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Abstract

Changes of direction (CODs) are key manoeuvres linked to decisive moments in sport and are also key actions associated with
lower limb injuries. During sport athletes perform a diverse range of CODs, from various approach velocities and angles, thus
the ability to change direction safely and quickly is of great interest. To our knowledge, a comprehensive review examining
the influence of angle and velocity on change of direction (COD) biomechanics does not exist. Findings of previous research
indicate the biomechanical demands of CODs are ‘angle’ and ‘velocity’ dependent and are both critical factors that affect
the technical execution of directional changes, deceleration and reacceleration requirements, knee joint loading, and lower
limb muscle activity. Thus, these two factors regulate the progression and regression in COD intensity. Specifically, faster
and sharper CODs elevate the relative risk of injury due to the greater associative knee joint loading; however, faster and
sharper directional changes are key manoeuvres for successful performance in multidirectional sport, which subsequently
creates a ‘performance-injury conflict’ for practitioners and athletes. This conflict, however, may be mediated by an athlete’s
physical capacity (i.e. ability to rapidly produce force and neuromuscular control). Furthermore, an ‘angle-velocity trade-
off” exists during CODs, whereby faster approaches compromise the execution of the intended COD; this is influenced by
an athlete’s physical capacity. Therefore, practitioners and researchers should acknowledge and understand the implications
of angle and velocity on COD biomechanics when: (1) interpreting biomechanical research; (2) coaching COD technique;
(3) designing and prescribing COD training and injury reduction programs; (4) conditioning athletes to tolerate the physical
demands of directional changes; (5) screening COD technique; and (6) progressing and regressing COD intensity, specifi-
cally when working with novice or previously injured athletes rehabilitating from an injury.
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Change of direction angle and approach velocity are crit-
ical factors that impact the directional change technical
execution, deceleration and reacceleration requirements,
knee joint loading, and lower limb muscle activity. Thus,
these two factors regulate the progression and regression
in change of direction intensity.

An ‘angle-velocity trade-off” exists during change of
direction, whereby faster approaches compromise the
execution of the intended directional change.

Change of direction biomechanical demands are ‘angle’
and ‘velocity’ dependent; therefore, practitioners and
researchers should understand the implications of these
two factors when coaching and screening change of
direction technique, creating and implementing strength
and conditioning programs, and interpreting change of
direction research.

1 Introduction

The ability to change direction efficiently is central to the
success of multidirectional sports [1-6]; however, chang-
ing direction has also been identified as a primary action
resulting in non-contact anterior cruciate ligament (ACL)
injury [7-14]. Athletes perform a diverse range of change of
direction (COD) angles, at a variety of approach velocities in
sport [1, 5, 15—-18]. A plethora of biomechanical investiga-
tions has investigated a spectrum of angled direction changes
(30°-180°), at various approach velocities (~3—7 m-s_l), in
an attempt to provide insight into the biomechanical risk fac-
tors associated with increased injury risk and the mechanics
required for faster performance (Tables 1, 2, 3, 4). However,
it worth noting that COD angle and approach velocity are
critical factors influencing COD biomechanics, and include
knee joint loading, whole body kinetics and kinematics,
ground reaction force (GRF) characteristics, muscle activa-
tion, velocity of centre of mass, deceleration and propul-
sive requirements, technical, and task execution of the COD
(Tables 1, 4). This should be acknowledged when interpret-
ing the biomechanical literature.

The biomechanical demands of changes of directions
(CODs) are described as ‘angle dependent’ and ‘velocity
dependent’, whereby the technical execution and whole body
kinetics and kinematics are likely to differ between different
angled CODs [19-30], and also influenced by the approach
velocity [31-35]. Thus, the purpose of this review was to
examine the effect of angle and velocity of CODs on various
biomechanical parameters including GRF properties, joint

A\ Adis

kinetics and kinematics, performance (time), injury risk fac-
tors (knee abduction moments, knee abduction angle), task
execution (executed angle of COD), and muscle activation.
A further aim was to discuss the implications of these fac-
tors on coaching COD technique, strength and conditioning
training prescription, screening COD technique, and pro-
gression/regression of COD intensity when prescribing COD
training. In addition, this review discusses the concept of an
‘angle-velocity trade-off” when changing direction. Under-
standing the mechanics associated with faster performance
and injury risk reduction are of great interest to practition-
ers, thus highlighting the importance of this review. For the
purpose of this review, a sidestep involves a lateral foot-plant
opposite to the direction of travel. Conversely, a crossover
cut involves using the plant foot corresponding towards the
same direction of travel. Finally, a pivot is a bilateral turning
strategy where one foot rotates and remains in contact with
the ground (typically for directional changes > 135°).

2 Effect of Angle on COD Biomechanics

Numerous directional changes of various angles are per-
formed in sport [1, 15-17] and, as such, have been exten-
sively examined to gain an understanding of the associated
injury risk factors [27, 32, 36-39] and kinematic and kinetic
determinants of faster performance [30, 40-42]. Forty-five-
degree sidesteps have been thoroughly examined across the
literature [22, 25-27, 31, 39, 41, 43-48], with directional
changes of 30° [28, 49-51], 60° [34, 50, 52, 53], 67° [32],
75° [40], 90° [22, 25, 26, 36, 38, 54, 55], 110° [27, 48,
56], 135° [22, 35] and 180° [22, 29, 36, 37, 47, 57-60] also
being investigated. However, the biomechanical demands of
CODs are angle dependent (Table 1), as the angle of COD
influences the magnitude of knee joint loading [22, 27-30],
affects the deceleration and reacceleration requirements of
the COD [23-26, 30], influences the magnitude of braking
and propulsive forces [19, 22, 25, 27, 29], and impacts the
orientation of the force vector to perform the COD [25].
Moreover, the angle of the COD results in different tech-
niques [26, 30] and joint and segmental differences in order
to execute the directional change [26], while also influencing
lower limb muscle activity and estimated energy expenditure
[23].

2.1 Ground Reaction Force Characteristics
and Whole-Body Centre of Mass Velocity are
Angle Dependent

Researchers have shown that the COD angle influences the
braking and propulsive force characteristics of the final foot
contact (FFC) (plant phase) [19, 22, 25, 27, 29] and also the
braking force characteristics of the penultimate foot contact
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Effect of Angle and Velocity on Change of Direction

(PFC) (step prior to plant phase) [25] (Table 1). Schot et al.
[19] reported significantly greater average braking forces
and propulsion forces during a 90° cut compared to a 45°
cut. Likewise, vertical, posterior and lateral GRFs were 21%,
87% and 228% greater, respectively, during a 110° cut in
comparison to a 45° cut in both male and female soccer play-
ers [27]. These results not only confirm that the GRF mag-
nitudes are significantly greater with sharper cuts, but the
direction requirements of the force are different (i.e. greater
posterior and laterally directed force for sharper CODs).
Conversely, Schreurs et al. [22] documented significantly
(p < 0.01) greater vertical GRF in 45° cuts in comparison
to sharper CODs (90°, 135° and 180°). However, GRF is
a three-component vector, but a downfall of the work by
Schreurs et al. [22] is only the vertical component of GRF
was examined.

To our knowledge, only one study has directly compared
the GRF characteristics of the PFC between different angled
CODs [25], observing greater posterior braking GRFs and
ground contact times (GCTs), thus ground reaction impulse
(GRI) during the 90° cut in both PFC and FFC compared to
45° cutting. Interestingly, posterior GRF and impulse were
greater in the PFC compared to the FFC during the 90° cut;
however, this result was not the case for the 45° cut, whereby
the braking forces were more evenly distributed across both
foot contacts. These findings support Andrews et al. [61]
description of cutting as a multi-step action and highlight the
importance of the braking forces during the PFC for sharper
cuts. Researchers have reported that greater braking force
characteristics over the PFC were associated with lower knee
joint loads in the cutting or turning limb during 90° cuts and
180° turns [36]. Faster 180° performance has also been asso-
ciated with greater PFC horizontal braking forces [58-60],
while substantial braking forces have also been reported
in the PFC during 60° [34] and 135° [35] CODs. Collec-
tively, the braking force characteristics of CODs are ‘angle
dependent’, with a limited role of the PFC when changing
direction < 45°, but a prominent role for CODs > 60° dur-
ing pre-planned tasks (Fig. 1). Unfortunately, however, the
results of Jones et al. [62] indicate that unanticipated situa-
tions do not allow postural adjustments prior to the FFC to
evoke greater braking force characteristics during the PFC;
however, it should be noted that the unanticipated COD task
involved responding to a light stimuli, which is more chal-
lenging than using a sports-specific stimulus [63, 64], and it
also lacks specificity to the sporting situations where athletes
typically scan and process kinematic and postural cues prior
to changing direction [65]. Further research is warranted
investigating the role of the PFC during unanticipated tasks
utilising sports-specific stimuli.

Havens and Sigward [25] also examined the kinetic pro-
file over the translation phase (shift from sagittal to frontal
plane) and reported greater medio-lateral (ML) GRFs and

longer GCTs and, thus, greater ML GRI demonstrated dur-
ing the 90° cut. Normative GCTs are presented in Table 2 for
different angled directional changes indicating a longer GCT
with increased angle. The longer GCTs could be attributed
to sharper CODs requiring longer braking force applica-
tion, therefore braking impulse (impulse = force X time,
thus change in momentum), in order to reduce the velocity
(i.e. change in momentum) and redirect the athlete into the
new intended direction [25, 26]. Interestingly, the greater
ML GRI observed by Havens and Sigward [25] was accom-
panied with greater ML centre of mass—centre of pressure
(COM-COP) distances, suggesting athletes modify their
COM-COP distances via greater lateral foot-plant distances
and trunk lean into the intended direction to generate ML
force and impulse (Table 1). This observation is supported
by previous research reporting a strong relationship (r =
0.59) between lateral foot-plant distance and peak medial
GRF during 90° cutting [38]. Consequently, these results
suggest individuals modify their stance time and GRFs, thus
impulse (during deceleration and reacceleration phases), and
modify their COM-COP differently, and, accordingly, to the
angle of the COD.

2.2 Whole-Body Centre of Mass Velocity
and Deceleration Requirements are Angle
Dependent

The angle of COD can also impact the velocity profile when
changing direction (i.e. approach velocity and exit velocity),
whereby sharper CODs result in reduced approach velocities
and exit velocities [22, 24-26] (Table 1 and Fig. 1). Havens
and Sigward [25] reported lower velocities at initial con-
tact (IC) of the PFC and FFC during a 90° cut compared to
a 45° cut. Similarly, Hader et al. [24] also observed lower
approach velocities and lower velocities during the COD
when comparing 90° and 45° cuts. Furthermore, Hader et al.
[23] also reported longer deceleration distances for 90° cuts
compared to 45° cuts (Table 1). These results support previ-
ous studies that have highlighted the importance of prelimi-
nary deceleration prior to sharper CODs [35, 61, 66]. The
lower approach velocities observed during sharper CODs
[22, 24-26] are most likely explained by greater braking
forces in the PFC and FFC to reduce the velocity (i.e. change
in momentum) and execute the intended COD. Therefore,
COD angle will largely determine the velocity that can be
maintained and govern the subsequent deceleration require-
ments of the directional change [23-26] (Fig. 1).

2.3 Effect of COD Angle on Joint Kinetics
and Kinematics

When changing direction, the technique chosen is also
angle dependent (Table 1); however, a limited number of
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Table 3 Summary of studies that have examined executed cutting angle

Study Velocity (m-s~1) COD task—intended angle Method of determining Actual angle of COD
of COD task cutting angle
Besier et al. [28] ~3 60° cut (SS)—PP =tan"'[(y; — y, )/ [(x; — 56.4° + 4.4°

Vanrenterghem et al. [31] 2.0, 3.0, 4.0 and 5.0

Condello et al. [52] As fast as possible

Suzuki et al. [55] As fast as possible

3.82+0.28 and 3.67 +
0.31*

David et al. [116] As fast as possible

Rovan et al. [66] 2.77

4.16

45° cut (SS)—PP

60° cut (SS) (inside angle
120°)—PP

90° SS and XOC—PP

90° cut (SS)—PP

Jog: 30°, 60°, 90°, 120°,
150° and 180°

Running: 30°, 60°, 90°,
120°, 150° and 180°—PP

x; _p)], where i = ith time
point

X and y displacements of
the pelvic center (ante-
rior/posterior and medio/
lateral disablements)

Angle of COM 34.91°,29.41°,23.81° and
17.51°—with increased

approach velocities

Computed from two-line
vectors connecting
pelvis centre (midpoint of
ASIS) positions projected
to the floor (x-y-plane)

~150° inside angle

Line 1 = 1.5 m before

initial plate contact and

initial plate contact. Line

2 = Plate push-off and

1.5 m after plate push-off
SS =40.5° + 8.7°
XOC =33.0° + 6.8°

Angle between horizontal
velocity vectors of the
whole-body COM at foot
strike and toe-off

COM position at touch
down and toe off

75.6°

Difference in direction of ~ Jog: 7.5°, 10.7°,15.0°, 16.2°,

COM movement between  9.6°, 1.5°
steps (based on GNSS  Rypning: 6.9°, 12.7°, 14.6°,
and data) 7.0°, 8.3°,3.2°

COD change of direction, SS sidestep, XOC crossover cut, COM centre of mass, ASIS anterior superior iliac spine, GNSS global navigation satel-

lite system, PP pre-planned
#Velocity at foot strike

studies have compared whole-body kinematics and kinetics
between different angled CODs [26]. Havens and Sigward
[26] reported joint and segmental differences during the
deceleration and reacceleration phases of 45° and 90° cuts
(Table 1). Notably, the authors’ results demonstrated that the
deceleration demands of a 90° cut may not be evenly dis-
tributed across all joints, with a greater reliance on the knee.
This finding is concerning because greater peak knee exten-
sor moments, peak posterior GRF and increased quadriceps
activity can increase anterior tibial shear force [67], thus
ACL loading [68—72]. However, biomechanical deficits in
the sagittal plane alone cannot rupture the ACL [73], but a
combination of loading in several planes is required [74—77].

Interestingly, during the redirection phase greater hip
abduction, greater trunk lean angles at IC and greater hip
adductor moments were observed during the 90° cut [26].
Greater hip abduction has been reported to be a biomechani-
cal risk factor associated with knee abduction moments
(KAM—synonymous with knee valgus moments for the

purpose of this review) [39], thus ACL injury risk [78], and
is also a commonly observed visual characteristic of non-
contact ACL injuries [9, 79]. This abducted lower extrem-
ity position is often discouraged in ACL injury prevention
programmes [44], but increased hip abduction is necessary
to create a larger ML COM-COP (to create a lateral foot
plant) distance [26, 27] and subsequent lateral propulsion
for executing sharper CODs [25, 38, 80]. This may create
a ‘performance-injury conflict’ from a technique perspec-
tive, whereby a greater hip abducted position is necessary
to create greater ML COM-COP distances and generate ML
forces, but concurrently elevates injury risk due to the poten-
tial to generate larger KAMs, because the force vector acts
more laterally relative to the knee joint centre [30, 38, 39].
However, this conflict in technique is mediated by an ath-
lete’s physical capacity (i.e. ability to rapidly produce force
and neuromuscular control) [58, 81-84] such that stronger
athletes with optimal mechanics (i.e. sufficient trunk con-
trol, no knee valgus) [32, 37, 38, 44, 45] are able to tolerate
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Effect of Angle and Velocity on Change of Direction

“Slam on the brakes!” prior to push-off

Red Directional changes 60-180°
e Substantial braking over PFC and potentially steps

e Side-step or pivot strategy recommended

Directional changes 45-60°

approach

Amber e Moderate braking prior to push-off
“Slowdown” e Possible role of PFC
*  Side-step strategy recommended
Directional changes 0-45°
Green *  Velocity maintenance key

e Limited braking requirements, thus PFC not
“Gol” required for braking prior to push-off
e XOC strategy faster than sidestep

Key: PFC = Penultimate foot contact; XOC = Crossover cut

Fig. 1 Traffic light system indicating braking strategy and technique requirements for different angled directional changes based on a linear
approach. Based on the results of previous research [23-25, 34-38, 55, 58-61, 66]

the higher loads experienced and could, thus, adopt such
techniques.

Havens and Sigward [26] also found hip function to differ
between tasks (Table 1). For example, the hip may act as a
stabiliser during the 90° cut due to the greater hip adductor
moments and relatively low hip frontal and transverse power
generation. Conversely, the hip may contribute to propulsion
during 45° cuts due to greater hip sagittal and transverse
power generation, and transition from hip adductor to hip
abductor moments during the stance. Notably, greater pelvic
rotation was demonstrated during the 90° cut, approximately
35° more into the new intended direction compared to the
45° [26], similar to research that compared 110° cuts to 45°
cuts [27]. These findings suggest that athletes may achieve
the greater redirection requirements by rotating their whole
body and not just solely the lower limb. From a performance
perspective, it may be worthwhile to coach techniques that
emphasise whole body rotation and trunk lean towards the
intended direction during sharper angled cuts [26, 27, 40],
because Marshall et al. [40] reported greater lateral turn
(thorax) towards the intended direction was strongly associ-
ated with faster 75° COD performance (r = 0.51, p < 0.01).
However, decelerating in the rotated position would result
in force absorption and loading in the transverse and frontal
planes, in contrast to absorbing and decelerating the force
through the sagittal plane, which may be a safer technique
[37,73].

2.4 Sharper CODs Increase the Relative Lower Body
Loading

Although the mechanisms of ACL injury are multifactorial
[85], COD lower limb and whole-body postures are critical
factors associated with knee joint loading [8, 14, 86—89].
Consequently, several investigations have examined the
effect of COD angle on associative biomechanical risk fac-
tors connected to increased risk of injury (Table 1). Cortes

et al. [29] observed greater knee valgus angles, greater peak
posterior GRFs, greater internal varus moments, and lower
knee flexion angles during a 180° pivot compared to a 45°
cut. Likewise, McLean et al. [20] also reported greater knee
valgus angles during a 180° pivot compared to a 45° cut.
Additionally, Schreurs et al. [22] documented a reduction
in knee flexion angle with sharper CODs, and Havens and
Sigward [26] reported the knee was primarily involved in
absorption during the deceleration phase of sharper cuts.
These findings are concerning because extended knee posi-
tions can increase anterior tibial shear forces [67], thus
increasing ACL strain [68-72]. Moreover, greater knee
valgus angles [27, 32, 37, 38, 90] and posterior GRFs [27,
36] are linked to increased KAMs, which can increase ACL
strain [68, 91-93]. Collectively, these findings are problem-
atic because KAMs have been shown to prospectively pre-
dict non-contact ACL injury in female adolescent athletes
[78]. Furthermore, extended knee postures, greater knee
abduction angles and greater GRFs have been identified as
mechanisms and characteristics linked to ACL injuries [7,
8, 10, 14, 94].

Sigward, Cesar and Havens [27] reported increases in
KAMs and GRFs during a 110° cut versus a 45° cut, and
differences in hip abduction and internal rotation angle
(Table 1). Specifically, KAMs on average were 2.4 times
greater during the 110° cut. This finding is corroborated by
Besier et al. [28], who reported greater knee valgus loading
when comparing 60° sidesteps to 30° sidesteps, and corrobo-
rated by Havens and Sigward [30], who demonstrated greater
KAMs during 90° cuts compared to 45° cuts (Table 1). The
increased KAMs and knee joint loads could be explained by
the fact the KAMs are influenced by the magnitude of the
GREF, and the moment arm in the frontal plane [32]. Greater
GRF magnitudes [19, 25, 27, 29] and lower knee flexion
angles [22, 27, 29] have been observed with sharper CODs,
yet greater moment arms could be created due to greater
hip abduction [26, 27] and greater ML COM-COP distances
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(i.e. lateral foot plant), which have been reported in sharper
CODs [25]. This can have the effect of moving the force vec-
tor laterally to the knee, thus creating a larger moment arm
relative to the knee joint centre [30, 38, 39]. Consequently,
this suggests sharper CODs predispose athletes to greater
knee joint loading and subsequent risk of injury, but sharp
CODs are unavoidable in sport, and typically performed to
evade or pursue opponents or a ball, particularly in unan-
ticipated environments. Thus, it is imperative that athletes
have the physical capacity to tolerate the knee joint loading
associated with sharper directional changes [58, 81-84] and
perform these actions with optimal mechanics [32, 37, 38,
44, 45].

Substantiating the findings of previous studies [27-30],
Schreuers et al. [22] demonstrated sharper CODs (90°, 135°
and 180°) compared to 45° cuts resulted in greater KAMs
in both male and female athletes. However, a noteworthy
observation was the stabilisation and lack of differences in
KAMs between 90°, 135° and 180° CODs (Table 1), indicat-
ing that these tasks may have a similar risk of injury. The
authors hypothesised the differences could be attributed to
differences in the preliminary steps and knee and trunk posi-
tioning relative to the direction of travel. A shortcoming of
this study, however, was the authors failed to examine trunk
kinematics and did not examine the braking force charac-
teristics of the PFC. Previous studies have shown that the
PFC plays an integral role in deceleration prior to executing
sharp CODs, such as 60°-90° cuts and 135°-180° turns [25,
34-38, 58-61], and athletes tend to lean and rotate their
trunk towards the direction of travel when changing direc-
tion [26, 40]. As such, further research comprehensively
examining whole-body kinetics and kinematics during the
FFC and PFC between different angled CODs is warranted.

Athletes unable to recognise and identify kinematic cues
from their opposition or passage of play sooner (lacking per-
ceptual-cognitive ability) [43, 63, 83, 95, 96], in conjunction
with sub-optimal physical capacity [58, 81-84] to execute
the directional change, may be placed at greater risk of
injury, especially during sharper directional changes. How-
ever, an athlete who can identify cues earlier could be able
to make whole-body postural adjustments for the upcom-
ing movement and pre-activate the required lower-limb
and trunk musculature to efficiently execute the direction
change, while potentially reducing knee joint loading and
subsequent risk of injury [62, 97]. Further research is needed
to confirm whether perceptual training (vision training) can
enhance deceleration strategies (steps prior to COD) and
postural adjustments to facilitate more effective deceleration
and safer mechanics to reduce risk of injury and improve
performance.

It should be noted that the studies that have investigated
the effect of angle on COD biomechanics (Table 1) have all
been performed in laboratory settings, with the exception
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of Hader et al. [23, 24], thus the tasks may not truly reflect
competitive situations in multidirectional sport. Nonetheless,
when prescribing COD training, athletes should perform
shallow CODs before progressing to sharper CODs, due to
the elevated knee joint loading and GRFs (Table 1). This is
strongly recommended when working with novice or weak
athletes (one repetition maximum back squat < 1.5 X body
mass), who have limited experience with structured COD
training, or may not have the strength capacity to efficiently
absorb and tolerate the greater forces and loading associated
with sharper CODs [81, 98—101]. Additionally, a progres-
sion from shallow to sharper CODs is also advocated for
athletes rehabilitating and returning to sport from previous
injury.

2.5 Effect on Muscle Activation and Estimated
Energy Expenditure

Research from Hader et al. [23] has shown that estimated
energy expenditure (EEE) and muscle activity demands of
CODs are angle dependent (Table 1). The authors found that
as COD angle increased from a straight run to 45° and 90°,
the EEE decreased. Furthermore, greater muscle activity
(EMG amplitude) of the vastus lateralis and biceps femoris
during the sharper cut was also observed. The quadriceps
are considered essential for the eccentric contractions dur-
ing the deceleration phase [23, 61, 102], where GRFs are
typically higher during sharper CODs [19, 25, 27, 29]. In
addition, hamstring activity is required to stabilise the knee
and prevent anterior translation of the tibia, thus protecting
the ACL [51, 82, 103, 104]. Collectively, co-contraction of
the knee flexors and extensors is required to tolerate the large
external loads at the knee when changing direction [51].
As such, due to the greater muscle activations of the knee
flexors and extensors during sharper CODs, practitioners
should aim to develop knee flexor and extensor strength, in
particular eccentric strength [41, 58, 81, 98, 105-109], in
athletic populations where CODs are fundamental move-
ments. This may assist and facilitate a greater capacity
to absorb the high forces [19, 25, 27, 29] and tolerate the
greater knee joint loading [22, 27-30] associated during the
deceleration phases of CODs. Furthermore, improvements in
strength capacity may improve an athlete’s ability to produce
greater braking and propulsive forces and impulse [41, 81,
107, 110], which are determinants of faster performance [41,
59, 60, 106], thus positively enhancing COD performance.

2.6 Effect of COD Angle on Ground Contact Time

Differing from the PFC, the plant step (FFC) contains both a
braking and a propulsive force component within the force-
time curve [36, 83]. COD angle influences the braking and
propulsive forces of the plant step [19, 25, 27, 29] (Table 1);
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however, COD angle also directly influences GCT [25, 31,
32, 34-36, 40-42, 52, 59, 106, 111-113], thus impacting
braking and propulsive impulse during the COD. Table 2
presents normative GCTs reported across the biomechanical
literature, illustrating an increased GCT with sharper CODs,
which could be explained by the greater braking and propul-
sive force and impulse requirements to change momentum
[23-26]. Furthermore, Condello et al. [52] observed a strong
relationship between GCT and executed cutting angle (r =
0.60-0.79, p < 0.05). Subsequently, this has large implica-
tions for the design of strength and conditioning programs
and exercise selection for the enhancement of COD perfor-
mance, which will be discussed in Sect. 6. It should also
be noted that approach velocity also affects GCT; this is
discussed in Sect. 3.

2.7 COD Task Execution: Intended Angle does
not Reflect Executed Angle

Numerous biomechanical investigations select and investi-
gate specific angled direction changes thought to be a key
mechanism of ACL injuries or pivotal movements in that
sport [25, 31, 32, 34-36, 40-42, 52, 59, 106, 111-113] in
an attempt to improve our understanding of the mechan-
ics that influence injury risk and performance. However,
although the athletes in these investigations are instructed
to perform a directional change of a specific angle (theoreti-
cal path), with lines marked on the floor to guide the athlete,
the path of travel may not reflect the actual executed angle
of COD [28, 31, 52, 55, 114, 115] (Table 3). For example,
Vanrenterghem et al. [31] demonstrated COM travel was not
achieved during a sidestep, and this was exacerbated with
increased running velocities, suggesting there may be an
‘angle-velocity trade-off” when executing CODs (Table 3)
[19]. These findings corroborate previous studies that have
also demonstrated the executed COD angle is smaller than
the intended COD angle [52, 55, 66, 116] (Table 3). Addi-
tionally, Condello et al. [52] inspected the real path of travel
during 60° cuts and found athletes performed a rounded or
sharp execution of the COD, observing a large correlation
(r = 0.60-0.79, p < 0.05) between performance cutting
angle and GCTs; this highlighted that sharper CODs were
attributed to longer GCTs, therefore increasing braking and
propulsive impulse potential.

Collectively, based on the abovementioned findings
(Table 3), in order to achieve the intended direction of
travel, the following foot contacts after the plant foot contact
(which initiates the COD) must be involved in redirecting
the athlete [53, 61, 66, 117]. This concept is substantiated by
Rovan et al. [66], who found the following step and two steps
after the plant foot contact were involved in facilitating 30°,
60°, 90°, 120°, 150° and 180° CODs based on global posi-
tioning system data and qualitative analysis using high speed

cameras. Interestingly, the directional change was initiated
one step before the plant foot contact, highlighting the role
of the PFC for pre-planned CODs. Consequently, the results
of Rovan et al. [66] highlight the steps following and prior to
the plant foot, and also play an integral role when changing
direction, therefore confirming Andrews et al. [61] ’s early
description of CODs as a multi-step action. Current COD
technique and coaching guidelines typically focus on the
plant step (FFC) [3, 118-121]; however, practitioners should
not only coach the plant step when changing direction, but
coach a multi-step action taking into account the step(s)
prior and step(s) following the plant step. Future investiga-
tions that comprehensively examine CODs as a multi-step
action (via 3D motion analysis of PFC, plant foot, and fol-
lowing step) are required to improve our understanding of
optimal COD techniques.

3 Effect of Velocity on COD Biomechanics

Various standardised approach velocities have been admin-
istered when exploring COD biomechanics including:
3.0ms™' [28, 49, 51, 53], 3.5 m-s™' [122], 3.6-4.4 ms™"
[36, 37], 4.0 m-s™" [47], 4.0-5.0 m-s™' [36, 38, 123],
4.0-5.5ms™' [27], 4.5 m's™! [45], 4.5-5.0 m-s~! [43, 124],
4.5-5.5 ms™! [27, 90, 125, 126], 5.5-7.0 ms™" [39, 127]
or as fast as possible [25, 30, 42, 56]. However, approach
velocity is a critical factor influencing COD biomechanical
demands [31-35] (Table 4), which should be acknowledged
when interpreting COD biomechanical research and coach-
ing COD technique.

3.1 Faster Approach Velocities Increase Knee Joint
Loading during CODs

Vanrenterghem et al. [31] reported increases in knee valgus
loading during 45° sidesteps from faster running veloci-
ties (4 and 5 m-s™") compared to slower velocities (2 and
3 m-s~!). This result is corroborated by previous studies
that have reported greater KAMs between faster and slower
60° sidesteps [34], and 135° v cuts with increased approach
velocities [35] (Table 4). Additionally, Kristianslund et al.
[32] reported approach speed to be a predictor of KAMs
during a sports-specific sidestep in handballers. These find-
ings are noteworthy because knee abduction loading can
increase strain on the ACL [68, 75, 92, 93] and prospec-
tive research has identified KAMs as a predictor of non-
contact ACL injury in female adolescent athletes [78]. Fur-
thermore, video analysis investigations have characterised
non-contact ACL injuries to occur from CODs with high
approach velocities in handball [8] and rugby [10]. Having
athletes perform directional changes from slower approach
velocities will, indeed, alleviate knee joint loading, but this
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will compromise COD performance as approach velocity
is a determinant of faster COD performance [24, 58]; thus,
athletes will be highly unlikely to sacrifice performance at
the expense of reduced knee joint loading. Therefore, prac-
titioners and athletes must acknowledge from a technique
perspective the ‘performance-injury conflict’ when coaching
and performing CODs as fast as possible and ensure ath-
letes have the optimal COD mechanics [32, 37, 38, 44, 45]
and physical capacity to tolerate the associative knee joint
loading [58, 81-84]. Further research into the most effective
training modalities for the optimisation of COD performance
and minimising knee joint loading are required.

3.2 Effect on COD Kinetics and Kinematics

While approach velocity is a critical factor on knee joint
loading, it also directly influences the kinetic and kinematic
profiles demonstrated by athletes (Table 4). Vanrenterghem
et al. [31] documented significant increases in peak poste-
rior GRF, ML GRF and concurrent reductions in GCT with
increased approach velocities, while knee flexion angles at
touchdown were only significantly different at 5 m-s~'. Simi-
larly, Dai et al. [33] also demonstrated a significant decrease
in GCT and increases in peak posterior GRF, knee exten-
sion moment at peak posterior GRF, knee valgus angle and
varus moment at peak posterior GRF, knee joint stiffness,
and knee flexion angle during 45° sidesteps, when compar-
ing maximum speed versus perceived 60% (Table 4). Kimura
and Sakurai [34] also observed significantly shorter GCTs
between faster and slower 60° cuts (Table 4). Collectively,
these studies highlight the kinetic and kinematic differences
during the directional changes with increases in entry veloc-
ity, which highlights the difficulty in comparing the results
between studies in the literature. Therefore, the injury risk
associative studies should be interpreted with respect to
the approach velocities used for the COD task, because the
velocities examined (< 4 m-s~!) may not have been high
enough to elicit hazardous knee joint loading connected to
increased risk of ACL injury [31, 34, 35].

3.3 Role of the PFC

Changing direction is described as a multi-step action [61],
with research indicating the step(s) prior to the COD are
pivotal in deceleration and initiating effective CODs [34-38,
53, 58-60, 64, 66, 128—133]. Specifically, researchers have
shown that the greater braking force characteristics dem-
onstrated in the PFC during COD can alleviate knee joint
loading [36-38] and also facilitate faster turning perfor-
mance [58—60]; however, only two studies have examined
the effect of approach velocity on PFC biomechanics.
Kimura and Sakurai [34] compared faster and slower 60°
sidesteps, reporting greater posterior impulse, shorter GCTs
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and greater peak external flexion moments in the PFC dur-
ing the fast condition (Table 4). Similarly, Nedergaard et al.
[35] observed greater trunk decelerations at higher approach
velocities over the PFC and ipsilateral foot contact during a
135° v cut. Additionally, this was accompanied with greater
peak ankle and knee velocities during both of the aforemen-
tioned foot contacts, which are suggested to provide an indi-
rect indication of force absorption [67, 134].

Collectively, the results of the aforementioned studies
highlight the role of deceleration over the PFC, and the pre-
ceding footfalls, to facilitate effective CODs. The PFC not
only plays a pivotal role during sharper CODs [25, 34-38,
59, 60, 66], but is fundamental in the execution of direc-
tional changes from high approach velocities [34, 35]. This
finding is unsurprising as faster entries would require greater
braking forces and braking impulse over the PFC and steps
prior (change in momentum), to reduce the momentum and
entry velocity prior to the COD. Therefore, biomechanists
should investigate the PFC when examining COD biome-
chanics from high approach velocities and sharper CODs
for greater insight into the braking force characteristics
and mechanisms required to effectively change direction.
Furthermore, practitioners are encouraged to coach a decel-
eration strategy that emphasises braking forces over sev-
eral gait cycles, in particular the PFC, when coaching sharp
CODs or sharp CODs from fast approach velocities. Previ-
ous researchers have shown technique changes and reduced
knee joint loading in cutting [44] and turning [135] from
a 6-week (two sessions per week) COD technique modifi-
cation intervention. Further research is needed to confirm
whether longitudinally coaching PFC-dominant deceleration
strategies are effective for improving COD performance and
reducing knee joint loading.

4 Effect of Velocity and Angle on COD
Performance

Straight line sprint speed is suggested to be a determinant
of COD performance as it would be advantageous to enter
and exit the COD as fast as possible [119, 136]. However,
there is a paucity of studies that have examined an athlete’s
horizontal velocity before, during and after a COD [24,
58]. Hader et al. [24] assessed COM velocity during a 45°
and 90° cut from a 10-m approach using laser speed guns,
reporting the minimum speed during the COD was largely
associated with cutting performance for both tasks, and peak
acceleration and peak speed also contributed to faster perfor-
mance. These findings highlight the importance of maintain-
ing and minimising the decline in velocity prior to and dur-
ing a 45° and 90° cut for faster performance. Thus, coaching
strategies that encourage the maintenance of velocity by lim-
iting preliminary deceleration may be warranted for faster
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cutting performance. However, it should be noted that some
deceleration (reductions in velocity) will be present when
changing direction [24, 25], in particular for sharper 90° cuts
(Fig. 1), but the ability to tolerate the greater velocities may
facilitate faster performance.

Examining a sharper 180° COD in female soccer play-
ers, Jones et al. [58] inspected the horizontal velocity of
COM from the approach of the PFC to the exit of the FFC,
using the methods described by Vanrenterghem et al. [137].
Faster performance was inversely associated (r = —0.484,
r? = 23%) with greater approach velocities (i.e. horizon-
tal model COM velocity at the start of the PFC). Notably,
eccentrically stronger (knee extensor peak torque) soccer
players demonstrated faster COD performance (d = —2.09),
greater approach velocities (d = 1.27), and greater reduc-
tions in velocity during the PFC (d = —0.94) in compari-
son to weaker, while greater peak and average horizontal
GRFs over the PFC were also displayed by stronger athletes
(d = 1.00-1.23). These findings suggest there may be an
interaction between strength and speed in the facilitation of
faster COD performance. Based on the results that eccen-
trically stronger athletes demonstrated better deceleration
abilities, approached with greater velocities, and produced
greater change in velocities and braking forces, the authors
introduced a concept of ‘self-regulation’ regarding approach
velocity (i.e. ‘a player approaches faster based on the decel-
eration load they know/feel they can tolerate’). Nonethe-
less, the ability to approach a 180° turn quickly and reduce
the velocity over the PFC into the FFC is integral for faster
performance, while the ability to decelerate efficiently is
underpinned by eccentric strength capacity.

The majority of investigations have examined the influ-
ence of angle on injury risk factors during CODs [19, 22,
25, 27, 29]; however, a paucity of research exists examining
the influence of angle on COD performance, whereby the
optimal techniques for faster performance will most likely
be angle dependent [21, 24, 26, 30]. Rouissi et al. [138]
examined completion times and COD deficit during a range
of 10-m COD tasks (5-m entry and exit) of different angles
(45°,90°, 135° and 180°), noting a trend in increasing com-
pletion times and COD deficits in male soccer players as
COD angle increased. Likewise, Schreurs et al. [22] reported
significant increases in completion time as COD angle (45°,
90°, 135° and 180°) increased in male and female athletes.
These findings are unsurprising because as the COD angle
increases, greater reductions in velocity (change in momen-
tum) are required [23-25], thus increasing the demands
for preliminary deceleration, which typically occur over
greater distances [23-25]. In addition, GCTs also increase
with sharper CODs (Table 2); therefore, the combination of
deceleration and longer GCTs most likely explain the longer
completion times associated with sharper CODs.

The technique required for faster COD performance is
also angle dependent [21, 24, 26, 30]. For example, Havens
and Sigward [30] found that the determinants for 45° and
90° cutting performance differed between tasks. Faster 45°
completion times were associated with greater hip sagittal
power, hip extensor moments and greater ML COM-COP
distances. Conversely, faster 90° cut performance was asso-
ciated with greater hip frontal power and ML GRI, indi-
cating a greater reliance on frontal plane biomechanics for
90° cutting, in contrast to sagittal plane determinants for
45° cutting. In addition, Hader et al. [24] identified that the
minimum speed during the COD was a predictor of faster
cutting performance. Therefore, when maintaining velocity
is essential such as running around the bases in baseball/
softball or possessing greater momentum in collision sports
such as rugby and American football is desired, a rounded
or shallow COD is recommended due to the shorter GCTs
and minimal reductions in velocity [21, 24, 52]. Conversely,
when the aim is to execute sharper CODs, in particular
> 60° to evade an opponent or turn in response to a ball or
opponent, substantial deceleration over several gait cycles
prior to the plant foot contact will undoubtedly be required
[25, 34-38, 58-61, 66].

5 Changing Direction: An Angle-Velocity
Trade-Off During Cutting

In multidirectional sport it would be advantageous to per-
form sharp cuts from high approach velocities with minimal
reductions in velocity [5, 24, 132]; however, an angle-veloc-
ity trade-off exists when performing cutting manoeuvres
[19, 31, 55] (Table 3). Vanrenterghem et al. [31] reported
a reduction in task execution (executed cutting angle) with
increased running velocities during 45° sidesteps (Table 3).
Similarly, Suzuki et al. [55] found greater cutting angles
with a sidestep technique compared to a crossover cut dur-
ing an intended 90° COD, but a greater reduction in velocity
was also demonstrated (Table 3). Furthermore, Schot et al.
[19] stated that in pilot work, in order to achieve a 90° cut
as fast as possible, subjects would often require three to five
steps to perform the directional change, but this resulted in
arounded COD. Therefore, it is evident a trade-off between
angle and velocity exists when changing direction, whereby
executing CODs from fast approach velocities reduces task
execution (executed cutting angle), and vice versa. This find-
ing has large implications for the deceleration requirements
for COD, as the deceleration strategy to execute the COD
effectively is governed by the angle and velocity at which
the COD is performed.

Maintaining velocity and greater approach velocities are
identified as determinants of COD performance [24, 58]
and, therefore, may be encouraged when coaching cutting
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technique. However, faster approach velocities may com-
promise the executed cutting angle and also increase knee
joint loading, which creates a conflict for practitioners and
athletes. As such, practitioners must identify the aim of
the COD attribute they are aiming to develop (i.e. veloc-
ity maintenance, COD angle execution, or balance of the
two factors), and consider the context and specific move-
ment demands of the sport. For example, in sports where
the maintenance of velocity is essential when performing
COD such as running around the bases in softball/baseball,
or a subtle COD to maintain momentum in collision sports
such as rugby and American football, a rounded or shallow
COD, with high approach velocities, thus momentum and
shorter GCTs may be warranted [21, 24, 52]. Where a subtle
COD is necessary, a crossover cut is recommended due to
greater velocity maintenance, and this technique results in
shorter GCTs [55, 102, 117] (Fig. 1). Conversely, scenarios
where sharper cuts are necessary to evade (deceive) and
create larger separation distances from opponents, a slower
approach or reduction in approach velocity may be necessary
(potentially over several gait cycles), and a sidestep strategy
to facilitate an effective sharp COD is recommended [55,
102, 117] (Fig. 1).

6 Implications of Change of Direction Angle
for Training Design and Exercise Selection

The determinants of COD performance are multifaceted
[2, 4, 83, 136]; however, physical attributes such as rate of
force development and reactive strength (fast or slow stretch-
shortening cycle abilities) are fundamental qualities under-
pinning COD performance [2, 4, 83, 136], while the large
levels of relative lower body loading associated with COD
[28, 32, 37, 44, 45] actions must also be acknowledged. As
such, training modalities that enhance COD performance
and an athlete’s robustness to tolerate the loading associated
with CODs are of great interest to practitioners.

Table 2 outlines training and exercise selection recom-
mendations for athletes who participate in multidirectional
sport, and we specifically introduce a novel concept of
selecting training exercises in accordance to COD angle
due its subsequent effect on GCTs. Lower limb plyometric
training is an effective training modality for enhancing COD
performance [139-141], due to the similarities in GCT and
the involvement of an eccentric-concentric coupling action
[111, 142]. Specifically, lower limb plyometric exercises
provide a stimulus resulting in high power outputs, high
ankle flexor moments in short GCTs [143], increased force
output and stretch shortening cycle (SSC) efficiency [139],
all of which are important components for faster COD per-
formance. Furthermore, plyometric and jump-landing train-
ing with appropriate feedback can also enhance lower limb
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control, reduce knee valgus and reduce impact forces and
torques [84, 144—147], thus reducing the potential risk of
injury. Table 2 provides exercise selection recommendations
dependent on COD angle: for example, in light of the GCTs
reported for shallow CODs (< 60°) (Table 2), fast SSC (fast
reactive strength < 0.25 s) exercises are recommended [148].
Conversely, for sharper CODs (> 135°), slow SSC actions
and ballistic exercises (slow reactive strength > 0.25 s) are
recommended, whereas a combination of fast and slow SSC
exercises are recommended for 90° cuts, due to bordering
fast and slow SSC classification (~0.25-0.35 s) [148].
Cutting is a unilateral, multiplanar movement, and
dependent on the ability to generate ML propulsive force
and impulse [25, 30, 38], hip frontal plane power [30] and
ankle power [40]. Therefore, plyometric exercises should
not only be performed in the sagittal plane emphasizing
vertical displacement, but also performed in several direc-
tions [139] in the frontal and transverse plane emphasis-
ing horizontal displacement [111]. In particular, unilateral
plyometrics (training recommendations in Table 2) should
be incorporated into the strength and conditioning program
due to the similarity in the orientation of force application
and push-off action to cutting [136]. However, practitioners
should be aware that landings in the frontal plane may have
higher task complexity and have a higher risk of knee injury
in comparison to forward and diagonal landings [149].
Athletes should ideally possess a solid foundation of
strength (one repetition maximum back squat > 1.5 X body
mass) before performing complex and higher intensity ply-
ometrics [81, 101, 118], while eccentric strength capacity
is also fundamental for successful COD performance and
tolerating the large joint loading [41, 58, 81, 98, 105-109].
Shorter GCTs have been identified as determinants of faster
COD performance [40, 42, 59, 112]; thus, the aims of the
aforementioned training recommendations are to reduce
braking and propulsive force duration (total duration), but
simultaneously increase braking and propulsive forces,
resulting in a tall and thin impulse, in contrast to a short
and wide impulse. In summary, practitioners should under-
stand the implications of COD angle on GCT and should
therefore select exercises according to COD angle and task
demands. Moreover, practitioners are encouraged to imple-
ment a holistic multi-component strength and conditioning
programme that integrates strength, plyometric, trunk (core)
and COD technique training for the enhancement of COD
performance and injury risk reduction [44, 81, 84, 87, 150].

7 Conclusions

The biomechanical demands of CODs are ‘angle’ and
‘velocity dependent’ and are both critical factors that influ-
ence the technical execution of the COD, deceleration and
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reacceleration requirements, knee joint loading, and lower
limb muscle activity. Thus, these two factors regulate the
progression and regression in COD intensity. Specifically,
faster and sharper CODs increase knee joint loading, but
are also required for successful performance creating a
‘performance-injury conflict’ from a technique perspec-
tive; however, this conflict can be mediated by an athlete’s
physical capacity (i.e. ability to rapidly produce force and
neuromuscular control) and performing the COD with opti-
mal mechanics. Furthermore, an ‘angle-velocity trade-oft’
exists during CODs, whereby faster approaches compromise
the execution of the intended COD:; this is influenced by
an athlete’s physical capacity. Therefore, practitioners and
researchers should acknowledge and understand the impli-
cations of angle and velocity on COD biomechanics when:
(1) interpreting biomechanical research; (2) coaching COD
technique; (3) designing and prescribing COD training and
injury reduction programs; (4) conditioning athletes to
tolerate the physical demands of directional changes; (5)
screening COD technique; and (6) progressing and regress-
ing COD intensity, specifically when working with novice
or previously injured athletes who are rehabilitating from
an injury.
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