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Abstract

In many business contexts, the ultimate goal of knowledge discovery is

not the knowledge itself, but putting it to use. Models or patterns found

by data mining methods often require further post-processing to bring

this about. For instance, in churn prediction, data mining may give a

model that predicts which customers are likely to end their contract, but

companies are not just interested in knowing who is likely to do so, they

want to know what they can do to avoid this. The models or patterns have

to be transformed into actionable knowledge. Action mining explicitly

addresses this.

Currently, many action mining methods rely on a predictive model,

obtained through data mining, to estimate the effect of certain actions

and finally suggest actions with desirable effects. A major problem with

this approach is that predictive models do not necessarily reflect a causal

relationship between their inputs and outputs. This makes the existing

action mining methods less reliable. In this paper, we introduce ICE-

CREAM, a novel approach to action mining that explicitly relies on an

automatically obtained best estimate of the causal relationships in the

data. Experiments confirm that ICE-CREAM performs much better than

the current state of the art in action mining.

1 Introduction

Data Mining (DM) emerged as a response to the need of extracting understand-
able and ultimately useful patterns from large databases. The large majority of
data mining methods focuses on extracting patterns or models that summarize
the data. When the final goal of the data mining effort is to help business ex-
perts with decision making, such patterns or models are often not useful without
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a considerable amount of extra work by domain experts. The more we can nar-
row the gap between the patterns mined and the knowledge required to make
decisions, the more effectively data mining can be used in real-life problems.
Action rule mining is motivated by this observation.

Action Rules are a type of knowledge that explicitly describes how changes
in variables that can be influenced affect some target attribute that cannot be
influenced directly [1].

They are much easier to apply than, for instance, association rules, because
they specify exactly what should be done. For example [2], consider an intelli-
gent loaning system for a bank that contains customers data. A traditional DM
pattern in this system can be a classification rule like: if sex = ’M’ and service
= ’L’, then payback = ’False’. However, an action rule can be like: if sex =
’M’ and service changes from ’L’ to ’H’, then payback will go from ’False’ to
’True’. In many business contexts, the second rule expresses more directly use-
ful knowledge. Take, for instance, churn prediction: the company is not merely
interested in predicting which customers it is going to lose, it wants to know
what can be done to avoid this.

Action Mining (AM) is the process of learning action rules from data. Not
much work has been done in this area up till now. Existing work includes Yang
et al.’s method for learning actions from decision trees [3, 2], and several ver-
sions of Ras et al.’s DEAR system for discovering action rules [4, 5, 6]. In all
of these methods, input data is in the form of a set of attribute-value pairs for
each object. Furthermore, a certain profit is associated with specific values of
one particular attribute, called the target attribute. These methods then try to
uncover existing associations between the target attribute and other attributes,
and use these associations for finding the most beneficial actions. The main
difference between these methods is in the technique by which they find asso-
ciations. For example, Yang’s method uses decision trees, while DEAR 2 uses
classification rules.

Despite all innovations presented in existing AM methods, they suffer from
an important drawback: they implicitly rely on the assumption that the avail-
able models (decision trees, association rules) are causal. It is well-known from
statistics that association or correlation does not imply causation. Even though
the learned models do not merely express the existence of a correlation, but its
nature (in the form of a predictive function), they suffer from the same problem.
If a function f : X → Y learned from a data set is found to be accurate, this
means that, when we observe X = x in a new object, we can accurately predict
that Y = f(x); but if we manually change the object’s X value to X = x′,
there is no guarantee that Y changes into f(x′); in fact, Y may not be affected
at all. Basically, the joint distribution over (X,Y ) of objects with a manually
changed X differs from that of the observed objects in the training set, therefore
the training set is not representative for these and there is no guarantee that
models learned from it will be accurate in this new distribution.

To make this more concrete, suppose ice cream consumption C and outside
temperature T are correlated in some data set, and a data mining method
constructs a model f that accurately predicts T from C. f will be accurate as
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long as its input consists of a C value observed under normal conditions, but
if C is artificially increased by a promotional campaign, the model will tend
to overestimate T . In cases like this, if a high temperature is desired, existing
action rule mining algorithms would suggest to increase ice cream consumption,
which obviously will have no effect.

The main contribution of this paper is a method that proposes actions based
on causal relationships between attributes. The method relies on causal net-
works (CNs), which are a powerful tool for representing causal relationships
and performing inference on them. In particular, they correctly infer the effects
of interventions (externally induced changes of values), which is exactly what
we need here.

One might argue that such causal networks are rarely available in practice,
when mining a database. However, one can try to construct them automatically
from the data. There has been a lot of work on learning causal networks from
data, starting with the foundational work of Pearl et. al. [7] and Spirtes et. al.
[8]. They have shown that causal relationships can be inferred correctly under
specific (but not under all) circumstances. This raises the following questions.
Given a database, can we learn a causal network that is sufficiently accurate to
be useful for action mining? And exactly how can such a causal network be used
in this context? These are the questions we try to answer in this paper. They
have not been studied before in action rule mining, and they pose a number
of specific challenges that have not been addressed in the literature on causal
networks, as will become clear later on.

In this text, we consider two scenarios. In the first scenario, which is mostly
hypothetical but useful as a reference point, we assume that a correct causal net-
work is available for the data. We present a method called Causal Relationship-
based Economical Action Mining (CREAM) that, given an object and the causal
network, predicts optimal (i.e., maximally cost-effective) actions. In the second,
more realistic, scenario, we assume the causal network is not known. In that
case, we can try to learn it from the data. This is a difficult task, and it is
known that the correct network cannot be learned under most circumstances,
but algorithms exist that return a partial network as a best possible estimate. A
well known example is IC (Inductive Causation) [9]. ICE-CREAM (IC-enabled
CREAM) refers to the complete approach of first running an inductive causa-
tion algorithm (IC or one of its variants), then CREAM. This approach requires
extending CREAM so that it can handle partial, rather than complete, causal
networks.

The novel approach is computationally more intensive than some existing
approaches, so the question is how much can be gained by using it. We ex-
perimentally evaluate this on a number of datasets, comparing ICE-CREAM to
the state of the art (which uses models that are not necessarily causal). The
comparison shows that taking induced causality into account results in much
better action recommendations.

The rest of this paper is structured as follows. Related work is discussed
in Section 2. In Section 3 we describe background and definitions for action
mining. Causal networks, as the backbone of our methods, are briefly explained
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in Section 4. We describe the core of our approach, the CREAM method, in
Section 5, and the full method, ICE-CREAM, in Section 6. In Section 7, we
experimentally compare our methods with Yang et al.’s method, testing them
on different data sets. Finally, in Section 8 we conclude and discuss perspectives
of causality-based action mining.

2 Related Work

Action mining is part of a subdomain of data mining called Actionable Knowl-
edge Discovery (AKD), which is concerned with finding patterns that are not
only interesting but also actionable, preferably with minimal further effort re-
quired of domain experts. Piatetsky-Shapiro and Matheus[10] define a pattern
as actionable if the user can act upon it to gain some advantage in the appli-
cation domain. Although actionability could be considered a standard require-
ment in data mining (it is roughly the same as “usefulness”, and no one wants
to find useless patterns), most traditional systems do not explicitly maximize
some well-defined actionability criterion, and the patterns they return do not
explicitly express desirable actions: further inference is needed to identify those.

We can categorize the existing work in AKD in different ways. A first di-
chotomy relates to whether a standard or novel type of patterns is returned.
Some methods (e.g. [11]) define a measure of interest called actionability, and
filter patterns resulting from traditional methods based on this measure. Other
methods try to learn a new type of knowledge, often called action rules or simply
actions, from data. We here focus on the second type.

Assume objects are described by a set of attributes. An action is an exter-
nally induced change of value of one attribute. Such an action can be taken
with the goal of changing the state of the object into a desirable state. An
action rule is an if-then rule that predicts the effect of applying certain actions
under particular conditions. We define action mining as the process of finding
desirable actions (for a given object), or finding rules that can predict desirable
actions, by analyzing data. Following terminology from predictive modeling,
we call methods that predict desirable actions for a given object transductive,
and methods that learn action rules (which can afterwards be used to predict
actions), inductive.

One of the first efforts towards action mining is the work by Ras et al.[1].
Their goal was to know “what actions should be taken to improve the prof-
itability of customers”. They define the concept of action rules, distinguishing
between flexible attributes, of which the value can be changed directly, and
stable attributes, which cannot be changed directly. Valid actions consist of
changing the value of a flexible attribute. This work led to the definition of a
system called DEAR, which in successive work [4, 5, 6, 12] was developed into
a full-fledged system that includes handling of missing values, outlier detection,
and more.

Wang et al.[13] propose a method that takes as input a set of predefined
actions and a so-called influence matrix that shows the effect of each action on
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the flexible attributes.
Tzacheva et al.[14] also use the influence matrix for finding action paths

which are a sequence of actions. Characteristic for these approaches is that
they require background knowledge (the influence matrix) that is not learned
from the data, but assumed to be known. This reduces their applicability. We
call these methods informed, as opposed to uninformed methods such as the
DEAR series.

He et al.[15] present an Apriori-like method for learning action rules that
takes into account the cost of action rules in addition to their support and
confidence. Yang et al. [3, 2] present a method that first learns a decision
tree from previous data and then uses the tree for finding the most profitable
action for upcoming cases. Characteristic for these approaches is that a cost is
associated with each action, which will be subtracted from the eventual profit
obtained. The goal is then to find the set of actions that maximizes the net
profit. One could call this “economical action mining”. Obviously, the setting
with costs generalizes over that without costs (one could simply set all action
costs to zero).

The method we propose in this paper is transductive (it predicts actions but
does not yield generally applicable action rules), uninformed, and uses costs.
From this point of view, the most closely related work is that of Yang et al. We
therefore discuss it in more detail.

Yang et al.’s method first learns a decision tree, then analyzes the tree to
find the optimal actions for each object. As the first step is pretty standard, we
here focus on the second step. We illustrate it on the example decision tree in
Fig. 1 [2], which represents a simplified decision tree built from customer profiles
in a bank. The number below each leaf node is the probability that a random
object in that node is in some desired state. This probability is estimated from
past data. In Yang’s method, an action on an object is defined as a set of
attribute value changes that moves an object from one leaf node to another one
in the decision tree. For example, consider an instance (Service = L, Sex =
M, Rate = L). It is in leaf node B, but if Service were H instead of L, it
would be in node D, in which the probability of being in the desired state is
higher. It is therefore assumed that the action (service, L → H) will increase
the probability that the customer is in the desired state.

Yang et al. associate a fixed profit p with the desired state, define the
expected profit in a leaf as the proportion of cases in that leaf in the desired
state, multiplied by p, and define the net profit of an action as the difference
in expected profit between the from-leaf and the to-leaf, minus the cost of the
action. A leaf-node search algorithm then selects for each object the action with
maximum net profit.

Compared to Yang et al., the crucial new element in our method is that it
tries to extract causal relationships from the data, and uses a model based on
these causal relationships, instead of a non-causal model, to reason about the
effects of actions. In this respect, the most closely related work in association
rule discovery is probably that of Silverstein et al. [16], who proposed a method
for finding association rules that encode causal relationships. These causal as-
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Figure 1: A sample decision tree of customer profiles

sociation rules are not action rules by themselves, but could be post-processed
using methods such as DEAR. To our knowledge, such an approach has never
been tried in the field of action mining. The approach we propose here is an
alternative to it that relies on more recent results in mining causal relationships.

In the causal network literature, the focus has largely been on the challenging
task of learning causal networks from data. Pearl’s seminal work [7] has given
rise to a large number of algorithms that try to learn such networks. It is
well-known how probabilistic inference in such networks can be done. In the
context of action rule mining, however, new types of problems arise, which are
of a more practical nature and which have not been considered in the causal
networks literature:

1. Given a desirable state for one variable, and costs associated to actions
that change the value of a variable, what is the most economical way
of causing the target variable to take that value? This corresponds to
optimizing the expected value of a function of some variables in the causal
network.

2. The causal network derived form the data is often only partial; not all
causal directions can typically be determined. The answer to question
1 can therefore only be computed by making additional assumptions or
approximations. How well can the question be answered, when this is
taken into account?

3. How can action rules be derived from the given data? An action rule is a
generally applicable rule that states under what circumstances which vari-
ables should be changed. These action rules can in principle be obtained by
computing the answer to question 1 under many different circumstances,
then learning rules from all these answers.

In this text, we are mostly concerned with questions 1 and 2.
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3 The learning setting

As terminology and definitions in the literature vary somewhat, we here formally
define concepts as they are used in this paper.

The input data for action learning is observational and in tabular form.
Each column represents an attribute and each row an object. We assume there
are n objects and m attributes. We write an object’s state as (A1 = a1, A2 =
a2, · · · , Am = am), with each Ai an attribute and ai a value from its domain
Dom(Ai). Given an object o, its value for attribute A is written as A(o). We
assume there are no missing values.

We assume that all attributes are discrete; this is not a strong limitation, as
real-valued attributes can always be discretized before applying the method. A
denotes the set of all attributes in the system. One particular binary attribute
is called the target attribute, and denoted by T . One of T ’s values is called the
goal, denoted by tg; with this goal a profit pg > 0 is associated. With the other
value of T a profit of 0 is associated.

An action is a structure of the form (A, a → a′), with A a non-target at-
tribute and a, a′ ∈ Dom(A). It corresponds to changing the value of attribute
A from a to a′ by means of an external intervention. With each action α a
cost C(α) is associated. An action (A, a → a′) is compatible with an object if
the object’s value for A equals a. When an action α is applied to an object
o, we write the resulting state as oα. Note that, while an action (A, a → a′)
directly changes only A, this change may in turn cause changes to other at-
tributes besides A, according to the causal relationships that exist in the data.
So, given an object o and an action α = (Ai, a→ a′), there is no guarantee that
Aj(oα) = Aj(o) for each j 6= i. Note that no additional cost is associated with
these indirect changes, only the action itself has a cost.

An action set Γ is a set of actions in which each attribute occurs at most
once. An action set is compatible with an object if all its actions are compatible
with it. Given an object o and a compatible action set Γ = {α1, α2, . . . , αk},
we define oΓ = oα1α2 · · ·αk. It denotes the state of object o after applying all
actions to o. We define the cost of an action set as C(Γ) =

∑
α∈Γ

C(α).
The net profit np of an action set and an object o is defined as np(Γ, o) =

pg − C(Γ) if T (o) 6= tg and T (oΓ) = tg, and np(Γ, o) = −C(Γ) otherwise.
We define the task of economical action mining as follows: Given an object

space O = Dom(A1) × · · · × Dom(Am), a data set D ⊆ O, a set of possible
actions and their associated costs, a target attribute T with associated goal tg
and profit pg, and a set of objects O (which may or may not overlap with D),
find for each o ∈ O an action set Γo such that

∑
o∈O np(Γo, o) is maximal.

It is useful to look back at Yang et al.’s work at this point. It addresses the
task just described. In doing so, it implicitly assumes two things. First, changing
an attribute’s value does not affect any other attributes except the target. That
is, given an object o and an action α = (Ai, a→ a′), Aj(oα) = Aj(o) whenever
j 6= i and Aj 6= T . This is only true if there is never a causal relationship between
two non-target attributes. Second, each non-target attribute that occurs in the
decision tree causally influences the target attribute in exactly the way that
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the tree suggests. Both are strong assumptions, which can easily be violated in
practice. In this work, we do not make such assumptions.

4 Causal Networks

It was long deemed impossible to learn causal relationships from merely obser-
vational data, until Spirtes et al. [8] and Pearl [7] showed that under certain
conditions one can infer some causal relationships from non-experimental data.
These causal relationships are typically shown using a Directed Acyclic Graph
(DAG) called a causal network (CN). In a CN, each node represents a variable
and each edge represents a direct causal effect from the parent to the child.
Causal networks are essentially Bayesian networks, with the additional guaran-
tee that edges coincide with causal influences.

Causal networks can be used like Bayesian networks for probabilistic infer-
ence. Queries for the (conditional) probabilities of events, prior and posterior
marginals, most probable explanations and maximum a posteriori hypotheses
can be answered (see [17] section 5.2 for more details). However, causal networks
have the additional advantage that they can be used for reasoning about the
effects of interventions: what can we infer if we set A = a, rather than observe
A = a? Such interventions are basically the same as what we call actions in
action mining.

One of the most subtle tasks in causal inference is learning the structure of
causal networks from merely observational data. Much work has been done in
this area. The Inductive Causation (IC) algorithm proposed by Verma and Pearl
[9] is the backbone of many proposed methods. This algorithm uses conditional
independency relationships between attributes for finding causal links. In this
text, we use inductive causation or IC to refer to the whole class of algorithms
that induce causation using the same basic principles.

It is known that not all causal relationships can be discovered from obser-
vational data; causal relationships can be identified only under specific circum-
stances. As a result, IC returns only a partially directed acyclic graph (PDAG).
In a PDAG, some edges are directed, and some undirected. Directed edges in-
dicate causal relationships that have been identified with certainty. Undirected
edges indicate that there is a relationship, but its type and direction cannot be
determined with certainty.

In the following, we first explain the idea of causality-based action mining,
and propose the CREAM method for extracting actions from a given causal
network. Next, we will describe challenges in learning actions from only obser-
vational data, and present the ICE-CREAM method as a solution for them.

5 Mining Actions from Causal Networks (CREAM)

In this section, we consider the following task: given a causal network in the
form of a DAG and an object o, find actions that effectively and economically
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Figure 2: A sample causal network including five boolean attributes. The target
node is shown with a double circle

put o into the desired state (i.e., T (o) = tg).
The nodes in the DAG correspond to attributes. We call the node that

corresponds to the target attribute the target node. We say a node x is upstream
from a node y (and y is downstream from x) if and only if there is a directed
path from x to y. A node is a cause node if it is upstream from the target node.

For example, in Fig. 2, if the target node is “Wet”, then “Season”, “Rain” and
“Sprinkler” are cause nodes.

Clearly, only changes in cause nodes can influence the target node, therefore
these are the only candidates for actions. In the following, we explain how to
compute the effect of an action.

5.1 Inferring the impact of an action on an object

Inference in causal networks is a bit more complicated than that in Bayesian
networks, because interventions (attributes set to a particular value) must be
treated differently from observations. Assume we have an edge A → B, i.e., A
causally influences B. When we observe B, this gives us information about A,
so we must update our belief about A, but when we set the value of B, this
has no effect on the value of A, so our belief about A should remain unchanged.
This is achieved in practice as follows: whenever a variable is given a value
by intervention, its incoming edges are removed from the DAG. The standard
inference procedure for Bayesian networks is then used on the new DAG, without
further distinguishing observed nodes from action nodes. This gives correct
inference under all circumstances. For further information, we refer to Pearl [7].

In the context of action mining, we use this technique as follows. Given
a causal network CN and an action α = (A, a → a′), we define CNα as the
network constructed from CN by removing all incoming edges to A, and setting
A = a′. Given an action set Γ, CNΓ denotes the network obtained by applying
this procedure consecutively for all actions in Γ.
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Figure 3: Submodel of the causal network in Fig. 2 obtained after applying
action α(Sprinkler, False→ True).

For example, Fig. 3 illustrates the CNα resulting from applying action α =
(Sprinkler, False→ True) to the network depicted in Fig. 2.

After creating CNΓ it can be used for reasoning about the effect of Γ on the
value of other attributes. In the next subsection we use CNΓ for computing the
effect of Γ on the value of the target attribute.

5.2 Net profit

We define the effectiveness of an action α with respect to an object o as the
gain in probability that o is in the goal state. Formally:

effα(o) = Pr(T = tg|C
′ = C′(oα)) − Pr(T = tg|C = C(o)) (1)

where C is the set of cause nodes, C′ is the set of cause nodes that are not
downstream from the action attribute, C(o) are the values for the cause nodes
in o and C′(oα) are the values for the nodes in C′ in the modified object. The
reason for using C′ instead of C for oα is that cause nodes downstream from
a changed attribute can no longer be considered evidence. (For instance, to
answer the question “will it be slippery if I turn the sprinkler on”, in a context
where the grass is dry, we need to add evidence that the sprinkler is on but
also drop the evidence that the grass is dry, as turning the sprinkler on causally
affects the value of Wet, and thus renders this evidence invalid.) As explained
before, Pr(T = tg|C′ = C′(oα)) is computed using the modified network CNα,
whereas Pr(T = tg|C = C(o)) is computed using the unmodified network. Both
are computed using standard inference procedures for Bayesian networks.

The effectiveness of an action set Γ is computed similarly. We define

effΓ(o) = Pr(T = tg|C
′ = C′(oΓ))− Pr(T = tg|C = C(o)). (2)

Pr(T = tg|C′ = C′(oΓ)) is computed similarly as for a single action, with the
following differences: CNΓ is used for the inference, and C′ contains all nodes
that are not downstream from any action attribute in CNΓ.
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The net profit, finally, is computed as follows:

np(Γ, o) = eff
Γ
(o) · pg − C(Γ) (3)

Our task is to find, for each object o that is not in the desired state, the
action set Γ that maximizes np(Γ, o). In the next subsection, we discuss two
strategies for searching the space of all possible action sets.

5.3 Exhaustive vs Greedy Search

Any action of the form (A, a → a′), with A a cause node and a the observed
value for it, is a candidate action for trying to change the target attribute.

With C the set of attributes that correspond to cause nodes, this gives∑
A∈C

(|Dom(A)| − 1) candidate actions, which is O(md) with m the num-
ber of attributes and d the largest domain size. The number of action sets is∏

A∈C
|Dom(A)| (each attribute may or may not occur in the action set, and if

it occurs, there are |Dom(A)| − 1 possible values for a′). This is O(dm−1).
Clearly, searching the space of action sets exhaustively may be intractable for

medium-sized or larger datasets. We therefore compare two different strategies.
The first one is exhaustive search (ES): for each object, we evaluate all action
sets and select the best one.

The second and faster strategy is greedy search (GS). Given an object o,
we start with an empty set Γ. In each iteration, we extend Γ with one action,
namely the one that, when added to Γ, results in the highest np for Γ. This is
continued until no action is found that improves np(Γ).

In the first iteration, GS checks at most d(m−1) actions, and afterwards, in
the i’th iteration, at most d(m− i), since an already added attribute need not
be reconsidered for addition in later iterations. In the worst case, GS iterates
m− 1 times, so the number of action sets that is evaluated for each object is at
most d

∑m−1

i=1
(m− i), or O(dm2).

Considering all objects in the set O, the number of evaluations of action
sets is O(|O|dm2) for greedy search, and O(|O|dm−1) for exhaustive search.
Note that each evaluation includes probabilistic inference in the causal network,
which is itself a relatively expensive operation.

We are now ready to present the full algorithm for extracting optimally eco-
nomical actions for an object o from a causal network. The approach is called
CREAM (Causal Relationships based Economical Action Mining). Algorithm 1
presents pseudo-code for the greedy approach. The algorithm using exhaustive
search is similar, simply replacing the stepwise construction of an optimal ac-
tion set with an exhaustive enumeration and evaluation of all action sets. The
procedure findCandidateActions returns all actions that are compatible with o
and for which the action attribute is a cause node. The set O− excludes objects
that are already known to be in the desired state; no actions are sought for
those.

The CREAM algorithm can be used to find the most profitable action set
for any object, assuming a complete causal network is known. This may not

11



Algorithm 1 The CREAM algorithm for learning cost-effective action sets from
causal networks (greedy version).

1 : procedure CREAM (T, O, C, pg, CN )
Input:target attribute T,

object data O,
cost data C,
profit pg,
underlying causal network CN ,

Output: one action set for each object o ∈ O

2 : O
− ←{o ∈ O|Pr(T (o) 6= tg) > 0}

3 : for each o in O
−do

4 : I ← findCandidateActions(o, CN )
5 : Γ← empty action set
6 : finished← false
7 : repeat
8 : αmax ← argmaxα∈I np(Γ ∪ {α}, o)
9 : if np(Γ ∪ {αmax}, o) > np(Γ, o) then
10: Γ← Γ ∪ {αmax}
11: I← I− {αmax}
12: else
13: finished ← true
14: until I = ∅ or finished
15: assign Γ to o
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be the case in practice. In the next section, we describe how a partial causal
network can be learned from data, and how CREAM can be adapted to handle
such partial networks.

6 Mining Actions from Observational Data (ICE-
CREAM)

As mentioned before, it is possible to learn causal relationships between at-
tributes from merely non-experimental data to a limited extent. The IC al-
gorithm [9] does exactly this. It returns a partial DAG, in which some edges
have no direction, reflecting the fact that the direction of causality could not be
established in these cases.

Given a dataset without a causal network, one can run an algorithm such
as IC to learn a causal network, then run CREAM to extract optimal actions
from this network. This method, as a whole, is an uninformed action mining
method that we call ICE-CREAM (IC-Enabled CREAM). While this may seem
straightforward, a number of challenges need to be addressed. All of them are
related to the fact that CREAM expects a DAG, but IC returns only a PDAG.
In the following subsection, we discuss these challenges and explain how we
extend CREAM in order to address them. Next, we will discuss ICE-CREAM
as a whole.

6.1 Handling uncertainty

IC returns a partial DAG (PDAG): a graph in which some edges are directed and
others are not, without directed cycles. This PDAG represents a set of DAGs,
namely, the set of all DAGs that can be found by directing the undirected edges
one way or the other, in such a way that the resulting DAG is “compatible”
with the PDAG. Full details are beyond the scope of this paper, but essentially,
a DAG is compatible with a PDAG if its edges have the same direction as the
corresponding ones in the PDAG, and it contains no causal substructures that,
if they are indeed present, should have been identified by IC, but were not.
Given a PDAG G, we write the set of DAGs compatible with it as dagset(G).

Allowing for undirected edges is a challenge for CREAM, as it causes uncer-
tainty about which nodes are downstream from which other nodes. To meet this
challenge, we integrate uncertainty into our method. We introduce a new con-
cept, action quality, that is related to how likely it is that the action attribute
causally influences the target attribute. In the following, we define action quality
and explain how we compute it for an action.

Given a PDAG G and a probability distribution p over dagset(G) (with
p(g) indicating the probability that g is the real causal network), we define the
quality Qα of an action α = (A, a → a′) as the probability that there exists
a directed path from A to T in the real causal network (in other words, the
probability that T is downstream of A). In a DAG, this value is one for cause
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attributes and zero for all others. However, in a PDAG, this value is not easily
computable.

We say a path ρ is partially directed if its edges are directed or undirected,
and all its directed edges go in the same direction. Let P be the set of all
partially directed paths between the action attribute A and the target attribute
T for some action α, and let Dρ represents the event “ρ is directed from A to T
in the real network”. Then we have

Qα = Pr(
⋃

ρ∈P

Dρ). (4)

For a partially directed path to be directed if we traverse the path from the
action attribute toward target attribute, all undirected edges of the path should
take the direction of motion. If we assume Dε represents event “undirected edge
ε has a direction compatible with the path”, then

Pr(Dρ) =
∏

ε∈Eu

Pr(Dε) (5)

where E
u denotes the set of all undirected edges in ρ. It is worth noting that

here we assume that the direction of each undirected edge is independent of the
direction of other edges, which it is not always true (due to the constraints of
acyclicity and unidentifiability of causal substructures). This is a first simplify-
ing assumption.

A second assumption that we need to make is about the prior probabilities
of edges having a certain direction. These are necessarily subjective. Looking at
one undirected edge A − B in isolation, without additional background knowl-
edge such as chronological data, there is no reason to believe that the edge is
directed either way, so we can assign a probability of 0.5 to each direction.

This is a subjective probability: its value represents our “degree of belief”
about the direction, 0.5 meaning we have no reason to think one direction is
more likely than the other.

Using 0.5 as the probability that an undirected edge “has the right direction”,
we have

Dρ = (0.5)|E
u|. (6)

The quality of an action set is now defined as follows:

QΓ =
∏

α∈Γ

Qα (7)

It estimates the probability that all actions in the set causally influence the
target attribute. (“Estimates”, because it treats all the Dρ with ρ ∈ P as
independent, this on top of the fact that the Qα are estimates themselves.)

Undirected edges pose some difficulties for computing the action set effec-
tiveness effΓ, too. When creating CNΓ from CN , edges from parents of the
action attribute should be deleted, but with undirected edges it is not certain
which nodes are the parents. In ICE-CREAM, we have chosen to delete all
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directed edges and leave undirected edges unaffected. Other alternatives would
be to delete also the directed edges, or delete each of them with some proba-
bility. None of these are correct under all circumstances. While some of these
alternatives may work better than others on average, we have not attempted to
determine an optimal alternative.

Finally, cause nodes cannot be determined with certainty either. We simply
take a node as cause node if it can be a cause node according to the PDAG
(that is, if undirected edges can be directed such that it becomes a cause node).

We now define the net profit of an action set in ICE-CREAM as follows:

np⋆(Γ, o) = QΓ · eff
⋆
Γ(o) · pg − C(Γ) (8)

where eff⋆
Γ
(o) estimates eff

Γ
(o) as just explained.

We use CREAM⋆ to refer to the version of CREAM that handles partial
DAGs by using np⋆ instead of np.

6.2 ICE-CREAM

At the highest level of abstraction, the ICE-CREAM method can be described
as follows:

1. Learn a partial causal network structure from data.

2. Estimate the value of the CN parameters from the data.

3. Call CREAM⋆ on the learned CN.

We now analyze the complexity of each step separately.
Step 1 requires an algorithm that induces causal relationships. Many im-

proved versions of the original IC algorithm have been proposed; we use the
Grow Shrink Markov Blanket Algorithm by Margaritis [18]. Assuming a con-
stant upper bound on the size of Markov blankets, the complexity of this algo-
rithm is O(e2 + nm3), with e the number of edges in the network. For more
details about the complexity of the algorithm and some improvements on it, we
refer to [18].

Since all attributes are observable and have no missing values, the parameters
of the CN (conditional probabilities) are easily computed as relative frequencies.
This takes one pass over the data, which has n rows and m columns. Thus, step
2, learning the parameters, takes O(nm) time.

Just like CREAM, CREAM⋆ can be implemented using a greedy (GS) or an
exhaustive search (ES). The number of np⋆ calculations is O(|O|dm2) for the GS
version, and O(|O|dm−1) for the ES version. The computation time for np⋆ is
dominated by that of QΓ. Indeed, C(Γ) is clearly O(m), and the main operation
in eff⋆

Γ
(o) is computing Pr(T = tg|C′ = C′(oΓ)) and Pr(T = tg|C = C(o)),

which can be done in O(m ·exp(w)) of time, with w the treewidth of the network
(see, e.g., chapter 7 of [17]).

QΓ is more complicated, however.
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To find QΓ, we compute Pr(
⋃

ρ∈P
Dρ) for each action in Γ, which can be

expanded as follows (inclusion-exclusion principle):

Pr(
⋃

ρ∈P
Dρ) =

∑
ρ∈P

Pr(Dρ)

−
∑

ρ1,ρ2∈P
Pr(Dρ1

∩Dρ2
)

+
∑

ρ1,ρ2,ρ3∈P
Pr(Dρ1

∩Dρ2
∩Dρ3

)

− · · ·

+(−1)|P|+1
Pr(

⋂
ρ∈P

Dρ)

(9)

For computing the probability that k paths exist, the main operation is
counting the number of distinct undirected edges in all k paths. In the worst
case where k = |P| and each path contains all network edges this operation will
take O(e|P|) time where e is the number of edges in CN and can be bounded
by m(m − 1)/2 for a complete graph. So that O(e|P|) can be rewritten as
O(m2|P|). We pessimistically consider this bound for computing each term in
Equation 9.

The number of terms in the equation is 2|P|−1. Therefore, computing Qα is
O(m2|P|2|P|) and consequently computing QΓ is O(m3|P|2|P|). It is clear that,
as |P| grows, the computation time of QΓ becomes prohibitive. In practice, an
upper bound on the number of paths considered for each action may be needed.
In our experiments, we set this upper bound to 10.

7 Experiments

7.1 Experimental questions

We have described two systems. The first, CREAM, computes optimal actions
from a given causal network in a principled way. The ES exhaustive search ver-
sion (ES) provably gives the optimal action set but may be infeasible in practice,
while the greedy version(GS) is not guaranteed to give the best possible result.
The second system, ICE-CREAM, combines an inductive causation algorithm
with an extension of CREAM. Here, additional uncertainty is introduced by the
fact that we have only an approximation of the real causal network.

In this context, CREAM(ES) is the gold standard by which the other algo-
rithms should be compared. The difference in performance between CREAM(ES)
and CREAM(GS) relates to the use of a greedy search algorithm. The differ-
ence between ICE-CREAM (ES or GS) and the corresponding CREAM relates
to uncertainty about the causal network, as well as to the fact that in order to
deal with this uncertainty, many approximate methods are introduced.

We will compare these methods also with Yang et al.’s approach [3], which,
for brevity and for lack of a better name, we simply refer to as Yang. To our
knowledge, this method is the state of the art in economical action mining. Any
difference between Yang and (ICE-)CREAM can be related to many things,
since the methods are quite different, but an essential difference is that Yang
does not use any causal reasoning at all.

The experimental questions we want to address are:
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1. What is the loss incurred by making CREAM search greedily instead of
exhaustively?

2. What is the loss incurred by using the uninformed ICE-CREAM instead
of the informed CREAM?

3. How much can one gain by using the computationally complex ICE-
CREAM, which tries to use causal reasoning, instead of Yang’s method,
which is much more efficient but does not use causal reasoning at all?

7.2 Evaluation procedure

Experimental evaluation of action mining methods is difficult. To find out the
effect of an action on an object, it needs to be actually performed, so that its
impact can be assessed. But existing datasets are by definition observational:
we can see what is in the dataset, but we cannot experimentally find out what
the target would have been if we had manually changed the value of some input
attribute. Thus, the question is how we can mimic such an experimental setting.

We have proceeded as follows. Given a causal model M , one can generate
a dataset through random sampling from the distribution defined by the causal
model. This dataset is used as input for the system, which next predicts action
sets for a number of objects. For each object and action set, since we know the
true model M , we can use it to determine the effect of the action set on the
object. This simulates the “online experimenting” that one would need in order
to evaluate on real datasets.

Our different datasets will have different ranges of costs and profits. To
make them more comparable, we express the effectiveness of an action set Γ on
an object o using the Normalized Net Profit (nnp), which is defined as

nnp(Γ, o) = max(
np(Γ, o)

pg
, 0), (10)

where np is computed according to the real causal network. It is obvious that
nnp falls between 0 and 1. It is one when the action set has cost zero and with
certainty changes T into tg. np(Γ, o)/pg can be negative; this happens when the
cost of the action set exceeds its expected profit. In such cases, in order to limit
the effect of excessive costs, we set nnp to zero.

Concretely, for generating test data, we first select a CN and then simulate
observational data based on it. These artificial data then are passed to CREAM,
ICE-CREAM, and Yang’s method. Finally, the CN is used for measuring the
normalized net profit of the action sets recommended by both methods.

We have used the following packages in our implementations:

• “bnlearn”, an R package for learning CN structure that implements Mar-
garitis’ method. [19, 20]

• “JSmile”, a Java library for learning CN parameters and performing infer-
ence with the CN [21]
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Table 1: Artificial networks used for evaluation.

Network Name # Nodes # Arcs # Parameters

sample7 7 6 30
sample15 15 27 372
sample30 30 64 788
sample45 45 103 1010

Table 2: Real networks used for evaluation.

Network Name # Nodes # Arcs # Parameters

Fire 6 5 24
Chest Clinic 8 8 36

usa2000 8 11 255
Headache 12 11 180

Alarm 37 46 752
Hailfinder 56 66 3741

• the “Weka” Java library for decision tree learning, in our implementation
of Yang’s method [22]

7.3 Data

7.3.1 Causal Networks

We have selected two types of CNs for simulating data: real and artificial. The
real networks are gathered from the Bayesian network literature and tools sam-
ples. The Alarm and Hailfinder networks are from [23] and [24], respectively.
Fire, Headache, Chest Clinic and usa2000 have been chosen from samples of
Hugin GUI [25]. The artificial networks were created manually, with their
structure and parameters chosen mostly randomly, but in such a way that a
meaningful causal network is obtained. Networks were created with a varying
number of variables, and all variables are discrete, as for the real networks.

Tables 1 and 2 show the nodes, edges, and parameters in each of the net-
works. For each network, a single target attribute was chosen randomly and
manually among the attributes near the end of the network.

7.3.2 Observational Data

We have generated observational data from each network according to its distri-
bution. The number of objects created for each network was chosen depending
on the network size and on memory limitations of the tools used in our experi-
ments. It is shown in Table 3.
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Table 3: Number of records generated for each network

Network Name Number of Records

sample7 12800
sample15 20000
sample30 20000
sample45 20000

Fire 6400
Chest Clinic 2560

usa2000 11644
Headache 262144

Alarm 173328
Hailfinder 50000

7.3.3 Cost Data

We have randomly generated cost data for each data set. A randomly chosen
subset of the attributes (20% of the total) was considered stable; these attributes
are given a infinite cost.

Among the remaining 80%, some attributes were chosen to be semi-stable, in
the sense that changing their value from a to a′ has a finite cost but the opposite
change has infinite cost (to simulate, for instance, attributes such as “experience
level”, which can be increased through training but cannot be decreased). 5% of
all cost values were set to infinity to model such semi-stable attributes. Other
costs were chosen randomly from a uniform distribution between 0 and 10. pg
was set to 100 in all cases.

7.4 Results

We have experimented with both exhaustive and greedy search (ES, GS).
Because ES is computationally prohibitive in large networks, we added a

time threshold to this method, which varied from one to a few seconds per
object, based on the size of network. When the threshold was exceeded, the
best result until then was returned. The exhaustive search ran to completion in
four datasets: Fire, ChestClinic, usa2000 and sample7.

For each network, we have repeated the following procedure 10 times (except
for Hailfinder, where it was repeated only 5 times due to its computational
cost): Generate random cost data for the network (according to the procedure
explained above); randomly select 100 objects where T 6= tg; use each method
to find the most profitable action for each object in the set; report for each
method the average nnp obtained. These results were again averaged over the
10 (or 5) runs with different random costs. The final result is shown in Table 4.

Inspection of the table shows the following.

1. As expected, the results for ICE-CREAM, which is uninformed, are less
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Table 4: Average normalized net profit obtained by CREAM, ICE-CREAM
and Yang’s method on different networks. Asterisks indicate where ES was
interrupted.

Network CREAM(ES) CREAM(GS) ICE-CREAM(ES) ICE-CREAM(GS) Yang

ChestClinic 0.58 0.58 0.49 0.49 0.41
Fire 0.81 0.81 0.81 0.81 0.80

usa2000 0.75 0.71 0.66 0.59 0.56
Headache * 0.73 0.72 0.71 0.71 0.22

Alarm * 0.56 0.56 0.54 0.54 0.11
Hailfinder * 0.89 0.90 0.80 0.79 0.63

sample7 0.35 0.35 0.34 0.34 0.25
sample15 * 0.39 0.39 0.36 0.36 0.23
sample30 * 0.35 0.37 0.28 0.30 0.14
sample45 * 0.40 0.39 0.35 0.34 0.17

good than for the informed CREAM method. However, the difference is
often small. This suggests that ICE-CREAM can be used effectively in
real-world problems.

2. ICE-CREAM outperforms Yang in each network. Again, this is not sur-
prising, given that Yang implicitly relies on strong assumptions about
causality, which seem unrealistic in practice, and are definitely invalid for
the datasets used here.

3. Greedy search works well, in comparison to exhaustive search. On the
four datasets where ES could be completed, GS obtained the same result
in three datasets, and only slightly worse in the fourth (usa2000). This
holds for CREAM as well as for ICE-CREAM.

As said, there are many differences between ICE-CREAM and Yang, so
one may wonder to what extent the improved performance is related to the
use of causal information, and not simply to the fact that the dataset has a
structure that lends itself better to modeling with Bayesian networks (of which
causal networks are an instance) than with decision trees. To check this, we have
learned a Bayesian network and a decision tree on each dataset, and evaluated it
using cross-validation. This type of evaluation tells us how well the used learning
method can learn a model that fits the observational data well. Table 5 shows
the results. Clearly, decision trees model the data at least as well as Bayesian
networks. The difference in performance between ICE-CREAM and Yang is
therefore not related to the target function being inherently more suitable for
learning Bayesian networks. It is related to the fact that ICE-CREAM explicitly
performs causal inference.
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Table 5: Predictive accuracy of Bayesian networks and decision trees for the
considered datasets.

Network Name BN DT

sample7 88.36 88.97
sample15 75.72 83.85
sample30 76.38 78.47
sample45 75.96 77.03

Fire 99.64 99.67
Chest Clinic 84.98 84.98

usa2000 83.20 85.32
Headache 81.32 91.74

Alarm 97.74 99.81
Hailfinder 93.42 99.82

8 Conclusions and Future Work

In this paper, we have introduced the idea of using causal relationships in action
mining, and argued why this should lead to better results. We have proposed
a novel method called ICE-CREAM that first builds a causal network that
indicates hypothesized causal relationships among the variables, then uses this
causal network to recommend actions that can be taken to change the state of
given objects into some goal state. Experiments show that ICE-CREAM leads
to much higher gains than the best known current method for economical action
mining, and confirm the expectation that this is due to the explicit use of causal
relationships in ICE-CREAM.

While the proposed method is already a clear improvement upon the state
of the art in action mining, it is still subject to improvement. Handling the
uncertainty in the automatically induced causal network is currently the main
bottleneck; the current method is computationally expensive and makes many
assumptions that are known to be wrong. Recent results on efficiently comput-
ing path probabilities in probabilistic graphs [26] could be exploited to improve
this. Further, the current version of ICE-CREAM assumes there are no missing
data, handles only discrete attributes, and assumes a binary target attribute.

Our current method is transductive: it does not return generally applicable
action rules, but action set recommendations for concrete objects. A simple way
to derive an action rule learner from it would be the following: predict action
sets for a large number of objects, then use a standard rule learner to learn
which actions are predicted under which circumstances.

Another topic for further work is the evaluation of action miners. This
evaluation requires experimental control over the data, which means it cannot
be performed using existing datasets. Ideally, one should have access to real-life
situations that allow for active experimentation. This may be difficult to obtain
in practice. Advanced and well-studied methods for simulating such situations
would be a welcome alternative.
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In principle, the proposed method is not limited to economical applications,
but could also be useful in, for instance, life sciences. It is to be expected,
however, that as the complexity of the real causal relationships increases, the
difference between approximate causal inference using an incomplete network
and using no causal reasoning at all diminishes. It remains to be explored for
what range of applications the method is practically useful.

Acknowledgements

Part of this research was carried out while the first author was on sabbatical
leave from IUT and visiting KU Leuven. The authors thank Sander Beckers
and Wannes Meert for proofreading and comments.

References

[1] Z. Ras and A. Wieczorkowska, “Action-rules: How to increase profit of a
company,” Principles of Data Mining and Knowledge Discovery, pp. 75–
116, 2000.

[2] Q. Yang, J. Yin, C. Ling, and R. Pan, “Extracting actionable knowledge
from decision trees,” Knowledge and Data Engineering, IEEE Transactions
on, vol. 19, no. 1, pp. 43–56, 2007.

[3] Q. Yang, J. Yin, C. Ling, and T. Chen, “Postprocessing decision trees to
extract actionable knowledge,” in Data Mining, 2003. ICDM 2003. Third
IEEE International Conference on. IEEE, 2003, pp. 685–688.

[4] Z. Ras and L. Tsay, “Discovering extended action-rules (system dear),”
Intelligent Information Systems, pp. 293–300, 2003.

[5] L. Tsay and Z. Ras, “Action rules discovery: System dear2, method and
experiments,” Journal of Experimental & Theoretical Artificial Intelligence,
vol. 17, no. 1-2, pp. 119–128, 2005.

[6] ——, “Action rules discovery system dear_3,” Foundations of Intelligent
Systems, pp. 483–492, 2006.

[7] J. Pearl, Causality: models, reasoning, and inference. Cambridge Univ
Press, 2000, vol. 47.

[8] P. Spirtes, C. Glymour, and R. Scheines, Causation, prediction, and search.
MIT press, 2001, vol. 81.

[9] T. Verma and J. Pearl, “Equivalence and synthesis of causal models,” Un-
certainty in artificial intelligence 6, vol. 6, p. 255, 1991.

22



[10] G. Piatetsky-Shapiro and C. Matheus, “The interestingness of devia-
tions,” in Proceedings of the AAAI-94 workshop on Knowledge Discovery
in Databases, vol. 1, 1994, pp. 25–36.

[11] A. Silberschatz and A. Tuzhilin, “On subjective measures of interestingness
in knowledge discovery,” in Proceedings of KDD-95: First International
Conference on Knowledge Discovery and Data Mining, 1995, pp. 275–281.

[12] Z. Ras, E. Wyrzykowska, and H. Wasyluk, “Aras: Action rules discov-
ery based on agglomerative strategy,” Mining Complex Data, pp. 196–208,
2008.

[13] K. Wang, Y. Jiang, and A. Tuzhilin, “Mining actionable patterns by role
models,” in Data Engineering, 2006. ICDE’06. Proceedings of the 22nd
International Conference on. IEEE, 2006, pp. 16–16.

[14] A. Tzacheva and Z. Ras, “Association action rules and action paths trig-
gered by meta-actions,” in Granular Computing (GrC), 2010 IEEE Inter-
national Conference on. IEEE, 2010, pp. 772–776.

[15] Z. He, X. Xu, S. Deng, and R. Ma, “Mining action rules from scratch,”
Expert Systems with Applications, vol. 29, no. 3, pp. 691–699, 2005.

[16] C. Silverstein, S. Brin, R. Motwani, and J. Ullman, “Scalable techniques for
mining causal structures,” Data Mining and Knowledge Discovery, vol. 4,
no. 2, pp. 163–192, 2000.

[17] A. Darwiche, Modeling and reasoning with Bayesian networks. Cambridge
University Press, 2009, vol. 54, no. 2.

[18] D. Margaritis, “Learning bayesian network model structure from data,”
DTIC Document, Tech. Rep., 2003.

[19] M. Scutari, “Learning bayesian networks with the bnlearn r package,” Arxiv
preprint arXiv:0908.3817, 2009.

[20] ——, “bnlearn, bayesian network structure learning,”
http://www.bnlearn.com/.

[21] decision system laboratory of Pittsburgh university, “Jsmile, java interface
for smile,” http://genie.sis.pitt.edu/about.html.

[22] the university of Waikato, “Weka, data mining software in java,”
http://www.cs.waikato.ac.nz/ml/weka/.

[23] I. Suermondt and R. Chavez, “The alarm monitoring system: A case study
with two probabilistic inference techniques for belief networks.”

[24] B. Abramson, J. Brown, W. Edwards, A. Murphy, and R. Winkler, “Hail-
finder: A bayesian system for forecasting severe weather,” International
Journal of Forecasting, vol. 12, no. 1, pp. 57–71, 1996.

23



[25] “Hugin lite 7.5 samples,” http://www.hugin.com.

[26] B. Gutmann, I. Thon, A. Kimmig, M. Bruynooghe, and L. De Raedt, “The
magic of logical inference in probabilistic programming,” TPLP, vol. 11,
no. 4-5, pp. 663–680, 2011.

24


