
Analyzing Data Streams Using a Dynamic

Compact Stream Pattern Algorithm

Ayodeji Oyewale

School of Computing, Science&

Engineering

University of Salford

Salford, Manchester, United Kingdom

E-mail: a.oyewale@edu.salford.ac.uk

Chris Hughes

School of Computer, Science &

Engineering

University of Salford

Salford, Manchester, United Kingdom

E-mail: c.j.hughes@salford.ac.uk

Mohammed Saraee

School of Computing, Science &

Engineering

University of Salford

Salford, Manchester, United Kingdom

Email: m.saraee@salford.ac.uk

Abstract— In order to succeed in the global competition,

organizations need to understand and monitor the rate of data

influx. The acquisition of continuous data has been extremely

outstretched as a concern in many fields. Recently, frequent

patterns in data streams have been a challenging task in the

field of data mining and knowledge discovery. Most of these

datasets generated are in the form of a stream (stream data),

thereby posing a challenge of being continuous. Therefore, the

process of extracting knowledge structures from continuous

rapid data records is termed as stream mining. This study

conceptualizes the process of detecting outliers and responding

to stream data. This is done by proposing a Compressed

Stream Pattern algorithm, which dynamically generates a

frequency descending prefix tree structure with only a single-

pass over the data. We show that applying tree restructuring

techniques can considerably minimize the mining time on

various datasets.

Keywords- Data Mining; Frequent Pattern (FP); Stream

data; Compact Pattern Stream (CPS) & Interactive Mining,

Path Adjustment Method (PAM), Branch Sort, Merge Sort

Algorithm.

I. INTRODUCTION

Within the global business world, understanding data is

crucial to success. A lot of research has been dedicated to

the computation on data where most companies are able to

collect enormous amounts of it with relative ease. Without

doubt, many companies now have more data than they can

handle, a vital portion of this data entails large unstructured

data sets that amount up to 90 percent of an organization’s

data. The ability to mine and analyse data, in any form, from

many sources, gives us deeper and richer insight into

business patterns and trends, helping drive operational

efficiencies and competitive advantage in manufacturing,

marketing, security and IT at large [4]
In an ideal corporate world, competitiveness should be
successfully and sustainably built on data; however, the
reality is that obtaining good quality data for decision-
making in this milieu is a big ordeal [1]. Detecting
meaningful patterns in streaming applications is particularly
challenging. The detector must process data and output a
decision in real-time, rather than making many passes

through batches of files. In most scenarios the number of
streams is large and there is little opportunity for human, let
alone expert intervention. As such, operating in an
unsupervised, automated fashion (e.g., without manual
parameter tweaking) is often a necessity.
Data streams are continuous, changing sequence of data that

constantly arrive at a system and needs to be processed in

near real-time. The dissemination of data stream
phenomenon has necessitated the development of diverse

range of stream mining algorithms. Several studies [2]
describe the approaches currently being used to overcome

the challenge of storing and processing fast, continuous and

uninterrupted streams of data.
Subsequently, latter sections of this paper enumerates on the

data models which is found in section two, the approach to

exploit the CSP algorithm is introduced in section three.
Section four explains the criteria through which the

algorithm is evaluated. The procedures in analyzing a
stream of data are explained in section five.

II. DATA MODELS

When weighed against data in traditional

databases, data streams are unbounded and the number of
transactions increases over time. As a result of these,
different data models for effective processing have been
suggested in different mining algorithms.
The adapted model is based on a sliding window. That is,
despite the infinite arrival of the stream data, the frequent

itemsets are derived based on the most recent data that is

being captured within a stipulated sliding window where the
present time signifies end point of that window.

One justification for such a sliding-window model is that
due to temporal locality, the data in streams is bound to

change with time, and many a times people are interested in

the most recent array and patterns from the stream data(2).
Data streams differ from the conventional stored relation

model in several ways:

i.) The data elements in the stream arrive online.
ii) The system has no control over the order in which data

elements arrive to be processed, either within a data stream
or across data streams.

 iii) Data streams are potentially unbounded in size.

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-654-5

IMMM 2018 : The Eighth International Conference on Advances in Information Mining and Management

iv) the instance an element from a data stream has been

processed it is discarded or archived — unless specifically
stored in an external storage point it cannot be retrieved

easily, which ideally is small relative to the size of the data

streams. Frequently, information stream inquiries may
perform joins between information streams and put away

social information.
For the motivations behind this paper, we will accept that if

put away relations are utilized, their substance stay static.

Therefore, we block any potential exchange preparing
issues that may emerge from the nearness of updates to put

away relations that happen simultaneously with information

stream handling.

III. APPROACH TO CSP ALGORITHM

The algorithm uses data passed to it to construct a

CSP tree, which is always in ready state to be mined. There
are several techniques out there in building this kind of

algorithm; most of them work by firstly constructing FP
tree then restructuring the FP tree into CSP. At first,

transactions in the data stream are inserted into the CSP-

tree based on a predefined item order (e.g., lexicographical
item order). This item order of the CSP-tree is maintained

by a list, called the I-list, with the respective frequency

count of each item. After inserting some transactions, if the
item order of the I-list deviates significantly from the

current frequency- descending item order, the CSP-tree is
dynamically restructured by the current frequency-

descending item order and the I-list updates the item order

with the current one.
In contrast, the technique used in the CSP algorithm allows

for direct development of frequency-descending item order
list from data. This will save the algorithm from iterating

over tree nodes several times during the creation and

modification of tree. Sliding window is used in this work
where data are captured in panes which are housed in

windows. When new data is inserted, the window slides
thereby removing some old pane and inserting new ones;

depending on sliding window size. It constantly updates

itself by extracting the expired transaction after each
window slides. Ensuring that the tree does not contain

unwanted data points .

Figure 1 Transaction with Window

Each transaction is processed with the definition of window
size and pane size as show the transaction table above. A

stream of data of window n = size 2, pane size = 2 During

sliding of the window, the data with transaction id from A06
to A09 are being processed in the first window, the reason

for this is that a window is of size 2 which means a single

window can have a minimum of two panes, and each pane
in return holds two transactions, and each window therefore

contains four transactions. The window slide is one, which
makes the window to move one pane at a time, one pane

contains two transactions.

A. Formatting of Data

The algorithm does not work on arbitrary data, it expects a
dictionary with the item sets as the dictionary keys and the
frequency as the value.

def

create_init_set(data_set):
ret_dict={}

for trans in data_set:
if frozenset(trans) in ret_dict.keys():

ret_dict[frozenset(trans)] += 1
else:
ret_dict[frozenset(trans)] = 1

return ret_dict

 This code snippet creates new dictionary and fills it
with the transaction, it is the dictionary that will be supplied
to the algorithm

B. Creation of Window

 In order to study the characteristics of dynamic flow, it

is eminent to configure window size since the appropriate

window size is a determinant in effectively carrying out an

analysis on the datasets.
Creation of new window requires;

a) Size of window: maximum number of pane the
window will contain

b) Size of pane, and
c) Sliding size

self.window = Window (self. windowSize, self.paneSize,

self.slideSize)

The code snippet above defines the new window that needs

to be created after pan slide.

IV. ALGORITHM EVALUATION

 Through theoretical and experimental analysis,
frequent-item identifying algorithms are often evaluated
based on three aspects:

 accuracy,
 runtime, and
 space usage

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-654-5

IMMM 2018 : The Eighth International Conference on Advances in Information Mining and Management

Figure 2: Data-Flow Architecture

A successful connection should be established which

makes easy passage of the data. A given transaction is

introduced into the current sliding window with its

respective support value. The sliding window is used in the

next update window module which takes the input from

window creation module and deletes the old panes thereby

adding new panes so as to mine the latest frequent patterns.

Thereafter, the updated window is passed as input to the

restructure module which in turn performs the extraction,

sorting and reinsertion operation. The sorted, extracted data

is also passed as input to the final module which mines all

the transactions over dynamic data streams and finds the

latest frequent patterns. The discovered patterns which are

greater than threshold value are finally displayed as the set

of latest frequent patterns over the dynamic data stream.

In order to restructure the CPS-tree, we use our

proposed efficient tree restructuring mechanism, called

Branch sorting method (BSM) [6], and the Path adjusting

method proposed in [5]. As the CPS-tree is developed

within the current window, a base up FP tree mining

procedure is used to create exact set of most recent frequent

patterns. The mining task is very proficient due to the

recurrence plummeting tree structure.

V. PROCEDURES IN ANALYZING STREAM

DATA

 In order to develop and analyse an incessant influx of

data, it is required to take into account vital information

with respect to stream data.

1) Data preprocessing:
Information preprocessing in this examination work

includes the utilization of a middleware which fills in as a

working shrouded interpretation layer which empowers a
correspondence and collaboration, and information

administration between the working framework and the
application running on it.

2) The middleware:

The middleware class is made to assemble skeleton of

communication between the system and the information it is

intended to be processed. The constructor of this class

requires record name of the document that ought to be

prepared, the thing column(s) that the calculation should

process and the value-based section the thing ought to be

coordinated against.

def init (self, file, transaction_field, item_field):
The middleware class has a function call format_data
which is used to handle data that returns the algorithms
specific data type. The middleware also declares an abstract
method named process_data that must be implemented by
every subclass of the class.

3) Sliding Window:
 A sliding window algorithm places a buffer between

the application program and the network data flow. For

most applications, the buffer is typically in the operating

system kernel, but this is more of an implementation detail
than a hard-and-fast requirement. The sliding window

technique inspects every time window at all scales and
location over a time stamp which means our data will be

classified according to the most recent item set provided.

Typically, sliding window algorithms serve as a form of
flow control for data transfers. Datasets in a sliding window

are often described in a structure.

(Di) = {So, S1…Si}i ≤ n -1

{Si, Si+1….Sn + i - 1} ≥ n -1 (1)

If the timespan (length, l) of a window is denoted with n
However; data at a point Ti in the window is denoted by

Where; Di: Dataset present in the sliding window
Si: Data values of the dataset at the point i

VI. RESULT ANALYSIS

An empirical evaluation of the performance of CSP

implementation is made. A comparative analysis of CSP tree
with FP tree algorithm is done using. All programs are done
using Oython 3.0 and executed in WInsows 7 on a 2.66 GHz
CPU with 1GB memory usage. And this is done using the
BSM, Sales and Telecom datasets.

TABLE I: DATASET CHARACTERISTICS

Datasets No of Transactions Size(M)

BSM 515,597 2GB

Sales 88, 475 9.7M

Telecoms 9,683,900 10.6GB

 The aforementioned Table I above shows the

characteristics of the datasets used for the analysis. The

BSM dataset contains several entries from an electronics

retailer. The Sales dataset consists of retail Watson

Analytics Sample Data of Sales Products and the telecoms

datasets consists of the call detail record of customers. In

this experiment, the average runtime of all active windows

30Copyright (c) IARIA, 2018. ISBN: 978-1-61208-654-5

IMMM 2018 : The Eighth International Conference on Advances in Information Mining and Management

are computed for the two algorithms on each data. At every

window, mining is perfromed on the recent window. The

pane size is dependent on the size of the dataset introduced.

TABLE II: RUNTIME ANALYSIS

 A runtime analysis for the three dataset is shown in the
Table II which comprises of the tree creation, tree
restructuring and how long it takes to mine a specific dataset
present in the pane of a window.
It represents the measure of amount of time needed for the
CSP algorithm to execute each stream of data presented to it
in comparison with that of the FPTree.

 Figure 3: CSP AND FP Comparison on BSM Data

 A comparative analysis for BMS dataset between CSP
Tree and FP tree is shown in the Figure 3 above. The graph
indicates precisely that at each level of data creation,
restructuring and mining, CSP tends to outpace FP Tree.

TABLE III: RUNTIME ANALYSIS ON SALES DATA

 The runtime analysis on Sales dataset shown in a Table
III above comprises of the time it takes for a tree to be
created before restructuring can take place. Thereafter, the
tree restructured based on the new set of incoming dataset. It

also shows how long it takes to mine a specific dataset
present in the pane of a predefined window.

TABLE IV: RUNTIME ANALYSIS ON TELECOMS DATASET

 The runtime analysis in Table IV is the Test runtime
for the Telecoms dataset which comprises of the tree
creation, tree restructuring and how long it takes to mine a
given instance of the telecoms data present in the pane of a
window. As can be seen, the mining rate of CSP is quite
faster when compared to that of Fp tree.

Figure 4: Tree Creation

 The time it takes for the algorithm to create a tree for
the telecoms between CSP Tree and FP tree is drawn up in
the Figure 4 above. The resulting outcome explains that FP
Tree in the first window has a faster tree creation rate
compared to CSP Tree. And at each subsequent window the
time it takes to create the tree gradually lowers till the
necessary patterns are derived.

Figure 5: Tree Restructuring

31Copyright (c) IARIA, 2018. ISBN: 978-1-61208-654-5

IMMM 2018 : The Eighth International Conference on Advances in Information Mining and Management

 Also shown above is the time it takes to restructure
each incoming tree for the two algorithms. In the first
window, FP tree restructures faster but in subsequent
windows CSP Tree outperforms it. The following datasets
are being analysed with respect to the time of tree creation,
the time rate for restructuring and how long it takes to mine
the data in conjunction with the varying time window. This
juxtapose has been made to make a comparative analysis
between CSP and FP algorithm. The time it takes to create a
tree using CSP algorithm is shorter when compared to FP
algorithm. It takes CSP 1.8sec to build a tree while it takes
FP algorithm over 3 sec. The figure 5 below shows a
graphical advantage of CSP over FP.

Figure 6: Graphical Advantage of CSP over FP

 The above Figure 6 depicts the Tree restructuring

phase of the all dataset. While restructuring the tree, we use

the Path Adjustment method (PAM) which depends on the

Degree of Displacement of two items and it swaps two

nodes with Bubble sort method. And also, the branch sort

algorithm makes use of the merge sort approach. Due to the

high rate of displacement while using PAM, it is unsuitable

for the algorithm hence BSM performs better during tree

restructuring approach with merge algorithm. The merge

sort method unlike quicksort makes use of Divide and

Conquer algorithm. The most recent input array is

intermittently divided in two halves; it sorts the two halves

and then merges the two sorted halves.

VII. CONCLUSION

 We have proposed CSP-tree that dynamically achieves

frequency-descending prefix tree structure with a single-

pass by applying tree restructuring technique and
considerably reduces the mining time. We also adopted

Branch sorting method using merge sort which is a new
tree restructuring technique and presented guideline in

choosing the values for tree restructuring parameters. It

shows that despite additional insignificant tree restructuring
cost, CSP-tree achieves a remarkable performance gain on

overall runtime. The easy-to-maintain feature and property

of constantly summarizing full data stream information in a

highly compact fashion facilitate its efficient applicability

in interactive, incremental and stream data.

REFERENCES

[1] E. Ascarza, P. Ebbes, O. Netzer and M. Danielson, Beyond

the Target Customer: Social Effects of CRM
Campaigns.2016.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom,
Models and issues in data stream systems.In:Proceedings of
21st Acmigmod-Sigact-Sigart symposium on principles of
database systems(PODS’ 02), pp 1–16. 2002.

[3] B. Borja, C. Bernardino, C. Alex, R. Gavald`a, M. David

Manzano-Macho, The Architecture of a Churn Prediction
System Based on Stream Mining. 2013.

[4] Intel IT, IT Best Practices Business IntelligenceRetrieved
from http://www.intel.com/it/.Feb 2012.

[5] J.-L. Koh and S.-F. Shieh. An efficient approach for

maintaining association rules based on adjusting FP-tree
structures. In Lee Y-J, Li J, Whang K-Y, Lee D (eds) Proc. of
DASFAA 2004. Springer-Verlag, Berlin Heidelberg New
York, 417–424. , 2004

[6] S. K. Tanbeer, C. F. Ahmed, B. S. Jeong,, and Y.-K. Lee. CP-
tree: A tree structure for single-pass frequent pattern mining.
In Proc. of PAKDD, Lecture Notes Artif Int, 1022-1027. 2008

[7] T.A. Rashid, Convolutional Neural Networks based Method
for Improving Facial Expression Recognition. In: Corchado
Rodriguez J., Mitra S., Thampi S., El-Alfy ES. (eds)
Intelligent Systems Technologies and Applications 2016.
ISTA 2016. Advances in Intelligent Systems and Computing,
vol 530. Springer, Cham. Oct 2016.

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-654-5

IMMM 2018 : The Eighth International Conference on Advances in Information Mining and Management

https://www.geeksforgeeks.org/divide-and-conquer-introduction/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/

