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ABSTRACT 

In thermo-fluid dynamics, free convection flows external to different geometries such as cylinders, ellipses, 

spheres, curved walls, wavy plates, cones etc. play major role in various industrial and process engineering 

systems. The thermal buoyancy force associated with natural convection flows can exert a critical role in 

determining skin friction and heat transfer rates at the boundary. In thermal engineering, natural convection 

flows from cones has gained exceptional interest. A theoretical analysis is developed to investigate the 

nonlinear, steady-state, laminar, non-isothermal convection boundary layer flows of viscoelastic fluid from 

a vertical permeable cone with a power-law variation in both temperature and concentration. The Jeffery’s 

viscoelastic model simulates the non-Newtonian characteristics of polymers, which constitutes the novelty 

of the present work. The transformed conservation equations for linear momentum, energy and 

concentration are solved numerically under physically viable boundary conditions using the finite-

differences Keller-Box scheme. The impact of Deborah number (De), ratio of relaxation to retardation 

time (), surface suction/injection parameter (fw), power-law exponent (n), buoyancy ratio parameter (N) 

and dimensionless tangential coordinate () on velocity, surface temperature, concentration, local skin 

friction, heat transfer rate and mass transfer rate in the boundary layer regime are presented graphically. 

It is observed that increasing values of De reduces velocity whereas the temperature and concentration are 

increased slightly. Increasing  enhance velocity however reduces temperature and concentration slightly. 

The heat and mass transfer rate are found to decrease with increasing De and increase with increasing values 

of .  The skin friction is found to decrease with a rise in De whereas it is elevated with increasing values 

of . Increasing values of fw and n, decelerates the flow and also cools the boundary layer i.e. reduces 

temperature and also concentration. The study is relevant to chemical engineering systems, solvent and 

polymeric processes.    
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INTRODUCTION 

In many fluids the flow properties are difficult to explain by a single constitutive equation 

like Newtonian model. Geological materials and polymer solutions used in different industries and 

engineering processes are such fluids which cannot be explained by Newtonian model. The 

materials that cannot be explained using Newtonian model are called Non-Newtonian fluid 

models. In past few decades, due to the applications in industries, engineering and technology, 

non-Newtonian fluid flows has gained interest in researchers. In such fluids the shear stress and 

strain rate relation is non-linear. The non-Newtonian fluid models are complicated and relate the 

shear stresses to the velocity field [1]. Different non-Newtonian fluid models have been discussed 

by different researchers that include oblique micropolar flows [2], Walter’s-B fluids [3], Jeffrey’s 

flows [4], Williamson fluid [5], nanofluid [6], Maxwell flows [7], Eyring-Powell flows [8], 

Tangent Hyperbolic flows [9], Oldroyd-B fluid [10] and Power-law fluid [11]. The classical 

Navier-Stokes theory does not describe sufficiently the flow properties of polymeric fluids and 

colloidal suspensions. Of the many non-Newtonian fluid models discussed in the literature, 

viscoelastic Jeffrey’s model is an interesting non-Newtonian fluid model which uses the time 

derivatives instead of converted derivatives and degenerates to Newtonian model at very high wall 

shear stress. Also, the Jeffrey’s fluid model approximates well the rheological behaviour of a wide 

range of industrial processes such as biotechnological detergents, physiological suspensions, dense 

foams, geological sediments, cosmetic creams, syrups, etc.  Many researchers explored the 

industrial and biological flow problems using Jeffrey’s model that include Katini Ahmad et al. 

[12] investigated the magnetohydrodynamic mixed convection boundary layer flow and heat 

transfer of Jeffrey fluid past an exponentially stretching sheet. Saqib et al. [13] reported the 

applications of Caputo-Fabrizio time-fractional derivatives to generalize the Jeffrey fluid past a 

vertical static plate. The effects of thermophoresis on an unsteady two-dimensional laminar 

incompressible mixed convective chemically reacting flow of Jeffrey fluid between two parallel 

porous plates in the presence of the induced magnetic field was considered by Ojjela [14]. Hayat 

et al. [15] reported the Cattaneo-Christov heat flux model flow of Jeffrey fluid past the stretching 

surface. Bhatti et al. [16] explored the effects of variable magnetic field on peristaltic flow of 

Jeffrey fluid in a non-uniform rectangular duct have compliant walls using eigen function 

expansion method. Izani and Ali [17] analyzed the effect of magnetic field on a boundary layer 

flow and convective heat transfer of a dusty Jeffrey fluid over an exponentially stretching surface 
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using Runge-Kutta-Fehlberg fourth-fifth method. Hayat et al. [18] addressed the effects of 

homogeneous-heterogeneous reactions of a two-dimensional stretched flow of Jeffrey fluid in the 

presence of Cattaneo-Christov heat flux. An analysis of the boundary layer flow and heat transfer 

in a Jeffrey fluid containing nanoparticles was made by Hayat et al. [19] using homotopy analysis 

method. They considered that the thermal conductivity of the fluid to be temperature-dependent. 

Narayana and Harish [20] analyzed the chemical reaction and heat source effects on MHD flows 

of Jeffrey fluid over a stretching sheet in the presence of power-law form of temperature and 

concentration using Runge-Kutta fourth order scheme. 

Javherdeh et al. [21] investigated the natural convection flow past a moving vertical plate 

in porous medium subjected to a transverse magnetic field assuming a power-law variation in 

temperature and concentration. Rajneesh et al. [22] reported the unsteady laminar convection flow 

of Rivlin-Ericksen viscoelastic fluid model past an impulsively started vertical plate with variable 

surface temperature and concentration using finite element method. Farhad et al. [23] studied the 

unsteady magnetohydrodynamic flow of Brinkman nanofluid past a vertical porous plate with 

variable surface velocity, temperature and concentration using Laplace transforms technique. Hari 

and Patel [24] reported the unsteady laminar convective MHD flow of radiating chemically 

reactive second grade fluid over an infinite vertical porous plate in the presence of heat 

generation/absorption and thermo-diffusion using Laplace transforms technique. Kandasamy et al. 

[25] presented the effects of chemical reaction on boundary layer flows past a porous wedge in the 

presence of heat radiation and suction or injection. They employed the power-law variation to both 

wall temperature and concentration. Hussain and Hossain [26] studied the laminar convection 

flows past a vertical permeable heated flat plate with variable surface temperature and species 

concentration using Keller-Box method. 

To the authors’ knowledge no studies have been communicated with regard to viscoelastic 

laminar convection flows of vertical permeable cone with variable temperature and concentration. 

In the present paper a non-similar mathematical model is presented for the steady, laminar 

convection flows of viscoelastic Jeffrey’s fluid past a vertical permeable cone with ramped wall 

temperature and concentration. The Keller-Box finite difference scheme is employed to solve the 

normalized boundary layer equations. The effects of the emerging thermophysical parameters, 

namely Deborah number (De), ratio of relaxation to retardation time (), power law exponent (n), 

wall mass flux i.e. suction/injection parameter (fw) and Prandtl number (Pr) on velocity, 
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temperature, concentration, skin friction (surface shear stress function), heat and mass transfer rate 

characteristics are studied. The present study finds applications in polymeric manufacturing 

processes, heat exchanger technology nuclear waste simulations, nuclear engineering, thermal 

fabrication of paint sprays, water-based rheological gel solvents and low density polymeric 

materials in process engineering industry.  

 

MATHEMATICAL MODEL 

The natural convection boundary layer flow of incompressible viscoelastic fluid from a 

vertical permeable cone, as shown in Fig. 1, is considered. Both cone and the viscoelastic fluid are 

maintained initially at the same temperature and concentration. The Fourier’s law is considered 

for heat conduction. The influence of thermal relaxation is neglected. Viscous dissipation, thermal 

stratification and dispersion are also neglected. The flow is considered to be laminar and steady. 

The temperature and concentration of the fluid are raised instantaneously. With vertex of the cone 

placed at the origin, the x –coordinate is measured along the surface of the cone and the y – 

coordinate is measured normal to it. The acceleration due to gravity g, acts vertically downwards. 

Fluid suction or injection i.e. lateral wall mass flux is imposed at the surface of the cone and the 

surface of the cone is held at a variable temperature and concentration proportional to the power 

of the distance along the slant surface i.e. ( ) 1

n

wT x T Bd x= +  and ( ) 2

n

wC x C Bd x= + , where B, 

d1, d2 are constansts and n is the power law exponent. The Jeffrey’s model accurately captures the 

physical characteristic of certain polymers [27, 28]. The Cauchy stress tensor, S, of Jeffrey’s 

viscoelastic fluid [29] is given by:  

1

,

( )
1

p


  



= − +

= +
+

T I S

S
          (1) 

where a dot above a quantity denotes the material time derivative,  is the shear rate,  is the 

dynamic viscosity,  is the ratio of relaxation to retardation time and 1 is the retardation time. The 

shear rate and gradient of shear rate are further defined in terms of velocity vector, V, as: 

( )
.

T
V V =  +            (2) 

.. .d

dt
 

 
=  

 
           (3) 
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With the Boussinesq approximation boundary layer approximations, the governing equations take 

the form:   

( ) ( )
0

ru rv

x y

 
+ =

             (4)

 

( ) ( )

2 3 2 2 3

12 2 2 3

*

1

cos

u u u u u u u u u
u v u v

x y y x y x y y x y y

g T T g C C A






  

          
+ = + − + +     +           

 + − + − 
                     

(5) 

2

2

T T T
u v

x y y


  
+ =

  
          (6) 

2

2m

C C C
u v D

x y y

  
+ =

  
 

                       (7) 

The appropriate boundary conditions are: 

( ) ( )1 20, 0, , ,

, 0, 0, ,

n n

w w wAt y u v V T T x T Bd x C C x C Bd x

As y u v T T C C

 

 

= = = − = = + = = +

→ → → → →  (8) 

where u and v are the velocity components in x and y direction respectively, ( ) sinr x x A=  is the 

local radius of the truncated cone, A is the half angle of the cone, β is the coefficient of thermal 

expansion, β* is the coefficient of concentration expansion, T and C are temperature and 

concentration of the fluid respectively,  is the kinematic viscosity,  is the thermal diffusivity, 

Dm is the species diffusivity, Vw is the transpiration velocity of the fluid. Vw > 0 stands for suction 

i.e. mass flux removal from the boundary layer through the cone wall into the cone and Vw < 0 

stands for injection i.e. blowing of fluid through the surface of the cone. Here the suffix w refers 

to surface conditions on the surface of the cone (wall) and ∞ refers to free stream conditions. We 

introduce the stream function  defined by the Cauchy-Riemann equations, ru
y


=


 and 

rv
x


= −


. The mass conservation eqn. (4) is automatically satisfied. The following dimensionless 

variables are introduced into eqns. (5) - (8): 
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( ) ( )

( ) ( )

( )

1/4 1/4

1/4

3 *

1

2 2

, , , , , ,
2

cos
Pr , , , ,

w
x x

x w w

w wx

m w

xV T T C Cy
Gr rGr f

Gr x T T C C

g T T x A C CGr
Sc Gr De N

D x T T


         



  

  

 

 

 



− − 
= = = + = = 

− − 

− −
= = = = =

−

(9) 

Here  - tangential coordinate,  - radial coordinate,  and  are the dimensionless temperature 

and concentration respectively, Grx - Grashof number, f - dimensionless stream function, Pr - 

Prandtl number, Sc - local Schmidt number and De - Deborah number. 

The resulting momentum, energy and concentration boundary layer equations take the form: 

( ) ( )

( )

2

2

1 3 1
' ''' ''

''' 7 1 De 2 4
'' ' ''

71 4 2 1

4

1 ' De ''' ' ''
' '' ' ''' ''

4 1

iv iv

iv

n n
f f f

f n n
ff f f N

n
ff f

n f f f f f f
f f f f f f

  
 





      

− + 
− + + +

+ − + + + +  
++ +  − − 

 

−        
= − − − + −  

  +      

 (10) 

( )1'' 7
' ' ' ' '

Pr 4 4

nn f
f n f f

 
   

 

−  +  
+ + − = − 

  
                      (11)

( )1'' 7
' ' ' ' '

Sc 4 4

nn f
f n f f

 
   

 

−  +  
+ + − = − 

  
                      (12) 

The corresponding dimensionless boundary conditions are as follows: 

0, 0, ' , 1, 1

, ' 0, '' 0, 0, 0

wAt f f f

As f f

  

  

= = = = =

→ → → → →
                    (13) 

Here primes denote the differentiation with respect to . The skin-friction coefficient Cf, heat 

transfer rate, Nux and mass transfer rate, Shx are defined as: 

3/4
''( ,0)

2

f

x

C
f

Gr
=                            (14) 

/

1/4
( ,0)x

x

Nu

Gr
 = −                           (15)   

/

1/4
( ,0)x

x

Sh

Gr
 = −                 (16) 

 


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COMPUTATIONAL FINITE DIFFERENCES KELLER-BOX SOLUTIONS 

DISCUSSION 

The implicit finite difference Keller-Box technique [30] is employed to solve the non-linear 

8th order system of coupled boundary layer Eqns. (10) – (12) subject to boundary conditions (13). 

The Keller-Box technique is very popular and has been employed by many researchers that include 

Subba Rao et al. [31] for polymer flows from a horizontal cylinder, V.R. Prasad et al. [32] for 

micpolar flows, Beg et al. [33] for multi-physical magnetohydrodynamic flows, Bhuvanavijaya et 

al. [34] for second-grade flows, Abdul gaffar et al. [35] for third-grade model, Vasu et al. [36], 

Amanulla et al. [37]. The Keller-Box scheme is more efficient, powerful and accurate than the 

other numerical method in case of boundary layer flows which are parabolic in nature. This 

technique is unconditionally stable and achieves exceptional accuracy, converges quickly and 

provides stable numerical meshing features. The Keller-Box technique involves the following four 

stages:  

1. Reduction of the Nth order partial differential equation system to N first order equations. 

2. Finite difference discretization. 

3. Quasilinearization of non-linear Keller algebraic equations. 

4. Block-tridiagonal elimination of liner Keller algebraic equations. 

 

Stage 1: Decomposition of Nth order partial differential equation system to N first order 

equations 

Equations (10) – (12) subject to the boundary conditions (13) are first cast as a multiple system of 

first order differential equations. New dependent variables are introduced: 

( ) ( ) ( ) ( ) ( ), ', , '', , ''', , , ' , 'u x y f v x y f q x y f s x y t and g x y with g p  = = = = = = =   (17) 

These denote the variables for velocity, temperature and concentration respectively. Now 

Equations (13) – (15) are solved as a set of eight simultaneous differential equations: 

'f u=                               (18) 

'u v=                               (19) 

'v q=                               (20) 

'g p=                               (21) 

's t=             (22) 
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( )2 2' 7 1 1 1 3 7
' '

1 4 2 1 2 4 4

1
'

4 1

v n n De n n n
fv u v s Ng uq v fq q

n u f De q u v f
u v u q v q

 
 


      

+ + − + + 
+ − + + + − − + + 

+ +  

  −      
= − − − + −  

  +      

     (23) 

' 7 1

Pr 4 4

t n n s f
ft t nus u t 

 

 + −  
+ + − = − 

  
                    (24) 

' 7 1

4 4

p n n g f
fp p n gu u p

Sc
 

 

 + −  
+ + − = − 

  
                    (25) 

Where primes denote differentiation with respect to the variable, . In terms of the dependent 

variables, the boundary conditions assume the form: 

0, 0, , 1, 1

, 0, 0, 0, 0

wAt u v f s g

As u v s g





= = = = =

→ → → → →
               (26)  

Stage 2: Finite Difference Discretization 

A two-dimensional computational grid is imposed on the -η plane as depicted in Fig. 2. The 

stepping process is defined by: 

0 10, , 1,2,..., ,i i j Jh j J    − = = + = 
 

                            (27) 

0 10, , 1,2,...,n n

nk n N   −= = + =                   (28) 

Where nk  is the  - spacing and jh  is the  - spacing. If 
n

jg  
 
denotes the value of any variable at 

( ), n
j  , then the variables and derivatives of equations (18) – (25) at ( )1/2

1/2 , n
j  −
−  are replaced 

by: 

( )1/2 1 1

1/2 1 1

1

4

n n n n n

j j j j jg g g g g− − −

− − −= + + +                        (29) 

( )
1/2

1 1

1 1

1/2

1

2

n

n n n n

j j j j

jj

g
g g g g

h

−

− −

− −

−

 
= − + − 

 
                 (30) 

( )
1/2

1 1

1 1

1/2

1

2

n

n n n n

j j j jn

j

g
g g g g

k

−

− −

− −

−

 
= − + − 

 
                     (31) 

The finite-difference approximation of eqns. (18) – (25) for the mid-point ( )1/2 , n
j − , are: 

( )1

1 1/2

n n n

j j j jh f f u−

− −− =                            (32) 
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( )1

1 1/2

n n n

j j j jh u u v−

− −− =                     (33) 

( )1

1 1/2

n n n

j j j jh v v q−

− −− =                            (34) 

( )1

1 1/2

n n n

j j j jh g g p−

− −− =                            (35) 

( )1

1 1/2

n n n

j j j jh s s t−

− −− =
                           

(36) 

( ) ( )( ) ( )

( ) ( )( )

( )
( )( ) ( )

( )

1 1 1 1

2

1 1 1

2

1 1 1

1

1 7 1

1 4 4 4 2

1 1

2 4 4 2

1 1 3 1

1 4 1 4 4 4

1 7 1

1 2 4 4

j j

j j j j j j j j

j j

j j j j j j

j j

j j j j j j

j j j

h hn n
v v f f v v v v

h hn n
u u s s N g g

h n hDe De n n
u u q q v v

De n n
f f q q

 





 




− − − −

− − −

− − −

−

+ − 
− + + + + + + 

+  

+ − 
− + + + + + + 
 

− + − 
− + + + + + 

+ +  

+ − 
− + + − 

+  
( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )  

1 1

1 1

1/2 1 1/2 1

1 1

1/2 1 1/2 1

1 11

1/2 1 1 11/2 /12

1

1 1

2 4 2 4

1 1

1 4 1 4

1 1
'

1 4 1 4

j j j

j jn n

j j j j j j

j jn n

j j j j j j

n njn

j j j j jj j

De
q q

h hn n
f v v v f f

De h De hn n
u q q q u u

De hDe n n
f q q q f f R




 

 

 



 

− −

− −

− − − −

− −

− − − −

− −−

− − −− −

− −
+

− −
− + + +

− −
+ + − +

+ +

− −
+ − − + =

+ +

           (37) 

( ) ( )( ) ( )

( )( ) ( )

( ) ( ) ( )  

1 1 1 1

1

1 1 1/2 1

11 1 1

1/2 1 1/2 1 1/2 1 2 1/2

1 7 1

Pr 4 4 4 2

1 1

4 4 2 4

1 1 1

2 4 2 4 2 4

j j

j j j j j j j j

j j n

j j j j j j j

nj j jn n n

j j j j j j j j j j

h hn n
t t f f t t t t

h hn n
n u u s s s u u

h h hn n n
u s s f t t t f f R

 




  

− − − −

−

− − − −

−− − −

− − − − − − −

+ − 
− + + + + + + 

 

− − 
− + + + + + 
 

− − −
− + − + + + =

 

(38) 

( ) ( )( ) ( )

( )( ) ( )

( ) ( ) ( )  

1 1 1 1

1

1 1 1/2 1

11 1 1

1/2 1 1/2 1 1/2 1 3 1/2

1 7 1

4 4 4 2

1 1

4 4 2 4

1 1 1

2 4 2 4 2 4

j j

j j j j j j j j

j j n

j j j j j j j

nj j jn n n

j j j j j j j j j j

h hn n
p p f f p p p p

Sc

h hn n
n u u g g g u u

h h hn n n
u g g f p p p f f R

 




  

− − − −

−

− − − −

−− − −

− − − − − − −

+ − 
− + + + + + + 

 

− − 
− + + + + + 
 

− − −
− + − + + + =

 

(39) 

Where we have used the abbreviations 
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1 2n

nk




−

=                              (40) 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 1 1 1 1

1/2 1/21/2 1/2 1/2

2 11

1 1/2
1

1 1/2
2 11

1 1

1 7 1
'

1 4 4

1 1 1

2 4 1 2

1 3 1
'

1 4 4 1

7 1

1 4 4

n n n n n

j jj j j

nn

j j
n

jj
nn

j j

n n
v f v v s Ng

n n De n
u uq

R h
De n n De

v q

De n n

 





 
 




− − − − −

− −− − −

−−

− −
−

−
−−

− −

+ − 
+ − + + + 

+  

+ − − 
− + − 

+ 
= −

+ − 
+ − − 

+ + 

+ − 
+ − 

+  
( )

1

1
'

n

j
fq

−

−

 
 
 
 
 
 
 
 
 
 
 
 

     (41) 

  ( ) ( ) ( )
1 1 1 11

2 1/21/2 1/2 1/2 1/2

1 7 1 1
'

Pr 4 4 4

n n n nn

j jj j j j

n n n
R h t ft t n us  

− − − −−

−− − − −

 + − −   
= − + − + − −    

    
             (42) 

  ( ) ( )
1 1 11 1

2 1/2 1/21/2 1/2 1/2

1 7 1 1

4 4 4

n n nn n

j j jj j j

n n n
R h p fp p n ug

Sc
  

− − −− −

− −− − −

 + − −   
= − + − + − −    

    
             (43) 

The boundary conditions are: 

0 0 0 00, 1, 1, 0, 0, 0, 0n n n n n n n n

J J J Jf u s g u v s g= = = = = = = =               (44) 

 

Stage 3: Quasi-linearization of Non-Linear Keller Algebraic Equations  

If we assume 1 1 1 1 1 1 1 1, , , , , , ,n n n n n n n n

j j j j j j j jf u v q g p s t− − − − − − − − to be known for 0 j J  , then Eqns. (32) – 

(39) constitute a system of 8J + 8 equations for the solution of 8J + 8 unknowns 

, , , , , , ,n n n n n n n n

j j j j j j j jf u v q g p s t , j = 0, 1, 2,…, J. This non-linear system of algebraic equations is 

linearized by means of Newton’s method, as described by Takhar et al. [38]. 

 

Stage 4: Block-tridiagonal Elimination Solution of Linear Keller Algebraic Equations 

The linearized system is solved by the block-elimination method, since it possesses a block-

tridiagonal structure. The bock-tridiagonal structure generated consists of block matrices. The 

complete linearized system is formulated as a block matrix system, where each element in the 

coefficient matrix is a matrix itself, and this system is solved using the efficient Keller-box method. 

The numerical results are strongly influenced by the number of mesh points in both directions. 

After some trials in the η-direction (radial coordinate) a larger number of mesh points are selected 

whereas in the ξ direction (tangential coordinate) significantly less mesh points are utilized. ηmax 
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has been set at 10 and this defines an adequately large value at which the prescribed boundary 

conditions are satisfied. ξmax is set at 3.0 for this flow domain. Mesh independence is achieved in 

the present computations. The numerical algorithm is executed in MATLAB on a PC. The method 

demonstrates excellent stability, convergence and consistency, as elaborated by Keller [30].  

 

RESULTS AND DISCUSSION  

The influence of various engineering parameters of an incompressible viscoelastic 

Jeffrey’s fluid past a vertical permeable cone with ramped wall temperature and concentration is 

analysed numerically. Comprehensive results are obtained and are presented in Tables 1 - 2 and 

Figs. 2 - 10. The influences of different thermophysical parameters, viz., De, , n, N, Pr, Sc, fw,  

are examined. The prescribed default parameter values are: De = 0.1,   = 0.2, n = 0.5, N = 0.5, 

Pr = 1.0, Sc = 0.6, fw = 0.8. Table 1 presents the numerical values of heat transfer rate and are 

compared with Hossain and Paul [38] for different values of  with Pr = 0.1, N = 0.5, fw = 1.0, Sc 

= 0.6 when De = 0.0 = λ (Newtonian case) and are found to be in excellent agreement. Table 2 

provides the results for the influence of Buoyancy ratio parameter (N), Schmidt number (Sc), 

Prandtl number (Pr) and suction/injection parameter (fw) on skin friction (Cf), heat transfer rate 

(Nu) and mass transfer rate (Sh) for different values of . An increase in N is seen to increase skin 

friction, heat transfer rate and mass transfer rate. A significant reduction in Cf is observed with 

increasing Sc. A slight decrease in Nu is seen with increasing values of Sc whereas Sh is enhanced. 

Increasing Sc implies a decrease in species mass diffusivity. For Sc < 1, the species diffusion rate 

exceeds the momentum diffusion rate and vice versa for Sc > 1 And for Sc = 1, both diffusion rates 

are the same and the momentum and concentration boundary layer thicknesses are the same in the 

regime. Nu is greater with larger Pr values and lower with smaller Pr, as presented in Table 2. But 

Cf and Sh are lowered for an increase in Pr. The parameter Pr indicates the ratio of momentum 

diffusion to the thermal diffusion. For Pr > 1, momentum diffusion dominates the heat diffusion 

and vice versa for Pr < 1. Higher Pr values implies to a lower thermal conductivity of the polymer 

fluid. As Pr is the only non-dimensional parameter that categorizes thermofluid properties, Pr 

should be varies in order to generalize the solutions of denser fluids such as water-based solvents 

and very low-density spray paints [39]. With greater Pr, velocity reduces and hence skin friction 

also decreases. Thereby increases the corresponding momentum boundary layer thickness. If Pr < 

1 then the thermal diffusion rate compared with momentum diffusion rate will be greater. A lower 
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Prandtl number (Pr = 0.71 i.e. gas) implies that the fluid will possess higher thermal conductivity 

(and an associated thicker thermal boundary layer structure) so that heat can diffuse away from the 

fluid to the cone surface faster than for higher Prandtl number fluid (Pr = 7.0 i.e. liquids associated 

with thinner boundary layers). Therefore, lower Prandtl number fluids will achieve significantly 

larger temperatures in the boundary layer. Higher Prandtl number fluids possess lower thermal 

conductivities causing less thermal energy to be diffused from the fluid to the cone surface and 

resulting in lower temperatures. The heat transfer rate from the cone surface to the fluid is therefore 

greater with larger Prandtl number and lower with smaller Prandtl number, as testified to in Table 

2. Increasing fw is seen to reduce skin friction and heat transfer rate whereas mass transfer rate is 

enhanced.  

Figs. 2(a) – 2(c) illustrates the impacts of De on velocity ( )'f , temperature ( )  and 

concentration ( ) distributions. Velocity (fig. 2a) is reduced significantly with an increase in De 

values. De arises in connection with higher order derivatives in the momentum boundary layer 

eqn. (10). Hence the parameter De expends a significant influence on shearing characteristics of 

the polymer flows. From the definition, De is the ratio of characteristic time to the time scale of 

deformation. For a fixed value of the characteristic time, there may be different values of the time 

scale of deformation and hence there can be various values for De in case of the same polymer. 

For De > 1.0, elasticity dominates and for De < 0.5, viscosity dominates. For high values of De, 

the polymers act highly oriented in one direction, stretched and the fluid behaves as purely elastic. 

However, in case of small De values, the polymer acts as a simple viscous fluid. The figs. 2(b) and 

2(c) shows a very slight increase in temperature and concentration with an increase in De values. 

Similar trends were observed by Hayat et al. [40]. De arises in connection with many higher order 

derivatives in the momentum boundary layer Eqn. (10). Therefore, it is intimately associated with 

the shearing characteristic of the polymer flow. In polymer flows, for higher De values the polymer 

become highly oriented in one direction and stretched, and this occurs when the polymer takes 

longer to relax in comparison to the deforming rate of the flow. Further from the cone surface it is 

observed that there is a slight increase in the velocity i.e. the flow is accelerated with increasing 

De. With greater distance from the solid boundary, the polymer is assisted in flowing even with 

higher elastic effects. Clearly the responses in the near-wall region and far-field region are very 

different. Though De dose not arise in the thermal boundary layer Eqn. (11), there is a strong 
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coupling of this equation with the momentum equation. The momentum Eqn. (10) strongly couples 

the momentum field to the temperature field. With greater elastic effects, it is anticipated that 

thermal conduction plays a greater role in hear transfer in the polymer.  

Figs. 3(a) – 3(c) depicts the effects of the ratio of relaxation to retardation time,  on 

velocity ( )'f , temperature ( )  and concentration ( )  distributions. Clearly, from fig. 3(a) we 

can observe a significant increase in linear velocity with greater  values. However, the 

temperature and concentration as seen figs. 3(b) & 3(c) respectively decrease slightly with greater 

 values. Therefore, the flow of polymer is considerably accelerated with an increase in relaxation 

time (or decrease in retardation time). The parameter , arises in many terms in the momentum 

boundary layer eqn. (10). Therefore, this parameter exerts a tangential influence on the flow 

characteristics. Increasing relaxation time increases the momentum boundary layer whereas 

decreases both thermal and mass diffusion. Therefore, the flow of polymer is considerably 

accelerated with an increase in relaxation time (or decrease in retardation time). For greater 

relaxation times, the thermal boundary layer thickness is reduced. Whereas with greater relaxation 

times, the momentum boundary layer thickness is decreased only near the cone surface whereas 

further away it is enhanced as the flow is strongly accelerated in this regime.   

Figs. 4(a) – 4(c) presents the influence of power-law index n on velocity ( )'f , temperature 

( )  and concentration ( ) distributions. It is observed that as n increases, the linear velocity of 

the fluid (fig. 4(a)) decreases considerably. Fig. 4(b) presents the responses of n on temperature 

profiles. The temperature profiles are decreased significantly with an increase in n. Also, the 

concentration is decreased slightly (fig.4(c)) with the increasing values of n. The non-isothermal 

index relates to the variation in cone surface i.e. wall temperature and concentration. For n > 0, the 

wall temperature increase with distance from the leading edge and for n < 0, wall temperature 

decreases. The wall is isothermal if n = 0. The non-isothermal index arises in the primitive wall 

temperature and concentration of Eqn. (8) and features in numerous terms in Eqns. (13) – (15). As 

the wall temperature increases, the relative difference of wall and fluid temperature increases. Non-

isothermal wall index is clearly an important parameter adjusting the thermal flow characteristics. 

Increasing positive non-isothermal index therefore manifests in a deceleration in boundary layer 

flow and a corresponding increase in momentum (hydrodynamic) boundary layer thickness and a 

reduction in thermal boundary layer thickness. Note that only positive non-isothermal index is 
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considered (the case of n < 0, physically represents progressive cooling of the cone surface from 

the leading edge and this is not relevant here).  

Figs. 5(a) – 5(c) illustrates the effects for velocity ( )'f , temperature ( )  and concentration 

( )  for various values of N. An increasing N is seen to found to significantly enhance the velocity, 

whereas, a significant decrease in both temperature and concentration is seen to for various values 

of N.  

Figs. 6(a) – 6(c) illustrates the profiles for velocity ( )'f , temperature ( )  and 

concentration ( )  for different values of fw. Increasing fw strongly decelerates the flow i.e. velocity 

is reduced. Temperatures are also decreased, as observed in fig. 6b with increasing values of fw. 

The boundary layer thickness is reduced and suction causes the boundary layer to adhere closer to 

the wall. Temperatures are also decreased, as observed in fig. 6b with increasing values of fw in 

the boundary layer regime and strongly decrease thermal boundary layer thickness. There is a 

strong reduction in concentration values with increasing fw values, as shown in fig. 6c. As seen in 

all the graphs, only the case of wall suction are studied i.e. fw > 0. Although boundary layer 

separation has not been identified in the present regime, suction has been shown to delay this effect 

in certain viscoelastic cone flow problems. Greater suction evidently aids in adherence of the 

momentum boundary layer to the cone surface which depresses flow momentum and reduces 

velocity magnitudes. However, it done not induce back flow since magnitudes are always positive. 

The thickening of the momentum boundary layer simultaneously inhibits heat diffusion which 

leads to a plummet in temperature i.e cooler boundary layers and this is also of relevance to 

optimized thermal processing systems.  

Figs. 7(a) – 7(c) presents the effects of velocity ( )'f , temperature ( )  and concentration 

( )  for different values of . The parameter  also incorporates the local Grashof number, Grx 

and can be seen as a free convection parameter as discussed in [41]. Clearly, it is observed that the 

fluid velocity reduces with the increasing values of . The location of the flow moves further along 

the cone surface from the apex. And hence the buoyancy forces increases as the momentum 

diffusion suppress, leading to a decrease in the flow and a thicker boundary layer structure. Also, 

it is seen that the temperature and concentration profiles are also reduced for increasing values of 

. Thus, the fluid is cooled and the thermal boundary layer thickness is decreased. As the suction 
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is increased, more warm fluid is taken away and thus the thermal boundary layer thickness 

decreases. The tangential (streamwise) coordinate is an inverse function of local Grashof number 

and is therefore inversely proportional to thermal buoyancy force in the regime. Therefore with 

larger  values, buoyancy force is progressively reduced which assists in promoting heat transfer 

but counteracts the momentum development.  

Figs. 8(a) – 8(c) illustrates the profiles for De on skin friction coefficient, heat transfer rate 

and mass transfer rate at the cone surface. The dimensionless skin friction is reduced for increasing 

values of De, owing to the increase in elastic effects which also serve to reduce the boundary layer 

thickness as the flow decelerates. Also, the heat transfer rate and mass transfer rate are reduced 

substantially with increasing De values. Therefore, momentum, thermal and species diffusion 

inhibit with increasing elasticity effect. A decrease in heat transfer rate at the wall implies less heat 

is convected from the fluid regime to the cone thereby heating the boundary layer. The mass 

transfer rate decreases with increasing De values and furthermore plummets with further distance 

from the lower stagnation point.  

Figs. 9(a) – 9(c) depicts the response to , on skin friction coefficient, heat transfer rate  

and mass transfer rate at the cone surface. A significant increases in the skin friction is observed 

at the cone surface for increasing values of . Also, a strong elevation in shear stress is observed 

with increasing  values. Hence, the flow accelerates strongly along the cone surface away from 

the lower stagnation point. Heat and mass transfer rates also increase substantially with increasing 

 values. As the relaxation time increases i.e., as the retardation time decreases, faster the polymer 

flows and results in the acceleration in boundary layer flow and heat and species concentration are 

diffused. Figs. 10(a) – 10(c) presents the effects of the power-law exponent, n, on the skin friction 

coefficient, heat transfer rate and mass transfer rate at the cone surface. The skin friction is 

decreased with increasing values of n. Conversely, the heat transfer rate is increased with 

increasing n as shown in fig. 10(b). Likewise, the mass transfer rate is also increased significantly 

for n values as shown in fig. 10(c). With greater wall temperature further from the leading edge, 

the relative difference of wall and fluid temperature is increased. This induces greater heat transfer 

from the wall (cone surface) into the boundary layer and boosts Nusselt number. The elevation in 

thermal diffusion counter-acts the momentum diffusion which leads to a depression in surface 

shear stresses and therefore skin friction.  
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CONCLUSIONS  

A non-similar mathematical model has been presented for buoyancy-driven, laminar 

convection boundary layer flows of viscoelastic Jeffrey’s fluid from a vertical permeable cone 

with ramped wall temperature and concentration. The transformed boundary layer conservation 

equations with prescribed boundary conditions have been solved using the finite difference Keller-

Box technique. A comprehensive assessment of different thermophysical quantities is discussed 

graphically. Excellent convergence and stable characteristics are demonstrated by the Keller-box 

scheme. The present numerical code is able to solve nonlinear boundary layer equations very 

efficiently and shows an excellent promise in simulating transport phenomena in other non-

Newtonian fluids. It is therefore presently being employed to study viscoplastic fluids which also 

represent other chemical engineering working fluids in curved geometrical systems.  
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TABLES  

Table 1: Values of Nu = ( )' ,0 −  for various values of  with De = 0.0 = λ, Pr = 0.1, N = 0.5, 

fw =1.0, Sc = 0.6, n = 0.5 

 
Nu = ( )' ,0 −  

Hossain and Paul [ 42] Present 

0.0 0.24584 0.24563 

0.1 0.25089 0.25088 

0.2 0.25601 0.25602 

0.4 0.26630 0.26628 

0.6 0.27662 0.27662 

0.8 0.28694 0.28695 

1.0 0.29731 0.29732 

2.0 0.35131 0.35130 
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Table 2: Values of Cf, Nu and Sh for various values of N, Pr, Sc, fw and  

(De = 0.1,  = 0.2, n = 0.5) 

N Sc Pr fw 
 = 1.0  = 2.0  = 3.0 

Cf Nu Sh Cf Nu Sh Cf Nu Sh 

-0.2 

0.6 1.0 0.8 

0.1398 2.5404 1.5371 0.0713 3.5419 2.1318 0.0425 4.5364 2.7249 

-0.1 0.1754 2.5442 1.5388 0.0912 3.5428 2.1321 0.0532 4.5383 2.7256 

0.0 0.2109 2.5481 1.5408 0.1113 3.5450 2.1342 0.0655 4.5406 2.7260 

0.25 0.2987 2.5580 1.5467 0.1630 3.5468 2.1378 0.0976 4.5408 2.7365 

0.5 0.3845 2.5679 1.5533 0.2147 3.5490 2.1452 0.1299 4.5498 2.7515 

0.75 0.4681 2.5775 1.5600 0.2661 3.5559 2.1594 0.1621 4.5721 2.7844 

0.5 0.6 

0.5 

0.8 

0.5811 1.3365 1.5752 0.3554 1.7932 2.1412 0.2240 2.2783 2.7298 

0.71 0.4702 1.8502 1.5617 0.2722 2.5266 2.1346 0.1672 3.2261 2.7290 

1.5 0.3118 3.8115 1.5476 0.1704 5.3026 2.1326 0.1023 6.8019 2.7270 

3.0 0.2411 7.5486 1.5419 0.1319 10.5588 2.1322 0.0799 13.5703 2.7263 

5.0 0.2152 12.5373 1.5395 0.1190 17.5532 2.1298 0.0726 22.5693 2.7260 

7.0 0.2051 17.5302 1.5386 0.1140 24.5463 2.1284 0.0697 31.5627 2.7243 

0.5 0.6 1.0 

0.8 0.3845 2.5679 1.5533 0.2147 3.5450 2.1321 0.1299 4.5383 2.7249 

0.9 0.3512 2.7456 1.6594 0.1991 3.7299 2.2444 0.1227 4.7249 2.8385 

1.0 0.3220 2.9248 1.7663 0.1855 3.9153 2.3572 0.1162 4.9121 2.9529 

1.2 0.2735 3.2862 1.9815 0.1632 4.2862 2.5822 0.1055 5.2872 3.1826 

1.3 0.2532 3.4681 2.0896 0.1540 4.4712 2.6937 0.1010 5.4742 3.2966 

1.5 0.2189 3.8340 2.3070 0.1382 4.8401 2.9144 0.0934 5.8461 3.5211 

0.5 

0.25 

1.0 0.8 

0.5623 2.5987 0.7018 0.3675 3.5624 0.9144 0.2431 4.5890 1.1476 

0.78 0.3427 2.5623 2.0027 0.1865 3.5466 2.7669 0.1115 4.5446 3.5408 

0.94 0.3183 2.5595 2.4028 0.1709 3.5463 3.3311 0.1015 4.5438 4.2663 

1.25 0.2887 2.5565 3.1775 0.1529 3.5450 4.4224 0.0901 4.5407 5.6705 

1.75 0.2635 2.5539 4.4258 0.1385 3.5436 6.1782 0.0814 4.5380 7.9305 

2.0 0.2557 2.5531 5.0497 0.1343 3.5434 7.0547 0.0789 4.5372 9.0588 
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FIGURES 

 

Fig. 1 Geometric illustration of problem 

 

Fig. 2: Keller box computational cell 
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