240Hz frequency , passive 

retro-reflective markers, three force platforms (AMTI, USA), sampling at 1200Hz, and 

embedded into the running track, were used to collect the lower limb biomechanical data in 3D 

motion analysis during the different tasks. A Brower Timing Gate System (TC-Timing System, 

USA) was used to monitor the running speeds. A plan view of the procedure set up for 2D and 

3D can be seen in Figure 4.3.  
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Figure 4.3 Overview of the procedure set up. 

 

3D System calibration  

Each individual infra-red camera gives 2D view and needs to be converted to 3D workplace to 

analyse of coordinate data. The process of system calibrations was performed in two phases 

(static and dynamic). The static calibration was performed using a right L-frame with four 

reflective markers to define the position of the orientation of the ten cameras in relation to the 

co-ordinate system of the laboratory (Figure 4.4).  Dynamic calibration was then performed 

using T-shape handheld wand with fixed reflective markers at the two ends at a known distance 

(750.43mm) (Figure 4.4) in order to calibrate the volume that would be used during the 

dynamic trials. The captured time for dynamic calibration was 45 seconds to cover all 

calibration volume to be successfully calibrated and ready for data collection. 
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Figure 4.4  Calibration L-shaped frame (Left) and T-shaped handheld wand (right) 

 

3D Marker placement and preparation  

At the beginning of the procedure of data collection, twenty four reflective markers with 14.5 

mm diameter were attached to pelvis and both lower limbs’ anatomical landmarks, using 

double-sided tape. Pelvis  markers were placed on the right and left anterior superior iliac 

spines(ASIS), right and left posterior superior iliac spines(PSIS), right and left iliac crest, lower 

limbs markers were placed on greater trochanters, lateral and medial femoral condyles, lateral 

and medial malleoli, posterior calcanei, and the head of the first, second, and fifth metatarsals 

of both limbs. Foot markers were placed on standard training shoes. Then, four cluster plates, 

each consisting of four reflective markers, were attached with adhesive tape to the antero-

lateral aspect of the thigh and shank of both limbs and tightened with elastic bands. Previous 

work showed that using of clusters is the optimal configuration compared to separate markers 

attached to the skin (Manal et al., 2000). These markers were used to define the anatomical 

reference frame and the joints centres of rotation. In order to track the position of each segment 

in a three dimension space, three non-colinear markers supposed to be in view of at least two 

cameras during the capture time constantly (Cappozzo et al., 1996; Payton & Bartlett, 2008). 

The static trial markers, tracking markers and cluster plate are shown in Figures 4.5.  
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Figure 4.5 Static Trial Marker (Left) Tracking Markers (Right)  

 (Faisal Alenezi, 2015, PhD thesis) 

 

Before the beginning of testing, participants wore standard shoes (New Balance, UK) and 

compression shorts. They started with a three-minute warm-up on a cycle ergometer at a low 

intensity level. Then, the participants practiced the testing procedure for each of the three 

screening tasks (RUN, SLS, and SLL), which will be explained next for familiarisation. After 

the participants felt comfortable with all the tasks, the principle researcher placed the 2D and 

3D markers onto the participants’ lower limbs, as previously explained. 

 

 Each participant was asked to stand with his/her lower limbs in natural alignment and weight 

distributed equally on the force plate in a stationary position for ten seconds, with their hands 

crossed over their chests to insure that the hands are clear of the markers and all were in view 

of the cameras, in order to undertake a static trial. After this, the anatomical markers were 

removed and keeping 28 markers (2 markers on the right and left ASIS, 2 markers on right and 

left PSIS, 8 markers on both shoes, and the16 markers of the four clusters), as tracking markers, 

to start the screening tasks.  

 

4.1.3.4. Screening Tasks 

While both of 2D and 3D motion system were operating participants were asked to perform 

the following screening tasks:   
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Running  

Subjects ran over a ten-metre runway at their perceived maximal velocity, with a (±5%) range 

between the trials. Running speed was monitored using the previously mentioned timing gates. 

An acceptable trial was one in which the participant contacted the force plate with the whole 

of the right foot. The brower timing gate system was set approximately at hip-height in order 

to ensure that only one part of the body would cross the beam (Yeadon et al., 1999). Then, the 

speed of the participants was calculated by dividing distance by time. Three successful trials 

were recorded for all subjects (Figure 4.6). To minimise the effect of fatigue, all participants 

were given one to one-and-a-half minutes in order to rest between the trials (Beaulieu et al., 

2008; Cortes et al., 2010). 

 

Figure 4.6 Running Task 

Single leg squat 

Subjects were asked to stand on their right limbs in the middle of the force plate while bending 

their left limbs, without any contact between the two legs, as a starting position. From this 

starting position, subjects were asked to squat down as far as possible but no further than the 

thigh being parallel to the ground, while maintaining the trunk as upright as possible (Figure 

4.7), which is consistent with work of Zeller et al. (2003) and Dwyer et al. (2010). Each trial 

was conducted over a period of five seconds, using an electronic counter. The first count 

marked the initiate squat, the third count indicated the lowest point of the squat, and the fifth 

count indicates the end of the trial (Herrington, 2014). Before the trials, subjects were allowed 
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to practice SLS two to three times for familiarisation. This procedure was standardised for all 

subjects in the test, reducing the effects of velocity on the pattern of the knee joint movement. 

 

Figure 4.7 Single Leg Squat Task 

Single leg land  

Subjects were asked to stand, with a single limb, on a 30cm-high step and to step down and 

land as vertically as possible onto the force plate with the contralateral limb. This height was 

previously used by Yeow et al. (2010), Hargrave et al. (2003), and McNair and Prapavessis 

(1999). Subjects were asked to put their arms across their chest during landing in addition to 

ensuring that the contralateral leg was not in contact with any objects or the ground during the 

trial (Pappas et al., 2007; Pflum et al., 2004; Decker et al., 2003)  (Figure 4.8). 

 

Figure 4.8 Single Leg Landing Task 
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4.1.3.5. Data processing  

2D data processing  

2D videos were analysed using the Quintec Biomechanics software package (Version 26), in 

order to measure the FPPA, and HADD during SLS, SLL, and RUN. The FPPA was calculated 

by quantifying the angle formed between the line from the marker of the knee joint to the 

marker of the ankle and the line from the marker of the proximal thigh to the marker of the 

midpoint of the knee joint. The HADD angle was calculated by measuring the angle formed 

between the line between the two ASIS and the line from the marker of the midpoint of the 

right knee joint. The FPPA and HADD were measured at the frame that corresponded to the 

maximum knee flexion angle (Willson et al., 2006; Willson et al., 2008).  

3D data processing. 

In this study, Visual3D motion analysis system (Version 4.21, C-Motion Inc. USA) was used 

to calculate biomechanical data of lower limbs.  Motion and force plate data were filtered using 

a Butterworth 4th order bi-directional low-pass filter with cut-off frequencies of 12Hz for 

kinematic data and 25Hz for force plate data. The digital filters used to smooth the data help to 

minimise random noise, without any effect in the signal. The Butterworth filter is one of the 

common used filter in biomechanical research and it has been shown to be effective in 

removing random noise in kinetic and kinematic data (Winter et al., 1974). The selection of 

cut-off frequencies were based on the work of Yu et al. (1999). All lower limb segments were 

modelled as conical frustra, with inertial parameters estimated from anthropometric data 

(Dempster, 1959). An X-Y-Z Euler rotation sequence was used to calculate joint angles, where 

X stands for flexion-extension, Y stands for abduction-adduction, and Z stands for internal-

external rotation (Figure 4.9) (Alenezi et al., 2014; Malfait et al., 2014). In each trial, joint 

angles of the lower extremity were calculated at sagittal, frontal, and transverse planes, at each 

peak of knee flexion corresponding frame.  
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Figure 4.9 Lower limb segments and rotation according to the X-Y-Z Euler rotation sequence 

 

The calibration anatomical systems technique (CAST) was used to define the 6 degrees of 

freedom in order to determine each segment of the lower limbs’ movement during the trials 

(Cappozzo et al., 1995; Ford et al., 2007). The captured static trial of each participant that was 

collected with both of anatomical and tracking markers, acted as a baseline for the kinematic 

measurements of the lower limb during the movement trials using Qualysis Track Manager 

Software was used to create a kinematic model of the lower extremity with the Visual3D. This 

model was constructed with pelvis, thigh, shank, and foot. The anatomical markers provide a 

reference point for identification of bone movement using only tracking markers during 

movement trials.  
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4.1.3.6. Statistical analysis  

All data was analysed statistically using SPSS v20. The test of normality was applied for each 

variable by means of the Kolmogorov-Smirnov test. In addition, means and standard deviations 

of all variables were calculated and are presented below.  

Statistical analysis of reliability 

Reliability of 2D analysis of FPPA and HADD during SLS, SLL, and RUN  

The reliability test used the mean values from three trials and in FPPA and HADD during the 

screening tasks for all participants.  

Within-day and between-session reliability  

After analysing the 2D videos for each trial of all three sessions by the first experimenter (1st 

E), within-day reliability was assessed using session 1 (S1) and session 2 (S2) data, whereas 

data from S1 and session 3 (S3) was used to assess between-session reliability. Within- and 

between-session reliability was assessed with intra-class correlation (ICC) (Rankin and Stokes, 

1998), from which 95% confidence intervals (CI) and standard error of measurement (SEM) 

estimates were used in order to determine the error of measurements, which were calculated 

by using the following formula: SEM =SD(pooled)*√(1-ICC) (Harvill, 1991; Thomas et al., 

2005). A lower SEM indicates better reliability (Baumgartner, 1989). ICC alone cannot provide 

a full picture of reliability because it does not indicate the amount of disagreement between the 

measurements. Therefore, SEM enables researchers to distinguish whether changes seen 

between tests are real or due to a potential error in measurement (Deneger and Ball, 1993). 

Additionally, minimal detectable differences (MDD) were calculated using the following 

formula: MDD=1.96*√2*SEM. MDD in order to determine the amount of change in the 

variable needed to reflect a true difference and to be considered clinically significant or 

meaningful (Kropmans et al., 1999). 

Intra-tester reliability 

Intra-tester reliability was assessed using S1 data from ten randomly selected participants by 

the 1st E. The same trials of the ten randomly selected participants were analysed twice by the 

same experimenter (1st E), with a minimum of one week in between. The ICC was used to 

assess intra-tester reliability, and SEM and MDD were calculated to determine the error of 

measurement. 
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Inter-tester reliability 

The author was the first examiner (1st E (HA)) in this study, whereas the second examiner was 

PhD student Msaad Alzahrani (2nd E (MA)). The S1 data for all participants analysed by 1st E 

was then analysed by the second experimenter (2nd E (MA)) in order to assess inter-tester 

reliability. Written instructions for 2D analysis using Quintic software and the same 

methodology for calculating the variables used by the 1st E (HA) were given to the 2nd E (MA). 

In order to avoid potential bias, both testers were blinded to each other. The ICC was used to 

assess inter-tester reliability, and SEM and MDD were calculated to determine the error of 

measurement. 

The ICC values across all reliability assessments were interpreted from the criteria in Table 4.1 

(Coppieters et al., 2002).  

Table 4.1 Classification of Intraclass Correlation Coefficient (ICC) values 

ICC Value Classification 

< .40 Poor 

.40 - .70 Fair 

.70 - .90 Good 

> .90 Excellent 

 

Statistical analysis of the validity of 2D vs 3D  

The validity of 2D analysis was assessed using S1 3D data collected during the same session 

for all participants and analysed with Visual 3D. Pearson’s correlation coefficients (r) were 

used to assess the correlation between the 2D and 3D variables (kinematics of lower limbs 

during the three athletic tasks). 

Alpha levels were set at P<0.05, and grades of correlations ranged as in Table 4.2, as described 

by Hopkins et al. (2009). 

Table 4.2 Grades of correlation ranges 

Correlation range  (r) Grade 

0 – 0.3 Small 

0.3 – 0.5 Moderate 

0.5 – 0.7 Large  

0.7 – 1 Very large 
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4.1.4. Results 

4.1.4.1. Reliability  

Within-day reliability  

Table 4.3 Within-Day Intraclass Correlation Coefficients (ICC), 95% Confidence Intervals 

(CI), and SEM during SLS, SLL, and RUN 

Test Variable 
Session 1 

Mean (SD) 

Session 2 

Mean (SD) 
ICC 95%CI SEM MDD 

SLS 
FPPA(º) 11.25 (11.28) 9.22 (10.07) .941 .805 - .982 2.42 6.72 

HADD(º) 19.4 (8.73) 18.25 (7.71) .935 .786 - .980 1.99 5.52 

SLL 
FPPA(º) 11.22 (6.43) 11.75 (5.87) .977 .925 - 993 0.89 2.48 

HADD(º) 11.23 (5.62) 9.76 (6.19) .877 .597 – .962 2.06 5.72 

RUN 
FPPA(º) -5.54 (8.84) -6.14 (8.18) .930 .781 - .977 2.23 6.20 

HADD(º) 13.52 (4.40) 12.73 (2.57) .758 .246 - .922 1.48 4.12 

SLS: Single Leg Land SLL: Single Leg Land RUN: Running  

FPPA: Frontal Plan Projection Angle  HADD: Hip Adduction Angle 

 

As shown in Table 4.3, the within-day reliability assessment of the 2D testing measure 

demonstrated excellent reliability for FPPA in the three athletic tasks: SLS (ICC=0.941, 95% 

CI=0.805 to 0.982), SLL (ICC=0.977, 95% CI=0.925 to 0.993) and RUN (ICC=0.930, 95% 

CI=0.781 to 0.977). The reliability for HADD was excellent in SLS (ICC=0.935, 95% 

CI=0.786 to 0.980) and good in SLL and RUN (ICC=0.877, 95% CI=0.597 to 0.962 and 

ICC=0.758, 95% CI=0.246 to 0.922, respectively). SEM ranged from 0.89° – 2.42° with MDD 

2.48° – 6.72° for FPPA, and 1.48° – 2.06° with MDD 4.12° – 5.72° for HADD during the three 

tasks. 
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Between-sessions reliability  

Table 4.4 Between-session Intraclass Correlation Coefficients (ICC), 95% Confidence 

Intervals (CI), and SEM during SLS, SLL, and RUN 

Test Variable 
Session 1 

Mean (SD) 

Session 3 

Mean (SD) 
ICC 95%CI SEM MDD 

SLS 
FPPA(º) 11.25 (12.12) 11.61 (10.29) .871 .576 - .961 3.79 10.53 

HADD(º) 19.4 (8.73) 19.50 (7.83) .849 .504 - .954 3.11 8.63 

SLL 
FPPA(º) 11.22 (6.40) 10.77 (6.10) .897 .661 - .968 2.01 5.59 

HADD(º) 11.23 (5.62) 8.76 (6.88) .866 .559 - .959 2.24 6.22 

RUN 
FPPA(º) -5.54 (8.84) -5.81 (6.75) .864 .576 - .956 2.71 7.51 

HADD(º) 13.52 (4.40) 11.78 (3.71) .768 .310 - .922 1.93 5.36 

SLS: Single Leg Land SLL: Single Leg Land RUN: Running  

FPPA: Frontal Plan Projection Angle  HADD: Hip Adduction Angle 

 

Referring to Table 4.4., between-session reliability for 2D measurements was good for both 

FPPA and HADD in the three tasks: SLS (ICC=0.871, 95% CI=0.576 to 0.961), (ICC=0.849, 

95% CI=0.504 to 0.954), SLL (ICC=0.897, 95% CI=0.661 to 0.968), (ICC=0.866, 95% 

CI=0.559 to 0.959), and RUN (ICC=0.864, 95% CI=0.576 to 0.956), (ICC=0.768, 95% 

CI=0.310 to 0.922). SEM ranged from 2.01° – 3.79° with MDD 5.59° –10.53° for FPPA and 

1.93° – 3.11° with MDD 5.36° – 8.63° for HADD during the three tasks. 

 

Intra-tester reliability 

Table 4.5 Intra-tester Intraclass Correlation Coefficients (ICC), 95% Confidence Intervals 

(CI), and SEM during SLS, SLL, and RUN 

Test Variable 
Test 1 

Mean (SD) 

Test 2 

Mean (SD) 
ICC 95%CI SEM MDD 

SLS 
FPPA(º) 16.06 (9.04) 12.39 (9.06) .932 .700 – .985 2.35 6.52 

HADD(º) 22.27 (7.49) 20.49 (8.15) .945 .757 - .988 1.82 5.05 

SLL 
FPPA(º) 10.31 (5.25) 11.88 (4.44) .961 .825 – .991 0.79 2.20 

HADD(º) 10.83 (5.86) 9.22 (6.68) .834 .263 - .962 2.54 7.04 

RUN 
FPPA(º) -3.47 (7.07) -3.92 (6.34) .827 .306 - .957 2.76 7.66 

HADD(º) 15.01 (3.63) 12.89 (2.53) .797 .182 - .950 1.30 3.60 

SLS: Single Leg Land SLL: Single Leg Land RUN: Running  

FPPA: Frontal Plan Projection Angle  HADD: Hip Adduction Angle 
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The results in Table 4.5 show excellent intra-tester reliability for FPPA and HADD in SLS 

(ICC=0.932, 95% CI=0.700 to 0.985), (ICC=0.945, 95% CI=0.757 to 0.988), SLL (ICC=0.961, 

95% CI=0.825 to 0.991), (ICC=0.834, 95% CI=0.263 to 0.962), and RUN (ICC=0.827, 95% 

CI=0.306 to 0.957), (ICC=0.797, 95% CI=0.182 to 0.950). SEM ranged from 0.79° – 2.76° 

with MDD 2.20° – 7.66° for FPPA and 1.30° – 2.54° with MDD 3.60° – 7.04° for HADD 

during the three tasks. 

Inter-tester reliability 

Table 4.6 Inter-tester Intraclass Correlation Coefficients (ICC), 95% Confidence Intervals 

(CI), and SEM during SLS, SLL, and RUN 

 

As shown in Table 4.6, the 2D testing measurement demonstrated excellent inter-tester 

reliability for both FPPA and HADD in the three tasks: SLS (ICC=0.985, 95% CI=0.956 to 

0.995), (ICC=0.980, 95% CI=0.941 to 0.993), SLL (ICC=0.994, 95% CI=0.982 to 0.998), 

(ICC=0.991, 95% CI=0.974 to 0.997), and RUN (ICC=0.971, 95% CI=0.911 to 0.991), 

(ICC=0.914, 95% CI=0.732 to 0.972). SEM ranged from 0.48° – 1.26° with MDD 3.48° – 

7.36° for FPPA and 0.46° – 1.19° with MDD 3.28° – 6.31° for HADD during the three tasks. 

 

 

 

 

 

Test Variable 
Tester 1 

Mean (SD) 

Tester 2 

Mean (SD) 
ICC 95%CI SEM MDD 

SLS 
FPPA(º) 11.25 (12.12) 9.02 (10.45) .985 .956 - .995 1.25 3.48 

HADD(º) 19.4 (8.73) 19.42 (8.67) .980 .941 - .993 1.18 3.28 

SLL 
FPPA(º) 11.22 (6.40) 10.88 (6.35) .994 .982 - .998 0.48 7.36 

HADD(º) 11.23 (5.62) 10.95 (5.21) .991 .974 - .997 0.46 6.29 

RUN 
FPPA(º) -5.54 (8.84) -3.64 (7.64) .971 .911 - .991 1.26 3.50 

HADD(º) 13.52 (4.40) 15.30 (3.95) .914 .732 - .972 1.19 6.31 

SLS: Single Leg Land SLL: Single Leg Land RUN: Running  

FPPA: Frontal Plan Projection Angle  HADD: Hip Adduction Angle 
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4.1.4.2. 2D Validity  

Table 4.7 2D FPPA and 3D variables correlations using Visual3D during SLS, SLL, and 

running. 

3D 

2D FPPA 

SLS SLL RUN 

Mean (SD) r P Mean (SD) r P 
Mean 

(SD) 
r P 

2D FPPA 11.25 (11.27) _ _ 11.22 (6.43) _ _ -5.54 (8.84) _ _ 

2D HADD 19.4 (8.73) .601* .018 11.23 (5.62) .556* .031 
13.52 

(4.40) 
.552* .040 

3D 

Hip_X_Angle 39.20 (16.22) -.345 .208 38.12 (12.57) -.125 .656 
37.98 

(6.62) 
.168 .566 

Hip_Y_Angle 7.62 (6.24) -.566* .028 -.14 (7.21) .290 .294 
15.65 

(3.76) 
.065 .824 

Hip_Z_Angle -3.70 (6.59) -.005 .985 -5.60 (5.75) -.446 .096 
-10.47 

(9.61) 
.009 .976 

Knee_X_Angle 51.71 (21.97) -.308 .263 51.34 (13.91) -.068 .810 
55.29 

(5.32) 
.752** .002 

Knee_Y_Angle 5.61 (5.23) .654** .008 6.43 (5.02) .146 .603 5.16 (6.41) .354 .215 

Knee_Z_Angle -.56 (5.42) -.182 .517 3.37 (5.26) -.486 .066 1.65 (5.69) -.562* .036 

Ankle_X_Angle 27.31 (10.31) -.203 .469 18.66 (6.40) .258 .353 
30.04 

(3.49) 
.540* .046 

Ankle_Y_Angle 14.34 (7.16) .173 .538 16.13 (6.76) -.262 .346 
12.06 

(5.86) 
-.253 .384 

Nb. significant correlations are illustrated in bold 
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Table 4.8 2D HADD and 3D variables correlations using Visual3D during SLS, SLL, and 

running. 

variable 

HADD 

SLS SLL RUN 

Mean (SD) r P Mean (SD) r P Mean (SD) r P 

2D FPPA 11.25(11.27) .601* .018 11.22 (6.43) .556* .031 -5.54 (8.84) .552* .040 

2D HADD 70.59 (8.30) _ _ 78.76 (5.62) _ _ 76.47 (4.40) _ _ 

3D 

Hip_X_Angle 39.20 (16.22) -.148 .599 38.63 (12.57) -.257 356 37.98 (6.62) -.116 .680 

Hip_Y_Angle 7.62 (6.24) .836* <.001 -.14 (7.21) .733* .002 15.65 (3.76) -.222 .427 

Hip_Z_Angle -3.70 (6.59) -.033 .907 -5.60 (5.75) -.362 .184 -10.47 (9.61) .209 .455 

Knee_X_Angle 51.71 (21.97) -.028 .869 51.34 (13.91) .046 .870 55.29 (5.32) .559* .030 

Knee_Y_Angle 5.61 (5.23) .179 .524 -6.43 (5.02) .154 .584 5.16 (6.41) .206 -.462 

Knee_Z_Angle -.56 (5.42) -.506 .055 3.37 (5.26) -.375 .169 1.65 (5.69) -.333 .225 

Ankle_X_Angle 27.31 (10.31) .059 .834 18.66 (6.40) .428 .111 30.04 (3.49) .368 .178 

Ankle_Y_Angle 14.34 (7.16) .017 .951 16.13 (6.76) -.419 .120 12.06 (5.86) .202 470 

Nb. significant correlations are illustrated in bold 

Validity of FPPA and HADD during SLS  

The results of the 2D measurements during SLS show significant correlation between 2D FPPA 

and some 3D variables. A large correlation was found between 2D FPPA and knee abduction 

angle (r=0.654; p=0.008), HADD angle (r= - 0.566; p=0.028) using 3D measurements. No 

other significant correlations were found between 2D FPPA and the other 3D variables.  

The results of the 2D measurements during SLS show significant association between HADD 

and the hip adduction angle of the 3D variables. A very large correlation was found between 

the 2D and 3D measurements of the hip adduction angle (r= 0.836; p< 0.001). Other results of 

the 2D measures of HADD demonstrated a large correlation with tibia external rotation angle 

(r= - 0.506; p=0.055), with a statistically significant trend.  
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Interestingly, the results show that 2D FPPA during SLS was significantly correlated with some 

of the 3D variables during SLL and RUN. Correlations ranging from large to very large were 

found between 2D FPPA and the knee abduction angle (r=0.656; p=0.008) and tibial external 

rotation (r= -0.547; p=0.035) during SLL. Moreover, a large correlation was found between 

2D FPPA during SLS and the hip adduction angle (r= -0.383; p=0.023), whereas this 

correlation was moderate and not statistically significant with the knee abduction angle 

(r=0.393; p=0.148) in 3D measurements during RUN. 

Validity of FPPA and HADD during SLL  

The results show that no significant correlations were found between 2D FPPA and 3D 

variables during SLL. However, a moderate association with a statistically significant trend 

was found between 2D FPPA and hip internal rotation (r= - 0.446; p=0.096). 

A very large and significant correlation was found between 2D HADD and the hip adduction 

angle using 3D measurements during SLL (r=0.733; p=0.002). A moderate association was 

found between 2D HADD and hip internal rotation (r= - 0.382; p=0.184), knee abduction angle 

(r= - 0.313; p=0.255), tibial external rotation (r= - 0.375; p=0.169), ankle flexion angle 

(r=0.428; p= 0.111), and ankle eversion angle (r= - 0.419; p=0.120).  

Validity of FPPA and HADD during RUN 

The results of the 2D and 3D measurements during RUN show a significant correlation 

between 2D FPPA and knee flexion, tibial external rotation, and ankle dorsiflexion. A very 

large correlation was found between 2D FPPA and knee flexion (r=0.752; p=0.002). A large 

correlation was also found between 2D FPPA and 3D measurements in tibial external rotation 

(r= -0.562; p=0.036) and ankle dorsiflexion (r=0.540; p=0.046). Only knee flexion angle using 

3D was associated with 2D HADD during RUN. 
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Main outcomes  

Table 4.9 Validity and reliability of FPPA and HADD during SLS, SLL, and RUN 

Variable  

Validity Reliability (ICC) 

r P Within-day Between-days Intra-tester Inter-tester 

FPPA during SLS 0.654       0.008* .941 .871 .932 .985 

HADD during SLS 0.836       <0.001* .935 .849 .945 .980 

FPPA during SLL 0.146       0.603 .977 .897 .961 .994 

HADD during SLL 0.733       0.002* .877 .866 .834 .991 

FPPA during RUN 0.354  0.215 .930 .864 .827 .971 

HADD during RUN 0.222  0.427 .758 .768 .797 .914 

 

4.1.5. Discussion 

Previous researchers have suggested that an increase in FPPA and HADD during functional 

tasks may increase the load on the PFJ and contribute to the incidence of PFP (Huberti & 

Hayes, 1984; Dierks et al., 2008; Boling et al., 2009; Chen et al., 2010; Myer et al., 2010; 

Powers, 2010; Herrington, 2014; and Maykut et al., 2015). Objective clinical measurements 

are important in identifying individuals who demonstrate abnormal alignment of the lower 

extremity characterised by excessive knee valgus and hip adduction angle during athletic tasks. 

Such measurements can serve to recognise and subsequently develop an intervention 

programme aimed at reducing these abnormal movement patterns in the frontal plane (Noyes 

et al., 2005; Maykut et al., 2015). It has been assumed that 3D analysis has the ability to identify 

these kinematic abnormalities. However, it is not practical in large screening programmes due 

to the temporal cost, the space required, and extra time needed for marker placement.  

A method is therefore needed that allows for the quick collection of data in a relatively small 

volume. In this sense, 2D motion analysis may provide an alternative solution to 3D analysis. 

However, the use of 2D as a clinical measurement depends on its validity and reliability in 

evaluating the kinematic variables. 

The first aim of this study was to assess the validity of using 2D FPPA and HADD in the 

evolution of lower extremity movement patterns during SLS, SLL, and RUN. A large 

correlation was found in the current study between FPPA using 2D measurement and knee 
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abduction (r=0.654; p=0.008) and hip adduction angles (r= -0.566; p=0.028) with 3D 

measurements during SLS. Furthermore, there was a association with hip internal rotation with 

a trend to be statistically significant (r=0.461; p=0.084). All of these variables represent three 

of the most important components contributing to dynamic knee valgus. Additionally, across 

the three tasks, 2D HADD was found to range from a large to very large correlation with hip 

adduction angle in 3D measurements. Simultaneously, there was a large correlation with 2D 

FPPA during all of the tasks. Similar results were reported in Willson & Davis (2008), who 

found that HADD, one of the contributing factors to dynamic knee valgus, was significantly 

correlated with 2D FPPA.  

The results of this study support the first hypothesis that, in SLS, 2D FPPA is significantly 

associated with the 3D dynamic components that contribute to dynamic knee valgus. 2D FPPA 

was consistent with knee abduction during SLS, and 2D HADD was consistent with hip 

adduction in 3D measurements during SLS and SLL. It accounts for 43% of the variance of 

knee valgus in 3D. 2D HADD accounts for 39% of the variance of hip adduction in 3D during 

SLS. The association between 2D FPPA and 3D kinematic was previously investigated by 

Willson & Davis (2008) and Gwynne & Curran (2014). In Willson & Davis (2008), FPPA 

during SLS reflected only 23% to 30% of the variance in 3D kinematic during SLS, RUN, and 

single leg jumps. The greatest results in SLS were reported by Gwynne & Curran (2014), who 

found significant associations between 2D FPPA and single leg stance (r=0.64, p=0.002) and 

single limb squats (r=0.78, p<0.001). The variation in the results may be related to the variation 

in knee flexion angles during knee abduction measurements. In the current study, 2D FPPA 

were obtained nearing 60° of knee flexion, while Willson & Davis (2008) neared 55º, Gwynne 

& Curran (2014) neared 60º, and McLean compared the measurements at the instance of peak 

KABD. However, most these studies report positive results for the correlation between 2D and 

3D measurements in FPPA, particularly with regard to SLS. 

Several studies have investigated the relationship between 2D and 3D FPPA during multiple 

functional tasks (McLean et al., 2005; Willson & Davis, 2008; Gwynne & Curran, 2014; 

Maykut et al., 2015; Sorenson et al., 2015). McLean et al. (2005) found that 2D FPPA reflected 

58% to 64% of the variance in average peak 3D knee abduction angle in side-jump and side-

step tasks (McLean et al., 2005). The significant correlation reported in the study of Mclean et 

al. (2005) may be related to the method of correlation between the two measurements. In this 

sense, Mclean et al. (2005) quantified 2D FPPA from initial contact to toe-off in both 

measurements, normalised the time to 100% of the stance phase, and resampled at 1%-time 



89 
 

increments through linear interpolation. However, although this method was the gold standard 

in the use of 2D for identifying the association with 3D, it is not practical for large-scale 

screening due to the time needed to analyse each trial. The benefit of the method of analysis in 

the current study is, therefore, the use of one video frame as a simple photo in order to measure 

the variable. 

The current study unearthed interesting findings in the correlations between 2D FPPA and 3D 

measurements during RUN. The frontal plane projection angle was not associated with the 3D 

knee abduction angle, whereas it was significantly correlated with knee flexion, tibial external 

rotation, and ankle dorsiflexion. The hypothesis presented here is that these results may be due 

to an increase in the external rotation of the lower extremity during RUN, which moves the 

knee Y angle from the fontal plane externally and moves the knee and ankle X angles from the 

sagittal to the frontal plane. Therefore, knee X angle was read as knee Y angle with the 2D 

method, which is equal to FPPA. Maykut et al. (2015) investigated the association between 2D 

and 3D for FPPA and HADD during treadmill running. Despite the significant results reported 

between the two measurements in HADD for both limbs (right: r=0.623, p=0.001, left: r=0.539, 

p=0.007, and in left FPPA: r=0.541, p=0.006), it does not reflect the actual values of kinetic 

and kinematic measurements of running, as in running over ground. The great value of the 

correlation results reported in this study may therefore be due to a decrease in the rotation of 

the lower extremity, because the forces of running were not generated by the subject but by the 

treadmill. In addition, there were other differences in methodology. In the current study, FPPA 

and HADD were calculated in 3D at the frame of maximum knee flexion and in 2D at the 

deepest pelvic point, as the visual identification of maximum knee flexion during the stance 

phase for each subject. This was done for synchronisation between the 2D and 3D methods, 

since they were at the peak value of each variable during the stance phase, as in Maykut et al. 

(2015). Another previous study used a different approach, by calculating the correlation 

between variables during initial contact of the task (Sorenson et al., 2015), and reports that 2D 

knee frontal plane projection angles had a strong relationship with 3D frontal plane knee 

kinematics at initial contact (r2=0.72) during single leg landings.  

The current study investigated the association between 2D FPPA during SLS and 3D variables 

during SLL and RUN. There was a significant association between the value of 2D FPPA 

during SLS and the knee abduction angle and an inverse association with the hip adduction 

angle during RUN. Similar results were reported in a previous study by Willson & Davis 
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(2008), in which FPPA during SLS reflected only 23% to 30% of the variance in 3D kinematics 

during SLS, RUN, and single leg jumps. 

It has been claimed that individuals who demonstrate great FPPA and HADD angles during 

SLS have almost the same angle during RUN or SLL. From this study’s findings, the SLS task 

enabled the identification of the association between 2D and 3D for FPPA and HADD. In 

addition, 2D FPPA was associated with the kinematic variables of the lower extremity using 

3D during RUN and SLL. Therefore, the 2D FPPA during tasks that contained a single leg 

stance may have the potential to identify individuals who are at risk of PFP, which was clearer 

during SLS. 

This study indicates that the variation between the results of previous studies may be due to the 

type of task, whether it is single or double, the measuring time during the task or the degree of 

knee flexion angle during the task. Moreover, some studies only measured the peak of each 

variable, while others compared the two measurements’ curves by normalising the time to 

100% of the stance phase or by quantifying the changes in the angle over time. However, the 

type of task and the synchronisation between 2D and 3D during functional tasks are essential 

in the validation of 2D kinematic measurements. Some functional tasks contain rotation and 

high-speed movements in the lower extremity, which lead to moving the axis of motion outside 

of the frontal plane or affecting the accuracy of the measurement. This was an expected 

limitation in the use of 2D.  

The second aim of this study was to assess the within- and between-session and intra- and inter-

rater reliability of 2D. The results of the reliability assessment for 2D FPPA demonstrate 

excellent within-session reliability and good between-session reliability during all three tasks, 

confirming the results reported previously in SLS and SLL (Willson et al., 2006; Munro et al., 

2012; Gwynne & Curran, 2014), with ICC values of 0.72 and 0.88 respectively. They also 

suggest that 2D analysis of FPPA is reliable both within- and between-session during SLS and 

SLL. Within- and between-session reliability of 2D FPPA during running over ground was not 

reported before this study. Within-session reliability assessment of 2D for HADD 

demonstrated excellent reliability during SLS and good reliability in SLL and RUN, and 

between-session assessment demonstrated good reliability during all three tasks. It was 

expected that within-session reliability would be greater than that for between-session 

reliability, likely due to factors such as a greater increase of marker placement error and the 



91 
 

greater possibility of within-subject performance variation in between-session assessment 

when compared to within-session assessment. 

Intra- and inter-rater reliability leads to a better understanding of the source of measurement 

error and could be reduced by increasing the consistency of the experimenter’s measurements. 

The ICC values for the intra- and inter-rater reliability assessment for 2D FPPA and HADD 

were excellent during all of the three tasks. Associated intra- and inter-rater SEM values ranged 

from 0.79 – 2.76 and 0.48 – 1.26, respectively, for FPPA and from 1.30 – 2.54 and 0.46 – 1.19, 

respectively, for HADD across the three tasks. The ICC value for the intra-rater reliability of 

FPPA (ICC=0.827) and HADD (ICC=0.797) using 2D during RUN was slightly lower the 

values reported previously by Maykut et al. (2015), 0.951 – 0.963 for HADD and 0.955 – 0.976 

for KABD, on the treadmill, which may be the cause of the high ICCs. No previous studies 

have reported either intra- or inter-rater reliability of the 2D method during SLS and SLL, in 

addition to inter-rater reliability during RUN. 

Future studies should investigate both limbs during functional tasks, increase the distance to 

the camera, and add some control for acceptable trials, such as limiting the range for the toe-

out angle and the shin-to-ground angle, in addition to controlling the position of the swing limb. 

In conclusion, the results of current study suggest that 2D is significantly correlated with the 

3D method in FPPA and HADD during SLS, and demonstrates good to excellent within- and 

between-session and intra- and inter-session reliability across the tasks. Based on the previous 

results, 2D provides a reliable description of lower extremity movement patterns and offers 

similar potential as 3D in the screening of individuals who are at risk of PFP. 

Therefore, according to the low association between 2D and 3D measurements for FPPA and 

HADD during SLL and RUN, this study presents the hypothesis that this may be due to the 

variation between the two systems using Visual3D software for 3D, which may be affected by 

joint definitions, particularly in determining the hip joint. Thus, in order to investigate this 

relationship in the second section, 3D markers for 2D marker placements are therefore 

employed in order to look at the same markers with the two systems simultaneously. 
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4.2. Study 2: Validity and reliability of 2D and HHD for kinematics and strength        

assessment of the lower limb 

4.2.1. Aims 

 The aims of this part are therefore to:  

A) Assess the reliability of the 2D analysis of lower limb kinematics during SLS and 

SLL to screen for PFP development injury occurrence in addition to other lower limb 

injuries.  

B) Assess the relationship between 2D and 3D systems in lower limb kinematics during 

RUN, SLS, and SLL to screen for PFP development injury occurrence in addition to 

other lower limb injuries. 

C) Assess the reliability of HHD in strength measurements of knee extensors and hip 

abductors to screen for PFP development injury occurrence in addition to other lower 

limb injuries.  

D) Assess the relationship between HHD and isokinetic dynamometer systems in strength 

measurements for knee extensors and hip abductors to screen for PFP. 

 

4.2.2. Introduction  

Most lower extremities musculoskeletal injuries are associated with several disorders, such as 

abnormal movement patterns and muscle weakness (Zeller et al., 2003; Hewett et al., 2005; 

Willson et al., 2006; Willson & Davis, 2008; Myer et al., 2010). Patellofemoral pain is one of 

these injuries, and it has been suggested that its risk factors are characterised by the 

demonstration of dynamic knee valgus, which is a combination of the frontal and transverse 

planes in hip, knee, and ankle movement during functional movements and is also related to 

muscular dysfunction of hip and knee muscles (Hewett et al., 2005; Willson & Davis, 2008; 

Boling et al., 2009; Souza and Powers, 2009). The identification of individuals who 

demonstrate excessive dynamic knee valgus during common athletic tasks may help to modify 

this pattern of movement or to reduce the risk of injury. 

Motion analysis and strengthening assessment techniques are widely used in sports medicine 

research in order to investigate the risk of injuries. Due to the high accuracy and reliability of 

3D analysis in quantifying kinematic variables and of isokinetic dynamometers in muscle 

strength measurements, they are widely used in athletic tasks. As such, this method is 

considered as the gold standard for this type of analysis. However, in injury prevention 
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programmes, there is a need for large-scale screening within the field in order to identify high-

risk athletes.  

Therefore, while 3D analysis with isokinetic dynamometers should be used, they are not 

practical in large screening programmes due to the space and extra time needed for marker 

placement. A method is therefore required that allows for the quick collection of data in a 

relatively small volume; in this sense, 2D analysis with an HHD may provide an alternative 

solution to 3D analysis with isokinetic dynamometers (Martine et al., 2006; Munro et al., 2012; 

Kim et al., 2014). 

The reliability of 2D FPPA analysis has been investigated in several studies. 2D FPPA 

measurements were found to have a good to excellent between-day reliability (ICCs=0.72-

0.91) and good within-day reliability (ICCs=0.59-0.88) during DJ, SLL, and SLS (Munro et 

al., 2012). The frontal plane projection angle has been assessed as a technique in the analysis 

of dynamic knee valgus to predict the risk of PFP injury (McLean et al., 2005; Willson & 

Davis, 2008; Norris & Olson, 2011; Olson et al., 2011; Munro et al., 2012). Excellent intra-

rater reliability was found in FPPA and HADD using 2D analysis during single-leg step-downs. 

Moderate to high intra-rater reliability was reported by Miller and Callister (2009) during 

functional tests. Recently, Maykut et al. (2015) report that 2D testing during running had 

excellent intra-rater reliability for peak HADD angle (ICC=0.951 – 0.963) and peak KABD 

(ICC=0.955 – 0.976). 

Varied results were found regarding the validity of 2D analysis (Maykut et al., 2015). A 

moderate correlation was found for FPPA between 2D and 3D testing during side jump and 

side step tasks (McLean et al., 2005), while a poor correlation was reported for frontal knee 

plane kinematics during single-leg step-downs (Olson et al., 2011). During running, moderate 

correlations were found for the peak HADD on the left (0.539; P=.007) and the right (0.623; 

p=.001) and the peak KABD on the left (0.541; p=.006), which were only found in the lower 

extremity (Maykut et al., 2015). During SLS, 2D video analysis is significantly correlated with 

3D motion analysis in measuring FPPA (Gwynne & Curran, 2014). In contrast, little 

connection was found in the utility of FPPA during SLS (Willson & Davis, 2008; Olson et al., 

2011). It has been found that the 2D value reflects only 23 to 30% of the variance in the 3D 

value (Willson & Davis, 2008). Therefore, regarding the previous validity and reliability results 

for the 2D analysis of lower extremities during some athletic tasks, RUN, SLL, and SLS were 

selected as the functional tasks for the current study.  
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Running is the most frequently performed task used by researchers to evaluate the dynamic 

functioning of the lower limb. It has been suggested that examination into the biomechanics of 

running has the potential to identify individuals with risk factors related to running injuries 

(Schache et al., 1999). FPPA measured from PFP participants by Willson & Davis (2008), 

demonstrated a greater HADD angle compared with the healthy control group during running, 

jumping and squatting. Souza and Powers (2009) found greater peak hip internal rotation 

during running in individuals with PFP. Another study found that runners who developed PFP 

had greater HADD angles when compared with healthy individuals (Noehren and Davis, 2007). 

individuals with PFP have also been reported to have greater knee abduction angular impulses 

during the stance phase of running, when compared with healthy individuals (Stefanyshyn et 

al., 2006).  

The single leg landing is one of the most common tasks or techniques in sports, and it may be 

better than bilateral landing for assessing individuals who are at risk of knee injury (Faude et 

al., 2005). Studies have shown that during unilateral tasks, performers demonstrate an increase 

of knee valgus and HADD angle, compared to bilateral tasks (Myklebust et al., 1998; 

Evangelos Pappas et al., 2007). Single leg landing screening tasks appear to be more sensitive 

than DJ in identifying individuals who demonstrate dynamic knee valgus, due to the increased 

demand to decelerate the landing force. 

The single leg squat is widely used to evaluate the dynamic function of the lower limb, 

particularly in screening for PFP. The SLS task has previously been used in the investigation 

of the correlations between 2D FPPA and 3D angles of the lower limb (Willson &  Davis, 

2008). Single leg squats have been used to distinguish between participants with and without 

PFP by demonstrating dynamic knee valgus (Willson & Davis, 2008; Whatman et al., 2011). 

The frontal plane projection angle of the PFP group during SLS was significantly greater than 

the FPPA of the healthy group (P=.012) (Willson & Davis, 2008). Furthermore, it has been 

suggested that this predicts the kinematics demonstrated during running or that it has similar 

mechanics to those of running during the stance phase. 

Comparing to the gold standard in muscle strength measurement, the isokinetic dynamometer, 

several studies have investigated the validity of the HHD for lower extremity muscle strength. 

A number of studies report that the evaluation of lower extremity muscle strength for physically 

active individuals using the HHD has some limitations relating to the hand stabilisation of the 

instrument and the changing angle of the joint. This is especially the case if the subjects are 
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stronger than the examiner or in the case of large-scale screenings (Vasconcelos et al., 2009; 

Katoh et al., 2011). However, it has been found that the validity and reliability of isometric 

muscle strength increased when using an HHD with a stick, a steel support, and a belt 

(Brinkmann, 1994; Gagnon et al., 2005; Johansson et al., 2005; Kolber et al., 2007; Katoh et 

al., 2009; 2010; 2011; Vasconcelos et al., 2009). Katoh et al. (2009) assessed the reliability of 

isometric muscle strength using an HHD with a belt for lower limbs (i.e. abduction, adduction, 

flexion, extension, internal and external rotation of the hip, knee flexion and extension, and 

ankle dorsiflexion and planter flexion) and found ICC results ranging from 0.75 to 0.97 (Katoh 

et al., 2009). Inter-rater reliability using HHD with a belt was found to range from 0.97 to 0.99, 

whereas it ranged from 0.21 to 0.88 for measurements without a belt. When the belt was 

applied, the measurements were significantly higher with a paired t-test (Katoh et al., 2009). 

The reliability ICC of isometric muscle strength measurements of knee extensors for elderly 

people and hemiplegic patients using HHDs with a belt was 0.88 for women and 0.91 for men 

(Katoh et al., 2009). The inter-rater reliability for isometric measurements of knee extensors 

with fixed HHDs was excellent (0.952 – 0.984) (Kim et al., 2013). 

Several studies have reported the validity of isometric muscle strength measurements obtained 

with HHDs for various muscles in the lower limbs, compared to the validity of those obtained 

with isokinetic dynamometers (Katoh et al., 2009). The isokinetic dynamometer and stabilised 

HHD with a belt were highly correlated for isometric muscle strength measurements for knee 

extensors from the sitting position (r >.86, p<0.001) (Bohannon et al., 2011). Few studies were 

found in the literature assessing the validity and reliability of the isometric muscle strength of 

hip abductors with HHDs or HHDs with a belt (Kawaguchi and Babcock, 2010; Katoh et al., 

2011). No significant correlation was obtained for hip abductors in a side-lying position 

between HHDs and isokinetic dynamometers (Katoh et al., 2011). The validity of hip abductor 

isometric strength measurements using fixed HHDs did not exist before this study. Therefore, 

it was planned to assess the validity of hip abductor isometric muscle strength with an HHD 

prior to using it in the current investigation.  

However, Martins et al. (2017) recently observed a high correlation between stabilised HHDs 

with a belt and isokinetic dynamometers for knee extensors and hip abductors (r range=0.78 – 

0.90). Conversely, despite the resistance provided by using an immovable belt for HHD, this 

validation still has some limitations and is not practical for large-scale screening. This is either 

due to the HHD not being stable or secure during maximal force tests, the procedure taking 

more time for adjusting the belt and the HHD position, which may limit the number of 
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participants in large-scale screenings, or depend on the isokinetic dynamometer chair and 

positions which will not be available in the field; for these reasons, further evaluation is needed 

to validate the suitable protocol for the current study. 

Running, SLS, and SLL are three activities that require a single leg stance and weight bearing. 

During these types of activities, the mechanics are based on muscle function, and hip abductors 

play an important role in preventing pelvic drops and hip adduction (Hollman et al., 2009). 

During motion, hip abductors primarily stabilise the femur in the frontal plane (McLeish et al., 

1970). It is therefore logical that the presence of an increased HADD angle is associated with 

the weakness of hip abductor muscles. Hip adductors have been found to be associated with 

PFP (Ireland et al., 2003). Furthermore, individuals with PFP demonstrate increases in the 

HADD angle and knee valgus (Willson & Davis, 2008; Powers, 2010). Recently, Stickler et al. 

(2014) investigated the relationship between hip strength (i.e. hip abductors, hip external 

rotators, hip extensors, and core musculature) and frontal plane alignment during SLS and 

report that hip abduction strength was the greatest predictor of the variation in FPPA, at 

r2=0.22, p=0.002 with multiple regression analysis. Since weaknesses in hip abductors or hip 

abductor peak torque have been found to be correlated with knee valgus during SLS and 

landing, the author selected hip abductor and knee extensor isometric strengths to be assessed 

with a stabilised HHD as the methodology to screen for the development of PFP injury 

occurrence in addition to other lower limb injuries (Claiborne et al., 2006; Jacobs et al., 2007; 

Kagaya et al., 2013). The purpose of this study was to assess the validity and reliability of using 

2D testing for lower extremity kinematics and of using a stabilised HHD for knee extensor and 

hip abductor strengths, in comparison to the gold standard of 3D analysis and isokinetic 

dynamometers. 

 

4.2.3. Methods 

4.2.3.1. Participants  

Eight healthy and physically active male students from the University of Salford volunteered 

for the study. The participants had an average age of 28.62 years (SD ± 4.06), an average mass 

of 69.27kg (SD ± 6.44), and an average height of 171.25cm (SD ± 4.89). All participants were 

accepted on the condition that they participated in sports for at least three hours weekly, had 

no history of knee complaints or surgery, and were in good physical condition. 
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4.2.3.2. 3D procedure  

3D Instrumentation  

Full details for 3D instrumentation were described previously in section 4.1.3.3. 

 
3D System calibration  

Full details for 3D system calibration were described previously in section 4.1.3.3. 

4.2.3.3. 2D Procedure 

2D instrumentation  

Four commercial video cameras (Casio Exilim F1), sampling at 30Hz, were located at a 

suitable position and distance for filming. The first camera was placed, on a tripod, 10m in 

front of the centre and set in standard mode (30fps), at a height of 50cm, in order to capture the 

markers and determine the Q-angle, FPPA, and HADD angles during kinematic movements. 

The second and third cameras were placed on tripods, 3m to the left and right of the centre of 

the capturing area, at a height of 50cm, and set on high speed mode (100fps) in order to film 

the lower limb sagittal plane movement (maximum knee flexion and dorsiflexion) during 

screening tasks. The fourth camera was placed on a tripod, 10m behind the centre of the 

capturing area, at a height of 50cm, in order to film the rearfoot eversion during tasks. A Brower 

Timing Gate System (TC-Timing System, USA) was used to monitor the running speeds. 

 

Kinematic outcome measures  

The following kinematics outcome measures were measured with 2D and 3D systems during 

SLS, SLL, and RUN for reliability and validity assessment: 

1. Frontal plane projection angle (FPPA) 

2. Hip adduction (HADD) 

3. Q-angle (QA) 

4. Knee Flexion (KFLX) 

5. Ankle dorsiflexion (DFLX) 

6. Rearfoot angle (RFA)  

 

2D Calibration  

The four cameras were levelled using a fixed level on each tripod and calibrated with 100cm 

square frames using Quintic software for digitising 2D. To minimise the occurrence of 

perspective and parallax error, all cameras were placed as far as possible from and 
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perpendicular to the plane of motion and were synchronised with a flashlight at the beginning 

of each trial. Overview of the procedure set-up Figure 4.10. 

 

 

Figure 4.10 Overview of the procedure set-up 

4.2.3.4. 2D and 3D Marker placement 

26 3D reflective markers were used in both the 3D and 2D systems’ marker placements. The 

3D marker placements were similar to the 2D marker placements, which enabled each marker 

to be viewed simultaneously by both systems. The markers were placed on the anatomical 

landmarks of FPPA, HADD, Q-angle, knee flexion angle, ankle dorsiflexion angle, and 

rearfoot angle, as described below.  

Marker placement and measurement of Q-angle  

At the beginning of the procedure, three markers were placed on the anatomical landmarks of 

each participant’s Q-angle and on both legs, i.e. the anterior superior iliac supine (ASIS), the 

mid-point of the patella, and the tibial tubercle, in order to define the anatomical references of 

the Q-angle. The Q-angle is the angle formed between the line connecting the ASIS to the 

centre of the patella and the line connecting the tibial tuberosity to the centre of the patella 

(Caylor, Fites and Worrell, 1993). 

Marker placement and measurement of FPPA 

Three markers were placed on the FPPA anatomical references employed by Willson et al. 

(2006). In this sense, markers were placed on the midpoint of the ankle malleoli for the centre 

of the ankle joint, the midpoint of the femoral condyles for the centre of the knee joint, and the 
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midpoint of the line from the anterior superior iliac spine to the knee marker at the proximal 

thigh. Midpoints of the knee and ankle joints were determined manually using a standard tape 

measure. Manual methods of midpoint approximation with a tape measure have been shown to 

increase intra- and inter-rater reliability, in comparison to approximations with video 

digitisation (Bartlett et al., 2006). The frontal plane projection angle was calculated by 

measuring the angle between the line from the marker of the proximal thigh to the marker of 

the midpoint of the knee joint and the line from the marker of the knee joint to the marker of 

the ankle. The frontal plane projection angle was measured at the frame corresponding to the 

maximum knee flexion angle (Willson, Ireland and Davis, 2006; Willson, Binder-Macleod and 

Davis, 2008). 

 

Figure 4.11 Marker placement for FPPA, Q-angle, and HADD 

Marker placement and measurement of knee flexion 

After determining the knee flexion landmarks, three markers were placed on the greater 

trochanter, lateral epicondyle, and lateral malleolus. The knee flexion angle is the angle formed 

between the line from the greater trochanter to the lateral epicondyle and the line from the 

lateral malleolus to the lateral epicondyle (Norris & Olson, 2011; Mann et al., 2013). 

Marker placement and measurement of ankle dorsiflexion  

Dorsiflexion markers were placed on the head of the fibula, the lateral malleolus, and the head 

of the fifth metatarsal, which was approximated inside standard shoes. The dorsiflexion angle 

was represented by the angle formed between the lines from the two peripheral markers to the 

central marker placed on the lateral malleolus (Fong et al., 2011). 
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Figure 4.12 Marker placement for KFA and DFA 

Marker placement and measurement of rearfoot eversion 

Four markers were placed, in descending order, on the midpoint of the calf muscle, the top of 

the Achilles tendon, the top of the heel, and the bottom of the heel, on standard training shoes. 

The rearfoot angle was represented by the conjunction formed between the line of the upper 

two markers and the lower two markers (Powers, 2010). 

 

Figure 4.13 Marker placement for RFA 

Participants were allowed to practice two or three times before each test, until they felt 

familiarised and comfortable with the trials. Subsequently, three acceptable trials from each 

participant and for both legs were selected and analysed for all tasks. 
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4.2.3.5. Screening tasks  

SLS, SLL, and RUN were used as screening tasks for the baseline assessment of kinematic 

variables. Subjects ran over a ten-meter runway at a velocity of approximately 3m/s, with a 

(±5%) range between the trials. Running speed was monitored using the previously mentioned 

timing gates. A Brower Timing Gate System was set at approximately hip-height for all 

participants to make sure that only one part of the body crossed the beam (Yeadon et al., 1999). 

Then, the speed of participants was calculated by dividing distance by time. To minimise the 

effect of fatigue, about one to one-and-a-half minutes were given to all participants between 

the trials (Beaulieu et al., 2008; Cortes et al., 2010). 

Participants were allowed to practice each task two or three times until they felt familiarised 

and comfortable with the trials. Three acceptable trials from each participant for both legs were 

selected and analysed for all tasks (these screening tasks were previously described in Section 

4.1.3.3). 

4.2.3.6. Data processing  

2D data processing 

The videos collected at the baseline of kinematic assessment were analysed using the Quintic 

Biomechanics software package (Version, 26). Each variable was measured in the 

corresponding frame of maximum knee flexion, which was detected visually. An average of 

three trials for each variable and for both limbs were recorded for all participants during the 

three tasks.  

3D data processing with QTM analysis  

Post-processing calculations of the 3D kinematic time series data were conducted using QTM 

software. All 3D markers were labelled with their anatomical names in the QTM. Markers that 

formed angles of each variable, as previously described in section 4.2.3.4, were selected 

manually and analysed using QTM for measuring the angles on the three X-Y-Z axes in order 

to track changes in the values of the measured angles over the duration of the tasks. The process 

started with the selection of the labelled markers of the target angles from the QTM screen. 

Then, ‘analyse’ was chosen from the drop-down list and the ‘angle’ option was selected from 

the calculation box with category of components. This was followed by ordering the markers 

of the measured angles in the same box and running the analysis. From the analysis screen, the 

value of the component of the angular movement in the YZ plane is the adduction-abduction 

angle, and in the YZ plane it is the flexion-extension angle in the joints of the lower extremity 
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(Figure 4.14). In the final stage, the analysis results were exported to an Excel spreadsheet and 

all the measured variables were calculated at the frame that corresponded with the greater knee 

flexion in the task. 

 

Figure 4.14 Process of 3D measurements using QTM 

Strength outcome measures: 

The following strength outcome measures were measured with HHD to assess their reliability 

and their validity against isokinetic dynamometer:  

1- Isometric strength of knee extensors.  

2- Isometric strength of hip abductors.  

4.2.3.7. Isometric strength assessment for hip abductors and knee extensors  

Handheld dynamometer procedure 

Knee extensors  

The HHD (MicroFet F1) was stabilised on a horizontal stake, at 20cm in height, using a 12cm 

wooden frame with a circular opening fitted to the back of the HHD with adhesive tape, in 

order to improve stability during the test (Figure 4.15). The HHD was attached to the wooden 

frame and then securely attached to the horsetail stake with adhesive tape. The subjects were 

asked to sit on the edge of the treatment bed, with 90º flexion in the knee and with both feet 

off the ground (Figure 4.16). The height of the treatment bed was adjusted in order to place the 

HHD 5cm proximal to the ankle joint at the front aspect. The subjects were then asked to apply 

maximum force to extend the knee joint against the fixed device for five seconds and to repeat 
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this four times, with a 30 second rest in between. The last three trials were recorded, while the 

first trial was used as practice for familiarisation (Bolgla et al., 2008). The maximum force, in 

newton (N), of the knee extensors in each trial was recorded and the average was multiplied by 

lower leg length in meter (m) (the distance from the head of the fibula to the lateral malleolus) 

to calculate the isometric peak torque of knee extensors in (Nm) then normalized to body mass. 

 

   

Figure 4.15 The wooden frame of HHD 

 

Figure 4.16 Isometric strength assessment of knee extensors with HHD 

Hip abductors 

The HHD was stabilised on the wall just above the treatment bed using the 12cm square 

wooden frame and adhesive tape. The hip abductors were assessed from a supine position, with 

the knee flexed at 90º on the edge of the bed. This position was chosen because it is potentially 

easier and more applicable than the side-lying position in large-scale screenings, as it avoids 

the use of a belt, which is movable and less secure than a stabilised HHD. Additionally, it is 

quick and easy to undertake directly following on from the position of the knee extensor 

strength assessment, and therefore it is less time consuming with regard to changing positions. 

However, in this position the HHD was placed laterally, 5cm proximal to the knee joint. 
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Subjects were asked to lie down on their backs, with knees flexed at 90º on the edge of the bed 

and beside the stabilised HHD, and to apply maximum force in abducting the hip joint against 

the fixed HHD for five seconds and to repeat this four times, with a 30 second rest in between 

(Figure 4.17). The last three trials were recorded, while the first trial was used as practice for 

familiarisation (Bolgla et al., 2008). The maximum force, in (N), of hip abductors in each trail 

was recorded and the average was multiplied by length of femur in (m) (the distance from 

greater trochanter to the lateral epicondyle) to calculate the isometric peak torque of hip 

abductors in (Nm) then normalized to body mass.  
    

 

Figure 4.17 Isometric strength assessment of hip abductors with HHD 

Isokinetic dynamometer procedure 

Knee extensors  

For the isokinetic dynamometer (Biodex System 3; Biodex Medical Systems, New York, NY, 

USA) procedure, subjects were seated on the dynamometer chair, with knees and hip joints at 

90º, in order to perform the isometric knee extensor test. The lateral femoral condyle of the 

knee was aligned with the rotating axis of the Biodex. The lever arm was adjusted 5cm 

proximal to the ankle joint at the front aspect, opposite to the direction of the action of the knee 

extensors (Figure 4.18). Subjects were instructed to apply maximal effort against the 

dynamometer for five seconds of contraction time in order to extend the knee joint, and then to 

repeat this four times, with a 30 second rest between the trials. The last three trials were 

recorded, while the first trial was used as practice for familiarisation (Bolgla et al., 2008). 

Isometric peak torque (Nm) of the knee extensors in each trial was recorded. 
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Figure 4.18 Isometric strength assessment of knee extensors with Biodex 

Hip abductors  

The side-lying position was applied for the hip abductor isometric test with the Biodex. This 

position has been chosen because it was found to be the most valid for isometric hip abductor 

strength, compared to standing and supine positions, with 0.9 ICC for test-retest reliability 

(Widler et al., 2009). After reclining on the backrest of the dynamometer chair, subjects were 

instructed to lie in the side-lying position, with the test leg on top of the non-test leg, and then 

to bend the non-test leg for stabilisation in addition to using leg and trunk straps. The lever of 

the arm was adjusted to apply resistance onto the test leg, 5cm proximal to the knee joint at the 

lateral aspect of the thigh (Figure 4.19). The rotating axis of the lever arm was aligned medial 

to the ASIS at the level of the greater trochanter of the test leg. Subjects were instructed to 

apply maximal effort against the dynamometer for five seconds of contraction time in order to 

abduct the hip join, and then to repeat this four times, with a 30 second rest time between the 

trials. The last three trials were recorded, while the first trial was used as practice for 

familiarisation (Bolgla et al., 2008). Isometric peak torque (Nm) of the hip abductors for each 

trial was recorded. 

 

Figure 4.19 Isometric strength assessment of hip abductors with Biodex 
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4.2.3.8. Statistical analysis 

Reliability 

The reliability test used the mean value from three trials with regard to strength and kinematic 

variables during screening tasks for all participants. Between-session reliability of the isometric 

strength assessment of hip abductors and knee extensors with HHD and lower limb 2D 

kinematic measurements were assessed with ICC (Rankin and Stokes, 1998), from which 95% 

CI was obtained; in addition, SEM and MDD were calculated to determine the error of 

measurement. For more details, see Chapter 4, Section 4.1.3.5.  

Validity  

Pearson’s correlation coefficients were used to assess the correlations between lower limb 

strength and 2D kinematic measurements with the HHD against the gold standard of 3D 

analysis with an isokinetic dynamometer. One sample t-test was performed for the differences 

between values of the two instruments in order to test the applicability of bland Altman to 

assess the agreement between them. For more details, see Chapter 4, Section 4.1.3.5.  
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4.2.4. Results 

Between-session reliability of kinematic variables  

Table 4.10 Between-session intraclass correlation coefficients (ICC) for lower limb 

kinematics using 2D analysis during SLS 

Variable 
Test 1 Test 2 

ICC 95% CI SEM MDD 
Mean (°) (SD) Mean (°) (SD) 

R FPPA 12.82 (7.35) 12.66 (7.75) .976 (.878 - .995) 1.163 3.22 

L FPPA 12.31 (8.06) 13.12 (8.87) .953 (.765 - .991) 1.795 4.97 

R HADD 15.99 (7.82) 15.88 (7.18) .968 (.841 - .994) 1.300 3.59 

L HADD 15.94 (6.82) 13.10 (7.72) .905 (.525 - .981) 2.200 6.10 

R QA 14.94 (8.76) 15.79 (9.86) .953 (.767 - .991) 1.935 5.36 

L QA 15.93 (9.77) 15.17 (9.51) .986 (.930 - .997) 1.138 3.15 

R KFLX 102.13 (4.63) 100.94 (5.21) .903 (.513 - .980) 1.510 4.18 

L KFLX 106.27 (6.57) 103.23 (9.03) .877 (.385 - .975) 2.481 6.88 

R DFLX 80.45 (4.52) 80.57 (3.18) .925 (.625 - .985) 0.828 1.99 

L DFLX 81.81 (5.34) 82.78 (5.56) .866 (.328 - .973) 1.995 5.53 

R RFA 10.39 (3.16) 10.43 (2.92) .961 (.805 - .992) 0.598 1.65 

L RFA 11.26 (3.81) 11.68(3.49) .967 (.837 - .993) 0.641 1.78 

R FPPA: Right frontal plane projection angle L FPPA: Left frontal plane projection angle 
R HADD: Right hip Adduction Angle  L HADD: Left hip adduction angle  
R QA: Right Q-angle  L QA: Left Q-angle  
R KFLX: Right knee flexion angle  L KFLX: Left knee flexion angle  
R DFLX: Right dorsiflexion angle  L DFLX: Left dorsiflexion angle  
R RFA: Right rearfoot angle  L RFA: Left rearfoot angle  
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Table 4.11 Between-session intraclass correlation coefficients (ICC) for lower limb 

kinematics using 2D analysis during SLL 

Variable 

 

Test 1 Test 2 
ICC 95% CI SEM MDD 

Mean (°) (SD) Mean (°) (SD) 

R FPPA 13.86 (6.99) 12.43 (6.46) .955 (.774 - .991) 1.406 3.90 

L FPPA 7.51 (6.88) 8.46 (7.60) .990 (.951 - .998) 0.624 1.73 

R HADD 10.86 (5.54) 10.65 (4.05) .886 (.429 - .977) 1.457 4.03 

L HADD 6.13 (5.99) 5.21 (6.07) .925 (.624 - .985) 1.654 4.58 

R QA 16.00 (11.33) 16.35 (9.65) .982 (.911 - .996) 1.124 3.11 

L QA 10.68 (9.39) 11.01 (11.03) .977 (.887 - .995) 1.303 3.61 

R KFLX 115.73 (10.71) 116.88 (9.66) .974 (.868 - .995) 1.570 4.35 

L KFLX 123.71 (7.57) 122.42 (7.53) .962 (.808 - .992) 1.479 4.10 

R DFLX 93.47 (4.50) 92.92 (4.72) .845 (.223 - .969) 1.815 5.03 

L DFLX 96.38 (5.47) 97.38 (5.77) .891 (.458 - .978) 1.847 5.12 

R RFA 11.94 (2.89) 11.10 (3.19) .900 (.500 - .980) 0.952 2.64 

L RFA 12.90 (3.29) 12.20(4.38) .892 (.460 - .978) 1.149 3.18 
R FPPA: Right frontal plane projection angle L FPPA: Left frontal plane projection angle 
R HADD: Right hip Adduction Angle  L HADD: Left hip adduction angle  
R QA: Right Q-angle  L QA: Left Q-angle  
R KFLX: Right knee flexion angle  L KFLX: Left knee flexion angle  
R DFLX: Right dorsiflexion angle  L DFLX: Left dorsiflexion angle  
R RFA: Right rearfoot angle  L RFA: Left rearfoot angle  
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Table 4.12 Between-session intraclass correlation coefficients (ICC) for lower limb 

kinematics using 2D analysis during RUN 

Variable 

 

Test 1 Test 2 
ICC 95% CI SEM MDD 

Mean (°) (SD) Mean (°) (SD) 

R FPPA -1.52 (4.43) -0.70 (3.56) .945 (.726 - .989) 0.834 2.31 

L FPPA -1.76 (3.72) -1.13 (5.40) .887 (.435 - .977) 1.306 3.62 

R HADD 11.17 (3.76) 10.75 (3.21) .959 (.797 - .992) 0.651 1.80 

L HADD 11.20 (2.39) 11.37 (4.22) .817 (.086 - .963) 1.126 3.12 

R QA 6.43 (7.85) 6.47 (6.49) .897 (.488 - .979) 2.205 6.11 

L QA 8.11 (5.41) 8.18 (7.94) .908 (.543 - .982) 1.605 4.45 

R KFLX 132.82 (5.05) 132.05 (4.92) .924 (.621 - .985) 1.372 3.80 

L KFLX 132.61 (5.22) 130.16 (5.43) .904 (.521 - .981) 1.647 4.56 

R DFLX 91.18 (7.99) 89.62 (7.99) .957 (.783 - .991) 1.665 4.61 

L DFLX 91.15 (5.94) 91.07 (5.77) .939 (.693 - .988) 1.449 4.01 

R RFA 10.90 (4.55) 11.23 (4.50) .926 (.630 - .985) 1.230 3.41 

L RFA 11.98 (4.08) 11.51 (4.49) .903 (.518 - .981) 1.316 3.64 
R FPPA: Right frontal plane projection angle L FPPA: Left frontal plane projection angle 
R HADD: Right hip Adduction Angle  L HADD: Left hip adduction angle  
R QA: Right Q-angle  L QA: Left Q-angle  
R KFLX: Right knee flexion angle  L KFLX: Left knee flexion angle  
R DFLX: Right dorsiflexion angle  L DFLX: Left dorsiflexion angle  
R RFA: Right rearfoot angle  L RFA: Left rearfoot angle  

 

Referring to Table 4.10, between-session reliability of the kinematic variables with 2D 

measurement during SLS ranged from good to excellent (0.866 – 0.986) with SEM (0.598° - 

2.481°) and MDD (1.65° – 6.88°). Only two variables were good, left knee flexion (ICC = 

0.877), and left dorsiflexion, and other variables were excellent. In SLL task, ICCs values of 

the between-session reliability of the kinematic variables with 2D measurement during SLL, 

in Table 4.11, ranged from good to excellent (0.845 – 0.990) with SEM (0.624° - 1.845°) and 

MDD (1.73° – 5.12°). The lowest ICC value was for right dorsiflexion (ICC = 0.845).  Three 

variables during running task out of the 12 variables were non-normally distributed. Between-

session reliability of the kinematic variables with 2D measurement during RUN ranged from 

good to excellent (0.817 – 0.959) with SEM (0.651° - 2.205°) and MDD (1.80° – 6.11°) (Table 

4.12). 
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Validity of 2D 

Table 4.13 2D and 3D correlation using QTM during SLS 

Variable 2D Mean (SD) 3D Mean (SD) r P 

R FPPA 12.82 (7.35) 13.50 (7.44) .962** <.001 

L FPPA 12.31 (8.06) 13.56 (9.27) .957** <.001 

R HADD 15.99 (7.82) 16.02 (7.45) .993** < .001 

L HADD 15.94 (6.82) 16.45 (7.63) .989** < .001 

R QA 14.94 (8.76) 16.42 (9.03) .984** < .001 

L QA 15.93 (9.77) 15.89 (11.18) .959** <.001 

R KFLX 102.13 (4.63) 102.64 (4.78) .974** < .001 

L KFLX 106.27 (6.57) 106.64 (7.07) .988** < .001 

R DFLX 80.45 (4.52) 79.33 (5.42) .943** < .001 

L DFLX 81.81 (5.34) 80.78 (6.02) .838** .009 

R RFA 10.39 (3.16) 9.62 (2.75) .891** .003 

L RFA 11.26 (3.81) 11.34 (3.31) .819* .013 

R FPPA: Right frontal plane projection angle L FPPA: Left frontal plane projection angle 
R HADD: Right hip Adduction Angle  L HADD: Left hip adduction angle  
R QA: Right Q-angle  L QA: Left Q-angle  
R KFLX: Right knee flexion angle  L KFLX: Left knee flexion angle  
R DFLX: Right dorsiflexion angle  L DFLX: Left dorsiflexion angle  
R RFA: Right rearfoot angle  L RFA: Left rearfoot angle  
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Table 4.14 2D and 3D correlation using QTM during SLL 

Variable 2D Mean (SD) 3D Mean (SD) r P 

R FPPA 13.86 (6.99) 16.10 (5.90) .876** .004 

L FPPA 7.51 (6.88) 8.59 (7.13) .964** <.000 

R HADD 10.86 (5.54) 10.33 (5.55) .973** < .001 

L HADD 6.13 (5.99) 6.24 (5.90) .916** <.001 

R QA 16.00 (11.33) 19.47 (9.72) .872** .005 

L QA 10.68 (9.39) 12.85 (11.77) .983** < .001 

R KFLX 115.73 (10.71) 116.50 (10.23) .988** < .001 

L KFLX 123.71 (7.57) 124.35 (7.04) .994** < .001 

R DFLX 93.47 (4.50) 92.88 (5.71) .982** < .001 

L DFLX 96.38 (5.47) 96.00 (5.29) .992** < .001 

R RFA 11.94 (2.89) 11.94 (3.38) .834** .001 

L RFA 12.90 (3.29) 12.53 (3.43) .821* .012 

R FPPA: Right frontal plane projection angle L FPPA: Left frontal plane projection angle 
R HADD: Right hip Adduction Angle  L HADD: Left hip adduction angle  
R QA: Right Q-angle  L QA: Left Q-angle  
R KFLX: Right knee flexion angle  L KFLX: Left knee flexion angle  
R DFLX: Right dorsiflexion angle  L DFLX: Left dorsiflexion angle  
R RFA: Right rearfoot angle  L RFA: Left rearfoot angle  
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Table 4.15  2D and 3D correlation using QTM during RUN 

Variable 2D Mean (SD) 3D Mean (SD) r P 

R FPPA -1.52 (4.43) -1.71 (4.39) .967** <.000 

L FPPA -1.76 (3.72) -2.21 (3.88) .982** < .001 

R HADD 11.17 (3.76) 11.06 (4.65) .912** .002 

L HADD 11.20 (2.39) 10.70 (3.48) .895** .003 

R QA 6.43 (7.85) 6.88 (6.64) .982** < .001 

L QA 8.11 (5.41) 8.77 (4.46) .925** .001 

R KFLX 132.82 (5.05) 134.13 (5.33) .968** < .001 

L KFLX 132.61 (5.22) 132.66 (5.93) .942** <.001 

R DFLX 91.18 (7.99) 90.73 (9.15) .984** < .001 

L DFLX 91.15 (5.94) 89.30 (6.28) .972** <.001 

R RFA 10.90 (4.55) 10.57 (4.22) .861** .006 

L RFA 11.98 (4.08) 11.01 (3.37) .827* .011 

R FPPA: Right frontal plane projection angle L FPPA: Left frontal plane projection angle 
R HADD: Right hip Adduction Angle  L HADD: Left hip adduction angle  
R QA: Right Q-angle  L QA: Left Q-angle  
R KFLX: Right knee flexion angle  L KFLX: Left knee flexion angle  
R DFLX: Right dorsiflexion angle  L DFLX: Left dorsiflexion angle  
R RFA: Right rearfoot angle  L RFA: Left rearfoot angle  

 

The results show a very significant correlation between 2D and 3D analysis in all of the 

kinematic variables, ranging from 0.832 – 0.994 across all the three tasks (Tables 4.13, 4.14, 

and 4.15).  

 
Between-session reliability of muscle strength  

Table 4.16 Between-session intraclass correlation coefficients (ICC) for HHD 

Muscle 

Test 1 Test 2 

ICC 95% CI SEM MDD Mean 

(N.m) 
(SD) 

Mean 

(N.m) 
(SD) 

KEXT 138.02 (41.65) 136.54 (43.64) .980 .900 - .996 5.96 16.53 

HABD 88.00 (22.17) 92.16 (21.71) .983 .915 - 997 2.85 7.90 

KEXT: knee extensors  HABD: Hip Abductors  

 
As shown in Table 4.16, the between-session reliability assessment of isometric muscle 

strength testing with the HHD demonstrated excellent reliability for quadriceps (ICC=0.997, 

95% CI=0.968 to 0.999) and hip abductor (ICC=0.993, 95% CI=0.917 to 0.997) muscle 

strength. 
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Validity of HHD  

Table 4.17 HHD and Biodex correlation for isometric strength assessment of knee extensors 

and hip abductors 

Muscle 

HHD Biodex 
t-test of 

difference r Mean 

(N.m) 
(SD) 

Mean 

(N.m) 
(SD) 

KEXT 138.02 (41.65) 181.61 (52.15) 0.003 0.969* 

HABD 88.00 (22.17) 100.96 (29.01) 0.029 0.900* 

KEXT: knee extensors  HABD: Hip Abductors  

 

 

Figure 4. 20 Scatterplot illustrating the linear relationship, with (r2) value, between the HHD 

procedure and the isokinetic dynamometer procedure for knee extensors  
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Figure 4. 21 Scatterplot illustrating the linear relationship, with (r2) value, between the HHD 

procedure and the isokinetic dynamometer procedure for hip abductors 

The results show that the value obtained with the isokinetic dynamometer are significantly 

higher than the value obtained with the HHD, and the bland Altman test was not applicable due 

to significant difference between the two instruments with t-test. However, at the same time of 

this difference, there is very large correlation between the two instruments in quadriceps 

(r=0.969) and hip abductor (r=0.900) isometric muscle strength. The scatterplot illustrates a 

positive linear relationship between the HHD procedure and isokinetic dynamometer procedure 

for knee extensors was (r2=0.940) and hip abductors was (r2=0.810), (Table 4.17) (Figure 4.21). 

4.2.5. Discussion  

One of the aims of this study is to assess the relationship between 2D and 3D systems with 

regard to the kinematics of the lower limb during SLS, SLL and RUN. In this section, 3D 

reflective markers for motion analysis were employed on the 2D landmarks for FPPA and other 

lower limb kinematic variables in order to view the two systems simultaneously during each 

athletic task. The results of the correlation assessment were surprising, showing that 2D 

analysis has a very large correlation with 3D analysis, with excellent between-day reliability 

in the majority of the kinematic variables. Most previous studies, as well as the study in study 

(1) in chapter 4, used Visual3D for 3D measurements in order to assess this relationship with 

the 2D measurements. In the current study, efforts have been made to avoid the differences that 

may exist due to the use of Visual3D through utilising QTM only with 3D markers for 2D 
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marker placements. In this method, no model was created, and the 3D measurements for 

kinematic variables in the frontal and sagittal planes were performed manually based on the 

2D method of measurement. By so doing, the agreement between 2D and 3D measurements in 

tracking the same point at the same time was improved. However, this method only supports 

the accuracy of the use of 2D measurements in the frontal and sagittal planes separately. In this 

sense, it does not reflect the actual movement in the joint that could be measured with the use 

of Visual3D. For more details regarding similar studies, see chapter 4, Section 4.1.5. 

Several studies have assessed the repeatability and validity of the HHD with regard to its 

population, and the significant advantages of its use as an alternative tool to the isokinetic 

dynamometer with regard to its low cost and portability. Most of these studies report conflicting 

results in assessments with the HHD (Martin et al., 2006), which may be due to the position of 

testing or the poor stabilisation of participants or the HHD, which is especially apparent when 

testing powerful muscle groups, such as quadriceps (Agre et al., 1987; Bohannon, 1990; Hayes 

and Falconer, 1992; Martin et al., 2006). Other studies have used a belt to stabilise the HHD in 

order to provide more support and stability for the instrument and to assess its validity and 

reliability (Katoh et al., 2011, Kim et al., 2014). This seems to be more practical than being 

stabilised by the examiner’s hand, but, in fact, this method is less secure due to the movability 

of the HHD, particularly with a long belt. 

In the present study, we addressed the issues behind the conflicting results of using an HHD. 

Therefore, the HHD was stabilised on the wall using wooden frame in the current study. In 

addition, a sitting position was selected for knee extensors and a supine position was selected 

for hip abductors. The results of the isometric strength assessment with the HHD show 

excellent between-day repeatability for knee extensors and hip abductors with a fixed HHD. 

Similar results were reported in a number of previous studies that assessed the reliability of the 

isometric strength of hip abductors and knee extensors using an HHD (Katoh et al., 2011; Kim 

et al., 2014).  

The current study’s results regarding HHD validation compared to the gold standard of an 

isokinetic dynamometer system show that the results obtained with the isokinetic dynamometer 

are significantly higher than the results obtained with the HHD. However, there is very 

significant correlation between the two systems in the muscles tested, r=0.969 for knee 

extensors and r=0.900 for hip abductors. Martin et al. (2006), Bohannon et al. (2011) and Kim 

et al. (2014) investigated the validity of HHD measurements for knee extensors, and similar 
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results are reported in all of these studies. Martin et al. (2006) assessed the validity of HHD 

measurements for knee extensors from a supine position, while Kim et al. (2014) did so from 

supine and sitting positions; Bohannon et al. (2011) assessed the same muscle group from a 

sitting position, which is similar to the current study. All of these studies report a correlation 

between the isokinetic dynamometer and the HHD, but the values obtained with the isokinetic 

dynamometer were greater than those obtained with the HHD. The lowest variation between 

the two measurements was found, by Kim et al. (2014), in supine position with a 35º flexion 

in the knee joint: the isokinetic dynamometer compared to the HHD was 69.63Nm and 

66.03Nm, respectively, with a large correlation (r=.806*). In the same study, Kim et al. (2014) 

report that the value obtained with the HHD from a supine position with 35º flexion in knee 

joint was 10.23% greater than a sitting position with 90º in knee flexion. They claim that this 

difference may have been due to the optimal muscle length at the moment of the peak muscle 

force, in addition to the muscle length, which changes according to the angle of the knee and 

the hip joints (Visser et al., 1990; Kim et al., 2014). We are uncertain why there was a variation 

of values between the two procedures in the current study and in that of Bohannon et al. (2011), 

but it might be due to the extra comfort and stability offered by the isokinetic dynamometer 

and the absence of trunk support with the HHD procedure (Hart et al., 1984; Bohannon et al., 

2011).  

The current study’s results that were obtained with the isokinetic dynamometer for hip 

abductors are significantly higher than the results obtained with the HHD. However, there is a 

very large correlation (r=0.903) between the two systems in the muscles tested. Few studies 

were found in the literature that assessed the validity and reliability of the isometric muscle 

strength of hip abductors with an HHD or an HHD with a belt (Kawaguchi and Babcock, 2010; 

Katoh et al., 2011). Katoh et al. (2011) assessed the association between the HHD and 

isokinetic dynamometer for hip abductors from a side-lying position, and no significant 

correlation between the two instruments was obtained for hip abductors (Katoh et al., 2011). 

The validity of hip isometric strength measurements using the HHD did not exist before 

conducting the current study. Recently, Martins et al. (2017) observed a high correlation 

between an HHD stabilised with a belt and an isokinetic dynamometer for knee extensors and 

hip abductors (r range=0.78 – 0.90). However, Martin at al.’s (2017) study supports the findings 

of the current study. The linear relationships between the two procedures for knee extensors 

and hip abductors (r2=0.940 and r2=0.810, respectively: Figure 4.20) provide evidence that the 

same underlying constructs were being measured, i.e. hip abductors and knee extensors. 



117 
 

Measurements of hip abductors and knee extensors obtained with an HHD are significantly 

lower than, but at the same time highly correlated with, those obtained with an isokinetic 

dynamometer. As the HHD is less expensive, requires less space, and is more portable than the 

isokinetic dynamometer system, and as limitations due to examiner strength do not appear to 

apply, the use of an HHD is suitable for measuring hip abductor and knee extensor strength in 

large-scale screenings of healthy individuals. 

In conclusion: 

Based on these results, it could be proven that the 2D motion analysis and HHD are valid and 

reliable in measurement of all outcome measures which will be tested in the next chapter:   

1. Frontal plane projection angle (FPPA) during SLS, SLL, and RUN 

2. Hip adduction (HADD) during SLS, SLL, and RUN 

3. Q-angle (QA) during SLS, SLL, and RUN 

4. Knee Flexion (KFLX) during RUN 

5. Ankle dorsiflexion (DFLX) during RUN 

6. Rearfoot angle (RFA) during RUN 

7. Isometric muscle strength of knee extensors 

8. Isometric muscle strength of hip abductors  
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CHAPTER 5  

Prospective Investigation of Biomechanical Risk Factors in the Initiation of PFP in 

Basic Military Training  

 

5.1. Introduction  

Military physical training has the potential risk of injury, which increases as the intensity of 

training exercises increases. Occurrence of injury causes temporary or long-term disability for 

recruits, resulting in a loss of training time as well as treatment and rehabilitation (Powell & 

Barber-Foss, 2000; Agel et al., 2007; Hootman et al., 2007; and Rauh & Wiksten, 2007). Basic 

military training is considered to be the most physically demanding training course for new 

recruits across many military institutions in the world (Wilkinson et al., 2008), which, in order 

to reach the maximum level of physical readiness, mainly consists of running, battle training, 

resistance training, and loaded marches to improve muscle strength, endurance, and aerobic 

fitness (Greeves et al., 2001; Blacker et al., 2008). The volume and physical load for many 

recruits is higher than they have previously experienced (Cowan et al., 1996; Almeida, 1999). 

It has been claimed that the risk of musculoskeletal injury is increased due to a failure to adapt 

to the significant increase in physical load (Popovich et al., 2000; Sharma, 2007; Knapik et al., 

2011).  

Incidence of musculoskeletal injuries within military populations has been reported in many 

studies, ranging from 20 to 59% during basic military training (Linenger & West, 1992; 

Franklyn et al., 2011; and Knapik et al., 2013). The medical discharge rate at the Infantry 

Training Centre in Catterick in the UK is over 8%, primarily due to musculoskeletal injuries 

(Blacker et al., 2008). The rate for knee injury was about 203 per 1,000 trainees, and lower 

limb injuries comprised 72% of all injuries. It has been suggested that PFP is a high-rate 

musculoskeletal injury, associated with an increase in the volume of exercise or physical load, 

such as in sports or basic military training (Cowan et al., 1996; Almeida, 1999).  

Patellofemoral pain is one of the main sources of chronic knee pain in young athletes (Brody 

& Thein, 1998; Piva et al., 2006), accounting for 25 to 40% of all knee joint problems examined 

in sports medicine clinics (Rubin & Collins, 1980; Chesworth et al., 1989; Bizzini et al., 2003). 

Patellofemoral pain is a major problem among physically active populations, such as 

adolescents, young adults, and military recruits (Messier et al., 1991; Cutbill et al., 1997; 

Duffey et al., 2000; Witvrouw et al., 2000; Laprade et al., 2003; Powers et al., 2003; Thijs et 

al., 2007).  
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Various methods and instruments have been used by researchers to investigate the source of 

this condition. There is evidence from retrospective studies that the condition may be related 

to biomechanical factors, such as an increase of hip adduction and internal rotation angles, an 

increase of knee valgus, an increase of Q-angle, an increase of rearfoot eversion angle, a 

decrease of knee extensors strength, and a decrease of hip abductor and external rotator strength 

(Aglietti et al., 1983; Al-Rawi & Nessan, 1997; Aliberti et al., 2010; Anderson & Herrington, 

2003; Bakeret al., 2002; Barton et al., 2010; Barton et al.,  2009; Besier et al., 2008; Callaghan 

& Oldham, 2004; Cowan et al., 2002; Cowan et al., 2001; Crossley et al., 2004; Dierks et al., 

2008; Dorotka et al., 2002; Draper et al., 2009). However, with a retrospective design, it is 

difficult to determine if the risk factor is the cause or the consequence of the condition. 

Therefore, to progress within this field, further prospective studies are needed in order to 

improve our understanding of the biomechanical risk factors of PFP and to develop its 

treatment and prevention. Previously documented prospective studies, of which there are a 

limited number, have made progress within this field and have reported various risk factors 

related to the injury. From the fifteen prospective studies, six were found in the literature that 

investigated the biomechanical risk factors of PFP in military populations (Milgrom et al., 

1991; Van Tiggelen et al., 2004; Hetsroni et al., 2006; Thijs et al., 2007; Duivgneaud et al., 

2008; VanTiggelen et al., 2009; Boling et al., 2009). However, despite the benefit of choosing 

a military population during basic military training, as it is a homogenous group in terms of 

age, physical fitness, activity, and amount of daily training, there are some limitations that need 

to be addressed. The most important limitations are the time taken for collecting data and a 

dependency on the use of advanced technology, which is expensive and not applicable to large-

scale screening (such as isokinetic dynamometers for strength and 3D systems for kinematic 

and kinetic measurements). Therefore, the most important factors in screening large 

populations are speed, simplicity, and portability, which are crucial in future injury prevention 

programmes. It has been noted from reviewing the previous prospective studies that none report 

on their reliability, and there is a lack of validation regarding the measurement tools; in 

addition, no study used 2D measurements for FPPA and other lower limb kinematics in military 

populations and no study used a stabilised HHD for the isometric muscle strength assessment 

of hip abductors and knee flexors.  

In Chapter 4, it was recognised that 2D and HHD measurements are significantly correlated 

with 3D and isokinetic dynamometer measurements in lower limb kinematics during SLS, 

SLL, and RUN, as well as for isometric muscle strength assessment of hip abductors and knee 
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extensors. These results support studies that found similar results for 2D measurement of lower 

limb kinematics and isometric muscle strength assessment using an HHD, in addition to the 

conclusion that an HHD and 2D analysis may have the potential to identify individuals who 

are at high risk of PFP (McLean et al., 2005; Willson & Davis, 2008; Katoh & Yamasaki, 2009; 

Bohannon et al., 2011; Gwynne & Curran, 2014; Maykut et al., 2015; Sorenson et al., 2015). 

In the Saudi military population, it is notable that there is a high incidence rate for knee injuries 

during the first three months of military training and that it is one of the most common causes 

of discharge or referral to hospital. In order to further advance the current state of research and 

gain a better understanding of the risk factors that contribute to the occurrence of PFP, the 

purpose of this study is to employ 2D motion analysis and HHD for FPPA and other lower 

limb kinematics and strength within the military population in order to be the first study to 

investigate the risk factors of PFP and other lower limb injuries among Saudi recruits.  

5.2. Aims  

 The aims of this study are therefore to prospectively examine: 

a) The use of 2D analysis in FPPA, HADD, dynamic Q-angle, knee flexion, 

dorsiflexion, and rearfoot eversion during running, SLS, and SLL to screen for PFP 

development injury occurrence in addition to other lower limb injuries. 

b) The use of an HHD in isometric strength testing of hip abductors and knee extensors 

to screen for PFP development injury occurrence in addition to other lower limb 

injuries. 

c) Identify the risk factors that can be measured and have a clear relationship to the 

incidence of PFP, more than other risk factors. 

Objective: 

The objective of this study is to screen a large military population with 2D video and an HHD 

in order to investigate the biomechanical risk factors associated with patellofemoral pain and 

other lower limb injuries. 

Hypotheses  

Therefore, the following null hypotheses will be tested within the study: 

1. H01: There will be no significant difference between the kinematics of individuals who 

sustain patellofemoral pain and any other lower limb injuries, and those who do not. 

2. H02: There will be no significant difference in muscle strength between individuals who 

sustain patellofemoral pain and any other lower limb injuries and those who do not. 
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3. H03: There will be no risk factor that can be measured and has a clear relationship to 

the incidence of PFP, more than other risk factors. 

5.3. Methods 

5.3.1. Instruments  

Four video cameras (Casio Exilim F1) and Quantic motion analysis software were used to 

assess lower extremity kinematics during the sport screening tasks. Two HHD (MicroFet F1) 

were used for lower limb strength assessments in order to collect peak values of the isometric 

strength of knee extensors and hip abductors. Each participant’s height and mass were 

measured using the (Seca) Height and Weight Measure (OCZ-M1007). A Brower Timing Gate 

System (TC-Timing System, USA) was used to monitor running speeds. 

5.3.2. Participants  

All cadets and recruits from Royal Saudi Land Forces who had joined the 12-week basic 

military training course were invited to participate in this study. Enrolled study participants 

were spread among three cities in Saudi Arabia (King Abdul-Aziz Military Academy (KAMA) 

in Riyadh: 04 Oct – 27 Dec 2015; Military Maintenance Institute (MI) in Taif: 08 Nov 2015 – 

31 Jan 2016; Military Artillery Institute (AI) in Khamees Mshait: 20 Dec 2015 – 13 Mar 2016). 

Before the enrolment, all of the new cadets and recruits had passed the standard health 

evaluation of joining the Royal Saudi Armed Forces and the standard Physical Testing of Saudi 

Military Academies and institutes, which included the following: a one mile run in less than 

8.04 min, 20 push-ups, 29 sit-ups, from the Military Acceptance Committee, before the 

enrolment.  

The invitation for participation in the study came via a verbal announcement with some 

information about the study and demonstration of the screening tasks by the researcher, during 

assembly on the first day. The individuals were asked to read the information sheet and were 

given 24 hours to decide whether they were happy to participate. Once the individuals were 

happy to participate, they signed an informed consent form. It was required that all participants 

were free from any recent lower limb injury or lower back pain (Van Tiggelen et al., 2009). 

Additionally, the individuals were clinically screened by the principal investigator in regard to 

the inclusion criteria before the period of basic military training and for signs of meniscal 

abnormalities, ligamentous instability, effusion, and tenderness. Any individuals with such 

injuries were referred to the Academy’s physician and were excluded from the study.  
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5.3.3. Basic military training  

During the 12 weeks of basic military training, approximately 12-15 hours of daily training 

programmes are performed, similar to basic military training in most nations such as UK and 

USA army and consisting mainly of extensive physical training, marching with backpacks, 

military tactical exercises, and shooting, in addition to theoretical classes starting in the second 

week (five hours daily). At the end of the 12 weeks, the recruits undertake a 60km hike with 

backpack within a strict time schedule. Since all the participants benefited from the same 

training programme, environmental conditions, equipment, food, and daily schedules, this 

study departs from the assertion that extrinsic contributing factors which may affect PFP 

incidence were mostly under control within the current study (Roos et al., 1998; Parkkari et al., 

2001). 

5.3.4. Camera setup  

The camera setup was previously described in detail in Chapter 4, Section (4.2.3.3).  

Before participation, each cadet signed a consent form that was approved by the ethical 

committee of the University of Salford and also by the relevant authority in the Saudi Armed 

Forces. All cadets were fitted with the standard training shoes for basic military training (Nike 

Air Max 95), and they wore white shorts as well as coloured and numbered training shirts for 

identification. The data collection procedure was spread into three stations, which are described 

below. 

First station  

The first station was a clinical screening by the main investigator to confirm that there were no 

recent injuries to the lower limb or back. Mass, height, shoe size, and dominant leg (referred 

to as the one which they would kick a ball with) were recorded in the first phase. Participants 

were asked to fill out the Arabic version of the Knee injury and Osteoarthritis Outcome Score 

(KOOS) questionnaire instead of Anterior Knee Pain Scale (AKPS) questionnaire which is the 

common one used for PFP, because the Arabic version was not exist.  KOOS is a widely used 

as subjective knee measurement tools; it is a 42-item self-report questionnaire categorised into 

five subscales: Pain (P), Symptoms (S), Activity of Daily Living (ADL), Sport (SP), and Knee 

function related to Quality of Life (Q). A scale relating to associated pain or disorder ranging 

from 0 (no problem) to 4 (extreme problems) was used to score each item. Subscale scores 

were then individually transformed into a 0 to 100 scale (0=extreme knee problem, 100=no 

knee problem) (Roos et al., 1998) The test-retest reliability of the Arabic version of KOOS was 
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found to be between 0.875 and 0.957 across all subscales and to have a high correlation with 

the Arabic version of the RAND-36 questionnaire items, which ranged from 0.659 to 0.810 

(Almangoush et al., 2013). Additionally, an information questionnaire about sports, weekly 

hours in sports, previous lower limb injuries, and previous knee injuries was supplied, followed 

by marker placements for the anatomical landmarks of the variables. 

Three markers were placed on anatomical landmarks for the measurement of the Q-angle, on 

both lower limbs of each participant. These markers were placed on the ASIS, the mid-point 

of the patella, and the tibial tubercle to define the anatomical references of the Q-angle in both 

limbs. For the FPPA, three markers were placed on FPPA anatomical references of each 

participant, on both lower limbs. The three markers were placed on the midpoint of the ankle 

malleoli for the centre of the ankle joint, the midpoint of the femoral condyles for the centre of 

the knee joint, and on the midpoint of the line from the anterior superior iliac spine to the knee 

marker at the proximal thigh. Markers of knee flexion angle were placed on the greater 

trochanter, lateral epicondyle, and lateral malleolus. Three markers were placed on the head of 

the fibula, the lateral malleolus, and the head of the fifth metatarsal, which was approximated 

inside standard shoes in order to determine the anatomical landmarks of the dorsiflexion angle. 

Finally, for the rearfoot eversion angle, four markers were placed, in descending order, on the 

midpoint of the calf muscle, the top of the Achilles tendon, the top of the heel, and the bottom 

of the heel. The lower two markers were placed on standard training shoes (Figure 5.1). For 

more details, see Chapter 4, Section 4.2.3.4. The cadets subsequently moved onto the second 

phase. 

 

Figure 5.1 Marker placement 
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Second station 

5.3.5. Baseline for kinematic assessments using 2D analysis 

Screening tasks  

SLS, SLL, and RUN were used as screening tasks for the baseline assessment of kinematic 

variables. Participants were allowed to practice each task twice or three times until they felt 

familiarised and comfortable with the trials. Three acceptable trials from each participant for 

both legs were then selected and analysed for all tasks. These screening tasks were previously 

described in more detail in chapter 4, Section 4.1.3.4. After this, the participants then moved 

onto the third phase. 

 

 

Figure 5.2 Overview of the 2D procedure set-up 

 

Third station  

5.3.6. Baseline for strengthening assessments using HHD 

5.3.6.1. Knee extensors  

The HHD (MicroFet F1) was stabilised on a horizontal stake at a height of 20cm. The subjects 

were asked to sit on the edge of the treatment bed, with a 90º flexion at the knee and both feet 

off the ground. The height of the treatment bed was adjusted to place the HHD 5cm proximal 

to the ankle joint at the front aspect. The subjects were then asked to apply maximum force to 

extend the knee joint against the fixed device for five seconds and to repeat this four times, 

with a 30 second rest in between. The last three trials were recorded, while the first trial was 
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used as practice for familiarisation (Bolgla et al., 2008). The maximum force, in (N), of the 

knee extensors for each trial was recorded for both sides and the average multiplied by lower 

leg length in meter (m) (the distance from the head of the fibula to the lateral malleolus) to 

calculate the isometric peak torque of knee extensors in (Nm). For more details, see Section 

4.2.3.7. 

5.3.6.2. Hip abductors 

The HHD was stabilised on the wall, and subjects were asked to lie down on their backs with 

their knees flexed at 90º on the edge of the bed, beside the stabilised HHD, to apply maximum 

force in abducting the hip joint against the fixed HHD for five seconds, and to repeat this four 

times, with a 30 second rest in between. The last three trials were recorded, while the first was 

used as practice for familiarisation (Bolgla et al., 2008). The maximum force, in (N), of the hip 

abductors for each trial was recorded for both sides and the average multiplied by length of 

femur in (m) (the distance from greater trochanter to the lateral epicondyle) to calculate the 

isometric peak torque of hip abductors in (Nm). For more details, see Section 4.2.3.7. 
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Figure 5.3 Diagram of data collection procedure 

All data was collected in the first five days of basic military training and it was anonymous and 

remained confidential, additionally all videos were stored in a password protected file on a 

personal computer with the main researcher. 
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5.3.7. Data processing  

The videos collected at the baseline of kinematic assessment were analysed using a Quintic 

Biomechanics software package (Version 26) to measure the FPPA, Q-angle, HADD, knee 

flexion angle, dorsiflexion angle, and rearfoot angle, as in the following table:  

Table 5.1 Measurements of the kinematic variables for the lower limb 

Variable Method of measurements 

FPPA The FPPA was calculated by quantifying the angle formed between the line 
from the marker of the proximal thigh to the marker of the midpoint of the 
knee joint and the line from the marker of the knee joint to the marker of the 
ankle. 
 

Q-angle The Q-angle was measured by quantifying the angle formed between the 
line connecting the ASIS to the centre of the patella and the line connecting 
the tibial tuberosity to the centre of the patella.  
 

HADD The HADD angle was calculated by measuring the angle formed between 
the line between the two ASIS and the line from the marker of the midpoint 
of the knee joint in the tested limb. 
 

Knee flexion The knee flexion angle was calculated by quantifying the angle formed 
between line from the marker of the greater trochanter to the marker of the 
lateral epicondyle and the second line from the marker of the lateral 
malleolus to the marker of lateral epicondyle. 
 

Dorsiflexion The dorsiflexion angle was represented by the angle formed between the 
lines from the two peripheral markers to the central marker placed on the 
lateral malleolus. 
 

Rearfoot 

eversion 

The angle formed by conjunction between the line from the marker of the 
midpoint of the calf muscle and the marker of the top of the Achilles tendon 
and the line from the marker of the bottom of the heel to the marker of the 
top of the heel. 
 

An average of three trials for each variable in both limbs were recorded for all participants 

during the three tasks. For more details, see Chapter 4, Section 4.1.3.4.  

5.3.8. Assessment and registration of injuries 

Participants’ medical records were followed up to record the occurrence of PFP and other lower 

limb injuries during the 12 weeks of basic military training. During the basic military training, 

any cadet presenting with a suspected injury was reported to the training camp medical unit’s 

physician for assessment and diagnosis. The inclusion criteria described by Van Tiggelen et al. 

(2009) was used to assign participants to the PFP group. These are: 
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 Exhibit retropatellar pain during at least two of the following activities: 

jumping/hopping, squatting, stairs, and running (Arroll et al., 1997; Cowan et al., 2002). 

 Exhibit two of the following clinical criteria in the clinical assessment (with minimal 

values along a scale of 3/10) (Witvrouw et al., 1996; Powers et al., 1998):  

o Pain during direct compression of the patella agent’s femoral condyle while 

knee is in full extension.  

o Tenderness on palpation of the posterior surface of the patella.  

o Pain on resisted knee extension from 90º of flexion to the full extension. 

o Pain during isometric contraction of the quadriceps against resistance on the 

suprapatellar resistance with 15º of knee flexion. 

Additionally, negative findings (i.e. no symptoms) in the examination of knee ligaments, 

bursae, menisci, synovial plicea, iliotibial band, Hoffa’s fat pad, and the hamstring, quadriceps, 

and patellar tendons and their insertions were essential for being included in the PFP group. 

Each clinic in the three military units was provided with a copy of the instructions for PFP 

inclusion criteria.  

PFP and other lower limb injuries were registered by means of the clinic’s medical registration 

form. Any participants with knee pain were examined firstly by the clinic’s physician and were 

then referred to the physiotherapist for more investigation and assessment of the PFP inclusion 

criteria. Definition of injury was based on time loss of training, therefore participant who 

presented with positive findings, according to the above criteria, and received medical 

recommendation to reduce activities for three days were assigned to the injured group.  Each 

injured participant diagnosed with PFP was also provided with a copy of the KOOS 

questionnaire (Roos et al., 1998; Almangoush et al., 2013). A meeting was held between the 

main investigator and the physiotherapist and other medical stuff in each unit to explain the 

purpose of the study, the inclusion criteria of PFP, and the duration of follow-up, in addition to 

methods of communication and how to send the information weekly. 

5.3.9. Statistical analysis 

All statistical analysis (Figure 5.4) was obtained using IBM SPSS statistical software (Version 

23). Means and standard deviations for all measured variables were obtained. All measured 

variables were analysed in order to check the normality of distribution using a Shapiro-Wilk 

test. In comparing the injured and non-injured groups, independent t-tests were used for 

normally distributed variables and Mann-Whitney U tests for non-normally distributed 
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variables. Effect sizes were calculated to assess the importance of significant differences found 

between injured and non-injured groups for each variable. Effect sizes were determined using 

Cohen δ, which was categorised into three levels: 0.2 represented a small effect size, 0.5 a 

medium effect size, and 0.8 a large effect size (Thomas et al., 2005). Binary logistic regression 

analysis was performed for each variable in order to identify the predictive variables on the 

development of PFP. Forward stepwise logistic regression analysis was applied to create a 

predictive model in order to determine the predicted variable with regards to interaction with 

other variables. Only the variables that were significantly different between the injured and 

non-injured groups were included in multivariate logistic regression and creating the model. 

Before developing a multivariate logistic regression model, multicollinearity between variables 

was evaluated; if a correlation between two variables was ≥0.8, only one of the variables was 

chosen for the multivariate analyses. Each task was calculated separately for regression model 

and results were expressed in odds ratios (ORs). Number of variables that could be interred in 

each model complied with the one-in-ten rule (one variable for each ten injuries), based on 

previous work was done by Peduzzi et al., (1996). The A receiver operating characteristic 

(ROC) curve, with a value of area under the curve and sensitivity and specificity values, was 

performed in order to identify the discriminatory capability of each variable. The cut-off point 

on the ROC curve was chosen with maximised sensitivity and specificity values. Statistical 

significance was accepted at a = 0.05 level. Risk Ratio was performed to compare the risks for 

the injured and non-injured groups according to the predicted risk factor. It was calculated by 

dividing the cumulative incidence in PFP group by the cumulative incidence in the healthy 

group. Rate Ratio also was calculated by dividing the incidence rate of injured group on 

incidence rate of non-injured group. Finally, causality relationship between FPPA and 

development of PFP was assessed using widely accepted epidemiologic criteria for causality, 

known as the Bradford Hill criteria which consists of nine elements (strength, consistency, 

specificity, temporality, biological gradient, coherence and biological plausibility, experiment, 

and analogy)  
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Figure 5.4 Statistical analysis diagram 

 

5.4. Results 

338 out of 475 cadets and recruits from Royal Saudi Land Forces who joined the basic 12 

weeks military training participated in this study (Figure 5.5). The participants were from three 

cities in Saudi Arabia. 213 cadets came from King Abdul-Aziz Military Academy (KAMA) in 

Riyadh. A total of 6 cadets of the 213 did not meet the inclusion criteria during the baseline 

assessments, 2 cadets did not complete the training programme due to another health condition, 

and 2 cadets withdrew from the training programme. 52 recruits from military maintenance 

institute (MI) in Taif. A total of 7 recruits of the 52 did not meet the inclusion criteria during 

the baseline assessments, one recruit did not complete the training programme due to another 

health condition, and one recruit withdrew from the training programme. 73 recruits from 

military Artillery institute (AI) in Khamees msheet. A total of 3 recruits of the 73 did not meet 

the inclusion criteria during the baseline assessments, and one recruit did not complete the 

training programme due to another health condition. 
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Figure 5.5 Number of participants of the three groups 
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At the baseline assessment 16 participants were excluded due to presence of knee pain or other 

lower limb injuries. 4 participants were withdrawn from the training during the first two weeks 

and 3 not completed the training programme due to other health condition and they were 

excluded. 315 participants were completed the basic military training. During the weekly 

follow-up 68 participants developed 85 lower limb injuries (48 knee pain and 37 other lower 

limb injuries) were recorded in the clinic of the unit. 37 were confirmed via the assessment of 

inclusion criteria that mentioned previously in section 5.3.9 as PFP and 11 were excluded from 

PFP injury group because they were not submitted the inclusion criteria and were considered 

as other sources of knee pain to be added to the group of other lower limb injury to be 48 lower 

limb injuries (Figure 5.6).     

 
Figure 5.6 Flow chart of groups’ identification 
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5.4.1. Results (A) all participants of the three groups (315 subjects) 

During the twelve weeks of basic military training, 68 of the 315 participants (21.58%) were 

diagnosed with 85 lower limb musculoskeletal injuries in 112 (17.78%) of 630 tested limbs: 

37 (11.75%) PFP, 11 (3.49%) other sources of knee pain (KP), 8 (2.54%) medial tibial stress 

(MTS), 7 (2.22%) planter fasciitis (PF),7 (2.22%) ankle pain (AP), 4 (1.27%) foot pain (FP), 3 

(0.95%) tibia stress fracture (TSF), 3 (0.95%) ankle sprain (AS), 3 (0.95%) iliotibial band 

(ITB), and 2 (0.63%) hip joint pain (HP) (Table 5.3 and Figures 5.7 – 5.9).  

Table 5.2 Demographic characteristics of the participants 

Age (y) Height (m) Mass (Kg) BMI (kg/m2) 

19.83±2.86 1.72±0.06 66.43±12.73 22.39 ±3.88 

 

Table 5.3 Numbers and percentages of injured participants and injured limbs in each injury 

Injury 
Right 

limb 

Left 

limb 

Both 

limb 

Number of 

injured 

Participants 

Number 

of 

injured 

limbs 

Injury incidence 

(%)  

Injury rate 

per 1000 

PFP 20 8 9 37 46 11.75% 0.44 

KP 6 5 - 11 11 3.49% 0.13 

MTS - - 8 8 16 2.54% 0.10 

PF - - 7 7 14 2.22% 0.08 

AP 3 4 - 7 7 2.22% 0.08 

FP 2 - 2 4 6 1.27% 0.05 

TSF 3 - - 3 3 0.95% 0.04 

AS 2 1 - 3 3 0.95% 0.04 

ITB 1 1 1 3 4 0.95% 0.04 

HP - 2 - 2 2 0.63% 0.02 

Total 37 21 27 85 112 26.98% 1.01 

PFP: Patellofemoral pain  AP: Ankle pain AS: Ankle sprain  

KP: Knee pain FP: Foot Pain ITB: Iliotibial band   

MTS: Medial tibial stress TST: Tibial stress fracture HP: Hip pain 

PF: Planter fasciitis   
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Figure 5.7 Types and percentages of PFP and other lower limb injuries during the 12 weeks 

of basic military training 

 

 

Figure 5.8 Percentages of injuries 

As illustrated in Figure 5.9, after the end of the first training week with no recorded injuries, 

there was a high incidence of injuries in the second week (34: 40%), which decreased gradually 
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in the following three weeks and was then distributed equally over the rest of the training 

period.  

 

Figure 5.9 Types and numbers of lower limb injuries during the 12 weeks of basic military 
training 

All lower limbs injuries  

68 subjects developed at least one lower limbs musculoskeletal injury; it accounted for 

approximately (21.6%) of all participants (Figure 5.7). Most of injuries occurred during the 

first three weeks. Participants who developed the injuries were significantly heavier than the 

heathy group (P=0.000), with a higher BMI (P=0.001) and normalised body mass (P=0.000). 

Effect sizes were small for body mass-related variables (mass 0.31; BMI 0.27; mass normalised 

to height 0.30). With regard to strength variables, the injured group had significantly lower 

muscle strength during the baseline assessment in knee extensors (P=0.006), hip abductors 

(P=0.003), and the summation of knee extensors and hip abductors (P=0.003), when compared 

to the non-injured group. Small effect sizes were found for the strength variables: 0.27 for knee 

extensors, 0.32 for hip abductors, and 0.31 for the summation of knee extensors and hip 

abductors. The FPPA of injured participants was significantly greater than those without during 

the SLL screening task: P=0.033. Participants who developed lower limb musculoskeletal 

injuries had a significantly greater HADD angle (P=0.048) in SLS and in SLL (P=0.016) during 

the baseline assessment. KFA during RUN screening tasks of injured participants was 

significantly greater than those without: P=0.041 .No significant differences were detected 

between the two groups in any of the other kinematic variables or in sports participation. Effect 
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sizes were moderate for FPPA during SLL (0.03) and running (0.24) and were small for the 

other kinematic variables that had significant differences (Table 5.4 – 5.6). 

 
Table 5.4 .Mean, standard deviation, 95% confidence interval (CI), and P value of the 

demographic characteristics of injured and non-injured groups 

Variable Group Number Mean SD 
95% CI 

p 
Effect 

size 
Lower Upper 

Age 

Non-
Injured 

247 19.95 2.16 19.68 20.22 
0.118 0.17 

Injured 68 19.42 1.77 19.00 19.85 

Height 

Non-
Injured 

247 1.72 0.06 1.71 1.72 
0.133 0.30 

Injured 68 1.74 0.06 1.73 1.76 

Mass 

Non-
Injured 

247 64.41 10.92 63.04 65.78 
0.000* 0.49 

Injured 68 73.66 15.82 69.86 77.46 

BMI 

Non-
Injured 

247 21.88 3.45 21.45 22.31 
0.001 0.40 

Injured 68 24.20 4.74 23.06 25.34 

Mass 

norm to 

Height 

Non-
Injured 

247 367.96 58.67 360.59 375.33 
0.000* 0.46 

Injured 68 413.84 83.48 393.79 433.90 

 

Table 5.5 Mean, standard deviation, 95% confidence interval (CI), and P value of the 

strength variables of injured and non-injured groups 

Variable Group Number Mean SD 
95% CI 

p 
Effect 

size 
Lower Upper 

KEXT 

(%BW*TL) 

Non-
Injured 

247 139.53 46.48 133.70 145.37 
0.006* 0.25 

Injured 68 122.43 45.58 111.48 133.38 

HABD 

(%BW*FL) 

Non-
Injured 247 75.95 21.19 73.29 78.61 

0.003* 0.28 
Injured 68 67.23 19.63 62.52 71.95 

KEXT + 

HABD  

Non-
Injured 

247 215.49 61.71 207.74 223.24 
0.003* 0.28 

Injured 68 189.66 59.52 175.36 203.96 

KEXT: Knee extensors  HABD: Hip abductors  KEXT+HABD: Knee extensors + hip abductors   
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Table 5.6 Mean, standard deviation, 95% confidence intervals (CI), and P value of kinematic 
variables and sports participation of injured and non-injured groups 

Variable Group Number Mean SD 
95% CI 

p 
Effect 

size 
Lower Upper 

FPPA in 

SLS (°) 

Non-
Injured 

241 3.79 9.08 2.63 4.94 
0.146* 0.14 

Injured 66 5.71 9.57 3.36 8.07 

HADD in 

SLS (°) 

Non-
Injured 

241 9.45 4.67 8.86 10.05 
0.048* 0.20 

Injured 66 10.89 5.26 9.59 12.18 

QA in SLS 

(°) 

Non-
Injured 

241 10.65 8.57 9.56 11.74 
0.094* 0.16 

Injured 66 12.75 8.84 10.58 14.92 

FPPA in 

SLL (°) 

Non-
Injured 

244 2.51 7.77 1.53 3.49 
0.033* 0.20 

Injured 68 4.92 8.61 2.84 7.00 

HADD in 

SLL (°) 

Non-
Injured 

245 3.85 4.87 3.24 4.46 
0.016* 0.24 

Injured 68 5.69 5.60 4.34 7.05 

QA in SLL 

(°) 

Non-
Injured 

245 10.16 7.95 9.16 11.16 
0.021* 0.21 

Injured 68 12.77 8.38 10.74 14.80 

FPPA in 

RUN (°) 

Non-
Injured 

240 -2.98 5.32 -3.66 -2.30 
0.394* 0.05 

Injured 65 -2.58 5.70 -3.99 -1.17 

HADD in 

RUN (°) 

Non-
Injured 

240 8.87 3.90 8.37 9.37 
0.937 0.03 

Injured 65 8.69 3.75 7.76 9.62 

QA in RUN 

(°) 

Non-
Injured 

240 6.13 5.89 5.39 6.88 
0.742* 0.04 

Injured 65 6.45 5.66 5.05 7.85 

KFA in RUN 

(°) 

Non-
Injured 

176 46.34 4.23 45.71 46.97 
0.041 0.24 

Injured 48 44.89 3.61 43.85 45.94 

DFA  in 

RUN (°) 

Non-
Injured 

176 81.77 4.69 81.08 82.47 
0.307 0.11 

Injured 48 82.55 4.92 81.12 83.98 

RFA in RUN 

(°) 

Non-
Injured 

178 14.50 4.41 13.85 15.15 
0.385 0.11 

Injured 48 15.27 4.79 13.88 16.66 

Participating 

in sport 

Non-
Injured 

247 6.05 1.54 5.86 6.25 
0.321 0.10 

Injured 68 5.81 1.53 5.44 6.18 

FPPA: Frontal plane projection angle  HADD: Hip adduction QA: Q-angle  
SLS: Single leg squat SLL: Single leg land  RUN: Running  
KFA: Knee flexion angle  DFA: Dorsiflexion angle  RFA: Rearfoot angle  
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5.4.1.1. Predicted risk factors of lower limbs injuries. 

Results of the binary logistic regression for each individual variable are presented in Table 5.7. 

The results show that mass, BMI, mass norm to height, KEXT, HABD, KEXT & HABD,   

FPPA during SLL, HADD during SLS and SLL, QA during SLL and KFA during RUN are 

significantly predicted lower limbs injuries. The odds ratio of each variable are ranged between 

0.912 for KFA during running and 1.168 for BMI. 

Table 5.7 Odds ratio with P value and 95% confidence intervals (CI) of odds ratio for each 

variable 

  
OR P 

95% CI for OR 

Lower Upper 

Mass 1.058 .000 1.035 1.082 

BMI 1.168 .000 1.088 1.255 

Mass norm to Height 1.010 .000 1.006 1.014 

KEXT MS (%BW*TL) .991 .008 .985 .998 

HABD MS (%BW*FL) .978 .003 .964 .992 

KNEE + HIP MS .993 .003 .988 .997 

HADD in SLS (°) 1.063 .035 1.004 1.124 

FPPA in SLL (°) 1.039 .030 1.004 1.076 

HADD in SLL (°) 1.076 .009 1.019 1.136 

QA in SLL (°) 1.043 .020 1.007 1.080 

KFA in RUN (°) .912 .033 .838 .993 

 

One multivariate logistic regression model was created for each task to analyse. The variables 

included in the three models were: (BMI, hip abductor and knee extensor strength, in addition 

to HADD during SLS, FPPA and HADD during SLL, and knee flexion angle during running). 

The most predictive created model is presented in Table 5.8. The results show that BMI 

significantly predicted PFP (P<0.001). The odds ratio shows that the risk of lower limb 

musculoskeletal injuries in subjects who had greater BMI during the baseline assessment was 

1.175 times higher than in the healthy group.  

Table 5.8 Odds ratio with P value and 95% confidence intervals (CI) of odds ratio for 

regression model  

 OR P 
95% CI for OR 

Lower Upper 

BMI .000 1.175 1.088 1.268 

KNEE + HIP MS .032 .994 .989 1.000 

FPPA in SLL .007 1.089 1.024 1.158 

Constant .000 .009   
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Patellofemoral pain  

37 subjects (11.75%) developed PFP in 46 (7.30%) knees; as the highest recorded injury, it 

accounted for approximately half (44%) of all recorded lower limb musculoskeletal injuries 

(Figure 5.7). 40% of PFP injuries occurred during the second week. Participants who developed 

PFP were significantly heavier than the healthy group (P=0.039), with a higher BMI (P=0.048) 

and normalised body mass (P=0.027). Effect sizes were small for body mass-related variables 

(mass 0.26; BMI 0.22; mass normalised to height 0.25). With regard to strength variables, the 

injured group had significantly lower muscle strength during the baseline assessment in knee 

extensors (P=0.046), hip abductors (P=0.050), and the summation of knee extensors and hip 

abductors (P=0.038), when compared to the non-injured group. Small effect sizes were found 

for the strength variables: 0.23 for knee extensors, 0.22 for hip abductors, and 0.25 for the 

summation of knee extensors and hip abductors. The FPPA and Q-angle of participants with 

PFP were significantly greater than those without during the three screening tasks: P=0.003 

and P=0.016 during SLS, P<0.001 and P=0.001 during SLL, and P=0.001 and P=0.025 during 

RUN. Participants who developed PFP had a significantly greater HADD angle (P=0.003) in 

SLS and in SLL (P<0.001) during the baseline assessment. No significant differences were 

detected between the two groups in any of the other kinematic variables or in sports 

participation. Effect sizes were moderate only for FPPA during SLL (0.50) and were small for 

the other kinematic variables that had significant differences (Table 5.9 – 5.11).
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Table 5.9 Mean, standard deviation, 95% confidence interval (CI), and P value of the 

demographic characteristics of injured and non-injured groups 

Variable Group Number Mean SD 
95% CI 

p 
Effect 

size 
Lower Upper 

Age 

Non-
Injured 

278 19.84 2.11 19.59 20.09 
0.954 0.02 

Injured 37 19.78 1.89 19.15 20.41 

Height 

Non-
Injured 

278 1.72 0.06 1.71 1.73 
0.133 0.22 

Injured 37 1.74 0.06 1.72 1.76 

Mass 

Non-
Injured 

278 65.82 12.23 64.38 67.27 
0.039* 0.26 

Injured 37 71.05 15.38 65.92 76.18 

BMI 

Non-
Injured 

278 22.23 3.73 21.80 22.67 
0.048* 0.22 

Injured 37 23.56 4.80 21.96 25.16 

Mass 

norm to 

Height 

Non-
Injured 

278 374.95 64.77 367.31 382.60 
0.027* 0.25 

Injured 37 400.98 82.75 373.39 428.57 

 

Table 5.10 Mean, standard deviation, 95% confidence interval (CI), and P value of the 

strength variables of injured and non-injured groups 

Variable Group Number Mean SD 
95% CI 

p 
Effect 

size 
Lower Upper 

KEXT 

(%BW*TL) 

Non-
Injured 

278 137.62 47.02 132.07 143.17 
0.046* 0.23 

Injured 37 122.02 42.81 107.75 136.29 

HABD 

(%BW*FL) 

Non-
Injured 

278 74.86 21.10 72.37 77.35 
0.050* 0.22 

Injured 37 67.92 20.71 61.02 74.83 

KEXT + 

HABD  

Non-
Injured 

278 212.48 62.17 205.13 219.82 
0.038* 0.25 

Injured 37 189.94 58.32 170.50 209.39 

KEXT: Knee extensors  HABD: Hip abductors  KEXT+HABD: Knee extensors + hip abductors   
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Table 5.11 Mean, standard deviation, 95% confidence intervals (CI), and P value of 

kinematic variables and sports participation of injured and non-injured groups 

Variable Group Number Mean SD 
95% CI 

p 
Effect 

size 
Lower Upper 

FPPA in 

SLS (°) 

Non-
Injured 

271 3.78 9.20 2.68 4.88 
0.003* 0.26 

Injured 36 7.36 8.78 4.39 10.33 

HADD in 

SLS (°) 

Non-
Injured 

271 9.58 4.75 9.01 10.14 
0.003* 0.21 

Injured 36 11.16 5.27 9.37 12.94 

QA in SLS 

(°) 

Non-
Injured 271 10.75 8.65 9.71 11.78 

0.016* 0.24 
Injured 36 13.77 8.34 10.95 16.59 

FPPA in 
SLL (°) 

Non-
Injured 

276 2.46 7.81 1.53 3.39 
0.000* 0.50 

Injured 36 7.48 8.20 4.71 10.26 

HADD in 

SLL (°) 

Non-
Injured 

277 3.93 5.00 3.34 4.52 
0.000* 0.37 

Injured 36 6.74 5.11 5.01 8.47 

QA in SLL 

(°) 

Non-
Injured 

277 10.23 7.97 9.29 11.17 
0.001* 0.36 

Injured 36 14.56 8.16 11.80 17.33 

FPPA in 
RUN (°) 

Non-
Injured 

270 -3.22 5.41 -3.86 -2.57 
0.001* 0.36 

Injured 35 -0.41 4.64 -2.01 1.18 

HADD in 

RUN (°) 

Non-
Injured 270 8.76 3.96 8.28 9.23 

0.258 0.12 
Injured 35 9.41 2.95 8.40 10.42 

QA in RUN 

(°) 

Non-
Injured 

270 6.00 5.82 5.31 6.70 
0.025* 0.20 

Injured 35 7.73 5.77 5.75 9.71 

KFA in RUN 

(°) 

Non-
Injured 

195 46.12 4.24 45.52 46.72 
0.148 0.12 

Injured 29 45.41 3.33 44.15 46.68 

DFA  in 

RUN (°) 

Non-
Injured 

195 81.82 4.69 81.16 82.48 
0.121 0.13 

Injured 29 82.73 5.06 80.81 84.65 

RFA in RUN 

(°) 

Non-
Injured 

197 14.82 4.46 14.19 15.45 
0.156 0.18 

Injured 29 13.61 4.64 11.84 15.37 

Participating 

in sport 

Non-
Injured 

278 6.04 1.55 5.85 6.22 
0.321 0.14 

Injured 37 5.73 1.39 5.27 6.19 

FPPA: Frontal plane projection angle  HADD: Hip adduction QA: Q-angle  

SLS: Single leg squat SLL: Single leg land  RUN: Running  

KFA: Knee flexion angle  DFA: Dorsiflexion angle  RFA: Rearfoot angle  

 

Table 5.12 Mean, standard deviation, and P value of KOOS for PFP 

KOOS at Baseline KOOS at Diagnosis P value  
Mean SD Mean SD 

<0.01 
100 <0.01 70.749 24.14 
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The results show that mean and standard deviation of KOOS scores of the 37 participants who 

developed PFP were 72.07 (24.84) at the diagnosis time with significant decrease (p<0.01) 

comparing to the bassline scores (Table 5.12).   

5.4.1.2. Predicted risk factors of PFP 

Results of the binary logistic regression for each individual variable are presented in Table 

5.13. The results show that mass, mass norm to height, KEXT & HABD, FPPA during SLS,  

SLL, and RUN, HADD and QA during SLL are significantly predicted PFP. The odds ratio of 

each variable are ranged between 0.994 for KNEE + HIP MS and 1.120 for FPPA during SLL. 

Table 5.13 Odds ratio with P value and 95% confidence intervals (CI) of odds ratio for each 

variable 

  
OR P 

95% CI for OR 

Lower Upper 

Mass 1.031 .021 1.005 1.058 

BMI 1.090 .054 .999 1.189 

Mass norm to Height 1.006 .029 1.001 1.010 

KEXT MS (%BW*TL) .992 .057 .984 1.000 

HABD MS (%BW*FL) .983 .061 .965 1.001 

KNEE + HIP MS .994 .039 .988 1.000 

FPPA in SLS (°) 1.045 .030 1.004 1.088 

HADD in SLS (°) 1.067 .067 .995 1.145 

QA in SLS (°) 1.044 .051 1.000 1.091 

FPPA in SLL (°) 1.120 .001 1.037 1.140 

HADD in SLL (°) 1.087 .002 1.042 1.204 

QA in SLL (°) 1.075 .003 1.025 1.128 

FPPA in RUN (°) 1.110 .004 1.034 1.191 

QA in RUN (°) 1.056 .100 .990 1.127 

 

One multivariate logistic regression model was created for each task to analyse. Maximum 

three variables were entered in each model. The variables included in the three models were: 

(normalised mass to height, hip abductor and knee extensor strength, in addition to FPPA 

during each task). The most predictive created model is presented in Table 5.14. The results 

show that FPPA during SLL significantly predicted PFP (P=0.001). The odds ratio shows that 

the risk of PFP in subjects who had demonstrated greater FPPA in SLL during the baseline 

assessment was 1.133 times higher than in the healthy group.  
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Table 5.14 Odds ratio with P value and 95% confidence intervals (CI) of odds ratio for 

regression model 

 OR P 
95% CI for OR 

Lower Upper 

Mass norm to Height 1.008 .002 1.003 1.014 

FPPA in SLL 1.133 .001 1.051 1.222 

Constant .006 .000   

 

5.4.1.3. Receiver Operation Curve (ROC) 

Receiver Operation Curve (ROC) analysis demonstrated that weight normalized to height and 

FPPA during SLL and RUN in addition to HADD and Q-angle during SLL, were significant 

predictors for PFP. FPPA during SLL tasks was the highest predictor for PFP (Area=0.70; 

P<0.001). FPPA≥5.2° during SLL predicted PFP with a sensitivity of 70% and a specificity of 

70%. The associated positive likelihood ratio (sensitivity/1-specificity) was 2.3. 

 

Figure 5.10 Receiver Operation Curve (ROC) of FPPA during SLL 

Risk ratio  

Participants with FPPA during SLL ≥ 5.20° had 2.2 times risk of development of PFP compared 

who were with FPPA during < 5.20°. 

Rate Ratio  

Individuals with PFP incidence was 0.13 times the rate of healthy group. 



144 
 

Causality relationship between FPPA and development of PFP 

Eight criteria of the nine criteria (strength, consistency, biological gradient, Temporality, 

coherence and biological plausibility, experiment, and analogy) of Bradford Hill criteria are 

supported the association between FPPA and development of PFP.  The causality assessment 

results of Bradford Hill criteria showed that there is causality relationship between FPPA and 

development of PFP. Risk of developing PFP is higher in individuals who demonstrated greater 

FPPA. 

Due to the presence of significant differences in mass-related demographic characteristics (i.e. 

mass, mass normalised to height, and BMI) between injured and non-injured groups, we 

assessed the differences of all variables and the predicted risk factors between the compared 

groups, and categorised their results into three sets: all 315 participants from the three units in 

results (A), the 203 cadets of KAMA in results (B), and all the participants excluding those 

with a BMI of greater than 27% in results (C). This was done in order to investigate the effect 

of excluding the overweight participants from the results and to focus on the KAMA group 

(infantry cadets) separately due to the fact that they are a highly homogenised group. 
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 5.4.2. Results (B): First group (203 cadets from KAMA). 

During the twelve weeks of basic military training, 39 of the 203 participants (19.21%) were 

diagnosed with 64 lower limb musculoskeletal injuries in 79 (19.46%) out of 406 tested limbs: 

26 (12.8%) with PFP, 10 (4.92%) with other sources of knee pain, 5 (2.46%) with medial tibial 

stress, 5 (2.46%) with planter fasciitis, 3 (1.48%) with ankle pain, 4 (1.97%) with foot pain, 3 

(1.48%) with a tibia stress fracture, 2 (0.98%) with an ankle sprain, 3 (1.48%) with an iliotibial 

band, and 2 (0.98%) with hip joint pain (Table 5.15 and Figures 5.11 – 5.13). 

Table 5.15 Numbers and percentages of injured participants and injured limbs in each injury 

Injury 
Right 

limb 

Left 

limb 

Both 

limb 

Number of 

injured 

Participants 

Number 

of 

injured 

limbs 

Injury incidence 

(%) 

Injury rate 

per 1000 

PFP 16 7 3 26 29 12.8% 0.31 

KP 5 5 - 10 10 4.92% 0.12 

MTS - - 5 5 10 2.46% 0.06 

AP 2 3 - 5 5 2.46% 0.06 

PF - - 4 4 8 1.97% 0.05 

FP 2 - 2 4 6 1.97% 0.05 

TSF 3 - - 3 3 1.48% 0.04 

ITB 1 1 1 3 4 1.48% 0.04 

AS 1 1 - 2 2 0.98% 0.02 

HP - 2 - 2 2 0.98% 0.02 

Total 30 19 15 64 79 19.56% 0.76 

PFP: Patellofemoral pain  AP: Ankle pain AS: Ankle sprain  

KP: Knee pain FP: Foot Pain ITB: Iliotibial band   

MTS: Medial tibial stress TST: Tibial stress fracture HP: Hip pain 

PF: Planter fasciitis   
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Figure 5.11 Types and percentages of PFP and other lower limb injuries during the 12 weeks 

of basic military training 

 

 

Figure 5.12 Percentages of injuries
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As illustrated in Figure 5.13, after the end of the first training week with no recorded injuries, 

there was a high incidence of injuries in the second week (25: 39%), which decreased gradually 

in the following three weeks and then was distributed equally over the rest of the training 

period.  

 

Figure 5.13 Types and numbers of lower limb injuries during the 12 weeks of basic military 

training 

26 subjects (12.8%) developed PFP in 29 (7.14%) knees; as the highest recorded injury, it 

accounted for approximately 41% of all recorded lower limb musculoskeletal injuries. 35% of 

PFP occurred during the second week. No significant differences were found in the 

demographic characteristics and muscle strength variables between participants who developed 

the injury and the healthy control. The FPPA and Q-angle of participants with PFP were 

significantly greater than those without PFP during the three screening tasks: P=0.014 and 

P=0.012 during SLS, P=0.001 and P=0.006 during SLL, and P=0.009 and P=0.028 during 

RUN. Participants who developed PFP during the baseline assessment had a significantly 

greater HADD (P=0.027) in SLS and in SLL (P =0.001). Effect sizes were small for all 

kinematic variables that had significant differences. No significant differences were detected 

between the two groups in any of the other kinematic variables or when participating in sports 

(Table 5.16 – 5.18). 
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Table 5.16 Mean, standard deviation, 95% confidence intervals (CI), and P value of the 

demographic characteristics of injured and non-injured groups 

Variable Group Number Mean SD 
95% CI 

p 
Effect 

size 
Lower Upper 

Age 

Non-
Injured 

177 18.54 0.59 18.48 18.60 
0.083 0.25 

Injured 26 18.79 0.82 18.48 19.10 

Height 

Non-
Injured 

177 1.74 0.05 1.74 1.75 
0.121 0.29 

Injured 26 1.76 0.04 1.74 1.78 

Mass 

Non-
Injured 

177 68.23 12.42 66.98 69.49 
0.096 0.26 

Injured 26 73.68 16.66 67.34 80.02 

BMI 

Non-
Injured 

177 22.40 3.84 22.01 22.79 
0.160 0.22 

Injured 26 23.76 4.92 21.89 25.63 

Mass norm to 

Height 

Non-
Injured 

177 383.31 66.97 376.53 390.09 
0.115 0.24 

Injured 26 410.21 88.09 376.70 443.72 

 

Table 5.17 Mean, standard deviation, 95% confidence intervals (CI), and P value of the 

strength variables of injured and non-injured groups 

Variable Group Number Mean SD 
95% CI 

p 
Effect 

size 
Lower Upper 

KEXT MS 

(%BW*TL) 

Non-
Injured 

177 144.08 50.48 136.59 151.57 
0.379 0.17 

Injured 26 131.93 40.68 115.49 148.36 

HABD MS 

(%BW*FL) 

Non-
Injured 

177 76.46 22.15 73.17 79.75 
0.312 0.14 

Injured 26 72.13 19.78 64.15 80.12 

KNEE + 

HIP MS 

Non-
Injured 

177 220.54 65.20 210.87 230.21 
0.371 0.18 

Injured 26 204.06 54.04 182.23 225.89 

KEXT: Knee extensors  HABD: Hip abductors  KEXT+HABD: Knee extensors + hip abductors   
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Table 5.18 Mean, standard deviation, 95% confidence intervals (CI), and P value of the 

kinematic variables and sports participation of injured and non-injured groups 

Variable Group Number Mean SD 
95% CI 

p 
Effect 

size 
Lower Upper 

FPPA in 

SLS (°) 

Non-
Injured 

170 3.38 9.54 1.94 4.83 
0.014* 0.35 

Injured 25 8.26 8.65 4.69 11.83 

HADD in 

SLS (°) 

Non-
Injured 

170 9.28 4.81 8.55 10.01 
0.027* 0.31 

Injured 25 11.61 5.45 9.36 13.87 

QA in SLS 

(°) 

Non-
Injured 

170 10.17 8.42 8.89 11.44 
0.012* 0.36 

Injured 25 14.71 8.26 11.30 18.12 

FPPA in 
SLL (°) 

Non-
Injured 

176 2.29 7.51 1.17 3.41 
0.001* 0.48 

Injured 25 7.88 8.52 4.37 11.40 

HADD in 

SLL (°) 

Non-
Injured 

176 3.44 4.85 2.72 4.16 
0.001* 0.47 

Injured 25 7.03 5.48 4.77 9.29 

QA in SLL 

(°) 

Non-
Injured 176 9.89 7.00 8.85 10.93 

0.006* 0.47 

Injured 25 15.04 7.97 11.75 18.33 

FPPA in 
RUN (°) 

Non-
Injured 

169 -3.26 5.07 -4.02 -2.49 
0.009* 0.39 

Injured 24 -0.38 4.52 -2.29 1.53 

HADD in 

RUN (°) 

Non-
Injured 

169 8.80 4.07 8.19 9.42 
0.384 0.13 

Injured 24 9.56 3.30 8.17 10.95 

QA in RUN 

(°) 

Non-
Injured 

169 6.04 4.83 5.30 6.77 
0.028* 0.33 

Injured 24 8.39 4.49 6.49 10.28 

KFA in RUN 

(°) 

Non-
Injured 

96 46.25 4.28 45.38 47.12 
0.220 0.22 

Injured 18 44.93 3.34 43.27 46.60 

DFA  in 

RUN (°) 

Non-
Injured 96 82.29 4.86 81.31 83.28 

0.548 0.10 
Injured 18 83.06 5.40 80.38 85.75 

RFA in RUN 

(°) 

Non-
Injured 

96 16.95 4.35 16.07 17.83 
0.073 0.30 

Injured 18 14.88 5.05 12.37 17.38 

Participating 

in sport 

Non-
Injured 

177 6.16 1.63 5.92 6.41 
0.335 0.15 

Injured 26 5.81 1.47 5.21 6.40 

FPPA: Frontal plane projection angle  HADD: Hip adduction QA: Q-angle  

SLS: Single leg squat SLL: Single leg land  RUN: Running  

KFA: Knee flexion angle  DFA: Dorsiflexion angle  RFA: Rearfoot angle  

 

The primary results of the FPPA comparison between participants who developed FPF and 

who did not in this section were presented in the 5th international patellofemoral pain research 

retreat as a conference paper (Appendix B).  
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The results show that mean and standard deviation of KOOS scores of the 26 participants who 

developed PFP were 64.25 (24.38) at the diagnosis time with significant decrease (p<0.01) 

comparing to the bassline scores (Table 5.19).   

 
Table 5.19 Mean, standard deviation, and P value of KOOS 

KOOS at Baseline KOOS at Diagnosis P value  
Mean SD Mean SD 

<0.01 
100 <0.01 64.25 24.38 

 
  

5.4.2.1. Predicted risk factors of PFP 

Results of the binary logistic regression for each individual variable are presented in Table 

5.20. The results show that FPPA and Q-angle during SLS, SLL and RUN, HADD during SLS 

and SLL are significantly predicted PFP. The odds ratio of each variable are ranged between 

1.067 for Q-angle during SLS and 1.235 for FPPA during SLL. 

Table 5.20 Odds ratio with P value and 95% confidence intervals (CI) of odds ratio for each 

variable 

  
OR p 

95% CI for OR 

Lower Upper 

FPPA in SLS (°) 1.070 .013 1.014 1.128 

HADD in SLS (°) 1.126 .011 1.027 1.234 

QA in SLS (°) 1.067 .037 1.004 1.134 

FPPA in SLL (°) 1.235 .000 1.107 1.378 

HADD in SLL (°) 1.124 .001 1.049 1.204 

QA in SLL (°) 1.121 .003 1.040 1.210 

FPPA in RUN (°) 1.156 .008 1.039 1.286 

QA in RUN (°) 1.140 .024 1.017 1.279 

Only single variable, FPPA during each task could be entered in regression model. So, there is 

no logistic regression model. 
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5.4.2.2. Receiver Operation Curve (ROC) 

Receiver Operation Curve (ROC) analysis demonstrated that FPPA during SLL was the highest 

predictor for PFP (Area=0.74; P=0.002). FPPA≥5.40° during SLL predicted PFP with a 

sensitivity of 70% and a specificity of 70%. The associated positive likelihood ratio 

(sensitivity/1-specificity) was 2.33. 

 
 
 
 

Figure 5.14 Receiver Operation Curve (ROC) of FPPA during SLL 
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5.4.3. Results (C): All of the three groups without overweight participants 

During the twelve weeks of basic military training, 45 of the 271 participants (16.60%) were 

diagnosed with 53 lower limb musculoskeletal injuries in 67 (12.36%) out of 542 tested limbs: 

26 (9.59%) with PFP, 9 (3.32%) with other sources of knee pain, 6 (2.21%) with medial tibial 

stress, 3 (1.11%) with planter fasciitis, 2 (0.74%) with ankle pain, 2 (0.74%) with foot pain, 1 

(0.37%) with a tibia stress fracture, 2 (0.74%) with an ankle sprain, 1 (0.37%) with an iliotibial 

band, and 1 (0.37%) with hip joint pain (Table 5.21 and Figures 5.15 – 5.17).  

Table 5.21 Numbers and percentages of injured participants and injured limbs 

in each injury 

Injury 
Right 

limb 

Left 

limb 

Both 

limb 

Number of 

injured 

Participants 

Number of 

injured 

limbs 

Injury 

incidence 

(%) 

Injury 

rate per 

1000 

PFP 16 7 3 26 29 9.59% 0.31 

KP 5 4 - 9 9 3.32% 0.11 

MTS - - 6 6 12 2.21% 0.07 

PF - - 3 3 6 1.11% 0.04 

AP 1 1 - 2 2 0.74% 0.02 

FP 1 - 1 2 3 0.74% 0.02 

TSF 1 - - 1 1 0.37% 0.01 

AS 1 1 - 2 2 0.74% 0.02 

ITB - - 1 1 2 0.37% 0.01 

HP - 1 - 1 1 0.37% 0.01 

Total 25 14 14 53 67 19.56% 0.63 

PFP: Patellofemoral pain  AP: Ankle pain AS: Ankle sprain  

KP: Knee pain FP: Foot Pain ITB: Iliotibial band   

MTS: Medial tibial stress TST: Tibial stress fracture HP: Hip pain 

PF: Planter fasciitis   
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Figure 5.15 and percentages of PFP and other lower limb injuries during the 12 weeks of 

basic military training 
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As illustrated in Figure 5.17, after the end of the first training week with no recorded injuries, 

there was a high incidence of injuries in the second week (22: 41.5%), which decreased 

gradually in the following three weeks and then distributed equally over the rest of the training 

period.  

 
Figure 5.17 Types and numbers of lower limb injuries during the 12 weeks of basic military 

training 

26 subjects (9.59%) developed PFP in 29 (5.35%) knees; as the highest recorded injury, it 

accounted for approximately half (49%) of all recorded lower limb musculoskeletal injuries. 

35% of PFP occurred during the second week. No significant differences were found in the 

demographic characteristics and muscle strength variables between participants who developed 

the injury and the healthy control. The FPPA and Q-angle of participants with PFP were 

significantly greater than for those without PFP during SLL and RUN screening tasks: P=0.013 

and P=0.030 during SLL and P=0.015 and P=0.041 during RUN. Participants who developed 

PFP during the baseline assessment had a significantly greater HADD (P<0.008) in SLL. Effect 

sizes were small for the kinematic variables that had significant differences, ranging from 0.03 

to 0.40. No significant differences were detected between the two groups in any of the other 

kinematic variables or in sports participation (Tables 5.22 – 5.24). 
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Table 5.22 Mean, standard deviation, 95% confidence intervals (CI), and P value of the 

demographic characteristics of injured and non-injured groups 

Variable Group Number Mean SD 
95% CI 

p 
Effect 

size 
Lower Upper 

Age 

Non-
Injured 

245 19.88 2.11 19.62 20.15 
0.757 0.11 

Injured 26 19.54 1.70 18.85 20.23 

Height 

Non-
Injured 

245 1.72 0.06 1.71 1.73 
0.678 0.24 

Injured 26 1.74 0.05 1.72 1.75 

Mass 

Non-
Injured 

245 63.02 9.62 61.81 64.23 
0.211 0.08 

Injured 26 64.28 11.68 59.56 69.00 

BMI 

Non-
Injured 

245 21.34 2.97 20.97 21.72 
0.982 0.00 

Injured 26 21.36 3.78 19.83 22.88 

Mass norm to 

Height 

Non-
Injured 

245 359.47 50.87 353.07 365.88 
0.781 0.05 

Injured 26 363.27 64.16 337.35 389.18 

 

Table 5.23 Mean, standard deviation, 95% confidence intervals (CI), and P value of the 

strength variables of injured and non-injured groups 

Variable Group Number Mean SD 
95% CI 

p 
Effect 

size 
Lower Upper 

KEXT MS 

(%BW*TL) 

Non-
Injured 

245 140.28 47.01 134.37 146.20 
0.97 0.10 

Injured 26 133.74 41.19 117.10 150.37 

HABD MS 

(%BW*FL) 

Non-
Injured 

245 75.95 20.98 73.31 78.59 
0.404 0.12 

Injured 26 72.26 21.24 63.68 80.84 

KNEE + 

HIP MS 

Non-
Injured 

245 216.23 61.70 208.47 223.99 
0.636 0.11 

Injured 26 206.00 56.86 183.03 228.96 

KEXT: Knee extensors  HABD: Hip abductors  KEXT+HABD: Knee extensors + hip abductors   

 

 

 

 

 



156 
 

Table 5.24 Mean, standard deviation, 95% confidence intervals (CI), and P value of the 

kinematic variables and participation in sports of injured and non-injured groups 

Variable Group Number Mean SD 
95% CI 

p 
Effect 

size 
Lower Upper 

FPPA in 

SLS (°) 

Non-
Injured 

238 3.91 9.22 2.73 5.09 
0.097* 0.23 

Injured 26 7.00 8.69 3.49 10.51 

HADD in 

SLS (°) 

Non-
Injured 

238 9.71 4.79 9.10 10.33 
0.087* 0.26 

Injured 26 11.68 5.43 9.48 13.87 

QA in SLS 

(°) 

Non-
Injured 

238 10.74 8.70 9.63 11.85 
0.167* 0.19 

Injured 26 13.25 8.43 9.84 16.65 

FPPA in 
SLL (°) 

Non-
Injured 

244 2.60 7.80 1.61 3.58 
0.013* 0.38 

Injured 26 7.26 8.66 3.77 10.76 

HADD in 

SLL (°) 

Non-
Injured 

245 3.97 4.88 3.36 4.59 
0.008* 0.40 

Injured 26 6.91 5.08 4.86 8.96 

QA in SLL 

(°) 

Non-
Injured 

245 10.37 8.07 9.35 11.38 
0.030 0.32 

Injured 26 14.47 9.40 10.68 18.27 

FPPA in 
RUN (°) 

Non-
Injured 

238 -3.04 5.30 -3.72 -2.36 
0.015* 0.33 

Injured 24 -0.55 4.43 -2.42 1.32 

HADD in 

RUN (°) 

Non-
Injured 

238 9.04 3.98 8.53 9.55 
0.056 0.23 

Injured 24 10.30 2.84 9.10 11.50 

QA in RUN 

(°) 

Non-
Injured 

238 6.19 5.82 5.44 6.93 
0.041* 0.26 

Injured 24 8.44 5.57 6.09 10.79 

KFA in RUN 

(°) 

Non-
Injured 

174 46.19 4.20 45.56 46.81 
0.340 0.16 

Injured 21 45.23 3.35 43.70 46.75 

DFA  in 

RUN (°) 

Non-
Injured 

174 81.86 4.68 81.16 82.56 
0.757 0.03 

Injured 21 82.05 4.60 79.96 84.15 

RFA in RUN 

(°) 

Non-
Injured 

176 14.71 4.37 14.06 15.36 
0.210 0.12 

Injured 21 13.88 5.19 11.52 16.24 

Participating 

in sport 

Non-
Injured 

245 6.17 1.56 5.97 6.36 
0.724 0.07 

Injured 26 6.00 1.36 5.45 6.55 

FPPA: Frontal plane projection angle  HADD: Hip adduction QA: Q-angle  

SLS: Single leg squat SLL: Single leg land  RUN: Running  

KFA: Knee flexion angle  DFA: Dorsiflexion angle  RFA: Rearfoot angle  
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The results show that mean and standard deviation of KOOS scores of the 26 participants 
who developed PFP were 72.780 (22.180) at the diagnosis time with significant decrease 
(p<0.01) comparing to the bassline scores (Table 5.25).   

Table 5.25 Mean, standard deviation, and P value of KOOS  

KOOS at Baseline KOOS at Diagnosis P value  
Mean SD Mean SD 

<0.01 
100 <0.01 72.780 22.180 

 

5.4.3.1. Predicted risk factors of PFP 

Results of the binary logistic regression for each individual variable are presented in Table 

5.26. The results show that FPPA during SLS, SLL and RUN, and HADD during SLS and 

SLL, and Q-angle during SLL and RUN are significantly predicted PFP. The odds ratio of each 

variable are ranged between 1.082 for Q-angle during SLL and 1.165 for FPPA during SLL. 

Table 5.26 Odds ratio with P value and 95% confidence intervals (CI) of odds ratio for each 

variable 

  
OR P 

95% CI for OR 

Lower Upper 

FPPA in SLS (°) 1.056 .039 1.003 1.111 

HADD in SLS (°) 1.123 .009 1.029 1.226 

FPPA in SLL (°) 1.165 .002 1.060 1.280 

HADD in SLL (°) 1.093 .002 1.033 1.158 

QA in SLL (°) 1.082 .007 1.021 1.146 

FPPA in RUN (°) 1.116 .018 1.019 1.221 

HADD in RUN 1.077 .133 .978 1.186 

QA in RUN 1.105 .026 1.012 1.206 

 

Only single variable, FPPA during each task could be entered in regression model. So, there is 

no logistic regression model. 
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5.4.3.2. Receiver Operation Curve (ROC)  

Receiver Operation Curve (ROC) analysis demonstrated that FPPA during SLL was significant 

and the highest predictor for PFP (Area=0.68; P<0.005). FPPA≥5.50° during SLL predicted 

PFP with a sensitivity of 62% and a specificity of 60%. The associated positive likelihood ratio 

(sensitivity/1-specificity) was 1.55. 

 

 
Figure 5.18 Receiver Operation Curve (ROC) of FPPA during SLL
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5.5. Discussion  

This study provides one of the first descriptions of basic military physical training injuries in 

the Saudi military population. The first aim of this study was to quantify the incidence of PFP 

and any other lower limb injuries during basic military training in the Saudi military population. 

The results show that the lower limb musculoskeletal injury rate was 26.98 per 100 and PFP 

made up about 44 per 100 of all injuries. Many studies have reported incidences of physical 

training injuries during basic military training (Linenger and West, 1992; Blacker et al., 2008; 

Franklyn et al., 2011; Knapik et al., 2013; Sharma et al., 2015). Most of these studies found 

that the majority of the injuries were in the lower extremities, particularly in the knee joint 

(James et al., 1978). 

68 subjects developed lower limbs musculoskeletal injury; it accounted for approximately 

(21.59%) of all participants. Most of injuries occurred during the first three weeks. This may 

be due to that the first two weeks of training are contains mainly extensive physical training 

and the classes start by the third week. In addition, some participants might not be custom to 

the load of early training which means that there is significant difference between acute chronic 

workload ratio of the initial weeks of basic military training and the previous acute chronic 

workload ratio history of some participants, or it seems that workload was poorly managed 

during this period of training.  37 participants developed PFP during the 12 weeks of basic 

military training, thus reflecting the highest injury rate of 11.75 per 100. This result is within 

the injury rate range of previous prospective studies (2.5 – 43 per 100) and similar to that of 

Holden et al. (2015) 11 per 100. However, it is lower than most of the PFP injury rates from 

similar prospective studies that investigated the incidence rate during basic military training. 

Only Boling et al. (2009) report a lower injury rate than the one recorded in the current study. 

Surprisingly, there are significant differences in mass-related demographic characteristics (i.e. 

mass, mass normalised to height, and BMI) between injured and non-injured groups. For this 

reason, we assessed the differences in all variables and the predicted risk factors between the 

comparison groups, and we grouped the results into three sets: all 315 participants from the 

three units in results (A), the 203 cadets of KAMA in results (B), and all participants excluding 

those with a BMI greater than 27% in results (C). 

The first aim of this study was to investigate the differences in the kinematics of the lower limb 

joints between individuals who developed PFP and any other lower limb injuries and those 

who did not by using 2D analysis for running, SLS, and SLL. The present study is the first to 
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investigate the development of PFP using 2D measurement for FPPA and also for other lower 

limb kinematics in the Saudi military population. The results of kinematic differences show 

that the FPPA, Q-angle, and HADD of participants who developed PFP were significantly 

greater than the FPPA, Q-angle, and HADD of those who did not develop the injury during the 

three screening tasks, except for HADD during running.  

Dynamic knee valgus has been cited as a predictor of PFP (Prins and Wurff, 2009; Souza and 

Powers, 2009). A significantly high correlation was found between dynamic knee valgus and 

FPPA during SLS and SLL tasks in Chapter 4, which has also been previously reported in 

similar tasks and side-jump task (Mclean et al., 2005; Willson & Davis 2008; Sorenson et al., 

2015; Herrington et al., 2017). Thus, an increase in FPPA will lead to an increase in dynamic 

knee valgus, which will increase the potential risk of PFP development. The present results 

show that 2D FPPA in participants with PFP was significantly greater than in those without 

PFP during the three screening tasks. The results of the current study support those of Holden 

et al. (2015), who investigated the development of PFP prospectively in 76 adolescent female 

athletes using 2D measurements for knee valgus displacement during drop vertical jump tasks. 

Eight participants developed the injury, and knee valgus displacement increased in the PFP 

group (10.88 ± 2.2°) in comparison to the control group (3.09 ± 0.64°). However, we have to 

understand that the sex and age of the participants are not similar (i.e. in the current study, 

young adult males were examined), in addition to there being variations in the screening tasks.  

Knee valgus or medial knee displacement was assessed in several previous prospective studies 

using 3D measurement. None of these studies reported any significant difference between the 

injured and non-injured groups. The author suggests that this may be due to the screening tasks, 

which were bilateral screening tasks, as in DVJ (Myer et al., 2010) and jump-landing (Boling 

et al., 2009), a lack of information in the medical records, or self-treatment for PFP, as stated 

in the limitations of Boling et al. (2009). Additionally, it is questionable how, in Myer et al. 

(2010), the injured group had a significantly greater knee abduction moment during the 

baseline assessment but it was not combined with a significant increase in knee valgus. 

An increased HADD angle is one of the elements of dynamic knee valgus, and it has been 

associated with the development of PFP (Willson & Davis, 2008; Powers, 2010). Increased 

HADD has been shown to decrease the PFJ contact area and concentrate the articular stress on 

the lateral part on the patella (Huberti and Hayes, 1984). Individuals with PFP were found to 

have greater articular stress on the patella (Farrokhi et al., 2011). The finding of a significantly 

greater HADD in the PFP group further supports the findings of Neohren et al. (2012). HADD 



161 
 

angle in the current results was significantly greater during SLS and SLL, with a trend to be 

significant in running. While the results of Neohren et al. (2012) are based on 3D measurement, 

this may be due to the limitations of 2D during filming high-speed movement.  

This is the first prospective study to investigate the association between dynamic Q-angle and 

the development of PFP. The validity and reliability of dynamic Q-angle using 2D analysis 

were assessed in Chapter 4. In this sense, 2D measurement was shown to be a valid and reliable 

tool for measuring dynamic Q-angle, with a very large correlation with 3D analysis, excellent 

ICCs, and a small SEM across the three screening tasks. Participants who developed PFP 

demonstrated a greater dynamic Q-angle in all of the screening tasks. 

The significant decrease of isometric quadricep muscle strength is consistent with the findings 

of Van Tiggelen et al. (2004), Duivgneaud et al. (2008), and Boling et al. (2009), while 

contradicting those of Milgrom et al., (1991). In spite of the differences in testing procedures, 

it seems as if there is general agreement about the weakness of quadriceps. Milgrom et al. 

(1991) and Boling et al. (2009) assessed quadricep muscle strength isometrically, while 

Witvrouw et al. (2000), Van Tiggelen et al. (2004), Duivgneaud et al. (2008), and Herbest et 

al. (2015) assessed quadricep muscle torque in different angular velocities. Witvrouw et al. 

(2000) and Herbest et al. (2015) report no significant differences between the injured and 

control groups. Only Milgrom et al. (1991) found that the isometric muscle strength of 

quadriceps was greater in participants who developed PFP, the reason for which may be due to 

not normalising the isometric strength of quadriceps to body mass. 

The findings of the current study indicate that the isometric hip abductor muscle strength of 

participants with PFP was significantly lower than for participant without PFP, which is in 

contrast to the results of Finnoff et al. (2011) and Herbest et al. (2015). Finnoff et al. (2011) 

measured hip abductors with an HHD stabilised by the examiner’s hand (i.e. not fixed or 

stabilised with a belt), whereas Herbest et al. (2015) assessed hip isokinetic muscle strength 

from a standing position with a fixed dynamometer, which may have been affected by the 

influence of the contralateral limb (Widler et al., 2009). Two other previous prospective studies 

assessed isometric hip abductor muscle strength with an HHD, and both of them did not find 

any significant differences between the injured and non-injured groups. 

Additionally, in the current study, we calculated the summation of hip abductor and knee 

extensor muscle strength as an indicator for total lower limb muscle strength and investigated 

the differences of the results between the participants who developed PFP and those who did 
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not. The group who developed PFP had a significantly lower summed hip abductor and knee 

extensor muscle strength during the baseline assessment.  

It is important to note that this study was able to detect significant differences between the 

injured and non-inured groups with regard to kinematic variables (FPPA, HADD, and Q-angle 

during the three tasks, except HADD during running), strength variables (knee extensors, hip 

abductors, and the summation of knee extensors and hip abductors), at the same time as there 

being a difference between mass-related variables (i.e. mass, BMI, and mass normalised to 

height). These findings will help to identify the individuals who are at risk of PFP development 

with simple, portable, and low-cost measurement tools, leading to the development of injury 

prevention and intervention programmes. 

In this study, in addition to the recording of PFP, we include the recording of other lower limb 

musculoskeletal injuries. This helps us to eliminate the individuals who were affected with 

these injuries from logistic regression in order to avoid their effects on the results of predicted 

risk factors, not only for PFP but also for all other lower limbs musculoskeletal injuries. Thus, 

after excluding other lower limb injuries, all variables showing a P value of <0.05 in the 

comparison analysis between the injured and non-injured groups were entered together into the 

forward logistic regression. Variables were entered together to understand how all of the risk 

factors may interact with each other and lead to the development of PFP. The results of the 

forward logistic regression revealed that mass, hip abductor muscle strength, Q-angle during 

SLS and SLL, and FPPA during SLL all significantly predict PFP. The highest predictor 

variable was FPPA during SLL (OR=1.133, P=0.01). 

Greater FPPA during SLL with 2D analysis significantly predicted the development of PFP. 

This result supports the similar findings of Holden et al. (2015), who used 2D measurement to 

investigate knee valgus displacement during drop vertical jump tasks in 76 adolescent females, 

wherein eight developed PFP. In this sense, greater knee valgus displacement was associated 

with the development of PFP. In the current study, we used, for the first time, single leg 

screening tasks, such as SLS and SLL, in addition to running. The author hypothesised that 

single leg tasks would be better than bilateral leg tasks in investigating the injuries related with 

dynamic leg valgus because most lower limb musculoskeletal injuries, such as ACL and ankle 

sprain, occur during single leg landings.  

Three previous prospective studied reported the OR within the results (Loedke et al., 2016; 

Finnoff et al., 2011; Rauh et al., 2010). The ORs that were reported in the previous studies 
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were based on outcome measure in each study. Only one previous study reported OR of the 

association between hip muscle strength and development of knee pain (Finnoff et al., 2011). 

They found higher baseline hip abduction normalized torque percent (odds ratio = 5.35, 95% 

CI = 1.46, 19.53; P < .01) and it was higher than the OR of the current study. Rauh et al., (2010) 

reported OR for several anatomic static measures in relationship with development of lower 

limb overused injury, and there was no specific data for PFP injury.  In another study Loedke 

et al., (2016) reported OR for step rate in different speed and relationship with development of 

shin injury and AKP. No significant relationships were found between step rate and AKP at 

either speed. Some other studies reported either relative riske or only P value from logistic 

regression (Thijs et al., 2007; Witfrouw et al., 2000; Milgrom et al., 1991). No previous 

prospective study reported the OR of the relationship between strength or kinematic variables 

and development of PFP.    

Receiver operating characteristic (ROC) analysis curve was performed in the current study to 

verify the discriminatory capability of each variable. The FPPA during the SLL task was the 

highest significant predictor for PFP (Area=0.70; P<0.001). A FPPA≥ 5.2° during SLL 

predicted PFP with a sensitivity of 70% and a specificity of 70%. Holden et al. (2015) 

previously performed ROC and found that knee valgus displacement was a significant predictor 

of PFP (Area= 0.77; P=0.002). Knee valgus displacement ≥10.6° predicted PFP with a 

sensitivity of 75% and specificity of 85% (Holden et al., 2015). Despite the difference in values 

of angles of cut-off point between Holden et al., (2015) and the current study, there is 

agreement between the two studies with regard to understanding that FPPA and medial knee 

displacement are not same and there are variations in the screening tasks. In addition, the 

participants’ sex and age are dissimilar, in that the current study examined young adult males 

while Holden et al. (2015) examined adolescent females. 

In results (B), no significant differences in the demographic characteristics were found between 

the two compared groups. The results of the comparison between the PFP group and the healthy 

group with regard to the kinematic variables were typically similar to those in results (A). The 

FPPA and Q-angle of participants with PFP were significantly greater than for those without 

PFP during the three screening tasks: P=0.014 and P=0.012 during SLS, P=0.001 and P=0.006 

during SLL, and P=0.009 and P=0.028 during RUN. Participants who developed PFP had a 

significantly greater HADD angle (P=0.027) in SLS and in SLL (P=0.001) during the baseline 

assessment. No significant differences in muscle strength variables were found between the 

two compared groups. Binary logistic regression revealed that FPPA during SLL was the most 
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predicted variable of the development of PFP similar to result (A). Due to absence of strength 

and mass related variables which were not significant difference there was no regression model 

created. Receiver operating characteristic (ROC) analysis is similar to that found in results (A): 

FPPA during SLL was a significant predictor for PFP (Area=0.74; P<0.001). FPPA≥5.40° 

during SLL predicted PFP with a sensitivity of 70% and a specificity of 70%. 

In results (C), no significant differences in the demographic characteristics were found between 

the two compared groups. The results between the two compared groups, the PFP group and 

the healthy group, with regard to kinematic variables were slightly similar to the results in (A). 

The FPPA, HADD, and Q-angle of the PFP group during SLS task were not significantly 

greater than the healthy group as in results (A) and (B), but there was a trend for FPPA and 

HADD to be significant. The FPPA and Q-angle of participants with PFP were significantly 

greater than for those without PFP during SLL and RUN tasks in the baseline assessment: 

P=0.013 and P=0.030 during SLL, and P=0.015 and P=0.041 during RUN. No significant 

differences in muscle strength variables were found between the two compared groups. Binary 

logistic regression revealed that the FPPA during SLL was the most predicted variable of the 

development of PFP, which supports the results (A) and (B) regarding the FPPA during SLL. 

Additionally, ROC analysis shows similar results to those found in results (A) and (B): FPPA 

during SLL was a significant predictor for PFP (Area=0.68; P<0.005). FPPA≥5.50° during 

SLL predicted PFP with a sensitivity of 62% and a specificity of 60%. 

After excluding the participants who were over 27% in BMI, in order to predict PFP 

development, the FPPA in SLL was greater than the angles found in results (A). This means 

that the risk of injury was decreased for the same values in results (A). So, the FPPA during 

SLL needs to be greater in order to significantly predict the development of PFP, and mass 

plays an important role in increasing the risk of injury in landing tasks.  

From the previous findings of this investigation, several factors contribute to increasing the 

risk of PFP injury development: mass, the FPPA during SLL, hip abductor muscle strength, 

the Q-angle during SLL, and the Q-angle during SLS. In all three results sets, one variable was 

found to be the greatest predictor for the occurrence of injury: the FPPA during SLL. This 

finding, as previously stated, supports the findings of Holden et al. (2015). 

It has been argued that PFP is a multifactorial injury, and the findings of the current study 

support this theory. Therefore, in injury prevention or mitigation programmes, we should 

consider each factor individually and subgroup individuals according to the findings in order 
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to ensure a targeted intervention approach. The method of subgrouping the individuals with 

PFP according to the findings has been used before in Selfe et al., (2015) study. They sub-

grouped PFP individuals to three subgroups (strong, weak and tighter, and weak and pronated 

feet) according to the findings of seven clinical tests based on measurements of range of 

motion, flexibility, strength, and FPI (Selfe et al., 2015). There was no kinematic screening or 

in particular FPPA screening in Selfe and colleagues study.  FPPA is one of the main outcome 

measures in the current study and was able to identify the individuals who are at risk of PFP 

development and demonstrate greater dynamic knee valgus during movement, which is a result 

of contribution several factors have been discussed in chapter 2.   

However, the recommendation of the current study is in agreement with Selfe et al., (2015) 

study and the participants should be divided according to the findings into three groups such 

as: overweight, weak hip abductors, and high knee valgus deducted using the FPPA during 

SLL. Therefore, the results (A) include all three groups of participants (i.e. overweight, weak 

hip abductors, and high knee valgus), the results (B) and (C) only include the high knee valgus 

group, which was identified using the FPPA during SLL and was also found in all the three 

result sets, with no inclusion for overweight or muscle weakness groups. 

Therefore, according to the findings of the current study, future military strategy, with regard 

to injury prevention or mitigation programmes, should start earlier than basic military training 

with a preparation programme that includes general screening and, in particular, muscle 

strength and FPPA during SLL assessment; doing so would help to identify individuals who 

are at high risk of PFP development and to subgroup them into an injury prevention strategy. 

The preparation programme should contain, for instance, a weight loss programme for 

overweight participants, muscle strengthening for weaker participants, and education or 

feedback for individuals with high FPPA. This programme will help to reduce the risk of injury 

and increase the capability of participants to deal with the high loads of basic military training. 

This study has a number of limitations. A main limitation of this investigation is that the cohort 

population does not represent the general population and the results are not generalisable. In 

this sense, the results are only applicable to young active males. Another limitation is the small 

number of injured participants relative to the average number of previous studies. This could 

be due to several factors, the first of which relates to the mindset of injured participants; in this 

sense, injury or tolerance of injury is seen as part of basic military training and participants 

may try to avoid raising a complaint or visiting the clinic because it may affect their military 
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service profiles. Another reason may be that injury registration is potentially not of the same 

quality in the three cohorts but as this was controlled by the principal investigator, it is difficult 

to determine how this could be improved. 

5.6. Conclusion  

In conclusion, PFP results from the contribution of several risk factors. In this sense, the risk 

of injury increases with the presence of an increased number of risk factors. However, some of 

these risk factors are modifiable and can be manged. In injury prevention programmes, there 

is a need within large-scale screening to identify individuals who are at high risk of PFP 

development. In the current investigation, we observed that participants who developed PFP 

had a greater mass, BMI, mass normalised to height, FPPA, and dynamic Q-angle during all 

three tasks, as well as a greater HADD during SLS and SLL and lower hip abductor and knee 

extensor muscle strength during baseline measurements. We also observed that the baseline 

measures of knee valgus displacement, ≥ 5.2°, as measured by 2D FPPA analysis during SLL 

tasks, were predictive of PFP. Therefore, these findings may provide injury prevention 

programmes with a simple and evidence-based test to identify individuals who are at risk of 

PFP development in young adult males. 
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CHAPTER 6  

Overall discussion, conclusion, and suggestions for future work 

6.1. Overall discussion  

Patellofemoral pain is one of the most common sources of chronic knee pain in young athletes 

(Brody and Thein, 1998; Piva et al., 2006), accounting for 25 to 40% of all the knee joint 

problems that have been investigated in sports medicine clinics (Rubin and Collins, 1980; 

Chesworth et al., 1989; Bizzini et al., 2003). Patellofemoral pain is a major problem among 

physically active populations, such as adolescents, young adults, and military recruits (Messier 

et al., 1991; Cutbill et al., 1997; Duffey et al., 2000; Witvrouw et al., 2000; Laprade et al., 

2003; Powers et al., 2003; Thijs et al., 2007). There is evidence from retrospective studies that 

the condition may be related to biomechanical factors, such as kinematic, kinetic, and 

strengthening abnormalities. However, with a retrospective design, it is difficult to determine 

whether the risk factors are the cause or the consequence of the condition. To progress further 

in this field, prospective studies are therefore needed in order to gain a better understanding of 

the biomechanical risk factors of PFP and to develop future treatment and prevention. 

Motion analysis and strengthening assessment techniques are widely used in sports medicine 

research in order to investigate the risk of injuries. Due to the high accuracy and reliability of 

3D analysis in quantifying kinematic variables and of isokinetic dynamometers for muscle 

strength measurements, they are widely used in athletic tasks. In fact, this method is considered 

as the gold standard for this type of analysis. However, in injury prevention programmes, there 

is a need for large-scale screening within the field in order to identify high-risk athletes.  

Therefore, while 3D analysis and isokinetic dynamometers should ideally be used, they are not 

practical for use in large-screening programmes due to the required space and extra time needed 

for marker placement. A method is therefore needed that allows for the quick collection of data 

in a relatively small volume; in this regard, 2D analysis and HHDs may provide an alternative 

solution to 3D measurement and isokinetic dynamometers (Martine et al., 2006; Munro et al 

2012; Kim et al., 2014).  

This thesis has offered a novel insight into the use of 2D analysis and a stabilised HHD in the 

kinematic and isometric muscle strength assessment of lower limbs in order to provide 

clinicians and researchers with alternative tools to 3D analysis and isokinetic dynamometers, 

which are portable, cheaper, and easy to use in large-scale screening programmes for 
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prospectively examining individuals for PFP development in addition to the other lower limb 

injuries. In order to effectively investigate this issue, three main aspects were explored in this 

thesis. The first aspect was identifying the limitations and the gaps in the literature relating to 

the biomechanical risk factors of PFP and measurement tools (Chapters 2 and 3). The second 

aspect was assessing the reliability and validity of 2D analysis and the HHD in kinematic and 

isometric muscle strength measurements against the gold standard of 3D measurement using 

Visual3D or QTM and isokinetic dynamometers (Chapters 4). Finally, the third aspect related 

to the prospective investigation of the biomechanical risk factors of PFP and other lower limb 

injuries during basic military training (Chapter 5).  

This thesis reviewed prospective studies associated with the risk factors of PFP and ran a meta-

analysis as a part of the investigation to detect the gaps in the literature (Chapters 2 and 3). 

Several issues were addressed from reviewing the literature. In this sense, some of the studies 

are based on the use of advanced technology, so they are not practical for large-scale screening 

(Stefanyshyn et al., 2006; Boling et al., 2009; Myer et al., 2010). Further, the results of some 

studies were not generalisable (Myer et al., 2010) because they were based on static 

measurements (Witvrouw et al., 2000; Thijs et al., 2011) or were only focused on a single factor 

or only observed a single task (Van Tiggelen et al., 2009; Thijs et al., 2011). None of the 

previous prospective studies reported on their reliability, and there is a lack of validation for 

the measurement tools (Boling et al., 2009; Thijs et al., 2011), as well as a low incidence rate 

of PFP in some of the studies (Boling et al., 2009). Only one recent study used 2D analysis in 

knee valgus displacement during DVJ landing in adolescent females.  

The results of the meta-analysis show that weaker hip abductor and knee extensor strength 

appear to be risk factors for PFP, which support the results of two similar studies (Lankhorst 

et al., 2012; Pappas & Wong-Tom, 2012), who concluded that low knee extensor muscle 

strength may be a risk factor for developing PFP. Both of these studies reviewed a limited 

number of studies. Although there were a significant number of prospective studies included 

in the systematic review and meta-analysis, there was a limited number of pooled variables for 

each risk factor, with conflicting evidence in some cases or significant heterogeneity in others. 

As a result of the review, 2D analysis with a stabilised HHD was chosen to assess the isometric 

muscle strength and kinematics of the lower limbs during SLS, SLL, and running as unilateral 

limb screening tasks. However, the reliability and validity of measurements using 2D and an 

HHD were assessed in Chapters 4 before starting the measurements of the prospective study. 
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Within-day, between-day, intra-tester, and, for the first time, inter-rater reliabilities of 2D 

FPPA were assessed in Chapter 4. The results of the reliability assessment for 2D FPPA 

demonstrated excellent within-session reliability and good between-session reliability during 

all three tasks, supporting the results previously reported for SLS and SLL (Willson et al., 

2006; Munro et al., 2012; Gwynne & Curran, 2014), with ICC values of 0.72 and 0.88 

respectively. The within- and between-session reliability of 2D FPPA during running over 

ground was not reported before this study. It was expected that the within-session reliability 

would be greater than that of between-session reliability, likely due to factors such as a greater 

increase of marker placement error and the greater possibility of within-subject performance 

variation in between-session when comparted to within-session. 

Intra- and inter-rater reliability leads to a better understanding of the source of measurement 

error and could be reduced by increasing the constancy of the experimenter’s measurements. 

The ICC values for the intra- and inter-rater reliability assessment of 2D FPPA were excellent 

during all of the three tasks. Associated SEM values for intra- and inter-rater reliability ranged 

from 0.79 – 2.76 and 0.48 – 1.26, respectively, across the three tasks. This low SEM value 

indicates that the experimenter’s measurement error contributed minimally to the overall 

measurement error. This study has been published in the Journal of Electromyography and 

Kinesiology, April 2017.  

This thesis examined the validity of FPPA and HADD using 2D analysis and compared it to 

the gold standard of a 3D motion-capture QTM system for lower limb kinematic variables 

using Visual3D (Chapter 4). The validity results show a large correlation between FPPA using 

2D measurement and knee abduction (r=0.654; p=0.008) and a very large correlation between 

HADD using 2D measurement and hip adduction angle with 3D measurement (r=0.836; 

p<0.001) during SLS. A very significant correlation was found between 2D HADD and hip 

adduction angle using 3D measurements during SLL (r=0.733; p=0.002). Despite the variation 

between the tasks in this study and some of the previous studies, there is agreement between 

this study and other previous studies. The association between 2D analysis for FPPA and 3D 

knee abduction angle in these studies ranged from moderate to large, and the correlation 

between 2D analysis for HADD and 3D hip adduction angle ranged from large to very large 

(McLean et al., 2005; Willson & Davis, 2008; Gwynne & Curran, 2014; Sorenson et al., 2015). 
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Due to the low association between 2D and 3D measurements for FPPA during SLL and RUN, 

this study presents the hypothesis that this may be due to the variation between the two systems 

using Visual 3D software for 3D, which may be affected with joints definition, particularly in 

determining hip joint. In order to investigate this relationship in the second section, 3D markers 

for 2D marker placements were therefore employed in order to look at the same markers 

simultaneously with the two systems. 

Several previous studies have investigated the relationship between 2D and 3D FPPA during 

multiple functional tasks (McLean et al., 2005; Willson & Davis, 2008; Gwynne & Curran, 

2014; Maykut et al., 2015; Sorenson et al., 2015). 

In this thesis, the validity and reliability of 2D analysis, compared to the gold standard of 3D, 

without using Visual3D for lower limb kinematics, and stabilised HHD, compared to the gold 

standard of isokinetic dynamometers for knee extensor and hip abductor muscle strength, were 

tested in Chapter 4 before use for large-scale screening. In the validity assessment of this study, 

we looked at both 2D and 3D systems with the same markers and at the same time and avoided 

the use of Visual3D. This method was based on, for the first time, the use of 3D retro-reflective 

markers for 3D and 2D marker placements. Surprisingly, a very significant correlation was 

found between the 2D and 3D systems in all the kinematic variables during tasks. The results 

suggest that 2D measurements for the frontal and sagittal plane are highly correlated with the 

gold standard of 3D capture. However, despite significant results regarding the validity of 2D 

measurements, it is not reflective of the actual motion of a moving limb due to absence of 

measurement in the transverse plane.  

This thesis attempted to employ, for first time, 2D analysis for quantifying FPPA and other 

lower limb kinematics, in addition to a stabilised HHD for muscle strength assessment, in large-

scale screening for PFP development, instead of using 3D measurements and an isokinetic 

dynamometer. This was the main study in Chapter 5. The incidence of PFP in this study is 

nearly identical to that (12%) reported in a study of younger female (12.9±0.34 years) 

adolescent athletes (Holden et al., 2015). However, the population for the current study was 

young adult male cadets and recruits in basic military training, and the PFP incidence was less 

than that of the majority of previous studies in the military population (Milgrom et al., 1991; 

Van Tiggelen, 2004; Thijs et al., 2007; Duvigneaud et al., 2008; Van Tiggelen et al., 2009). 

This may be due to the below diagnosis that may affect the number of diagnosed injuries. 
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In the current investigation, we firstly analysed all of the three investigated groups together and 

observed that, in the baseline measurements, the injured group had significantly greater FPPA, 

Q-angle, and HADD during the three screening tasks, with the exception of HADD during 

running. Knee extensor and hip abductor muscle strengths were significantly lower in the 

injured individuals in the baseline assessments. Additionally, there were significant differences 

in mass-related variables between individuals who developed PFP and those who did not. In 

addition, mass, BMI, and mass normalised to height were significantly greater in the PFP group 

when compared to non-injured group.  

In the current thesis, we employed, for the first time, 2D FPPA and other lower limb kinematics 

during single leg tasks for large-scale screening in order to investigate the development of PFP 

during basic military training. FPPA was significantly greater in the PFP group during the three 

tasks, which means an increase of knee valgus. Increases of FPPA, and HADD are two of the 

risk factors that contribute to an increase in dynamic knee valgus, which, in previous research, 

has been associated with the development of PFP (Powers, 2010; Willson & Davis, 2008). A 

FPPA≥5.2 degrees during SLL predicted the development of PFP.  

The results of the current study are in agreement with those of Holden et al. (2015), whose 

research established a relationship between knee valgus displacement and the development of 

PFP in adolescent females. In their cohort study, they found that ≥10.6° of knee valgus 

displacement during DVJ is associated with the risk of PFP development. Myer et al. (2010) 

conducted a similar study to Holden et al. (2015), using 3D capture. Participants who developed 

PFP had a significantly greater knee abduction moment. In this sense, a knee abduction moment 

≥15.4 Nm was associated with the risk of PFP development. The author theorised that this 

increase in knee abduction moment may be associated with an increase in knee abduction angle. 

However, both studies used bilateral DVJ tasks in adolescent females, which may not have the 

same level of muscle activation as unilateral tasks. In addition, Myer et al. (2010) used 3D 

capture, which may not provide a practical method for large-scale screening. 

The results of this study support the finding of previous studies that PFP is a multifactorial 

condition that cannot be predicted by a single risk factor. This statement is also supported by 

result sets (A), (B), and (C) in Chapter 5, Section 5.4. The increase of dynamic knee valgus 

reported in the current study supports the results of Holden et al. (2015), which is the only other 

study to have used 2D capture in the investigation of knee valgus during DVJ (Holden et al., 
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2015). Individuals who have grater dynamic knee valgus may be at a higher risk of developing 

PFP, and this risk may increase with an increase of BMI or lower limb muscle strength.  

The current study lends support to the body of evidence that the development of PFP is 

multifactorial and may involve a variety of biomechanical factors. The evidence indicates that 

the occurrence of PFP is higher in participants who demonstrated greater FPPA and that there 

is some indication that the relationship may be causal. 

6.2. Conclusion 

PFP is a multifactorial condition that affects a significant number of young adults and athletes 

and which may be lead to serious complications and chronic diseases, such as osteoarthritis. 

Therefore, there is a need to identify the individuals who are at high risk of this condition in 

order to prevent injury and develop treatment programmes. The current research was able to 

detect differences between the injured and non-inured groups in kinematic variables and 

muscle strength variables, at the same time as noting differences between mass-related 

variables. We found that participants who developed PFP had a greater mass, BMI, mass 

normalised to height, FPPA, and dynamic Q-angle during the three tasks, as well as greater 

HADD during SLS and SLL and lower hip abductor and knee extensor muscle strength during 

baseline measurements. We also found that the baseline measures of knee valgus displacement 

≥5.3°, as measured by 2D FPPA analysis during SLL tasks, were predictive of PFP. These 

findings will help to identify those who are at risk of PFP development with simple, portable, 

and low-cost measurement tools, leading to the development of injury prevention programmes. 
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Contribution to literature  

• This research has offered the first epidemiological study in musculoskeletal lower 

limb injuries among the Saudi military population during basic military training. 

This will help as a reference for future strategy plans in injury treatment and 

prevention within the Saudi military population. 

• This research has provided the researchers with a simple, cheap, and portable, 

evidence based as a valid and reliable assessment tools (2D and HHD) for 

kinematic and strength measurements. As alternative tools in the absence of 3D 

and isokinetic dynamometer and for large scale screening. 

• This research has also offered 2D FPPA during SLL as a simple measurement 

approach that may help health practitioners and coaches to identify the 

individuals who are at risk of developing PFP, and could be used in large scale 

screening. 

• An additional fruitful advantage is that it provided off-the-shelf norms for several 

elements in the Saudi young male population in some lower limb kinematics that 

measured with 2D during SLS, SLL, and RUN, and isometric muscle strength of 

hip abductors and knee extensors that measured with HHD.  

• These norms can be highly beneficial for health practitioners and coaches in injury 

prevention or mitigating programmes    

• Finally, the screening protocol of this study will be implemented into Saudi Army 

as standard practice. 
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Suggestions for future work 

The findings of this thesis bring about several recommendations for future research. Firstly, 

from the results of the reliability and validity study in chapter 4, it is recommended that 2D 

capture and HHD are appropriate instruments for large-scale screening programmes and for 

investigating the predisposed risk factors associated with dynamic knee valgus that cause the 

development of PFP.  

The FPPA, HADD, and dynamic Q-angle during SLS, SLL, and RUN and hip abductor and 

knee extensor muscle strength assessments were able to distinguish between the subjects who 

developed PFP and those who did not. An increase in knee valgus was identified with 

quantifying FPPA during SLL tasks as the greatest predictor for PFP development. Therefore, 

it is recommended that these measures should be used for future studies in conditions related 

to an increase of dynamic knee valgus. 

The results in chapter 5 show that PFP is a multifactorial condition resulting from the 

contribution of several factors, such as mass-related factors, muscle weakness of knee 

extensors and hip abductors, and the increase of dynamic knee valgus. Therefore, it is 

recommended that future studies should be based on randomised control trail design with 

several military units over Saudi Arabia and screen the participants with 2D FPPA during SLL 

and HHD for hip abductors and knee extensors muscle strength and categorise subjects 

according to the findings in baseline assessments. Intervention programmes should be based 

on the findings of baseline assessments, which should be grouped according to subjects with 

muscle weakness and those with greater knee valgus. Interventions should be as pre-training 

programme aim to increase muscle strength for the group with muscle weakness and decrease 

knee valgus in the group with greater valgus. Such interventions should evaluate whether 

interventions aiming to increase hip abductor and knee extensor muscle strength and decrease 

dynamic knee valgus could prevent or mitigate the development of PFP in basic military 

training. Additionally, it is recommended that to divide the participants to two homogenous 

groups: intervention group, with intervention programme before the start of the training and 

control group, without intervention programme with consideration to reassess the target 

variables of the intervention during the follow up or at least at the end of the prospective studies.   
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NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE 

COHORT STUDIES 
 
Note: A study can be awarded a maximum of one star for each numbered item within the Selection and 
Outcome categories. A maximum of two stars can be given for Comparability 
 

Selection 
1) Representativeness of the exposed cohort 

a) Truly representative of the average _______________ (describe) in the community 
b) Somewhat representative of the average ______________ in the community  
c) Selected group of users eg nurses, volunteers 
d) No description of the derivation of the cohort 

2) Selection of the non-exposed cohort 
a) Drawn from the same community as the exposed cohort  
b) Drawn from a different source 
c) No description of the derivation of the non-exposed cohort 

3) Ascertainment of exposure 
a) Secure record (eg surgical records)  
b) Structured interview  
c) Written self-report 
d) No description 

4) Demonstration that outcome of interest was not present at start of study 
a) Yes  
b) No 

Comparability 
1) Comparability of cohorts on the basis of the design or analysis 

a) Study controls for _____________ (select the most important factor) 
b) Study controls for any additional factor  (This criteria could be modified to indicate specific 
control for a second important factor.) 

Outcome 
1) Assessment of outcome 

a) Independent blind assessment  
b) Record linkage  
c) Self-report 
d) No description 

2) Was follow-up long enough for outcomes to occur 
a) Yes (select an adequate follow up period for outcome of interest) 
b) No 

3) Adequacy of follow up of cohorts 
a) Complete follow up - all subjects accounted for  
b) Subjects lost to follow up unlikely to introduce bias - small number lost - > ____ % (select an 
Adequate %) follow up, or description provided of those lost)  
c) Follow up rate < ____% (select an adequate %) and no description of those lost 
d) No statement  
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Newcastle-Ottawa Quality Assessment List 

Note: A study can be awarded a maximum of one star for each numbered item within the Selection and Outcome categories. 
A maximum of two stars can be given for Comparability 

Selection 

1) Representativeness of the 

exposed cohort 

 

a) truly representative of the average PFP population in the community   
b) somewhat representative of the average PFP population in the community  
c) selected group of users eg nurses, volunteers 
d) no description of the derivation of the cohort 

2) Selection of the non-exposed 

cohort 

a) drawn from the same community as the exposed cohort  
b) drawn from a different source 
c) no description of the derivation of the non-exposed cohort  

3) Ascertainment of exposure 

 

a) secure record (eg surgical records)  
b) structured interview  
c) written self-report 
d) no description 

4) Demonstration that outcome of 

interest was not present at start of 

study 

a) yes  
b) no 

Comparability 

1) Comparability of cohorts on the 

basis of the design or analysis 

 

a) study controls for anthropometric characteristics   
 b) Study controls for extrinsic factors   

Outcome 

1) Assessment of outcome  

 

a) independent blind assessment   
b) record linkage  
c) self-report  
d) no description 

2) Was follow-up long enough for 

outcomes to occur 

a) yes (select an adequate follow up period for outcome of interest)  
b) no 

3) Adequacy of follow up of cohorts 

 

a) complete follow up - all subjects accounted for   
b) ≥ 80% of subjects complete the follow up or description provided of 

those lost  
c) follow up rate < 80% and no description of those lost 
d) no statement 
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List of injured participants 

Number  CODE Injury 1 Injury 2 Injury 3 Injury 4 

1 1 BITS    

2 10 R Foot Pain    

3 13 L PFP    

4 16 R PFP SF   

5 21 R PFP    

6 24 B Foot Pain      

7 28 L PFP    

8 30 Planter F    

9 34 L PFP    

10 35 L Ankle S    

11 45 L PFP    

12 46 R KNEE PAIN Planter F   

13 47 L KNEE PAIN L Hip   

14 52 B PFP    

15 53 R Foot Pain    

16 60 R PFP    

17 63 R KNEE PAIN    

18 64 R ankle Pain    

19 65 Planter F L Ankle P MTS RITS 

20 79 B Foot Pain   SF MTS  

21 81 R Ankle pain    

22 90 R PFP    

23 91 L PFP    

24 93 R ankle S    

25 95 R PFP    

26 96 L PFP    

27 99 L Hip    

28 111 L KNEE PAIN    

29 118 R PFP L Ankle P   

30 119 L KNEE PAIN    

31 121 B PFP    

32 126 R PFP    

33 130 L PFP MTS S F  

34 131 B PFP    

35 135 R PFP    

36 136 L ITB    

37 138 R PFP    

38 145 R KNEE PAIN    

39 149 MTS    

40 153 L Ankle Pain    

41 159 R PFP    

42 165 R KNEE PAIN     

43 166 L KNEE PAIN    



203 
 

44 168 R PFP    

45 173 R PFP    

46 174 R KNEE PAIN    

47 175 R PFP    

48 178 L KNEE PAIN    

49 184 R PFP    

50 188 MTS    

51 190 R PFP    

52 194 R PFP    

53 213 MTS  R Ankle pain   

54 219 PF    

55 225 R PFP  L Ankle pain    

56 229 B PFP    

57 230 B PFP    

58 232 R Ankle S    

59 256 R PFP     

60 261 B PFP    

61 268 B PFP  Planter F   

62 272 R KNEE PAIN  MTS   

63 273 PF    

64 285 B PFP MTS   

65 292 L PFP    

66 319 R PFP    

67 323 R PFP    

68 330 B PFP    
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 إستبيان لتقييم الحالة الصحية للركبة

 

:......./......../................تاريخ اليوم :......../....../..............                              تاريخ الميلاد   

 الأسم : ....................................................................................................................

ادية . هذه المعلومات سوف تساعدنا لمعرفة كيف تشعر بركبتك وكذلك كيف ستكون قادراً على إنجاز نشاطاتك الإعتي  

أجب عن كل سؤال بوضع علامة (    ) واحدة على الإجابة المناسبة أمام كل سوال , وإذا كنت غير متأكد من الإجابة 
 الرجاء إختيار أقرب أجابة ممكنة .

 أعراض المرض 

 ينبغي الإجابة بهذة الأسئلة المتعلقة بالأعراض المصاحبة لركبتك خلال الإسبوع الماضي.

صعوبة فرد الركبة عند إستيقاضك في الصباح ؟ ماهي شدة ذلك؟         S1  

 لا يوجد خفيف معتدل  شديد شديد جداً 
     

ماهي شدة صعوبة فرد الركبة بعد وضع الجلوس , التمدد أو الإسترخاء في وقت لاحق في من نفس اليوم؟         S2  

 لا يوجد خفيف معتدل  شديد شديد جداً 
     

هل يوجد تورم في ركبتك ؟         S3  

 ً ً  دائما  لايوجد نادراً  أحياناً  غالبا
     

هل تشعر بأي خشخشة أو سماع طقطقة , أو أي نوع آخر من الأصوات عندما تحرك ركبتك ؟         S4  

 ً ً  دائما  لا يوجد نادراً  أحياناً  غالبا
     

هل ركبتك تتصلب فجأة عندما تقوم بالحركة ؟         S5  

 ً ً  دائما  لا يوجد نادراً  أحياناً  غالبا
     

 

 التيبس

الأسئلة التالية تتعلق بدرجة تيبس (تصلب) مفصل الركبة الذي أحسست به خلال الأسبوع الماضي . التيبس هو 
 بالتقييد أو صعوبة حركة مفصل الركبة .

هل تستطيع الفرد الكامل للركبة ؟          S6  

ً  أحياناً  نادراً  أبداً  ً  غالبا  دائما
     

هل تستطيع ثني الركبة بشكل كامل ؟         S7  

ً  أحياناً  نادراً  أبداً  ً  غالبا  دائما
     
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 الألـــم

 P1       كم مرة تشعر فيها بألم الركبة عادةً 

 ً  لا يوجد كل شهر كل أسبوع   كل يوم دئما
     

       

 ماهي شدة الألم التي قد تكون شعرت بها الأسبوع الماضي خلال أدائك للنشاطات التالية ؟

الدوران مع الإرتكاز على الركبة المصابة           P2  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

فرد الركبة كاملاً          P3  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

ثني الركبة كاملاً (مثلا عند وضع الجاوس في الصلاة)        P4  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

المشي على الأرض المستوية          P5 

 لا شئ خفيف معتدل  شديد شديد جداً 
     

عند طلوع أو نزول الدرج         P6  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

أثناء وجودك في السرير ليلاً عند النوم          P7 

 لا شئ خفيف معتدل  شديد شديد جداً 
     

وضع الجلوس أو وضع الإستلقاء          P8  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

عند الوقوف معتدلاً          P9  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

 

 أنشطة الحياة اليومية 

 ما الصعوبات التي قابلتها في الركبة  الأسبوع الماضي ؟

عند نزول الدرج         A1  

 لا شئ خفيف معتدل  شديد شديد جداً 
     
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  A2                                             ًعند طلوع الدرج         

 لا شئ خفيف معتدل  شديد شديد جداً 
     

القيام من وضع الجلوس        A3  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

الوقوف         A4 

 لا شئ خفيف معتدل  شديد شديد جداً 
     

إنحناء الجسم أو النزول لإلتقاط الأشياء من الأرض         A5  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

المشي على أرض مستوية        A6  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

الصعود أو النزول من السيارة          A7  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

الذهاب للتسوق         A8  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

لبس الشراريب القصيرة أو الطويلة          A9  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

القيام أو النهوض من السرير                                                        A10 

 لا شئ خفيف معتدل  شديد شديد جداً 
     

خلع الشراريب القصيرة أو الطويلة          A11 

 لا شئ خفيف معتدل  شديد شديد جداً 
     

النوم في السرير ( التقلب على أحد الجانبين أو الحفاظ على وضع ثابت للركبة)         A12 

 لا شئ خفيف معتدل  شديد شديد جداً 
     

عند الإستحمام          A13 

 لا شئ خفيف معتدل  شديد شديد جداً 
     

وضع الجلوس                                               ً         A14  

 لا شئ خفيف معتدل  شديد شديد جداً 
     
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عند قضاء الحاجة ( أياً كان نوع المرحاض)        A15  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

الأعمال المنزلية المجهدة (مثل تحريك ونقل الأثاث والصناديق.......)          A16  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

الأعمال المنزلية الخفيفة مثل التنظيف وأعمال المطبخ.....         A17  

 لا شئ خفيف معتدل  شديد شديد جداً 
     

 

 النشاط الرياضي والمهارات اللازمة لممارسة الهوايات  

 ما الصعوبات التي قابلتها في الركبة الإسبوع الماضي    وذلك عند   

ثني الركبة من وضع الوقوف   SP1  

 لا يوجد خفيف معتدل  شديد شديد جداً 
     

الجري        SP2  

 لا يوجد خفيف معتدل  شديد شديد جداً 
     

القفز        SP3  

 لا يوجد خفيف معتدل  شديد شديد جداً 
     

الدوران مع الإرتكاز على الركبة المصابة         SP4  

 لا يوجد خفيف معتدل  شديد شديد جداً 
     

النزول والإرتكاز على الركبتين (كالنزول للسجود في الصلاة مثلاً....)         SP5  

 لا يوجد خفيف معتدل  شديد شديد جداً 
     

 

 الركبة المصابة وعلاقتها بنمط الحياة

إلى أي مدى تشغلك مشاكل ركبتك أو تمثل مساحة من ذهنك أو تفكيرك ؟         Q1 

ً  دائما  أبداً  شهرياً  إسبوعياً  يوميا
     

هل قمت بتعديل إسلوب حياتك لتجنب الأنشطة التي قد تسبب تلفاً في ركبتك؟         Q2 

ً  كلياً   أبداً  قليلاً  بإعتدال غالبا
     

 

        

ما مدى قلقك من عدم ثقتك بكفأة أداء ركبتك؟          Q3  
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 لاشئ قليلاً  نوعاً ما  بشدة بإفراط
     

بشكل عام ,ما مدى الصعوبات التي تقابلها عند ممارسة حياتك الطبيعية بسبب مشاكل ركبتك؟         Q4  

 لاشئ خفيف متوسطة  شديدة شديدة جداً 
     

 

 شكراً جزيلاً لإجابتك على كل الأسئلة في هذا الإستبيان
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 بيانات تسجيل المشاركين 

 التاريخ            /        /

 ملاحظات

Notes 
 الرقم

T. Number 

 اللون
T. Colure  

 الإسم
Name 

 تسلسل
No. 
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 إستمارة بيانات مشارك  

 

 التاريخ      /     /       

 رقم التسلسل :                اللون :                      الرقم :       

 العمر :                        الطول :                    الوزن :  

أيسر                     مقاس الحذاء :      أيمن                  

 طول الساق طول الفخذ

 الساق الأيمن : الساق الأيسر : الفخذ الأيمن : الفخذ الأيسر :
 

قوة دفع الفخذ اليسرى 
 للجانب

قوة دفع الفخذ اليمنى 
 للجانب 

 قوة دفع الساق اليمنى قوة دفع الساق اليسرى 

1.  1.  1.  1.  

2.  2.  2.  2.  

3.  3.  3.  3.  

 المتوسط : المتوسط : المتوسط : المتوسط :
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 معلومات الانشطه البدنية

 العمر:

 الوزن:

 الطول:

 في الشهر الاخير السابق للإنضمام للخدمة العسكرية هل مارست اي من مايلي:

بوعسالاعدد الساعات في   النشاط 

 المشي 

 الجري 

الدراجهركوب    

 السباحه 

 تمارين رفع الاثقال 

 حلقات التدريب 

 فنون الدفاع عن النفس 

 الرياضات الجماعية مثل(كرة القدم, كرة اليد, كرة السلة) 
 

إصاابه سابقة بالركبة                                نعم                            لاهل لديك   

بالطرف السفي                       نعم                            لاهل لديك إصاابه سابقة   
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Appendix B 

Publications and Participation Activities   
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