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Abstract: In this paper we investigate the relationship between outcome uncertainty and scoring 

rates in the framework of a “Poisson match”. We argue that increasing scoring rates in the hope of 

increasing entertainment may have a detrimental impact on the popularity of sport. The basis of our 

argument is that higher scoring-rates decrease outcome uncertainty. We use international rugby to 

demonstrate our findings and show that scoring rates have indeed increased significantly over the 

previous half-century in this sport. Therefore, administrators should recognise our general point and 

we suggest that rugby union administrators in particular ought to consider the introduction of new 

laws to reduce scoring-rates. Scenarios in which the scoring-rate is radically reduced are illustrated 

through a simulation of the Rugby World Cup tournament.  
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1. Introduction 

Sport holds a unique standing in society. Entire nations take joy from sporting success at Olympics 

Games and World Cup tournaments, whilst discussion of recent results and anticipated matches is a 

universal pastime. The fundamental reasons for the popularity of sport are unknown, but the 

outcome uncertainty hypothesis (Rottenburg, 1956) posits that outcome uncertainty is an important 

factor. It seems intuitive that interest in a competition will dwindle if the result is known before the 

competition takes place, and so, higher outcome uncertainty is deemed to be an attractive quality of 

a sport. Outcome uncertainty is closely related to competitive balance – a concept by which 

outcome uncertainty can be measured. The relationship between the popularity of a sport and 

outcome uncertainty has been well-studied (e.g. Forrest and Simmons, 2002; Alavy et al., 2010; 

Buraimo and Simmons, 2015; Hogan et al., 2013, 2017; Kuchar and Martin, 2016), and has been 

shown to even transcend national boundaries (Schreyer et al., 2017). In these cases, higher 

competitive balance is found to be associated with elevated interest, although Borland and 

Macdonald (2003) in a review paper found that the empirical results on this relationship are mixed. 

The consumption of sport satisfies a desire for excitement (Mutz and Wahnschaffe, 2016), and 

an exciting sport combines elements of outcome uncertainty with other valuable goods that we 

bundle as “athleticism”, including skill, speed, flair, power, determination, and teamwork, or indeed 

the opposite through errors. While Ely et al. (2015) propose suspense (variance of outcome) and 

surprise (the totality of within-match fluctuations in expected outcome) as distinct aspects of 

outcome uncertainty, and their relative importance to consumers of sport has been measured 

(Bizzozero et al., 2016; Mutz and Wahnschaffe, 2016), the preference for athleticism over outcome 

uncertainty is not known. Scoring events themselves conjoin athleticism with elements of outcome 

uncertainty (a score by a trailing team will increase suspense; a score by a weaker team will increase 
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surprise), and so disaggregating the effects of underlying factors is challenging. Nonetheless, it is our 

thesis that more scoring reduces (within-match) outcome uncertainty, and surprise and suspense by 

implication.  

In particular, in this paper we show that as scoring rate increases the numbers of scores of 

opposing teams tend to diverge (Stefani, 2009) so that the outcome between two teams of differing 

strength will tend to become less uncertain. We establish this result in the context of a Poisson 

match.  

The case of rugby union offers an opportunity to discuss the implications of this result. This is 

because in rugby there is more scoring now than in the past; we demonstrate this later in the paper. 

In rugby, there are also many ways of scoring (the try, the conversion, the penalty, and the drop-

goal), with each type of score carrying a different points value (respectively 5, 2, 3, and 3). In part, 

the increase in scoring is a consequence of an increase in kicking skill and the quality of the ball and 

the playing surface, although this increase has been moderated by rule changes that have increased 

the benefit of not attempting a penalty-kick. Indeed, as penalty-kick success has increased, 

administrators have introduced rule changes (Wright, 2014) that allow more attacking rugby and 

more tries, maintaining the balance between open rugby (more tries, more excitement) and 

defensive rugby (less tries, more penalties, less exciting rugby), but neglecting the excitement 

derived from close outcomes. Thus scoring rates have increased in all aspects of scoring (except 

possibly drop goals which remain relatively rare although occasionally dramatically influential). We 

think policymakers have not considered the consequences of increasing scoring-rate sufficiently, and 

our notion is that in rugby the "goals are too wide". Furthermore, bonus points, for narrow defeats 

and high numbers of tries, may be making matters worse, by favouring the strong and incentivising 

yet more scoring (Winchester, 2008; Lenten and Winchester, 2015). Given the outcome uncertainty 

hypothesis, the increasing scoring rates observed over the last half a century may be reducing the 

popularity of rugby as a sporting contest.  

We use a model of scoring in rugby to simulate matches in the Rugby World Cup tournament to 

illustrate the impact of alternative scoring rules and show how reverting to the original scoring rules 

upon which rugby was founded would increase surprise, suspense and outcome uncertainty, albeit 

using simpler definitions of surprise and suspense than those defined in Ely et al. (2015). Our model 

of a rugby match is based on the model Maher (1982) first presented for soccer, but extended in a 

similar way to Pledger and Morton (2011) and Baker and McHale (2013). The World Cup tournament 

simulation itself mirrors the approach taken in Scarf et al. (2009) and we use similar metrics for 

measuring tournament performance, e.g. the probability that the best team wins, and the 

probability that the i-th ranked team reaches round j (Scarf and Yusof, 2011).  We assume team 

strengths reflect those of the tournament played in 2015. 

This is the first paper to consider this relationship between scoring rates and outcome 

uncertainty and its results have wider implications than for just rugby. That this relationship has 

been overlooked may be because research on outcome uncertainty and competitive balance has 

focused on soccer (Utt and Fort, 2002; Owen et al., 2007; Manasis et al., 2013), where scoring rates 

are not increasing (Figure 1), and North American sports, where the draft plays a pivotal role in 

moderating competitive imbalance (Szymanski, 2003). 

The structure of paper is a follows. First, we describe scoring-rate evolution in rugby since 1960. 

Then in Section 3, we prove that in a Poisson match, scores diverge as scoring rates increase. In 

Section 4 we further analyse scores in preparation for model fitting, we fit a model akin to a Poisson 

match, and carry out tournament simulations using the model. We conclude with a discussion of the 

implications of our results for sports administrators.  
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Figure 1. Mean number of goals scored in international soccer per match by year, reproduced from 

Baker and McHale (2018). 

 

2. Introductory data analysis 

For the analysis in this paper, data for all matches in the period from 1st January 1960 to 31st 

December 2016 between the teams that have been consistently ranked in the top 8 over this period 

(Australia, England, France, Ireland, New Zealand, Scotland, South Africa, Wales) were collected from 

http://stats.espnscrum.com/statsguru/rugby/stats, giving 1366 matches, at a mean rate of 

approximately 4 matches per team per year during the amateur era (to 1996) and 8 matches per 

team per year since then. We consider only these eight, elite teams so that the entry of newer 

weaker sides to the international scene does not distort measures of scoring rate. In the 60s and 70s, 

matches between these elite teams were 45% and 27% respectively of recorded matches played at 

international level. Aggregating the data across these teams, Figure 2 shows the development of 

scoring rates per match for tries, penalties and conversions by year. We can see that the numbers of 

scores has more than doubled. Drop-goal scoring rates are not shown in Figure 2, and in comparison 

to the other types of scoring rates, are very low (0.2 per team per match) and not increasing, 

although in an exceptional match in 1999 South Africa scored five against England.  

These figures then capture the four means of scoring in rugby: the try, whereby the ball is 

grounded by the attacking team on or behind the goal line of the defending team; the conversion, 

whereby the ball is kicked from a tee to between the goal posts following a try; a penalty, whereby 

the ball is kicked from a tee to between the goal posts following an infringement of the rules by the 

defending team; and a drop-goal, whereby the ball is kicked between the goal posts in open play. 

Note, on the definition of terms, the reader should distinguish a penalty (the score event worth 3 

points) from a penalty-kick (the attempt to score a penalty), and while one might use the term 

conversion to define a successful penalty-kick, we reserve the term conversion exclusively for the 

scoring event that follows the try. A fifth method of scoring has existed, the goal from a mark. This 

was discontinued in 1971. There was only one occurrence of this in the period 1960-1970 among 

these eight teams (NZ v Eng, 1st June, 1963) so we ignore this in the analysis.  

Each score-type is assigned a points-value, and the team with the highest points wins the match. 

In 2017, the points-value assignments are 5 for a try, 2 for a conversion, and 3 each for a penalty and 

drop goal. In 1960, the respective values were 3,2,3,3. Until 1886, the respective values were 0,1,1,1, 

and the outcome of a match drawn on points, which occurred more frequently then than now, was 

determined by the number of unconverted tries. To accommodate the evolution of the points-value 

of a try, Figure 2 shows the number of scores per match versus time rather than the number of 

points per match versus time. Of course, these scoring rates are a reflection of the increasing relative 
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reward for scoring a try, so it is noteworthy that the rate of scoring penalties (which has decreased in 

value compared to a try) has increased at a faster rate than that of scoring tries. 

 

a) b)  

c) d)  

Figure 2. a) Mean number of tries scored per match by year, including penalty-tries, b) mean number 

of penalties scored per match by year, c) conversion success rate (proportion) by year, d) Mean total 

number of scores (tries plus penalties plus conversions plus drop-goals) per match by year , in all 

matches between the “top-8” since 1960. 

 

We sought also data on domestic matches. Points scored are available from various sources for 

some interesting tournaments, but match results broken down by numbers of scores by type are not 

available. So it would be difficult to repeat our analysis using domestic matches. Also, the designs of 

domestic tournaments and the participating teams have varied over the decades. Nonetheless, a 

similar pattern of increasing scoring-rate can be observed (Figure 3). 

 

 
Figure 3. Mean total points per match in domestic tournaments by year and by tournament:  

○  RFU Club Tournament (England) (1217 matches);  Δ  English Premiership (3914 matches);  

+   Top 14 French league (2730 matches); ◊ Currie Cup (South Africa, 645 matches). 
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3. Outcome uncertainty and the Poisson match 

In this section we prove some results that characterise outcome uncertainty in a Poisson match. We 

then discuss the implications of these results for competitive sport. 

Proposition 1.  Let  1 1~ Po( )X   and 2 2~ Po( )X   independent, with 1   and 2   for 

some 1  . Then 1 2Pr( ) 1X X   as   . 

Proof: Let Y  be a random variable. Then for any 0t  , Pr( 0) Pr( 1) ( )tY tYY e E e     by Markov’s 

inequality (since tYe  is a non-negative random variable). Now setting 1 2Y X X   we have that  

1 2 1 2( )
1 2 1 2Pr( 0) ( ) ( ) ( ) exp{ ( 1) ( 1)}t X X tX tX t tX X E e E e E e e e           ,                (1) 

since the moment generating function of iX  is ( ) exp{ ( 1)}tX t
iE e e  , for 1,2i  . Now setting 

logt   in (1), and noting that 0t   because 1  , we obtain 

1 2

2

1
Pr( 0) exp{ ( 1) ( 1)}

exp{ (1 2 )}

exp{ (1 ) } 0

X X   


  

 

     

   

   

 

as   . This proves the result.         □ 

Therefore in a “Poisson match”, a match between two teams whose scores are independent 

Poisson random variables, then no matter how close are the strengths (scoring rates) of the two 

teams, the probability that the stronger team wins approaches the value one as the scoring rate 

increases. Expressing this in terms of outcome uncertainty, as the scoring rate increases the outcome 

uncertainty decreases. In the limit for a very large scoring rate, the stronger team will always win 

and the outcome of the match is known with certainty.  

Note, the literature on outcome uncertainty (see e.g. Leeds and von Allmen, 2014) distinguishes 

three types of outcome uncertainty: within-match or intra-match; intra-tournament; and inter-

tournament. Our results here consider the first of these, although we will consider the second by 

implication later in the paper. Also, by modelling strengths relatively ( 2 1  ), the model 

considers the relative quality of play, which is the concern of the outcome uncertainty hypothesis, 

rather than the absolute quality of play, which is not.  

Proposition 2.  Let  1 2, ~ Po( )X X  independent, then (a) 1 2Pr( ) 0X X   as   , and (b) 
1

1 2 1 2 2Pr( ) Pr( )X X X X     as   .  

Proof: Now 
2 2 2 2

1 2 00
Pr( ) / ( !) (2 )x

x
X X e x e I  

  


    

where 0 (.)I  is a modified Bessel function of the first kind with index zero. Using an integral 

representation of 0 (.)I ,  the result (a) follows since 

2 2
0 0 0

1 1
(2 ) exp(2 cos ) d exp{ 2 (1 cos )} d 0e I e

        
 

        

 as    because the integrand exp{ 2 (1 cos )} ( )g      as    where 

1, 0,

( ) 0, 0 ,

1, .

g



  

 




  
 
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Result b) follows from result (a) by symmetry.        □ 

These propositions establish the asymptotic behaviour of 1 2Pr( )X X  and 1 2Pr( )X X . For 

exact calculation of 1 2Pr( )X X  and 1 2Pr( )X X  for 1 ~ Po( )X   and 2 ~ Po( )X   we use 

1

1 2 1 0
Pr( ) { / !}{ ( ) / !}

y x y

y x
X X e x e y  

   

 
   ,  

and  

(1 ) 2 2
1 2 0 0

Pr( ) { / !}{ ( ) / !} / ( !)x x x x

x x
X X e x e x e x      

    

 
    .

 

We use a finite approximation to these exact formulae to illustrate the asymptotic results graphically 

in Figure 4.  

 

a) b)   

Figure 4. For 1 ~ Po( )X   and 2 ~ Po( )X   independent: a) 1 2Pr( )X X , b) 1 2Pr( )X X  

as a function of   for various   (solid line 1  , short dash 1.2  , medium 

 dash 1.5  , long dash 2  , bold solid line 3  , (b) only). 

 

Corresponding results can be proved for similar models with normal, log-normal, and binomial 

margins. Thus, we can obtain a further proposition. 

Proposition 3.  If 2 2
1 2 1 2( , ) ~ N( , , , , )X X       (dependent bivariate normal distribution) 1  , 

then 1 2Pr( ) 1X X   as   .  

Proof: The result follows because 2
1 2 ~ N( (1 ), )X X     , where 2 2 2

1 1 2 2 0        , 

and so  1 2 1 2Pr( ) Pr( 0) ( ( 1) / )X X X X          , where (.)  is the cummulative 

distribution function of the standard normal distribution, and ( ( 1) / ) 1      as    

because 1  .            □ 

We make some remarks about these propositions. 

As Propostion 3 holds in the dependent case, it also holds in the independent case ( 0  ).  

A result for a bivariate binomial can be proved in a similar way to Proposition 1.  

The result (divergence of scores) in Propositions 1-3 is not universally true. For example, when 

the marginal distributions are both zero-inflated, 1 2Pr( 0) 0X X   , always, due to the zero-

inflation of the bivariate distribution. Crucially, a general result depends on two assumptions in the 

model: firstly, that strengths differ relatively ( 2 1  ) rather than absolutely ( 2 1    ); and 

secondly, that a Bernoulli process underlies the score distributions, which is the basis of the Poisson 

match. Thus, regarding the first, we can see that if 2 2
1 2 1 2( , ) ~ N( , , , , )X X        then 

2
1 2 ~ N( , )X X     and so 1 2Pr( )X X  does not depend on  .  
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When continuous distributions are used to approximate discrete distributions (of scores in 

sports), probabilities may be calculated using a continuity correction. A result similar to Proposition 3 

can be proved for this case (see Appendix 1).  

The corresponding result for the bivariate log-normal distibution (which has support on the 

upper right quandrant) can be proved by using the log-transformation in Proposition 3. The 

discretized bivariate log-normal distribution is then a model that is suitable for scores that must be 

positive. As an aside, to accommodate heavier tails, one could discretize elliptical models (e.g. 

Bingham et al., 2003) that are used in financial modelling.  

Moving then from the model to the reality, the practical consequences are that if scores are 

approximately Poisson (e.g. soccer, see McHale and Scarf, 2007) then increasing the scoring rate 

decreases the outcome uncertainty. Thus, picking up a soccer example here, while the size of the 

goal is sacrosanct, penalising defenders for impeding attackers in the penalty area more stringently 

(than has been the case in the past) is not and would likely increase the scoring rate.  

Notice conversely that, as 0  , a contest becomes perfectly (competitively) balanced but the 

outcome becomes certain, since in the limit no team scores and the match outcome is 0-0 with 

probability 1. Therefore competitive balance and outcome uncertainty are not synonymous.  

We might anticipate that the effect of interest is moderated as the dependence between scores 

increases, so that the scoring-rate effect is exaggerated if scores are negatively dependent and 

somewhat reduced if scores are positively dependent. We investigate the dependence of scores in 

international rugby in the next section. We also consider whether the Poisson distribution is a good 

model for international rugby scores.  

 

4. Implications for international rugby union 

So far, we have i) proved that for the Poisson match an increasing scoring-rate decreases outcome 

uncertainty, ii) shown that the scoring-rate in matches between elite international rugby teams is 

increasing (more than doubled since 1960), and iii) stated the outcome uncertainty hypothesis that 

outcome uncertainty is an important contributor to popularity of a sport. Now we do three things. 

Firstly we consider whether a Poisson match is a reasonable approximation to an international rugby 

match. If it is then it may be that increasing scoring rate in rugby is detrimental to the popularity of 

the sport. Secondly we fit a model that is akin to the Poisson match to all results of matches played 

in the previous ten years between the twenty teams who contested the 2015 Rugby World Cup 

tournament. Thirdly, we use this model to simulate the tournament and we illustrate through 

simulation how the outcome of the tournament may look when scoring rates are modified. In this 

way, we can explore the effect on tournament outcome of changes to the rules of the game. In 

particular, we consider a revised scoring rule in which effectively a team scores a point if and only if 

it converts a try.  

4.1. Poisson match approximation 

We performed tests of goodness-of-fit (GOF) of the Poisson distribution, decade by decade (because 

of the increase in the mean scoring rate over time), and by first-named and second-named team 

(because of the potential for a higher scoring-rate for the first-named team and bearing in mind that 

where applicable the first-named is the home team).  Summary results are shown in Table 1. Overall, 

there is evidence of zero inflation and some tendency for larger numbers of scores than is described 

by the Poisson distribution (Figure 5), but not in all decades. Contributions to the chi-squared GOF 

statistics, which are not reported for brevity, reflect this.  The higher frequency of zeros and high 
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numbers of scores than expected implies that the Poisson match is less dispersed than the reality 

and so, in the Poisson-match modelling environment, matches will be somewhat more competitive 

in reality. Also, given that conversions can only follow tries and the different means of scoring do not 

have the same points-value, there are structural reasons why the reality cannot be a Poisson match.  

Furthermore, the case for accommodating zero-inflation is not strong because 0-0 would arise in 

0.05% of matches (64 of 2732 scores (2.3%) are zero), and so the effect of zero-inflation on outcome 

uncertainty will be negligible. In fact, five of the 1366 matches in our dataset ended 0-0 (0.37%), 

which is five times more than expected under the assumption of independence. However, all these 

0-0 matches occurred before 1965. 

 
 

Table 1. Chi-squared goodness-of-fit statistics for tests of the Poisson distribution, by decade and for 

first-named and second-named teams. All tests on 7 degrees of freedom. 2
7,0.99 18.5  . 

 
 60s  70s  80s  90s  00s  10s  

First-named  36.4 ** 5.2  6.6  28.0 ** 42.0 ** 9.5  

Second-named  45.7 ** 13.2  11.9  49.7 ** 45.7 ** 19.2 ** 

** significant at 1% level 
 

 

 

  
all matches, team 1 all matches, team 2 

 
Figure 5. Observed frequencies and expected Poisson frequencies of numbers of scores (tries plus 
conversions plus penalties plus drop-goals) for team 1 (first-named in match) and team 2 (second-

named) for all matches between the “top-8” since 1960.  
 

Indeed, it is important now to consider dependence between scores. This is because the Poisson 

match will tend to exaggerate the competitive balance, scoring rate effect if real scores are positively 

dependent. Then as an alternative model, we might use the bivariate Poisson distribution (Karlis and 

Nzoutfras, 2003). For all matches, the correlation between team 1 and team 2 scores is slightly 

positive, but not statistically significant (0.047, p > 0.1). Looking year-wise (Figure 6), the correlations 

are mostly negative. This reversal is most likely due to the increase in scoring rates over time. 

Regardless of this, independence is a useful simplifying assumption even if it is not completely, 

empirically justifiable. 

For the model development in Section 4, it will be simplest also to assume number of tries and 

number of penalties by a team within-match are independent. We investigate this dependence here. 

Dependence, if it exists, may be at team level, so we consider correlations of number of tries and 

number of penalties by team and decade, shown in Table 2. All the significant correlations there are 
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negative. There is a good reason for the negative correlation: when the try-count becomes high for 

one team in a one-sided match, the dominant team will tend to forego penalty-kicks. Nonetheless, 

for matches in which try-scoring is lower, correlation may be less evident. Actually, this appears to 

be true but the correlation does not decrease appreciably, so that for example if one looks at just 

scores where the number of tries < 6, the correlation is -0.080. Team-decade-wise, the results in 

Table 2 make intuitive sense. For example, in the case of New Zealand as their dominance has grown 

over time they have tended to play an open game (scoring tries) instead of a tight game (kicking 

penalties). And England in the 90s and 00s were noted for playing a tight, cautious game. 

 

 
 

Figure 6. Correlation of team 1 score, 1x , and team 2 score, 2x , for all matches played in year i for all 

years since 1960 to date; dashed line for numbers of scores; solid line for points. 

 

 
Table 2. Pearson correlations between number of tries and number of penalties by team and by 

decade, with significance levels for 2-sided test.  
 

 60s  70s  80s  90s  00s  10s  

Australia  -0.091  -0.189  -0.004  -0.252 * -0.324 ** -0.145  

England 0.146  -0.067  -0.327 * -0.200  -0.225 * -0.140  

France -0.308 * -0.207  -0.038  -0.084  -0.086  -0.141  

Ireland -0.214  -0.261  -0.328 * -0.443 ** -0.080  -0.266  

New Zealand -0.024  -0.269  -0.316 * -0.286 * -0.432 ** -0.520 ** 

Scotland -0.075  -0.098  -0.127  -0.179  -0.340 ** -0.243  

South Africa 0.044  0.119  0.038  -0.355 ** -0.223 * -0.371 ** 

Wales  0.189  -0.232  -0.239  0.089  -0.093  -0.383 ** 

* significantly different from zero at 5% level, ** at 1% level 
 
 

Overall then the Poisson match provides a reasonable approximation to the scores in an 
international rugby match, not least because scores show low correlation. Next, we estimate team 
strengths in a Poisson-match model.  

4.2. Estimation of team strengths 

We now identify the 20 teams who played in the Rugby World Cup tournament (RWC) in 2015. These 

teams are labelled 1,…,20. We collected data on all matches between these teams over an 11 year 

period (942 matches from 4th February 2006 to 26th February 2017). We fit a model like the Maher 

(1982) model to these scores, but without the sophistication of time varying strengths (Owen, 2011) 
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or zero-inflation (McHale and Scarf, 2011) or inflation for particular score combinations (Dixon and 

Coles, 1997) or alternatives to the Poisson distribution (Boshnakov et al., 2017) that have been used 

to model soccer. However, note, such development in the context of matches with complicated 

scoring systems would make an interesting study.  

Consider match i  played between team 1i  and 2i , for 1,...,i M . Thus the pair 1 2( , )i i  indexes 

the teams playing in match i . Let 
1 2

( , )
j j

i i
Y Y  be the number of scores of type j  by teams 1i  and 2i  

respectively in match i , where 1j   for tries, 2j   for penalties and 3j   for drop-goals. Let 

1 2
( , )i iZ Z  be the number of conversions by teams 1i  and 2i  in match i . Assume:

1 1 1 2 2 2

1 2 3 1 2 3( , , , , , )i i i i i i iY Y Y Y Y YY  is a 6-variate Poisson with all marginal distributions mutually 

independent; 
1 2

( , )i i iZ ZZ  is bivariate independent binomial with parameters 
1 1 2 2

1 1( , , , )i i i iY p Y p  and 

independent of iY , where 
1 2

( , )i ip p  are the conversion rates (probabilities) of teams 1 2( , )i i  in match 

i . Let the mean (or rate) of 
1 2

( , )
j j

i i
Y Y  be   

1 1 1 2 2 2 1
( / , / )

j j j j j j j

i i i i i i i
         

for all 1,2,3j  , where 
1

j

i
  is the type j  attacking strength of team 1i  and 

2

j

i
  is the type j  

defensive strength of team 2i , and 
1

j

i
  specifies the home advantage of team 1i  for score type j , 

noting that in the data if there is a home team this is always the first named team (indexed 1i ), and 

when there is no home team this parameter is absent from the parameter specification.  

The expected scores, 
1i

  and 
2i

 , of teams 1i  and 2i  in this match are then given by  

1 1 1 1 2 1 1 2 1 1 2

1 1 1 2 2 2 3 3 3(5 2 ) / 3 / 3 /i i i i i i i i i i ip             , 

and  

2 2 2 1 2 1 2 1

1 1 2 2 3 3(5 2 ) / 3 / 3 /i i i i i i i ip          ,  

where the terms here correspond to the expected points-value of tries, penalties and drop-goals, 

respectively. In the first term in each equation, the expected number of tries scored (the try-strength 

ratio) is multiplied by the expected points-value of a try (5 plus the expected value of the conversion, 

2 p ). 

The log-likelihood for the data ( , )y z  (the M by 8 matrix of scores) is  

 
1 2 1 1 2 2 1 2

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3

1 1

1 1 1

1 1 1

( , ) log log log( !) log( !)

log( !) log( !) log{( )!} log ( ) log(1 )

log( !) log( !) log{( )!} log (

M j j j j j j j j

i i i i i i i ii j

i i i i i i i i i

i i i i i i i i

l y y y y

y z y z z p y z p

y z y z z p y z

   
 

      

       

      

 y z



 


2

1 2 1 1 2 2

1 1 1 1 1 2 2 2 2 2

3

1 1

1 1

) log(1 )

log log

log ( ) log(1 ) log ( ) log(1 ) .

i

M j j j j j j

i i i i i ii j

i i i i i i i i i i

p

C y y

z p y z p z p y z p

   
 



     

       

 

 

So in the first row of this equation, we have the Poisson scores for each team and for each of the 

three score-types, in the second row we have the binomial number of conversions for team 1 (since 

1 1 1

1~ bin( , )i i iZ Y p ), and in the third row the same for team 2.  

For the simplest parameterisation, there are distinct parameters 1 1( , )k k   for the try-attacking 

(type 1) and try-defensive (type 1) strengths of all teams 1,...,k n , up to the one required 

constraint (e.g. 1
1 1  ); the (type 2) penalty-strengths are 2 2( , )k k   with e.g. 2

1 1  . The 

simplification 2 1
k k   and 2 1

k k  , so that for every team in every match the penalty scoring 
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rate is proportional to the try-scoring rate, is appealing from an parameter reduction point of view 

but not justified by the exploratory data analysis in Section 4.1. Likewise for drop goals, the 

parameter reduction that 3 1
k k   and 3 1

k k   would imply is not justified because the number of 

drop goals is not likely to be linearly related to the number of tries. This is because, if a dominant 

team is scoring many tries, it may not attempt drop-goals, and conversely, in a tight match, drop-

goal attempts may be more frequent particularly in the latter stages of a match. So, with a 

conversion parameter for each team, and home advantage specified for each score type j  as 
1

j

i
   

if team 1i  is at home and 
1

1
j

i
   otherwise, we estimate 140 parameters (Table 3).  

 

Table 3. Maximum likelihood estimates of team strength parameters and conversion rate; 942 

matches in total in 2006-2017; the five-number-summary for the numbers of matches played by 

each team is (22-64-92-132-147). 

TEAM 

Try- 
attack 
strength 

1
k  

Try- 
defence 
strength 

 1
k  

Penalty- 
attack 
strength 

2
k  

Penalty- 
defence 
strength 

2
k  

Drop-
goal- 
attack 
strength 

3
k  

Drop-
goal 
defence- 
strength 

3
k  

Conversion 
rate 

kp  

New Zealand 1.000 0.468 1.000 0.498 1.000 19.204 0.737 
Wales 0.470 0.273 1.060 0.412 1.499 12.934 0.787 
England 0.546 0.348 1.064 0.387 3.027 9.943 0.720 
Australia 0.717 0.365 0.950 0.410 1.596 11.366 0.722 
South Africa 0.719 0.358 1.044 0.450 2.788 11.978 0.757 
France 0.493 0.297 1.037 0.454 2.415 10.590 0.744 
Ireland 0.519 0.327 0.902 0.473 1.322 11.888 0.755 
Scotland 0.327 0.246 1.034 0.422 2.490 14.890 0.781 
Italy 0.294 0.172 0.813 0.401 2.380 27.390 0.732 
Argentina 0.419 0.248 1.073 0.397 2.799 14.096 0.767 
Japan 0.299 0.103 0.904 0.529 0.774 62.519 0.676 
Fiji 0.374 0.132 0.722 0.464 0.010 13.728 0.733 
Romania 0.151 0.098 0.924 0.401 1.823 24.471 0.674 
Canada 0.258 0.106 0.817 0.408 1.188 30.963 0.696 
Samoa 0.328 0.177 0.930 0.397 0.741 13.799 0.665 
USA 0.235 0.097 0.730 0.430 2.156 35.468 0.668 
Georgia 0.157 0.135 0.927 0.366 1.102 11.546 0.770 
Tonga 0.313 0.139 0.984 0.442 0.311 22.399 0.681 
Uruguay 0.107 0.069 0.668 0.633 0.519 56.646 0.600 
Namibia 0.203 0.063 0.556 0.509 2.667 10.506 0.655 

HOME ADV. 1.212  1.227  0.874   

 

It is apparent in Table 3 that New Zealand has the largest try-attack strength and try-defence 

strength. The other southern hemisphere teams are the next strongest, followed by the “home 

nations” and Argentina. Penalty-attack and penalty-defence strengths are more narrowly distributed 

across the top nine teams, indicating that these teams expect to score similar numbers of penalties 

in matches between them. So the utility of the penalty as a discriminator in matches is questionable. 

Teams outside the top nine teams are some way behind on all these measures. Home advantage 

appears to be quite large for tries and penalties, and the home disadvantage with respect to drop-

goals may be an artefact of low numbers of such events. However, for prediction purposes, one 

might specify team-related home advantages, since travelling around the world is a different 

prospect to travelling between countries in the UK.  
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4.3. Simulation of the RWC tournament 

We use the model above and its parameter estimates to simulate the RWC 2015 tournament, in a 

similar manner to that used in soccer tournament simulations (e.g. Leitner et al., 2010; Suzuki et al., 

2010; Scarf and Yusof, 2011; Goossens et al., 2012). Details of the tournament are here: 

https://en.wikipedia.org/wiki/2015_Rugby_World_Cup. In summary, the first round was a round 

robin in each of 4 pools of 5 teams, with the top two teams qualifying for the seeded knock-out 

phase with three rounds: quarter finals, semi-finals, and final. The simulation replicated the 

tournament rules and circumstances: 

 The assignment of teams to pools was the same as RWC 2015 and fixed over repetitions in 

the simulation. 

 England was the home team and played all its games at home; other teams played all games 

away from home except Wales which played Fiji and Uruguay at home in the pool stage. 

 Match results were simulated using the model described in Section 4.2 and the parameters 

in Table 3.   

 In the pool phase, 4 points were awarded for a win, 2 for a draw, 1 for scoring four tries or 

more, and 1 point for the losing side if the points difference was 7 or less. 

 Progression from the pool when two teams were tied on points used a succession of tie 

breakers: i) the winner of the match between the teams, ii) the points-difference (points-for 

minus points-against in all pool matches, iii) the try-difference, iv) points scored, v) tries 

scored, and vi) the IRF ranking as at 12.10.2015. 

 The assignment of teams to the knock-out rounds was deterministic, with the winner of pool 

A playing the runner-up of pool B in the Q1, etc.   

 The only departure from the tournament rules was that for determining the winner when a 

match was tied at full-time, with the winner determined purely at random (coin-toss).   

 The tournament simulation was repeated a number of times that was sufficient for the 

proportions to reach stable values (10,000 repetitions). 

We proxy suspense using the proportion of matches tied at half-time. To calculate this measure, 

matches were simulated as the sum of two-halves, with a match-half simulated by setting the attack 

parameters to half the value in Table 3.  

In addition, a home and away round-robin (H&A RR) tournament was simulated 1000 times in 

order to calculate team ratings. Using these ratings, a surprise result was defined as a match won by 

a team 20 points weaker than its opponent. In this way we use a much simpler notion of surprise 

than that defined by Ely et al. (2015). 

We acknowledge that a more sophisticated tie-breaker (e.g. Koning et al., 2003) could have 

been used, but again our view is that this is not necessary in the context of our study. 

4.4. Scoring scenarios 

We simulated the RWC 2015 tournament in each of four scenarios:  

 Scenario 1, the status quo, with a try worth 5 points, a conversion 2, a penalty 3, and a drop 

goal 3 points, and scoring parameters as in Table 3.  

https://en.wikipedia.org/wiki/2015_Rugby_World_Cup
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 Scenario 2, akin to 1870s scoring rules, with a try worth 0, a conversion 3, a penalty 0, and a 

drop goal 1 points, and scoring parameters as in Table 3. 

 Scenario 3, similar but mimicking a drop-kicked conversion rather than a place-kicked 

conversion, with points as scenario 2, and scoring parameters as in Table 3, but with the 

conversion-rates halved. 

 Scenario 4, mimicking 1960s scoring rates, with points as scenario 1, but with attack 

parameters for each score type halved, and conversion rates reduced by 25%.  

Effectively, in scenario 2, the team with the larger number of converted tries in a match wins, and 

typical expected scores are half those of the status quo, with e.g. 4-1 for NZ v Wales, 2-1 for Australia 

v England, 2-2 for France v Ireland.  Under scenario 3, expected scores take values that are half 

these. In scenario 4, expected scores lie closer to scenario 2 than scenario 3 since penalties still count 

but overall scoring rates are less than half those of the status quo.  

Returning to the point about modelling refinements discussed in the opening paragraph of 

Section 4.1, we contend that these are not necessary because if there were no points for a penalty 

and 1 point for a conversion the game itself would change, and we would anticipate that try scoring 

rates would change in a manner that is not known. Such a reaction would likely modify scoring rates 

to a greater extent than a modelling refinement. Thus, we are not attempting to predict RWC 

tournament outcomes under a points-rules change. Instead, we are using this tournament to 

illustrate how rule changes can influence outcomes in an idealised tournament.  

4.5. Tournament simulation results 

Table 4 presents our results, which shows for each team for each scoring scenario:   

 The value of the win percentage in the home and away round-robin (“Win % in H&A RR”). 

 The proportion of repetitions in which the team qualified for the knock out phase (“Qualify  

for KO”). 

 The proportion of repetitions in which the team reached the semi-final round (“Reach 

semis”). 

 The proportion of repetitions in which the team won the tournament (“Win tournament”). 

Also shown are the tournament win probabilities calculated using the pre-tournament betting odds 

(“starting prices”). 

We can see in the H&A RR ratings that in the scenarios with reduced scoring rates the dominant 

teams remain dominant but to a lesser degree, and remain dominant but to the least degree in the 

scenario that mimics the drop-kicked conversion. This is apparent in Figure 7. Thus, team rankings 

are not changed by reducing the scoring rates, and for example New Zealand is the best team in the 

world in each scenario. In scenario 1, we can see the effect of home advantage for England since 

England has higher progression probabilities than Australia who are ranked higher. Under the 

scenarios with no penalty scoring, England does less well relative to Australia who have a larger try 

attack strength. These are just some examples of effects that are apparent at the top of the table.  
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Table 4. Estimated tournament outcome probabilities for 10000 repetitions of the RWC 2015 simulation ( = 470,000 matches) and  
1000 repetitions of the home and away round robin simulations ( = 380,000 matches). 

 

Scenario 1:  
try 5, con. 2, pen. 3, drop 3 

 Scenario 2:  
try 0, con. 3, pen. 0, drop 1 

 Scenario 3: 
try 0, con. 3, pen. 0, drop 1 
con.rate x 0.5 

 Scenario 4:  
try 5, con. 2, pen. 3, drop 3 
try x 0.5, pen. x 0.5 
con.rate x 0.75 
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New Zealand 92.6 1.000 0.853 0.503 0.369  91.5 0.999 0.828 0.457  86.0 0.990 0.758 0.355  88.2 0.993 0.790 0.397 
South Africa 83.7 0.990 0.569 0.126 0.160  83.2 0.985 0.576 0.149  78.5 0.956 0.562 0.143  80.0 0.958 0.553 0.149 

Australia 81.6 0.812 0.543 0.116 0.080  81.4 0.834 0.578 0.151  76.7 0.791 0.493 0.141  78.4 0.762 0.484 0.121 

England 76.0 0.824 0.558 0.130 0.175  75.5 0.771 0.473 0.095  71.2 0.693 0.423 0.099  72.9 0.781 0.518 0.130 
Ireland 74.3 0.929 0.418 0.052 0.097  73.7 0.912 0.411 0.058  69.7 0.822 0.394 0.086  69.8 0.842 0.388 0.065 

France 72.8 0.910 0.394 0.041 0.042  70.8 0.873 0.377 0.045  67.2 0.786 0.367 0.059  68.9 0.837 0.385 0.064 

Wales 69.0 0.351 0.152 0.013 0.052  69.3 0.378 0.172 0.015  65.6 0.457 0.222 0.042  67.4 0.409 0.185 0.023 

Argentina 64.6 0.804 0.304 0.013 0.011  64.6 0.836 0.338 0.022  62.6 0.777 0.362 0.046  61.8 0.723 0.329 0.033 
Scotland 59.1 0.631 0.144 0.006 0.003  58.8 0.630 0.157 0.008  57.3 0.582 0.204 0.019  56.7 0.576 0.178 0.014 

Samoa 47.4 0.287 0.029 0 0.006  46.1 0.306 0.041 0.000  46.5 0.300 0.067 0.004  47.1 0.294 0.061 0.003 

Italy 43.7 0.140 0.007 0 0.001  46.7 0.185 0.021 0.001  47.8 0.294 0.060 0.004  44.4 0.241 0.041 0.001 

Tonga 42.9 0.174 0.022 0 0.001  40.1 0.133 0.021 0  41.3 0.154 0.041 0.002  44.6 0.224 0.053 0.001 
Fiji 42.8 0.013 0.001 0 0.001  44.6 0.017 0.002 0  44.5 0.059 0.012 0.001  43.9 0.048 0.010 0 

Japan 34.4 0.077 0.002 0 0  31.6 0.056 0.002 0  34.9 0.098 0.009 0  36.6 0.127 0.011 0 

Canada 28.8 0.018 0 0 0  29.9 0.026 0.001 0  33.2 0.075 0.007 0.001  31.3 0.061 0.003 0 

Georgia 24.7 0.022 0.001 0 0  27.5 0.030 0.002 0  31.6 0.064 0.010 0  30.1 0.053 0.009 0 

USA 24.2 0.016 0 0 0  25.4 0.024 0 0  29.9 0.064 0.009 0  26.4 0.045 0.001 0 
Romania 18.1 0.003 0 0 0  18.4 0.004 0 0  24.1 0.025 0.001 0  23.2 0.020 0.001 0 

Namibia 11.6 0 0 0 0  13.3 0.002 0 0  17.7 0.015 0.001 0  15.5 0.007 0 0 

Uruguay 7.6 0 0 0 0  7.4 0 0 0  13.4 0 0 0  12.9 0 0 0 
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Figure 7. Team strengths (win percentage in H&A RR) of best 9 teams for each scoring system. 

Solid line, scenario 1 (status quo); short dash, scenario 2 (3 points for conversion, 1 for drop goal); 

long dash, scenario 3 (drop-kicked conversion); medium dash, scenario 4 (1960s scoring rates). 

More importantly perhaps, weaker teams have greater progression probabilities in the 

scenarios with reduced scoring rates, and there are correspondingly more surprises, more tied 

matches, and more matches tied at half time, suggesting more suspense (Table 5). We qualify 

these points by noting that surprise and suspense can be measured in different ways. For example, 

matches in-play that are close rather than just tied might be deemed suspenseful, and smaller or 

larger “strength” differences might be used in the definition of surprise. Nonetheless, we would 

expect the effects to remain the same. Also important is that the try-scoring rate in scenarios 2 

and 3 is same as the status quo, so that more surprises and more suspense, and greater outcome 

uncertainty, does not necessarily imply fewer tries. Thus, the administrator may not have to trade-

off exciting play (i.e. tries) against outcome uncertainty, two goods that are valued by consumers 

of sport. Nonetheless, the direction that the game would take in response to such a radical rule-

change is unknown, and scenarios can be envisaged in which the try-scoring rate increases and in 

others it decreases. 

 

Table 5. Proportion of matches tied at half time, at full time (c.f. 7 out of 20 soccer World Cup 

finals have been tied at full time = 0.350), and proportion of matches with surprise result (when a 

team beats another whose H&ARR win% is 20 points greater) 

 Scenario 1  Scenario 2  Scenario 3  Scenario 4 

All 
matches 

tied at half time 0.045  0.236  0.403  0.139 

tied at full time 0.016  0.111  0.213  0.045 

surprise results 0.050  0.090  0.172  0.081 

Final tied at half time 0.050  0.304  0.418  0.160 

tied at full time 0.030  0.149  0.248  0.053 

 

5. Discussion 

We study the relationship between outcome uncertainty and scoring rates and focus on the 

particular case of international rugby union. In this sport, scoring rates have increased over the 

last 50 years, with more tries scored, more penalty-kicks attempted and more kicks successful. 

However, this increase in scoring rate may be at the expense of outcome uncertainty, and we 

show that the outcome of a Poisson match (an idealised model of a ball game between two teams) 

becomes more certain in favour of the stronger team as the overall scoring rate increases. 
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Furthermore, less outcome uncertainty appears to imply less suspense and fewer surprises. We 

argue therefore that a high scoring rate may be detrimental to the development of a sport that 

approximates to the Poisson match, and may be detrimental to the development of rugby union. 

The implication is that it is harder for new international teams to break into the top flight if scoring 

rates are higher, and that very often weak international teams will be beaten convincingly, by 

large margins, by strong teams in tournaments. A significant proportion of matches (close to half 

of all games) in these tournaments are hopelessly one-sided. It can be argued that low outcome 

uncertainty is not a systemic issue but the result of few teams competing at the highest level. But 

this is a vicious circle, and may be preventing the entry of the full game to the Olympic 

programme, and may even perpetuate issues of welfare of players of the sport. And on the 

contrary, that soccer is so popular to watch is not a surprise given that scoring rates in this sport 

are close to those which maximise outcome uncertainty in the Poisson match. That said, there 

exist studies that show outcome uncertainty is not necessarily desired by fans (e.g.  Buraimo and 

Simmons, 2015).  

We suggest that the crux of the issue in rugby union is that, as kicking has improved, the size 

of the target has remained the same. Thus more kicks are successful now than in the past. We 

further suggest that the response of administrators has been to incentivise more exciting play and 

hence more try-scoring. It is our thesis that a policy to reduce scoring rates should be  considered. 

This could be achieved by redefining the try as just that, a try for goal, an attempt for a point. We 

study this policy by modelling a scenario in which the try effectively counts for a point only if it is 

converted. We then illustrate, through simulation of the Rugby World Cup tournament under 

various reduced-scoring-rate scenarios, that fewer scores leads to more suspense and more 

surprises, but that the rank-order of teams remains unchanged. In this way, the best would appear 

to remain the best while winning less often. Furthermore, and most importantly, under the most 

extreme reduced scoring-rate scenario, more outcome uncertainty may not occur at the expense 

of less exciting play because while the points-scoring rate is lower the try-scoring rate is not. 

Finally, an alternative to scoring-rule change that might be considered is a smaller tournament of 

say 12 or 16 teams. However, this would negate widening participation. 

There are limitations to our claims. Firstly, we assume try-scoring rates are fixed across the 

various scenarios considered. In reality, the effect we desire (more outcome uncertainty) is likely 

to be moderated by an increase in try-scoring that a decrease in penalty scoring (to zero) will 

imply. Next, rugby union is not closely approximated by a Poisson match. Nonetheless, we might 

expect it to approximate to the Poisson match somewhat better under the “one point for a 

conversion” scenario. Also, penalty- and try-scoring events are negatively dependent, and so we 

would expect try-scoring to increase if penalty-scoring decreases even without a change in 

playing-behaviour in response to rule-changes. Next, fewer points scored implies more tied 

matches, although there is the suggestion that even under the most extreme score-reduction 

scenario, the proportion of tied matches would not be as great as occurs in soccer. Finally, 

changing the point-scoring rules will likely change the game (Hogan and Massey, 2017) in a way 

that is unforeseen and unintended (Hon and Parinduri, 2016; Kendall and Lenten, 2017). However, 

this is not an issue that an operational research analysis of the game can address, because 

inevitably a model can only provide an approximation to a future reality. Modellers have to 

persuade administrators about the quality of approximation, and administrators have to use their 

judgement. The role of this paper is merely to use analysis to inform discussion of matters of 

importance to sport in general and outcome uncertainty in particular.   
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Appendix 1 

Let 1 ~ Po( )X   and 2 ~ Po( )X   independent with 1  . The score difference 1 2X X  can be 

approximated by a random variable Y  such that ~ N( (1 ), (1 ))Y      . This is because 1X  

can be approximated by a random variable 1 ~ N( , )Y    and 2X  can be approximated by a 

random variable 2 ~N( , )Y   , and so 1 2Y Y Y   is normally distributed with mean 

1 2 1 2( ) ( ) ( ) ( ) (1 )E Y E Y Y E Y E Y             

 and variance 

1 2 1 2var( ) var( ) var( ) var( ) (1 )Y Y Y Y Y            . 

 Then, using the continuity correction when calculating probabilities, we have 

1 1
2 21 1

1 2 2 2

(1 ) (1 )
Pr( 0) Pr( ) 0

(1 ) (1 )
X X Y

   

   

       
                  

, 

as   , and  
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1
21

1 2 2

(1 )
Pr( 0) Pr( ) 1

(1 )
X X Y

 

 

   
         

 

as    because 1  .  

Notice that when 1  ,  

 1 1
1 2 2 2

1
Pr( 0) Pr( ) 0

2 2
X X Y



 
         

 
 

as   , as we would expect since then the outcome is perfectly balanced.  


