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ABSTRACT 1 

The aims of this study were twofold: firstly, to compare lower limb kinematic and kinetic 2 

variables during a sprint and 90° cutting task between two averaging methods of obtaining 3 

discrete data (peak of average profile vs average of individual trial peaks); secondly, to 4 

determine the effect of averaging methods on participant ranking of each variable within a 5 

group. Twenty-two participants, from multiple sports, performed a 90˚ cut, whereby lower 6 

limb kinematics and kinetics were assessed via 3D motion and ground reaction force (GRF) 7 

analysis. Six of the eight dependent variables (vertical and horizontal GRF; hip flexor, knee 8 

flexor, and knee abduction moments, and knee abduction angle) were significantly greater (p 9 

≤ 0.001, g = 0.10-0.37, 2.74-10.40%) when expressed as an average of trial peaks compared 10 

to peak of average profiles. Trivial (g≤0.04) and minimal differences (≤0.94%) were 11 

observed in peak hip and knee flexion angle between averaging methods. Very strong 12 

correlations (ρ≥0.901, p<0.001) were observed for rankings of participants between 13 

averaging methods for all variables. Practitioners and researchers should obtain discrete data 14 

based on the average of trial peaks because it is not influenced by misalignments and 15 

variations in trial peak locations, in contrast to the peak from average profile.  16 

Word count: 2929 17 

Key words: cutting, discrete data, statistical design, kinetics, kinematics 18 
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INTRODUCTION 23 

Change of directions (COD) are commonly associated with non-contact anterior cruciate 24 

ligament injuries in sport (Koga et al., 2010; Olsen, Myklebust, Engebretsen, & Bahr, 2004). 25 

Although the mechanisms of this injury are multifactorial (Quatman, Quatman-Yates, & 26 

Hewett, 2010), lower limb and whole body postures are critical factors associated with knee 27 

joint loading (Besier, Lloyd, Cochrane, & Ackland, 2001; Koga et al., 2010; Kristianslund, 28 

Faul, Bahr, Myklebust, & Krosshaug, 2014; Olsen et al., 2004). Thus, screening athletes’ 29 

COD biomechanics via the gold standard method of 3D motion analysis (Fox, Bonacci, 30 

McLean, Spittle, & Saunders, 2015) is of great interest to researchers and practitioners to 1) 31 

identify the potential mechanisms of injury; 2) identify biomechanical deficits; and 3) risk 32 

stratify athletes (Hewett, 2017; Mok & Leow, 2016).  33 

Lower limb kinetics and kinematic variables including: peak knee abduction angle 34 

(KAA), peak knee abduction moment (KAM), peak knee flexion angle, and peak vertical 35 

ground reaction force (GRF) are commonly evaluated in athletic populations. These variables 36 

have been reported in prospective research to be associated with ACL injury (Hewett et al., 37 

2005; Leppänen et al., 2017) and are also commonly observed characteristics of injury 38 

(Hewett, 2017; Koga et al., 2010; Olsen et al., 2004). Potentially ‘at-risk’ athletes displaying 39 

biomechanical deficits in these variables can be subsequently treated and rehabilitated to 40 

reduce the relative risk of injury (Hewett, 2017; Mok & Leow, 2016). 41 

Most COD biomechanical investigations include more than one trial to evaluate 42 

biomechanical parameters (Dai et al., 2014; Dempsey, Lloyd, Elliott, Steele, & Munro, 2009; 43 

Havens & Sigward, 2015; Sigward, Cesar, & Havens, 2015). Although practitioners may 44 

examine COD biomechanics during the fastest trial or examine peak data, which potentially  45 

represents the likely demands placed upon an athlete in the ‘worst case scenario’, evaluating 46 
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a single trial does not represent an athlete’s typical and generalised movement (James, 47 

Herman, Dufek, & Bates, 2007). Moreover, single trial protocols have been suggested to be 48 

invalid and unreliable which could lead to erroneous conclusions (Bates, Dufek, & Davis, 49 

1992; James et al., 2007). As such, practitioners and researchers average biomechanical 50 

parameters across multiple trials to represent an athlete’s generalised and typical movement. 51 

However, one issue in evaluating kinematic and kinetics via 3D motion analysis is the 52 

method of analysing and obtaining discrete data from specific events (i.e. maximum or 53 

minimum values during weight acceptance), and whether to obtain discrete data from the 54 

peak of an average curve/profile or to average the individual trial peaks. Recently, Dames, 55 

Smith, and Heise (2017) demonstrated angular velocity (p < 0.001, ES = 0.08-0.16, 1.1-2.2%) 56 

and initial vertical GRF (p = 0.002, ES = 0.09, 0.9%)  peak values from the average profile 57 

were significantly lower compared to averaging trial peaks during walking gait (1.5 m/s). The 58 

authors subsequently recommended parameters should be obtained from averaging trial peaks 59 

compared to peak of average profile for a better representation of the data. To our knowledge, 60 

no averaging recommendations exist for obtaining COD parameters.  61 

Unfortunately, it remains unclear in the COD biomechanical literature how 62 

researchers derive discrete data as several studies state trials were averaged (Besier et al., 63 

2001; Havens & Sigward, 2015; Sigward et al., 2015), but do not delineate whether a peak of 64 

an average profile or average of trials peaks method was used. Additionally, some studies fail 65 

to state whether average data was used for statistical analysis (Dai et al., 2016; Dai et al., 66 

2014; Dempsey et al., 2009). This is concerning because failing to state averaging procedures 67 

makes it difficult to facilitate methodological replication, and if different outcome values are 68 

produced between averaging methods, this could lead to different evaluations and diagnoses 69 

in clinical and laboratory environments.  70 

 71 
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The aims of this study were twofold: firstly, to compare lower limb kinematic and 72 

kinetic variables during a sprint and 90° cutting task between two averaging methods of 73 

obtaining discrete data (peak of average profile vs average of individual trial peaks); 74 

secondly, to determine the effect of averaging methods on participant ranking of each 75 

variable within a group. It was hypothesised that different values would be produced between 76 

the two averaging methods; however, there would be minimal differences in the ranking of 77 

athletes. 78 

METHODS 79 

Participants 80 

Twenty-two (15 male and 7 female age: 23.2 ± 4.4 years, mass: 74.9 ± 12.8 kg, height: 1.75 ± 81 

0.09 m) athletes from multiple sports (soccer n=11, rugby n=4, netball n= 5, cricket n=2) 82 

participated in this study, which was greater than the sample size (n=12) used by Dames et al. 83 

(2017) who examined the effect of averaging method on walking gait outcomes. The 84 

investigation was approved by the University of Salford institutional ethics review board, and 85 

all participants provided written informed consent. All participants performed a 5-minute 86 

warm up consisting of jogging, self-selected dynamic stretching, and familiarisation trials of 87 

the 90° cuts (4 trials performed submaximally at 75% of perceived maximal effort); similar to 88 

the warm up procedures utilised in previous studies (Dai et al., 2014; Vanrenterghem, 89 

Venables, Pataky, & Robinson, 2012).  90 

 91 

Experimental protocol 92 

Lower limb kinematic and kinetic data were collected during a 90° cut to the left (5 m entry 93 

and 3 m exit – push off right leg), performed as fast as possible (completion time 2.07 ± 0.09 94 

seconds), on an indoor track (Mondo, SportsFlex, 10 mm; Mondo America Inc., Mondo, 95 
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Summit, NJ, USA). Participants performed a minimum of three acceptable trials (Mok, Bahr, 96 

& Krosshaug, 2017). If the participants slid, turned prematurely, or missed the force platform, 97 

the trial was discarded and subsequently another trial was performed after two minutes rest.  98 

The procedures were based on previously published protocols (Jones, Herrington, & 99 

Graham-Smith, 2016; Jones, Thomas, Dos’Santos, McMahon, & Graham-Smith, 2017), thus 100 

a brief overview is provided. Prior to the cutting task, reflective markers (14 mm spheres) 101 

were placed on bony landmarks of each participant (Jones et al., 2016; Jones et al., 2017). 102 

Each participant wore a 4-marker ‘‘cluster set’’ (4 retroreflective markers attached to a 103 

lightweight rigid plastic shell) on the right and left thigh and shin which approximated the 104 

motion of these segments during the dynamic trials. All participants wore lycra shorts and 105 

female participants wore a compression top (Champion Vapor, Champion, Winston-Salem, 106 

NC, USA). Standardised footwear (Balance W490, New Balance, Boston, MA, USA) was 107 

provided for all participants to control for shoe-surface interface. 108 

Data analysis 109 

Three dimensional motions of these markers were collected during the cutting trials 110 

using 10 Qualisys Oqus 7 (Gothenburg, Sweden) infrared cameras (240 Hz) operating 111 

through Qualisys Track Manager software (Qualisys, version 2.16, build 3520, Gothenburg, 112 

Sweden). The GRF’s were collected from one 600 mm × 900 mm AMTI (Advanced 113 

Mechanical Technology, Inc, Watertown, MA, USA) force platform (Model number: 114 

600900) embedded into the running track sampling at 1200 Hz. From a standing trial, a lower 115 

extremity and trunk 6 degrees of freedom kinematic model was created for each participant, 116 

including pelvis, thigh, shank, and foot using Visual 3D software (C-motion, version 6.01.12, 117 

Germantown, USA). This kinematic model was used to quantify the motion at the hip, knee, 118 

and ankle joints using a Cardan angle sequence x-y-z (Suntay, 1983). The local coordinate 119 

system was defined at the proximal joint centre for each segment. The static trial position was 120 
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designated as the participant’s neutral (anatomical zero) alignment, and subsequent kinematic 121 

and kinetic measures were related back to this position. Segmental inertial characteristics 122 

were estimated for each participant (Dempster, 1955). This model utilised a CODA pelvis 123 

orientation (Bell, Brand, & Pedersen, 1989) to define the location of the hip joint centre. The 124 

knee and ankle joint centres were defined as the mid-point of the line between lateral and 125 

medial markers. Lower limb joint moments were calculated using an inverse dynamics 126 

approach (Winter, 2009)  through Visual 3D software and were defined as external moments.  127 

Initial contact was defined as the instant after ground contact that the vertical GRF 128 

was higher than 20 N, and end of contact was defined as the point where the vertical GRF 129 

subsided past 20 N (Kristianslund et al., 2014). The weight acceptance phase was defined as 130 

the instant of initial contact to the point of maximum knee flexion (Havens & Sigward, 131 

2015). All joint moments, joint angles, and GRFs (see table 1 for dependent variables) were 132 

derived during weight acceptance and used for further analysis. Using the pipeline function in 133 

visual 3D, joint coordinate and force data were smoothed with a fourth-order Butterworth 134 

low-pass digital filter with cut-off frequencies of 15 Hz and 25 Hz, based on a priori residual 135 

analysis (Winter, 2009), visual inspection of motion data, and recommendations by Roewer, 136 

Ford, Myer, and Hewett (2014). 137 

An average magnitude of each dependent variable were derived using two methods 138 

(Dames et al., 2017) and compared for statistical analysis. The first involved averaging the 139 

individual trial peaks across three trials (average of trial peaks). The second involved creating 140 

an average profile (normalised to 100% of weight acceptance) of three trials and obtaining a 141 

single peak from the average profile (peak from average profile).  142 

Statistical Analyses 143 

All statistical analysis was performed in SPSS v 23 (SPSS Inc., Chicago, IL, USA) 144 

and Microsoft Excel (version 2016, Microsoft Corp., Redmond, WA, USA). Normality was 145 
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confirmed for all variables utilising a Shapiro-Wilks test. Within-session reliability was 146 

assessed using intra class coefficients (ICC) and the standard error of measurement was 147 

calculated using the formula: SD(pooled) * √(1 − ICC) (Thomas, 2005). Differences in 148 

dependent variables between methods were assessed using paired sample t-tests, effect sizes, 149 

mean differences (bias), and percentage differences. The 95% limits of agreement (LOA) 150 

(LOA: mean of the difference ± 1.96 standard deviations) were also calculated between 151 

averaging methods using methods described by Bland and Altman (1986). All data was 152 

visually inspected using Bland-Altman plots to confirm homoscedasticity. Hedges’ g effect 153 

sizes were calculated as described previously (Hedges & Olkin, 1985) and interpreted using 154 

Hopkins’  (2002) scale. To assess whether averaging method impacted the ranking of players 155 

for each dependent variable, Spearman’s correlations coefficients were also calculated. 156 

Statistical significance was defined p ≤ 0.05 for all tests. 157 

RESULTS 158 

Mean ± SD are presented for all dependent variables between averaging methods in Table 1. 159 

All variables demonstrated high within-session reliability measures (ICC ≥ 0.863) and SEM 160 

values ranged from 0.08-0.10 N/BW for GRF variables, 1.10-2.64° for joint angles, and 0.12-161 

0.23 Nm/kg for joint moments (Table 1).  162 

Six of the 8 dependent variables (vertical and horizontal GRF, hip flexor, knee flexor, 163 

and knee abduction moments, and knee abduction angle) were significantly greater when 164 

expressed as an average of trial peaks compared to peak of average profiles, with trivial to 165 

small effect sizes (g = 0.10-0.37) and mean percentage differences of 2.74-10.40% (Table 1), 166 

respectively. Although a statistical, significant difference was observed in peak hip flexion 167 

angle between the two averaging methods, effect sizes (g = 0.04) and percentage differences 168 

(0.9%) indicated a trivial and minimal difference (Table 1). Similarly, a non-significant, 169 
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trivial, and minimal percentage difference (p = 0.279, g = 0.01, 0.09%) was observed in peak 170 

knee flexion angle between averaging methods (Table 1). Very strong correlations (ρ ≥ 0.901, 171 

p < 0.001) were observed for rankings of participants between averaging methods for all 172 

dependent variables (Table 2). 173 

***Insert Table 1 about here*** 174 

***Insert Table 2 about here*** 175 

DISCUSSION AND IMPLICATIONS 176 

The aims of this study were to examine the impact of averaging methods (peak of average 177 

profile vs average of individual trial peaks) on commonly examined lower limb kinematic 178 

and kinetic variables during cutting, and to determine the effect of averaging method on 179 

participant ranking. The primary findings were significantly lower GRF, joint moments, and 180 

KAA values were demonstrated when obtaining peak of average profile data compared to 181 

average of trial peaks data (Table 1), supporting the study hypothesis. These results are in 182 

line with the findings of Dames et al. (2017) that reported significantly lower angular velocity 183 

(p < 0.001, ES = 0.08-0.16, 1.1-2.2%) and GRF (p = 0.002, ES = 0.09, 0.9%) data during 184 

walking gait (1.5 m/s), based on peak of average profile data. Interestingly, the averaging 185 

method had a trivial and minimal effect on sagittal plane joint angles (hip and knee flexion) 186 

(Table 1). Additionally, very strong correlations were observed for participant ranking 187 

between averaging methods for all dependent variables (Table 2), indicating an athlete will 188 

most likely achieve the same ranking in a cohort of athletes, irrespective of the averaging 189 

method used.   190 

***Insert Figure 1 about here*** 191 
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The trivial to small, yet significantly lower values (2.74-10.40%) observed in the 192 

present study for GRF, joint moment, and KAA (Table 1) variables could be attributed to 193 

misalignments in the temporal profiles (variation in the location of peak data on the time 194 

series) (Figure 1) (Dames et al., 2017). It is worth noting, however, that if trial peaks occur at 195 

a similar point of the time-series (i.e. similar % of weight acceptance), then the differences 196 

between averaging methods will be minimal, evident by the minimal differences observed for 197 

peak hip and knee flexion angles in the present study (Table 1). Nevertheless, when the 198 

individual trials are normalised to produce an average profile, the peak value from these 199 

curves were on average 2.74-10.40% lower for GRF, joint moment, and KAA variables. The 200 

subtle differences in values may lead to different evaluations and diagnoses in clinical and 201 

laboratory environments; thus, researchers and practitioners are consequently recommended 202 

to standardise the averaging method when longitudinally monitoring changes in COD 203 

biomechanical parameters to allow valid comparisons. Furthermore, researchers are 204 

recommended to clearly state their averaging method to facilitate methodological replication. 205 

Future applied work could consider determining a phase shift to remove large outliers in the 206 

data set (Dames et al., 2017). 207 

***Insert Figure 2 about here*** 208 

In contrast to Dames et al. (2017), that found greater magnitudes of differences for 209 

kinematic (angular velocities) data than kinetic (GRF) data between averaging methods, the 210 

present study found the largest effect sizes between averaging methods were present for GRF 211 

data (Table 1, Figure 2). These opposing findings could be explained by Dames et al. (2017) 212 

investigating walking gait which is lower in velocity compared to the present study and thus, 213 

associated with lower GRF’s, particularly horizontally. Additionally, cutting is a more 214 

complex manoeuvre than walking, whereby the addition of higher entry velocity most likely 215 

results in slightly different movements strategies at impact between trials, thus resulting in 216 
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temporal misalignments in peak GRF (Figure 2). Finally, it should be acknowledged that 217 

joint angular velocities were the only kinematic variables examined by Dames et al. (2017), 218 

whereas the present study examined peak joint angles over weight acceptance during cutting, 219 

whereby sagittal plane joint angles hip and knee flexion demonstrated consistent temporal 220 

alignments, thus minimal differences. 221 

Caution is advised when using pre-defined thresholds in order to identify potentially 222 

‘at-risk’ athletes for particular parameters which may be used to subsequently inform 223 

training. For example, an athlete below an ‘at-risk’ threshold may not be classified as ‘at risk’ 224 

for a particular variable based on peak of average profile data. Conversely, based on average 225 

of trial peaks data the same athlete may have a greater value which subsequently classes them 226 

as ‘at-risk’, and may therefore receive specific training or treatment. It could therefore, be 227 

argued that the choice of averaging method could lead to different clinical diagnoses, and 228 

may result in false negative/positive identification which could influence the future training 229 

for that athlete. However, it is worth noting that very strong relationships were observed for 230 

participant ranking between averaging methods for all dependent variables (Table 2), 231 

indicating an athlete will most likely achieve the same ranking in a cohort of athletes, 232 

irrespective of the averaging method used.  233 

It is also worth acknowledging that standard deviations (variation) observed for 234 

kinetic and kinetic variables (Table 1) were similar between averaging methods, in line with 235 

the findings of Dames et al. (2017). Thus, it is likely that absolute reliability may be similar 236 

between averaging methods based on standard deviation driven reliability measures. Further 237 

research comparing the effect of these aforementioned averaging methods on between-238 

session reliability is warranted to confirm which method provides the best reliability and 239 

most sensitive measures. 240 
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It should be noted that the present study has several limitations. Firstly, by averaging 241 

trials, in essence, a mythical, never performed trial is created; however, this procedure is 242 

commonly used within the COD literature  (Besier et al., 2001; Havens & Sigward, 2015; 243 

Jones et al., 2016; Jones et al., 2017; Sigward et al., 2015), and averaging trials is suggested 244 

to be representative of a participant’s typical movement (James et al., 2007). Secondly, while 245 

it may be common practice to average parameters between trials, some researchers may 246 

choose to evaluate the fastest trial (Kimura & Sakurai, 2013), or the trial displaying the 247 

greatest biomechanical deficit (i.e. greatest KAM or KAA) may also be of interest, though 248 

caution is advised when evaluating movement based on a single trial (Bates et al., 1992; 249 

James et al., 2007).  250 

CONCLUSION 251 

In conclusion, the averaging method to obtain discrete data results in subtle 252 

differences in values produced, with the peak from the average profile demonstrating lower 253 

GRF, joint moment, and KAA values during cutting. Consequently, researchers and 254 

practitioners are recommended to obtain discrete data based on an average of trial peaks 255 

because it is not influenced by misalignments and variations in trial peak locations, in 256 

contrast to the peak from average profile. However, with the respect to participant ranking, 257 

minimal differences are present between averaging methods. Researchers and practitioners 258 

are also recommended to standardise the averaging method when longitudinally monitoring 259 

changes in COD biomechanics for screening and clinical purposes or making group 260 

comparisons. Moreover, when publishing research, it is advocated that researchers clearly 261 

state the averaging method implemented to facilitate methodological replication. 262 

 263 

 264 
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