Hierarchical Multi-tenancy in Business to Business
Software Services

Adeniyi Abdul!
University of Salford
Salford, UK
Email: A.Abdull@edu.salford.ac.uk

Abstract—The introduction of cloud computing has changed
the provisioning and consumption of IT resources. Software-as-a-
Service (SaaS) applications provide functionality using internet
connectivity and enable centralised management of executable
code resources. Multi-tenancy is an architectural pattern for
sharing a single instance of executable software while isolating the
data and business process serving each tenant. In a multi-tenant
application, a tenant is a logical grouping of end-users who share
common code, data and process instances. Multi-tenancy can cut
across all the layers of an application software architecture.

Conventionally, multi-tenancy is implemented as a flat struc-
ture. All tenants are treated in the same way by application
software. However, large enterprises are hierarchically organised
with defined boundaries between business and functional units.
A SaaS solution, aimed at large enterprise users, needs to
reflect these hierarchical boundaries to eliminate duplication
of functional software but enforce data and business process
separation.

This paper introduces a novel hierarchical multi-tenancy archi-
tecture for an enterprise-scale business-to-business (B2B) cloud-
hosted software service application. Organisational hierarchy
plays a vital role in grouping end users into tenants and sub-
tenants in our software. A new reference architectural style for
implementing hierarchical multi-tenant application is presented
here for the first time.

We use a case study approach to empirically evaluate the
latency of this architecture in comparison to known flat multi-
tenancy patterns. Our experimental evaluation supports the
hypothesis that the hierarchical multi-tenancy approach meets
the needs of our application and improves its performance.

I. INTRODUCTION

Cloud computing is changing how software services and
IT infrastructures are provided as a result of benefits such
as elasticity, scalability, ease of maintenance, on-demand
provisioning etc. [3]. Software-as-a-Service (SaaS) solutions
relieve end-users of the need to upgrade and maintain their
applications. To create affordable solutions, SaaS providers
have re-engineered and provisioned applications on shared
resources and multiplex usage among many end-users.

By scaling an instance of software to serve many groups
of end-users known as tenants, SaaS can maximize hardware

1 Adeniyi Abdul is with the School of Computing, Science & Engineer-
ing, Newton Building, University of Salford, M5 4WT, United Kingdom
email:A.Abdull@edu.salford.ac.uk

2Julian Bass is with the School of Computing, Science & Engineer-
ing, Newton Building, University of Salford, M5 4WT, United Kingdom
email: j.bass@salford.ac.uk

Julian M. Bass?
University of Salford
Salford, UK
Email: j.bass@salford.ac.uk

usage, minimize operational cost and render services at af-
fordable rates. Multi-tenancy coupled with other technologies
are employed by providers to deliver a single instance-like
solution on shared resources. Multi-tenancy delivers a high
return on investment by utilizing the same hardware and
software resources to serve multiple organisations. A tenant is
an organisational representation of a group of users employing
the use of shared software to meet their business needs.

One of the prevalent usages of multi-tenancy is in the
design of data management system for SaaS solutions. Data
management systems are programs used to merge, extract and
filter data from various data stores for use in other applica-
tions. Previous research on multi-tenancy for data management
system represent organisational data as a flat structure, i.e.
grouping of tenants data based on functional requirements
without defined relationship among data or data stores.

Flat structure multi-tenancy makes it hard to store data such
that it reflects business boundaries that capture the business
constraints without data or process duplication. For example,
storing related geographical data in a flat system requires
extras application level implementation to establish proper
authorization and business rules for each region.

Most organisations operate in a hierarchical way and embed
this into their business process and data management system
to enforce different business constraints and policies. The
hierarchical organisational structures place new demands on
B2B multi-tenant applications. As a consequence of observing
these organisational structures, we propose a new concept of
hierarchical multi-tenancy for B2B SaaS application.

This paper introduces a new concept of hierarchical multi-
tenancy in an organisation with hierarchical structure and
proposes a novel reference pattern on how to design and
implement hierarchical multi-tenant B2B applications. We
employed this pattern in our case study for the development
of a multi-tenant solution for asset and integrity management
for an organisation with hierarchical business structure.

This research makes three main contributions: (i) a novel
concept of hierarchical multi-tenancy for enterprise-scale B2B
software-as-a-service, (ii) a new reference architectural style
for cloud-hosted applications with hierarchical multi-tenant
requirements, and (iii) performance evaluation of this archi-
tecture compared with known flat multi-tenancy patterns.

The rest of the paper is as follow section 2 presents pre-

vious research contributions in the field of cloud computing,
software-as-a-service, multi-tenancy, data management system
and business to business systems. Section 3 presents our
motivating scenario and establishes the concept of flat multi-
tenancy and hierarchical multi-tenancy. Section 4 presents
the research methods employed for empirical evaluation of
the architecture. Section 5 details architecture outline and
experimental analysis employed in the case study. Section
6 presents the results and findings of our empirical studies.
Section 7 discusses the results obtained, and lastly, section 8
presents the conclusion of the research work

II. RELATED WORK

Many organisations have seen a good return on investment
after adopting cloud services for their IT operations. This has
led to many solutions that helped increase business agility
and profitability. Cloud solutions provide organisations with
scalable, secure, on-demand and utility-like solutions with
minimal start-up and operating cost. One of the emerging
cloud solutions is Software-as-a-Service (SaaS). SaaS is a
utility-like cloud-hosted software application provided via the
internet for many users to consume on-demand. A well-
designed SaaS application must be multi-tenant efficient, eas-
ily configurable and scalable [4].

Affordable SaaS applications are actualized with the help
of advances in cloud technologies such as multi-tenancy
and virtualization. Virtualization creates an abstracted layer
between the application and hardware, making it possible for
many instances of the application to share pool computing
resources [17].

In Multi-tenancy, tenants share an application instance,
while data and business process instances are isolated. There
are three multi-tenancy design patterns: dedicated, tenant iso-
lated and shared component [5]. The dedicated model dictates
that application data are hosted in separate instances for each
tenant without any form of sharing with other tenants. In the
Tenant isolated model, each tenant operates its own set of data
grouped into a name-space, however, all the tenant data tables
are co-hosted in the same instance. In the shared multi-tenancy
model, application data are stored in the same tables with row
level isolation for all tenants.

Although multi-tenant applications deliver customized so-
lutions with shared resources, the tenants must be confident
that their data and process are protected and not accessible
by other tenants on the same platform. The multi-tenant
application must ensure that a tenant usage does not impact the
performance of others or denied others resources when needed.
Isolation is also crucial when billing tenants on their appli-
cation usage. Previous research has evaluated the degree of
isolation among tenants using component-based approach [13].
Dedicated components, without any form of sharing among
tenants, offer a high degree of isolation with the highest level
of security and low interference. SaaS application provisioning
using dedicated approach can be extremely expensive and not
economically viable for applications with hierarchical tenant
structures.

Flat multi-tenancy with the shared model is known to
experience conflicting preference [6]. The author proposed a
solution to overcome conflicting preferences among tenants
using service configuration techniques. The proposed solution
is a dynamic user-centric adaptation in a shared multi-tenant
environment to increase tenant satisfaction.

In multi-tenant applications, the data size tends to grow as
the number of tenants increases [9]. The paper establishes the
premise that a tenant could comprise of multiple sub-tenants
and proposes a tree-like structure for grouping tenants in a
SaaS application. This work further proposed splitting tenant’s
data based on the logical representation and creating a data
store to hold each sub-tenant data. Three models for storing
the tenants’ data have been proposed: monolithic, distributed
and hybrid [9]. Where the number of tenants is limited, a
monolithic model will be adequate, while the distributed model
is used to store data across many data stores and the hybrid
model is a fusion of monolithic and distributed to reduce the
cost of hosting.

This is the first research that considers hierarchical structure
in a multi-tenant application. However, this work only intro-
duces abstraction layer into the widely used three-tier architec-
ture. The proposed layer was used to dynamically stored data
to the hierarchical data stores using Linear and Non-Linear
(Permutation based) algorithms. Their results show that the
Linear algorithm has low execution times when the search
space is small and use cases are limited. However according
to their permutation-based algorithm especially the improved
permutation algorithm (Fast Data Allocation algorithm) pro-
posed can perform better in a large search space [10].

In a SaaS multi-tenant application, a large number of tenants
and sub-tenants precipitates a high number of data stores,
with data duplication, increased server management overhead,
high server utilisation and increased provisioning costs. For
example, Amazon web services only permit 40 relational
database system instances to be provisioned per account [15].

Our paper proposes grouping tenant and sub-tenant data
in a hierarchical way that reflects the relationship among the
tenants’ data and storing them in a cluster of data stores. This
approach differs from previous hierarchical database solution
proposed by [10] that creates a data-store for each tenant
and sub-tenants and mapped the data stores in a hierarchical
way. Our research shows that the hierarchical nature of the
organisation and among tenants data plays a vital role when
designing multi-tenant application for B2B enterprise hence
the need for this research.

IIT. MOTIVATING SCENARIO

There are two categories of SaaS solutions presented by
[4]. These are line-of-business and consumer-oriented service.
The line-of-business service is what we refer to as business
to business service (B2B). These services are offered to
enterprises with large, customizable business solutions aimed
at facilitating business processes. While consumer-oriented
service is referred to as business-to-consumer (B2C) service
and consumed by the general public. B2C services do not

address any organisation needs, rather they are provisioned to
the public as a software to meet daily needs [4]. Our scenario
captures multi-tenancy in a SaaS provider that develops multi-
tenant applications for use in large enterprise scale environ-
ment.

A. Flat Multi-Tenancy

Employing multi-tenancy in B2B has gained little attention
in the field of SaaS. In flat structure multi-tenancy, there is no
defined hierarchical relationship among tenants. A flat tenant
is a virtual or logical grouping of organisational users. In
this scenario, a user can only belong to a tenant as shown
in figure 1.

Tenant A
Flat Multi-tenant

SaasS Application

Tenant B ®
%2 | U
L)

Users

Fig. 1: Flat Structure Multi-Tenancy

B. Hierarchical Multi-Tenancy

In hierarchical multi-tenancy, there are defined hierarchies
among tenants and sub-tenants for the purpose of setting
business boundaries and functional isolation as shown in
figure 2 below. The tenants and sub-tenants exhibit a tree-like
structure, grouped in a logical way to represent organisation
structures. In this tree-like structure, the SaaS provider is
the parent node. Tenants at one level might be corporations,
where each of its sub-tenants has private data and application
requirements which are clearly different from top-level tenants.

At the next level of the tree are business units or terri-
tories that form organisational structures within the multi-
national corporation. These can still be subdivided into differ-
ent branches or sites. Each site has users that share common
features and perform similar business operations. Example of
this tree-like hierarchical organisation was employed in our
case study research.

The case study described in the methodology section is
developed by Add Energy, a SaaS provider in the energy in-
dustry, specialising in asset management consultancy services
and software solutions.

Add Energy was tasked to provide a cloud-based service to
an International Power Generation company with two business
units located in the United Kingdom.

The cloud service was designed to help the units operate
efficiency and transparently in accordance with the industry
standard.

Unit A and Unit B are part of business units of a broader
energy company. Each unit has an operational team lead
for overseeing operations and maintenance data. They also
manage a group of engineers and contractors who rely on the
cloud service provided by Add Energy for operational decision
in their day to day operational and maintenance work orders.

The team leads operate at the business units level and report
to the operational excellence manager at the head office, who
monitor, manage and report, using the same cloud service, to
senior management of the operation of the various business
units.

Add Energy has developed a hierarchical multi-tenant appli-
cation called AimHi that embeds these business hierarchies.
This multi-tenant application will help organisations with a
hierarchical structure in the energy sector to better optimise,
manage and visually evaluate the asset performance across
many regional stations. Figure 2 shows a hierarchical rela-
tionship as described in the case study.

Using Hierarchical multi-tenancy in AimHi helps Add En-
ergy’s clients to establish defined business rules and man-
ageable security around their data and processes. This helps
to define and group tenants access control at the data layer.
Another benefit of a hierarchical approach to Add Energy
compared to flat approach is a performance improvement.
Proper segregation of data in a defined way helps to eliminate
large scanning of dataset when performing operations for sub-
tenants.

IV. RESEARCH METHODS

This exploratory research was conducted in the context of
an embedded case study [14] approach over a 5 year period.
This research employs case study approach to empirically
evaluate the performance of various methods of storing data
in a hierarchical multi-tenant application. [16] detailed the
suitability of using case study approach in the empirical
investigation into a contemporary phenomenon.

A scrum-like software development method formed the
basis of an innovation process in collaboration with the partner
company and their clients [1]. This type of industrial case
study is found in the collaborative research tradition [8].

A series of workshops, comprising key company domain
experts, was used to identify and elaborate software require-
ments. The scrum method includes product demonstrations at
the end of each sprint, which was used to gain feedback on
the solutions produced and to help prioritise future directions.
The functional and non-functional requirements were used
to identify architectural software structures. These software
structures help in the development of the hierarchical multi-
tenancy architectural style which is the subject of this research.
This architectural style was then experimentally characterised,
tested and evaluated.

V. CASE STUDY

A. Architecture Outline

This section details the architectural design adopted when
implementing our case study hierarchical multi-tenant appli-

Industry wide: Multi-tenant

Saa$s Application

Corporate :Super Tenant
S)
LL |" Management
Busi Unit: - 1
Sub Tenant

R
Reginnl::':uslnass *a Regional Business S MIonsL?:slness
a e
Sub Tenant Subu:eiﬁant Sub Tenant a
s
I

IITE

| [T
i a

@ QD

Site: Users Site: Users

Site: Users

a

b

Site: Users

Corporate : 5u }Ef Tenant
o O

a
Management
|

|]

=R
1 a3 a

B W &

Site: Users Site: Users Site: Users

Fig. 2: Hierarchical Multi-Tenancy

cation. The design decision was as a result of the uniqueness
of the system, hierarchical nature of the organisation, and
business requirements. The tree-like diagram in figure 3 is
an example of tenants structure adopted in our application
data design. The tenants are sub-grouped into different levels,
where level O is the highest level and level 5 is the lowest
level.

Users in a tenant can only access data within their level
or lower level. Tenants are grouped into levels which set the
boundaries of their operations. For example, a departmental
head in level 4 will have access to level 5 data and manage
all level 5 tenants if acting in a managerial role. However,
other tenants at level 5 would not have access to level 4 data.
And also application data, process, roles and privileges are
also grouped into levels. where level O stands for restricted
data and level 5 applies to a more general data that can be
accessed by all the tenants.

Data in level 3, 4 and 5 that are accessible to all the tenants
can be stored in a shared table. While restricted data can be
stored in separate isolated tables further grouped by name-
space. Tenants data are grouped by access level and partitioned
using list partitioning algorithm. Partitioning data this way,
helps our queries to access only a fraction of the data at a
given time hence result in faster queries.

The concerns itemized below became apparent during re-
quirement gathering phase. The elicitation techniques em-
ployed are series of workshops, unstructured interview with

Multi-Tenant SaaS Application

Tenant A Tenant B

Sub Sub Sub Sub

‘ Level 2 | Tenant C Tenant D Tenant) Tenant K

‘ Level 3 | Sub
Tenant F

’ Level 4 ‘ Sule
Tenant G

Sub
Level 5 |\ Tenant |

Fig. 3:

Tree Like structure

domain experts and product prototyping. Our architecture
design aims to address some of the concerns raised in the
hierarchical multi-tenant solution.

o Data Access Across Tenants - Master and transactional
data need to be stored or configured such that sharing
is made possible and easy without compromising the
integrity of the data or privacy across the organisation.
However, the application must maintain access control

High Monetary Value
Publicly Available
Loose Regulation and No Privacy
Concern

High Monetary Value
Not Publicly Available
Strict Regulation or Privacy Concern

Low Monetary Value
Publicly Available
Loose Regulation and No Privacy
Concern

Low Monetary Value
Not Publicly Available
Strict Regulation or Privacy Concern

| LowShareabiity HighShareabilty

Fig. 4: Data value vs Shareability

among tenants.

o Data Inheritance - For data to be used within the right
domain and among interested parties, data relationship
and boundaries must be established, showing how a
parent or top-level tenant data can be abstracted from the
lower-level tenant data. Also, data could be represented
such that it belongs to multiple tenants when there is a
relationship.

Tenant Discontinuity - In a traditional flat multi-tenant ap-
plication, a tenant discontinuity only results to deletion of
data related to that tenant and removing the configurations
for that particular tenant. However, in hierarchical multi-
tenancy, discontinuity of tenant may not result in total
removal of data or configurations of this tenant because
other tenants may depend on this information to perform
their operations. In our case, the architecture must address
such possibilities without disruption to the application.
Tenant and Data dependency is a crucial part of a
hierarchical multi-tenant application; our implementation
employed soft dependency such that it can be modified
in case of a tenant discontinued.

Elasticity and Scalability - One of the advantages of
the cloud is the ability to accommodate spikes in load
demand by provisioning or de-provisioning resource
without human intervention. In a multi-tenancy, there
is a tendency that customer data can grow beyond the
allocated storage capacity. The application must be able
to re-allocate resources or move data belonging to some
sub-tenants to another storage without interruption to an
existing system. In hierarchical multi-tenant application,
this becomes challenging because these data may be in-
terrelated or belong to other users in other tenant domain.
Hence the use of domain and partitioning techniques in
our system design.

Data value and Shareability - Data are becoming an
important asset of an organisation. The advantage of
big data for business cannot be overemphasized. All
data are valuable, but some are valuable than others in

certain context. For example, credit card details are more
valuable than customer service feedbacks survey. The
more valuable data is to a business entity, the less likely
it will be shared among other cloud tenants. Figure 4
shows the value of data should be used to determine how
it’s shared. This diagram was used when determining how
data are grouped into shared and isolated domain within
our implementation.

o Service level Agreement - Hierarchical multi-tenant ap-
plication needs to strike a balance in the midst of con-
flicting Service Level Agreement (SLA). This is out of
the scope of this research.

B. Experimental Setup

AimHi is a cloud-based SaaS application developed to
optimize and manages a large number of assets across global
energy sector firms. It aims to provide maintenance engineers
with an online platform to improve maintenance planning and
reduce the cost of breakdowns.

[

Tenant #001

@l Tenant# 002
fll Tenant# 003
ra Docker)
£ 3 Restful Controllers :
Apache JSON/XML | 2| 1
Jmeter > i
R Services Repository| |
(Business (Data | " Shared DB with
Logic) Access) ! _ Separate tables
‘ WebServer | |
. h.‘ h!‘— B
Tenant W
#o02 B

Tenant
el #001
Tenant —> !
c°“f'“ra"° " Isolated database
Tenant

Restful Call

Fig. 5: AimHi Architectural Diagram

Our case study (AimHi) application is a richly designed
hierarchical multi-tenant application that gathers maintenance
data from different tenants and transforms them into com-
prehensive charts that provide insight into the performance
of the assets monitored and carefully report the effect of
the maintenance strategy deployed. One of the benefits is to
provide management and stakeholders overview on how the
maintenance strategies have improved the safety of engineers,
raised the maintenance quality and result to cost saving for
the organisation.

The first version of AimHi was deployed on Amazon elastic
beanstalk with load balance across Amazon availability zone.
We adhered to three-tier architecture design, with the front
end of an application implemented as a single page application
powered by angular, the middle tier is known as the application
layer is implemented using spring framework and hosted using
Apache tomcat wrapped in a docker environment, and the
database layer powered by MySQL provision on Amazon RDS
platform.

In order for application portability and experimental repeata-
bility, a containerised technology called docker is employed.
Docker platform is a container technology that abstract appli-
cation into an image that is easily portable across compati-
ble hosting platforms. Docker is an opensource, lightweight,
portable and consumes low resource compare to other types
of container technology solutions [12].

The experiment is carried out on docker container running
on a machine with 16GB memory, 3.1GHz Intel Core i7
processor and macOS Sierra. The application is deployed on
Apache web service running tomcat and further connected to
a backend database instance. The application exposes restful
endpoints to be consumed by JMeter for experimental purpose.
Apache JMeter is favoured because of its numerous capabil-
ities and also its an open source software written in Java for
performing a load test on a web-based application. See figure
5 for our architectural diagram for AimHi.

The hierarchical nature of the tenants in our multi-tenant
application and the size of data being processed by the appli-
cation requires extensive testing to evaluate the performance
impact of the application. The objective of our experimental
test is to evaluate the performance of our proposed hierarchical
architecture and compare its performance with flat multi-
tenancy architecture introduced in our previous paper [1].

These tests measured the latency of each of the restful
endpoints in our case study. In the first test, the application
data is held constant while the number of concurrent users is
varied. And in the second test, the number of concurrent users
is held constant while data size of the application is varied. The
former helps to understand the performance of the application
as the number of concurrent users increases. While the latter
test shows the latency of the system as the data size increases.

Both experiments were performed across both the flat multi-
tenancy and hierarchical multi-tenancy. To avoid skew results
and establish consistency across many test cycles, database
caching was disabled in the experiment. The test captures only
the performance of read operations because the case study
application does more reading and data aggregation across
various assets.

The table 1 and 2 show the total number of users, the
total records used and the operation type employed during
the testing.

VI. RESULTS AND FINDINGS

This section details our finding after performing various
experiments using the table 1 and table 2 parameters. The
findings in figure 6 and figure 7 show results for flat, non-
partitioned hierarchical and partitioned hierarchical model. In
the flat multi-tenant application, all the tenant data are stacked
in a related table based on relational rules. In non-partitioned
hierarchical multi-tenant application, data are grouped into
subtype tables based on the access level without any partition-
ing algorithm applied. And for partitioned hierarchical multi-
tenant application, tenants’ data are grouped and partitioned
based on access level and operational units.

TABLE I: Latency test of increase Users

First Experimental Test

total Concur- | total table | Operation
rent Users per | records type

min

50 97656 Read

100 97656 Read

150 97656 Read

200 97656 Read

200 97656 Read

TABLE II: Latency test of increase data size

Second Experimental Test
total Concur- | total table | Operation
rent Users per | records type
min
200 53732 Read
200 73716 Read
200 82763 Read
200 97656 Read
20 // —— Tenant A (Flat)
e
7 — = Tenant B (Flat)
100 -
- Py
] 7 Prad Tenant A (No Partition)
£ _ _
H e === Tenant 8 (No Partition)
[ot
) 7 I
I == EE—
/’_:‘;'::'-”f' — Tenant B (Partition)
e
Fig. 6: Shared Data Performance (latency) vs Concurrent

Figure 6 shows performance (measured in latency) against
an increase in concurrent users. This shows there is no signif-
icant difference in latency across all the test cases (flat, non-
partitioned hierarchical and partitioned hierarchical model)
when the number concurrent is small, in our case when the
number of concurrent users is below 200 users. However, as
the number of concurrent users increases above 300, a signifi-
cant increase in latency became evident. The high latency and
degradation in the system performance for flat and hierarchical
non-partitioned multi-tenancy are a result of intensive database
scan and filtering across tenant data when performing complex
operations. While performance degradation is not conspicuous
in the hierarchical model as the number of users increases,
this performance improvement can be attributed to the logical
grouping of the data and partitioning of the data.

The second results in figure 7 show the latency against an
increase in data size. As stated earlier, the number of users
in this test case is held constant. All the models performed
reasonably well in terms of low latency when data size is about
53732. The latency of flat and non-partitioned hierarchical

97656

60 82763 5:
82763
82763
w0 97656

—r37ree = = 73725

—37656

82763

MilliSeconds

- 73716

- eeee53732
T3 = e a1

~ 82763 82763

3796 == = 73716

Response Response Response

Tenant A (Flat) Tenant B (Flat) TenamA(NoPar(l(mn}‘Tenan(B(Nupzr\mon) Tenant A (Partition) | Tenant B (Partition)

Fig. 7: Shared Data Performance (latency) vs Increases in
Data Size

140

7/
120
7.
100 P s s Tenant A (Flat) Response
2 Z == Tenant B (Flat) Response
g & // Tenant A (Isolated) Response
f. = ,/ v o st s
’d
40
-
20 p—
0 100 200 300 400 500 600
Number of Concurrent Users
Fig. 8: Isolated Data Performance (latency) vs Increases in

Data Size

model increases as the data size increases. The hierarchical
partitioned application still performs better in terms of latency
as the data size increases. A further experiment was performed
to know the latency over an isolated data. In this experiment,
each sub-tenant data is stored in a separate table hence there
was no need to partition the data. The result in figure 8 shows
the performance of isolated hierarchical multi-tenancy against
flat data. The isolated hierarchical multi-tenancy model still
produces lower latency when compared to flat multi-tenancy
models.

Our results also show that there is interference in flat multi-
tenancy when two tenants with a large number of concurrent
users. Some tenants suffer high latency when a tenant is
performing a large table scan. However, the interference is not
evident in the case of hierarchically partitioned application.

VII. DISCUSSION

This research was motivated by challenges encountered
when building the cloud hosted software-as-a-service (AimHi)
application for asset maintenance optimisation in the energy
sector. AimHi has been developed to provide a dashboard of
key performance indicators for maintenance optimisation in
power stations [2] [7] with hierarchical business units.

During the development of AimHi, we observed the hier-
archical organisational structure of multi-national companies
created new data sharing and tenant isolation requirements for
our software-as-a-service application.

The term ’hierarchical multi-tenancy’ is not new. However,
we approach hierarchical multi-tenancy from a new perspec-
tive and view our concept as a novel. The previous approach
to hierarchical multi-tenancy focuses on creating hierarchical
data stores mapped to tenants and sub-tenants [11]. This work
did not approach hierarchical multi-tenancy from organisation
structure perspective, rather they propose hierarchical data
stores similar to the tree-like structure of tenants and subtenant.
This approach is not feasible in a large enterprise-scale B2B
environment with many tenants.

Hierarchical Multi-tenancy in our case can simply be de-
scribed as a tree-like relationship among various tenants data
and processes with defined boundaries that mirror the business
structures. Hierarchical Multi-tenancy is targeted at large-scale
enterprise with a hierarchical structure.

Our application can easily handle hundreds of tenants
concurrently and with large datasets. One way to improve the
efficiency of queries and scalability is through data partition-
ing [4] to further reduce expensive database scanning. Our
experimental result shows that partitioning the multi-tenant
application data and process based on the tenant hierarchical
structure helps to improve queries and performance in terms
of latency of the application. In this case, the partitioning is
applied based on the hierarchical nature of our potential SaaS
consumers.

The empirical experiment shows the performance of our
concept in the midst of increasing concurrent users, varying
data size and performance latency over isolated data. This
shows the viability of our concept in handling data requests
across different level of tenants without impacting the per-
formance of the system. The performance gained in terms
of latency is a step in the right direction that hierarchical
multi-tenancy concept with enhanced partitioning techniques
can better suit for multi-tenant application with tenants and
sub-tenants.

VIII. CONCLUSION

This research addresses the issue of multi-tenancy in
cloud-hosted software-as-a-service applications. Specifically,
we propose a novel concept of hierarchical multi-tenancy for
enterprise-scale B2B applications.

We adopted a case study approach in this study to ex-
perimentally evaluate our hierarchical multi-tenancy reference
architecture compared with previously published dedicated,
tenant-isolated and shared component multi-tenancy patterns.
Our case study was derived from a commercial project devel-
oped for an asset management and optimisation for the energy
sector called AimHi.

The paper also presents some concerns associated with
hierarchical multi-tenancy, these became apparent during the
requirement gathering phase. We addressed some of the con-
cerns by structuring tenants data in a hierarchical way. The
data value and shareability table were used to structure data
into different access level.

Our findings show that the hierarchical multi-tenancy ref-
erence architecture is better suited to the requirements of

our application than other multi-tenancy models. Specifically,
the paper shows through our findings that hierarchical multi-
tenancy architecture can help achieve hierarchical structure
similar to organisation hierarchy and still experience better
performance. The research shows that hierarchical structure
used by business-to-business (B2B) to capture business rules
and governance, can be enforced in a multi-tenant application.

Our future work will look into the impact of the write oper-
ations in hierarchical multi-tenant application, and scalability
of hierarchical tables across a multi-cloud environment.

IX. ACKNOWLEDGEMENT

The funding for this research was provided by Add Energy
Ltd and Innovate UK under a Knowledge Transfer Partnership
with the University of Salford, Manchester UK. The technical
expertise on how to implement SaaS application for oil and
energy sector was provided by Peter Adam and Hossein
Ghavimi of Add Energy Ltd Aberdeen

REFERENCES

[1] Adeniyi Abdul et al. (July 2017a). “A performance
evaluation of multi-tenant data tier design patterns in
a containerized environment”. In: International Con-
ference on the Information Society (iSociety). Dublin,
Ireland: Infonomics Society, pp. 115-120.

[2] Adeniyi Abdul et al. (July 2017b). “Product Innovation
with Scrum: A Longitudinal Case Study”. In: Interna-
tional Conference on the Information Society (iSociety).
Dublin, Ireland: Infonomics Society, pp. 21-26.

[3] Michael Armbrust et al. (2009). Above the Clouds: A
Berkeley View of Cloud Computing. Tech. rep. Univer-
sity of California at Berkeley.

[4] Frederick Chong and Gianpaolo Carraro (2006). Archi-
tecture Strategies for Catching the Long Tail. Tech. rep.
Redmond, WA (USA): Microsoft Corporation. URL:
http://msdn2 . microsoft.com/en- us/library/aa479069.
aspx.

[5] Christoph Alexander Fehling et al. (2014). Cloud
Computing Patterns: Fundamentals to Design, Build,
and Manage Cloud. The Science of Microfabrication.
Springer.

[6] Jesus Garcia-Galan et al. (2014). “User-centric Adap-
tation of Multi-tenant Services: Preference-based Anal-
ysis for Service Reconfiguration”. In: Proceedings of
the 9th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems. SEAMS
2014. Hyderabad, India: ACM, pp. 65-74. ISBN: 978-
1-4503-2864-7.

[7] Gareth Hollyman (Feb. 2018). Computer scientists op-
timise safety at UK power stations. URL: https://www.
salford.ac.uk/news/articles/2018/computer- scientists-
optimise-safety-at-uk-power-stations.

[8] Mathiassen Lars (2002). “Collaborative practice re-
search”. In: Information Technology People 15 (4),
pp- 321-345.

(9]

[11]

Pieter-Jan Maenhaut et al. (2014). “Characterizing the
performance of tenant data management in multi-tenant
cloud authorization systems”. In: Network Operations
and Management Symposium (NOMS), 2014 IEEE.
Pieter-Jan Maenhaut et al. (2015a). “Design and Evalu-
ation of a Hierarchical Multi-Tenant Data Management
Framework for Cloud Application”. In: International
Workshop on Management of the Future Internet.
Pieter-Jan Maenhaut et al. (2015b). “Design of a Hi-
erarchical Software-Defined-Storage System for Data-
Intensive Multi-Tenant Cloud Applications”. In: 11th
International Conference on Network and Service Man-
agement(CNSM, 2015).

Dirk Merkel (Mar. 2014). “Docker: Lightweight Linux
Containers for Consistent Development and Deploy-
ment”. In: Linux Journal 2014.239. 1SSN: 1075-3583.
Laud Charles Ochei, Andrei Petrovski, and Julian M.
Bass (2015). “Evaluating degrees of tenant isolation
in multitenancy patterns: a case study of cloud-hosted
version control system (VCS)”. In: International con-
ference on information society (i-society), pp. 59-66.
Per Runeson et al. (2012). Case Study Research in
Software Engineering: Guidelines and Examples. 1st.
Wiley Publishing.

Amazon Web Services (2014). Amazon RDS DB In-
stances User Guide API. URL: https://docs . aws .
amazon.com/AmazonRDS/latest/UserGuide/Overview.
DBInstance.html (visited on 06/10/2018).

R.K. Yin (2003). “Case Study Research: Design and
Methods”. In: 3rd edition. SAGE Publications.

Qi Zhang, Lu Cheng, and Raouf Boutaba (2010).
“Cloud computing: state-of-the-art and research chal-
lenges”. In: Journal of Internet Services and Applica-
tions 1.1, pp. 7-18. 1SSN: 1869-0238.

