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Abstract 

This project aims to evaluate the zoo soundscape from the animals and visitors perspective. A 

complete acoustic environment study in zoological parks should involve these two different, 

but equally important, characters. This thesis presents the results of the influence of the sound 

components of the zoo environment in the welfare and behaviour of mammals and in the 

visitors’ experience. 

Firstly, a critical literature review was made concerning the impact of noise on 

wildlife. Several papers were evaluated regarding some topics such as the target species, the 

sound source studied, and the methodology applied. The aim was to assess the reliability of 

the articles and to propose a guideline for future studies in this area. The results of the 

literature review have shown that only seven per cent of the published papers used suitable 

equipment and acoustic metrics to investigate the sound effect on wildlife and confirmed the 

importance of a complete and well-described methodology for studies replicability. 

The influence of sound on zoo mammals was explored by direct recordings of animal 

behaviour and sound measurements, and by the collection of faecal samples for 

glucocorticoid metabolites analysis in two zoos, Chester Zoo and Twycross Zoo. The results 

show that animals express some behavioural and hormonal responses to different 

environmental sound amplitudes. Therefore, zoos could use these findings for a better animal 

management and enclosures planning. 

The zoo soundscape perception by the public was investigated by the application of 

questionnaires with the soundwalk methodology around Chester Zoo. The objective of this 

part of the study is to understand how the zoo visitors perceive the environmental sound 

around the zoo and how different aspects of an area can influence the individual perception of 

the sound. The results show, among other important variables, that technological sounds can 

have a negative on the visitors’ perception and evaluation of the soundscape. For this reason, 

zoos should be more careful about the environmental sound of places with predominant 

technological sounds. 

In conclusion, for the animals, sound levels and the visitors can be a source of stress 

that causes variations in the expression of behaviour and in physiological stress levels. For 

the visitors, the influence of sound is caused mostly by the noise sources and less by the 

sound levels.  
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Glossary 

Acoustics-related terms (Howard and Angus (2009) and IEC (2018)) 

Acoustic masking: is caused by a noise intense enough to render inaudible or unintelligible 

another sound that is also present. 

Audiogram: a graph showing hearing perception as a function of frequency, measured with 

an audiometer. 

Background noise: is the sound level at a given location and time, measured in the absence 

of intermittent noises, any other extraneous or alleged noise nuisance sources (i.e. baseline 

noise level). 

Decibels: a logarithmic unit used to describe the ratio between the measured sound level and 

the reference level, widely used in acoustics, electronics, and communications. 

Equivalent sound levels: is the sound level in decibels equivalent to the total sound energy 

measured over a stated period of time. 

Frequency weightings: is a way to correlate the measured sound pressure levels with the 

subjective human response. 

Infrasound: acoustic oscillation whose frequency is below the low-frequency limit of 

audible sound (about 16 Hz). 

Integration period: is the time histories measured and recorded in the sound level meters. 

Octave frequency bands: range of frequencies whose upper-frequency limit is twice that of 

its lower frequency limit. Sound pressure level is often measured in octave bands. 

Peak sound level: is the greatest instantaneous value of a standard-frequency-weighted 

sound pressure level, within a stated time interval. 

Sound pressure level: uses a logarithmic scale to represent the sound pressure of a sound 

relative to a reference pressure. The reference sound pressure is typically the threshold of 

human hearing. 

Soundscape: is the component of the acoustic environment that can be perceived by humans. 

Soundwalk: the acoustic method used to investigate individual's perception of the 

soundscape in which the participants follow a defined route and evaluate the sonic 

environment. 
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Statistical noise levels (Ln): is the level exceeded by the chosen percentage of the time 

(widely used in 10%, 90% and 95%). 

Ultrasound: acoustic oscillation whose frequency is above the high-frequency limit of 

human audible sound (about 16 kHz). 

Biological-related terms (Mills (2010)) 

Animal welfare: how an animal is coping with the conditions in which it lives or its quality 

of life. 

Abnormal behaviour: is defined as an untypical behavioural reaction to a particular 

combination of motivational factors and stimuli. It is often considered to be an indicator of 

poor animal welfare. 

Cortisone enzyme immunoassay: is a kit designed to quantitatively measure cortisone 

present in extracted dried faecal samples, urine, saliva, plasma, etc. This is often used to 

assess physiological stress levels. 

Ethogram: a catalogue or table of all the different kinds of behaviour or activity with their 

description observed in an animal. 

Focal sampling: is a sampling method in which all of the actions of one animal are recorded 

for a specified time period. 

Foraging behaviour: is the act of searching for food resources. 

Metabolite: is a substance produced during or taking part in metabolic processes. 

Phylogenetics: is the study of the evolutionary history and relationships among individuals 

or groups of organisms. 

Scan sampling: is a sampling method in which the behaviours of all the individuals in a 

group of animals are recorded at predetermined time intervals. 

Vocalization: refers to any sound an animal may make to communicate information to other 

individuals. 
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Section 1. General introduction 

Environmental noise can affect human well-being adversely and this effect has been 

extensively investigated (see Basner and McGuire (2018), Clark and Paunovic (2018), Guski 

et al. (2017), Marquis-Favre et al. (2005a), Marquis-Favre et al. (2005b), Nieuwenhuijsen et 

al. (2017), Sliwinska-Kowalska and Zaborowski (2017), and van Kempen et al. (2018), for 

review). Thus, human studies can provide baseline information about this effect in other 

mammals, especially as the mammalian auditory system morphology is broadly similar 

across species (Fay, 1994), despite species having different sensitivities to different sound 

frequencies, due to differences in the scale and forms of the middle and external ear 

structures (Fay, 1994). However, even in humans, it is difficult to measure the impact caused 

by noise because tolerance levels differ between populations. Singh and Davar (2004) state 

that noise may result in the loss of hearing, stress, high blood pressure, loss of sleep, 

distraction, and a reduction in the quality of life. In the same study, the authors concluded 

that noise could interfere with interpersonal communication. 

Several studies have investigated what is the relationship between the quantitative 

measurement and the human perception of the sound (Axelsson et al., 2010, Chau et al., 

2010, Nilsson and Berglund, 2006, Park and Siebein, 2015, Raimbault, 2006, Vianna et al., 

2015). Research made in various ambient (e.g. urban, city parks, green areas, rural, 

countryside) explored the effects of noise on people and some subjective scales and concepts 

of the acoustic environments. Moreover, one common conclusion in these aforementioned 

studies is the relevance of the acoustic comfort or annoyance knowledge in the fields of noise 

pollution or soundscape planning. 

The perception of the sound can be influenced by the individual sensitivity to noise, 

by the different environment, and by the activity undertaken. A study has shown that in a 

countryside area, people who go for family activities or barbeques are less annoyed by non-
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natural (aircraft and road noise) sounds than people that go to the same place for hiking or 

scenery appreciation (Chau et al., 2010). The same study revealed that visitors can express 

dislike and annoyance for human-caused noise, such as conversation, for example. 

This concept of sound effect and human annoyance to noise can be applied to a zoo 

environment, where people go for diverse activities and could be impacted in any way by the 

acoustic environment of the place. For instance, if an animal enclosure causes echoes or 

reverberation of the sound, this could make people speak louder and, consequently, it can 

result in a negative effect on the visitors’ perception of the venue. Furthermore, if the inside 

area of the same enclosure (the animal area) is also reverberant, this may have a reflection of 

the animals and cause an impact on their well-being. 

In humans, the study of the effects of noise on health and how the noise can cause 

different levels of annoyance is possible to perform (Floud et al., 2013, Jarup et al., 2008, 

Nivison and Endresen, 1993, Sorensen et al., 2011, Sorensen et al., 2014). In wild animals, 

there is still the possibility of using behavioural and physiological aspects to investigate the 

noise effect on health (Blickley et al., 2012, Derose-Wilson et al., 2015, Hayward and 

Hayward, 2009). However, the wild animals’ annoyance to noise could be much more 

difficult to measure, because this would require an individual assessment. In humans, the 

stressful effects caused by noise may be reduced if people feel that they can control or escape 

from the noise (Payne et al., 2009). In most zoo environments, such control is possible for 

visitors, who can easily leave an uncomfortable area, but this control is not possible for the 

animals. This reinforces some findings supporting that the opportunity to escape from 

aversive stimulus would be beneficial for animals (Fernandez et al., 2009, Kuhar, 2008). 

Zoos have been trying to make animal enclosures visibly more natural from the 

visitor’s perspective, but it is hard to create a realistic environment from the animals’ 

perspective, and some influences such as sound are difficult to control. In nature, animals live 
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with environmental sound in forests and savannahs; however, there are few cases where the 

natural sound is compared with the noise in zoos (Morgan and Tromborg, 2007). The mean 

sound pressure levels (SPL) during open days at the zoo can be more than 60 dB(A) (Quadros 

et al., 2014), while in the wild, Atlantic Forest, for example, it is normally around 38 dB(A) 

(Santos, 2012). 

Presently, around ten per cent of the world’s human population visits zoos every year, 

and, consequently, many zoo animals are exposed to large numbers of visitors (Gusset and 

Dick, 2011). This number of visitors in zoos has led to a variety of studies, many of them 

related to the impact of visitors presence on animal welfare--the zoo visitor effect (Davey, 

2006b, Davey, 2007, Hosey, 2000). Modern zoos have important goals such as conservation, 

public education, research, and entertainment (Fernandez et al., 2009) and the UK visitors 

perceive zoos in this manner (Reade and Waran, 1996). Despite this, in the same study, 

people said that the major reason for a visit to a zoo is for their entertainment.  

1.1. General methodology 

This research is divided into three main topics: an evaluation of the literature regarding the 

methods applied when the impact of sound pollution on wildlife was investigated (Section 2); 

the zoo animals’ perspective of the environmental sound and how they can be influenced by 

it (Section 3 and 4); and the zoo visitors’ perspective about the soundscape of this venue 

(Section 5). All the research reported here was approved by the Chester Zoo and Twycross 

Zoo’s Ethics Committee and by the University of Salford Science and Technology Ethics 

Panel (ethics application ST1617-46). 

The extensive systematic literature review was made with the intent to discuss the 

importance of a complete and well-described methodology and to investigate how the 
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acoustic knowledge has been applied in studies involving biological topics. The outcomes 

from this critical review are found in the next section (Section 2). 

The investigation of the mammals’ response to noise (behavioural and physiological) 

was made by the observation of five different species in two different zoos in the UK, 

Chester Zoo (aye-aye - Daubentonia madagascariensis, black rhinos - Diceros bicornis, 

okapi - Okapia johnstoni, and two-toed sloths - Choloepus didactylus) and Twycross Zoo 

(Bornean orang-utans - Pongo pygmaeus). The choice of the species was based on species 

that the zoos are more concerned about their welfare and mammal enclosures that receive 

larger audiences, which would help in analysing different characteristics of the sound 

produced. The data collection applied to each zoo and the results will be described in more 

details in the sections regarding this subject (Sections 3 and 4). 

The zoo visitors’ perception of the acoustic environment was made by the soundwalks 

methodology in Chester Zoo. The participants, zoo members and volunteers recruited with 

the help of the Chester Zoo staff, answered questionnaires that helped to get an on-site 

response about the zoo soundscape. Details about the participants’ recruitment, the 

soundwalks practice, and the results can be found in Section 5. 

The three main topics of the present study, mentioned above, are being developed 

with the aim to contribute to zoos around the world and their role in animal conservation. 

There are some factors that are crucial for the zoos: the number of visitors and the duration of 

their visit (Fernandez et al., 2009). Active and healthy animals (Johnston, 1998, Moss and 

Esson, 2010) and enclosures that simulate a natural environment (Davey, 2006a, Johnston, 

1998) increase the number of visitors and the duration of a visit. Large crowds and longer 

visits are important because they increase the profits from sales of food and souvenirs, for 

example, which can be invested in a better quality of life for the zoo animals.  
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Section 2. Evaluating the impact of noise on wildlife: a 

methodological literature review 

Sound pollution is recognised as a critical environmental problem, alongside water and air 

pollution, and in urban areas, it is considered a serious threat to human quality of life 

(Rossing, 2007, WHO, 1999). The effect of noise on animals has been studied for more than 

fifty years, when several papers were published covering a variety of subjects concerning the 

different sources of sound pollution, especially anthropogenic noise (Chen and Koprowski, 

2015, Delaney et al., 2011, Grubb et al., 2013, Quadros et al., 2014, Shannon et al., 2014). 

Anthropogenic noise has greater acoustic energy at low frequencies (Katti and Warren, 

2004), which permits this kind of noise to propagate for longer distances since low-frequency 

waves attenuate more gradually by distance than sound at higher frequencies (Kinsler et al., 

2000). 

For a long time, research on the impacts of sound was only in relation to human health 

(Azrin, 1958, Fausti et al., 1981, Jerison, 1959, Nowak et al., 2016, Smith, 1989, Szalma and 

Hancock, 2011). Thereafter, following the worldwide concern about environment 

conservation, this topic has now been more commonly shared with non-human animals 

(Andersen et al., 1989, Brewer, 1974, Conomy et al., 1998, Crino et al., 2013, Lengagne, 

2008). Most of the studies about the impact of sound on animals has had laboratory animals 

as their subjects (Heffner and Heffner, 2007, Lauer et al., 2009, Liu et al., 2016, Longenecker 

et al., 2014, Milligan et al., 1993, Sales et al., 1999, Turner et al., 2005, Turner et al., 2012, 

Voipio, 1997); however, the impact of noise on wildlife, as a research topic, has recently 

become more popular with scientists (Chen and Koprowski, 2015, Derose-Wilson et al., 

2015, Ditmer et al., 2015, Duarte et al., 2015, Hillman et al., 2015, LaZerte et al., 2015). 

The influence of sound on wildlife is largely assessed by how it modifies animal 

behaviour because the expression of abnormal behaviour or changes in frequencies of normal 
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behaviours can be an indicator of stress (Barnett and Hemsworth, 1990). For vocal animals, 

such as birds, calling behaviour plays an essential role in their survival (Hollen and Radford, 

2009). These animals are constantly affected by acoustic interference (masking) when the 

background noise reduces the active space of the signal they produce (Marten and Marler, 

1977). Despite the majority of the studies evaluating animals’ responses to noise by 

behavioural analysis, physiological responses can also show stress-related outcomes (Barnett 

and Hemsworth, 1990) and should be applied more in studies related to stress. Exposure to a 

brief but loud noise event can result in an acute stress response, increasing the secretion of 

glucocorticoids (a hormone associated with stress); in contrast, long-term exposure to a 

chronic noise stressor can result in reduced glucocorticoid levels (Romero, 2004, Wikelski 

and Cooke, 2006). 

All of these responses that animals can make to noise may be triggered by different 

sound sources, such as traffic, machines, conversation, guns, compressors, chainsaws, 

aircraft, environmental sound (rain, wind, and other animal vocalisations), and others (Chen 

and Koprowski, 2015, Cote et al., 2013, Duarte et al., 2015, LaZerte et al., 2015). These 

different kinds of sounds, each one with different acoustic characteristics, require different 

acoustic evaluations (see examples in Pater et al. (2009) and Delaney et al. (1999)). However, 

these specific measurements have not always been done using appropriate methods, and this 

will be discussed further below. 

An overview of what is found in the present literature about the impact of noise on 

wildlife is presented. It includes a selection of studies on vertebrates, though some vertebrates 

were not included due to differences in sound perception and emission, which demand a 

different kind of evaluation (they are elephants which involve infrasound – sounds between 1 

Hz and 20 Hz – and vibration, bats which involve ultrasound – sounds over 20 kHz –, and 

fish which involve underwater sound signals). It was searched Web of Science™ using the 
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keywords “noise, noise pollution, noise exposure, ambient noise, aircraft noise, 

anthropogenic noise, environmental noise, traffic noise, urban noise, acoustic adaptation, 

acoustic communication, acoustic interference, acoustic stress, aircraft disturbance, human 

disturbance” combined with the following keywords “animal behav*, animal communication, 

animal welfare, wildlife, zoo*, captive animal”. The initial search found 1421 articles, which 

were filtered by reading the abstracts to confirm that they fell within the subject of this 

review. The discussion will refer to 121 articles (Appendix 1), from 1974 to 2015, which 

were evaluated according to sources of noise and the procedures used to measure the noise 

effect on wildlife (e.g. kind of equipment used, the acoustic metric described, how the 

animals were evaluated, and others). The aim is to assess the methodologies described in 

these studies and to propose a practical guideline for future research in this multidisciplinary 

area. 

2.1. Publications overview 

Acoustic interference on wildlife can be caused by diverse sources of sound. Until 1999, the 

most studied source of noise (84% of papers) was that produced by aircraft, such as 

helicopters or aeroplanes, even though many other sources of noise can affect animals. After 

the year 2000, the concern about noise impact in wildlife changed to the investigation of 

anthropogenic and, specifically, traffic noise (64% of papers). Traffic noise was considered 

as a separate category from other sources of anthropogenic noise because of the significant 

number of papers that have evaluated this specific kind of disturbance. As anthropogenic 

noise, it was considered sounds generated by machines, conversations, guns, explosions, oil 

and natural gas drilling and compressors, chainsaws, and mining. Environmental noise, such 

as background noise in nature, and some experiments using white noise are also found in the 

literature, even though they are not the most studied source of noise (17% of papers). 
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The methodologies applied in the papers reviewed here differ significantly between 

them, which makes comparison difficult to perform. Some studies did not use any equipment 

to measure or record the sound (19% of papers). These studies have evaluated noise in a 

subjective manner, considering only the presence or absence of noise, or the proximity to the 

noise source. The evaluation of animal response to noise without quantifying the noise 

appropriately restricts the usability of the results (Pater et al., 2009) because the perception of 

noise varies and it depends on the receptor. The use of noise meters or sound level meters 

(SLM) is an easy way to work around this lack of information about the amplitude of the 

sound. Many authors have used this methodology (62% of papers) and have applied the 

objective measurement of sound; however, to improve the reliability of the acoustic data, this 

equipment needs to be calibrated before and after use, and only 15% of the cited studies have 

mentioned the calibration of the devices. Calibration is important to ensure that the 

measurements are consistent and accurate against a consistent noise source. Failure in doing 

the calibration can cause bias in the results leading to an error of a few decibels. When 

purchasing a sound level meter, the kit normally includes a portable calibrator that is 

adequate for daily calibration. Nevertheless, all equipment, including the calibrator, need to 

be checked regularly (every two years) (IEC 61672-3, 2013, Talbot-Smith, 1999). The sound 

level meters can be classified as class 1 or class 2. Class 1 sound level meters present a lower 

tolerance for errors and provide frequency-weightings A, C, and Z, that will be described 

below (IEC 61672-1, 2013). For these higher specifications, class 1 sound level meters are 

indicated for environmental field use. Sound pressure levels can also be extracted from sound 

recordings using computers and specific software, but this method was used only by 15% of 

the examined studies. When this method is used, the computer system should be acoustically 

calibrated. 
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When recording or measuring noise, the frequency range of the microphone needs to 

be checked to make sure that it specifications will reach the requirements of the study. For 

example, a microphone suitable for the human hearing range (20-20000 Hz) might not record 

the lower frequencies of an elephant vocalisation (normally around 14-35 Hz; Payne et al. 

(1986); Poole et al. (1988)), and this could cause an underestimation of the effect of noise on 

its callings. Equally important, to help increase the accuracy of the field measurements, a 

windshield should be used over the microphones to avoid an interference of wind noise in the 

lower frequencies of the measurement (Lin et al., 2014). 

Although field studies often do not mention equipment calibration, studies using the 

playback of sound to animals were more aware of calibration. Eighty-four per cent of these 

playback studies mentioned calibration of the sound before the animals were exposed to it. 

This calibration in playback experiments is important, as it is known that the animals can 

express a response to the reproduction of sound (Hanna et al., 2014, Meillere et al., 2015, 

Shannon et al., 2014): if the sound is played at a high amplitude, the animal can respond due 

to the intensity of the recording and not due to a specific frequency or specific type of noise, 

or the opposite situation can happen if the sound amplitude is too low. There is another point 

that the researchers should take into account when developing this kind of experiments; the 

response to the playback can happen due to the sudden increase of sound pressure levels, 

when the sound source is turned on, and may not express a direct response to the kind of 

noise or loudness of the noise. A study made with humans has shown that people tend to 

respond to an in-situ soundscape differently from a soundscape reproduction (Sudarsono et 

al., 2016). It has been discussed that soundscape reproduction by speakers (2D ambisonic 

system), possibly, causes a different perception of the sound between the reproduction 

experience and the in-situ experience. 
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2.2. Acoustic metrics applied 

Regarding the acoustic metrics used by the researchers, it is possible to notice a lack of 

consistency: 31% of them have only presented the results in decibels, not specifying which 

kind of metric was used, 30% have used sound pressure levels (SPL), and 23% have used 

equivalent sound level (Leq). The absence of description when mentioning the acoustic 

metrics applied during the study can cause an impediment if a researcher wants to replicate 

the experiment. Leq is a metric frequently used as a noise index because it calculates the 

average equivalent sound level experienced over a period of time (Howard and Angus, 2009). 

It is based on the mean acoustic energy over time of a varying sound, and it gives a 

convenient single-figure average of a noisy environment, which may be varying over a wide 

range of amplitudes at a variable rate. Leq has been shown to be a suitable basis for predicting 

human response to noise both at high levels (e.g. hearing loss; Howard and Angus (2009)) 

and more moderate exposure (e.g. annoyance; Miedema and Vos (2004)). There is no 

evidence that it is the best predictor for non-human animals. Nevertheless, it is possible to use 

this metric for mammals, assuming that their hearing systems are similar among the group, 

and it is probably better to use it than SPL or an unspecified decibel metric. It is important to 

state that Leq is not a simple mean of the SPL over a period of time, but rather the average of 

the underlying sound energy. Obtaining Leq needs either an integrating sound level meter to 

measure it directly or a calculation by an equation as found in Howard and Angus (2009) and 

Pater et al. (2009), for example. Leq is a good measure of the total acoustic environment but it 

does not discriminate between components of the sound field. If it is suspected that the 

observed response to the sound depends on either the background sound or conversely on the 

highest amplitudes, then percentile levels can be used. L10 is the SPL exceeded 10% of the 

monitoring time and is often used as a more stable and representative measure than the 

maximum or peak SPL for high amplitudes measurements. L90 is the SPL exceeded 90% of 



11 

 

the monitoring time and is often used to represent the background underlying or ambient 

SPL. None of the evaluated papers has used this last metric when analysing the effect of 

environmental noise. If transient noise sound levels caused by specific events, such as an 

aircraft flyover, are important, these can be assessed with the sound exposure level (SEL). 

SEL can be defined as the constant sound pressure levels that have the same amount of 

energy in one second as the original noise event (Pater et al., 2009). One SEL should be 

measured for each event when using this metric. Although this acoustic metric is ideal for 

analysis of transient noise events, only 21% of the evaluated papers have used it to express 

the disturbance caused by aircraft. 

Another type of acoustic metric that represents an important modifying role in 

acoustic measurements is the frequency response filter. This filter is generally used to 

simulate the response of the ear system to acoustic signals. The human ear does not respond 

to different sound amplitude at different frequencies in the same manner: it is frequency 

selective. Hearing sensitivity varies as the frequency varies; it is not flat, and it is dependent 

on the sound pressure levels. During sound measurements, a way to compensate these 

differences in the sensibility to sounds is the use of correct frequency weighting filters 

(Howard and Angus, 2009). In the reviewed literature, 49% of the studies have used A-

weighted filter, 20% have used flat, linear, unweighted, or z-weighted filters, 14% have used 

C-weighted filter, 4% have used a species-specific frequency curve, and 22% have not 

described the filter used. As was pointed out previously, methodologies should always be 

adequately described, and the mention of the frequency filter used during the noise 

measurements is an essential requirement. A-weighting is a standard filter used in acoustics 

that approximates human hearing and it was introduced as an attempt to assess noise in the 

same way that the human ear perceives it (IEC 61672-1, 2013, Talbot-Smith, 1999). The A-

weighting is commonly appropriate for low-amplitude sounds (Howard and Angus, 2009), so 
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its use, depending on the circumstances, may lead to an underestimation of the annoyance 

caused by low-frequency dominant noise (Persson and Bjorkman, 1988). In some cases, this 

is the most appropriate weighting filter when investigating the effect of low-level sounds on 

mammals since the hearing structures among mammals are similar (Krausman et al., 2004). 

According to the selected literature, authors often used A-weighting filter in studies with 

birds (Table 1), which is not proven an effective measurement for this group of animals, as 

they have a hearing structure different from humans. The C-weighted frequency filter is used 

to estimate the human hearing response to loud and transient noise and for peak sound level 

analysis (IEC 61672-1, 2013), also it could be appropriately used in the analysis of military 

training noises or aircraft noise. This filter is more suitable for higher sound pressure levels 

sounds, and it is more sensitive to the lower frequencies of the noise (Howard and Angus, 

2009). The papers published that have used this “C” curve filter mostly did experiments using 

white noise (Appendix 1), which does not seem to be justified for this kind of noise source. 

The impediments of using these human-derived metrics to analyse non-human response will 

be discussed throughout the next sub-sections. 

When reporting the sound data, it is important to state the time of exposure to noise 

that was used in the data collection. The most common ones are the day equivalent level 

(Lday) when measurements are made over 12 hours from 7 am to 9 pm using A-weighted 

equivalent sound levels, and day-evening-night equivalent level (Lden) when A-weighted 

equivalent sound level measurements are made over a 24 hours period. Specific periods of 

measurements should also be reported. For example, if the measurements are made during a 

period of one hour using A-weighted equivalent sound levels, the sound data should be 

reported as LAeq,1hour. 
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2.3. Animal groups studied 

Almost all papers published regarding the impact of noise on wildlife were focused on a 

specific animal group. The majority of these studies were made with birds; possibly, for the 

reason that these animals frequently express vocal related behaviours, and, because of that, 

they could be more likely to suffer from acoustic interferences, such as acoustic masking that 

is considered a major disturbance factor (Brumm, 2004, Nemeth and Brumm, 2009, Rheindt, 

2003). The second most studied animal group was mammals, followed by amphibians. There 

were no studies found in the literature with reptiles, and fish were not included in this 

literature review because of the specificities on the underwater acoustic topics, as previously 

mentioned in the introduction. 

The aforementioned animal groups have been well evaluated by the analysis of 

behavioural and physiological responses (Appendix 1). Behavioural responses were 

investigated by changes in vocalisation, behaviour, group structure, reproductive success, use 

of habit, and population size (some of the newest studies on these topics: Payne et al. (2012), 

Cote et al. (2013), Chen and Koprowski (2015), Derose-Wilson et al. (2015), and LaZerte et 

al. (2015)). Physiological responses were assessed by metabolite tests and measurements 

involving body condition, body temperature, and cardiac response (some of the newest 

studies on these topics: Derose-Wilson et al. (2015), Potvin and MacDougall-Shackleton 

(2015), and Ware et al. (2015)). The outcomes of these studies have shown that animals are 

often affected by noise (78% of the studies came to this conclusion), showing variations in 

common behaviours, vocalization frequencies, body condition, reproductive success, among 

others (some of the newest studies: Chen and Koprowski (2015), Derose-Wilson et al. (2015), 

Ditmer et al. (2015), LaZerte et al. (2015), and Leonard et al. (2015)). 

For humans, annoyance is the adverse attitude, which is formed against sounds that 

distract attention from or interfere with activities such as speech, communication, recreation, 
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relaxation, and sleep. The annoyance caused by noise depends on acoustical aspects of the 

sound but also depends on non-acoustical aspects, including biological, psychological, and 

sociological factors (Crocker, 2007, Fidell, 2007). Individual noise sensitivity can explain 

variations in noise-annoyance reactions towards a given sound source, as much as noise 

exposure measures (Ellermeier et al., 2001). Non-human animals are able to express 

individual differences between their behaviours depending on the context – the animal 

personality (Dingemanse et al., 2010). This suggests that individual animals may perceive 

noise and the annoyance caused by it in different manners, depending on their personality. A 

study made with great tits (Parus major) found that animals with different personalities do 

not express the same behaviours in the presence of noise (Naguib et al., 2013). Some 

individuals can be severely impacted by sound pollution while others can be slightly affected 

or be able to habituate to it. These variations should be taken into consideration when 

evaluating animals’ response to noise. 

2.4. Are the acoustic metrics used with the animal groups 

appropriate to evaluate them? 

As discussed previously, A-weighted and C-weighted frequency filters represent the human 

hearing response to acoustic signals. Consequently, the use of these metrics is not indicated in 

studies with non-human animals. Mammals have a hearing system similar across the group, 

especially in the middle ear area, which reflects in a similar threshold at low sound pressure 

levels (Fay, 1994). However, the frequency hearing range has a great variation among the 

group (Fay, 1994). In fact, several mammal species are capable of hearing frequencies above 

that perceived by humans, such as mice, rats, hamsters, rabbits, guinea pigs, dogs, cats, pigs, 

and Japanese macaques (Heffner and Heffner, 2007). Thus, the use of the frequency filters 

cited before could restrict the assessment of animal responses to sound when studying these 

species. For example, in case of using A-weighting filter when studying the effect of noise on 
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a low-frequency sensitivity species, it can cause an underestimation of animal response to this 

frequency range because this filter is less sensitive to low-frequency signals. Furthermore, 

when studying animals that are sensitive to high frequencies, as an illustration, a mistake can 

also happen as the A-weighting filter was defined for a maximum frequency of 20 kHz, 

which is equivalent to the upper limit of the human frequency hearing and cannot express the 

actual response to higher frequencies. 

Although there are limitations in the use of the frequency filters as previously 

mentioned, these metrics are being widely applied in amphibian, bird, and mammal studies 

(Table 1). It is unlikely that these filters work with these animal groups since their hearing 

systems are different from humans. Birds, for example, have a different frequency perception. 

The frequency range within avian species is narrower than in mammals (Beason, 2004, 

Sturkie, 1986), which suggests a mistake in using the same acoustic metrics when studying 

both groups. Using this method could cause the results to contain some frequencies, which 

are not perceived by birds and are perceived by humans, and could, therefore, cause 

misinterpretation of the data. There are no studies with amphibians that have analysed the 

frequency range heard by this group; however, if the frequency range of their vocalisation 

(between 0.5-9 kHz) is considered (Hanna et al., 2014, Parris et al., 2009, Sun and Narins, 

2005), which is also narrower than humans, as a rule of thumb it can be assumed that they 

can hear the frequencies of their vocalisations, so it can be accepted that the same mistake 

could happen when studying this group. 
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Table 1. Comparison of the weighting frequency filter according to the animal group 

(percentage of studies found in the literature; N = 112) 

Groups ND1 Z2 A3 C4 SS5 

Amphibians (%) 18 18 27 37 0 

Birds (%) 15 17 58 14 4 

Mammals (%) 43 19 38 5 5 

1 not described. 2 Z-weighted filter (including flat, linear, and unweighted). 3 A-weighted filter. 4 C-weighted 

filter. 5 Species-specific weighted filter. The exceed 100% in some cases, is due to the use of more than one 

filter in the same study. 

 

Seeking a better understanding of animal response to noise, authors have developed species-

specific weightings for some species, such as Mexican spotted owls (Strix occidentalis 

lucida) (Delaney et al., 1999), red-cockaded woodpeckers (Picoides borealis) (Delaney et al., 

2011), and Sonoran pronghorn (Antilocapra americana sonoriensis) (Krausman et al., 2004), 

which is an adequate solution to ideally assess the animal’s perception and reaction to noise. 

The species-specific weighting can be created based on audiograms. The aim of the 

audiograms is to understand, correctly, which frequency range and sound amplitudes the 

species respond to in terms of noise. There are numerous wildlife species audiograms in the 

literature, which could help to develop these specific weightings (Table 2). However, it will 

not be possible to produce an audiogram of all species to develop the species-specific 

weightings, due to the endangered status of some species or for ethical reasons to manipulate 

the animals (it is usually necessary to maintain animals in captivity to produce audiograms; 

Heffner and Heffner (2007)). In these cases, an alternative could be the use of Z-weighting 

filters. This metric includes all frequencies in the range of the sound level meter, not 

including any weighting in any frequency (IEC 61672-1, 2013). The Z-weighting filter was 

yielded to represent a flat response between 8 Hz and 20 kHz, so it is still not a good tool 

when evaluating animal response to high-frequency sounds. 

 



17 

 

Table 2. Wildlife species audiograms found in the literature. 

Animal (scientific name) Reference 

Hedgehog (Hemiechinus auritus) Ravizza et al. (1969) 

Primates 

(Pan troglodytes) 

(Macaca fascicularis) 

(Macaca nemestrina) 

(Galago senegalensis) 

(Nycticebus coucang) 

(Perodicticus potto) 

(Lemur catta) 

(Aotus trivirgatus) 

(Saimiri sciureus) 

(Macaca mulatta) 

 

(Papio cynocephalus) 

(Cercopithecus mitis) 

(Cercopithecus aethiops) 

(Cercopithecus neglectus) 

(Macaca fuscata) 

Elder (1934) and Kojima (1990) 

Stebbins et al. (1966) 

Stebbins et al. (1966) 

Heffner et al. (1969) 

Heffner and Masterton (1970) 

Heffner and Masterton (1970) 

Gillette et al. (1973) 

Beecher (1974a) 

Beecher (1974b) and Green (1975) 

Pfingst et al. (1975), Pfingst et al. (1978), Lonsbury-Martin and 

Martin (1981), and Bennett et al. (1983) 

Hienz et al. (1982) 

Brown and Waser (1984) 

Owren et al. (1988) 

Owren et al. (1988) 

Owren et al. (1988) and Jackson et al. (1999) 

Racoon (Procyon lotor) Wollack (1965) 

Weasel (Mustela nivalis) Heffner and Heffner (1985) 

Reindeer (Rangifer tarandus) Flydal et al. (2001) 

2.5. Authors’ expertise 

In the literature, most published papers about the influence of noise on wildlife were 

published by authors associated with biological-related areas (according to the authors’ 

contact address in the papers). Biological-related authors wrote more than 84% of the papers, 

and authors with multidisciplinary expertise areas published only 11% of the studies. Sound 

analysis involves a specific knowledge that is not commonly covered in biological courses. 

Thus, it is important to include professionals with particular skills in the area to improve the 

methods and to achieve high-quality results. 

The improvement that partnership between different study areas brings to the studies 

is visible. Papers published by authors of multidisciplinary areas are often more descriptive 

regarding the methodologies applied (see Tables 2, 3, and 4). Some studies found in the 

literature did not use any equipment to measure the noise when evaluating its influence on 
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wildlife and some did not mention which device was used to measure the noise. This lack of 

information reduces the applicability of the results because they cannot be compared or 

reproduced correctly. Confidence of the results is of major importance for science, and the 

reproducibility is a current concern by researchers (Baker, 2016) since it is an important way 

to achieve confidence in results. Another important information that is often omitted in 

studies is the mention of the calibration of the equipment. As discussed before, sound 

measurement equipment, such as sound level meters, need to be calibrated before and after 

every measurement, which can influence the quality of the data produced. The absence of 

routine when checking the equipment calibration could lead to inaccurate and unreliable 

measurement data (Beyers, 2014). Concerning these topics, there are clear dissimilarities 

between papers produced by authors with only biological expertise and papers produced by 

multidisciplinary expertise authors (Table 3 and 4) with the latter producing more 

scientifically robust results. 

Table 3. Comparison of the use of equipment by authors’ expertise (percentage of studies found 

in the literature; N = 108) 

Authors expertise NA1 ND2 NM3 OT4 

Biological (%) 20 3 62 15 

Multidisciplinary (%) 0 0 78 22 

1 subjective evaluation of noise. 2 not described. 3 use of noise meters. 4 use of another kind of equipment and/or 

software to measure noise. 

Table 4. Comparison of the noise measurement equipment calibration by authors’ expertise 

(percentage of studies found in the literature; N = 79) 

Authors expertise YES1 ND2 

Biological (%) 7 93 

Multidisciplinary (%) 75 25 

1 authors have mentioned the calibration of the noise measurement equipment. 2 authors have not mentioned the 

calibration of the noise measurement equipment. 

The same pattern of variation in methodology can also be seen when evaluating the 

acoustic metrics mentioned in the articles. Most articles published by authors with biological 
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expertise expressed the sound levels mentioning only dB (decibels). Expressing the specific 

acoustic metric used is as relevant as the description of the equipment used. In the same way, 

the lack of this information can influence the assessment of the work done and the possibility 

to repeat the methods in future studies (Table 5). 

Table 5. Comparison of the acoustic metrics used by authors’ expertise (percentage of studies 

found in the literature; N = 86) 

Authors expertise ND1 dB2 SPL3 Leq
4 OT5 

Biological (%) 0 36 32 17 24 

Multidisciplinary (%) 0 0 0 78 78 

1 not described. 2 authors have mentioned only decibels. 3: sound pressure levels. 4: equivalent sound levels. 5: 

another kind of metrics. The exceed 100% in some cases, is due to the use of several metrics in the same study. 

2.6. Review papers already published 

Since 1974, thirteen review papers were published on noise topics related to wildlife (Table 

6). Most of them have focused on the noise source, but some have focused on its effect on a 

specific animal group. The first review paper was by Brewer (1974), who summarises, in a 

superficial way, five different cases about the impact of aircraft noise related to farm animals 

(hatchability of eggs, the effect on poultry, the effect on breeding mink, the effect on 

pregnant mink, and the effect on pregnant and lactating mink). He concluded that the animals 

studied are adapted to noise, but he required considerably more studies to extrapolate the 

information reviewed to other animals. 

Reijnen et al. (1997), Brumm (2006), Patricelli and Blickley (2006), Slabbekoorn and 

Ripmeester (2008), and Francis (2015) published review papers about the sound pollution 

effect in birds but with different approaches in the matter. The paper of Reijnen et al. (1997) 

showed, based on the literature, the influence of traffic noise on breeding birds’ density close 

to roads. The authors tried to find possible explanations for alterations in density, such as 

decreasing reproductive success or, simply, stress. In addition, they also discussed the 
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consequences of traffic disturbances for breeding bird populations. In conclusion, they 

suggested ways to reduce the noise effect along roads, such as the construction of noise 

barriers (despite some issues such as the ideal length and high of the barriers and how they 

could potentially be another source of disturbance to the birds) and the construction of roads 

at a sufficient distance from important areas for breeding birds. In his review, Brumm (2006) 

did a brief summary of a few studies about the influence of urban and natural sounds on the 

adaptation of birds’ communication, such as changes in the frequency of the songs. In the 

same vein, Patricelli and Blickley (2006) gave an overview of the communication of birds in 

an urban noise environment. They discussed what features of birds’ vocalisation are adjusted 

to reduce masking, how the adjustments happen, and what the consequences of these changes 

are for the individual and the population. All these points were discussed based on the 

available literature. Slabbekoorn and Ripmeester (2008) addressed how birds are affected by 

anthropogenic noise, how they counteract the noise conditions, and what the options are to 

combat the negative impact of anthropogenic noise on bird species. The last review paper 

covering this topic was by Francis (2015) who used published papers to look for factors that 

explain birds’ responses to anthropogenic noise. One interesting point of this paper is that the 

author could not use the acoustic data in the papers to help him assess the noise effects 

because of the lack of information in the papers’ methods sections regarding the production 

of data values (i.e., a lack of reproducibility). 

Another set of review papers investigated the sound pollution issue without a focus on 

a specific animal group, treating sound pollution subject from different perspectives. One of 

these articles discussed the problems of aircraft noise on human health and wildlife (Pepper et 

al., 2003). Regarding wildlife impact, the authors made an overview of studies concerning 

this subject. They summarised the type of responses that were evaluated in animals, such as 

behavioural or physiological responses (e.g., feeding patterns, productivity, reproduction, 
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distinguishing between farm animals and wildlife). The paper also shows some methods for 

controlling the noise but focus on human health. Finally, it suggested further studies to 

evaluate the impact of aircraft noise on the environment, especially multidisciplinary ones. 

The literature reviewed by Barber et al. (2010) lead to a presentation of the impact of noise 

levels on different taxa, and how the animals are affected (the responses found were based on 

foraging and anti-predator behaviour, reproductive success, density, and community 

structure). Kight and Swaddle (2011) recapitulated the literature findings of the impact of 

biotic and abiotic noise in the neuroendocrine system, reproduction, metabolism, 

cardiovascular health, cognition and sleep, audition, immune system, and DNA integrity, all 

done in laboratory, domestic, or free-living animals. Their aim was to show the results of 

previous studies and to identify new possibilities for future studies. Another paper has 

detailed the impacts of noise on wildlife (e.g., behavioural changes, distribution alterations, 

and physiological responses) and provided some suggestions for data collection, such as the 

use of correct frequency weighting filters and a better description of the acoustic metrics used 

(Francis and Barber, 2013). In addition, the review paper by Naguib (2013) focused on 

finding in the literature the indirect effects of noise on animal communication such as 

distraction, attention, population density, individual spacing, and social networks. Gill et al. 

(2015) highlighted the importance of a complete data collection, and stated some points in 

bioacoustics that are essential to consider (i.e. the variation of noise over time and space, the 

proper evaluation of the frequency range of the noise, and the use of equipment to quantify 

the noise) when studying noise impact on wildlife. 

In search of a validation in acoustic studies related to wildlife, Pater et al. (2009) 

produced an article with acoustical considerations and suggestions of research techniques to 

help future studies in using suitable methods to achieve an appropriate assessment of noise 
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impacts on wildlife. This paper was cited more than fifty times. But has it changed the 

scenario of the description of the methods in studies associated with acoustics and wildlife?  

Table 6. Number of papers used in each review article cited (based on the number of papers 

referenced, because not all articles are systematic reviews mentioning the number of papers 

used) 

Reviews Number of papers 

Brewer, W.E. (1974) Effects of Noise Pollution on Animal Behavior. Clinical 

Toxicology, 7, 179-189. 

2 

Reijnen, R., Foppen, R. & Veenbaas, G. (1997) Disturbance by traffic of breeding 

birds: Evaluation of the effect and considerations in planning and managing road 

corridors. Biodiversity and Conservation, 6, 567-581. 

62 

Brumm, H. (2006) Animal communication: City birds have changed their tune. 

Current Biology, 16, R1003-R1004. 

13 

Patricelli, G.L. & Blickley, J.L. (2006) Avian communication in urban noise: 

Causes and consequences of vocal adjustment. Auk, 123, 639-649. 

85 

Slabbekoorn, H. & Ripmeester, E.A.P. (2008) Birdsong and anthropogenic noise: 

implications and applications for conservation. Molecular Ecology, 17, 72-83. 

116 

Francis, C.D. (2015) Vocal traits and diet explain avian sensitivities to 

anthropogenic noise. Global Change Biology, 21, 1809-1820. 

51 

Pepper, C.B., Nascarella, M.A. & Kendall, R.J. (2003) A review of the effects of 

aircraft noise on wildlife and humans, current control mechanisms, and the need 

for further study. Environmental Management, 32, 418-432. 

90 

Barber, J.R., Crooks, K.R. & Fristrup, K.M. (2010) The costs of chronic noise 

exposure for terrestrial organisms. Trends in Ecology & Evolution, 25, 180-189. 

100 

Kight, C.R. & Swaddle, J.P. (2011) How and why environmental noise impacts 

animals: an integrative, mechanistic review. Ecol Lett, 14, 1052-1061. 

99 

Francis, C.D. & Barber, J.R. (2013) A framework for understanding noise 

impacts on wildlife: an urgent conservation priority. Frontiers in Ecology and the 

Environment, 11, 305-313. 

51 
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Naguib, M. (2013) Living in a noisy world: indirect effects of noise on animal 

communication. Behaviour, 150, 1069-1084. 

91 

Gill, S.A., Job, J.R., Myers, K., Naghshineh, K. & Vonhof, M.J. (2015) Toward a 

broader characterization of anthropogenic noise and its effects on wildlife. 

Behavioral Ecology, 26, 328-333. 

63 

Pater, L.L., Grubb, T.G. & Delaney, D.K. (2009) Recommendations for Improved 

Assessment of Noise Impacts on Wildlife. Journal of Wildlife Management, 73, 

788-795. 

60 

 

It is possible to notice some changes in the literature after 2009. More studies were 

made using equipment to measure the noise; and fewer studies were made evaluating noise in 

a subjective way, such as the use of absence or presence of sound source or proximity to the 

sound source (see Table 7). Regarding the calibration of equipment, there was no difference 

in the description of this (Table 8). Table 9 shows a trend towards using the more useful Leq 

instead of simple SPL. However, the proportion of studies using the much less useful 

unspecified dB has increased, remaining roughly constant at around a third of the literature. 

Table 7. Comparison of the use of equipment before and after 2009 (percentage of studies found 

in the literature; Before N = 60, After N = 48) 

 NA1 ND2 NM3 OT4 

Before (%) 28 3 64 5 

After (%) 10 2 61 27 

1 subjective evaluation of noise. 2 not described. 3 use of noise meters. 4 use of another kind of equipment and/or 

software to measure noise. 

Table 8. Comparison of the noise measurement equipment calibration before and after 2009 

(percentage of studies found in the literature; Before N = 43, After N = 36) 

 YES1 ND2 

Before (%) 14 86 

After (%) 14 86 

1 authors have mentioned the calibration of the noise measurement equipment. 2 authors have not mentioned the 

calibration of the noise measurement equipment. 
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Table 9. Comparison of the acoustic metrics used before and after 2009 (percentage of studies 

found in the literature; Before N = 43, After N = 43) 

 dB1 SPL2 Leq
3 OT4 

Before (%) 26 37 16 30 

After (%) 37 23 30 28 

1 authors have mentioned only decibels. 2 sound pressure levels. 3 equivalent sound levels. 4 another kind of 

metrics. The exceed 100% in some cases, is due to the use of several metrics in the same study. 

 

The findings from the present review provide some support for the current discussion 

about the importance of the complete description of methods to help guarantee the 

reproducibility of science. It is apparent that the literature affords sources of knowledge about 

the use of acoustic methods for biological studies; however, it is also important to investigate 

the reliability of the studies already done and to discuss how suboptimal methods can limit 

the usefulness of results. This review intends to make available a simple source of acoustic 

methods to contribute to future studies on the current topic. 

2.7. Relevant standards and guidance 

A way to assist and guarantee a common sense in the use of the acoustics practices is the 

consultation of the standards and guidance in the area. Standards are public consensus 

agreements that establish safety and technical specifications and precise criteria to be used 

consistently as rules and to ensure the reliability of material, products, processes, and services 

people uses every day. 

In the case of the biological studies regarding noise measurements, the standards can 

provide the researchers with a basis for mutual understanding, and can be used as a tool to 

facilitate the communication and reliability in the use of equipment and of the measurements. 

Table 10 presents a list of useful standards and guidance to be consulted during the research 

planning and development. 
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Table 10. List of important standards and guidance for use in biological and acoustics related 

studies planning and development. 

Standards number and 

guidance 
Title 

ISO 1996-1:2016 
Acoustics -- Description, measurement and assessment of environmental 

noise -- Part 1: Basic quantities and assessment procedures. 

ISO 1996-2:2017 
Acoustics — Description, measurement and assessment of environmental 

noise — Part 2: Determination of sound pressure levels. 

ISO 9613-2:1996 
Acoustics -- Attenuation of sound during propagation outdoors -- Part 2: 

General method of calculation. 

ASTM C634-13 Standard Terminology Relating to Building and Environmental Acoustics. 

BS EN 61672-1:2013 Electroacoustics. Sound level meters. Specifications. 

BS 7580-1:1997 
Specification for the verification of sound level meters. Comprehensive 

procedure. 

BS 7580-2:1997 
Specification for the verification of sound level meters. Shortened procedure 

for type 2 sound level meters. 

BS 7445-1:2003 
Description and measurement of environmental noise. Guide to quantities 

and procedures. 

Important guidance 

Calculation of road traffic noise. (Department of transport) 

Calculation of Railway noise. (Department of transport) 

Green Book. Environmental Noise Measurement Guide. (ANC)* 

Guidelines for community noise. (WHO)** 

Planning policy guidance 24.Planning and noise. 

 

*Association of noise consultants. **World Health Organization 

2.8. Conclusions 

The diversity of studies is great, and the impact of sound pollution is well explored 

(Appendix 1). However, there is a consensus on the findings of this review and other review 

papers in the literature: the absence of consistency among the methods applied makes the 

comparison between studies a real challenge. As a suggestion to increase the consistency of 

future papers, editors of biology-related journals could seek reviewers with acoustic 

measurement expertise to review these papers and advise the authors. In addition, researchers 

from a biologic background should seek collaborators with expertise in acoustics to help 

design experiments and advise on collection and analysis of noise data. 
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In view of all that has been mentioned before, the analyses show that only 7% of the 

papers assessed in this review present a well-described methodology, regarding the important 

acoustic points for an acceptable investigation of noise effects on wildlife. These papers have 

used suitable equipment for noise measurements, they have mentioned the calibration of the 

equipment and the calibration of the sound when playback experiments were applicable, they 

have used adequate acoustic metrics according to the source of noise that was evaluated, and 

they have used a frequency filter that fits the animal group studied. 

As the main goal of the current review, I would like to propose a simple guideline for 

future studies with points that need to be followed when producing a paper about the impact 

of noise on wildlife. A complete description of the methods used will help in a validation of 

the work done, will avoid unnecessary replication of studies because of the lack of 

information found in the literature, and will support future researchers to understand how the 

study was developed. Since there are already valuable references in the literature that could 

guide in how to assess the effect of noise on animals (Brown et al., 1999, Chen and 

Koprowski, 2015, Delaney et al., 1999, Delaney et al., 2011, Gill et al., 2015, Grubb et al., 

2013, Krausman et al., 2004, Pater et al., 2009, Quadros et al., 2014, Shannon et al., 2014), it 

was reviewed and assembled the principal points to consider in a study of noise and wildlife, 

and important standards and guidance for consultation were indicated, here it is going to be 

highlighted the topics that should be fully described in the paper’s methodology, regarding 

the noise evaluation: 

 The acoustic related equipment used in the study and the software and tests used to 

analyse the acoustic data. 

 The calibration of the equipment, how many times it was calibrated, and when during 

the study. 
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 The calibration of the sound in case of playback experiments and the equipment that 

was used for this calibration. 

 The acoustic metrics that were chosen. In this case, it is essential to verify if the 

metrics will represent correctly the noise source studied and if they are appropriate for 

the animal group in focus. This should include a discussion of the frequency 

weighting chosen.  
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Section 3. Effect of noise on zoo mammals’ behaviour and 

enclosures soundscapes 

The zoo visitors effect 

The presence and behaviour of zoo visitors are commonly associated with changes in the 

behaviour and physiology of captive animals (Davey, 2007, Davis et al., 2005). Studies on 

this topic present contradictory results (positive and/or negative) of how the public affects 

animal well-being. A clear example of this conflict is a study with green monkeys 

(Chlorocebus sabaeus), in which the same response to visitors can be interpreted in two 

different manners (Hosey, 2000). When visitors throw food inside the enclosures, the 

monkeys become more active to gain an advantage in obtaining the food, which can be 

interpreted as a positive outcome. However, according to the study, the monkeys could be 

taking time away from other important behaviours, such as socialisation, for example. 

Recent evidence of the positive effect of visitors on animal welfare was reported by 

Gorecki et al. (2012); they studied how exposure to humans affects the activity of European 

souslik (Spermophilus citellus) and noted that these animals do not present negative 

behaviour, such as predator vigilance in human presence. The squirrels were most ‘relaxed’ 

when visitors were present. This hypothesis was confirmed when it was found that human 

presence reduces predation in wild monkeys and reduces their vigilance behaviour (Isbell and 

Young, 1993). However, most studies indicate negative effects of zoo visitor presence, as it 

will be discussed below. 

Studies with gorillas (Gorilla gorilla gorilla) revealed an increase in aggressive and 

abnormal behaviours, high levels of auto grooming, and that the animals became less visible 

in the presence of visitors (Carder and Semple, 2008, Kuhar, 2008, Wells, 2005). Other 

studies with lion-tailed macaques (Macaca silenus) (Mallapur et al., 2005) and on leopard 

behaviour (Panthera pardus) (Mallapur and Chellam, 2002) found similar results. According 
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to the authors, leopards expressed more stereotyped behaviour and rested more to avoid 

visitors. When people are noisy, numerous, and interact with animals (screaming and staring) 

some primate species respond with aggression, less social behaviours, and more abnormal 

behaviours (Fernandez et al., 2009), which are signs of poor well-being (Young, 2003). This 

also suggests that in addition to the presence of visitors the noise made by them also has an 

important influence on animal behaviour (Birke, 2002). Nevertheless, despite this conclusion 

about visitors’ noise, few studies have actually quantified the change in sound pressure 

levels. 

Minimizing the zoo visitor effect 

Almost all studies that measured the effect of zoo visitors on captive animals had the 

same conclusion: enclosure modifications are necessary to minimise the sound pressure 

levels (i.e. noise) created by visitors. Visitors may significantly increase the noise around the 

zoo enclosures (Quadros et al., 2014) and, possibly, the animals’ behaviour and welfare are 

significantly affected by them and by the sound pollution produced during their presence. 

Contact with the public may be a complex form of stimulation, but ultimately, zoo animals 

often do not have a means to escape from it if they so desire (Wells, 2005). Environments 

that are more natural and some methods that help animals to escape from adverse stimuli 

produced by the public could reduce negative stress and increase visitor enjoyment 

(Fernandez et al., 2009, Kuhar, 2008). 

Another means to decrease the stress caused by zoo visitors is environmental 

education. Kratochvil and Schwammer (1997) working in an aquarium used signs with 

phrases (“only loonies would knock”; “knocking kills fish”; and “please don’t knock on the 

glass”) to try decreasing visitors’ “knocking behaviour” in Vienna Zoo. The visitors’ 

knocking behaviour stimulates fishes in a negative way and the signs were efficient in 
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decreasing knocking; thus, supporting the suggestion that a variety of educational strategies 

may be effective in reducing some adverse stimuli for zoo animals produced by visitors. 

However, this kind of study has not been repeated in other countries with different cultures 

(culture could affect visitors’ responses to the applied interventions). 

The sound effect 

Several researchers think that captive animals have a better quality of life and 

enhanced longevity living in zoos than in the wild because of the availability of water and 

food, veterinary care, and the protection against predators (Tidiere et al., 2016). But many 

factors can stress zoo animals such as sound and light levels, odours, thermal and tactile 

comfort, substrate, movement restriction, absence of escape opportunities, forced human 

contact, routine husbandry (such as fixed regimes), and restricted opportunities for feeding 

and foraging (Hosey, 2005, Morgan and Tromborg, 2007, Quadros et al., 2014). 

The influence of noise on zoo animals’ welfare has been discussed by many 

researchers (Birke, 2002, Carder and Semple, 2008, Chosy et al., 2014, Cronin et al., 2018, 

Gorecki et al., 2012, Kratochvil and Schwammer, 1997, O'Donovan et al., 1993, Owen et al., 

2004, Powell et al., 2006). However, most of them measured noise in a subjective way (i.e. 

the researcher’s personal perception of noise) and few measured noise with appropriate 

equipment (i.e. sound level meters), which may cause a significant influence on the outcomes 

found. Another difficulty in such studies is that certain sounds that do not affect humans such 

as high-frequency (e.g. ultrasound from security cameras circuit and fluorescent lamps) and 

low-frequency sounds (e.g. infrasound from ventilation, extractor fans, construction sites, and 

cars), could affect a variety of animals, as it was discovered for giant pandas (Ailuropoda 

melanoleuca) (Owen et al., 2004). Kight and Swaddle (2011) affirm that stress caused by 
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anthropogenic noise can influence various animal systems, such as DNA integrity and genes, 

cells structure, physiological systems, behavioural ecology, and community ecology. 

Objectives 

The present study aims to investigate the effects of sound on zoo mammals’ behaviour 

and, by this means, try to assess the impact of environmental sound on mammal’s welfare. 

The innovative approach of this research is to collect the data with appropriate equipment, 

using the correct acoustic metrics and weighting filters. This is because my previous analysis 

of the sound literature showed that only 7% of published studies have been conducted 

correctly from an acoustics point of view (see Section 2), which means that the conclusions 

of previous studies may not be scientifically robust. 

3.1. Subjects of study 

The investigation of the mammals’ behavioural response to noise was made by the 

observation of four different species in Chester Zoo, UK (aye-aye - Daubentonia 

madagascariensis, black rhinos - Diceros bicornis, okapi - Okapia johnstoni, and two-toed 

sloths - Choloepus didactylus). The choice of the species was established by the suggestions 

from the Chester Zoo staff. Their suggestions were based on species that the zoo was more 

concerned about their welfare regarding the environmental sound and on the enclosures that 

were considered noisier in the zoo. 

3.1.1. Aye-aye (Daubentonia madagascariensis) 

The aye-aye is a nocturnal lemur species from Madagascar classified as endangered by the 

IUCN Red List (Andriaholinirina et al., 2014). It is different from every other lemur species 

due to its highly specialised dentition, exceptionally large ears, and an elongated middle digit. 

The last two features are specifically used to detect (by hearing the sound produced by the 
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insects), capture (by “excavating” the trunks and branches), and consume insect prey 

(Mittermeier et al., 2008). During the foraging, the aye-aye is able to focus several senses 

(e.g. sight, smell, and hearing) on the activity (Erickson, 1995). It is considered a noise-

sensitive species due to the characteristic of using its hearing sense to locate insect larvae 

inside the trunks and branches of trees. 

At Chester Zoo, one male individual, called Raz (Date of Birth (DOB): 23/11/2007), 

housed in a “night enclosure”, that is, with a reversed light cycle, was the subject of the 

study. The aye-aye’s enclosure is fully closed where visitors have viewing access to the 

animal by glass windows (Figure 1). 

 
Figure 1. Visitors’ area of the aye-aye’s enclosure at Chester Zoo, UK. 

3.1.2. Black rhinos (Diceros bicornis) 

According to the IUCN Red List (Emslie, 2012), the black rhino is critically endangered as 

the wild population has dropped drastically in the past 50 years. In Chester Zoo, the species is 

part of a conservation project in Kenya and Tanzania, and the specimens kept in the zoo are 

listed in the European Endangered Species Breeding Programme. 
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During the study, two females were observed (Female 1: Kitani, DOB: 16/06/1997 

and Female 2: Ema Elsa, DOB: 02/11/2002), the second with a male calf (Gabe, DOB: 

16/01/2016). The rhinos’ indoor enclosure is a paddock where visitors have free-viewing 

access to the animals and are separated from the rhinos by a fence (Figure 2). The animals 

have access to an outside area, which was not investigated during this study due to logistic 

reasons, such as the large size of the area that would require acoustic mapping, the use of 

more equipment, and installation of video cameras to record the animals’ behaviours. 

 
Figure 2. Visitors viewing perspective in the black rhinos’ paddock at Chester Zoo, UK. 

3.1.3. Okapi (Okapia johnstoni) 

Okapi are animals from the same family of the giraffes (Giraffidae). They are usually solitary 

animals, and due to loss and degradation of habitat, the species is considered endangered 

(Mallon et al., 2015). In Chester Zoo, this species is also part of the European Endangered 

Species Breeding Programme, and the zoo supports a conservation project in the Democratic 

Republic of Congo. 

One male called Usala (DOB: 30/04/2015) was the object of study. The animal is 

housed in a paddock enclosure where visitors can observe the animal by windows protected 
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with a stand-off barrier (Figure 3). The animal also has access to an outside area, which was 

not investigated during this study due to the reasons explained in Section 3.1.2. 

 
Figure 3. Visitors’ area of the okapi’s enclosure at Chester Zoo, UK. 

3.1.4. Two-toed sloths (Choloepus didactylus) 

The two-toed sloth is a species widely distributed in South America, which leads to its least 

concern classification in the IUCN Red List (Chiarello and Plese, 2014). 

At Chester Zoo, one male called Rico (DOB: 08/08/1999) and one female called Tina 

(DOB: 02/07/2010) were observed. The sloths are kept in an indoor enclosure with a high 

ceiling where animals move around using ropes and have access to an area on the floor 

(Figure 4). 
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Figure 4. Visitors viewing perspective in the two-toed sloths’ area at Chester Zoo, UK. 

3.2. Data collection 

For all species, data collection occurred in two seasons, high visitor season (from June to 

September) and low visitor season (from November to February), during five continuous 

days for each season (always including weekends in the data collection), five hours a day 

(early morning, late morning, lunchtime, early afternoon, and late afternoon). These resulted 

in a total of 25 hours of behavioural data per species per season. This design permitted a 

variability of animal observations, which is expected in animals behaviour studies (Dawkins, 

2007), such as different sound conditions throughout the day and different days (week and 

weekend days). 

The behavioural data were recorded using focal or scan sampling method (depending 

on the number of animals in each enclosure) with instantaneous recording every 30 seconds 

using a general ethogram previously produced to attend the different species behaviours 

(Table 11). Visitors that entered the viewing area of the enclosure were counted and recorded 

cumulatively every ten minutes. 
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Table 11. General ethogram used to study the responses of mammals to visitor noise at Chester 

Zoo, UK. 

Behaviours Description 

Locomotion The animal is moving from one location to another. 

Feeding-related behaviours The animal is actively consuming food, drinking water, or foraging. 

Grooming The animal grooms itself using tongue, teeth, mouth, or hands. 

Excretion The animal is eliminating faeces or urine. 

Rest 

The animal is stationary with eyes open or closed but no movements from 

head or ears. The animal may be sitting or lying down. 

Rest alert 

The animal is sitting or lying down with eyes open and alert to surroundings. 

The animal is directing ears and head in the direction of sounds. 

Stand 

The animal is standing on all four limbs with eyes open or closed. The 

animal is not directing ears and head in the direction of sounds. 

Stand alert 

The animal is standing on all four limbs with eyes open and alert to 

surroundings, directing ears and head in the direction of sounds. 

Interaction The animal interacts with another individual in the same enclosure. 

Abnormal Repetitive and non-wild type behaviour. 

Other Other behaviours not described in the ethogram. 

Non-visible The animal is not visible, is in the enclosure outside area, or is inside dens. 

 

Sound data were collected using a sound level meter (SLM) (Svantek SVAN 957) and 

a recorder (Wildlife Acoustics Song Meter SM3) installed inside the animal’s enclosure, 

which registered the sound perceived by the animals. Both types of equipment measured and 

recorded the sound during the days of behavioural data collection, 24 hours a day, and the 

SLM was programmed to register the sound pressure levels using an integration period of 30 

seconds. This 30 seconds interval follows the behavioural record and permits a comparison of 

the expressed behaviour and the sound levels at the moment. The SLM device was calibrated 

before and after the measurement period using the calibrator included in the SVAN 957 kit. 
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This specific meter model permits the simultaneous record of numerous acoustic metrics, 

such as Leq, Ln, in the 1/3 octaves frequency bands, and all required sound level weighting 

filters (A, C, and Z). This wide range of acoustic metrics was used in the statistical analysis; 

this allowed the use of a better metric to explain the species’ responses to noise. The acoustic 

recorder was used to identify the source of the noise in case of a single decibel measurement. 

For animals that had access to an outside area of the enclosure (rhinos and okapi), the 

weather was recorded (cloudy, rain, or sunny) during the observation hour and, during the 

high season, a temperature data logger was used (Testo 174T): one in the indoor enclosure 

and one in the outside area. 

3.3. Statistical analysis 

Sound pressure levels data were processed in two different ways. First, for the analysis of the 

difference between the sound levels when the zoo was open and closed and between the two 

studied visitors seasons. For this, the sound data was logarithmically averaged per hour 

(LAeq,1hour, LA10,1hour, and LA90,1hour). Second, for the analysis of the animal’s response to noise, 

the sound data related to the time of the behavioural observations were logarithmic averaged 

in blocks of ten minutes to match with the visitor count data (LAeq,10min, LA10,10min, LA90,10min, 

LZeq,10min, LZ10,10min, and LZ90,10min). 

The differences between sound pressure levels when the zoo was open and closed and 

between visitor seasons were verified using a Kruskal-Wallis test, a rank-based 

nonparametric test (because sound data did not meet the requirements for parametric 

statistics). The result of this test (expressed as H) indicates how large the discrepancy among 

the compared ranks is. 

Before carrying out the statistical tests, the observed behaviours were grouped due to 

their high number in the ethogram and to avoid a statistical error during the repetition of tests 
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since each behaviour is analysed separately. Therefore, it was decided to cluster the 

behaviours in the following categories: Active (Locomotion, Grooming, Excretion, 

Interaction, Abnormal, and Other), Inactive (Stand and Rest), Feed, Alert (Stand alert and 

Rest alert), and Non-visible (Non-visible for the aye-aye, Animal in the outside area, for 

okapi and rhinos; Animal inside the den, for the sloths). Behaviours were summed in blocks 

of ten minutes to match with the visitor count data. 

The behavioural data presented a non-normal distribution, because of this, the 

relationship between the behaviours and other variables, such as sound pressure levels, 

number of visitors, individual (when there was more than an animal being observed), and 

weather (when animals had access to an outside area) were investigated using a generalised 

linear model (GLM) with a Poisson distribution (Zuur et al., 2009). The Poisson distribution 

is used for count data and assumes the logarithm of its expected value following the equation 

Y = e^(β0 + β1X). In practical terms, when the explanatory variable (X) increases by a unit of 

1, the mean of the response variable (Y) is multiplied by the exponential of β1 (Zuur et al., 

2009). 

For each GLM model, behaviours were used as the response variable and the other 

variables were used as explanatory variables. In cases when the sound pressure levels and the 

number of visitors presented high correlation factor (as tested by Pearson’s correlation), only 

SPL was used in the model to avoid multicollinearity (Allen, 1997, Zuur et al., 2009). In 

addition, to decide which acoustic metrics (LAeq, LA10, LA90, LZeq, LZ10, and LZ90; see Section 

2 for definition of these metrics) would be used in the model as the sound pressure level 

explanatory variable, a correlation matrix was constructed and the acoustic metric that had 

the highest correlation factor for each behaviour was used in the model. 

Prior to the final analysis, the GLM models were selected considering overdispersion 

and the relevance of the variables to the test with the aim of finding the optimal model. When 
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an overdispersion of data was detected, the standard errors were corrected using a quasi-GLM 

model. Following this, when some terms were not significant a selection criterion was made 

using the command “drop1“ (in RStudio), which drops one explanatory variable, in turn, and 

each time applies an analysis of deviance test (Zuur et al., 2009). 

All analyses were conducted in RStudio (RStudio Team, 2016). 

3.4. Results 

General sound pressure levels 

The four enclosures studied present different patterns of environmental sounds and sound 

sources that dominated the sonic environment. 

The aye-aye’s enclosure was generally louder during the low season compared to the 

high season (LAeq: H=78.12, p<0.000). During the low season, there was no difference in 

sound pressure levels when the zoo was open or closed (LAeq: H=0.60, p=0.437; LA10: 

H=0.13, p=0.717; LA90: H=1.61, p=0.204). During the high season there was no difference in 

the background noise when the zoo was open or closed (LA90: H=2.43, p=0.119); however, 

the zoo tended to be louder when open than when closed (LAeq: H=3.93, p=0.048; LA10: 

H=4.63, p=0.031) (Figure 5). The correlation coefficients between the number of visitors and 

the acoustic metrics were low (below 0.2) in both seasons. 

Figures 6 and 7 show that ventilation and heating system dominated the soundscape 

of the aye-aye enclosure, specifically, during low season when the heating system was on 

during the whole day. This explains the small amplitude range of the sound in this season of 

about 9.1 dB when the zoo was open and 13.9 dB when the zoo was closed (Figure 5 and 7). 

During the high season, the ventilation system was on most of the time, both day and night, 

but other kinds of sounds were also perceived, such as public conversation and birds singing 
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in the early morning (Figure 6). The amplitude range was found to be high when the zoo was 

closed (30.8 dB) and moderate when the zoo was open (17.6 dB). 

There was no difference in the sound pressure levels of the black rhino’s enclosure 

between seasons (LAeq: H=0.17, p=0.679). In both seasons, there was no difference in the 

background noise (LA90) when the zoo was open or closed (High season: H=0.01, p=0.942; 

Low season: H=0.18, p=0.674). However, the equivalent noise levels (LAeq) were higher 

when the zoo was open (High season: H=53.17, p<0.000; Low season: H=33.48, p<0.000) 

and higher amplitudes of the sound, represented by LA10, were registered more frequently 

when the zoo was open (High season: H=50.51, p<0.000; Low season: H=40.64, p<0.000) 

(Figure 8). The correlation coefficient between the number of visitors and the background 

noise (LA90) was low (0.31) during low season and moderate during high season (0.53). The 

number of visitors and the other two metrics (LAeq and LA10) have a moderate correlation in 

low (0.53) and high (0.67) season. 

As per the aye-aye’s enclosure, the rhinos’ paddock soundscape was dominated by 

ventilation and heating systems (Figure 9 and 10). During the high season, the ventilation 

system was on all day, which reflected in a small to moderate amplitude range of the sound 

(13.1 dB closed zoo and 19.8 dB open zoo). Due to the arrangements of the enclosure, where 

the visitors and animals are not isolated (i.e. no glass barrier), the visitors’ conversation was 

louder during the time the zoo was open, compared to the aye-aye enclosure. During the low 

season, the heating system was not on the whole day, which caused higher amplitude range of 

the sound compared to high season (67.6 dB closed zoo and 41.3 dB open zoo). Sounds 

coming from the public was also perceived, and it is interesting to see in Figure 10 that public 

conversation was considerably louder when the heating system was on compared to when it 

was off. 
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The okapi enclosure was generally louder during the low season compared to the high 

season (LAeq: H=22.97, p<0.000). With an exception of the background noise during low 

season, when there was no difference in the sound levels during open and closed times at the 

zoo (LA90: H=3.12, p=0.078), the enclosure was noisier when the zoo was open compared to 

closed in both seasons (High season: LAeq: H=27.95, p<0.000; LA10: H=34.72, p<0.000; LA90: 

H=5.85, p=0.0156 - Low season: LAeq: H=38.43, p<0.000; LA10: H=41.79, p<0.000) (Figure 

11). The number of visitors had a low correlation with the background noise in low (0.49) 

and high (0.44) seasons, and a moderate correlation (0.7) with the other metrics (LAeq and 

LA10) in both seasons. 

Figures 12 and 13 show that the soundscape in the okapi enclosure was dominated by 

the ventilation and heating system when the zoo was closed and by the public conversation 

when the zoo was open (i.e. no glass barrier). Amplitude ranges were considerably higher in 

both seasons and when the zoo was open or closed: a mean of 33.4 dB. 

The sloths’ area presented higher sound pressure levels during the high season (LAeq: 

H=7.01, p<0.009). In both seasons, the zoo was louder when open compared to when closed 

independent of the acoustic metrics used for the analysis (High season: LAeq: H=67.75, 

p<0.000; LA10: H=68.09, p<0.000; LA90: H=68.77, p<0.000 - Low season: LAeq: H=63.69, 

p<0.000; LA10: H=63.69, p<0.000; LA90: H=63.69, p<0.000) (Figure 14). All acoustic metrics 

were strongly correlated with the number of visitors in both seasons (values between 0.72 and 

0.87). 

The sloths’ enclosure was the only studied area where the sound from ventilation or 

heating systems was not perceived. In both seasons, when the zoo was open, the soundscape 

was dominated by the public conversation and by an educational video recording that plays in 

a room next to the sloths’ area. As can be seen in Figures 15 and 16, the amplitude range was 
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higher when the zoo was open during high season (42.3 dB) compared to the low season 

(33.6 dB).
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Figure 5. Sound pressure levels (LAeq,1hour, LA10,1hour, and LA90,1hour) in the aye-aye’s enclosure. 

Comparisons between high and low seasons and times when Chester Zoo, UK, is open and 

closed to the public. High season public opening times: from 10:00 to 17:00. Low season public 

opening times: from 10:00 to 16:00. 
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Figure 6. Aye-aye’s enclosure sound pressure levels on the busiest visitor day during the high season data collection at Chester Zoo, UK. Hours when 

the zoo was open to the public are represented in white background (from 10:00 to 17:00) and hours when the zoo was closed to the public are 

represented in grey background. Average equivalent sound levels (LAeq): for the day 55.3 dB, open zoo 56.9 dB, closed zoo 54.6 dB. 
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Figure 7. Aye-aye’s enclosure sound pressure levels on the busiest visitor day during the low season data collection at Chester Zoo, UK. Hours when 

the zoo was open to the public are represented in white background (from 10:00 to 16:00) and hours when the zoo was closed to the public are 

represented in grey background. Average equivalent sound levels (LAeq): for the day 56.9 dB, open zoo 56.7 dB, closed zoo 56.9 dB.
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Figure 8. Sound pressure levels (LAeq,1hour, LA10,1hour, and LA90,1hour) in the black rhinos’ enclosure. 

Comparisons between high and low seasons and times when Chester Zoo, UK, is open and 

closed to the public. High season public opening times: from 10:00 to 18:00. Low season public 

opening times: from 10:00 to 16:00. 
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Figure 9. Black rhinos’ enclosure sound pressure levels on the busiest visitor day during the high season data collection at Chester Zoo, UK. Hours 

when the zoo was open to the public are represented in white background (from 10:00 to 18:00) and hours when the zoo was closed to the public are 

represented in grey background. Average equivalent sound levels (LAeq): for the day 57.2 dB, open zoo 58.8 dB, closed zoo 56.1 dB. 
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Figure 10. Black rhinos’ enclosure sound pressure levels on the busiest visitor day during the low season data collection at Chester Zoo, UK. Hours 

when the zoo was open to the public are represented in white background (from 10:00 to 16:00) and hours when the zoo was closed to the public are 

represented in grey background. Average equivalent sound levels (LAeq): for the day 59.0 dB, open zoo 59.2 dB, closed zoo 58.9 dB.
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Figure 11. Sound pressure levels (LAeq,1hour, LA10,1hour, and LA90,1hour) in the okapi’s enclosure. 

Comparisons between high and low seasons and times when Chester Zoo, UK, is open and 

closed to the public. High season public opening times: from 10:00 to 17:00. Low season public 

opening times: from 10:00 to 16:00. 
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Figure 12. Okapi’s enclosure sound pressure levels on the busiest visitor day during the high season data collection at Chester Zoo, UK. Hours when 

the zoo was open to the public are represented in white background (from 10:00 to 17:00) and hours when the zoo was closed to the public are 

represented in grey background. Average equivalent sound levels (LAeq): for the day 52.1 dB, open zoo 56.6 dB, closed zoo 46.0 dB. 
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Figure 13. Okapi’s enclosure sound pressure levels on the busiest visitor day during the low season data collection at Chester Zoo, UK. Hours when 

the zoo was open to the public are represented in white background (from 10:00 to 16:00) and hours when the zoo was closed to the public are 

represented in grey background. Average equivalent sound levels (LAeq): for the day 53.9 dB, open zoo 58.1 dB, closed zoo 50.6 dB.
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Figure 14. Sound pressure levels (LAeq,1hour, LA10,1hour, and LA90,1hour) in the two-toed sloths’ 

enclosure. Comparisons between high and low seasons and times when Chester Zoo, UK, is 

open and closed to the public. High season public opening times: from 10:00 to 18:00. Low 

season public opening times: from 10:00 to 16:00. 
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Figure 15. Two-toed sloths’ enclosure sound pressure levels on the busiest visitor day during the high season data collection at Chester Zoo, UK. 

Hours when the zoo was open to the public are represented in white background (from 10:00 to 18:00) and hours when the zoo was closed to the 

public are represented in grey background. Average equivalent sound levels (LAeq): for the day 61.6 dB, open zoo 66.9 dB, closed zoo 43.8 dB. 
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Figure 16. Two-toed sloths’ enclosure sound pressure levels on the busiest visitor day during the low season data collection at Chester Zoo, UK. 

Hours when the zoo was open to the public are represented in white background (from 10:00 to 16:00) and hours when the zoo was closed to the 

public are represented in grey background. Average equivalent sound levels (LAeq): for the day 59.3 dB, open zoo 65.1 dB, closed zoo 46.5 dB. 
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3.4.1. Aye-aye 

The data in Table 12 indicates that the aye-aye’s behaviour was only affected by visitor 

presence and not by noise. Some behaviours during high and low season were slightly 

influenced by the presence of visitors. In general, the behaviours listed in Table 12 were 

altered around 1% of their frequency per visitor (Exponential coefficient column in Table 

12). This means that, in the case of this animal, only a group of numerous visitors could cause 

a perceivable change in behaviour, such as making the animal hide more, and be less active 

during high season, or be more inactive and feed more in the low season (Figures 17 and 18). 

Table 12. GLM results for the optimal models describing the relationship between the aye-aye’s 

behaviours and the independent variable (visitors count) during high and low seasons in 

Chester Zoo, UK. 

Season Behaviour 
Independent 

variable 

Estimate coefficient1 

(±SE) 

Exponential 

coefficients2 
t values3 

High 
Active Visitors -0.003894(±0.001507) 0.9961136 -2.583* 

Non-visible Visitors 0.009553(±0.003636) 1.009599 2.627* 

Low 

Active Visitors -0.007673(±0.002500) 0.9923564 -3.069** 

Inactive Visitors 0.023136(±0.008276) 1.023406 2.796** 

Feed Visitors 0.010477(±0.003152) 1.010532 3.324** 
1 Model results for each variable. 2 Results exponentially transformed according to Poisson regression equation. 
3. Standard deviations distance from the mean (z values from GLM Poisson and t values for quasi-GLM 

Poisson). * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
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Figure 17. Aye aye’s behaviours and visitors count during high season data collection at Chester 

Zoo, UK. 

 
Figure 18. Aye aye’s behaviours and visitors count during low season data collection at Chester 

Zoo, UK. 
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3.4.2. Black rhinos 

The black rhinos stayed in the outside area of their enclosure during the whole time of the 

high season observations, consequently, the behavioural responses are only from low season 

observations (Table 13 and Figure 19). In this case, the different individuals in the enclosure 

were used as an independent variable, as well as the weather when analysing the “animal in 

the outside area” behaviour category. 

Equivalent sound levels negatively impacted inactive behaviour of all individuals. 

Animals decreased in around 4% the expression of inactive behaviour per increase of one 

decibel (Exponential coefficient column in Table 13).  

Even though significantly different, feed related behaviours were only slightly 

influenced by visitors’ presence. 

Animals were less alert with more visitors inside the paddock and more alert in 

situations of high equivalent sound levels. Furthermore, alert behaviour presented different 

responses to equivalent sound levels depending on the individual (Figure 20). Female 1 was 

the most alert individual due to an increase in the sound pressure levels, followed by Female 

2. 

The rhinos spent more time in the outside area when the background sound levels 

were high in the paddock. An increase of one decibel in the background sound increased by 

2% the chance of an individual being outside. There was also an influence of the weather in 

the preference for the outside area: sunny weather was preferred for being outside. 

Inherent individual differences in inactive and feed behaviours expression can be 

visualised in Table 13. 
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Table 13. GLM results for the optimal models describing the relationship between black rhinos’ 

behaviours and the independent variables (LAeq,10min, LA90,10min, visitors count, individual, and 

weather) during low season in Chester Zoo, UK. 

Season Behaviour 
Independent 

variables 

Estimate coefficient1 

(±SE) 

Exponential 

coefficients2 
t values3 

Low 

Inactive 

LAeq -0.03280(±0.01178) 0.9677321 -2.785** 

Male calf 0.39296(±0.13724) 1.481359 2.863** 

Female 2 -0.03799(±0.15140) --- -0.251 

Feed 

Visitors 0.005599(±0.001942) 1.005615 2.883** 

Male calf -0.364582(±0.128258) 0.6944869 -2.843** 

Female 2 0.087203(±0.113671) --- 0.767 

Alert 

Visitors -0.011898(±0.005779 0.9881725 -2.059* 

LAeq 0.120936(±0.038882) --- 3.110 

Male calf 7.084890(±2.904960) --- 2.439 

Female 2 2.513562(±3.583715) --- 0.701 

LAeq*Male 

calf 
-0.127846(±0.050351) 0.8799889 -2.539* 

LAeq* Female 

2 
-0.057263(±0.061557) --- -0.930 

Animal 

outside 

LA90 0.02849(±0.01264) 1.0289 2.253* 

Cloudy 

weather 
-0.34582(±0.19117) --- -1.809 

Rainy 

weather 
-1.88707(±0.61301) 0.1515151 -3.078** 

1 Model results for each variable. 2 Results exponentially transformed according to Poisson regression equation. 
3. Standard deviations distance from the mean (z values from GLM Poisson and t values for quasi-GLM 

Poisson). * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 

 

 
Figure 19. Black rhinos’ behaviours and visitor count, and decibels levels (LAeq,10min and 

LA90,10min) during the low season data collection at Chester Zoo, UK. 
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Figure 20. Black rhinos’ alert behaviour response to LAeq,10min by individual, during low season 

in Chester Zoo, UK. Trend curves based on GLM result: Female 1 – Alert behaviour = e^(-

6.669857+0.120936*LAeq); Calf – Alert behaviour = e^(0.415033-0.00691*LAeq); Female 2 – Alert 

behaviour = e^(-4.156295+0.063673*LAeq). 

3.4.3. Okapi 

Differently, from previous species, the okapi stronger responses were found according to 

equivalent sound levels with flat frequency weighting (Z) (Table 14 and Figures 21 and 22). 

Number of visitors had a low correlation coefficient with the Z-weighting metrics, so both 

variables were included in the GLM models, in addition to the weather conditions for “animal 

in the outside” behaviour. 

In the high season, all behaviour categories were affected by equivalent sound levels. 

Active, inactive, feed, and alert behaviours presented a frequency decrease in response to the 

increase in the level of decibels. On the contrary, the okapi preferred to stay more time 

outside when the sound levels were high. Interestingly, the effect of visitors, when it 

happened, was the opposite of the noise effect: the animal was more active, more alert, and 

spent less time outside in the presence of visitors. In addition, visitors’ impact (around 1% 
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per visitor increase) was lower than the sound levels impact (around 11% per dB). Regarding 

the weather, the okapi spent more time outside when it was sunny. 

During the low season, active, feed, and alert behaviours were affected by equivalent 

sound levels. Different from what was found before, the okapi was more active and more 

alert and fed less with increasing sound pressure levels. Active behaviour was also slightly 

and negatively impacted by visitor presence. 

Table 14. GLM results for the optimal models describing the relationship between the okapi’s 

behaviours and the independent variables (LZeq,10min, visitors, and weather), during high and low 

seasons in Chester Zoo, UK. 

Season Behaviour 
Independent 

variables 

Estimate coefficient1 

(±SE) 

Exponential 

coefficients2 

z or t 

values3 

High 

Active 
Visitors 0.019263(±0.003186) 1.01945 6.047t*** 

LZeq -0.114574(±0.025034) 0.8917459 -4.577t*** 

Inactive LZeq -0.17389(±0.03507) 0.8403893 -4.959t*** 

Feed LZeq -0.05018(±0.02432) 0.9510582 -2.063t* 

Alert 
Visitors 0.013404(±0.003991) 1.013494 3.358z*** 

LZeq -0.116944(±0.028804) 0.889635 -4.060 z*** 

Animal 

outside 

Visitors -0.014055(±0.005127) 0.9860433 -2.742t** 

LZeq 0.122480(±0.019594) 1.130297 6.251t*** 

Cloudy 

weather 
-1.514899(±0.357925) 0.2198304 -4.232t*** 

Rain weather -1.767899(±0.412461) 0.1706912 -4.286t*** 

Low 

Active 
Visitors -0.022786(±0.006761) 0.9774716 -3.370t*** 

LZeq 0.292725(±0.051002) 1.340074 5.740t*** 

Feed LZeq -0.08575(±0.03986) 0.9178237 -2.151t* 

Alert LZeq 0.3960(±0.1519) 1.485869 2.607t** 
1 Model results for each variable. 2 Results exponentially transformed according to Poisson regression equation. 
3. Standard deviations distance from the mean (z values from GLM Poisson and t values for quasi-GLM 

Poisson). * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
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Figure 21. Okapi’s behaviours and visitor count, and decibels levels (LZeq,10min) during the high 

season data collection at Chester Zoo, UK. 

 
Figure 22. Okapi’s behaviours and visitor count, and decibels levels (LZeq,10min) during the low 

season data collection at Chester Zoo, UK. 
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3.4.4. Two-toed sloths 

In the analysis of the sloths’ behaviour, visitor number was not included in the models 

because of its high correlation with SPL. Active, inactive, and alert behaviour were expressed 

differently between individuals during high season according to the equivalent sound levels. 

An increase in the sound pressure levels resulted in a more active and more alert male in 

comparison to the female response (Figures 23 and 25). In a response to an increase in the 

noise levels, inactive behaviour decreased for both animals; however, the male response was 

less strong than the female’s response (Figure 24). Animals did not use the den in response to 

noise, but the female used it more frequently than the male. 

During low season, the male was more active than the female, regardless of the 

analysed variable. The female sloth presented a decrease in the expression of inactive and 

alert behaviours in high equivalent sound levels, compared to the male sloth (Figure 26 and 

27). This possibly reflected the female’s strong preference to use the den in high sound levels 

situations compared to the male (Figure 28). All the results described here can be seen in 

Table 15. 
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Table 15. GLM results for the optimal models describing the relationship between the sloths’ 

behaviours and the independent variables (LAeq,10min and individuals), during the high and low 

seasons in Chester Zoo, UK. 

Season Behaviour 
Independent 

variables 

Estimate coefficient1 

(±SE) 

Exponential 

coefficients2 

z or t 

values3 

High 

Active 

LAeq -0.03301(±0.03537) --- -0.933 

Individual – 

Male 
-4.47998(±2.52023) --- -1.778 

LAeq*Male 0.09635(±0.04027) 1.101144 2.393t* 

Inactive 

LAeq -0.10216(±0.03368) --- -3.033t 

Individual – 

Male 
-2.26078(±2.11502) --- -1.069 

LAeq*Male 0.07617(±0.03595) 1.079146 2.119t* 

Alert 

LAeq -0.06637(±0.03478) --- -1.908 

Individual – 

Male 
-2.87216(±2.32612) --- -1.235 

LAeq*Male 0.07787(±0.03823) 1.080982 2.037t* 

Use of den 
Individual – 

Male 
-3.72668(±0.36883) 0.02407262 -10.10t*** 

Low 

Active 
Individual – 

Male 
0.7341(±0.1963) 2.083606 3.741t*** 

Inactive 

LAeq -0.05985(±0.01684) --- -3.554t 

Individual – 

Male 
-2.76959(±1.36572) --- -2.028t 

LAeq*Male 0.05283(±0.02225) 1.05425 2.374t* 

Alert 

LAeq -0.27821(±0.07171) --- -3.879t 

Individual – 

Male 
-14.76961(±4.27903) --- -3.452t 

LAeq*Male 0.28495(±0.07698) 1.329696 3.701t*** 

Use of den 

LAeq 0.07437(±0.02413) --- 3.082t 

Individual – 

Male 
5.13677(±2.98925) --- 1.718t 

LAeq*Male -0.10623(±0.04813) 0.8992178 -2.207t* 
1 Model results for each variable. 2 Results exponentially transformed according to Poisson regression equation. 
3. Standard deviations distance from the mean (z values from GLM Poisson and t values for quasi-GLM 

Poisson). * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
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Figure 23. Sloths’ active behaviour response to LAeq,10min by individual, during high season in 

Chester Zoo, UK. Trend curves based on GLM result: Female – Active behaviour = e^(2.15242-

0.03301*LAeq); Male – Active behaviour = e^(-2.32756+0.06334*LAeq). 

 
Figure 24. Sloths’ inactive behaviour response to LAeq,10min by individual, during high season in 

Chester Zoo, UK. Trend curves based on GLM result: Female – Inactive behaviour = 

e^(6.41371-0.10216*LAeq); Male – Inactive behaviour = e^(4.15293-0.02599*LAeq). 
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Figure 25. Sloths’ alert behaviour response to LAeq,10min by individual, during high season in 

Chester Zoo, UK. Trend curves based on GLM result: Female – Alert behaviour = e^(1.83739-

0.06637*LAeq); Male – Alert behaviour = e^(-1.03477+0.0115*LAeq). 

 

 
Figure 26. Sloths’ inactive behaviour response to LAeq,10min by individual, during low season in 

Chester Zoo, UK. Trend curves based on GLM result: Female – Inactive behaviour = 

e^(5.65154-0.05985*LAeq); Male – Inactive behaviour = e^(2.88195-0.00702*LAeq). 
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Figure 27. Sloths’ alert behaviour response to LAeq,10min by individual, during low season in 

Chester Zoo, UK. Trend curves based on GLM result: Female – Alert behaviour = e^(13.38498-

0.27821*LAeq); Male – Alert behaviour = e^(-1.38463+0.00674*LAeq). 

 
Figure 28. Sloths’ use of den response to LAeq,10min by individual, during low season in Chester 

Zoo, UK. Trend curves based on GLM result: Female – Use of den = e^(-

2.47372+0.07437*LAeq); Male – Use of den = e^(2.66305-0.03186*LAeq). 
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3.5. Discussion 

General sound pressure levels 

The results of the sound pressure levels study for each enclosure indicate that different 

characteristics of an area can influence the sound levels that reach the animals and the source 

of noise that dominates the sonic environment. For example, the presence or not of a glass 

barrier separating the animals from the public. 

Due to the large number of visitors during the high season in the zoo, which causes a 

constant movement and events around the venue, there was an expectation of higher levels of 

sound pressure in the high season compared to the low season. Surprisingly, this expectation 

was only found in the sloths’ enclosure. The okapi and aye-aye’s enclosures presented higher 

sound pressure levels in the low season, and in the rhinos’ enclosure, sound levels were 

similar in both seasons (low and high). This interesting finding (e.g. low season louder than 

high season) can be explained by the heating system. As can be seen in Figures 7 and 13, the 

soundscape of both enclosures was dominated by the heating system sound, which was 

around 50 dB(A) for the okapi, and around 57 dB(A) for the aye-aye. During high season, 

even though there was an action of the ventilation system, the system was switched on for a 

shorter period and the baseline noise of the system was quieter (around 53 dB(A) for the aye-

aye and 45 dB(A) for the okapi).  

Another expectation, which was not true for all enclosures, was the anticipation of the 

zoo being louder during visitor opening times compared to closed times. The aye-aye’s 

enclosure was the only one where there was no difference in the sound levels comparing 

opening and closed times of the zoo, in this case during low season. As it was mentioned 

before, during low season the aye-aye sonic environment was dominated by the heating 

system during the day, which could have caused a masking of other sounds during the day 
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and implicated in a very low sound levels variation during this season between opening and 

closed times. 

In all situations described here, the sound pressure levels found in the animals’ 

enclosures were always higher than the sound pressure levels usually found in their natural 

environments, contrasting severely with what the animals would encounter if they were in the 

wild. For instance, the black rhinos in Chester Zoo are facing an average sound pressure 

levels of more than 50 dB(A); in savannahs, the average noise levels are expected to be 

around 30 dB(A) (Morgan and Tromborg, 2007).  

Moderate to high Pearson’s correlation factors showed that the visitors were probably 

responsible for most of the sound produced in the black rhinos, okapi, and sloths’ enclosures 

during opening times of the zoo, in agreement with other studies (Larsen et al., 2014, Morgan 

and Tromborg, 2007, Quadros et al., 2014). The only exception was the aye-aye’s area, where 

the correlation factor between sound levels and number of visitors was very low. This can be 

explained by a possible masking of the visitors’ sound caused by the ventilation and heating 

systems. Another explanation is that different characteristic of the aye-aye’s area with glass 

barriers, which are not present in the other species’ enclosures, can be protecting the aye-aye 

from the visitors’ noise because glass can be a good sound insulation in some situations as in 

double lead and sealed frame (Marsh, 1971). 

One curious pattern that can be observed in Figures 10, 12, and 13 is that an increase 

in the background noise (LA90, the orange lines), triggered by the heating and ventilation 

systems, made the public speak louder than moments when the systems were switched off. 

This pattern is an indicator of the Lombard effect, which is an involuntary vocal response to 

the background noise (Zollinger and Brumm, 2011). 
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3.5.1. Aye-aye 

The aye-aye behaviour was only affected by the presence of the visitors and not by sound. 

The architecture of this enclosure with glass barriers between the visitors and the animal’s 

area can explain the lack of influence of the sound pressure levels on the aye-aye behaviour. 

In addition, the constant sound coming from the heating and ventilation system, besides being 

able to mask the visitors’ conversation, it could have created a continuous and unchangeable 

sonic environment, that is not causing any kind of behavioural reaction in consequence to the 

sound. 

In both, low and high seasons, the presence of visitors caused a decrease in the aye-

aye activity, making the animal hide more, and be more inactive. The same response was 

found in cats (leopards and jaguars); animals were more visible and possibly rested less as a 

way to avoid visitors (Mallapur and Chellam, 2002, Sellinger and Ha, 2005). These effects 

should be observed more carefully during high season when almost 140 visitors can pass 

through the aye-aye area in a ten-minute interval, which is about the double compared to the 

investigated low season. Feeding-related behaviour was also affected in the way that, during 

the low season, the aye-aye tends to eat more in the presence of more visitors. This result 

agrees with the finding of another study in which orang-utans also increased feeding 

behaviours in presence of visitors (Choo et al., 2011). In the case of the present result, as it 

was discussed before, probably the feeding behaviour could have attracted more visitors to 

watch the aye-aye (i.e. positive feedback at play). The food resources in the aye-aye 

enclosure were commonly located in places close to the visitors’ viewing windows. Since the 

aye-aye is most of the time hard to spot in the dark, when the animal was engaged in feeding 

behaviour visitors were likely to spend more time observing the aye-aye and attracting other 

visitors to do the same. 
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3.5.2. Black rhinos 

The black-rhinos rested less with an increase of the equivalent sound levels. Following the 

information in Figure 10, equivalent sound levels could vary by more than 40 dB(A) when 

the zoo was open, which resulted in significantly less rest time for the rhinos on busy visitor 

days at the zoo. The same restless response to noise was also found in captive giant pandas 

during noisy days in zoos (Powell et al., 2006). 

The influence on feeding-related behaviours was similar to the aye-aye, where the 

animal expressed this behaviour more in the presence of more visitors. However, in the 

rhinos’ case, the influence is too slight to be a focus of concern for the zoo, less than one per 

cent increase in feed behaviour frequency per visitor. In addition, rhinos usually spent a good 

deal of the active time in feeding-related behaviours (Hutchins and Kreger, 2006, Mukinya, 

1977), confirming that this increase should not be a source of concern for zoos. 

Interestingly, the alert behaviour presented different responses to visitors and to 

equivalent sound levels. An increase in the number of visitors made the rhinos less alert. In 

contrast, an increase in the decibel levels made the rhinos, specifically the females, more 

alert, which is a result consistent with the literature (Francis and Barber, 2013, Larsen et al., 

2014, Mansour et al., 2000). Possibly the rhinos do not feel threated by visitors, which did 

not cause a vigilance arouse. However, a noisy environment can prevent the animals from 

hearing important sounds (e.g. calf vocalisation), causing a masking effect (Barber et al., 

2010, Francis and Barber, 2013) which can intensify vigilance behaviour. This increase in 

vigilance in response to noise was also found in gorillas (Clark et al., 2012). 

The preference for the outside was influenced by the background noise and by the 

weather. The background noise, dominated by the heating system varied around 30 dB(A) 

during the opening times of the zoo (Figure 10), consequently, from the moment the heating 

system was switched off from the moment it was switched on, this change of more than 20 
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dB(A) in the sound levels, increases in 40% the animals’ preference for being outside. This 

result also accords with another study in which pandas increased the apparent effort of 

leaving the enclosure in noisier days (Owen et al., 2004) and also with a study that proved 

noise as an important factor influencing marmoset’s choice of area (Duarte et al., 2011). 

Based on the analysis of the low season data, the fact that the rhinos had stayed in the 

outside area most of the time during the high season may have happened due to the high 

decibels levels caused by the ventilation system switched on during the entire day (Figure 9). 

However, the outside area was not investigated during this study, meaning that the sound 

pressure levels were not measured outside, therefore, this is only speculation. 

3.5.3. Okapi 

The okapi behaviour responses being more strongly related to the equivalent sound levels 

with Z weighting (LZeq) could be associated to this species sensitivity to low-frequencies 

sounds, not heard by humans, as it was found by Lindsey et al. (1993). The sound level meter 

used in this study measures sound in Z weighted filter with flat response from 10Hz to 

20kHz, differently from the A-weighted filter, used with the other species, in which there is a 

very low sensitivity to lower frequencies. The okapi behavioural variation being higher in 

association with the Z-weighted sound pressure levels can indicate that these lower 

frequencies are a potential source of annoyance for this animal. 

During the high season, the okapi decreased the expression of all observed behaviours 

and preferred to be in the outside area due to an increase in decibel levels. This could mean 

that in a moment of intensification of sound pressure levels, the animal interrupted any 

behaviour being expressed to move to the outside area. The same pattern was observed in the 

rhinos’ behavioural analysis (see Sections 3.4.2 and 3.5.2) and, as it was mentioned before, it 

is in accordance with another study (Owen et al., 2004). 
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In the low season data collection, it was possible to notice that in some moments of 

the day the zookeepers closed the okapi access to the outside area to prevent the animal of 

having continuous contact with the low temperatures in the outside. This situation can explain 

the increase in active and alert behaviours according to an increase in the sound levels, 

contrary to what has happened during the high season. As the okapi could not escape from 

the high sound levels in the inside, the animal moved more around the enclosure (i.e. increase 

in the active behaviour) possibly trying to find a quieter area (Francis and Barber, 2013, 

Owen et al., 2004). The animal was also more vigilant (increase in the alert behaviour), 

possibly due to sound masking caused by the high internal sound levels (Francis and Barber, 

2013, Larsen et al., 2014). 

Visitors’ impact on animals’ behaviour was the opposite of the impact caused by the 

sound. For the animal, visitors could be a distraction from the sound or maybe this okapi feels 

more comfortable around quiet visitors. Forced husbandry condition in zoos, can make the 

animals become more tolerant to humans (Mansour et al., 2000). However, further research 

would be necessary to better understand this difference. 

In all cases, the influence of visitors on the animal behaviour was substantially lower 

than the influence caused by sound. Therefore, the zoo should focus firstly on mitigating the 

sound effect and then consider or even re-investigate the visitors’ effect in the future. In 

addition, further investigation should be done to detect the emitted frequency of some devices 

inside the animal area (such as CCTV and air system) and check if these devices could be a 

source of stress to this species. 

3.5.4. Two-toed sloths 

The male’s active response to noise during the high season is in agreement with studies found 

in the literature (Owen et al., 2004, Powell et al., 2006) and should be taken carefully into 
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consideration when sound levels are high. An increase in locomotion behaviour can be 

reckoned as an indicator of stress (Francis and Barber, 2013, Owen et al., 2004).  

Vigilance response to noise (increase in alert behaviour) even though significant 

should not be of great concern due to its small variation according to noise levels (Figures 25 

and 27).  

As it was discussed for the rhinos and the okapi, the sloths also rested less following 

an increase in the sound levels. Figures 15 and 16 presented a high sound variation of the 

sound during opening times of the zoo (42.3 dB(A) during high season and 33.6 dB(A) 

during low season). These results could be a major source of concern of the zoo for the 

reason that the high sound levels can be preventing the sloths of expressing a natural resting 

behaviour (e.g. sloths are usually active for only 25% of the time - Adam (1999)). 

During the low season, the female sloth used the den more frequently in response to 

the high equivalent sound levels. This behavioural response confirms the importance for 

some animals of having the option to escape from the noise and how noise can be involved in 

alterations of animals’ spatial distribution (Duarte et al., 2011, Francis and Barber, 2013). 

3.6. Conclusions 

The present study had the attempt of identifying enclosures sonic characteristics that can 

affect the animals and identify animals’ behavioural aspects that are normal in a zoo 

environment and that can be used in an effort to improve animal well-being. 

It is clear from the present study results that ventilation and heating systems are a 

common source of sound in some Chester Zoo enclosures and it is probably a common 

source of sound in temperate weather countries zoos as well. This is different from findings 

of tropical countries where the source of sound in zoos comes mainly from visitors (Quadros 

et al., 2014). The main problem perceived here caused by the constant sound of these 
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mentioned systems is the Lombard effect in the visitors’ conversation when people tended to 

speak louder in a compensation of the high background noise. Therefore, these higher sound 

pressure levels had the effects previously discussed on the animals. Different barriers to 

diminish the sound coming from ventilation and heating system were already tested and 

proved to be effective in reducing decibel levels and can be used to cover the systems (Orban 

et al., 2017). 

The continuous on-off noise during the whole day (including during the night) caused 

by the ventilation/heating system, could be triggering some sleeping disturbance in the 

animals. The present study did not investigate behavioural data during the night, but for 

humans, sleeping in an environment of more than 55 dB is considered a health hazard (Hume 

et al., 2012) and the guidance on sound insulation and noise reduction for buildings 

recommends 30 dB(A) (BS 8233, 2014). For humans, the contact with chronic stressors can 

induce changes in the brain structure, immune system, and can cause cardiovascular diseases 

(Mariotti, 2015). In animals, this is not different and chronical sources of stress can also 

cause changes in the immune system (Martin et al., 2011) and cardiovascular disorders 

(Golbidi et al., 2015), for example. The aye-aye, okapi, and the rhinos are facing this 

situation during the night, which is certainly different from their natural environment and 

should be taken into consideration in the zoo management plans. 

The masking effect mentioned previously during the discussion sections may be a 

source of problem for some animals. The increase in the background noise turns the acoustic 

signal ambiguous to some animals. This ambiguity can make animals want to leave the noisy 

area, or in more complicated cases animals can cease their sonic communication, which can 

be a source of stress (Wright et al., 2007). 

The aye-aye enclosure with glass barrier is a good example of a way to protect the 

animals from the visitors’ sound, however, even in this area, the animals were constantly 
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exposed to high sound levels from the ventilation and heating systems. The aye-aye did not 

present a behavioural response to sound, but as it is known that anthropogenic noise can 

cause stress in form of physiological responses (Kight and Swaddle, 2011), that should be 

further explored. 

Individual behavioural responses to noise were expressed in rhinos and sloths, and it 

is in agreement with other studies. Owen et al. (2004) have found different behavioural 

responses to noise between a male and a female panda. Likewise, Clark et al. (2012) have 

also found different behaviour expressions to the same stimulus in a group of gorillas. 

Individual differences in animals are expected, due to individual characteristics that can 

influence sensibility to noise. For instance, Cronin et al. (2018) have discussed that 

habituation to determined situations could be a reason for different behavioural responses to 

noisy events. 

The small number of individuals studied here makes a generalization of species 

responses to noise impossible to perform. However, the present study shed a light on the 

importance of exploring the sound sources of an area where an animal will spend most of its 

life, and how the individuals can perceive and respond to this noise. Behavioural responses 

can be used as a sign of an early stress-related issue that when not well investigated might 

lead to serious effects in the future (Mansour et al., 2000). A better and stronger 

understanding of the noise sources and effects is important to serve as a base for mitigation 

strategies in animal stress and for a continuous work on animal welfare. 
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Section 4. Effect of noise on zoo mammals’ glucocorticoid 

metabolites (GCM) levels 

Along with the study of animal welfare through the investigation of behavioural responses, 

the use of stress hormones products, such as corticoids, can be powerful tools to complete the 

understanding of how animals cope with stress in captivity (Ganswindt et al., 2012, Touma 

and Palme, 2005). Animals, like humans, may behaviourally habituate to high sound pressure 

levels, but humans often also display physiological responses to increases to sound pressure 

levels.  For example, a person can learn to sleep in a house on a noisy road, but their blood 

pressure will rise during sleep in response to increases in noise (Dratva et al., 2012). Thus, it 

is important to measure both behavioural and physiological responses to stressors such as 

noise. 

Many researchers have measured animal welfare (and stress) by measuring corticoid 

levels (i.e. stress hormone levels). The most common and non-invasive way to evaluate 

physiological stress is through the measurement of glucocorticoid metabolites from faeces, 

though such stress measurements can be done from urine, saliva, or even milk (Mostl and 

Palme, 2002, Touma and Palme, 2005). Nevertheless, these last three options require some 

manipulation of the animal, which may be avoided with the use of faecal samples. The 

disadvantage of using faecal samples is it provides only a mean 24-hour measurement of 

stress and does not provide information in terms of time-specific stressors (Palme et al., 

2005). 

The analysis of glucocorticoids can answer questions about the animals stress related 

to husbandry practices (Bashaw et al., 2016, Kumar et al., 2014), to the occurrence of 

stereotypic behaviours (Brand et al., 2016), to constructions (Chosy et al., 2014, Powell et al., 

2006), to environmental variables (visitors number and noise levels) and modifications (Clark 

et al., 2012, Owen et al., 2004, Ozella et al., 2017), and to social rank groups (Escobar-Ibarra 
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et al., 2017). As an example of the effectiveness of this methodology: the effect of 

construction noise on captive giant panda (Ailuropoda melanoleuca) welfare was analysed 

and the results were that the corticoid levels, followed by behaviours related to stress and 

anxiety, increased due to the effect of high-frequency noise (Powell et al., 2006). Another 

project on giant pandas found that females expressed more stress-related behaviour and an 

increase in corticoid levels on noisy days at the zoo (Owen et al., 2004). Spider monkeys 

(Ateles goeffroyii rufiventris) (Davis et al., 2005) and wolves (Canis lupus baileyi) (Pifarre et 

al., 2012) had their levels of cortisol measured from urine and faeces, respectively, and these 

increased with the increase in the number of zoo visitors. 

Based on this successful use of GCM for the study of animal welfare, the objective of 

this section is to investigate the faecal GCM response of two different species (okapi - 

Okapia johnstoni and orang-utans - Pongo pygmaeus) in two different circumstances: during 

different periods of the year in Chester Zoo, UK, and during summer live music events in 

Twycross Zoo, UK. The use of faecal corticoid metabolites was chosen instead of urine, 

blood, or saliva, for example, because of its advantage of being a simple non-invasive 

sampling technique. In this method, the results are not interfered since the animals are not 

manipulated during samples collection (samples can be collected during normal enclosure 

management) (Mostl and Palme, 2002, Touma and Palme, 2005). 

4.1. Subjects of study 

The choice of species was based on the interest and concern of the zoos. In Chester Zoo, only 

one species was chosen for the GCM analysis. The animals in Chester Zoo was being studied 

on a chronic stress level -- the environmental sound during the year. Chronic stress usually 

leads to a stabilization of the GCM levels (Mormede et al., 2007), however, there is no 
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consensus in how wild animals’ endocrine system responds to chronic stimuli (Dickens and 

Romero, 2013). For this reason, one species was chosen to test the stabilization hypothesis.  

In Twycross Zoo, the summer live music happens once a year, characterizing an acute 

stress event. The orang-utans is the species with the enclosure closest located to the concert 

stage. For this reason, the zoo staff was interested in the investigation of the effect of the 

concerts on the orang-utans welfare. 

4.1.1. Okapi (Okapia johnstoni) 

In Chester Zoo, the okapi was chosen for the study (see Section 3.1.3 for species details). 

4.1.2. Bornean orang-utans (Pongo pygmaeus) 

The Bornean orang-utans are the largest arboreal animals in the world. They are considered 

critically endangered by the IUCN Red List, and climatic change and human pressure are the 

main reasons for this (Ancrenaz et al., 2016). 

During the executed research, Twycross Zoo housed 6 individuals: one adult male 

called Batu (DOB: 25/05/1989), one adult female called Kibriah (DOB: 23/01/0977) with an 

infant (undetermined sex; DOB: 16/06/2017), one adult female called Maliku (DOB: 

10/06/1994) with a male infant (DOB: 27/03/2017), and one juvenile female called Molly 

(DOB: 24/01/2011). The infants were not included in the present study. 

4.2. Data collection 

4.2.1. Okapi 

The okapi hormone response to environmental noise during different periods of the year was 

investigated alongside with the behavioural study described in Section 3. Usala’s faecal 

samples were collected by the giraffe keeper team daily in the morning after the days of 

behavioural data collection (five samples during low season and five samples during high 
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season). Thus, the samples are representative of the day of sound data collection (Touma and 

Palme, 2005). Faecal samples were individually stored in labelled hermetic plastic bags and 

immediately frozen for later GCM extraction (Touma and Palme, 2005). No control in GCM 

measurements was possible to be done since Chester Zoo is open throughout the whole year. 

Therefore, it was not possible to investigate how is the animal response to noise without the 

zoo visitors’ interference. 

The sound data used for this investigation are the same data collected and described in 

Sections 3.2 and 3.4. 

4.2.2. Orang-utans 

The orang-utans’ hormone response to noise was investigated during four consecutive 

weekends when Twycross Zoo was hosting the “Summer Sundown” events. These events 

were live music nights, happening on Saturdays from 5 pm to 8:30 pm. The concert stage was 

next to the orang-utans’ enclosure (Figure 29). 

The orang-utans’ faecal samples were collected by the ape keepers team every Friday, 

Saturday, Sunday, and Monday, samples representing the GCM response from Thursday, 

Friday, Saturday, and Sunday (Touma and Palme, 2005, Weingrill et al., 2011). However, 

due to logistical and management reasons, some samples from some animals were not 

collected in all specified days. The samples were collected for each animal individually (51 

samples in total). To help the keepers identify the individuals’ samples, the animals were fed 

with coloured food using eatable glitter (a different glitter colour for each individual) (Fuller 

et al., 2011). Faecal samples were individually stored in labelled hermetic plastic bags and 

immediately frozen for later GCM extraction (Touma and Palme, 2005). Likewise Chester 

Zoo, Twycross Zoo is open throughout the year, which made it difficult to have a GCM 

baseline for the orang-utans with no intense influence over the environmental sound. 
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Therefore, the GCM levels were collected with the aim to make a comparison between event 

and non-event days. 

The sound pressure levels that reached the orang-utan's enclosure were measured 

using a sound level meter (SLM) (Svantek SVAN 957) installed inside the animals’ 

enclosure. A passive sound recorder (Wildlife Acoustics’ Song Meter SM3) was also 

installed. Both equipments measured and recorded the sound 24 hours a day from Thursday 

to Monday. Equipment settings were the same as described in Section 3.2. 

 
Figure 29. Summer event in Twycross Zoo, UK. Stage concert located next to the orang-utans’ 

enclosure (light-orange building). 

4.3. Extraction of GCM 

Using the methanol-based protocol (Palme et al., 2013), a portion of 0.5 g of each well-

homogenised sample was extracted. 5 ml of 80% methanol was added and shaken in a 

multivortex for about 1.5 minutes. After centrifugation for 15 minutes, aliquots (0.5 ml in 

duplicates) were dried and sent to the University of Vienna’s School of Veterinary Medicine, 

Vienna, Austria for measurement of the GCM with a cortisone enzyme immunoassay (EIA) 
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previously developed and validated for use in both species. Glucocorticoid metabolites 

measures are given in nanograms per gram of faeces (ng/g). 

4.3. Statistical analysis 

All data described below presented a normal distribution, which permitted the use of 

parametric statistical tests. All analyses were performed in RStudio (Team, 2016). 

4.3.1. Okapi 

Sound levels were logarithmically averaged per day using the values of the opening times of 

the zoo (LZeq,open zoo, LZ10,open zoo, LZ90,open zoo). Sound levels with Z-weighting response were 

chosen due to the okapi stronger behavioural reaction to this acoustic metric as verified in 

Section 3.4.3., T-tests were made to investigate if the sound levels, total number of visitors, 

and the GCM levels varied significantly between high and low visitor seasons. In addition, 

the LZeq values and the total number of visitors for the experiment days were used in multiple 

linear regressions to verify the influence of the sound pressure levels on the GCM 

measurements. 

4.3.2. Orang-utans 

Sound levels were logarithmically averaged per day using the values of the opening times of 

the zoo (LAeq,open zoo, LA10,open zoo, LA90,open zoo). Equivalent sound levels with A-weighting 

response were chosen in this case because the orang-utans are from a primate group 

phylogenetically close to humans with a hearing system also anatomically similar (Masali et 

al., 1992). T-tests were made to investigate if the sound levels and the GCM levels varied 

significantly on the days of the events compared to non-event days. In addition, the LAeq 

values for the experiment days were used in linear regressions to verify the influence of the 

sound levels in the GCM measures. 



82 

 

4.4. Results 

4.4.1. Okapi 

The description of the soundscape of the okapi enclosure during high and low visitor seasons 

can be found in Section 3.4 (Figures 11, 12, and 13). 

T-tests results show that sound levels with Z-weighted response (LZeq,open zoo and 

LZ10,open zoo) during opening times of the zoo did not differ between high and low seasons 

(LZeq: t=1.386, df=8, p=0.203; LZ10: t=1.832, df=8, p=0.104). However, when the background 

noise levels (LZ90) during opening times were tested, sound pressure levels were found higher 

during low season compared to high season (LZ90: t=-2.867, df=8, p=0.021) (Figure 30). The 

total number of visitors was almost significantly higher during high season compared to low 

(t=2.035, df=8, p=0.076). 

 
Figure 30. Background noise levels (LZ90,open zoo) during zoo opening times of the high and the 

low seasons at the okapi enclosure in Chester Zoo, UK. Red dots represent the mean values and 

the red arrows represent the standard deviation values. 

GCM levels along the different seasons can be seen in Figures 31 and 32, where the 

values are given in two different valid EIAs (72a and 72T); no significant differences in the 
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GCM levels was found between seasons (72a: t=-0.445, df=8, p=0.668; 72T: t=0.987, df= 8, 

p=0.3524). 

Further linear regression analysis revealed that zoo opening times equivalent sound 

levels (LZeq,open zoo) and total number of visitors can predict the GCM levels (72T EIA) in the 

okapi specimen studied, with the following equation: GCM=-320.94+5.30*LZeq+(-

0.04)*visitors (Table 16). The GCM levels using the 72a EIA did not present an association 

with the sound and visitors variables. 

Table 16. Multiple linear regression results relating the okapi’s glucocorticoid metabolites 

(GCM) using 72T enzyme immunoassay to equivalent sound levels (LZeq,open zoo) during the 

opening hours and daily total number of visitors in Chester Zoo, UK. 

Model fit R2 

(R2 adj.) 

F-statistics Independent variable Linear regression 

coefficient (±SE) 

t-value 

0.61(0.50) 5.40* LZeq 5.30(±1.85) 2.867* 

  Visitors -0.04(±0.02) -2.536* 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 

 

 
Figure 31. Okapi’s glucocorticoid metabolites (GCM) levels in two different enzyme 

immunoassay (72a and 72T) for the five days of data collection during high season in Chester 

Zoo, UK. The orange line represents the equivalent sound levels (LZeq,open zoo) during opening 

times of the zoo. 
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Figure 32. Okapi’s glucocorticoid metabolites (GCM) levels in two different enzyme 

immunoassay (72a and 72T) for the five days of data collection during low season in Chester 

Zoo, UK. The orange line represents the equivalent sound levels (LZeq,open zoo) during opening 

times of the zoo. 

4.4.2. Orang-utans 

In Figure 33, there is a graphic representation of the orang-utan enclosure soundscape. It is 

possible to perceive that the sonic environment is mostly dominated by the ventilation 

system. Even when the live music was happening, the sound levels did not transpose the 

upper limit of the sound levels produced by the air system. 

The statistical analysis revealed that sound pressure levels (LAeq,open zoo, LA10,open zoo, 

LA90,open zoo) were slightly higher during event days compare to non-event days; however, this 

difference was not statistically significant (Figure 34 for LAeq,open zoo) (LAeq: t=-0.597, df=11, 

p=0.563; LA10: t=-1.16, df=11, p=0.271; LA90: t=-1.384, df=11, p=0.194). The same pattern 

was found in individuals and group averaged GCM levels, which was also higher during 

event days but not statistically different between event and non-event days (Figure 35) (Batu: 
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t=-0.890, df=12, p=0.391; Kibriah: t=-0.973, df=10, p=0.354; Maliku: t=-1.874, df=11, 

p=0.088; Molly: t=-0.367, df=10, p=0.722; Group: t=-1.287, df=12, p=0.222). Figure 36 

presents an overview of the GCM response for each individual and for the group average and 

the daily equivalent sound levels (LAeq,open zoo) during the four studied weekends. 

Linear regression analysis showed that two individuals (Batu and Kibriah) presented 

the GCM levels increased according to noisier days at the zoo (Table 17 and Figures 37 and 

38). No other individual nor the group averaged GCM levels were significantly related to 

sound pressure levels. 

Table 17. Linear regressions results relating the orang-utans’ glucocorticoid metabolites (GCM) 

to the averaged equivalent sound levels (LAeq,open zoo) during opening hours in Twycross Zoo, UK. 

Model fit R2 

(R2 adj.) 

F-statistics Orang-utan Independent 

variable 

Linear regression 

coefficient (±SE) 

t-value 

0.48(0.44) 10.51** Batu LAeq 45.62(±14.07) 3.242** 

0.40(0.33) 5.89* Kibriah LAeq 35.38(±14.58) 2.427* 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
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Figure 33. Orang-utans’ enclosure sound pressure levels during a summer event day in Twycross Zoo, UK. Hours when the zoo was open to the 

public are represented in white background (from 10:00 to 20:30) and hours when the zoo was closed to the public are represented in grey 

background.  
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Figure 34. Equivalent sound levels (LAeq,open zoo) during opening times of the zoo in non-event and 

event days at the orang-utan enclosure in Twycross Zoo, UK. Red dots represent the mean 

values and the red arrows represent the standard deviation values. 

 
Figure 35. Orang-utans’ glucocorticoid metabolites (GCM) levels for non-event and event days 

in Twycross Zoo, UK. Red dots represent the mean values and the red arrows represent the 

standard deviation values. 
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Figure 36. Glucocorticoid metabolites (GCM) levels for each individual orang-utan and for the group average during the four studied weekends in 

Twycross Zoo, UK. The orange line represents the equivalent sound levels (LAeq,open zoo) during opening times of the zoo.  
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Figure 37. Batu’s (adult male orang-utan) glucocorticoid metabolites responses (GCM) 

according to equivalent sound levels (LAeq,open zoo) in Twycross Zoo, UK. Trendline based on 

linear regression result: GCM = -1716.64+45.62*LAeq. 

 
Figure 38. Kibriah’s (adult female orang-utan) glucocorticoid metabolites responses (GCM) 

according to equivalent sound levels (LAeq,open zoo) in Twycross Zoo, UK. Trendline based on 

linear regression result: GCM = -1249.52+35.38*LAeq. 
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4.5. Discussion 

It was not found significant differences between the GCM levels for both studied species in 

the investigated conditions: high and low visitor seasons for the okapi and event and non-

event days for the orang-utans. 

For the okapi situation, maybe the fact that the sound pressure levels were not 

completely different between the seasons it did not cause a clear different effect in the animal 

response along the year. Alternatively, maybe the experiment design chosen was not effective 

to answer the research question. Further examination could be done measuring the noise in 

different periods of the high and low seasons and collecting the faecal samples together to 

test this hypothesis again. 

In the case of the orang-utans, there was a tendency of higher GCM levels on event 

days compared to non-event days, but not statistically different. This trend would agree with 

a study in which elephants exposed to public events presented higher GCM during and 

following the event (Kumar et al., 2014). It was possible to perceive that the sound pressure 

levels produced by the summer night events in Twycross Zoo did not increase the 

environmental sound inside the orang-utans’ enclosure. The domination of the enclosure 

environmental sound by the ventilation system caused a masking effect that “protected” the 

animals from the concerts noise. 

Despite the animals affectless to the specific investigated conditions, the okapi had an 

associative GCM response to the open zoo noise levels and to the total number of visitors, 

and two orang-utans (Batu and Kibriah) had a GCM variation according to the open zoo 

noise levels. This GCM response to loud noises was also found in pandas (Owen et al., 2004, 

Powell et al., 2006). 



91 

 

Interestingly, the okapi GCM response to noise had a similar pattern to the 

behavioural response presented in Section 3.4.3. Sound and visitors had a contrary effect on 

GCM responses. The result established in this section corroborates what was discussed 

before; the okapi may feel comfortable around quiet visitors, which can cause kind of a 

compensation in the high levels of GCM caused by the high sound pressure levels. 

The individual differences in the GCM responses within the orang-utan group 

corroborate with the literature and with the individual behavioural differences discussed in 

Section 3. Powell et al. (2006) have presented that pandas had different timeframes to return 

the GCM levels to a baseline after determined stimuli. They discussed that animals show 

different regulating mechanisms and, therefore, they deal differently with stress. In addition, 

Owen et al. (2004), who also found different corticoid responses also in pandas, discuss that 

differences in age and environmental ability perception to noise may account for this variable 

responses. These findings indicate the importance of understanding the individualities of the 

animals for a good species management in zoos. 

4.6. Conclusions 

Despite the advantages of being a non-invasive technique, the use of faecal GCM has its 

limitations, such as not allowing the monitoring of short-term environmental alterations 

(Touma and Palme, 2005). This is because the GCM levels in faeces are a cumulative 

response from around 20 hours before (depending on the species) (Palme et al., 2005). In the 

case of the orang-utans, the night events were an example of a short-term stimulus in which 

the GCM from faecal samples did not present itself as a perfect option for this investigation. 

The use of urine samples could be an option for showing the animals’ physiological response 

for this acoustic event since they could be collected right after the event and they would 

represent the GCM response from the short period before collection (Palme et al., 2005). 
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However, this option would not be a completely non-invasive technique, as the keepers 

would need to enter the enclosure on specific moments that would not be expected by the 

animals causing an unnecessary disturbance. 

Even without the expected result to the investigated conditions (night events and high 

and low visitor seasons), the result presented here of the GCM levels being higher in response 

to loud days at the zoo can be of great use of the zoos. Knowing a potential source of stress 

for captive animals is the first step in the search of a good welfare for these specimens. A 

study made with leopard cats (Felis bengalensis) discovered that improvements in the 

complexity of the environment induced a decrease in the cortisol concentrations (Carlstead et 

al., 1993). The authors discussed that the animals engaged in more behavioural options in a 

response to the improved environment, which resulted in a decreased GCM. Chester Zoo and 

Twycross Zoo could invest in environmental enrichment on the days of expected higher 

sound pressure levels to prevent the okapi and orang-utans from facing stressful situations or 

even help the animals to better cope with stress. 

The small sample used here (one okapi and four orang-utans) are not enough for a 

generalization of the results for the species. However, in zoological studies, it is common to 

find different individual responses (Chosy et al., 2014, Clark et al., 2012, Owen et al., 2004, 

Powell et al., 2006), and this could be a valuable tool for zoos during animals’ management.  

  



93 

 

Section 5. Soundscape perception by zoo visitors 

When studying the acoustic environment of a zoo it is obvious to concentrate on the effect of 

sound or “noise” on the main subjects of interest to the zoo: the animals. However, the 

visitors also play a significant role in a zoo environment (Lee, 2015, Luebke and Matiasek, 

2013, Schultz and Joordens, 2014, Smith, 2013, Therkelsen and Lottrup, 2015). They 

participate actively in increasing the profit of the zoo by paying for the entrance fee, buying 

food and souvenirs, and by talking about the zoo when leaving the place (Fernandez et al., 

2009). In simple terms, the study of the visitors’ perspective is equally important for the 

reason that they are contributors to the financial maintenance of zoos. A way to assess the 

well-being of a zoo visitor related to the acoustic environment, as an option to investigate 

beyond the noise levels, is the use of a common tool in this research area —soundscape 

studies. 

These studies often use the paradigm of the soundscape as environmental sounds 

within a location (simulated, outdoor, or indoor) perceived, experienced, and understood by 

an individual or society (BS ISO 12913-1, 2014). Soundscapes of different places may cause 

various effects on humans, including relaxation and restoration (e.g. urban parks), vitality and 

excitement (e.g. street markets), and social connection (e.g. a busy town square) (Davies et 

al., 2013). In addition, not only the place but also the context and even the activity being 

developed can inspire the preference for a particular soundscape (Brown et al., 2011, Chau et 

al., 2010, Vianna et al., 2015). Moreover, in some cases, people can perceive the environment 

as noisy, but do not feel irritated or stressed by it, making the assessment of human acoustic 

comfort a complex subject (Yang and Kang, 2005). 

Studies developed in amusements and theme parks are a good example of the 

influence of the soundscape in the public experience and perception of the venue. A study 

made in different theme parks in Orlando that analysed the soundscape characteristics of the 
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parks found out that the environmental sound is loud but exciting (Kaiser and Rohde, 2013). 

It was concluded, in agreement of another study (Mackenzie et al., 2016), that the soundscape 

of these theme parks dominated by musical and human sounds, with some influence of 

technological sounds can produce a lively combination for the visitors. However, special 

attention should be taken to the general sound levels. A well-planned soundscape design can 

improve considerably the individual experience of a specific place (see Parsons and Taylor 

(2017)). 

Considering soundscape studies as the individual’s perception of the sonic 

environment, the topic has been studied by different onsite and offsite approaches. As onsite 

examples, interviews and questionnaires applications (Brambilla and Maffei, 2010, Chau et 

al., 2010, Shepherd et al., 2013) and soundwalk methods (Hong and Jeon, 2013, Kang and 

Zhang, 2010, Nilsson et al., 2012) are commonly used (17/30342414 DC, 2017). Interviews 

and questionnaires are methods of randomly choosing participants in a targeted location to 

answer their transient perception of the sonic environment. In soundwalk experiments, 

recruited participants follow a pre-defined route and evaluate the soundscape quality in 

specific locations and in an atmosphere of high attention to the environmental sound (Adams 

et al., 2008, Davies et al., 2007). 

As an offsite approach, listening tests are used as a method of soundscape evaluation 

(Davies et al., 2014, Payne, 2013, Sudarsono et al., 2016). However, the evaluation of 

recordings during listening tests does not always represent the real experience of field 

surveys. To ensure the ecological validity of the listening test, the reproduction method 

during the experiment must suit the objectives of the study (i.e. the sound samples: music, 

indoor, or outdoor environments) (Guastavino and Katz, 2004). For instance, Guastavino et 

al. (2005) proved that for the analysis of sound source and background noise of urban 

environments, a reproduction of the sound using a 2D and 3D ambisonic system in a neutral 
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environment (where speakers are not visible) is ecologically valid compared to the 

experiment in the real environment. On the other hand, Sudarsono et al. (2016) discuss that 

soundscape reproduction using a 2D ambisonic system and soundscape in the real location 

produce different semantic scales evaluation (rating scales designed to measure the meaning 

and concepts of things). 

In a zoological park, visitors are exposed to a variety of different sources of sound 

(e.g. animals’ calls, conversation, machinery, and music) in indoor and outdoor 

environments. These diverse characteristics make the reproduction of the zoo soundscape 

difficult to perform under laboratory conditions. Furthermore, the landscape of zoos plays the 

main role in the visitors’ experience in this venue (Botteldooren et al., 2012, Liu et al., 2013, 

Liu et al., 2014). Another feature that could impede a valid soundscape reproduction, in this 

case, is the influence of the different smells present in a zoo. A study has found that 

expectations of sound and smell can be highly influential in the perception and experience of 

an urban environment (Henshaw & Bruce, 2012, cited in Thibaud and Siret, 2012). 

Therefore, in the present study, the visitors’ perception of the zoo soundscape was explored 

by the use of the soundwalk method, in which it was possible to investigate diverse locations 

with different physical and sound characteristics. 

This section aims to understand how the zoo’s visitors perceive environmental sound 

around the zoo and how different physical aspects of an area can influence the individual’s 

perception of sound by the application of soundwalks through Chester Zoo, UK. 

5.1. Data collection 

5.1.1. Participants 

The participants were recruited with the support of the zoo staff, who helped to distribute an 

invitation letter (Appendix 2) and an information sheet (Appendix 3) about the project. Zoo 
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volunteers and members were invited to take part voluntarily in the study. Twenty-seven 

participants (18 women, 8 men, and 1 not declared, age over 18) attended the walks allocated 

on nine different days. The effectiveness of the chosen number of participants and 

soundwalks were based on previous studies (Jeon et al., 2010, Jeon et al., 2011, Jeon et al., 

2014, Jeon and Hong, 2015, Liu et al., 2014) and on the availability of the volunteers. A 

sample of thirty participants proved to be enough for reliable analysis, and developing the 

soundwalks in different days avoided the possibility of exploring the environment in an 

atypical day. On each the day of the soundwalk the participants walked together, guided by 

the researcher. 

5.1.2. Soundwalks 

The soundwalks happened during high visitor season at the morning time, following a 

pre-established route passing through nine different locations (Table 18 and Figure 40 and 

41) and lasting for around 45 minutes. The locations were chosen based on the species 

studied in Section 3 and on other areas of interest of the zoo. On each day, the walk started in 

a different location to avoid an influence due to sequential bias.  

At each location, participants were asked to listen to the environmental sound for 

about 40 seconds and then fill a questionnaire (Figure 39) with three questions. The first 

question addresses the main source of sound perceived by the participants. The participants 

could choose between three possible answers (technological, human, or natural), which are 

the most commonly used sound classification in soundscape studies (Payne et al., 2009). This 

kind of taxonomy allows the comparison between sound sources and other evaluations of the 

soundscape, such as pleasantness and sound levels, for example. The second question 

involves four semantic scale classification, using eight attributes (pleasant, unpleasant, 

eventful, uneventful, exciting, monotonous, calm, and chaotic) suggested by Axelsson et al. 

(2010) and is frequently applied in soundscape studies (Jeon et al., 2014, Jeon and Hong, 
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2015, Nilsson et al., 2012, Steele et al., 2016). Participants had access to a concept list of 

these semantic scale terms (Appendix 4). The third question was a subjective evaluation of 

the sound level, which participants classified the sound levels at a 5-point scale from very 

quiet to very loud. This question was used to understand how people perceive noise 

comparatively to other soundscape assessments. 

Table 18. Description of the location of the locations used in the soundwalks at Chester Zoo, 

UK. 

Locations number Location 

1 Main entrance of the zoo (outdoor area) 

2 Tropical Realm (indoor area) 

3 Aye-ayes’ enclosure (indoor area) 

4 Spirit of the jaguar – Sloths’ area (indoor area) 

5 Madagascar play area (outdoor area) 

6 Lions’ enclosure (outdoor area) 

7 Capybaras’ enclosure (outdoor area) 

8 Tsavo black rhino reserve (indoor area) 

9 Okapi’s enclosure (indoor area) 

 

Before the beginning of the walk, participants were asked to sign a consent form 

(Appendix 5) and to fill a participant information sheet (Appendix 6). After that, details of 

the experiment were explained to the participants. During the walk, a sound level meter 

(Svantek SVAN 957) was used, which was set to record sound and to register sound pressure 

level in decibels every 10 seconds (LAeq,10sec). The meter was calibrated before and after each 

soundwalk, using the calibrator included in the SVAN 957 kit. 
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Figure 39. Soundwalk questionnaire used in Chester Zoo, UK.
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Figure 40. Soundwalks route and locations in Chester Zoo, UK. The black line represents the route and the white numbers represent the locations 

where the participants filled each questionnaire.  
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Figure 41. Photographs of the soundwalk locations at Chester Zoo, UK. Location 1 (Main 

entrance of the zoo), location 2 (Tropical Realm), location 3 (Aye-ayes’ enclosure), location 4 

(Spirit of the jaguar – Sloths’ area), location 5 (Madagascar play area), location 6 (Lions’ 

enclosure), location 7 (Capybaras’ enclosure), location 8 (Tsavo black rhino reserve), location 9 

(Okapi’s enclosure). 

5.2. Statistical analyses 

To check the variance between the participants, a Kruskal-Wallis test was performed 

(a non-parametric test was chosen due to the non-normal distribution of the data set, which 

prevents the use of a simple analysis of variance). Kruskal-Wallis is a rank-based 

nonparametric test in which the result (expressed as H) indicates how large the discrepancy 

among the compared ranks is. This test was used to investigate if there was a significant 

difference in the semantic scales attributes among the soundwalk days for each of the nine 
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locations. The internal consistency was found to be high since most of the tests were non-

significant. This means that, in general, the participants’ evaluations of the soundscape did 

not vary greatly among the different soundwalk days, in other words, the participants highly 

agreed on most of the evaluated attributes. Figure 42 shows four graphs, one for each 

evaluated attribute, where the soundwalks were put together by location. Eventful-uneventful 

and the exciting-monotonous attributes evaluation did not differ significantly among the 

soundwalks in any of the nine locations. The evaluation of pleasant-unpleasant attribute was 

significantly different among soundwalks in locations 1, 6 and 7 (1: H=16.533, p=0.03536; 6: 

H=15.931, p=0.04337; 7: H=15.642, p=0.04781) (Figures 43 to 45). For the calm-chaotic 

attribute, a significant difference was only found in location 1 (H=16.37, p=0.03738) (Figure 

46). 

The soundscape of the zoo was analysed by a principal component analysis (PCA) of 

the nine locations altogether using a mean of the four semantic scales results for each 

location. The attributes values were coded as a continuous data from 0 to 10, where 0 

represents the first term of the scale and 10 represents the second term (e.g. for the Calm-

Chaotic attribute, Calm was considered 0 and Chaotic was considered 10). The relationship 

between the principal components, sound attributes, sound pressure levels, sound level 

perception, sound source, and enclosure area was investigated using inter-correlations 

(Pearson’s correlation) among the variables. In addition, to evaluate the direct effect of the 

acoustic measures, sound sources, and enclosure area on the principal components, stepwise 

multiple regression analyses were conducted. 

Separately, a correlation matrix was produced (Pearson’s correlation), for each of the 

nine locations, using the soundscape attributes, acoustic measures, and sound sources. To 

avoid the statistical “type 1” error due to the high number of correlations, the Holm’s 
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correction was used (Holm, 1979), which is considered more powerful and less conservative 

than the more common Bonferroni correction (Aickin and Gensler, 1996). 

All statistical analyses were performed using RStudio (RStudio Team, 2016). The 

PCA analyses were made using the FactoMineR package (Le et al., 2008) and the correlation 

matrix with adjusted p values was produced using psych package (Revelle, 2017). 

 
Figure 42. Soundwalks participants’ responses for the four scale attributes by locations in 

Chester Zoo, UK. The circled locations are the attributes evaluations that were significantly 

different among soundwalks.  
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Figure 43. Participants’ responses to the Pleasant/Unpleasant attribute by each of the nine 

soundwalk days at location 1 (Main entrance) in Chester Zoo, UK. 

 
Figure 44. Participants’ responses to the Pleasant/Unpleasant attribute by each of the nine 

soundwalk days at location 6 (Lions’ enclosure) in Chester Zoo, UK. 
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Figure 45. Participants’ responses to the Pleasant/Unpleasant attribute by each of the nine 

soundwalk days at location 7 (Capybaras’ enclosure) in Chester Zoo, UK. 

 
Figure 46. Participants’ responses to the Calm/Chaotic attribute by each of the nine soundwalk 

days at location 1 (Main entrance) in Chester Zoo, UK. 
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5.3. Results 

Sound pressure levels varied among some of the locations during the soundwalks (Figure 47). 

Most of the locations presented a logarithmic average of the sound levels below 60 dB(A). 

Only the Tropical Realm (Location 2), the sloths’ area (Location 4), and the play area 

(Location 5) presented sound levels logarithmic average above 60 dB(A). The Madagascar 

play area is an outdoor, open space. The outlying high level in the play area (Location 5; see 

Figure 47) was due to a particular child playing in the area at the moment of the soundwalk. 

The participants’ perception of the sound levels did not follow the real sound levels in 

decibels (Figures 48). Locations 4 and 5, for example, were classified as loud and location 3, 

which had the lowest average sound levels (55.8 dB(A)), was more times classified as loud 

compared to the locations previously mentioned. The main sources of sound perceived by the 

soundwalk participants for each location can be seen in Figure 49. 

 
Figure 47. Equivalent sound levels in the nine locations over the conducted soundwalks in 

Chester Zoo, UK. 
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Figure 48. Sound level perception by the participants in the nine locations during the 

soundwalks in Chester Zoo, UK (none of the locations was classified as very loud). 

 
Figure 49. Main source of sound perceived by the participants in the nine locations during the 

soundwalks in Chester Zoo, UK. 
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Overall evaluation of the zoo soundscape 

An overview of the attributes results of the zoo soundscape can be found in Figure 50. 

Principal component analysis (PCA) of the semantic scales indicates that the four attributes 

used to classify the zoo soundscape can be reduced to three (Figure 51 and 52): eventfulness 

(eventful-uneventful and exciting-monotonous attributes), calmness (calm-chaotic attribute), 

and pleasantness (pleasant-unpleasant attribute). The first component, related to eventfulness, 

includes mainly the eventful-uneventful and exciting-monotonous attributes, which are 

almost overlaid in the PCA graph (Figure 51). This component explained 68.21% of the data 

variance. The second component included only the calm-chaotic attribute, which did not 

cause any variable’s reduction. This component explained 30.44% of the data variance. Since 

pleasant-unpleasant and calm-chaotic attributes were not clearly related as a second 

component of the PCA (Figure 51), they were considered separately as calmness and 

pleasantness for further discussion.  

 
Figure 50. Soundscape evaluation ratings for Chester Zoo, UK (all locations together). 
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Figure 51. Principal component analysis result for the soundscape evaluation of Chester Zoo, 

UK. Component 1 eigenvalue: 2.73. Component 2 eigenvalue: 1.22. 
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Figure 52. Principal component analysis result by locations for the soundscape evaluation of 

Chester Zoo, UK. Component 1 eigenvalue: 2.73. Component 2 eigenvalue: 1.22. 
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Table 19 shows that although there were few significant correlations, many 

correlation factors can be considered moderate to high (values higher than 0.5) and they were 

better investigated by multiple regression analysis. The regressions made with the three 

reduced soundscape attributes (eventfulness, calmness, and pleasantness) indicated a cause 

and effect relationship among them and the sound and ambient characteristics with a 

considerably high explained variance, as can be seen in Tables 20, 21, and 22. 

High correlation coefficients (higher than 0.7) in Table 19, even though not 

significant, indicate some interesting patterns in the importance of natural sounds in the 

evaluation of the soundscape attributes in the zoo. For instance, in the absence of natural 

sounds, the participants evaluated the soundscape as more uneventful, unpleasant, and 

monotonous. In addition, there is an implication of the occurrence of technological sounds in 

the eventfulness of the zoo soundscape and in the assessment of the environmental sound as 

monotonous and uneventful in the presence of this kind of sound. Another interesting 

correlation is a negative one between real and perceived sound level and eventfulness, 

showing that places classified as uneventful and monotonous were places where the sound 

levels were not high and people perceived as quiet. 

Multiple regression analysis for eventfulness shows that technological sound is the 

only variable that explains the variance of this attribute in the zoo soundscape. An 

environment dominated by technological sounds tends to be perceived as more uneventful 

and monotonous. In contrast, calmness can be explained and, consequently, influenced by the 

sound levels (real and perceived), human sounds, and the characteristics of the area. When 

the equivalent sound levels are high and participants perceived the sound levels as high, the 

soundscape was evaluated as chaotic. Likewise, environments dominated by human sounds 

incline to receive the same evaluation. In addition, taken into consideration the locations 

assessed in this study, indoor areas were evaluated more frequently as calm than outdoor 
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areas. The last attribute, pleasantness, can be explained only by sound sources, being 

positively correlated with human and technological sounds. This means that, in the zoo, 

places dominated by these sounds are usually evaluated as unpleasant.  
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Table 19. Pearson’s coefficient of correlation among the principal component scores (C1 and C2), soundscape attributes (eventful/uneventful, 

pleasant/unpleasant, exciting/monotonous, and calm/chaotic), acoustics measures (LAeq and sound level perception), sound source categories, 

(human, natural, and technological) and enclosure area (indoor and outdoor). 

 C1 C2 E/U1 P/U2 E/M3 C/C4 LAeq SLP5 Human6 Natural7 Technol. 8 Indoor9 

C2  0.00            

E/U1  0.98*** -0.14           

P/U2  0.83  0.54  0.73          

E/M3  0.99*** -0.03  0.97***  0.80         

C/C4 -0.30  0.95** -0.42  0.25 -0.32        

LAeq -0.66  0.08 -0.68 -0.46 -0.69  0.25       

SLP5 -0.67  0.10 -0.71 -0.50 -0.63  0.29  0.50      

Human6  0.19  0.54  0.20  0.40  0.15  0.50 -0.38 -0.40     

Natural7 -0.76 -0.32 -0.70 -0.79 -0.77 -0.08  0.65  0.56 -0.53    

Technological8  0.72 -0.01  0.63  0.66  0.71 -0.28 -0.31 -0.25 -0.31 -0.39   

Indoor9  0.04 -0.41  0.13 -0.19  0.03 -0.40  0.18  0.16 -0.01  0.05 -0.04  

Outdoor10 -0.04  0.41 -0.13  0.19 -0.03  0.40 -0.18 -0.16  0.01 -0.05  0.04 -1.00 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Eventful/Uneventful attribute. 2 Pleasant/Unpleasant attribute. 3 Exciting/Monotonous attribute. 4 Calm/Chaotic attribute. 5 Sound level perception coded as very quiet (1), 

quiet (2), Moderate (3), and Loud (4). 6 Soundscape dominated by human sounds, dichotomous coded (0, 1). 7 Soundscape dominated by natural sounds, dichotomous coded 

(0, 1). 8 Soundscape dominated by technological sounds, dichotomous coded (0, 1). 9 Location in an indoor area, dichotomous coded (0, 1). 10 Location in an outdoor area, 

dichotomous coded (0, 1). 
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Table 20. Stepwise multiple linear regression relating Eventfulness attribute to acoustics 

measures (sound level perception) and sound source categories (natural and technological). 

Model fit,  

R2 (R2 adj.) 

F-statistics Independent 

variables 

Multiple regression 

Coefficient (±SE) 

t-value 

0.86 (0.78) 10.58* SLP1 -1.7228(±1.0554) -1.632 

  Natural2 -0.0785(±0.0421) -1.865 

  Technological3  0.1142(±0.0423)  2.703* 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Sound level perception coded as very quiet (1), quiet (2), Moderate (3), and Loud (4). 2 Soundscape dominated 

by natural sounds, dichotomous coded (0, 1). 3 Soundscape dominated by technological sounds, dichotomous 

coded (0, 1). 

 

Table 21. Stepwise multiple linear regression relating Calmness attribute to acoustics measures 

(LAeq and sound level perception), sound source categories (human, natural, and technological), 

and enclosure area (indoor). 

Model fit,  

R2 (R2 adj.) 

F-statistics Independent 

variables 

Multiple regression 

Coefficient (±SE) 

t-value 

0.99 (0.98) 59.57* LAeq 0.1342(±0.0163) 8.232* 

  SLP1 1.7529(±0.1824) 9.610* 

  Human2 0.1051(±0.0092) 11.400** 

  Natural3 -0.0174(±0.0096) -1.807 

  Technological4 0.0350(±0.0095) 3.690 

  Indoor5 -0.9867(±0.0923) -10.689** 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Sound level perception coded as very quiet (1), quiet (2), Moderate (3), and Loud (4). 2 Soundscape dominated 

by human sounds, dichotomous coded (0, 1). 3 Soundscape dominated by natural sounds, dichotomous coded (0, 

1). 4 Soundscape dominated by technological sounds, dichotomous coded (0, 1). 5 Location in an indoor area, 

dichotomous coded (0, 1) 

 
Table 22. Stepwise multiple linear regression relating Pleasantness attribute to sound source 

category (human and technological). 

Model fit,  

R2 (R2 adj.) 

F-statistics Independent 

variables 

Multiple regression 

Coefficient (±SE) 

t-value 

0.85 (0.80) 17.23** Human1 0.1175(±0.0288) 4.080** 

  Technological2 0.1717(±0.0325) 5.290** 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Soundscape dominated by human sounds, dichotomous coded (0, 1). 2 Soundscape dominated by technological 

sounds, dichotomous coded (0, 1). 
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5.3.1. Location 1 (Main entrance) 

As can be seen in Figure 53, the soundscape attributes for the sonic environment of the main 

entrance were varying in the middle of the scales, which makes its classification hard. By 

observing the results in Table 23, people tended to evaluate the soundscape as pleasant in the 

presence of natural sounds. There is in this location a positive correlation between human 

sound and equivalent sound levels. There is also an interesting correlation between sound 

level perception and sound source; in this area, the visitors classify the sound levels as loud in 

the absence of natural sounds and presence of technological sounds.  

 
Figure 53. Soundscape evaluation ratings for location 1 (Main entrance) in Chester Zoo, UK. 
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Table 23. Pearson’s coefficient of correlation among the soundscape attributes 

(eventful/uneventful, pleasant/unpleasant, exciting/monotonous, and calm/chaotic), acoustics 

measures (LAeq and sound level perception), and sound source categories (human, natural, and 

technological) for location 1 (Main entrance) in Chester Zoo, UK. 

 E/U1 P/U2 E/M3 C/C4 LAeq SLP5 Human6 Natural7 

P/U2 -0.09        

E/M3  0.52  0.18       

C/C4 -0.40  0.41 -0.35      

LAeq -0.31  0.54  0.09  0.19     

SLP5 -0.43  0.50 -0.09  0.52  0.36    

Human6 -0.33  0.26 -0.14  0.14  0.59**  0.10   

Natural7  0.28 -0.62*  0.14 -0.51 -0.50* -0.71*** -0.53  

Technological8  0.05  0.37  0.00  0.38 -0.07  0.63* -0.49 -0.49 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Eventful/Uneventful attribute. 2 Pleasant/Unpleasant attribute. 3 Exciting/Monotonous attribute. 4 Calm/Chaotic 

attribute. 5 Sound level perception coded as very quiet (1), quiet (2), Moderate (3), and Loud (4). 6 Soundscape 

dominated by human sounds, dichotomous coded (0, 1). 7 Soundscape dominated by natural sounds, dichotomous 

coded (0, 1). 8 Soundscape dominated by technological sounds, dichotomous coded (0, 1). 
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5.3.2. Location 2 (Tropical Realm) 

The tropical realm was mostly evaluated as eventful, pleasant, exciting, and calm place 

(Figure 54). Table 24 shows that all correlations with the acoustic parameters were small and 

non-significant.  

 
Figure 54. Soundscape evaluation ratings for location 2 (Tropical Realm) in Chester Zoo, UK. 

 

Table 24. Pearson’s coefficient of correlation among soundscape attributes (eventful/uneventful, 

pleasant/unpleasant, exciting/monotonous, and calm/chaotic), and acoustics measures (LAeq) for 

location 2 (Tropical Realm) in Chester Zoo, UK. 

 E/U1 P/U2 E/M3 C/C4 LAeq 

P/U2  0.47     

E/M3  0.68*** 0.71***    

C/C4 -0.36 0.22 -0.18   

LAeq  0.16 0.07  0.18 -0.27  

SLP5 -0.16 0.25 -0.15  0.24 -0.15 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Eventful/Uneventful attribute. 2 Pleasant/Unpleasant attribute. 3 Exciting/Monotonous attribute. 4 Calm/Chaotic 

attribute. 5 Sound level perception coded as very quiet (1), quiet (2), Moderate (3), and Loud (4). 
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5.3.3. Location 3 (Aye-ayes’ enclosure) 

In the aye-ayes’ enclosure, the participants mostly evaluated the sound environment as 

uneventful and monotonous (Figure 55). In addition, the perception of the sound levels is 

negatively correlated with the exciting-monotonous attribute and a positively correlated to 

calm-chaotic one (Table 25). This means that, in this area, when the participants perceived 

the sound as quiet they considered the soundscape monotonous and calm.  

 
Figure 55. Soundscape evaluation ratings for location 3 (Aye-ayes’ enclosure) in Chester Zoo, 

UK. 
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Table 25. Pearson’s coefficient of correlation among soundscape attributes (eventful/uneventful, 

pleasant/unpleasant, exciting/monotonous, and calm/chaotic), acoustics measures (LAeq and 

sound level perception), and sound source categories (human and technological) for location 3 

(Aye-ayes’ enclosure) in Chester Zoo, UK. 

 E/U1 P/U2 E/M3 C/C4 LAeq SLP5 Human6 

P/U2 -0.09       

E/M3  0.68*** -0.08      

C/C4 -0.43  0.67*** -0.49     

LAeq -0.32  0.01 -0.39  0.20    

SLP5 -0.57  0.54 -0.64**  0.84***  0.52   

Human6 -0.25  0.01 -0.33 -0.05  0.03  0.15  

Technological7  0.25 -0.01  0.33  0.05 -0.03 -0.15 -1*** 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Eventful/Uneventful attribute. 2 Pleasant/Unpleasant attribute. 3 Exciting/Monotonous attribute. 4 Calm/Chaotic 

attribute. 5 Sound level perception coded as very quiet (1), quiet (2), Moderate (3), and Loud (4). 6 Soundscape 

dominated by human sounds, dichotomous coded (0, 1). 7 Soundscape dominated by technological sounds, 

dichotomous coded (0, 1). 
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5.3.4. Location 4 (Spirit of the jaguar – Sloths’ area) 

This indoor enclosure is generally classified as calm (Figure 56). Similar to what happened in 

Location 2, there were non-significant correlations between the attributes and the acoustic 

characteristics (Table 26).  

 
Figure 56. Soundscape evaluation ratings for location 4 (Sloths’ area) in Chester Zoo, UK. 

Table 26. Pearson’s coefficient of correlation among soundscape attributes (eventful/uneventful, 

pleasant/unpleasant, exciting/monotonous, and calm/chaotic), acoustics measures (LAeq and 

sound level perception), and sound source categories (human and technological) for location 4 

(Sloths’ area) in Chester Zoo, UK. 

 E/U1 P/U2 E/M3 C/C4 LAeq SLP5 Human6 

P/U2 -0.09       

E/M3  0.16  0.58*      

C/C4 -0.31  0.62*  0.38     

LAeq -0.13 -0.02 -0.14 -0.02    

SLP5 -0.43  0.23  0.08  0.51  0.31   

Human6 -0.11  0.51  0.39  0.30  0.00  0.26  

Technological7  0.11 -0.51 -0.39 -0.30 -0.00 -0.26 -1.00*** 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Eventful/Uneventful attribute. 2 Pleasant/Unpleasant attribute. 3 Exciting/Monotonous attribute. 4 Calm/Chaotic 

attribute. 5 Sound level perception coded as very quiet (1), quiet (2), Moderate (3), and Loud (4). 6 Soundscape 

dominated by human sounds, dichotomous coded (0, 1). 7 Soundscape dominated by technological sounds, 

dichotomous coded (0, 1). 
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5.3.5. Location 5 (Madagascar play area) 

Figure 57 shows that the play area, like Location 1, had soundscape evaluations fluctuating in 

the middle of the semantic scales. None of the variables was significantly correlated, as can 

be seen in Table 27. 

 
Figure 57. Soundscape evaluation ratings for location 5 (Madagascar play area) in Chester Zoo, 

UK. 
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Table 27. Pearson’s coefficient of correlation among soundscape attributes (eventful/uneventful, 

pleasant/unpleasant, exciting/monotonous, and calm/chaotic), acoustics measures (LAeq and 

sound level perception), and sound source categories (human and technological) for location 5 

(Madagascar play area) in Chester Zoo, UK. 

 E/U1 P/U2 E/M3 C/C4 LAeq SLP5 Human6 

P/U2  0.67       

E/M3  0.91***  0.71      

C/C4 -0.25  0.29 -0.18     

LAeq  0.29 -0.11  0.03 -0.32    

SLP5 -0.30 -0.05 -0.38  0.43  0.40   

Human6 -0.18 -0.61 -0.11 -0.39  0.25 -0.20  

Technological7  0.18  0.61  0.11  0.39 -0.25  0.20 -1*** 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Eventful/Uneventful attribute. 2 Pleasant/Unpleasant attribute. 3 Exciting/Monotonous attribute. 4 Calm/Chaotic 

attribute. 5 Sound level perception coded as very quiet (1), quiet (2), Moderate (3), and Loud (4). 6 Soundscape 

dominated by human sounds, dichotomous coded (0, 1). 7 Soundscape dominated by technological sounds, 

dichotomous coded (0, 1). 
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5.3.6. Location 6 (Lions’ enclosure) 

The area around the lions’ enclosure was mostly perceived as monotonous to the participants 

(Figure 58). Table 28 shows that the pleasant-unpleasant attribute evaluation was positively 

correlated with the sound levels and negatively with natural sounds. This means that, in this 

location, participants identified the area as unpleasant when the equivalent sound levels were 

high and in the absence of natural sounds. Natural sounds also correlated negatively with the 

calm-chaotic attribute and with equivalent sound levels. This means that the soundscape is 

more frequently evaluated as chaotic in the absence of natural sounds and that natural sounds 

were not responsible for the higher sound levels in this location.  

 
Figure 58. Soundscape evaluation ratings for location 6 (Lions’ enclosure) in Chester Zoo, UK. 

  



123 

 

Table 28. Pearson’s coefficient of correlation among soundscape attributes (eventful/uneventful, 

pleasant/unpleasant, exciting/monotonous, and calm/chaotic), acoustics measures (LAeq and 

sound level perception), and sound source categories (human, natural, and technological) for 

location 6 (Lions’ enclosure) in Chester Zoo, UK. 

 E/U1 P/U2 E/M3 C/C4 LAeq SLP5 Human6 Natural7 

P/U2 -0.36        

E/M3  0.32  0.49       

C/C4 -0.44*  0.62* -0.01      

LAeq -0.26  0.66**  0.35  0.53     

SLP5 -0.43  0.48  0.19  0.53  0.34    

Human6 -0.10  0.08 -0.29  0.56  0.24  0.23   

Natural7  0.30 -0.72*** -0.16 -0.66* -0.67* -0.37 -0.32  

Technological8 -0.17  0.55  0.38  0.08  0.41  0.12 -0.59 -0.50 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Eventful/Uneventful attribute. 2 Pleasant/Unpleasant attribute. 3 Exciting/Monotonous attribute. 4 Calm/Chaotic 

attribute. 5 Sound level perception coded as very quiet (1), quiet (2), Moderate (3), and Loud (4). 6 Soundscape 

dominated by human sounds, dichotomous coded (0, 1). 7 Soundscape dominated by natural sounds, dichotomous 

coded (0, 1). 8 Soundscape dominated by technological sounds, dichotomous coded (0, 1). 
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5.3.7. Location 7 (Capybaras’ enclosure) 

Figure 59 illustrates the soundscape evaluation of the visitors’ area around the Capybaras’ 

enclosure, where the participants considered the sonic environment as uneventful, pleasant, 

monotonous and calm. Several significant correlations were found in this location (Table 29). 

The eventful-uneventful attribute was negatively correlated with sound level perception and 

human sounds, which means that participants classified the environmental sound as more 

uneventful when they perceived the ambient as quiet and with no human sounds. Pleasant-

unpleasant and calm-chaotic attributes were both positively correlated with sound level 

perception and negatively correlated with natural sounds. This can be interpreted in the way 

that the area was assessed as pleasant and calm when the participants perceived a quiet 

environment and in the presence of natural sounds. 

 
Figure 59. Soundscape evaluation ratings for location 7 (Capybaras’ enclosure) in Chester Zoo, 

UK. 
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Table 29. Pearson’s coefficient of correlation among soundscape attributes (eventful/uneventful, 

pleasant/unpleasant, exciting/monotonous, and calm/chaotic), acoustics measures (LAeq and 

sound level perception), and sound source categories (human, natural, and technological) for 

location 7 (Capybaras’ enclosure) in Chester Zoo, UK. 

 E/U1 P/U2 E/M3 C/C4 LAeq SLP5 Human6 Natural7 

P/U2 -0.42        

E/M3  0.61*  0.13       

C/C4 -0.64**  0.81*** -0.32      

LAeq -0.57  0.31 -0.32  0.39     

SLP5 -0.58*  0.74*** -0.24  0.77***  0.18    

Human6 -0.59*  0.31 -0.35  0.47  0.39  0.29   

Natural7  0.32 -0.78*** -0.04 -0.60* -0.17 -0.58 -0.56  

Technological8  0.26  0.53  0.40  0.17 -0.17  0.34 -0.43 -0.51 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Eventful/Uneventful attribute. 2 Pleasant/Unpleasant attribute. 3 Exciting/Monotonous attribute. 4 Calm/Chaotic 

attribute. 5 Sound level perception coded as very quiet (1), quiet (2), Moderate (3), and Loud (4). 6 Soundscape 

dominated by human sounds, dichotomous coded (0, 1). 7 Soundscape dominated by natural sounds, dichotomous 

coded (0, 1). 8 Soundscape dominated by technological sounds, dichotomous coded (0, 1). 
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5.3.8. Location 8 (Tsavo black rhino reserve – indoor area) 

The black rhino indoor enclosure was mostly evaluated as uneventful, unpleasant, 

monotonous, and calm place (Figure 60). The only significant correlation found was between 

pleasant-unpleasant attributes and sound level perception, which shows that participants felt 

the soundscape as unpleasant in this area when they perceived loud sound levels (Table 30). 

 
Figure 60. Soundscape evaluation ratings for location 8 (Tsavo black rhino reserve) in Chester 

Zoo, UK. 
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Table 30. Pearson’s coefficient of correlation among soundscape attributes (eventful/uneventful, 

pleasant/unpleasant, exciting/monotonous, and calm/chaotic), acoustics measures (LAeq and 

sound level perception), and sound source categories (human and technological) for location 8 

(Tsavo black rhino reserve) in Chester Zoo, UK. 

 E/U1 P/U2 E/M3 C/C4 LAeq SLP5 Human6 

P/U2 -0.06       

E/M3  0.30  0.60*      

C/C4 -0.26  0.45  0.04     

LAeq -0.02 -0.48 -0.30 -0.37    

SLP5 -0.28  0.59*  0.43  0.34 -0.35   

Human6 -0.44 -0.25 -0.49  0.06 NA -0.17  

Technological7  0.44  0.25  0.49 -0.06 NA  0.17 -1.00*** 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Eventful/Uneventful attribute. 2 Pleasant/Unpleasant attribute. 3 Exciting/Monotonous attribute. 4 Calm/Chaotic 

attribute. 5 Sound level perception coded as very quiet (1), quiet (2), Moderate (3), and Loud (4). 6 Soundscape 

dominated by human sounds, dichotomous coded (0, 1). 7 Soundscape dominated by technological sounds, 

dichotomous coded (0, 1). NA: test not possible to perform. 
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5.3.9. Location 9 (Okapi’s enclosure) 

Figure 61 shows the semantic scales results of the Okapi enclosure, where the participants 

evaluated the soundscape as pleasant and calm and tended to evaluate as uneventful and 

monotonous. Although the only significant correlations were found between the equivalent 

sound levels and the source of sound (showing that natural sounds were responsible for the 

high sound levels in this area), the sound sources also presented an interesting high 

correlation factor with two attributes, eventful-uneventful and exciting-monotonous (Table 

31). This implies that for the participants the sonic environment was more uneventful and 

monotonous in the absence of natural sounds and occurrence of technological ones. 

 
Figure 61. Soundscape evaluation ratings for location 9 (Okapi’s enclosure) in Chester Zoo, UK. 
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Table 31. Pearson’s coefficient of correlation among soundscape attributes (eventful/uneventful, 

pleasant/unpleasant, exciting/monotonous, and calm/chaotic), acoustics measures (LAeq and 

sound level perception), and sound source categories (natural and technological) for location 9 

(Okapi’s enclosure) in Chester Zoo, UK. 

 E/U1 P/U2 E/M3 C/C4 LAeq SLP5 Natural6 

P/U2  0.54       

E/M3  0.77  0.74      

C/C4 -0.02  0.48  0.16     

LAeq -0.65 -0.67 -0.80 -0.10    

SLP5 -0.37  0.12 -0.14 -0.15  0.31   

Natural6 -0.71 -0.59 -0.78 -0.06  0.87**  0.39  

Technological7  0.71  0.59  0.78  0.06 -0.87** -0.39 -1*** 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 
1 Eventful/Uneventful attribute. 2 Pleasant/Unpleasant attribute. 3 Exciting/Monotonous attribute. 4 Calm/Chaotic 

attribute. 5 Sound level perception coded as very quiet (1), quiet (2), Moderate (3), and Loud (4). 6 Soundscape 

dominated by natural sounds, dichotomous coded (0, 1). 7 Soundscape dominated by technological sounds, 

dichotomous coded (0, 1). 
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5.4. Discussion 

In some locations during the soundwalk, the participants’ perception of sound levels did not 

match the real sound levels in decibels. Some places, like the Tropical Realm and the sloths’ 

area, for example, presented equivalent sound levels above 60 dB(A), which is considered 

above the human threshold of annoyance (according to the WHO (1999)). The noisier 

features of the Tropical Realm is justified by its indoor area with free-living birds who 

vocalise constantly and by a waterfall which sound prevails over the environment. The sloths’ 

area is also an indoor enclosure with a high ceiling that causes reverberation of the sound. 

The largest amplitude range of the sound in this area can be explained by different conditions 

faced during the different soundwalks, such as moments with few visitors and moments with 

school groups. However, these places were never classified as very loud and were less 

classified as loud compared to the moderate classification. This finding agrees with two 

different studies developed in a zoo and in public urban parks (Soares et al., 2012, Vianna et 

al., 2015), where individuals considered the overall sound low or acceptable and the 

environment silent, despite the fact that the sound levels were registered above the legislation 

recommendation limits. 

This difference in the sound level perception and the real sound levels could happen 

due to the expectation of the participant in face of the evaluated area. The soundwalk 

participants are used to visit the zoo, therefore, their prior experience at the venue could have 

caused some expectation of what would be heard during the experiment and additionally this 

prior experience could have been used as a base of soundscape evaluation during the 

soundwalks (Bruce and Davies, 2014). Another study made in urban parks with water 

fountains has found that people do not go to some areas expecting a quiet experience, as a 

result, the appropriateness of the soundscape was not negatively influenced by the high sound 

levels in the area (Steele et al., 2016). Considering this, in a loud area of the zoo as the 
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Tropical Realm, participants could have been influenced by previous experiences and 

expectations when evaluating the sound levels as moderate more frequently than as loud. In 

addition, the complexity of the physical (trees, free animals, waterfall, lakes, people, built 

environment materials) and sonic (birds singing, waterfall, ventilation system, conversation, 

room reverberation) features of the environments in this indoor area, can be interpreted 

differently by each participant and can distract them from the sound perception. Research 

about the landscape effects on assessments discusses that visual characteristics of the 

environment can direct people’s perception of the soundscape (Liu et al., 2013, Nilsson et al., 

2012). 

The analysis of the zoo soundscape revealed three principal attributes that can be used 

in its evaluation: eventfulness, calmness, and pleasantness. This result is different from other 

studies that found only eventfulness and pleasantness as factors of a soundscape evaluation of 

urban open areas, parks, and green areas (Axelsson et al., 2010, Jeon et al., 2014, Jeon and 

Hong, 2015, Radsten-Ekman et al., 2013). This dissimilarity in the number of the main 

soundscape attributes may have happened due to significant differences in the locations 

evaluated in Chester Zoo in terms of the type of sound sources, as well as different physical 

characteristics of the locations. 

In corroboration with another study (Berglund and Nilsson, 2006), multiple regression 

analysis revealed that sound levels have a direct effect on the calmness and not on the 

pleasantness of a zoo environment. Usually, pleasantness has a strong association with the 

quality of the soundscape and sound pressure levels can be amplified by both pleasant and 

unpleasant sounds. The effect of sound levels (used here as LAeq values) in the calmness is 

understandable since equivalent sound levels are commonly used as an indicator of 

environmental quietness (Jeon and Hong, 2015). 
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In the zoo, the sound sources used in the questionnaires (natural, human, and 

technological) are highly correlated with some attributes of the sonic environment (Table 19 

to 22) and can be used in comparison to other soundscape studies. In the present study, it was 

found, in agreement with other authors (Axelsson et al., 2010, Axelsson et al., 2014, Jeon et 

al., 2014, Nilsson et al., 2007) that technological sounds have an implication in the 

eventfulness and pleasantness of the soundscape and have a positive correlation with 

uneventful, unpleasant, and monotonous attributes, meaning a bad sound quality. For 

instance, in the present study, the black rhino’s area (Tsavo black rhino reserve – location 8) 

soundscape was mostly classified as uneventful. The soundscape of this area, during many 

soundwalks, was dominated by the ventilation system (technological sound). Probably, the 

participants were not expecting to enter the rhino enclosure and to perceive a soundscape 

dominated by technological sounds, and this expectation breach could have caused the 

uneventful characterisation of the acoustic environment (Bruce and Davies, 2014). On the 

other hand, also in agreement with the literature (Axelsson et al., 2010, Axelsson et al., 2014, 

Chau et al., 2010, Colleony et al., 2017, Yang and Kang, 2005), natural sounds have a 

positive correlation with the attributes associated with a good sound quality (eventful, 

pleasant, and exciting), which was also found here in the Tropical Realm (location 2). This 

location soundscape, dominated by natural sounds, was mostly classified as eventful, 

pleasant, and exciting. 

The association of human sounds and the calmness and pleasantness attributes, found 

here as a positive correlation (human sounds linked with chaotic and unpleasant evaluations), 

finds corroborations in other studies (Axelsson et al., 2010, Colleony et al., 2017, Jeon et al., 

2014, Viollon and Lavandier, 2000). In a zoo environment, human sounds can be perceived 

as positive or negative depending on the characteristics of the location and the number of 

people. Colleony et al. (2017) have found that some enclosures that can cause strong 
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reverberation of the sound, especially when crowded, make visitors avoid the area; 

conversely, people find enriching to hear other visitors talking about their experience at the 

zoo. In Chester Zoo, the sloths’ area (Location 4) has this characteristic of reverberating the 

sound, and this can explain the moderate positive correlation between human sounds and 

unpleasant attribute (Table 26). Another location, the Madagascar play area (Location 5), is a 

place for leisure and mostly where families spend time to rest and interact. In this case, 

human sounds present a positive correlation with pleasant attribute (Table 27). 

5.5. Conclusion 

The findings of this study have important implications for improving the understanding of the 

sonic environment in a zoo. The results show that zoos should be more careful about the 

environmental sound of places with predominant technological sounds. 

Since it was found in the present study that natural sounds are correlated with 

soundscape attributes typical of a good quality environment, these sounds could be used to 

mitigate the undesirable effects of the technological sounds. Some water sounds (e.g. stream 

and waterfall) are commonly perceived as high pleasant sounds and can be used to improve 

the overall quality and acoustic comfort of an environment (Kang and Zhang, 2010, Radsten-

Ekman et al., 2013). Although the incorporation of water sound may be of great use, the zoo 

should be careful whether this kind of sound causes an impact on the animals in the area. In 

addition, water sounds can mask both desirable and undesirable sounds sources, so in 

planning of using them, it is important to balance the positive effects of masking 

technological sounds (related to unpleasant and uneventful perceptions) and the negative 

effect of masking other natural sounds, such as animals’ vocalizations (related to pleasant 

perceptions) (Axelsson et al., 2014). 
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In general, human sounds were associated with a chaotic sound environment. 

However, depending on the circumstances, the visitors can perceive this sound source, 

inherent in the zoo soundscape, as positive. Therefore, an educational work to moderate the 

level of noise coming from visitors, which is already being undertaken by Chester Zoo in 

some areas, shows itself important for the maintenance of the good quality of the sonic 

ambient (especially in places where there are no other sounds to mask the effect of the 

visitors’ sound). 

The purpose of the current study of investigation of the visitors’ perception of the 

soundscape can be of important application for zoos around the world. The identification of 

sonic aspects of zoo areas, such as sound sources and sound pressure levels, may be used to 

mitigate some undesirable sound effects in areas already existed and may also be used in the 

planning of new enclosures and visitor common areas in zoological parks. 
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Section 6. Conclusions 

6.1. Discussion 

In zoos, sound pressure levels differ completely from sound levels in nature (Morgan and 

Tromborg, 2007). In a natural situation, animals can run away from or seek protection when 

facing an adverse condition like an undesirable sound source. In a captive situation, animals 

do not have this option. Moreover, this lack of control over an aversive situation can lead 

individuals to express a variety of stress responses, such as behavioural changes and increase 

in physiological stress levels. 

Visitors are expected to be the main source of noise in a zoo (Quadros et al., 2014), 

but the findings of the present study found a difference to previous studies. Ventilation and 

heating systems of the enclosures investigated here dominated the sonic environment. This 

result indicates that zoos from temperate regions face different noise issues compared to zoos 

from tropical regions. Temperate regions, such as the UK, usually encounter along the year a 

large temperature range going sometimes from negative degree Celsius to about 30ºC during 

a year (Met Office, 2010). This reality necessitates the use of heating systems, for many 

animal species, during winter times and ventilation system during summer times, which 

results in continuous noise throughout the year. This situation is compounded by the use of 

glass barriers, which allow visitors to view animals and protect against visitor noise, but 

create a sound reflective surface for the aforementioned heating and ventilation systems.  The 

situation in some tropical regions, such as in the city studied by Quadros et al. (2014) (Belo 

Horizonte, Minas Gerais, Brazil) where the temperature range is smaller, from around 13ºC 

to 28ºC (INMET, 1990), is different. Due to this, the use of the ventilation/heating systems is 

unnecessary, and visitors are the main source of noise, especially as glass barriers are not 

used to maintain temperatures 
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The ventilation/heating system noise does not exclude the issues of the noise 

produced by the visitors where glass barriers are not present in temperate countries, because 

the aforementioned systems can cause, in some situations, the visitors present near an 

enclosure to speak louder than they probably would without such high background noise; this 

is known as the Lombard effect (Zollinger and Brumm, 2011). 

This combination of findings about the ventilation/heating systems provides support 

about the importance of the use of barriers to mitigate internal and external sound in zoo 

enclosures, thereby reducing the impact of the produced noise in the animals’ welfare. Zoos 

should also purchase or design quieter ventilation/heating systems (see “Buy Quiet” in HSE 

(2018)). A quieter system may be more expensive, however, is more economical to invest in 

quieter equipment than to work on reducing the noise after equipment purchase. In cases, 

when a sound barrier cannot be used or a better ventilation/heating system cannot be 

purchased, zoos should consider factors affecting visitor behaviour to prevent the potential 

increase of the sound levels due to the Lombard effect. This could be done by environmental 

education programs around the zoo (i.e. signs but also install visible warnings, such as lights 

or LED information boards, that sound pressure levels have exceeded thresholds considered 

good for animal welfare). The effectiveness of such environmental education should, of 

course, be tested. 

This work is a relevant piece to zoos and other captive facilities in temperate countries 

(e.g. animal shelters), which should be more aware of the constant and loud noise produced 

by the ventilation and heating systems.  The situation found here could be the source of 

chronic stress for non-zoo animals housed in temperate countries. 

During the study of the behavioural and physiological animal responses to noise, 

individual responses were found in all investigations. These findings indicate that mammals 

are likely to present individual differences to sound stimuli and this needs highlighting to 
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zoos. For example, studies in humans indicate that 10 to 20 per cent of the population are 

noise sensitive and that this, probably, has a genetic basis (Andersson et al., 2002, Heinonen-

Guzejev et al., 2005, Paulin et al., 2016). Thus, zoos could use this information to start 

considering the individual's characteristics when planning their husbandry approaches, such 

as enclosure design planning. For example, the use of sound deadening substrates (e.g. wood 

chip), quiet fans/heaters (for heating and ventilation systems) and locating sensitive species 

or individuals in enclosures where they are less likely to be visited by the public. 

Technological sounds are a proven source of concern in zoos regarding both, the 

animals and the visitors. Animals, as was discussed before can be behaviourally and 

physiologically adversely affected by this source of noise (ventilation/heating systems). In 

addition, the findings in Section 5 showed that visitors are also affected by this sound source 

because technological sounds were highly correlated with unpleasant, uneventful, and 

monotonous soundscape attributes, which are associated with bad quality of the sonic 

environment. 

Soundscape perception results presented in Section 5 showed that for humans the 

sound level influence part of the soundscape perception but is not the principal point of 

evaluation of soundscape quality. From the three attributes considered for a zoo soundscape 

evaluation, only calmness is explained by equivalent sound levels (LAeq). This outcome of the 

soundwalks, in agreement with other studies (Axelsson et al., 2010, Axelsson et al., 2014, 

Jeon et al., 2014, Nilsson et al., 2007, Soares et al., 2012, Steele et al., 2016, Vianna et al., 

2015), indicates that humans perception of the soundscape are more influenced by the type of 

sound source, and maybe by expectations, than by the sound levels. 

The results taken together suggest that the zoos could improve the visitor experience 

in some areas by actively designing the soundscape with techniques of noise control and 

masking. Noise control can be made by reducing the level of detrimental sound (HSE, 2018); 
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as it was mentioned before, by using barriers, more efficient ventilation/heating systems, or 

environmental education. The sound masking can be energetic or informational (Pollack, 

1975). In the energetic masking, the masking sound is louder than the masked sound, such as 

the use of fountains to overcome traffic or other undesirable sounds (Kang and Zhang, 2010, 

Radsten-Ekman et al., 2013, Steele et al., 2016). In the informational masking, the masking 

sound is more salient than the masked sound, it attracts attention, such as speech content, for 

example (Kidd and Colburn, 2017). 

For animals, the data produced here indicates that sound levels are an important 

influence in their response to noise. However, future studies could be done by manipulating 

the source of the produced sound in the animal's enclosure to check if they would present 

different behavioural and physiological responses to different sources of sound. This kind of 

research would be interesting to investigate if the use of natural sounds, which are commonly 

seen as pleasant by humans and can be used to mask uncomfortable sounds, could also have 

the same effect on animals. For example, music or natural sounds are often used as 

environmental enrichment, but with varying degrees of effectiveness in changing an animal’s 

welfare status (see Wells (2009), for a review). This variation in animal response could be 

due to the sound source but also to the sound pressure level, which should be carefully 

measured (Wells, 2009). 

6.2. Recommendations for each studied species 

6.2.1. Aye-aye 

1. Control the noise coming from the ventilation/heating system by changing the 

systems for a more silent one or using soundproof barriers. 

2. After the noise control of the ventilation/heating system, sound measurements should 

be done inside the animal enclosure to check if the mentioned systems were masking 
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the visitors sound or if the glass barrier in the enclosure is really protecting the animal 

from the visitors sound. 

6.2.2. Black rhinos 

1. Control the noise coming from the ventilation/heating system by changing the 

systems for a more silent one or using soundproof barriers. 

2. After the noise control of the ventilation/heating system, sound measurements should 

be done inside the animal enclosure to check the influence of visitors in the sound 

levels. 

3. Environmental education activities could be made with the visitors to help decrease 

the sound produced by them. These activities could use the outcomes from the sound 

measurements and animal behaviour studies, to facilitate the visitors visualize and 

understand the real effect of their attitude inside an animal enclosure. 

6.2.3. Okapi 

1. Control the noise coming from the ventilation/heating system by changing the 

systems for a more silent one or using soundproof barriers. 

2. This animal stronger response to equivalent sound levels with Z weighting indicates 

its sensitivity to low-frequencies sounds. Therefore, it is important to verify the 

emitted frequency of the devices inside the animal area (such as CCTV and air 

systems) that can be a source of stress to this animal. 

4.  After the noise control of the ventilation/heating system, sound measurements should 

be done inside the animal enclosure to check the influence of visitors in the sound 

levels. 

5. Environmental education activities could be made with the visitors to help decrease 

the sound produced by them. These activities could use the outcomes of the sound 
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measurements, behavioural and physiological studies, to facilitate the visitors 

visualize and understand the real effect of their attitude inside an animal enclosure. 

6.2.4. Two-toed sloths 

1. In this enclosure, the environmental sound is completely dominated by the visitors’ 

conversation, sometimes reaching significant high levels. For this reason, a 

continuous educational work with the visitors in this enclosure is necessary to 

decrease the noise pollution levels. The educational activities could use the outcomes 

of the sound measurements and behavioural studies, to facilitate the visitors visualize 

and understand the real effect of their attitude inside an animal enclosure. 

2. The sloths tend to search for a shelter when sound levels are high. Thus, soundproof 

dens could be a sensible option for improvements in the animals welfare when sound 

levels are high. 

6.2.5. Orang-utans 

1. Control the noise coming from the ventilation/heating system by changing the 

systems for a more silent one or using soundproof barriers. 

2. Invest in environmental enrichment on the days of expected higher sound pressure 

levels to prevent the orang-utan group from facing stressful situations or even help the 

animals to better cope with stress. 

6.3. Recommendations for further work 

1. The small sample size in both, behavioural and physiological (Sections 3 and 4) 

studies, limited a possible generalization of the results on a species basis. In zoos, the 

number of individuals available is a common challenge faced by researchers (Kuhar, 

2006). The observation of a single animal cannot be used to generalise the results but 

can be used to provide an insight about how an animal can react to determined 
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stimuli. The present study discussed that individual responses to noise are of great 

importance to zoos when caring and planning management for the animals. For 

humans, it is common the use of questionnaires to identify the sensitivity to noise 

(Schutte et al., 2007a, Schutte et al., 2007b, Zimmer and Ellermeier, 1999). These 

questionnaires are used as a tool of global noise sensitivity. As a continuation of my 

thesis results about individual variation in response to noise, future research could be 

done with the aim to develop a similar questionnaire to identify zoo animals’ 

individual sensitivity to noise. Psychometric tests are methods already suggested in 

the context of zoos to evaluate the human-animal bond (Hosey et al., 2018). A section 

about the animals’ reactions to noise could be added to this kind of questionnaires to 

help the zoos to identify the animals’ individual response to noise. 

2. During the study of two different species, the okapi and the black rhinos, the outside 

area in the animal’s enclosure was not investigated due to logistical reasons 

mentioned in Sections 3.1.2 and 3.1.3. This lack of information about the sound levels 

in the outside and about the animal behaviour while staying in this area limited the 

complete evaluation of the animal response to noise by knowing how the same animal 

could respond to the noise stimulus in different places. Ideally, future studies could 

sound map the outside enclosures and observed the animals in this location as well to 

have a complete evaluation of individuals response to noise. 

3. During the analysis of the collected sound data (Sections 3 and 4), it was found high 

sound levels during the night in the enclosures with ventilation/heating systems. This 

finding can lead to a study of the effect of noise in the sleep pattern of captive 

animals. The study could be done to check if the continuously on-off sequence of the 

ventilation/heating system during the night is causing a disturbance in an animal’s 
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sleep. Sleep disruption is known to have a severe impact on the physical and 

psychological well-being of humans (Colten and Altevogt, 2006). 

4. The small number of faecal samples probably limited the okapi GCM response to 

noise between different periods of the year (Section 4). Multiple faecal samples 

throughout different weeks during low and high visitor seasons could be more 

effective for the differentiation of the okapi response between different times of the 

year. Zoos could use more frequently faecal samples usually collected during 

enclosure management to analyse the species responses to different environmental 

conditions throughout the year. 

5. In the case of the orang-utans' response to the summer night events, the use of another 

source of GCM could help better understand the animal’s physiological response to 

specific noise production (Section 4). Faecal samples, when collected in the morning, 

represent an accumulative stress response from the day before (Palme et al., 2005). 

This delay in the response could have caused an influence on the lack of effect of the 

events over the GCM levels. The use of urine sample collected right after the events 

could give a more realistic GCM response to the summer night events due to the short 

GCM extraction delay (Palme et al., 2005). However, it is important to bear in mind 

that this method could be invasive, differently from the faecal samples method, and 

could increase the animal disturbance. Animals training can avoid undesirable 

disturbance to the individuals and can also open new opportunities for GCM analysis 

from urine and saliva, for example. 

6. In addition to the recommendation above, techniques of remote physiological 

monitoring could be used to investigate the animals welfare without minimum 

manipulation. Some devices can monitor not only the physical characteristics of the 
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environment, but also the animal's reactions to it (Ropert-Coudert and Wilson, 2005), 

and this could be of great use in a zoo environment. 

7. In Section 5, the different conditions during the different soundwalks, such as 

presence of school groups and variability of the function of the ventilation system in 

some enclosures, are probably the reason why soundscape evaluation was not 

perfectly consistent between the soundwalk days. This kind of variation across 

different days of data collection is practically impossible to control for in-situ. 

Nevertheless, a study could be done in laboratory using recordings from the zoo 

soundscape and a virtual environment, but this type of approach would lose some 

important features of the zoos like the animals’ smells, other visitors’ behaviours, 

visual enclosure features, etc. 

8. More studies that measure response of both visitors and zoo animals to different 

characteristics of the environment should be done more frequently. The zoo is a space 

commonly used by these two groups (visitors and animals), so reactions from both of 

them should be taken into account when planning new enclosures and when managing 

the zoo environment. Having this in mind, for zoos it is necessary to understand more 

about how the same stimulus can influence animals and visitors. 

6.4. Final conclusion 

The analysis of sonic environment is of great importance when evaluating the animals’ and 

the visitors’ experience in a zoo. For the animals, sound levels and the visitors can be a 

source of stress that causes variations in the expression of behaviour and in physiological 

stress levels. However, this effect caused by sound seems to be greatly influenced by 

individual variation. Many previous studies present their results as a group of animals (Birke, 

2002, Choo et al., 2011, Cronin et al., 2018, Larsen et al., 2014, Liu et al., 2017, Mallapur 

and Chellam, 2002, O'Donovan et al., 1993, Quadros et al., 2014, Wells et al., 2006), and 
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important variation is probably being discarded; this approach is surprising considering 

animal welfare should be measured at the level of an individual and not the group (Brand et 

al., 2016, Chosy et al., 2014, Clark et al., 2012, Cooke and Schillaci, 2007, Ogden et al., 

1994, Owen et al., 2004, Powell et al., 2006, Sellinger and Ha, 2005). 

Zoos in temperate countries should be more aware of the consequences of the 

constant use of ventilation/heating systems onto the behaviour and welfare of their animals 

and seek for advice of acousticians when purchasing/replacing the system or when looking 

for ways to reducing the noise impact. Furthermore, temperate country zoos should not forget 

about the influence that the visitors also have in their animals outside of the sonic stimuli 

(Birke, 2002, O'Donovan et al., 1993, Sellinger and Ha, 2005). 

Zoo visitors can also be influenced by the venue soundscape. However, differently, 

from animals, this influence is caused mostly by the variable source of noise and less by the 

sound levels since zoo visitors are protected by health and safety standards (WHO, 1999) and 

due to other influences such as activity being undertaken and sound expectation, for example. 

Visitors are one of the main financial source funding zoos around the globe. The quality of 

their visit to a zoo is of great importance to encourage the visitors to spend more time on their 

visit, which, consequently, increases visitor satisfaction. It is interesting to reflect that there is 

only a requirement for zoo architects to consider the sonic environment of zoo visitor areas 

and not those of the animals. If zoo architects thought of animal enclosures as ‘homes’ then 

many of the problems found in this thesis in relation to the sonic environment of zoo 

enclosures would be eliminated. 
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