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Abstract 

Cathodic protection (CP) has been increasingly used on reinforced concrete structures to 

protect steel reinforcement from corrosion. However, due to the complexity of 

environmental conditions, the specifications in national and international standards are still 

open to discussion in engineering practices for their accurate suitability. To some extent, the 

design aspects are still based on practical experience. It implies a great deal of estimations 

and assumptions. The research conducted in the thesis aims to address some of these 

challenges. 

To obtain reliable experimental results, the present study at first investigated the influence 

of experimental methods on the measurement of concrete electrical resistivity. It studied the 

effect of alternative current (AC) frequency, electrode materials and electrode configuration. 

Based on the results, an optimised method was decided for all the series of the experimental 

tests in this study. 

The CP study consists of two major works. The first one was to investigate the chloride 

contaminated concrete exposed to atmospheric condition. Impressed constant current 

method was adopted for the operation of CP. A series of electrical and electrochemical 

measurements were conducted for concrete resistivity, corrosion potential, corrosion rate, 

degree of polarization, instant-off potential and four-hour potential decay. An evaluation on 

the current adopted criterion in standards has been carried out on the experimental results. 

The second work was to investigate the corrosion of rebar in concrete specimens submerged 

(fully and partially) in salty water. For such more corrosive environment, a comparison 

between the impressed CP operation using constant current and that using constant potential 

has been conducted. The experiments evaluated the effects of the two major environmental 

factors, i.e. water and chloride contents, on reinforced concrete durability. The work 

provided a deep understanding on the electrochemical behaviour of the reinforced concrete 

system and effectiveness of CP implementation under severe conditions. The research work 

has an important contribution to fundamental science of corrosion and reinforced concrete 

deterioration, and the technology and practical application of CP for reinforced concrete 

structures. 
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The main results of this work indicate the important influence of the frequency and electrode 

configuration on the electrical resistance measurement. For the reliability of electrical 

resistivity measurement, a high frequency of 10,000 Hz and an internal carbon fibre 

electrode method are recommended.  

Regarding the CP for the chloride contaminated reinforced concrete exposed to the 

atmosphere, it is suggested that adopting an instant-off potential of -500 mV with respect to 

Ag/AgCl/0.5KCl reference electrode can provide sufficient protection for the reinforced 

concrete of up to 0.59 % total chloride by weight of concrete, or concrete resistivity is greater 

than 6.7 kΩ.cm. Furthermore, it was found that the 100 mV depolarization criterion for the 

evaluation of CP performance gives an overestimated protection. A depolarization of 50 mV 

is therefore proposed. 

In terms of the submerged specimens, the results showed that the water content and chloride 

content should be explicitly related to the corrosion state rather than through a single 

parameter of the concrete resistivity for the complicated situations because the water content 

will affect the oxygen transportation in concrete, and the oxygen availability at the rebar 

surface will play an important role in the corrosion process, and this is unassessable by 

concrete resistivity. Moreover, 4 or 24 hours for the 100 mV depolarisation criterion in 

standards is not applicable for CP assessment where concrete structures are fully submerged 

due to the low availability of oxygen. On the other hand, the depolarization criterion can be 

used if the specimens are partially submerged, but different parameters affect the 

depolarization value such as the magnitude of the applied protection current or potential, 

chloride concentration, oxygen availability and time of depolarization. 
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Glossary 

of Some Terms Related to 

 Corrosion and Cathodic Protection of Steel in Concrete 

 

The following glossary is presented depending on the information that has been found in 

Berkeley and Pathmanaban (1990), Broomfield (2007) and Stanish et al. (1997). 

 

Anode: the electrode where oxidation or removal of electrons occurs in an electrochemical 

cell. It describes the area from which loss of metal occurs. 

 

Cathode: the electrode where reduction or entering of electrons occurs in an 

electrochemical cell l. It describes the area from which loss of metal has been prevented.  

 

Electrode: an electrical conductor inside an electrical/ electrochemical cell. It is referred to 

as either an anode or a cathode depending on the direction of current through the cell.  

 

Electrochemical cell: an electrolytic cell comprises three component parts: an electrolyte 

and two electrodes (a cathode and an anode).   

 

Electrolyte:  an electrically conducting medium in which current is carried by the movement 

of ions. Concrete acts as the electrolyte here. 

 

Potential/ Electrode potential: the difference between the voltage at a metal surface acting 

as a cathode and a standard electrode (reference electrode) acting as an anode. 

 

Reference electrode: an electrode which always has a stable electrical potential. It is used 

as a half cell to build an electrochemical cell. This allows the potential of the other half cell 

to be determined. 

 

Polarization: the change (shift) of electrical potential of an electrode to more positive or 

negative values by the application of an external current. 

 

https://en.wikipedia.org/wiki/Electrical_conductor
http://www.macmillandictionary.com/dictionary/british/inside_1
http://www.macmillandictionary.com/dictionary/british/electrical_1
https://en.wikipedia.org/wiki/Electrochemical_cell
https://en.wikipedia.org/wiki/Anode
https://en.wikipedia.org/wiki/Cathode
https://en.wikipedia.org/wiki/Electrochemical_cell
https://en.wikipedia.org/wiki/Electrolyte
https://en.wikipedia.org/wiki/Cathode
https://en.wikipedia.org/wiki/Anode
https://en.wikipedia.org/wiki/Half_cell
https://en.wikipedia.org/wiki/Electrochemical_cell
https://en.wikipedia.org/wiki/Reduction_potential
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IR drop: the voltage drop at the location of the reference electrode due to the current flowing 

through the concrete resistance.  

 

Galvanic series/ electropotential series: a list of metals and alloys arranged according to 

their relative potentials in a given environment. The less noble metal which is located at the 

base of the list is the one with a lower potential (more negative) than the nobler one which 

is located at the top of the list. 

 

Galvanic cells: a typical cell consists of two dissimilar metals, an electrolyte and a common 

electrical connection. According to the relative position of the two metals in the galvanic 

series, the metal having less potential becomes the anode and gives up electrons, while the 

more potential metal receives electrons and becomes the cathode in the galvanic (corrosion) 

cell. The anode will corrode, while the cathode does not.  

 

Resistance: a property of a specific material with a specific geometry and composition that 

describes its ability to withstand the transfer of electrons or ions passing through that 

material under an electrical field. 

 
Resistivity: a material property describing the difficulty with which electrons or ions travel 

through a unit length of that material of a unit cross-section under an electrical field 

 

Conductivity: a measure of the ability of a material in which electrons or ions can pass 

through a unit length of that material of a unit cross-section, the inverse of resistivity.  

https://en.wikipedia.org/wiki/Electrode_potential
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Icorr Corrosion Current, mA 

icorr Corrosion Rate, mA/m2 

R Electrical Resistance, Ω 

ρ Electrical Resistivity, Ω.m 

AC Alternating Current 

DC Direct Current 

Eeq Equilibrium Potential  

NACE National Association of Corrosion Engineers 

FHWA Federal Highway Administration 

NaCl Sodium Chloride 

RH Relative Humidity 



 

 

 

 

 

 

 

CHAPTER ONE 

INTRODUCTION



 

CHAPTER ONE                                                                                                INTRODUCTION 

1 

 

CHAPTER 1 INTRODUCTION 

1.1 Background 

Reinforced concrete is widely used as a major composite material in the construction 

industry around the world today (Chemrouk, 2015). It is a versatile, economical and durable 

(Broomfield, 2007). In general, it is thought relatively performing well over its service life 

because steel rebars embedded in concrete is naturally protected from corrosion by the high 

alkalinity of concrete pore solution, and the physical barrier effect of the concrete cover 

itself to limit the access of aggressive species to the steel surface (Hansson et al., 2012; Liu 

and Shi, 2009a). However, in the recent decades premature deterioration of infrastructure 

systems has been alarming concerns worldwide (Chemrouk, 2015). 

Corrosion of reinforcing steel is the major cause of damage of reinforced concrete structures 

and can directly affect the sustainability of the infrastructure (Poursaee, 2016). The causes 

of the corrosion deterioration have been the subject for many studies. The overall conclusion 

of theses previous researches has confirmed that chloride plays the most significant role in 

the corrosion caused deterioration of the reinforced concrete (Buenfeld et al., 1998; Kendell, 

1995). One of the main sources for the chlorides is the use of de-icing salts (sodium chloride) 

on highways. In the United States, about 10 million tonnes of salt per year are spread on 

highways. Onto the UK roads, 1-2 million tonnes are used each year (Broomfield, 2007). 

The chloride caused corrosion is a serious problem and can be dangerous, and the repair cost 

can be extremely costly. Trethewey and Chamberlain (1995) stated that the annual cost of 

corrosion in the United States was first estimated in 1949 by Uhling to be $5 billion which 

is equivalent to 2.1% of the Gross National Product (GNP) at that time. The US Federal 

Highway Administration (FHWA) estimated the annual cost of the maintain of highway 

bridges in 2002 to be $8.3 billion (Koch et al., 2002). A 1971 study on the cost of corrosion 

was carried out in the United Kingdom concluded that the total cost to the national economy 

was a 3.5% of the Gross National Product (GNP). In a recent study in 2009, the Central 

Intelligence Agency (CIA) reported that the global cost of corrosion was 3-4% of the Gross 

Domestic Product (GDP) of industrialised countries per year, with $17 billion annual 

investment is required to address bridge conditions in the USA (Byrne et al., 2016). 

Considering inflation, this cost is much higher now.  
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The corrosion problem of steel in concrete induced by chloride is not limited to the United 

Kingdom and United States, but it is a worldwide serious issue on safety and economy. For 

instance, in the Middle East, this problem is universal in scope and exacerbated by the 

environmental conditions in this area (Rasheeduzzafar et al., 1992). Offshore and coastal 

structures suffer from chloride contamination due to direct immersion, splashing or wind 

transportation contamination. In addition, In many parts of the Gulf, the high chloride 

content of the ground water results in severe chloride contamination of foundations and 

structural elements above the ground (Wyatt, 1995). 

In Iraq, particularly in southern parts, a bell of danger on the degree of corrosion of steel 

reinforcement was rung. Chloride contaminated raw materials, external aggressive agents, 

mainly from salty ground water,  the hot-dry environmental conditions and poor construction 

practice have been recognized as the main causes for the deterioration of concrete structures 

and leads to a very short life expectancy (Katwan, 2000). 

Given the current situation of the size of corrosion impact, there is a critical need to develop 

corrosion technology through research and implementation and provide less expensive 

approaches (Koch et al., 2002; Poursaee, 2016). In the past decades, many potential solutions 

have been evaluated, including the use of patch repair, high density concrete overlays, 

corrosion inhibitors, coating of steel reinforcement, electro-chemical chloride removal and 

cathodic protection (Committee, 1985; Zayed and Sagues, 1990). Each of these repair 

methods is suitable in certain situations. However, it has been found that most of the non-

electrochemical repair techniques are not very effective in reducing the corrosion rate with 

little or no success in practice (Hong et al., 1993).  

Among the various corrosion control methods developed, Cathodic protection (CP) is 

nowadays recognized as the most effective repair technique so far to control the corrosion 

of steel embedded in concrete (Martínez and Andrade, 2008). CP is an electrochemical and 

a major repair technique that has increasingly been used for the maintenance of corrosion 

damaged reinforced concrete structures in the UK and worldwide (Martínez and Andrade, 

2008; Parthiban et al., 2008; Wilson et al., 2013). However, even today the chance of the 

success of the CP for reinforced concrete structures depends much upon the qualification 

and technical competence of the repair engineer. 
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1.2 Problem Statement 

Although, cathodic protection has been widely applied to protect steel reinforcement in 

concrete from corrosion, little amount of information on national or international standards 

was found until recently to help for the protection design (Chess and Broomfield, 2013). 

“Cathodic protection of reinforced concrete has been developed by a combination of trial 

and error” (Wyatt, 1993). The design aspects of such a system are still based on practical 

consideration, which implies a great deal of uncertainties and assumptions. Important 

features such as, current density over the protected steel reinforcement, potential 

distribution, design criteria and others are a matter of contention among experts. 

Concrete resistivity plays an important role for the assessment of the condition of reinforced 

concrete structures and the design of cathodic protection system. Nevertheless, to obtain 

accurate measurement can be a difficult due to the contact issue between the electrode and 

the concrete, particularly when doing measurement for unsaturated specimens (Villagrán 

Zaccardi and Di Maio, 2014). Moreover, different AC frequencies ranging from low to high 

were suggested recognising that it is hard to define a specific optimal frequency for the 

variation of the conditions of the concrete. 

The present research work is designed to provide new information and to achieve a better 

understanding on the aforementioned important aspects for the design of CP system for 

reinforced concrete structures. 

1.3 Aims and Research Objectives 

The aims of the research project are as follows: 

1. To develop a more detailed understanding of the influence of the surrounding 

environment on the behaviour of the reinforcement in concrete and examine the 

effect of applied protective currents generated from carbon fibre (CF) sheets anodes 

on the design of CP system. 

2. To evaluate the performance of using internal electrodes of CF for the accuracy of 

electrical resistivity measurement of saturated and unsaturated concrete specimens. 

 

In order to achieve these two aims, an experimental investigation has been used to study the 

following objectives:  
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1. Investigate the effect of chloride contamination and exposure conditions on state of 

steel reinforcement bars in concrete. The state of steel was evaluated by measuring 

corrosion rate using linear polarization resistance technique. 

2. Study the relationships between concrete chloride content, rebar corrosion rate and 

the parameters measurable in field, such as concrete resistivity and rebar potential. 

3. Examine the influence of applied protective current densities on potential 

polarisation of the reinforcing steel and evaluate the reliability of CP system in terms 

of the instant-off potential and potential decay criteria. 

4. Investigate the effect of chloride content on cathodically protected reinforced 

concrete structures. In particular, the relationships between concrete chloride content 

and concrete resistivity with the CP current requirement that can be used for the 

guidance of design. 

5. Evaluate the electrical performance of the CF as an anode in the impressed CP 

current method for a relatively long period. 

6. Understand if adopting impressed constant current mode is suitable for the CP of 

submerged reinforced concrete specimens. 

7. Investigate the effect of experimental approaches, including the AC frequency, 

voltage, and electrode material and configuration, on the reliability of electrical 

resistance measurement.  

8. Understand and characterise the influences of the three major influencing factors of 

the concrete, i.e, chloride content, degree of saturation and porosity, on the electrical 

resistivity. 

 

1.4 Contribution to Knowledge 

The applied protective potential and applied protective current density are the two critical 

required factors considered by designers to provide adequate CP system. Unfortunately, to 

date, only limited information is available for optimal design of CP implementation for steel 

reinforcement in concrete (Chess and Broomfield, 2013; Xu and Yao, 2009). In addition, 

the contact between electrodes and concrete surfaces is considered complicated to visualise 

when external electrode method is used for measuring the resistivity of unsaturated concrete 

specimens as a key parameter for the design of CP system (Villagrán Zaccardi and Di Maio, 

2014). 



 

CHAPTER ONE                                                                                                INTRODUCTION 

5 

 

The methodologies adopted by this research has led to significant findings which not only 

have a direct benefit to technology that using internal electrodes of CF sheets is a more 

reliable configuration for resistivity measurement, but also have a high interest and direct 

impact on science, research communities and engineering practice with the improvement of 

knowledge and understanding of the influence of some important factors on the design of 

CP for concrete structures. A relationship of practical significance has been obtained 

between the degree of chloride contamination/concrete resistivity and the CP current 

demand. Moreover, new design criteria of instant-off potential and depolarization has been 

suggested for the assessment of protection efficiency. 

1.5 Thesis Layout 

The thesis is organized into seven chapters as follow: 

Chapter 1 presents a brief introduction which covers the size of corrosion problems, possible 

repair techniques, the main objectives and significance of the investigation. 

Chapter 2 is the literature review, which gives an overview of the theoretical background of 

corrosion process, chloride-induced and carbonation-induced corrosion of reinforcing steel 

in concrete, techniques for corrosion measurement and evaluation, principle of existing 

protection methods and performance criteria of CP system. 

Chapter 3 describes the research methodology, test specimens and experimental programme 

undertaken. 

Chapter 4 presents the findings obtained and discussion of the electrical resistivity of 

concrete. 

 

Chapter 5 and 6 deals with the results and discussion of the corrosion and cathodic protection 

for the air exposed and submerged reinforced concrete specimens, respectively. 

Finally, Chapter 7 summarises the conclusions of the present study and provides 

recommendations for further research.
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CHAPTER 2 LITERATURE REVIEW 

2.1 Mechanism of Steel Corrosion in Concrete 

2.1.1 Steel in Concrete 

Reinforcing steel embedded in concrete that is not contaminated with any influences from 

the surrounding environment is usually in a passive state, safe from corrosion, due to high 

alkalinity of concrete typically of pH 12.5-13.5. The high alkalinity of concrete mainly 

comes from calcium hydroxide which is a result of the hydration of cement compounds 

(namely C3S and C2S) as explained in equations 2.1 and 2.2 (Pithouse, 1986): 

2(3CaO. SiO2) + 6H2O → 3H2O. 2SiO2. 3H2O + 3Ca(OH)2                                          (2.1) 

2(2CaO. SiO2) + 4H2O → 3H2O. 2SiO2. 3H2O + Ca(OH)2                                              (2.2) 

Many investigators have concluded that passivity is caused due to formation of a very thin 

protective film (<10 nm) on the steel surface which prevent the steel from corrosion (Ghods 

et al., 2011; Amir Poursaee, 2016; Solomon et al., 1993; Zakroczymski et al., 1985). The 

passive film on the surface of steel rebars is complex in chemical composition and controlled 

by the oxygen availability, pH and chemistry of the surrounding environment (Mundra et 

al., 2017). It composed of iron oxide, Fe–hydroxides and oxy-hydroxides (Glasser and 

Sagoe-Crentsil, 1989; Haupt and Strehblow, 1987; Joiret et al., 2002). FeO, Fe2O3, Fe3O4 

and Fe(OH)2 are some of the possible iron oxides formed the protective film according to 

equations 2.3 to 2.6 (Joiret et al., 2002; Küter, 2009). 

3Fe + 4H2O → Fe3O4 + 8H+ + 8e−                                                                              (2.3) 

2Fe + 3H2O → Fe2O3 + 6H+ + 6e−                                                                              (2.4) 

Fe + 3H2O → FeO + 2H3O+ + 2e−                                                                                (2.5) 

Fe + 4H2O → Fe(OH)2 + 2H3O+ + 2e−                                                                          (2.6) 

Studying the fundamental of the passive film formed on iron in alkaline solutions is common 

in practice, which makes the exact chemical composition is different in the case of concrete 

since the chemical composition of the pore solution is more complex (Ghods et al., 2011; 

Joiret et al., 2002; Saremi and Mahallati, 2002).  
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It was believed that a good quality of concrete will significantly reduce the permeability of 

the concrete against penetration of corrosion inducing agents. However, due to inherent 

porous nature (Chess and Broomfield, 2013), despite the high protective ability of concrete, 

corrosion of steel reinforcement is unavoidable and has become the most common cause of 

the deterioration of concrete structures. Particularly, coastal and offshore structures, sewers, 

structures in aggressive soils, bridge decks and other structures subjected to chloride 

contaminated water are the most liable to corrosion attack because of the severe 

environmental conditions (Katwan, 1999). 

2.1.2 Principle of Corrosion 

Corrosion can be defined as an electrochemical process of a metal in relation to its 

surrounding environment. Occurring in stages, it can be represented by two electrochemical 

reactions of the dissolution of iron at anodic sites and the corresponding oxygen reduction 

at cathodic sites. Both of the anodic and cathodic reactions take place on the surface of the 

steel. The chemical reactions of corrosion are the same no matter the passive layer around 

steel breaks down by chloride attack or by carbonation. When depassivation occurs, areas 

of rust will start appearing on the affected area of the steel surface in the presence of water 

and oxygen (Gower and Windsor, 2000). The affected steel areas become anodic whilst the 

passive areas are cathodic (Broomfield, 2007; Gower and Windsor, 2000). At the anode, the 

steel is oxidized and release electrons to form a ferrous ion which dissolves in electrolyte as 

in equation 2.7. 

Fe → Fe+2 + 2e−  (Ferrous ion)                                                                                      (2.7) 

To preserve electrical neutrality, the above two electrons need to be consumed elsewhere on 

the steel surface, thus the electrons pass through the steel and combine with water and 

oxygen at the cathode surface to produce hydroxyl ions as in equation 2.8. This is also 

referred to oxygen reduction. 

1

2
O2 + H2O + 2e− → 2(OH)−  (Hydroxyl ions)                                                              (2.8) 

 

The above anodic and cathodic reactions are only the first step in the process of creating 

rust. In the next step, hydroxyl ions (OH−) diffuse in electrolyte (concrete for example) and 



 

CHAPTER TWO                                                                                  LITERATURE REVIEW  

8 

 

react with the ferrous ions (Fe+2) there to produce insoluble ferrous hydroxide (Fe(OH)2) as 

in equation 2.9. 

Fe+2 + 2(OH)− → Fe(OH)2 (Ferrous hydroxide)                                                           (2.9) 

Further oxidations as in equations 2.10 and 2.11 will convert ferrous hydroxide (Fe(OH)2) 

into hydrated ferric oxide (Fe2O3. H2O) which is commonly known as rust. Figure 2.1 shows 

the corrosion process of the reinforcing steel in concrete (Zhao et al., 2011).  

4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3  (Ferric Hydroxide)                                         (2.10) 

2Fe(OH)3 → Fe2O3. 2H2O + H2O  (Hydrated Ferric Oxide, Rust)                               (2.11) 

In the environments poor in oxygen or with low pH, the cathodic reaction is the reduction 

of hydrogen ion to generate hydrogen gas as in equation 2.12. 

2H+ + 2e− → H2                                                                                                           (2.12) 

Hydrogen evolution can also occur at low potentials and in neutral to alkaline media, as in 

equation 2.13. 

2H2O + 2e− → H2 + 2OH−                                                                                           (2.13) 

Steel becomes active to corrode at the anode sites whilst remains passive at the cathode sites. 

A corrosion cell develops on steel surface as a result of the difference in electrical potential 

between the anodic and cathodic areas (Nawy, 2008), when a current flows from the anode 

to the cathode transported by the ions in the electrolyte (Bertolini et al., 2013). The faster 

the solid iron is converted to ions, the greater the corrosion and the larger is the current 

flowing in the corrosion cell (Davis, 2000).  
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Figure 2.1: Schematic diagram of reinforcing steel corrosion process, adopted from Zhao 

et al. (2011) 

As shown in Figure 2.2, either or both of the microcell and macrocell corrosion mechanisms 

may occur in reinforced concrete (Evans, 1960). Microcell corrosion takes place when 

anodic and cathodic reactions take place between adjacent portions of the same rebar. In 

contrast, macrocell corrosion occurs when anodic or cathodic reactions take place on the 

surface of different reinforcements or because of different environment. Hansson et al. 

(2006) confirmed through a monitoring study for more than 3 years that microcell corrosion 

is the major mechanism of steel corrosion in concrete. 

 

(a) Microcell corrosion 

 

2𝑒− 
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(b) Macrocell corrosion 

Figure 2.2: Schematic illustrations of corrosion mechanisms (Hansson et al., 2006) 

In concrete structures, corrosion generally starts with the formation of pits on the steel 

reinforcement which then increase in number depends upon the conditions around the steel, 

particularly the oxygen availability. When great amount of oxygen is present, general 

corrosion will tack place as shown in Figure 2.3 (Hansson et al., 2012).  

 

 (a) 
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Figure 2.3: General corrosion of steel in concrete (a) underside of bridge deck and (b) 

Retaining wall of bridge (Hansson et al., 2012)  

 

Figure 2.4: Volume of corrosion product from iron (Poursaee, 2016) 

Corrosion products usually increase volume several times greater than original metal as 

shown in Figure 2.4. Different corrosion products of steel in fact occupy different volumes 

 (b) 
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(Poursaee, 2016). The volume of the corrosion products can reach up to 6 times for the 

familiar rust (Fe2O3. H2O). Consequently, corrosion products can cause cracking, spalling 

of concrete cover, and the reduction of the cross-sectional area of rebars, which weaken the 

bond between reinforcing steel bars and surrounding concrete and threaten the safety of 

reinforced concrete structures (Al-Sulaimani et al., 1990; Katwan, 1999; Zhou et al., 2014). 

Figures 2.5 shows the degree of damage to the concrete due to rebars corrosion. 

 

 

Figure 2.5: Concrete damage due to reinforcement corrosion, (a) surface cracks, (b) 

spalling and exposure of corroded rebars and (c) reduction in the cross section of 

reinforcement (Bertolini et al., 2013) 

2.1.3 Thermodynamic of Corrosion 

To assess whether the corrosion of iron can occur under a given set of conditions, all the 

possible oxidation reactions for the iron and water (Fe-H2O) system have been investigated 

by Pourbaix and presented as a function of the electrochemical potential (E) and pH as 
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shown in Figure 2.6. This diagram is used to predict the spontaneous direction of reactions 

for the estimating the composition of corrosion products and evaluating the degree of 

corrosiveness of the surrounding environment. It shows, generally, the regions in which the 

metal is immune from corrosion, active to corrode, or passive. These regions are bounded 

by lines that represent equilibrium conditions between the two adjacent thermodynamically 

favoured species (Küter, 2009). These lines represent the various possible reactions of the 

aqueous electrochemical system which are derived from Nernst equation. 

The Nernst equation allows calculation of the electrochemical potential (E) for reactions 

with various concentration in terms of the standard electrode potential (E°) as the latter is 

only applied to the situation where a metal is immersed in a solution of its own ions at 1 

mole concentration (McCafferty, 2010). It is expressed as the following equation (Davis, 

2000): 

E = E° −
RT

nF
 ln

(red)

(ox)
                                                                                                        (2.14)                                

where E is the electrochemical electrode potential, E° is the standard electrode potential, R 

is the gas constant (8.3143J/mole.K), T is the absolute temperature (in Kelvin), n is the 

number of electrons involved in the reaction, F is the Faraday constant (96500 C/mole), and 

(red) and (ox) are the concentrations of reduced and oxidized species, respectively. 

 

Figure 2.6: Pourbaix diagram for the system of iron in water (Fe-H2O) at 25°C (a) areas of 

immunity (no corrosion), passivity, and corrosion, and (b) reaction/corrosion products 

produced (Davis, 2000) 
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At the pHs and potentials range found in concrete, solid species of iron oxides (Fe2O3 and 

Fe3O4) are stable and thus iron is considered passive. However, if the pH of the pore water 

is reduced, for example in case of carbonation, the soluble species of Fe+2 and Fe+3 are stable 

and can be associated with corrosion (Davis, 2000; Küter, 2009). Corrosion can also occur 

at high pH in which (HFeO2
−) as in equation 2.15 is the thermodynamically stable reaction, 

but this is just in corrosion theory with no practical significance (Bremner et al., 2001). At 

very low potentials, metallic iron (Fe) is thermodynamically stable and the corrosion should 

not occur (Ohtsuka et al., 2017).  

Fe + OH− + H2O → HFeO2
− + H2                                                                                 (2.15) 

In summary, corrosion prevention can be achieved by lowering the electrode potential down 

to the zone of immunity, raising the electrode potential up to the region of passivity, or 

raising the pH or alkalinity of the solution so that a passive film is formed (Schweitzer, 

2009). But there are limitations on the use of the diagram. The first limitation is that it cannot 

be used for predicting the rate of the corrosion reactions. The possibility of precipitation of 

other ions such as chlorides, sulfates and other impurities has been ignored as such diagrams 

are only constructed from known reaction between pure metal and pure solution. Finally, the 

pH at the metal surface may vary drastically because of side reactions, and a prediction of 

corrosion based on the bulk pH of the solution may be misleading. 

2.1.4 The Kinetic of Corrosion  

The corrosion behaviour of the reinforcement can be described by means of polarization 

curves that relate the electrochemical potential (E), and the current density on a logarithmic 

scale (log I). These polarization curves show the characteristic curves of the anodic and 

cathodic reactions obtained experimentally starting from the reaction’s equilibrium 

potential. Polarization curves can be used to determine the rate of these reactions that are 

involved in the corrosion process which relates to corrosion rate (Küter, 2009). 

 

 



 

CHAPTER TWO                                                                                  LITERATURE REVIEW  

15 

 

Polarization is defined as an electrochemical process induced by deviation of the potential 

due to an electric current passing through the electrochemical cell (Perez, 2004). Polarization 

is said to be anodic, when the anodic reaction on the electrode are accelerated by polarizing 

the potential in the positive direction or cathodic when cathodic reaction are accelerated by 

changing the potential in the negative direction. 

In noncarbonated and free chloride concrete, steel is passive and its electrochemical 

behaviour can be represented by the anodic and cathodic polarization curves as shown in 

Figure 2.7. By looking at the anodic polarization curve, it can be seen it is divided into three 

potential regions which are active, passive and transpassive with oxygen evolution. At the 

beginning, as the potential is made more positive, the anodic current increases exponentially 

according to normal dissolution behaviour and reaches the primary passivation potential 

(Epp) in which a protective film begins to form and causes a sudden drop in corrosion rate 

and the metal is said to be passive. As this potential is increased further, there is little change 

in current flow until the next critical potential which termed as pitting potential (Epit). 

Beyond this point, at high potentials where a breakdown of the passive film occurs, corrosion 

current increases again in the transpassive region and oxygen evolution can be occurred at 

the anode which produces acidity based on the following equation (Pedeferri, 1996; 

Schweitzer, 2009).  

2H2O → O2 + 4H+ + 4e                                                                                                (2.16) 

With reference to Figure 2.7, it can be seen the corrosion potential of reinforcement (Ecorr) 

exist in the interval of potential range for the passivity region where the corresponding 

corrosion current (Icorr) is negligible. Ecorr and Icorr are the intersection point of the anodic 

and cathodic polarization curves if the characteristic curves of both the anodic and cathodic 

reactions are shown on the same diagram. The current at the corrosion potential (Ecorr) is 

defined as the corrosion current (Icorr). Corrosion potentials between +100 and −200 mV vs 

SCE (saturated calomel reference electrode) were found for the concrete that is exposed to 

the atmosphere, while more negative potential at -400 mV vs SCE was reported for the 

concrete immersed in water (Bertolini et al., 2013).  
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Figure 2.7: Schematic polarization curves of passive steel in concrete, adopted from  

(Austin et al., 2004; Bertolini et al., 2013) 

Chloride ions have a significant effect on the anodic polarization curve (Bentur et al., 1997). 

It reduces the range of potentials over which the steel is passive. The greater concentration 

of chlorides, the higher reduction of the passivity interval and hence the Epit is reduced to 

more negative values, for instance from EpitA to  EpitB as shown in Figure 2.8. The corrosion 

current is increased from IcorrA to IcorrB, and pitting corrosion takes place if the corrosion 

potential (Ecorr) is more positive than Epit as illustrated in the case B for the high chloride 

content, otherwise the influence of chloride is negligible as for the case A where little or no 

chloride is existed (Angst et al., 2009). Typically, steel undergoing pitting corrosion exhibits 

a potential between -200 to -500 mV with respect to SCE (Katwan, 1988). In general, for 

the same extent of cathodic polarization curve, the corrosion rate increases with the chloride 

content while the corrosion potential decreases and becomes more negative. This the base, 

for the assessment of corrosion risk in the field, that negative corrosion potentials being 

associated with higher corrosion rates  (Bentur et al., 1997).  
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Figure 2.8: Schematic polarization curves for steel in concrete under the influence of 

chlorides, adopted from Angst et al. (2009).  

Wilkins et al., however, indicated that the change in potentials is not necessarily an 

indication of corrosion activities since change to a more negative potential could be due to 

increased corrosion or a limiting cathodic reaction which is due to the limited oxygen content 

in the surrounding environment that can limit the speed of metal corrosion as shown in 

Figure 2.9 (Katwan, 1988). As the concentration of oxygen decreases, the cathodic reaction 

current decreases. The net effect is to shift the entire cathodic curve to the left. The 

intersection of the cathodic polarization curve and the anodic polarization curve moves to 

the left where the corrosion current density is less (Davis, 2000). 

Icorr
B 

Icorr
A 
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Figure 2.9: Effect of oxygen concentration on the cathodic polarization curve and the 

corrosion rate of an active metal (Katwan, 1988) 

2.2 Depassivation Process 

The passive film on the steel surface can be destroyed by the action of a number of agents 

as below: 

2.2.1 Chloride Attack 

It is a common knowledge that chloride induced corrosion is the major cause of deterioration 

of reinforced concrete structures. Chloride can come from several sources. It can diffuse in 

concrete when structures are subjected to seawater, salty ground water, sea spray or de-icing 

salts. It may also be cast into concrete when chloride contaminated raw materials are used 

for concrete, or through admixtures, such as calcium chloride which was used until the mid 

of 1970’s in Europe as an accelerator of cement hydration (Broomfield, 2007; Morris et al., 

2004; Page and Page, 2007; Poulsen, 1995). Although chloride ions have only a little 

influence on the pH of the concrete pore solution, they have the ability to depassivate the 

steel in concrete even in high alkaline conditions (Bertolini et al., 2013). 
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Once present in concrete, some chloride ions remain free in the pore solution and others 

become chemically bound to the hydration products of cement.   

The chloride threshold for the initiation of reinforcement corrosion in the concrete is often 

presented as total chloride content related to the cement weight as its measurement is well 

documented in standards (ASTM C1152/C1152M, 2012; BS EN 14629, 2007). 

Furthermore, it was stated that a large part of the bound chloride dissolves as soon as the pH 

drops to values below 12, and may consequently play a role in the initiation of corrosion 

(Glass and Buenfeld, 1997).  

However, it is generally believed that only the free chlorides are responsible for the 

corrosion of the reinforcement (Bertolini et al., 2013; Haque and Kayyali, 1993; Neville, 

1995) by assuming that the bound chlorides are completely removed from the pore solution 

and present no risk for corrosion initiation (Angst et al., 2009). The free chloride content is 

therefore best for expressing the chloride threshold value (Hope et al., 1985). But, the 

amount of chloride is still quantified in terms of either total or free chloride content (Pargar 

et al., 2017), and they are sometimes preferred to be expressed relative to the weight of the 

concrete when binder content in hardened concrete is hard to be quantified. 

Another used form to present chloride threshold level is the ratio of chloride to hydroxyl 

ions. A ratio of 0.6 was suggested by Hausmann (1967). Page and Havdahl (1985), however, 

thought that this is not a reliable index. A higher Cl−/ OH− ratio does not necessarily reflects 

a higher risk of corrosion initiation. For instance, addition of silica fume as pozzolanic 

material not only reduces the alkalinity of the pore solution, which increases the ratio 

Cl−/ OH−, but it also enhances the resistance of concrete and reduces the permeability that 

lead to slow down the chloride ingress and oxygen diffusion. Consequently it helps corrosion 

resistance of the steel in concrete. 

The concentration of chloride ions required to initiate corrosion in concrete is not a constant 

but depends on pore solution composition, cement type and w/c ratio. They determine the 

free chloride available in the pore water and the chemically bound chloride with the cement 

(Hansson, 1984). Broomfield (2007) observed that the threshold value of chloride is about 

0.2% of cement weight for the poor quality concrete and water and oxygen are available. 
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However, chloride concentration at 1% or higher may not cause corrosion in case of durable 

concrete. Moreover, chloride threshold to initiate corrosion in mortar specimens were found 

in the range of 1.24˗3.08% and 0.39˗1.16%, by weight of cement, in terms of total and free 

chlorides, respectively, (Alonso et al., 2000). 

A wide range of the threshold value was reported. This is mainly due to various influencing 

factors, which include the method of measurement, method of presenting the threshold 

value, condition of the steel–concrete interface and the influence of environmental factors 

(Ann and Song, 2007). However, it is generally in the range of (0.4-1) % as total chloride 

by cement weight (Bertolini et al., 2009). 

For the quality control purposes, but not for the corrosion threshold value, American 

Concrete Institute (ACI 222R) restricts total acid-soluble chloride ions to 0.20% for the 

normal reinforced and 0.08% by cement weight for the prestressed concrete respectively 

(Kerkhoff, 2007). In European  countries, total chloride of 0.2~0.4% by cement weight is 

allowed by the standards for the reinforced concrete structures and 0.1~0.2% for prestressed 

concrete structures (BS EN 206, 2016). For water soluble chloride, ACI 318 defines 0.15% 

by cement weight for the normal reinforced concrete and 0.06% of cement weight for the 

prestressed concrete. The limit of the total chloride content in the concrete in ACI and BS 

standards is given in Table 2.1. 

Table 2.1: Maximum chloride content of concrete (Ann and Song, 2007) 

 

2.2.2 Carbonation 

Carbonation is another important factor which cause corrosion of rebars in concrete 

structures. Carbonation is the chemical reaction of the calcium hydroxide in concrete, 

hydration products in the cement matrix dissolved in the pore water, with carbon dioxide 
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(CO2) in the air which produces calcium carbonate (CaCO3) according to the following 

reactions (Siddiqi, 2012) 

CO2 + H2O → H2CO3                                                                                                     (2.17) 

H2CO3  + Ca(OH)2 → CaCO3 + 2H2O                                                                            (2.18) 

For simplicity, equations (2.17) and (2.18) can be combined in one reaction as below: 

Ca(OH)2 + CO2 → CaCO3 + H2O                                                                                 (2.19)                                      

The carbon dioxide gas dissolves in water to form carbonic acid (H2CO3), which reacts with 

calcium hydroxide and precipitates calcium carbonate (CaCO3) (Zhou et al., 2014). This 

reaction consumes the alkalinity of concrete surrounding the reinforcement, which reduces 

the PH of concrete pore solution from about 13 to less than 9, when the passive film around 

the steel may be destroyed and corrosion may be accelerated if sufficient oxygen and water 

are present at the surface of the rebars (Bertolini et al., 1998; Papadakis et al., 1992). 

Carbonation induced steel corrosion can increase concrete cracking and decrease the 

durability (Roy et al., 1999). 

The depth of carbonation in concrete increases with time. However, Sims (1994) stated that 

the rate of carbonation in concrete, normally very slow, and it varies depending on many 

factors such as mix proportion, cement type, compaction, curing, temperature, humidity and 

ingress of CO2 into concrete pore system. The rate of diffusion of carbon dioxide is 

extremely slow in very wet concrete (RH >90%). On the other hand, concrete will not 

carbonate if it is almost fully dry, RH < 40%, because water is needed for the carbonation 

(De Schutter, 2012; Siddiqi, 2012). Consequently, carbonation mostly occurs when the 

concrete is semi-dry. The highest carbonation rate occur at the about 50% RH (Tuutti, 1982), 

as shown in Figure 2.10, when the moisture content is low enough to permit penetration CO2 

gas but meanwhile high enough to give sufficient water for CO2 chemical reaction (Küter, 

2009). An alternating cycle of wetting and drying provide the most aggressive environment 

for the carbonation-induced corrosion (Tuutti, 1980). 
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Carbonation process does not exceed several millimetres in good quality concrete. Virmani 

and Clemena (1998) indicated that concrete with water cement ratio of 0.45 and concrete 

cover of 25 mm will need for more than 100 years until carbonation reaches the level of  the 

reinforcement. It was observed that corrosion occurs when the average distance between 

carbonation front and reinforcement bar surface is less than 5 mm, which means that 

carbonation-induced corrosion starts slightly before carbonation depth reaches the level of 

reinforcement (Yoon et al., 2007). This value becomes 20 mm for the concrete structures 

containing chloride ions. 

 

Figure 2.10: The influence of relative humidity on the rate of carbonation on concrete 

(Tuutti, 1980) 

A phenolphthalein indicator is one of the techniques that majority of research works on 

concrete carbonation can be used for the determination of carbonation depth. This involves 

spraying concrete broken faces with 1% phenolphthalein in 70% ethyl alcohol (Raj and 

Muthupriya, 2016). When phenolphthalein is applied, noncarbonated areas turn red or 

purple, while carbonated areas where pH at 8 remain colorless. 
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2.3 Corrosion Measurement and Evaluation Techniques 

Whilst the possibility of a corrosion reaction occurring can be predicted theoretically, the 

kinetics of the reaction which is related to the rate of corrosion less predictable and can only 

be determined empirically (Katwan, 1988).  

Various monitoring techniques have been developed to assist in the assessment or prediction 

of the corrosion. In this section, however, special emphasis will be placed on half-cell 

potential and linear polarization method as they constitute the main measuring techniques 

adopted in this study. Tafel extrapolation method is also presented as it provides the basic 

of Tafel slopes for which the linear polarization method can be used for corrosion rate 

determination. 

2.3.1 Half-cell Potential Method 

Among various non-destructive testing techniques for detecting corrosion of reinforcements, 

half-cell potential measurement prove to be reliable one (Pei et al., 2015; Zhang et al., 2017). 

It is suitable for in situ evaluation and in the laboratory. In this method potential difference 

is measured between steel reinforcement and a reference electrode. The principle and 

measurement of this technique are presented in the next two sub-sections. 

2.3.1.1 Principle of Half-cell Potential  

The term potential is widely used when considering corrosion. It is a thermodynamic 

measure of the ability of electron charge transmit between the metal and the surrounding 

environment and not of the steel itself (Hansson, 1984; Poursaee and Hansson, 2009). Thus, 

it is not possible to determine the absolute value of the potential and therefore the potential 

difference between a metal surface and a reference electrode is taken as a measure of the 

actual potential.  

When a metal is immersed in a solution of its ions, there are two possible reactions which 

may occur. Either the metal ions may leave the surface of the metal and go into solution, 

resulting in the development of a negative charge on the metal surface as illustrated in Figure 

(2.6: A) or the metal ions from the solution may be deposited on the metal surface, resulting 

in the development of a positive charge on the metal surface as shown in Figure (2.6: B). 
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Both A and B result in a potential deference existing between the metal and the solution 

(Bird and Chivers, 2014). 

 

Figure 2.6: (A): A negative charge on the metal surface, e.g. Z (B): A positive charge on 

the metal surface, e.g. Cu, (Bird and Chivers, 2014) 

Any metal in contact with a solution of its ions is called a half-cell, and the potential of the 

half-cell is called the electrode potential of the half-cell. The potential of a half-cell cannot 

be determined independently, but is measured by placing it in series with a known potential 

half-cell (Bird and Chivers, 2014). These are joined together by an electrolyte, and a 

voltmeter is connected across the complete circuit to measure the potential produced. A 

standard half-cell electrode has been selected for this purpose. The standard reference 

electrode is the hydrogen electrode. But, due to limitation of the standard hydrogen 

electrode, alternative half-cell reference electrodes have been used, such as copper in 

saturated copper sulphate electrode (CSE), Silver/ Silver chloride in potassium chloride 

(Ag/AgCl/KCl) and Standard Calomel Electrode (mercury in saturated mercuric chloride) 

(SCE).  Each half-cell consists of a metal rode immersed in a solution of its own ions. 

The potential of any reference electrode can be recorded against the Standard Hydrogen 

Electrode (SHE). Table 2.2 gives the standard half-cell potentials for some metals (Fontana, 

2005). Half-cell potentials are a function of concentration of the solution and the metal. A 

more concentration is more corrosive than a dilute one so a current will flow in a cell made 

up of a single metal in two different concentrations of the same solution (Broomfield, 2007).  
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Table 2.2: Half-cell potentials, (Fontana, 2005) 

Metal – metal ion 

equilibrium 

Electrode potential against standard 

hydrogen electrode at 25°C, Volts 

Ag-Ag+ +0.799 

Cu-Cu+2 +0.337 

H2-H
+   0.000 

Fe-Fe+2 -0.440 

Zn-Zn+2 -0.763 

 

2.3.1.2 Measurement and Interpretation of Half-cell Potential 

Up to the present, the measurement of the half-cell potential, also known as open circuit 

potential or corrosion potential, Ecorr, expressed in Volts or millivolts, is the most widely 

used technique to predict the possibility of corrosion and evaluate the condition of steel in 

concrete structures (Hansson et al., 2012; Montemor et al., 2003; Poursaee and Hansson, 

2009; Song and Saraswathy, 2007a; Zhang et al., 2017). The measurement of Ecorr  is a 

well-known technique and described in the American Standards (ASTM C876).  

An external half-cell (reference electrode) is used to measure the potential of the steel in 

concrete as shown in Figure 2.11. The reference electrode is placed on the concrete surface 

and connected via a voltmeter to the steel to create an electrochemical cell which contains 

of two half cells, the first one is the external half-cell and the second one is the steel in its 

environment. By agreement, the steel is connected to the positive terminal of the voltmeter 

and the reference electrode to the negative terminal. This will give a negative reading. 
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Figure 2.11: Setup of half-cell potential measurement (Song and Saraswathy, 2007b) 

The measured electrical potential difference between the two half cells will be a function of 

the steel in its pore water environment. Different potentials are obtained due to different 

environment around the steel. Table 2.3 shows the probability of reinforcement corrosion 

according to ASTM C876 interpretation which is based on empirical observation. The steel 

is considered passive when the potential measured is small (zero to -200 mV) and active 

when the potential moves to be more negative.  

Table 2.3: Corrosion risk from potential measurement according to ASTM C876 (Verma et 

al., 2014) 

Half-cell potential reading 

against CSE, mV 

Probability 

of corrosion 

more positive than −200 10% 

−200 to −350 ≈50% 

more negative than −350 90% 

 

The most common way of presenting the half-cell potential field data is plotting a potential 

map of the area surveyed. The advantage of this is that potential gradients can be detected 

and these generally correspond to a greater risk of corrosion (Broomfield, 2007; Poursaee 

and Hansson, 2009). It should be emphasized that half-cell potential measurement only gives 

an indication of the severity of corrosion but not corrosion rate. A simple comparison of the 

half-cell potential data with the ASTM C876 could cause mistakes in the evaluation of the 
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structure if other factors are not taken into account (Gu and Beaudoin, 1998;  Poursaee and 

Hansson, 2009). It is generally accepted that a more negative potential readings indicates a 

higher probability of corrosion. However, this general rule may not always be valid as many 

influencing factors, such as oxygen availability, chloride concentration, cover thickness, the 

type of reinforcing bar, whether or not the steel is coated, whether or not inhibitors are used, 

and concrete resistivity can affect the readings of the potential towards more positive or 

negative values but these changes may not necessarily be related to the severity of the steel 

corrosion (Broomfield, 2007; Gu and Beaudoin, 1998). Novokshchenov (1997) and Cairns 

and Melville (2003) found there is a good correlation between corrosion potential values 

and corrosion rate measured by polarisation resistance method, however, poor correlation 

existed in the work of Feliu et al. (1996). 

2.3.2 Polarization Measurements for Determining Corrosion Rates 

The corrosion rate of reinforcement embedded in concrete can be determined reliably by 

exposing reinforced specimens to real environments for a period of time and then removing 

the rebars from concrete to measure the weight-loss of the reinforcement. But this method 

is considered destructive, costly and time consuming. 

In present there are many methods for determination of corrosion rates of metals. The 

polarization methods, based on electrochemical concepts, are able to determine 

instantaneous corrosion rate in a few minutes and can be used to predict the service live in 

years (Badea et al., 2010; Hansson, 1984). However, other methods require multiple 

measurements over time to provide information of the corrosion rate (Badea et al., 2010). 

The two most common polarization methods are linear polarization resistance and Tafel 

extrapolation (Hansson et al., 2012; Lorenz and Mansfeld, 1981; Yang, 2008), which are 

explained in the following subsections. 

2.3.2.1 Tafel Extrapolation Method 

In the absence of passivity, for the reinforcing steel in concrete, the typical polarization 

curves of the anodic and cathodic reactions are presented as in Figure 2.12. Tafel found that 

a linear relationship between E and log I exists if an electrode potential is polarized to less 

than -250 mV when acts as cathode and more than 250 mV when acts as anode (Basu, 2016). 

The regions in which such relationships exist are known as Tafel regions and the slope of 
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the lines are called the Tafel Constants. Mathematically this relationship is given in equation 

2.20 (Yang, 2008). 

I = Icorr [exp {
2.303(E−Ecorr)

βa
} − exp {−

2.303(E−Ecorr)

βc
}]                                                 (2.20) 

where I is the measured current under the polarization, Icorr is the current at corrosion 

potential Ecorr,  E is the applied potential, Ecorr is the corrosion potential, βa and βc are 

Tafel constants which are the slopes of the anodic and cathodic curves in the E-log I plot in 

the Tafel regions. 

 

Figure 2.12: Hypothetical cathodic and anodic polarization diagram (ASTM G5, 2014) 

The main advantage of this method is that it provides a direct measurement of the corrosion 

rate and Tafel constants (Yang, 2008). The measurements may be accomplished either 
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potentio-dynamically with a suitable sweep rate, which is usually used for moderate to high 

corrosion rate systems or potentio-statically where the potential is applied in steps and the 

system allowed to come to equilibrium at each step before the current is measured. This 

technique is more convenient for systems corroding at low rate such as passivated steel in 

reinforced concrete (Katwan, 1988). However, there are two major disadvantages for the 

Tafel extrapolation technique. Firstly, in certain systems, the linear Tafel behaviour may not 

be obtained. Secondly, it is a destructive technique due to a large polarization range required 

to complete the polarization. A large polarization will disturb the sample electrode and 

change or damage the surface properties of the electrode. For this reason it is not used as a 

monitoring technique in the field. On the other hand, continuous polarization on the same 

sample will yield un-reliable results, so a number of new specimens will be required to 

complete the corrosion evaluation studies (Moore, 1975; Popov, 2015). Furthermore, for an 

accurate extrapolation, the slope should extend over a current range of at least one 

logarithmic decade (Badea et al., 2010).  

2.3.2.2 Linear Polarization Resistance (LPR) Method 

The disadvantages of the Tafel extrapolation method can be largely overcome by using the 

polarization resistance technique (Mansfeld, 1981). It is the most accurate technique for 

corrosion evaluation of the steel in concrete (Angst et al., 2009). It is non-destructive and 

short experimental duration, which is suitable for the evaluation of the instantaneous 

corrosion rate in the laboratory and in the field (Ahmad et al., 2014).  

Polarization resistance is a charge transfer resistance between the electrodes and the 

electrolyte which determines the rate of the corrosion reaction and measures the ease of 

which the electrons transfer across the surface. It developed by Stern and Geary (1957) and 

has been successfully used by many investigators (Alonso et al., 1988; Kupwade-Patil and 

Allouche, 2012) to monitor corrosion of steel in concrete. The corrosion current, according 

to the Stern-Geary equation, is inversely proportional to polarization resistance (Popov, 

2015). However, there are some major technical difficulties with this method. One practical 

difficulty is to know the exact surface area of the reinforcing steel that is actually being 

polarized by the measurement. In addition, a foreknowledge of the values of the Tafel slopes 

are necessary for accurate determination of the corrosion rate (Ahmad et al., 2014; Katwan, 

1988). 
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At the Ecorr , the anodic and the cathodic reactions are in equilibrium. The rate of oxidation 

is exactly equal to the rate of reduction and there is no net current to be measured. The 

application of an external current will move the potential away from Ecorr. This changing 

of the potential is known as polarization. Cathodic polarization occurs when the electrode is 

polarized to more negative value and anodic polarization occurs when the electrode is 

polarized to more positive value. If the polarization is within several mV of Ecorr, typically 

± 10 to 30 mV (Andrade and Gonzalez, 1978; Gowers and Millard, 1999; Popov, 2015; 

Sadowski and Nikoo, 2014), a linear relationship at the Ecorr is expected between the 

potential and the current as shown in Figure 2.13.  

 

Figure 2.13: polarization curve close to the corrosion potential (Berkeley and 

Pathmanaban, 1990) 

i. Measurement of LPR 

A typical experimental setup for the polarisation resistance measurements is shown in Figure 

2.14. A power supply known as a potentiostat/galvanostat which controls the out-put 

voltage/current with three electrodes is used to polarize precisely the potential of the 

working electrode (WE) whose corrosion rate is being measured. Besides the working 

electrode, there is a counter electrode (CE), also called the auxiliary electrode, is required to 

complete the electrical circuit in which the current can be injected from the potentiostat, and 

a separated reference electrode (RE) to provide the potential readings of the working 

electrode without passing current through. 
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Figure 2.14: Schematic setup for linear polarization technique (Bertolini et al., 2013) 

The LPR measurements are performed either in potentiostatic or galvanostatic mode. In the 

potentiostatic mode, the potential difference between the working and the reference 

electrodes is kept constant and measuring the current response in the circuit. In the 

galvanostatic mode, the current flowing in the circuit is kept constant and the potential 

response of the working electrode is measured (Ahmad et al., 2014; Poursaee, 2016). 

Potentiodynamic and galvanodynamic modes are also can be used (Poursaee, 2016). 

In practice, the potential of reinforcement is initially set to about 20 mV below Ecorr (Bentur 

et al., 1997), then swept at a low scan rate of about (0.1 mV/sec) to a potential of about 20 

mV above Ecorr. The current response during the scan is recorded, and the polarization 

resistance, Rp, is then obtained from the slop of the current - potential plot at the corrosion 

potential (∆E→0) using the following equation (Andrade and Alonso, 2004). 

Rp = [
∆𝐸

∆𝐼
]

∆𝐸→0(𝐸=𝐸𝑐𝑜𝑟𝑟)
                                                                                            (2.21) 

The slope of the linear polarisation curve that represents the polarization resistance is related 

to the corrosion current of the system as in equation 2.22 which was derived by Stern and 

Geary (1957) for known values of the anodic and cathodic Tafel slopes.  
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Icorr =
1

Rp
(

βa.βc

2.303(βa+βc
)                                                                 (2.22)                     

                      

then, 

Icorr =
B

Rp
                                                                                                                    (2.23)         

and,  

B =
βa .  βc

2.303(βa+ βc)
                                                                                                       (2.24)         

where ΔE is the changes in potential (i.e. the potential shift from the corrosion potential) in 

mV, ΔI is the measured flowing current due to the change in potential in mA. ∆E/∆I is the 

slope of the potential- current curve at the corrosion potential which represents the 

polarization resistance in Ω, Icorr is the corrosion current in mA, B is Stern-Geary constant 

and βa and βc are the anodic and cathodic Tafel slopes in mV, respectively. 

The values of the Tafel slopes which are necessary for determination of the corrosion rate 

could either be determined by the Tafel extrapolation method or could be assumed. In many 

instances a value of 120 mV is assumed for both βa and βc (Popov, 2015; Yang, 2008). 

Andrade and Gonzalez (1978) showed from their experimental studies that a B value of 26 

mV for corroding (Icorr > 0.1 - 0.2 µA/cm2) and 52 mV for non-corroding (Icorr < 0.l 

µA/cm2) steel in concrete is in a good agreement with gravimetric weight loss results. The 

validity of this value has also been confirmed by other research workers (Page and Lambert, 

1986). 

To obtain the corrosion rate icorr in mA/m2 or µA/cm2 from the calculated value of corrosion 

current Icorr, the following relationship is used (Zafeiropoulou et al., 2013). Where, Icorr is 

the corrosion current in mA or µA, A is the surface area of the reinforcing steel under test 

in m2 or cm2. 

𝑖𝑐𝑜𝑟𝑟 =
I𝑐𝑜𝑟𝑟

A
                                                                                                                     (2.25)                           
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The amount of section loss after the initiation of corrosion can be estimated using Faraday's 

law (Smith and Virmani, 2000). It is usually expressed as the penetration rate and measured 

in mm/year or µm/year using the corrosion rate values. For example, in the case of steel, 1 

µA/cm2 is equivalent to a corrosion rate of 0.0116 mm/year for uniform corrosion as in 

equation 2.26 (Andrade and Alonso, 2004).  

Corrosion pentration (mm year)⁄ = 0.0116 icorr (μA cm2)⁄                                        (2.26)   

Classifications of the severity of rebar corrosion rates based on polarisation resistances are 

presented in Table 2.4. It is important to realize that a high precision and repeatability for 

any corrosion rate measurement of steel in concrete in the field cannot normally be expected. 

Each category in Table 2.4 is an order of magnitude different from the adjacent category. 

An electrochemical corrosion rate measurement should place the element under study into 

the appropriate category but small differences in corrosion rates within a particular category 

should not be deemed to be significant. Corrosion is a dynamic process subject to 

fluctuations and the interpretation of corrosion rate measurements should focus on the order 

of magnitude rather than the precise value obtained (Gowers and Millard, 1999). 

Table 2.4:  Typical corrosion rates for steel in concrete (Andrade and Alonso, 1996; 

Gowers and Millard, 1999) 

 

As a general figure based on laborotary and field investigation, the corrosion rate can be 

considered negligible if it is below 0.1 μA/cm2, low to modertae between 0.1 and 0.5 

μA/cm2, moderate to high between 0.5 and 1 μA/cm2 and high if it is greater that 1 μA/cm2 

(Broomfield, 2007).  In fact, the corrosion rate is the key parameter in order to quantitatively 

predict residual life of corroding structures, as it may inform about the loss of steel cross-

section area over time, the time to cracking of concrete cover or the gradual loss of 

steel/concrete bond (Andrade and Alonso, 1996). Values below 0.1 μA/cm2 indicate 
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lifetimes longer than 100 years. Values giving cross-section losses of 5-25% during 20-50 

years are those around 0.5-5 μA/cm2, which are precisely those measured onsite.  

ii. Influence of IR-drop 

The resistance measured by the LPR in fact is the sum of the polarization resistance, Rp, and 

the concrete resistance, RΩ. If Rp >> RΩ, the resistance which is measured by the LPR is 

close enough to the polarization resistance that can be used as the actual value (Amir 

Poursaee, 2016). However, researchers  (Andrade and Gonzalez, 1978; Gonzalez and 

Andrade, 1982; Walter, 1978) indicated that a voltage drop may occur at the location of the 

reference electrode due to concrete resistance and or any existing surface film and can cause 

significant errors in the corrosion rates calculated using polarization resistance method. 

If an external current I is passing from the working electrode (the reinforcement) through an 

electrolyte such as the concrete here to the counter electrode, a voltage drop called IR drop 

develops due to electrical resistance of concrete RΩ, also expressed Re, and causes reducing 

the actual potential of the working electrode Ep in relation to the applied potential (the 

measured potential) Ea as in the following equation (Oelssner et al., 2006) 

Ep = Ea − IR drop                                                                                                              (2.27) 

As mentioned in the previous section, the polarization resistance is the ratio of the applied 

potential and the resulting passing current. So, in case of uncompensated IR-drop, the 

experimentally determined Rp will be the sum of the actual Rp and the resistance of the 

electrolyte at the rebar surface. Thus, the determined Rp value will be greater than the actual 

one which makes the calculated corrosion rate lower than the true value.  

Montenegro et al. (2012) stated that a part of the IR-drop can be decreased by placing the 

reference electrode close to the surface of the working electrode. The elimination of the IR 

drop issue has worried corrosion specialists for more than 50 years and significant effort has 

been done to solve the problem, which was finally successfully solved using current 

interruption method or positive feedback method and the result developed in auto IR 

compensation sophisticated instruments commercially available called potentiostats 

(Andrade and Alonso, 2004; Oelssner et al., 2006).  
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2.4 Electrical Resistivity of Concrete 

Concrete resistivity is a geometry-independent material property that describes the electrical 

resistance (Polder, 2001). It is a fundamental property of a particular material and is defined 

as its capability to withstand the transfer of ions subjected to an electrical field (Azarsa and 

Gupta, 2017). It is one of the important physical properties of Portland cement concrete that 

affects a variety of applications (Whiting and Nagi, 2003) and it’s measurements are being 

increasingly used as a non-destructive technique to provide a great deal of information on 

various aspects of concrete technology (Katwan and Al-Sofi, 1999). It is used to describe, 

for example, the degree of water saturation, the resistance to chloride penetration or the risk 

of reinforcement corrosion (Bertolini et al., 2013) and it is essential for the design of 

cathodic protection system. The resistivity of concrete may have values from tens to 

thousands of Ω.m as a function of the type of cement used, the w/c, the presence of chloride 

ion, water content, and concrete carbonation degree (Bertolini et al., 2013; Polder, 2001). 

2.4.1 Measurement Techniques 

Electrical resistivity can be measured by several ways non-destructively. The most 

commonly used technique for in situ testing is the Wenner 4-probe technique (Layssi et al., 

2015; Morris et al., 1996; Stanish et al., 1997). In this method, the probes are placed on the 

surface of the test concrete and an alternating current passed between the outer two 

electrodes while voltage across the inner two is recorded as shown in Figure 2.15.  

 

Figure 2.15: Wenner technique (four electrode) for electrical resistivity measurement 

(Sadowski, 2013) 
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The operation is simple and the result can be obtained in a short time (Chen et al., 2014). 

This method was developed by Wenner (1915) to measure soil resistivities, which was then 

modified for the application to concrete structures by Stratfull (1968) and Naish et al. (1990). 

Several commercial instruments based on the 4-probe method have been available (Bertolini 

et al., 2013). However, one of the drawbacks of this technique is that the conduction paths 

are not accurately known. Additionally, in this technique, the measurement is supposed to 

be conducted for a semi-infinite homogeneous material (Broomfield, 2007). Therefore, it is 

to be expected that inhomogeneities will affect electrical resistivity measurements. 

 

Figure 2.16: Set up of electrical Resistivity testing of concrete by two-electrode method 

(Bertolini et al., 2013) 

More accurate resistivity values can be obtained using bulk resistivity method (also known 

as uniaxial method), in which external plate electrodes are used enabling the current to 

traverse the full area of the specimen. However, its application is infeasible for field 

evaluation because electrodes access to opposite sides of the concrete element is not possible 

all the time. In this method, steel plates is pressed to two parallel faces of a concrete cube or 

cylinder, via wetted cloth for good electrical contact, as shown in Figure 2.16 (Bertolini et 

al., 2013). Sengul (2014) employed a similar arrangement for a very recent study of concrete 

resistivity and compared the result to those obtained by ASTM C1760 (2012) which is used 

for the determination of the bulk electrical conductivity of saturated specimens of hardened 

concrete. There was a very high correlation between the values measured for same 

environmental conditions. However, there are several technical factors affect such 
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measurements. These factors are summarized in Table 2.5 based on many different early 

and recent studies.  

Table 2.5: Summary of laboratory test methods for electrical resistivity of concrete,  the 

details of the first ten references were taken from Elkey and Sellevold (1995) 

Study Voltage type 

(frequency) 

Specimen 

description 

Electrode type Method of 

contact 
Hammond & 

Robsen, 1955 

 

DC (55-3 kV) 

AC (0.002-25kHz) 

Cubes (4ʺ) 

Prisms (4 x 4 x 1ʺ) 

 

Brass plates 

(external 

Stiff graphite 

gel 

Monfore, 1968 DC (4-10 V) 

AC (2-8 V) 

(0.1-10 kHz) 

Cubes (1ʺ and 4ʺ) Brass plates 

(external) 

 

Stiff graphite 

gel 

Bracs, 1970  Not available Cubes (6ʺ) Steel wire  Cast in 

Bhargava, 1978 

 

 

 

AC (0.5-1.5 V) 

(0.1-50 kHz) 

 

Prisms 

(40 x 40 x 160 mm) 

Hardened 

cement paste 

w/Pt black 

Cast in 

Woelfl, 1979 

 

AC (6 V) 

(60 Hz) 

Prisms (1 x 2 x 6ʺ) 

 

slim rods 

(material N/A) 

 

Cast in 

Hansson, 1983  

 

DC (3-9 V) Prisms 

(90 x 70 x 50 mm) 

 

Perforated steel 

plates 

(30 x 30 mm) 

 

Cast in 

Hughes, 1985  

 

DC (4-8 V) 

AC (10V) 

Cubes (150 mm) 

 

Brass plates 

(external) 

Fluid cement 

paste (w/c = 

0.5) 

Hope, 1985  

 

AC (1kHz) Prisms 

(25 x 25 x 100 mm) 

 

Brass or steel 

rods 

 

Cast in 

Hauck, 1993  

 

AC Cylinders 

(100 mm dia. x 

51 mm) 

 

iron mesh 

(external) 

 

Electrolytic 

solution 

Cabrera, 1994  

 

AC (10V) Cubes (100 mm) Brass plates 

(external) 

 

Fluid cement 

paste 

Princigallo et al. 

(2003)  

20 MHz 150x150x200 mm. Two electrodes 

method, cylindrical 

rods (10 mm 

diameter) 

Cast in 

Ghods et al. 

(2005)  

AC, 3V, 1.1 kHz Cylinder, 

D=150mm, 

L=100mm 

Two electrodes 

method, Copper 

plates 

External, 

cement paste 

(Chacko et al., 

2007) 

AC, 10V 

60Hz 

15 mm ×25 mm 

×50 mm  & 

15 mm × 25 mm × 

110 mm 

Two electrodes 

method, copper rods 

Cast in 

(Polder, 2009) AC, 120 Hz Prisms of 

100x100x300 mm3 

 Two electrode 

method, stainless 

steel bars 

Cast in 

Hou et al. (2010)  AC, 36 V 160×130×40 mm & 

300×300×60 mm. 

Two electrode 

method, Steel mesh 

Cast in 
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Lübeck et al. 

(2012) 

AC Prism (100 x 100 x 

170 mm) 

Four-electrode 

method 

(Wenner’s) 

Cast in 

Chang et al. 

(2013) 

DC Prism (140 x 140 x 

280mm) 

2-point probe 

embedded 

electrodes, metal 

mesh 

 

Cast in 

Sengul (2014) 

 

 

hand-held resistance 

meter with a 

frequency of 1 kHz 

& ASTM C1760 

(DC,60V) 

Cylinder (D=100 

mm & H =50 mm) 

Two electrode 

method,  

 

External, Wet 

cloth 

Van Noort et al. 

(2016) 

AC, 1 kHz Cube 15x15x15cm Two electrode 

method,  

Stainless steel plates

  

External, Wet 

cloth with a 

dilute solution 

of soap 

 

According to the table above, prisms and cubes of different sizes are the most widely 

employed, though cylinders also are used by some investigators. Use of cubes or prisms 

provides flat faces to apply the external electrodes. While for cylinders, the measurement is 

complicated due to the need for smooth surfaces to achieve uniform electrical contacts 

between the electrodes and the surfaces of the concrete specimens which may require to cut 

off part of the top surface for placing the electrodes.  

As can be seen from Table 2.5, a number of ways can be used to ensure a uniform 

distribution of current between the external electrodes and the test specimen. Early studies 

used conductive graphite gels or pastes. These are effective if precautions are taken because 

they dry with time if not shielded with moisture barriers. Cement paste has also been used, 

but suffers from the same issues as graphite paste. The most direct and reliable mode of 

contact is to embed electrodes into the fresh concrete. Then resistivity measurements can be 

performed on the concrete specimen at various moisture states without disrupting the 

moisture content of the specimen (Whiting and Nagi, 2003). Electrodes can be of various 

types. Brass is the most commonly used material, but steel also is used. They can be meshes 

or plates. In the case of embedded electrodes, wires or thin rods normally are used. In these 

cases, however, the flow path may not be defined well enough to calculate a true resistivity 

(Whiting and Nagi, 2003). 

As shown in Table 2.5, measurements of electrical resistivity were performed using either 

direct current (DC) or alternating current (AC) at various frequencies. However, alternating 
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current is the more frequently used as it is generally acknowledged that measurement of 

resistivity using direct current produces polarisation of the electrode (Stanish et al., 1997). 

Application of a DC voltage across a concrete specimen causes current flow, mostly carried 

by ions in the concrete pore water. Reactions occur at the contact electrodes (Hansson and 

Hansson, 1983). These reactions produce polarization and cause the actual voltage causing 

current to be reduced by an unknown amount (Stanish et al., 1997).  

Current cannot be accurately measured in the case of DC because of these polarization 

effects. Thus, the measurement requires alternating current to avoid polarization of the 

electrodes (Chacko et al., 2007; Layssi et al., 2015; Polder, 2001). The ranges of frequencies 

used were from 2 to 50,000 Hz and the voltage from 0.5 to 36V. Bhargava and Rehnstrom 

(1978) examined the resistance of concrete at different voltages and frequencies and they 

recommended a frequency of at least 1000 Hz to be used for resistivity measurements as 

they noticed that after 1000 Hz frequency, the difference between the resistance at various 

voltage disappears. Calleja (1953) showed in his study that the decrease in resistance when 

frequency increased from 40 to 20,000 Hz was only 10%. To eliminate the polarisation 

effect, previous researches have suggested the use of both a low frequency, such as 60 Hz 

(Chacko et al., 2007), 107 Hz (Osterminski et al., 2012), 128 Hz (Newlands et al., 2008) and 

a high frequency, such as 1000 Hz (Whittington et al., 1981) and 7500 Hz (Banthia et al., 

1992). Layssi et al. (2015) suggested that a frequency in the range from 500 to 10,000 Hz 

could produce an accurate measurement. The work presented by McCarter et al. (2015) 

shown that using an AC frequency in the range 5 kHz–10 kHz with a low-resistivity liquid 

used to saturate the sponges would result in a more accurate assessment in concrete 

resistivity. Recognising that it is hard to define a specific optimal frequency due to the 

variation of the conditions of concrete. In term of the applied voltage during resistivity 

measurements, it should be low to avoid heating of the concrete and usually in the range of 

10 V or lower [Streicher and Alexander, 1995], and is only applied for short times. 

The electrical resistivity of the concrete using two-electrode method is calculated in terms 

of the equation 2.28 (Sengul, 2014); 

ρ = R
A

L
                                                                                                                           (2.28) 
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where ρ is electrical resistivity, R is electrical resistance, A is surface area of the electrode 

and L is distance between the two electrodes. R is measured by applying a specific voltage 

(V) and measured the resulting current (I) passing through the specimen, then the electrical 

resistance is obtained according to the Ohm’s law as below:  

R =
V

I
                                                                                                                              (2.29) 

2.4.2 Factors Influencing Electrical Resistivity 

The electrical resistivity of concrete is related to the microstructure of the cement matrix, its 

pore structure, porosity, and pore size distribution. It is also a function of the concentration 

of ions and their mobility in the pore solution. Therefore, several factors may affect electrical 

resistivity of concrete, and they can be related to concrete materials and mixture proportions, 

such as cement type, pozzolanic admixtures, w/c ratio, and pore structure, as well as, 

environmental factors are affecting the resistivity measurements including moisture content 

of concrete (i.e. relative humidity) and temperature (Chen et al., 2014; Hunkeler, 1996; 

Sengul, 2014; Whiting and Nagi, 2003). However, considering all these influencing 

parameters for on-site resistivity measurements and to make meaningful conclusions is not 

a simple task (Azarsa and Gupta, 2017). This section will focus on those that have a 

considerable impact on the electrical resistivity. 

Generally, water to cement (w/c) ratio is one of the main controlling factors that strongly 

influences the performance of the concrete (Van Noort et al., 2016). Not only that it has a 

significant effect on strength and durability of the concrete, but also that plays an important 

role in the microstructure of the cement paste as well as the ionic concentration of the pore 

solution. In general, higher w/c ratio results in a high percentage of porosity and coarser 

pore structure of the concrete which leads to a lower electrical resistivity value indicating a 

more permeable concrete (Azarsa and Gupta, 2017; Banea, 2015; Van Noort et al., 2016). 

A study made by Monfore (1968) on the electrical resistivity of cement paste showed that 

an increase in w/c from 0.40 to 0.60 led to a 50% decrease in resistivity. Hughes et al. (1985) 

examined the effect of w/c ratio on the electrical resistivity of concrete that contains a cement 

of 400 kg/m3 and observed a reduction by almost 50% when w/c ratio increased from 0.4 to 

0.55. Su et al. (2002) also found similar trend for the saturated specimens, the resistivity 
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decreases with an increase of w/c ratio. But when w/c ratio is over 0.55 the difference in 

resistivity is small. However, Gjørv et al. (1977) observed that the influence of w/c ratio on 

concrete resistivity varies as the degree of saturation changes. The effect of w/c ratio is less 

significant in highly saturated concrete as compared to dry concrete as shown in Figure 2.17. 

The decrease in resistivity from a w/c ratio of 0.45 to 0.70 is more pronounced when the 

degrees of saturations are 40% and 60%, as compared to 100%. Chen et al. (2014)  observed 

that such measurements using four-point Wenner method are inappropriate on concrete 

specimens with low RH at oven dry or 40% RH as they were too dry to form conductive 

paths. 

 

Figure 2.17: Effect of water saturation and w/c on concrete resistivity (Gjørv et al., 1977) 

Additionally, concrete containing supplementary cementitious materials such as slag 

showed an irregular behaviour with the w/c ratio. For instance, an increase in w/c ratio from 

0.35 to 0.65 caused an increase in electrical resistivity values, which means a less permeable 

concrete (Azarsa and Gupta, 2017). Such increased resistivities were attributed to the 
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densified microstructure by calcium–silicate–hydrate (C–S–H) gel and modified ion species 

and concentrations. The hydrating products of C–S–H gel fill the micropores, reducing the 

porosity and pore connectivity. The resistivity was thus increased (Chen et al., 2014). 

Chloride concentration in concrete is another parameter that affecting electrical resistivity 

of concrete. Early study by Henry (1964) on the effect of sodium chloride content on 

concrete resistivity reported that the concrete with no sodium chloride has the highest 

electrical resistivity over the testing period. However, the differences in resistivity among 

four different concentrations ranging from 0 to 31.3 g/kg of the mixing water were not great. 

Hunkeler (1996) noticed that addition of 0.45% chloride by concrete weight reduced the 

resistivity by 27%. It should be noted that the influence of chlorides on concrete resistivity 

is related to cement composition and type of cementitious materials used in concrete. For 

example, C3A hydration products have a tendency to bind with chlorides (Rosenberg et al., 

1989; Whiting and Nagi, 2003). Therefore, the influence of a given amount of chlorides on 

electrical resistivity may be reduced when high C3A cement is used. Using of corrosion 

inhibiting admixtures also may influence the chloride ion concentration in cement paste and 

its effect on electrical resistivity (Rosenberg et al., 1989; Whiting and Nagi, 2003). 

Among all the influencing factors, the moisture content highly influences the resistivity of 

concrete (Chen et al., 2014). This is because the overwhelming proportion of electrical 

current passing through concrete is carried by the ions of pore liquid. As the moisture content 

of the concrete decreases, there is less pore fluid to carry the current and therefore the 

resistivity will increase and vice-versa. The effect of moisture content was studied by Gjørv 

et al. (1977) and the effect of saturation of concrete on resistivity made with different w/c 

ratios is illustrated in Figure 2.18. Concrete were dried from 100% to 40% saturation and 

the resistivity determined at intermediate points. At 100% saturation, resistivity ranged from 

approximately 3,000 to 6,000 Ohm•cm. While at 40% of saturation, resistivities ranged from 

100 to 6,000 kohm•cm. For a given level of saturation, the water-cement ratio of the 

concrete also had an effect on resistivity. As w/c increased, the resistivity decreased. The 

effect was most pronounced at the lower levels of saturation. In the extreme case of oven-

dried concrete, Hammond and Robson (1955) obtained an electrical resistivity of 4x104 

Mohm•cm. Sellevold et al. (1997) measured electrical resistivities of samples taken from a 

post-tensioned concrete highway bridge after 14 years of service. Samples were initially 
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water saturated, then dried to remove the appropriate amount of water to achieve the desired 

degree of saturation. Electrical resistivity was determined as a function of degree of capillary 

saturation, which ranged from 70% to 100%. Resistivity ranged from approximately 10 

kohm•cm at 100% saturation to 50 kohm•cm at 70% saturation (Whiting and Nagi, 2003) 

 

Figure 2.18: Effect of saturation on electrical resistivity of concrete (Gjørv et al., 1977)  

Su et al. (2002) also investigated the effect of moisture content on concrete resistivity, by 

measuring the resistivity using the Wenner technique for air-dried specimens and oven-dried 

specimens under various w/c ratios (w/c= 0.45, 0.55, and 0.65). The results showed that the 

resistivity increases as the water loss ratio increases. Under air-dry conditions, the concrete 

resistivity is 5% ~ 10% higher than that of the saturated concrete. In the second stage, when 

the entrapped void water is removed, the resistivity abruptly increases. 

2.4.3 Concrete Resistivity and Corrosion Rate 

Electrical resistivity of concrete is considered as one of the most important parameters that 

can help to assess corrosion of steel in concrete (Hornbostel et al., 2013). It is fundamentally 

related to the permeability of fluids and diffusivity of ions through porous materials such as 
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concrete. Therefore, electrical resistivity can be used as an indirect measure of the ability of 

concrete to prevent penetration of chloride salt solutions that may cause corrosion of the 

reinforcing steel (Whiting and Nagi, 2003). 

Browner (1982) previously studied the relationship between corrosion rate and electrical 

resistivity of offshore concrete structures and demonstrated that a concrete resistivity must 

fall below the range of 5,000 to 10,000 Ohm.cm for the reinforcement corrosion to occur. 

Hope et al. (1985) showed that reinforcement embedded in concrete with a resistivity higher 

than 10,000 Ohm.cm is not likely to develop corrosion at a significant rate. Whereas 

Gonzalez et al. (2004) proposed that the corrosion rate is low when concrete resistivity is 

higher than 100,000 Ohm.cm and high corrosion rate when resistivity is lower than 20,000 

Ohm.cm. Cavalier and Vassie (1981) investigated corrosion damage in a highway bridge 

and concluded that the probability of corrosion is almost certain when the resistivity is below 

5,000 Ohm.cm, it is usually not significant when the resistivity is above 12,000 Ohm.cm 

and corrosion is probable in the resistivity between 5,000-12,000 Ohm.cm. Tremper et al. 

(1958) investigated a structure in a marine environment and suggested a value of 60,000 

Ohm.cm to prevent accelerated corrosion. However, the accepted critical values are 

presented in table 2.6 in which it is considered that the risk of corrosion is negligible when 

resistivity exceed a value of 20,000 Ohm.cm. 

Table 2.6: Empirical relationship between concrete resistivity and corrosion rate of 

embedded steel reinforcement (Gonzalez et al., 2004; Langford and Broomfield, 1987) 

 

It is widely accepted that the corrosion rate decreases with increasing concrete resistivity. 

However, considerable and not fully clarified deviations are found between studies 

published in the literature (Hornbostel et al., 2013). 
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2.5 Corrosion Protection and Prevention Methods  

The deterioration of reinforced concrete structures caused by steel corrosion is one of the 

major durability problems (Ahmad, 2003; Orellan et al., 2004). A large number of reinforced 

concrete structures around the world are deteriorated to varying extents. The size of 

corrosion problem is horrific. An example of the magnitude of the problem can be seen in 

the fact that almost half of the greater that 500,000 bridges in the US interstate network are 

in need of some type of repair due to their damaged state or defective structures. It was 

estimated that the cost of repair is much higher than that of new construction. It has been 

reported that rehabilitation costs would amount to about 20 billion dollars, a figure that 

increases by $500 million every year (Bastidas et al., 2008). The size of the deterioration 

leads to the need for preventive measures and costly repairs to protect reinforcing steel from 

corrosion in order to extend the durability and increase the service life of reinforced concrete 

structures (Bastidas et al., 2008; Verma et al., 2014).  

Different chemical, mechanical and electrochemical methods are adopted to protect or 

prevent concrete structures from corrosion (Popoola et al., 2014; Verma et al., 2014). In 

some cases, corrosion rate is retarded by careful selection of material and the design of 

system. In most cases, corrosion can be reduced by the improvement of the concrete 

properties and environment surrounding the steel, protective systems in the form of coating, 

using corrosion inhibitors and adopting electrochemical methods such as cathodic 

protection. The following subsections present more details of some techniques currently 

used for corrosion protection. They are applied either alone or in combination but each is 

suitable or feasible in certain physical, economic or operational circumstances. 

2.5.1 Patch Repair 

This approach is widely used for stopping and subsequently controlling corrosion in 

reinforced concrete structures by means of replacement of nonprotective concrete with a 

suitable cementitious material (Dugarte and Sag, 2009; Qian et al., 2006; Tilly and Jacobs, 

2007). It is usually undertaken after careful assessment of the condition of the structure and 

consideration of cost. The repair work involves removal of weak, cracked or damaged 

concrete of the structure for specific depths, clean back to bars, clean the bars and further 

strengthen it with extra steel if needed and application of a suitable repair material to provide 

an adequate cover to the reinforcement.(Chynoweth et al., 1996). In order to prevent further 
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contamination, the new surface is often coated with a surface coating. Each of these steps 

must be carried out properly in order to guarantee the effectiveness of the whole repair work 

(Bertolini et al., 2013). 

Protection provided by patch repair can only be guaranteed if the damage is local and all of 

the affected concrete in contact with the rebars is removed. On the other hand, it is in general 

desirable to limit concrete removal as much as possible since it is a slow, costly, noisy, and 

dusty operation (Bertolini et al., 2013), additionally, Cutting out concrete behind the rebar 

can be a risky operation and a patched structure may have lost considerable load bearing 

capacity (Broomfield, 2007). In this case, structural support for live and dead loads is 

required and this will make such repairs completely uneconomic. 

Although ordinary Portland cement mortars (or concretes) can be used as materials for 

conventional repair, different types of additions or admixtures such as microsilica, polymers, 

water reducing agents, etc. may improve their performance (Mailvaganam and Rixom, 2002; 

Neville, 1995). The requirements of such repair materials are available in BSEN1504 parts 

1-10 (Broomfield, 2007) 

However, patch repairing is not usually adequate to stop further deterioration in the presence 

of chloride attack. If a structure with extensive chloride attack is to be patch repaired then it 

must be recognized that patching the corroding areas can accelerate corrosion of the 

surrounding areas (Broomfield, 2007). This is because that the new surrounding anodic 

zones sacrificially protects the areas which previously protected from corrosion. Once fresh 

non-contaminated material replaces the contaminated area, this protection is removed and 

the surrounding areas become the new anodes. This often occurs around the new patch as 

shown schematically in Figure 2.19. The issue is more prevalent in chloride contaminated 

structures so corrosion will continue around the patches. However, it can be avoided by 

applying an electrochemical rehabilitation technique if it is difficult to remove chlorides 

from all parts of the structure effectively (Broomfield, 2007). 
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Figure 2.19: Patch repair with surrounding spalling due to incipient anodes on a building 

(Broomfield, 2007) 

2.5.2 Surface Treatment of Concrete  

Surface treatment of concrete is usually used as a preventative measure or in combination 

with patch repair to achieve the required service life of the repair (Byrne et al., 2016). A 

specific type of treatment, such as coatings, may be used as a physical barriers to delay 

penetration of carbonation or chlorides or to decrease the moisture content either in the 

original concrete or in the repair mortar. The effect of this treatment can be taken into 

consideration in the evaluation of the residual service life of the structure both in the repaired 

and unrepaired zones. This can lead to a reduction in the extent of the areas to be repaired 

or in the thickness of the repair material (Bertolini et al., 2013). 

2.5.3 Coating of Rebars  

Proprietary products are often applied on the surface of the rebars, to promote adhesion to 

the repair mortar and to improve the corrosion resistance, often inhibiting properties are also 

claimed and these are called anticorrosion coating (Bertolini et al., 2013; COST Action 521, 

2003). The use of surface coatings on the reinforcement should be carefully evaluated. As 

far as corrosion of steel reinforcement is concerned they should not be recommended, since 

Patch repair 

Corrosion 
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the repair mortar is the material intended to protect the reinforcement. Only if it is impossible 

to provide adequate thickness of repair material cover, so it is locally not possible to provide 

the required long term protection, may a coating that acts as a physical barrier be useful 

(Bertolini et al., 2013; COST Action 521, 2003). 

2.5.4 Corrosion Inhibitors 

Corrosion inhibitors for steel in concrete are of great interest to the concrete repair 

community. Corrosion inhibitors are defined as a chemical substance that when present in 

the corrosion system at a suitable concentration decreases the corrosion rate, without 

significantly changing the concentration of any corrosive agent (BS EN ISO 8044, 2015). 

This definition excludes other corrosion protection methods such as coatings, pore blockers 

and other materials, which change the water, oxygen and chloride concentrations. However, 

some inhibitors also behave as pore blockers, which is a secondary property (Söylev and 

Richardson, 2008). 

Inhibitors can be divided in two groups according to their application methods (Bolzoni et 

al., 2006; Broomfield, 2007). They are either admixed corrosion inhibitors (ACI) that added 

directly to the fresh concrete mixture for new structures, or migrating corrosion inhibitors 

(MCI) that penetrate into the hardened concrete once applied on the concrete surface to react 

on the reinforcing steel surface to slow down the rate. Based on the mechanism of protection, 

they can be classified into three groups. The first group is anodic inhibitors which passivate 

the metal by forming an insoluble protective film on anodic surfaces or by adsorption on the 

metal such as chromates, nitrites, molybdates, alkali phosphates, silicates, and carbonates. 

It should be noted that certain anodic inhibitors (e.g., nitrites) can cause accelerated 

corrosion and pitting attack if used in insufficient concentrations. The second group is 

cathodic inhibitors such as zinc and the salts of antimony, magnesium, manganese, and 

nickel. These inhibitors are generally less effective but safer than anodic inhibitors, and 

function by forming an insoluble or adsorbed film on cathodic surfaces of a metal. And, the 

last group is mixed inhibitors that use to block both anodic and cathodic reactions by 

adsorption on the entire surface of the metal. This type of inhibitor includes amines, esters, 

and sulfonates (Poursaee, 2016; Söylev and Richardson, 2008; Virmani and Clemena, 1998). 
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Admixed corrosion inhibitors have been studied since the 1950s and they have been 

commercially available since the 1970s. Calcium nitrite is one of the most inhibitors widely 

used and is considered to be the most effective inhibitor. A dosage rate of 10–30 litres per 

cubic metre of concrete is generally specified, depending on the expected maximum chloride 

level at the rebar (Bertolini et al., 2013; Broomfield, 2007). In fact, to prevent corrosion 

initiation, a critical concentration ratio of nitrite/ chloride is required (Virmani and Clemena, 

1998). The nitrite acts as anodic inhibitors due to its oxidising properties and stabilizes the 

passive film by oxidising ferrous ions to ferric oxide (Fe2O3) (Söylev and Richardson, 2008). 

Sodium monofluorophosphate (MFP) that is added to the mix or applied to the surface of 

concrete is also widely used, but the protection mechanism of MFP is not clear. It may be 

anodic, cathodic or mixed (Chaussadent et al., 2006; Bernhard Elsener, 2001; Ngala et al., 

2003; Söylev and Richardson, 2008). 

Inhibitors when compared to the other corrosion protection methods have some advantages 

such as versatility and cost. Their use in concrete can help to delay the initiation of corrosion 

of the embedded steel exposed to chloride attack and carbonation (Söylev and Richardson, 

2008). However, there are some concerns and uncertainties relating to the effectiveness of 

corrosion inhibition. Both negative and positive side effects were found in the literature 

(Söylev and Richardson, 2008). Also, it has not been established whether inhibitors can 

readily stop or significantly reduce the rate of corrosion and they may only provide 

additional protection against initial corrosion. They are therefore only adequate in a small 

number of circumstances (Byrne et al., 2016). 

2.5.5 Electrochemical Chloride Extraction (ECE) 

This technique has been developed to remove chloride ions from contaminated concrete to 

overcome the problem of chloride-induced corrosion. It can be applied to structures in which 

corrosion has not or has already initiated. It aims to modify the environment of the concrete 

surrounding the steel reinforcement to make it less corrosive by altering the composition of 

concrete that contains chlorides (Bertolini et al., 2013). The application of the 

electrochemical chloride extraction treatment along with its associated electrochemical 

reactions is shown schematically in Figure 2.20. ECE is similar to cathodic protection, but 

it is only applied for a few weeks (Liu and Shi, 2009b) or few months (Luca Bertolini et al., 
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2013) and involves the application of a large direct current density reaches to 1000–2000 

mA/m2 between a temporary anode placed on the external surface of the structure and the 

reinforcement. Under the action of the electrical field, the negatively charged chloride ions 

repel from the steel surface and move towards the external anode where they are collected. 

 

Figure 2.20: Principle of electrochemical chloride extraction  (Marcotte et al., 1999) 

ECE was first studied in the USA in the 1970s (Bertolini et al., 2013) and, as yet there is no 

standard for electrochemical chloride extraction, but a technical specification was published 

in 2011 (DD CEN/TS 14038-2). This technique has been used successfully in many 

countries of the world with applications varying from quays, office buildings, road bridges, 

car parks, housing and industrial plants (MILLER, 1994).   

Orellan et al. (2004) investigated the efficiency and side effects of ECE, and their 

experimental results showed that about 40% of the total chloride was removed near the steel 

within 7 weeks. However, the electrochemical chloride extraction also could lead to some 

problems after the treatment. For example, it may be possible that the ECE accumulates 

locally high amounts of alkali ions that stimulate the alkali–silica reaction even though the 

concrete contained nominally inert siliceous aggregates. Additionally, in laboratory tests on 

steel in mortar, it has also been shown that the applied current during ECE can significantly 
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alter the composition and morphology of the mortar at the steel/mortar interface, and decline 

the bond strength between the concrete and steel (Marcotte et al., 1999)  

2.5.6 Electrochemical Realkalization (ER) 

This system is used for reinstalling the passivation of steel in carbonated structures and to 

stop carbonation-induced damage (González et al., 2011; Redaelli and Bertolini, 2011). ER 

was introduced by Noteby in the late 1980s  (Luca Bertolini et al., 2013; Redaelli and 

Bertolini, 2011). A state of the art document on realkalization (and chloride extraction) was 

published by the European Federation of Corrosion (Mietz, 1998) and technical information 

was provided from two European COST Actions (COST Action 509, 1997; COST Action 

521, 2003). A technical specification was published in 2004 before an European standard is 

published in 2016 (BS EN 14038-1). 

 

Figure 2.21: Illustration for the electrochemical realkalization method (Ribeiro et al., 

2013) 

The principles of the electrochemical realkalisation are shown in Figure 2.21. It is similar to 

ECE. The technique drives a current through the concrete to the reinforcement by means of 
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an externally applied anode attached to the concrete surface. Sodium carbonate is generally 

used as electrolyte covering the concrete surface (Yeih and Chang, 2005). During the 

operation, hydroxyl ions are produced at the rebar surface re-alkalise the concrete from the 

reinforcement outwards the concrete surface and, at the same time, the electrolyte at the 

concrete surface moves under electro-osmotic pressure and re-alkalises the concrete from 

the surface towards the reinforcement (Bertolini et al., 2008; Redaelli and Bertolini, 2011; 

Yeih and Chang, 2005).  

Several laboratory experimental works suggested that the application of a current of 1000–

2000 mA/m2 for few weeks can induce the complete realkalisation of concrete covers of 20–

30 mm (Redaelli and Bertolini, 2011). However, despite of these suggestions, the choice of 

current density and polarization time is still difficult (Yeih and Chang, 2005).  

Electrochemical realkalisation has been introduced at the end of the 1980s and a significant 

number of structures have been treated with this technique (Ribeiro et al., 2013). Some 

documents report these experiences (Bertolini et al., 2008) and show the ability of the 

technique in recovering protective pH levels. These studies also show that, even after some 

years, the alkalinity remains at high levels, which would be enough to protect the 

reinforcement (Ribeiro et al., 2013). On the other hand, the effectiveness of the treatment in 

repassivating the reinforcement has been questioned (Bastidas et al., 2008; González et al., 

2011; Miranda et al., 2006) and, although some work is being carried out on this specific 

topic (Redaelli and Bertolini, 2011), there is still not a consensus.  

2.5.7 Cathodic Protection 

Most of the non-electrochemical repair techniques are not very effective in reducing the 

corrosion rate, since they may arrest the problem with little or no success (Hong et al., 1993). 

Cathodic protection is an electrochemical technique that has increasingly been used for the 

repair and maintenance of corrosion damaged reinforced concrete structures around the 

world (Martínez and Andrade, 2008; Parthiban et al., 2008; Wilson et al., 2013). Federal 

Highway Administration, USA has stated that CP is the most effective repair technique and 

it is the only way to stop the corrosion of steel embedded in concrete (Barnhart, 1982).  
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To illustrate the principle of CP, consider the system in Figure 2.22 which shows the 

potential of the metal (E) against the logarithm of the anodic and cathodic reaction rates 

expressed as current densities Log (I). As explained before, the corrosion current, Icorr, and 

the corrosion potential, Ecorr, occur at the point of intersection of the anodic and cathodic 

curves where anodic and cathodic reactions rates are equal, i.e. the rate of electron release 

equals the rate of electron consumption and there is no net current flow although metal is 

consumed at a rate equivalent to Icorr.  

In CP an external current is applied to the corroding metal by an auxiliary in which electrons 

are supplied to the metal surface and so that the potential of the metal is lowered. For 

example, to E−. At E−, the corrosion rate will have been reduced from Icorr to Ia- and thus 

the metal will be partially protected. │Ic
−│- Ia

−  is the amount of current that needs to be 

applied to provide the shortfall electrons. At Ea, the net anodic reaction rate is zero and the 

anodic dissolution will be stopped. As a result, the metal will be fully protected if │Ic
=│is 

applied. Excessive negative potentials to provide further protection are insignificant as the 

metal is then said to be over-protected and problems related to hydrogen evolution at the 

metal surface can be developed (Ashworth, 2010). 

 

Figure 2.22: Principle of cathodic protection illustrated on a potential-current diagram 

(Ashworth, 2010) 
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2.6 Cathodic Protection of Steel in Concrete 

Theoretically, the amount of required current to achieve cathodic protection must be enough 

to lower the potential of the reinforcing steel towards the immunity zone, the region where 

the potential become below the equilibrium potential (Eeq) given by Nernst law and 

electrochemical attach cannot occur, so that all the reinforcement become cathodic and 

corrosion will be stopped (Pedeferri, 1996). 

However, To achieve cathodic protection of steel reinforcement embedded in chloride 

contaminated concrete it is not necessary to establish immunity conditions, that is, lowering 

the potential below the equilibrium potential Eeq given by Nernst’s law. These immunity 

conditions are normally required on steel in active condition as on steel structures in soil or 

immersed in seawater, where potentials more negative than −850 mV CSE should be 

imposed. Conversely, the target of cathodic protection in concrete structures is to reduce the 

corrosion rate by taking the steel into the passivity range or by reducing the macrocell 

activity on its surface, and this can be done with a small reduction in potential and a small 

current (Bertolini et al., 2013). 

For new reinforced concrete structures in which steel is passive and corrosion has not 

initiated yet, the application of CP technique is called ‘cathodic prevention’ where expected 

corrosion initiation is prevented during the service life, whereas for existing structures which 

are already corroding, the application of CP is termed ‘cathodic protection’ where further 

corrosion of steel is stopped.  

The behaviour of reinforcing steel of different potentials and in the environment of varied 

chloride contents, where pitting can initiate, propagate or protected against, has been 

presented by Pedeferri (1996), as shown in Figure 2.23. Based on the Figure, to achieve the 

aim of CP, the potential of the steel shall be kept either at the perfect passive zone, zone C, 

where corrosion does not initiate or propagate or at the zone B, imperfect passivity zone, 

where pitting does not initiate but can propagate for pre-existing pits.  

The initial condition is represented by location 1 where the chloride content is nil and the 

steel is passive. Location 2 represents the potential after the application of cathodic 

prevention. It is more than 200 mV of polarization. If this level of polarization in maintained, 
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pitting initiation will be prevented even when relatively high chlorides ingress into the 

concrete and reach the reinforcement as in location 3. If there is no protection and with the 

increase of chloride content, the location 1 leads to 4 in the corrosion zone where pitting can 

initiate and propagate. Using the cathodic protection, this is shifted to 5 in the passivity zone 

(C), where pitting cannot further propagate nor initiate, or to 6 into the imperfect passivity 

zone (B) without fully restoring passivity so that existing corrosion sites will continue to 

corrode at a reduced rate but new sites of pitting can 4 not initiate. In all cases the corrosion 

rate is reduced. In summary, (1→2→3) represents a typical evolution path for cathodic 

prevention, (4→5) represents cathodic protection where the steel is fully protected and 

(4→6) represents cathodic protection to reduce corrosion rate. 

 

Figure 2.23: Schematic illustration of steel behaviour in concrete for different potential and 

chloride contents, (Bertolini et al., 2013) 

2.6.1 Methods of Applying Cathodic Protection 

Cathodic protection can be applied by either the impressed current technique or by the use 

of sacrificial anodes. 

2.6.1.1 Impressed Current Method 

In this method, a small amount of direct electric current from a permanent anode, as auxiliary 

electrode usually applied on the concrete surface and connected to the positive terminal of 
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DC power source, is impressed through the concrete to the reinforcement which is 

electrically connected to the negative terminal of a power source, as illustrated in Figure 

2.24. In CP, the steel to be protected is forced to become cathodic and prevented from 

corrosion (Gower and Windsor, 2000; Pedeferri, 1996). Oxygen and moisture availability in 

the concrete is essential for the CP system to work. 

 

Figure 2.24: Schematic illustration of impressed current cathodic protection system 

(Gower and Windsor, 2000) 

Due to the electrochemical process at the cathode (the steel), hydroxyl ions are produced as 

in equation 2.30, alkali ions (sodium, potassium) are attracted and chloride ions are repelled. 

 
1

2
O2 + H2O + 2e− → 2(OH)−                                                                                       (2.30) 

The generation of hydroxyl ions will increase the alkalinity and help to rebuild the passive 

layer where it has been broken down by chlorides. At the anode, negatively charged ions 

such as hydroxide and chlorides are consumed.  

However, when the potential becomes too negative, the following cathodic reaction can 

occur at the surface of the steel and lead to hydrogen gas evolution. This hydrogen evolution 

can cause hydrogen embrittlement of the steel reinforcement. 
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H2O + e− → H + OH−                                                                                                   (2.31) 

Hydrogen atoms generated can diffuse into the steel and develop defects in the crystalline 

matrix of the steel (Broomfield, 2007), thereby leading to weak the steel, reduction in 

ductility of rebar and cause failure even in the absence of external load (Shi et al., 2011). 

This problem is known as hydrogen embrittlement. However, the problems of hydrogen 

evolution and embrittlement are usually controlled by controlling the potential of the steel 

to be below the hydrogen evolution limit. 

The essential components of an impressed current cathodic protection system are an external 

DC source, an electrode (anode), wiring and monitoring system (reference electrode and 

voltmeter) to monitor the potential of steel, in addition to the reinforcement to be protected 

and concrete surrounding the steel (Gower and Windsor, 2000; Polder et al., 2014). The 

service life of the anode is very important and must be taken into account to provide the 

required current, resist deterioration and achieve protection to the reinforcement (Kepler et 

al., 2000; Pedeferri, 1996). Titanium mesh sheet coated with noble metal oxides (iridium, 

ruthenium, cobalt, etc.) is the most common type of anode (Pedeferri, 1996). The anode is 

normally pinned to the prepared concrete surface and a suitable cementations overlay is 

applied as shown in Figure 2.25. However, other materials offering ease of installation and 

cost efficiency have also been employed (Zhu et al., 2014). In recent years, due to its good 

chemical stability, carbon fibre has been successfully used as anode material in CP 

implementation for concrete structures (Lambert et al., 2015; Van Nguyen et al., 2012; Zhu 

et al., 2014).  
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Figure 2.25: A. Fixation of titanium mesh on the concrete surface with plastic fasteners, B. 

Applying of mortar overlay by projection after securing the anode (Araujo et al., 2013) 

As with the electrochemical treatments, CP can cause certain problems if it is uncontrolled 

or appropriate preventive measures are not taken. It may lead to an accumulation of alkali 

ions in the region of the steel reinforcement. It is therefore possible that increase alkalinity 

in concrete containing potentially reactive aggregates may be sufficient to aggravate or 

initiate alkali-silica reaction if the applied current densities are much higher than those 

typically used in practice (Sergi et al., 1991). However, this may occur with electrochemical 

chloride removal or electrochemical realkalization, but not cathodic protection (Bertolini et 

al., 2013). In addition, it has been suggested that the current density at the anode should be 

kept less than 100 mA/m2 to prevent the formation of chlorine gas /or acid at the anode 
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which can consume the anode and lead to deterioration of concrete around it (Bertolini et 

al., 1996). Moreover, Chang et al. (1999) have shown that bond-strength decreases with 

higher current density and polarization time. The reduction in bond-strength is attributed to 

the softening effects of concrete caused by the formation of soluble silicates near the steel 

resulting from the interaction of alkali hydroxides formed by cations (such as K+ and Na+ ) 

with calcium silicate hydrate in cement (Ali and Alsulaimani, 1993). However, these 

influences become considerable only in the long-run if the potential falls below -1100 mV 

vs SCE (Bertolini et al., 2013). In general, three factors must be taken into account when 

controlling CP system. Firstly, there must be sufficient current to overwhelm the anodic 

reactions and stop or severely reduce the corrosion rate. Secondly, the current must stay as 

low as possible to minimise the acidification around the anode and the attack of the anode 

for those that are consumed by the anodic reactions. Lastly, the steel should not exceed the 

hydrogen evolution potential, especially for pre-stressed steel to avoid hydrogen 

embrittlement (Chess and Broomfield, 2013). 

2.6.1.2 Sacrificial Anode System 

Using the impressed current technique, the driving voltage for the protective current comes 

from a DC power source. While, in the sacrificial anodic system, external power is not 

required to supply the current to stop corrosion, but instead the protected metal is made to 

be the cathode by connecting it to a more active metal, having a lower potential than the 

protected one. For instance, zinc with potential of -1100 mV versus (CSE) can be electrically 

connected to corroding steel with potential of -400 mV versus CSE (Torres-Acosta et al., 

2004). Because of their relative position in the electrochemical series of metals, a potential 

difference exists between them which cause a small electrical current to flow from the zinc 

through the concrete to the reinforcing steel, as explained in Figure 2.26, forcing a cathodic 

reaction to occur at the steel surface and creating hydroxyl ions that increases the pH, and 

its charge encourages the migration of chloride ions away from the reinforcement (Polder, 

1998). The zinc will corrode during the process while the reinforcing steel will be protected 

from corrosion. In this method, the sacrificial anode must be spontaneously anodic to the 

structure, that is, be more negative in the galvanic series for the given environment, while 

the impressed current anode may be more noble or more base than the protected structure 

because the power source forces it to act as an anode (Ashworth, 2010).  
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Figure 2.26:  Schematic illustration of sacrificial anode system for reinforced concrete, 

Byrne et al., 2016 

Thus, zinc, aluminium and magnesium or aluminum-zinc-indium (Al-Zn-In) are typical 

anode materials used to protect the steel (Byrne et al., 2016; Daily, 1999; Kepler et al., 2000). 

Zinc and its alloys is the most common anode used in galvanic anode cathodic protection 

systems for concrete structures. Aluminium and magnesium and their alloys are also used 

but less attractive for concrete applications as their oxides and corrosion products can attack 

the concrete.  

The main restriction of this method is that the driving voltage is low. It is only a few hundred 

millivolts, and gets smaller with actively corroding steel and may be inadequate to provide 

full cathodic protection in very high chloride conditions (Broomfield, 2000, 2007). 

Furthrmore, applying this techniqe in concrete requires a continuous humidity condition in 

order to keep the electric current flowing between the anode and the cathode (Araujo et al., 

2013). However, the low driving voltage may make it a safe option for protecting prestressed 

structures without the risk of hydrogen embrittlement. 

This system is often used on oil platforms for both concrete and steel structures below water 

(Broomfield, 2000), but the level of protection and current provided cannot be controlled. 

Thus, changes in the structure that can cause an increase in protection current demand may 

necessitate the installation of further anodes (Byrne et al., 2016). 

The anodes of this system can be installed in different ways. Figure 2.27 Shows the 

application of using thermal sprayed aluminium/zinc/indium for atmospherically exposed 
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reinforced concrete that has low concrete resistivity. While Figure 2.28 shows a galvanic 

zinc strip was applied for a building and can be also used for bridges. 

 

Figure 2.27: A sacrificial coating of Al-Zn-In to a reinforced concrete bridge pier, (Daily, 

1999). 

 

Figure 2.28: Zinc sheet anode applied to a concrete balcony, prior to overpainting, 

(Broomfield, 2000) 
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2.6.2 Cathodic Protection Criteria 

One of the most advantages using CP method to stop corrosion is that its effectiveness can 

be measured by a simple non-destructive measurement of the potential of the protected steel. 

Various criteria have been suggested to evaluate protection status against corrosion, and a 

combination of criteria may be used for a single structure. However, there are two acceptable 

criteria in CP performance appraisal. One relates to the instant-off potential (the absolute 

potential measured immediately when the CP system is switched off) of the reinforcement. 

The other one relates to the potential decay (depolarization) of the reinforcement (Chess and 

Broomfield, 2013; Cheung and Cao, 2013). The specifications in national and international 

standards for the criteria were principally established on the empirical evaluation of the data 

obtained from successfully operated CP cases (NACE SP0290, 2007). For example, 

Takewaka (1993) suggested that the corrosion of reinforced concrete structures can be 

stopped when the potential of rebar is set to be less than -600 mV with respect to 

Ag/AgCl/0.5KCl. More negative potentials in the range of -645 mV to -705 mV with respect 

to Ag/AgCl/0.5KCl have been also reported for chloride contaminated concrete (Shi et al., 

2011). Several authors pointed out that a more negative potential is required for immunity 

from corrosion, a value of -900 mV CSE is reported to be adequate (Robinson, 1975). While, 

the British standard (BS EN ISO 12696, 2012) specifies that the instant-off potential should 

be more negative than -720 vs Ag/AgCl/0.5KCl for any structure under CP. However, 

achievement of this level of potential over an entire structure is only practical if the entire 

structure suffers from active corrosion prior to the application of cathodic protection. 

Application of this criterion to areas of a structure which are not previously corroding may 

be unrealistic and may lead to excessive current provisions and significant overprotection 

due to the severe variation of the corrosion environment in concrete (Broomfield, 2007). 

A further requirement related to the instant-off potential for CP system operation is that to 

avoid hydrogen evolution at the steel surface, the potential should be kept at a low limit 

value of -1100 mV Ag/AgCl/0.5KCl for normal reinforcing steel and -900 mV with respect 

to Ag/AgCl/0.5KCl for high strength steel reinforcement which is used for pre-stressed 

structures (BS EN ISO 12696, 2012). 

Another most widely adopted performance criteria based on potential decay is the 100 mV 

depolarization criterion. The field evaluation have shown that the 100 mV negative shift in 



 

CHAPTER TWO                                                                                  LITERATURE REVIEW  

63 

 

structures potential stops all further signs of corrosion damage in catholically protected 

structures. In order to ensure that the protection is achieved and overprotection is avoided, 

and more generally to determine the performance of the CP system, this potential should 

decay (become less negative) by at least 100 mV from the instant-off potential over a period 

between 4 and 24 hours after the CP system is switched off (BS EN ISO 12696, 2012; NACE 

SP0290, 2007; Page and Sergi, 2000). Depolarization tests are often performed over 4 hours, 

and the current to the system is adjusted until the polarization drops 100 mV in that period. 

Figure 2.29 describes the concept of depolarization or potential decay. The potential decay 

measurement should be determined by switching off the CP system and monitoring the 

potential of reinforcing steel measured relative to a reference electrode. When the current is 

switched off, an immediate voltage drop that is the result of eliminating the IR-drop occurs. 

The true fully polarized potential of steel, termed the instant-off potential, is then obtained. 

The instant-off potential must be measured within a very short time, typically between 0.1 

and 1.0 second after interrupting the current. Then, the reinforcement is allowed to 

depolarize and the potential decay is measured after a period of time. 

 

Figure 2.29: Potential decay curve, (Araujo et al., 2013) 

2.6.3 Current Density for Cathodic Protection  

The amount of CP current density or potential of the reinforcement steel are the important 

factors that need to be designed to provide protection for the corroded reinforcement and to 

CP on 

CP off, instant-

off potential 
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ensure that the anode has the ability to supply a current across the affected structure at a 

reasonable DC output voltage (Kepler et al., 2000). The aim of the protection will not be 

achieved if the delivered current density to the protected reinforcing steel is not enough. 

Unfortunately, little information was available until some recent efforts (Chess and 

Broomfield, 2013; Xu and Yao, 2009).  

Adequate protection to the reinforcing steel in different conditions cannot be achieved by 

applying a fixed current density as stated in some early publications (Chess and Broomfield, 

2013). Due to a number of factors affecting corrosion rates, there is no fixed value of either 

the potential or the current density to be applied under CP system. Each case must be 

designed separately (Kepler et al., 2000). 

The current density required to maintain a metal surface cathodically protected must be not 

only high enough but also stay as low as possible to reduce the adverse effects at the cathode 

or on the anode. A previous work suggested that, for newly built concrete structures, a 

current density in the range of 1-2 mA/m2 on the rebars is sufficient for protection, while for 

the structures that have already suffered from reinforcement corrosion, a current density in 

the range of 5-20 mA/m2 is recommended (Bertolini et al., 2013). Higher practical CP 

current densities in the range of 30-50 mA/m2 were also suggested when severe 

environmental condition exists around the reinforcing bars (Carmona et al., 2016; Chess and 

Broomfield, 2013). Due to the complexity of environmental conditions, the specifications in 

national and international standards are still open to discussion in engineering practices for 

their accurate suitability. Moreover, little amount of information was found to help for the 

protection design.  

Some theoretical studies has been undertaken to describe the distribution of current in 

reinforced concrete CP system (Hassanein et al., 2002). However, they have been regarded 

insufficient because of the large variations, such as the resistivity of concrete and effect of 

orientation and density of reinforcing steel (Chess and Broomfield, 2013).  

Pastore et al. (1991) studied the current distribution in concrete structures using 

uncontaminated and chloride contaminated concrete slabs. The results showed that the use 

of the anodes distributed all over the surface of the structure and multi-layer net anodes on 
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zones with high concentration of rebars helps in solving to reasonable extent the problem of 

non-uniform protection. However, current distribution can remarkably vary due to the 

resistivity of concrete, which relates to the anode to reinforcing bar distance, relative 

humidity, chloride content in concrete, etc. 

Bertolini et al. (1993) used experimental test and modelling to study the current and potential 

distribution in uncontaminated and chloride contaminated concrete slabs using mixed metal 

oxide activated titanium mesh as anode. Considerable polarization was noticed in the study 

on the rebars of uncontaminated slabs, whereas the polarization was observed only on the 

bars close to the anode in the chloride contaminated slabs. In terms of current, the study 

demonstrates that the rebars closed to the anode got more than 90% of the total current both 

in absence and in presence of chlorides. They concluded that the penetration of cathodic 

protection over the depth of new concrete structures is greater than in already corroding 

ones. There is a wide range of potentials in which the cathodic protection of uncorroding 

structures can safely operate and its high throwing power permit rebars to be considerably 

polarized relatively far from the anode without overprotection those close to it. 

Kranc et al. (1997) investigated the CP distribution in partially submerged reinforced 

concrete columns by a combination of sacrificial anodes, Zinc alloy, placed below water and 

Zinc mesh above water up half-length. Computational and experimental program were used 

in the study. The columns were partially submerged, to quarter of its length, in 5% NaCl 

solution. The measurements indicate that the greater polarization has been associated with 

both of submerged portion and the surrounded with surface anode of the column. The rebars 

in concrete area surrounded by the surface anode received most of the protective current, 

followed by the submerged zone and then the areas above the level of surface anode. The 

model predictions showed reasonable agreement with these results.  

Hassanein et al. (2002) modelled the current distribution from a surface mounted anode to 

reinforcing steel in atmospherically exposed concrete using finite element method. The 

programme considers the effects of concrete resistivity, current density, geometry of an 

anode applied to the surface of concrete containing multiple layers of steel bars and vibration 

in the condition of bars. This research is only limited to the theoretical study. 
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Xu and Yao (2009) investigated by experimental investigation the current distribution in 

reinforced concrete CP system with and without chloride contaminated with a specific rebar 

arrangement, using carbon fibre reinforced cement (CFRC) composite material as the 

conductive overlay anode, activated titanium strip was embedded in the conductive mortar 

as primary anode. One mix was used in the investigation. The influences of initial corrosion 

state of steel, concrete resistivity and magnitude of impressed current density on the 

protection current distribution have been discussed. The uniformity of current worsens as 

the corrosion rate increases. The authors’ concluded that the current distribution in 

reinforced concrete with more than one layer of reinforcement placed at different cover 

depths is markedly influenced by concrete resistivity and magnitude of impressed current 

density has little effect on the current distribution when the corrosion rate of steel is 

relatively low. 

2.7 Summary 

Steel reinforcement corrosion has been recognised as the major cause for the premature 

deterioration of reinforced concrete structures worldwide (Ahmad, 2003). Previous 

extensive researches on the deterioration mechanisms have concluded that chloride plays 

the most significant role in the corrosion of the reinforcement in concrete (Buenfeld et al., 

1998; Kendell, 1995). Although, in recent decades, different technologies using chemical, 

mechanical and electrochemical methods have been developed to address the corrosion 

problem (Popoola et al., 2014; Verma et al., 2014), cathodic protection (CP) as an 

electrochemical method has been proved to be the most effective and widely applied to 

protect steel reinforcement in concrete from corrosion in aggressive environment. However, 

so far, quantitative specific information in national and international standards is still very 

limited, making the design and operation practice are primarily based on empirical 

assumptions and qualitative assessment.  

This research has setup two tasks: 

I. The CP performance appraisal is in general based on two criteria, they are the instant-off 

potential and potential decay. For example, the British standard (BS EN ISO 12696, 2012) 

specifies that the instant-off potential should be more negative than -720 vs 

Ag/AgCl/0.5KCl for any structure under CP. However, achievement of this level of 
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potential over an entire structure is only practical if the entire structure suffers from active 

corrosion prior to the application of cathodic protection. Application of this criterion to 

the reinforcement which are not yet in active corrosion states may unrealistically lead to 

excessive current giving and significant overprotection due to the severe variation of the 

corrosion environment in concrete (Broomfield, 2007). 

Another popular assessment for CP performance is based on potential decay, given the 

100 mV depolarization criterion, e.g., in order to ensure that the protection is achieved 

and overprotection is avoided, this potential should decay (become less negative) by at 

least 100 mV from the instant-off potential over a period between 4 and 24 hours after the 

CP system is switched off (BS EN ISO 12696, 2012; NACE SP0290, 2007; Page and 

Sergi, 2000). 

The amount of CP current density or potential of the reinforcement steel are the two 

important conditions needed to be controlled to provide required protection for the 

corroded reinforcement. The aim of the protection will not be achieved if the delivered 

current density to the protected reinforcing steel is not enough. Unfortunately, little 

information was available until some recent efforts (Chess and Broomfield, 2013; Xu and 

Yao, 2009). It has been concluded that adequate CP cannot be achieved by applying a 

fixed current density throughout the life span of concrete structures. Previous researches 

have suggested that for new built concrete structures a current density in the range of 1-2 

mA/m2 on the total surface area of the protected rebars can be applied, while for structures 

already suffered from reinforcement corrosion a current density in the range of 5-20 

mA/m2 were recommended (Bertolini et al., 2013). However, these definitions are still 

felt a bit loose for applications. 

In order to obtain further more detailed specific information for the CP design for chloride 

contaminated reinforced concrete structures, this study reports an experimental work on 

the effect of concrete chloride contamination degree on the corrosion evaluation 

parameters that are employed for reinforcement cathodic protection assessment. 

Specifically, the correlation between the chloride content and concrete resistivity with 

corrosion rate, and the effect of the applied CP current density on the parameters taken as 

the traditional CP criteria are investigated. It aims to identify more precise characteristic 
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relationships of the chloride content and concrete resistivity with the CP current and the 

instant-off potential requirements to provide sufficient protection. Ultimately, these 

experimental results can provide a direct guidance for the specification of the CP current 

density requirements for atmospherically exposed reinforced concrete structures at 

different levels of chloride contamination. 

Using constant current for CP is the most popular approach in practice, particularly for 

the structures exposed to atmospheric conditions. However, for submerged structures, the 

situation of the reinforcement is quite different, for which, constant current approach is 

efficient to provide adequate protection is still not very clear. To have a deep 

understanding for the question, an experimental investigation has also been conducted for 

reinforced concrete specimens protected by impressed electrical current of both constant 

current density and constant potentiostatically controlled potential, respectively. 

II. Concrete resistivity has been proved to be one of the most effective parameters that can 

be utilized to estimate and control the corrosion of reinforcing steel in concrete 

(Hornbostel et al., 2013), particularly when steel corrosion is caused by chloride attack 

(Morris et al., 2004). 

The most commonly used technique for in situ site testing is the Wenner 4-probe 

technique (Layssi et al., 2015; Morris et al., 1996; Stanish et al., 1997). One of the 

drawbacks of this technique is that the conduction paths are not accurately known. More 

accurate resistivity values are obtained using external plate electrodes enabling the current 

to traverse the full area of the specimen (Bertolini et al., 2013; Newlands et al., 2008; 

Polder, 2001; Sengul, 2014; Spragg et al., 2011; Van Noort et al., 2016). Nevertheless, an 

accurate reading can be a difficult due to the contact between the electrode and the 

concrete, particularly when measurements are employed on unsaturated specimens 

(Villagrán Zaccardi and Di Maio, 2014). The most direct and reliable mode of contact is 

to embed electrodes into the fresh concrete. Then resistivity measurements can be 

performed on the concrete specimen at various moisture states without disrupting the 

moisture content of the specimen (Villagrán Zaccardi and Di Maio, 2014; Whiting and 

Nagi, 2003). Electrodes can be of various types. Brass is the most commonly used 

material, but steel is also used. They can be meshes or plates. In the case of embedded 
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electrodes, wires or thin rods normally are used. In these cases, however, the flow path 

may not be defined well enough to calculate a true resistivity (Whiting and Nagi, 2003). 

Previous researches have suggested the use of both a low frequency, such as 60 Hz 

(Chacko et al., 2007), 107 Hz (Osterminski et al., 2012), 128 Hz (Newlands et al., 2008) 

and a high frequency, such as 1000 Hz (Whittington et al., 1981) and 7500 Hz (Banthia 

et al., 1992). Thus, it is hard to define a specific optimal frequency due to the variation of 

the conditions of concrete.  

In this study, internal and external electrodes were compared in order to understand effect 

of the electrodes configuration. Carbon fibre (CF) sheets were employed as the internal 

electrodes and CF and copper sheets were used as external electrodes. Furthermore, 

frequency of applied current was varied from low to high, to identify the most suitable 

frequency that can be utilized for stable and reliable results. Optimised electrodes 

configuration and the current frequency were then used for all the series of the 

experimental tests in the present study. 
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CHAPTER 3 RESEARCH METHODOLOGY AND PROGRAMME 

3.1 Research Methodology 

A series of electrical and electrochemical measurements on plain and reinforced concrete 

specimens were performed to achieve the purpose of the research work. 

The present experimental work was carried out in two parts. The first part investigates the 

influence of the experimental methods on electrical resistivity measurement. It also studies 

some of major influencing factors on concrete electrical resistivity that haven’t been fully 

investigated before. The second part reports an experimental study to investigate the effect 

of chloride content on cathodically protected reinforced concrete structures exposed to 

various exposure conditions and identify the most convenient criteria for the evaluation of 

CP performance under such environments. 

The following sections outline the research programme and describe the details of the 

material, test specimens, experimental setup and measurements for both parts.  

3.2 Materials 

Locally produced Portland limestone cement was supplied by Travis Perkins Trading Co. 

Ltd, CEM II/A-LL conforming to the British standard BS EN 197-1: 2011 was used in this 

study. The chemical composition and some characteristics of the cement are given in Table 

3.1. Concrete specimens were prepared following the method recommended by the British 

Building Research Establishment (BRE) (Teychenné et al., 1997) to give a minimum 28 

days compressive strength of 35 N/mm2 for the standard mix in this work (water to cement 

ratio of 0.4). The concrete mixture used had a cement content of 390 kg/m3. Natural sand of 

the maximum size of 4.75 mm and a relative density of 2.47 was used for the fine aggregate 

at 580 kg/m3. Crushed limestone of maximum size of 10 mm and a specific gravity of 2.49 

was used at 1125 kg/m3 as coarse aggregate. The mix quantities for the solid materials used 

were kept constant for all batches in the study. 
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Table 3.1: Chemical composition of the cement 

Element Percentage 

(%) 

Element Percentage 

(%) 

SiO2 16.19 SO3 3.19 

Al2O3 4.19 MgO 0.86 

Fe2O3  2.75  Na2O 0.14 

CaO 65.0 K2O 0.51 

Loss on ignition (%) 7.23 

Specific surface area 

(m2/kg) 

447 

Limestone (%) 15 

Alkali content (%) 0.72 

 

3.3 Part I - Concrete Resistivity 

In this part, at first the difference of the resistivity measurements using internal and external 

electrodes was conducted, respectively. It also investigated the effect of the applied current 

of different frequencies from low to high to identify the most suitable frequency that can be 

utilized for stable and reliable results. Thereafter, with the determined optimised electrode 

configuration and the current frequency, a series of resistivity measurements were conducted 

on all concrete specimens for the effects of the major influencing factors affecting concrete 

resistivity. Compressive strength, porosity and free & total chloride were also measured in 

this part of study. 

 

3.3.1 Concrete Specimens  

Concrete cubes of the size of 100mm x 100mm x 100mm with two embedded electrodes 

made of carbon fibre (CF) sheets were cast as shown in Figure 3.1. CF sheets are flexible 

materials, so they are glued on flat surface of a perforated plastic mesh plate to keep it 

straight. Thereafter, the two of the CF electrodes were placed upright with a certain parallel 

distance to each other in concrete mould in casting. For comparison, external electrodes test 

method using both CF sheets and copper plates electrodes were also conducted on other 



  

CHAPTER THREE                          RESEARCH METHODOLOGY AND PROGRAMME 

 

72 

 

plain concrete cubes made of the same mixture and of the same size, 100mm x 100mm x 

100mm. 

The concrete mixes were prepared to have four different chloride contents by adding NaCl 

in the mix water. The added chloride contents were 0, 1.5, 3 and 4.5 % of the cement mass, 

respectively. Three water to cement ratios were used for each chloride content mix, they 

were 0.4, 0.5 and 0.6, respectively.  

 

(a) Sample dimension 

 

 
 

(b) Experimental sample 

Figure 3.1: Concrete specimens with internal electrodes of CF sheets for resistivity 

measurement 
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The components of concrete were mixed together followed the British standard, BS 1881-

125:2013. Prior to mixing, all the required constituents were prepared. The saturated surface 

dry coarse and fine aggregates and the cement of each mix were placed in a plastic container 

and manually mixed for approximately two minutes. Thereafter, the tap water with a 

specified chloride content was added and the mixture was continuously mixed manually 

again for other three minutes until a uniform consistency was achieved. Prior to casting, all 

moulds inner surfaces were oiled. Fresh concrete was then poured in by two layers, 5 cm 

each, and the concrete was compacted using a vibrating table for a duration of 15-30 

seconds. After then, all the casted specimens were left to set in their moulds and covered by 

plastic sheet for two days at lab temperature and then de-moulded.  

In the next, all the casted concrete samples were cured by submerging in the water of the 

same chloride content as that used for their mixes for 28 days before starting tests. For each 

mix, three specimens were prepared for each property measured, and the final result took 

the average of the three specimens.  

A total of 117 cubic specimens of the size of 100mm x 100mm x 100 mm were prepared at 

this stage were divided into three groups, one group of 72 specimens was for resistivity 

measurements, the other group of 9 chloride free specimens was used to test the compressive 

strength of different water to cement ratios, and last group of 36 specimens was for the 

measurement of porosity and the free & total chloride analysis. Figure 3.2 shows a summary 

of the plan for this part. 
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Figure 3.2: Research programme chart of part I  
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3.3.2 Experimental Tests 

3.3.3 Compressive Strength 

To confirm the quality of the made concrete, compressive strength was tested using triplicate 

chloride free concrete cubes according to BS EN 12390-3:2009. 

3.3.4 Absolute Porosity 

The absolute porosity of concrete specimens was worked out in terms of the saturated 

surface-dry mass at the end of curing and the mass of the oven-dried at 100±5°C until 

achieving a constant weight. The absolute porosity was calculated using the equation below 

(Arya et al., 2014): 

Absolut porosity =
(Ws−Wd)/ρ

V
× 100                                                                                       (3.1) 

 

where, ρ is density of water, V is the volume of sample, Wd is the oven-dry mass of the 

specimen and Ws is the saturated surface-dry mass of the specimen. 

3.3.5 Chloride Analysis 

In this work, the actual chloride content in the specimens after wet curing has been measured 

in terms of the water and acid-soluble chlorides following American Society for Testing and 

Materials (ASTM) standards. The results provide information of the free and total chloride 

contents. 

There is no standardized test method in the UK for determining the water-soluble chlorides 

in concrete, although BS EN 1744-1 describes a method for testing aggregates and BS EN 

14629 for the determination of the acid-soluble chlorides content of hardened concrete. 

Contrary to UK practice, American practice places limits on the water soluble chlorides in 

concrete, for both the constituent materials and the hardened concrete, as it is considered 

that only these chlorides can contribute, under normal circumstances, to reinforcement 

corrosion (Dhir et al., 1990; Xi and Bažant, 1999) and bound chlorides have limited 

contributions to corrosion initiation (Shakouri et al., 2017). 
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Water-soluble chlorides are commonly referred to the free chlorides in the cementitious 

systems, while acid-soluble chlorides associates to both the free and bound chlorides and 

defined as the total chloride (Angst et al., 2011; Ann and Song, 2007; Mohammed and 

Hamada, 2003; Shakouri et al., 2017). 

The procedure typically involves the extraction of chlorides from a sample of powdered 

concrete using dilute with deionized water for the free chloride and nitric acid for the total 

chloride followed by quantification using potentiometric titration as summarized below in 

accordance to ASTM C1218/C1218M (2015) and ASTM C1152/C1152M (2012). 

Dry drilling method was used to collect the concrete powder from boreholes on the concrete 

surface using a rotary power drill. Three cylindrical holes of the size 12 x100 mm (diameter 

x length) evenly distributed along the central line of a cubic specimens (100x100x100) mm3 

were drilled. The concrete sample obtained from the three cylindrical holes was at least 45g, 

and mixed together to represent each mixture. Porcelain mortar and pestle were used to crush 

any particles that greater than 850 μm (ASTM C1152/C1152M, 2012). The collected powder 

was then transferred to a small sealed plastic bag and labelled for the analytical chemistry 

procedure to measure free and total chloride 

3.3.5.1 Total Chloride Test Procedure 

There were three steps in the process to measure the concrete chloride content: they are 

Digestion, filtration and titration. Digestion generally includes mixing of 10±0.01 g of 

concrete powder with 75 ml deionized water and 25 ml of dilute (1+1) nitric acid in a 250 

ml beaker to dissolve the solid sample. Magnetic stirring bar was added in the beaker for 

mixing the solution over a stirrer during this step to break up any lumps of sample. 3 drops 

of methyl orange indicator was added to the beaker to insure the acidity of solution. Pink 

colored must be observed during adding the indicator, otherwise, more nitric acid is required. 

After then, a watch glass was placed to cover the beaker, and the covered beaker was heated 

rapidly to boiling and removed from hot plate. Figure 3.3 shows the solution after digestion 

process, but it has not been heated yet. This process was performed inside fume cupboard 

for safety. 
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Figure 3.3: The prepared solution for the total chloride analysis after digestion process 

The second step is filtration to remove any undissolved solids. In this process, the boiled 

solution was filtered through coarse-textured filter paper using suction as shown in Figure 

3.4. The beaker and the filter paper were rinsed twice with small portions of water. The 

filtrate was transferred to a 250 ml beaker and rinsed the flask once with water. The filtrate 

was left to cool to room temperature before using it for the next final stage. 

 

 

Figure 3.4: Filtration process 
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Finally, potentiometric titration is to use a standard solution of silver nitrate (0.05 N AgNO3) 

as titrant to determine chloride content. Potentiometric titrations involves the measurement 

of the potential of an indicator electrode with respect to a reference electrode as a function 

of titrant volume. A chloride combination electrode model HI-4107 which has the reference 

built in, and potentiometer model HI-5522 made by HANNA instruments were used for the 

potential reading of the solution during titration. Figure 3.5 shows the apparatus for 

potentiometric titration, it illustrates a beaker containing solution was placed on a magnetic 

stirrer and a magnetic stirring bar was added in the beaker for mixing during titration. The 

electrodes were immersed into the solution and connected to the potential meter. The 

delivery tip of the burette filled to the zero mark with standardized 0.05 N AgNO3 was 

placed above the sample solution. 

 

 

Figure 3.5: Titration test setup 
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Figure 3.6: The analysed solution for the total chloride after titration 

 

To start with the titration, silver nitrate (0.05 N AgNO3) was gradually added to the solution 

and the burette readings in ml with the corresponding measured electrodes potential readings 

in mV were recorded. The silver nitrate was added generally in big increments at the outset. 

Later the increment became smaller and smaller in the way approaching to the equivalent 

point for a steady small observable change in the potential reading. Once beyond the 

equivalence point, potential change will decrease. At least three readings beyond the 

equivalent point were determined to obtain the titration curve. Figure 3.6 shows the analysed 

solution after titration. The equivalent point can be determined directly from the titration 

curve, a direct plot of potential against the added silver nitrate volume as shown in Figure 

3.7. The equivalent point is the inflection point of the curve. To obtain the accurate 

equivalence point, second derivative curves, as shown in Figure 3.8, were plotted for the 

change of potential-change (∆E)2 at per volume change of the silver nitrate (∆V)2, i.e. the 

slope of the first derivative curve (Checchetti and Lanzo, 2015). The slope was plotted 

against the corresponding volume of the silver nitrate. The data changes sign from + to  ̶  at 

the equivalence point. 
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Figure 3.7: Typical titration curve 

 

Figure 3.8: Second derivative curve 

At last, the percent of chloride by dry mass of concrete to the nearest 0.001 % was calculated 

according to the standard (ASTM C1152/C1152M, 2012): 

% C1, by mass of concrete =
3.545×𝑉×𝑁

𝑊
                                                                             (3.2) 

where, 

V = volume of silver nitrate at the equivalence point, ml 

N = normality of silver nitrate, 0.05. 

W = mass of concrete sample, 10 g. 
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For calculating chloride as percentage of the cement mass, the following equation was used. 

% Cl, by mass of cement =
% 𝐶1,𝑏𝑦 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 ×100

𝑃
                                                     (3.3) 

where P is the cement percentage by mass of concrete samples. 

3.3.5.2 Free Chloride Test Procedure 

Same procedure of the total chloride analysis was conducted for the free chloride with the 

exception of digestion. The digestion step for the free chloride was slightly different and 

involved mixing the concrete powder with 50 ml of deionized water and boiled for 5 

minutes. Then after, covered with a watch glass, samples were let to stand for 24 hours 

before filtered by suction through a fine-texture filter paper. Later, the filtrate was 

transferred to a 250 ml beaker and added in 3 ml of (1:1) nitric acid and hydrogen peroxide 

(30 % solution). The beaker was covered using a watch glass and allowed to stand for 1 to 

2 minutes. The covered beaker was heated rapidly to boiling and removed from the hot plate. 

At last, followed the proceeded for the total chloride test described before to determine the 

free chloride. Figure 3.9 shows some photographs for the free chloride solution during the 

process of analysis 

 

(a) Powdered concrete sample mixed with water 
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(b) The prepared solution after filtration and ready for titration 

 

 

(c) The free chloride sample after titration  

 

Figure 3.9: Photographs of some of the steps during the analysis of free chloride 
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3.3.6 Electrical Resistivity of Concrete 

Concrete electrical resistivity can be obtained by applying a voltage on concrete using two 

electrodes attached to the ends of a uniform cross-section specimen and measuring the 

response current.  

Both internal and external electrode methods were used to study the effect of configuration, 

respectively. CF sheets were employed as the internal electrodes and CF and copper sheets 

were used as external electrodes. Figures 3.10 and 3.11 illustrate the test setup for the two 

methods. A function generator model TG210 supplied by Thurlby Thandar Instruments 

(TTI) in the UK was employed to generate a sine wave at desired frequency and amplitude. 

The two terminals of the function generator were connected to the electrodes. A voltmeter 

was connected in parallel with the function generator to measure the applied voltage or 

amplitude, while an ammeter was connected in series with the tested specimen to measure 

the passing current. For the external method, two pieces of wet sponge soaked with 1M 

sodium sulfate were put between the concrete surfaces and the copper plate electrodes for 

full contact to lower the potential of extra electrical resistivity at the interfaces (Newlands 

et al., 2008). A G-clamp was applied on two pieces of 100mm×100mm×24mm plywood to 

produce a uniform holding pressure.  
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                         (a) Schematic diagram of experimental setup 

 

 

 

(b) Photograph of testing setup 

 

Figure 3.10: Electrical resistivity testing setup for concrete specimens with internal 

electrodes 
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(a) Schematic diagram of experimental setup 

 

 

 

(b) Photograph of experimental setup using external electrodes of copper sheets 
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(c) Photograph of experimental setup using external electrodes of CF sheets 

 

Figure 3.11: Electrical resistivity measurement setup for concrete specimens with external 

electrodes 

 

Based on the measurement, the electrical resistivity of the concrete specimens can be worked 

out in terms of the Ohm’s law below (Hornbostel et al., 2013),  

R =
V amplitude

I amplitude
          (3.4) 

and 

ρ = R
A

L
                     (3.5), 

where R is electrical resistance, V is the applied voltage, I is the measured current, ρ is 

electrical resistivity, A is the cross-sectional area of the electrode perpendicular to the 

current flow and L is the distance between the two electrodes. 

In the test, fully saturated samples were measured at first. Later, to obtain the condition of 

different and uniformly distributed water contents, the 100 mm cubes of different chloride 

contents were cut into small cubes of 50 mm nominal dimension using cutting machine with 

a diamond saw. The downsized samples, which will shorten the time required to achieve the 

equilibrium when the specimens have uniform moisture distribution under a certain 



  

CHAPTER THREE                          RESEARCH METHODOLOGY AND PROGRAMME 

 

87 

 

environmental condition, were placed in an environmental chamber of three controlled 

relative humidities, which were 35%, 60% and 80%, respectively under a constant 

temperature of 21°C for sufficient time until a stable weight observed. Figure 3.12 shows 

the environmental chamber used. 

 

 

 

Figure 3.12: Photographs of (a) the resistivity specimens in a humidity chamber (b) the 

humidity chamber used to control the humidity and temperature 

(a) 

(b) 
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The water content of specimens was evaluated by weighing them. A uniform water content 

distribution was assumed achieved when 24 h variations in mass is less than 0.01g (Villagrán 

Zaccardi & Di Maio, 2014). 

After the measurement of their electrical resistivity at different water contents, all these 

samples at last were put in an oven (100±5°C) until reached a stable dry condition. Then 

they were measured again for their electrical resistivity. The actual water content for each 

condition was measured using the weighing method. 

The influence of applied AC Frequency on electrical resistivity measurement was evaluated 

in the range of 1 Hz to 10000 Hz. In theory, the most suitable frequency should produce the 

lowest resistance (Katwan, 1988). The influence of the magnitude of the applied voltage has 

also been investigated in a range of 1~6 V in an interval of 1 V. based on the study, the 

identified optimum frequency, voltage, electrode material and configuration were used for 

all the tests in this study.  

3.4 Part II - Cathodic Protection 

In this part, the experimental work was designed to investigate the effect of CP application 

on corrosion state of the steel reinforcement in the concrete exposed to different water and 

chloride conditions. Important parameters in the design of CP system such as the exposure 

conditions, state of the steel, concrete resistivity and design criteria were evaluated in order 

to provide an optimal protection of reinforced concrete structures.  

 

3.4.1 Specimens Design 

Reinforced concrete specimens of 150x90x93 mm3 illustrated in Figure 3.13 were prepared 

to investigate the cathodic protection system. These specimens were cast using wooden 

moulds specially prepared. Three rebars of 10 mm in diameter with a net exposed surface 

area of 3×π×10 mm×73 mm = 6880 mm2 were used as reinforcing steel. The reinforcing 

bars were fixed in their designated position by mean of making holes in the moulds as shown 

in Figure 3.14. 

 



  

CHAPTER THREE                          RESEARCH METHODOLOGY AND PROGRAMME 

 

89 

 

 

 
 

(a) The casted reinforced specimen 

 

 

 

(b) Top view 

 

 

 

(c) Front view 

Figure 3.13: The specimen used for the measurement of the electrochemical behaviour of 

the rebar under CP, size unit is in mm 

 

Copper wire 

for electrical 

connection 

150 

45 25 20 

CF 

sheet 

Rebar, 

φ10mm 

90 

50 

50 

25 

25 

Epoxy 

resin 

Epoxy 

resin 

73 

10 

10 

Rebar 

93 

90 

CF sheet 



  

CHAPTER THREE                          RESEARCH METHODOLOGY AND PROGRAMME 

 

90 

 

 

 

Figure 3.14: Wooden mould for casting CP specimens 

 

3.4.2 Reinforcing Bars 

All the surfaces of the reinforcing steel bars were cleaned at first using wire brush and power 

drill to remove rust on surfaces. Later, a hole of 3 mm in diameter and 5 mm in length was 

drilled at one end of each steel bar. After then the drilled end was heated prior to soldering 

an external copper wires to ensure a strong bond between the solder and the bar for better 

electrical connection. Before casting, both ends of all steel bars were coated using epoxy 

resin to reduce edge effect and avoid corrosion, so that only an effective length of 73 mm in 

the middle was exposed to the concrete environment. Figure 3.15 shows a typical steel bar 

used in the corrosion electrochemical measurements and the equipment used for cleaning 

and soldering. 

After casting, all the parts of steel bars, which were exposed to atmosphere, were coated 

again using epoxy resin to increase the protection from corrosion. The three bars of each 

individual concrete specimen were electrically isolated from each other during casting the 

concrete, after casting they are connected together using external copper wire to make all 

bars electrically in contact. 



  

CHAPTER THREE                          RESEARCH METHODOLOGY AND PROGRAMME 

 

91 

 

 

 

 

 

 

(a) Cleaning tools 

 

 

 

(b) Soldering tools 

  

 

(c) Typical steel rebar used in the study 

 

Figure 3.15: Photographs of the steel bar prepared for corrosion measurements and 

equipment used 
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3.4.3 Anode Material  

A plain woven carbon fibre (CF) fabric sheet of specific area weight 375 g/m2 as shown in 

Figure 3.16, supplied by the East Coast Fibreglass Supplies in the UK, was used for the 

anode. 

 

Figure 3.16: Carbon fibre sheet anode 

 

3.4.4 Reinforced Concrete Specimens 

Applied mineral oil on all the internal faces of the moulds using a brush. Put the moulds on 

a vibration table. Filled the concrete mix into the moulds by two layers. Each layer of 

approximate 35mm in depth was given sufficient vibration time for a duration of 30 seconds 

to reach full compaction. After that, a layer of CF sheet was embedded in each specimen to 

represent the anode. The layer of the anode was then covered by 20mm thick of concrete 

and compacted on the vibrating table. The area of the embedded anode was 144x93 mm2. 

About 30 mm of the CF sheet extends out of the specimens for electrical connection. Upon 

completion of compaction, the specimens were covered with nylon sheet to minimize 

evaporation during 48 hrs. After 48hrs of casting, the specimens were demoulded and moved 

in water of the same chloride concentration as their respective mix water for wet curing up 

to 28 days from the time of the completion of casting. The specimens prepared are shown in 

Figure 3.17.  
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Figure 3.17: Photograph of the specimens used in the study of part II 

 

3.4.5 Experimental Procedure 

Figure 3.18 illustrates the planned experimental programme in this part. Similar as that for 

the mixtures used for electrical resistivity test in part I, different concentrations of chloride 

as pure NaCl salt of 0, 1, 2, 3.5 and 5% of the cement mass, respectively, were added into 

the mix water to prepare the specimens with different chloride contents and create various 

environment around the rebars. All the concrete mixes in this part of research had a constant 

water to cement ratio of 0.4 to meet the strength requirement for most of the normal concrete 

structures. The achieved 28 days compressive strength was 38 N/mm2. 

For the planned experimental programme, 40 reinforced concrete specimens were made, 

they were divided into different groups and subjected to various environment. Three 

different environmental conditions, namely air exposed, fully and partially submerged in 

salty water, were studied for the weather conditional influences on the design of CP system 
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and its performance. These conditions are proposed to simulate the weather in the practice 

for different constructions which may have a various effect on the design of CP system. 

 

 

 

Figure 3.18: Research programme chart of part II  
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After 28 days of curing, a group of ten specimens (two for each chloride content) were 

exposed to the atmosphere in the lab of relative humidity of 50±5% and a temperature of 

20±3°C until they reached a stable weight before conducting the electrochemical 

measurement to represent the air exposed concrete specimens. 

A second group of 20 specimens were fully submerged in salty water of the same 

percentages of NaCl as that added in the concrete mix water for two weeks to ensure full 

saturation before performing the desired tests. The specimens of this group were divided 

into two groups. Each group was tested using a different technique for the operation of CP, 

constant CP current and constant CP potential.  

The last group of another 10 specimens were partially submerged in salty water of the same 

percentages of NaCl as that added in the concrete mix water for two weeks before conducting 

the planned measurements to represent the exposure condition of partially submerged 

concrete specimens.      

In addition to the reinforced concrete specimens, 40 non-reinforced concrete cubes with two 

embedded CF sheets, which have the size of 100 mm×100 mm×70 mm in Height x width x 

Depth as shown in Figure 3.19, were cut to the size from the casted cubes prepared for 

concrete resistivity measurement using the same mixtures and the curing procedure as that 

of the reinforced concrete specimens described above. The distance between the two 

electrodes was 55 mm, which were held in the upright position using two perforated plastic 

plates.  

To obtain the accurate free and total chloride contents in the specimens after the used fully 

wet curing approach, other ten concrete specimens of all the same mixtures (two specimens 

for each designed chloride content) with the size of 100×100×100 mm3 and cured under the 

same conditions were analysed using potentiometric titration method described in section 

3.3.5. 
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(a) Sample prepared 

 

 

                                                     (b) Sample illustration 

 

Figure 3.19: Concrete specimens details used for electrical resistivity measurement of   

Part II 
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3.4.6 Measurements  

3.4.6.1 Corrosion Potential 

The corrosion potential of the rebars in the reinforced concrete specimens after the designed 

exposure was measured at first following the ASTM C876 (2015) before CP implementation 

for assessing the probability of corrosion. The experimental setup for the reinforced concrete 

specimens of the air exposed is shown in Figure 3.20. A silver/silver chloride 

(Ag/AgCl/0.5M KCl) half-cell made by SILVION Ltd in the UK was used as the reference 

electrode. According to the manufacturer, the reading of this reference electrode is 

approximately equal to +65 mV vs saturated copper sulphate electrode (CSE). A wet sponge 

soaked by sodium sulphate (NaSO4) solution was placed between the reference electrode 

and the top surface of the concrete to provide ionic conduction (Montemor et al., 2000) and 

to improve the electric conductivity between the reference electrode and concrete (Medeiros 

et al., 2017). The potential difference between the rebars and the reference electrode was 

measured using a high impedance digital voltmeter manufactured by FLUKE Corporation 

in the USA and was of a 0.1 mV resolution. The reinforcing steel was connected to the 

positive terminal of the voltmeter, while the reference electrode to the positive terminal. 

Based on the measured values of corrosion potential, the severity of corrosion was 

determined. 
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(a) Test setup 

 

 

           (b) Schematic drawing  

 

Figure 3.20: Experimental setup for determination of reinforcement corrosion potential   

for the concrete specimens of the air exposed condition 

 

For the fully and partially submerged exposure experiments, the porous part of the reference 

electrode was immerged in water during the measurement of corrosion potential as shown 

in Figure 3.21 (a and b). 
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(a) Submerged exposure condition 

 

 

(b) Partially submerged exposure condition 

 

Figure 3.21: Experimental setup for determination of reinforcement corrosion potential for 

the concrete specimens of the submerged and partially submerged exposure conditions 
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2013). The linear polarization method implemented, as shown in Figures 3.22-3.24, is a 

three-electrode technique, where the potential of the three reinforcing bars being collected 

together through the soldered wires, and the corrosion rate of the three rebars was measured 

in terms of the average current density, icorr, on their surfaces. The corrosion cell setup 

consists of a silver/silver chloride (Ag/AgCl/0.5M KCl) electrode placed on the concrete 

surface which was connected to the reference electrode terminal of the potentiostat for 

potential monitoring, the rebars were connected to the working electrode terminal, and the 

CF sheet was connected to the counter electrode terminal. The setup forms an electrical 

circuit. The potentiostat works as a DC power supplier, which controls the potential of the 

rebars in concrete at a fixed value in spite of environmental condition change during the test 

period and provides a voltage between the rebars and CF sheet. 
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(a) Photograph of polarization resistance testing setup 

 

 

(b) Schematic drawing of polarization resistance test setup 

 

Figure 3.22: Polarization resistance test setup for the air exposed reinforced concrete 

specimens 
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Figure 3.23: Polarization resistance test setup for the submerged reinforced concrete 

specimens 

 

 

 

Figure 3.24: Polarization resistance test setup for the partially submerged reinforced 

concrete specimens 
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A small potential shift, ΔE, was applied on the existing open circuit potential, Ecorr, of rebars 

from -20 mV to +20 mV (Kupwade-Patil and Allouche, 2012; Sathiyanarayanan et al., 2006) 

at a scan rate of 0.125 mV/s using a computer controlled Gamry potentiostat (Model 1000E). 

The IR drop was automatically compensated by the programmed potentiostat.  

The passing current between the rebars and the CF sheet was monitored. For a small 

perturbation on the open-circuit potential, there is a linear relationship between the potential 

variation and corresponding current change. The change of applied voltage ΔE was plotted 

against the corresponding change of the measured current Δi per unit area of electrode. The 

polarization resistance, Rp, was then determined according to the slope of the plot the curve 

plotted at the point of zero current as shown in Figure 3.25 (Pradhan, 2014) .  

 

Figure 3.25: Schematic illustration of linear polarization curve for the measurement of 

polarization resistance, Rp (Pradhan, 2014). 

This method was applied for all the specimens for the sake of comparison (Huang et al., 

1996; Pradhan, 2014). The corrosion current was then determined using the Stern-Geary 

equation which shows there is an inverse relation between the corrosion current and the 

polarization resistance, as shown below. 
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𝐼𝑐𝑜𝑟𝑟 =
𝛽𝑎∗𝛽𝑐

2.3(𝛽𝑎+𝛽𝑐)
 

∆𝑖

∆𝐸
                                                                                                           (3.6) 

Then, 

𝐼𝑐𝑜𝑟𝑟 =
𝐵

𝑅𝑝
                                                                                                                         (3.7),   

                                    

where, 

βa and βc are the anodic and cathodic Tafel constants 

B: a constant in mV which equals to ( βa*βc / 2.3 (βa+βc)) 

Rp: the polarization resistance in Ω (ΔE / Δi) at i=0 

I corr: is the corrosion current in mA 

 

A value of 26 mV was used for the constant B for the chloride contaminated specimens, 

while 52 mV was used for the chloride free specimens (Martínez and Andrade, 2008;  Morris 

et al., 2002; Qiao et al., 2016). 

The corrosion rate, icorr , in (mA/m2) was determined in terms of the Eq. (3.8) (Zafeiropoulou 

et al., 2013), where A was the total exposure surface area of all the three rebars in a specimen. 

𝑖𝑐𝑜𝑟𝑟 =
𝐼𝑐𝑜𝑟𝑟

𝐴
                                                                                                                         (3.8) 

 

3.4.6.3 Concrete Resistivity  

Concrete electrical resistivity was measured using the two-electrode specimens (Figure 

3.10). A sinewave alternating current of 3000 mV amplitude and a frequency of 10 kHz was 

applied across the two parallel electrodes. The electrical resistivity of the concrete was then 

calculated as described in section 3.3.6. 

Internal configuration for the electrodes and a frequency of 10 kHz have been chosen based 

on the obtained results during the experiments of part I as low values of resistance were 

achieved indicating the suitable frequency and configuration that can be used in this part of 

study.  
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3.4.6.4 Operating Period of CP 

In order to decide the proper operation time for the CP test, at first, the variation of the 

instant-off potential of reinforcements with different protection time was measured for the 

reinforcement in the air exposed specimens. Three different current densities of 10, 20 and 

30 mA/m2 were adopted for different activation periods of 10 minutes, 30 minutes, 1 hour, 

3 hours, 6 hours, 12 hours and 24 hours. Additionally, the current density of 20 mA/m2 was 

applied for a longer period of 5 days. The instant-off potential values were recorded at these 

activation periods. The suitable operation period time was identified when a steady state of 

instant-off potential achieved. 

3.4.6.5  Cathodic Protection Test 

As stated in the experimental programme, three exposure conditions were designed for the 

implementation of CP in the study. Details of the experimental setup and procedure for each 

of the exposue conditions are presented below. 

  

i. Air Exposed Condition 

Galvanostatic polarization technique was addopted to apply ten different CP current 

densities on the rebars of each specimen. They were 5, 10, 15, 20, 25, 35, 45, 55, 65, and 75 

mA/m2, respectively, in terms of the total surface area of rebars. Ten specimens (two for 

each chloride content) were connected in series in each test at the same time as shown in 

Figure 3.26. Silver/silver chloride (Ag/AgCl/0.5KCl) half cells were used for the reference 

electrodes. Multi-channel data logger with 10 Megaohm input impedance and 0.1 mV 

resolution was used for the collection of all potential readings.  
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(a) Photograph of CP experimental arrangement  

 

 
 

                                   (b) Electrical schematic of wiring arrangement 

 

Figure 3.26: Experimental arrangement for air exposed CP test 
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Before applying CP current, the free potential of the rebars was measured. Each test had a 

certain CP current density applied for 24 hours, which was believed and confirmed long 

enough to achieve a steady state for the polarization of rebars, and afterward the current was 

switched off for more than one day to ensure a sufficient depolarization of the rebars. The 

potential of rebars was continuously recorded from the start of CP implementation and until 

4 hours after the interruption of the CP current (4 hours depolarization). Based on the 

recorded data, the instant-off potential, IR drop, and four-hour potential decay were 

obtained. Figure 3.27 shows the cycle of the application of the CP current densities. 

 

 

 

Figure 3.27: Illustration for the CP current implementation for the air exposed specimens 
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Three different levels of constant current densities using galvanostatic polarization 
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group. They were equal or less than the measured corrosion rate. The setup of the experiment 

used is illustrated in Figure 3.28. The rebars were connected to the working electrode of the 
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was dipped in the solution and connected to the reference electrode lead of the galvanostat. 

Each level of CP current densities was applied for 5 days and the potential of rebars was 
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was switched-off and the depolarization was monitored using data logger for 24 hours to 

evaluate the performance of CP. Instant-off potential was measured at 1 minute after the CP 

was switched off. 

 

 

 

Figure 3.28: Expernintal setup for the fully submerged exposure CP test 

 

The potential differences between the instant-off potential and the potential measured at 4 

and 24 hours after switching off the CP current were also measured to be used to evaluate 

the efficiency of PC protection (Carmona et al., 2015; Jeong et al., 2012). 

A constant potential CP test was also performed for the comparison with the constant current 

method technique. In this test, the potential of the reinforcement was polarized to be -800 
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levels of potentials represent the recommended potential for the normal protection in 

practice. Same experimental setup shown in Figure 3.28 was used in this test. The test of 

each level of the desired potentials was operated for 5 days and then switched-off for 24 hrs. 

The variation of the passing current was recorded during the operation, and the potential 

variation after switching off the system was also monitored using data logger to evaluate the 

technique for protection.  
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iii. Partially Submerged Exposure Condition 

Based on the result from the fully submerged exposure test, only constant potential method 

was investigated for this case. Figure 3.29 shows the test setup. In this test, the potential of 

the reinforcement was polarised to -800 and -900 mV vs Ag/AgCl/0.5KCl, respectively. 

Similar as the CP test for the fully submerged specimens, 5 days were considered for the 

operating time of each level of the specified potentials, and then switched off for 24 hrs. The 

variation of the passing current was recorded during the operation, and the potential variation 

after switching off the system was also monitored using data logger for the evaluation of 

protection. 

 

 

 

Figure 3.29: Expernintal setup for the CP test of the partially submerged specimes 
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rebars plus the voltage (IR) drop due to the concrete resistance between the rebars and the 

reference electrode (Sathiyanarayanan et al., 2006). Silver/silver chloride (Ag/AgCl/0.5M 

KCl) reference electrodes and multi channels data logger of 10 Megaohm input impedance 

were used for the collection of all potential readings. The rebars of each specimen were 

connected to the negative terminal of a channel in the data logger, while the reference 

electrode of each specimen was connected to the positive terminal of the channel.  

 

 

 

  Figure 3.30: Typical potential variation under CP 
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3.4.6.7 Instant-off Potential 

Referring to Figure 3.30 above, at time t1, when the applied CP current is switched off, the 

IR drop disappears and the measured potential immediately drops to a new value. 

Subsequently, it continues to decrease gradually until reaches to a value very close to the 

initial potential, Ecorr. The potential measured instantly after the switch-off of CP current 

is called the instant-off potential. In the present study, this was measured 1 seconds after the 

CP was switched off. 

3.4.6.8 Four-hour Potential Decay  

The four-hour potential decay criteria was adopted to evaluate the efficiency of CP. It is the 

potential difference between the instant-off potential and the potential measured at 4 hours 

after switching off the CP current. The BS EN ISO 12696 (2012)  states that an at least 

100mV potential decay over a maximum of 24 h after ‘Instantaneous OFF’ is required for 

an adequate CP for reinforcing steels. This criterion is consistent with that of NACE SP0290, 

which considers that a 4-hours CP depolarization greater than 100mV effective to protect 

the steels in concrete (Jeong et al., 2012). The 4-hours decay polarization criterion was 

adopted in the study for its popularity (Jeong et al., 2012) 

3.4.6.9 Performance of Carbon Fibre as CP System Anode 

The effectiveness of impressed current CP depends greatly on the correct operation of the 

anodes, their electrical conductivity for electrochemical process, and their service life or rate 

of consumption due to a number of environmental and operational factors. The anode system 

is required to deliver sufficient current in order to provide adequate protection for the 

structures. Therefore selecting the appropriate value of current contributes significantly to 

the minimisation or avoidance of damage to the anodes due to excessive consumption, 

passivation or loss of bond with the concrete (Van Nguyen et al., 2012).  

The performance of CF anode was evaluated by monitoring the feeding voltage of the CP 

system with time (Zhu et al., 2015). Feeding voltage represents the electrical output potential 

from a DC source necessary to maintain a constant current density along the CP operation. 

It was measured as the voltage difference between the rebars cathode and the CF anode 

(Carmona et al., 2016; Zhu et al., 2015).  
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Air exposed specimens in a laboratory environment, in which the resistivity of the concrete 

is relatively high, incorporated with 3.5% sodium chloride concentrations were selected for 

this investigation. A constant current density of 20 mA/m2 referring to the surface area of 

reinforcement was applied for the two specimens. To accelerate possible damage at the CF 

anode, higher current density of 200 mA/m2 was also applied for two specimens of 3.5% 

NaCl.  

Galvanostatic polarization technique as explained in section 3.4.6.5 was carried out to 

investigate the behaviour of the CF anode. The applied currents were maintained for 28 days, 

while the feeding voltage between the rebars cathode and the CF sheet anode was measured 

with a high impedance data logger. The increase of feeding voltage indicates a deterioration 

of the electrical connection in the system, since the current remained constant during the test 

period (Zhu et al., 2015). 

Another parameter called CP circuit resistance was monitored for the seek of the 

performance of the CF anode (Covino Jr et al., 2002; Van Nguyen et al., 2012). It was 

calculated using equation (3.9) in Ω.m2. CP circuit resistance at time (t) equals to the voltage 

between the anode and the cathode V(t) in mV divided by the passing current density I(t) in 

mA/m2. The increase of CP circuit resistance reflects a dissolution of the CF anode. 

𝐶𝑅(𝑡) =
𝑉(𝑡)

𝐼(𝑡)
                                                                                                                         (3.9) 
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CHAPTER 4 RESULTS OF CONCRETE RESISTIVITY AND 

DISCUSSION 

4.1 Compressive Strength 

To confirm the quality of the made concrete specimens, all the chloride free mixes using 

different water to cement (w/c) ratios were tested for the compressive strength at the age 28 

days. Figure 4.1 shows the effect of w/c ratio on the compressive strength. As expected, the 

result shows that the compressive strength decreases as the w/c ratio increases. Compressive 

strength of concrete having w/c ratio of 0.6 is about half of that concrete having a w/c ratio 

of 0.4. This can be related to the increase of the amount of pores. Evidence for that is 

provided in Figure 4.2, which shows an increase in absolute porosity with increasing w/c 

ratio, and increasing w/c from 0.4 to 0.6 gave an increase of 12.5 % in the porosity. Lian et 

al. (2011) concluded that the strength of concrete is significantly influenced by the porosity 

of its pore structure. Moreover, Whiting and Nagi (2003) also reported that the w/c ratio has 

a significant influence on the structure of the hydrated cement paste. A low w/c ratio 

generally leads to a reduction in the pore volume and the total amount of pores (Sulapha et 

al., 2003). 

 

Figure 4.1: Effect of w/c ratio on compressive strength of the investigated mixture for 

chloride free concrete specimens 
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Figure 4.2: Effect of w/c ratio on absolute porosity of chloride free concrete specimens 

4.2 Influence of Frequency 

Figure 4.3 shows the influence of the AC frequency on the electrical resistance 

measurements when external electrodes of copper, a commonly used electrode material for 

measuring electrical resistivity of concrete, were employed. Concrete specimens produced 

using w/c ratio of 0.5 at two chloride contents (free chloride and 3% NaCl) in saturated state 

were examined in this test. Most of the time, the saturated condition is chosen as the standard 

moisture state (Chen et al., 2014). It can be seen that frequency has a significant influence 

on the measured resistivity. The use of a high frequency of 10,000 Hz reduced the measured 

resistivity of the two mixes by about 58% on average, compared to a frequency of 1 Hz. 

These obtained results indicate that the measurement at low frequencies leads to a significant 

increase in the measured resistivity causing overestimated values. In terms of Farnam et al. 

(2015), at a low frequency of less than 500 Hz, the measurement is primarily influenced by 

the condition at the electrode-concrete interface. 

The influence of electrode-contact interface was eliminated or reduced to be minimum when 

internal electrodes made of CF were used as shown in Figure 4.4, where the variation of the 

measurements in the range of the AC frequencies becomes so small and the measured 

electrical resistance is almost unchanged particularly for the mix that having chloride.  
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Figure 4.3: Influence of AC frequency on the electrical resistance measurement when 

using external electrodes of copper plates 

 

Figure 4.4: Influence of AC frequency on the electrical resistance measured using internal 

electrodes of CF sheet 
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electrode method is much lesser than external electrodes method. For instance, at low 

frequency of 1 Hz, using internal electrodes of carbon fibre reduced the measured resistance 

by 55 and 43.5% on average compared to the external electrodes of copper and CF, 

respectively. 

It is also clear that the differences between the measured resistance decreases as the applied 

frequency increases. All the measurements using different approaches tend to become very 

close at high frequencies of 10,000 Hz. However, using CF improves the accuracy of the 

measurement in a wide range of AC frequencies for the internal electrode method. This is 

mainly due to the high stability of the contact between the electrodes and the concrete 

sample. Katwan (1988) concluded that the most acceptable frequency is the one that causes 

minimum electrode perturbation, lesser polarization effect and gives lower resistance value. 

Accordingly, a frequency of 10,000 Hz was adopted for all the tests in this study as the most 

appropriate frequency and was used for the comparison between the resistivity of different 

mixes under different conditions. 

 

Figure 4.5: Influence of applied frequency on the electrical resistance of free chloride 

concrete specimens measured using internal and external electrodes 
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Figure 4.6: Influence of applied frequency on the electrical resistance of concrete 

specimens having 3% NaCl measured using internal and external electrodes 

4.3 Effect of Applied Voltage 

Figure 4.7 shows the relationship between the applied voltages in the range of 1 to 6 Volts 

and the measured currents on two mix concrete samples at saturated state using internal 

electrodes method. The results demonstrate a perfect linear relationship which confirms the 

Ohm’s law. As a result, it can be concluded that the voltage value applied will not affect the 

resistivity measurement, and any value in this range can be used for resistance 

measurements. The voltage magnitude of 3V was used for the saturated specimens and 6V 

for unsaturated specimens due to the increased resistivity for the second case. 
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Figure 4.7: Relationship between the applied voltage and the measured current during 

electrical resistance measurement of concrete specimens 

4.4 Effect of Electrode Configuration at Different Concrete Conditions 

In order to have more information about the influence of electrode configuration on the 

measured resistivity when the most appropriate frequency (10,000 Hz) that concluded in 

section 4.2 is applied, saturated and unsaturated concrete specimens were investigated. 

Relative humidity of 60% has been chosen for the unsaturated specimens at this test as it 

represent the average humidity in site environment (Lambert et al., 2015). Concrete 

specimens with different amounts of added sodium chloride (NaCl) and w/c ratios were 

studied. 

Figures 4.8 illustrates the influence of using different types of electrodes and configurations 

on the resistivity measurement of concrete specimens at saturated condition. It clearly shows 

that results obtained here confirms what observed in a previous section related to the 

accuracy of the internal electrode method. Using internal CF electrodes, for all of the 

investigated mixes, showed in general the lowest value compared to using external CF 

electrodes and copper electrodes. It was observed that the resistivity values of internal 

electrodes reached up to 10% lower than those obtained using external electrodes. These 

differences becomes less and less with the increase of NaCl content but there no particular 

influence for the change of w/c ratio. 
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Figure 4.8: Influence of electrode type on the electrical resistivity of saturated specimens 

mixed with different w/c ratios and sodium chloride contents. 
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However, the measured resistivity for the unsaturated specimens at 60% relative humidity 

displays different results as shown in Figure 4.9. The use of external electrodes reduced the 

measured resistivity by a value up to 22% (decreases with the increase of NaCl content) 

compared to the use of internal electrodes. The reason for that is explained due to the water 

absorbed from the wet sponge, which was used in between the electrodes and the concrete 

for electrical contact, and thus increasing the amount of water available in the pores leading 

to lower resistivity than that measured using internal electrodes. As with the specimens at 

saturation state, the values obtained at the unsaturated condition using external CF sheets or 

copper plate electrodes are very close when a frequency of 10,000 Hz is considered.  

In conclusion, using internal CF sheet electrode is a more reliable method which 

significantly improves the accuracy in all situations and can provide the following 

advantages. Firstly, it can be used to measure the resistivity of unsaturated specimens 

without affecting the internal water content that lead to underestimating values. Secondly, it 

eliminates any potential extra resistance due to the use of conductive medium even at fully 

saturated specimens. Finally, a wide range of frequency can be used with a little influence 

on the measured resistivity as discussed in section 4.2 above. All of these benefits are 

attributed to the stable contact zone between the internal electrodes and the concrete. 
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Figure 4.9: Influence of electrode type on the electrical resistivity of unsaturated 

specimens at 60% RH mixed with different w/c ratios and sodium chloride contents. 

0

100

200

300

400

500

600

700

800

900

0.4 0.5 0.6

El
e

ct
ri

ca
l R

es
is

ti
vi

ty
, k

Ω
.c

m

w/c ratio

Int. electrodes of CF

Ext. electrodes of CF

Ext. electrodes of copper

0% 
NaCl

1.5% 
NaCl

3% 
NaCl

4.5% 
NaCl



 

CHAPTER FOUR             RESULTS OF CONCRETE RESISTIVITY AND DISCUSSION 

122 

 

4.5 Effect of Chloride 

In order to obtain an accurate chloride contents for quantitative approach after wet curing, 

free and total chlorides measurements were conducted for all the concrete specimens with 

different amounts of added sodium chloride and water to cement ratios. Appendix A presents 

the titration curves for the data obtained during the potentiometric titration method used for 

the determination of free and total chlorides. Figure 4.10 shows the measured free and total 

chloride contents in terms of both the concrete and cement weights of the samples made 

using different w/c ratios. The free and total chlorides in the samples of the same w/c ratio 

present a linear relationship. In the rest of the results, all the chloride contents are expressed 

in terms of the dry weight of concrete (using concrete weight rather than cement weight is 

considered to be more convenience for in-situ practice). Figure 4.11 replots this data, which 

shows that both total and free chloride contents increase slightly when w/c ratio increases. 

The result was reasonably related to the curing method, since when the casted concrete 

samples were submerged in the same salty water containing the same NaCl contents as that 

used for mixing, the high w/c ratio resulting in a high porosity would leave more chloride 

ingress into the concrete during the curing process. 
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(a) Chloride in terms of concrete weight  

 

(b) Chloride in terms of cement weight 

Figure 4.10: The relation between the free and total chloride content 
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Figure 4.11: The total and free chloride content in the cured concrete samples with 

different added NaCl and w/c ratio 
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Figure 4.12 shows the effect of total chloride on the measured electrical resistivity of all the 

concrete specimens at different relative humidities (RH) and w/c ratios. It can be seen that, 

at all the w/c’s, the electrical resistivity of the concrete decreases as the chloride 

concentration increases. In the log scaled electrical resistivity plot, the relationship between 

the electrical resistivity and the chloride content exhibits an approximate linear trend.  

The results show there is a noticeable decrease at high concentration of chloride, particularly 

with those having high levels of RH. For instance, at a w/c ratio of 0.4 and 100% RH, the 

resistivity values of the concrete specimens which are incorporated with 0.2, 0.35 and 0.5% 

total chloride dropped approximately to 63, 42 and 27% respectively of those are free of 

chloride. Similar tendency of reduction in the resistivity due to increasing of chloride has 

been observed under different values of w/c and RH. The fact that electrical resistivity 

becomes lower as the total chloride increases is attributed to that high amount of chloride in 

the pore solution decreases the resistivity of pore solution (Farnam et al., 2015).  The 

influence of chloride on concrete resistivity was studied by Hunkeler (1996) and reported 

that adding of 0.45% chloride by concrete mass reduced the resistivity by only 27%. Whiting 

and Nagi (2003) stated that the risk of a specific amount of chlorides on concrete resistivity 

is dependent on the type of cement and additives used in concrete. Cements blended with 

pozzolanic materials have higher resistivity than ordinary Portland cement (Medeiros-Junior 

and Lima, 2016). 

From figure 4.12, it is also can conclude that for a fixed w/c, reducing the RH decreases the 

effect of chloride on resistivity. However, at a certain chloride content and w/c, the lower 

the RH (moisture content), the higher the concrete electrical resistivity. For example, at a 

w/c ratio of 0.4 and 0.2% chloride, reduced the RH from 100 to 80, 60 and 35% increased 

the resistivity from 3.8 to 54.6, 319.4 and 1315 kΩ.cm respectively which indicates that RH 

has a significant impact on the resistivity more than the influence of chloride. 
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Figure 4.12: Chloride effect on the electrical resistivity measured using internal electrodes 

of CF sheets at varied RH and w/c. 
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4.6 Effect of Water to Cement (w/c) Ratio 

As stated in the previous section, for a single amount of added NaCl, total chloride is 

changing with w/c ratio, but for comparison, a single chloride content is required to study 

the influence of w/c ratio on the measured resistivity in details for the mixes of different 

chloride contents and relative humidities as shown in Figure 4.13. It is worth noting that the 

values of this Figure were derived from the data of Figure 4.12 in previous section using 

polynomial fitting with an R2 of greater than 0.99.  

It can be noticed, there is a general tendency towards lower resistivities with the increase of 

w/c ratio for all the mixes of different chloride contents at high RH of 100, 80 and 60%. For 

specimens with 0% chloride (Cl), increasing w/c from 0.4 to 0.5 and 0.6, about 35 and 43 % 

reduction on average was observed for specimens at RH of 100, 80 and 60%. This is due to 

that water to cement ratio is a major parameter in determining the pore structure of concrete. 

Increasing the water to cement ratio will increase the pore size and the connectivity of pore 

network, and decrease the electrical resistivity of concrete at high water content (Van Noort 

et al., 2016). 

It is also evident that for a chosen w/c, decreasing RH increased the resistivity by tens to 

hundreds of kΩ.cm. For instance, at w/c of 0.4 and 0% chloride specimens, decreasing RH 

from 100 to 80 and 60%, increased the electrical resistivity from 6 to 113 and 805 kΩ.cm 

respectively. At w/c of 0.5, those differences are 4, 66.4 and 572.4 kΩ.cm. The same trend 

has been obtained with w/c of 0.6 and all other mixes with various amount of chlorides 

indicating that moisture content is the main controlling factors and seems to be much 

important than the influence of w/c.  

The trend of reduction in resistivity when w/c increased is in agreement with previous 

observation reported by Monfore (1968), Gjørv et al. (1977), Lübeck et al. (2012), Chen et 

al. (2014) and Van Noort et al. (2016), but different values of reduction were found due to 

variation in the experimental setup and the technique used for the resistivity measurement 

and some studies were just limited to free chloride and wet exposure conditions. Another 

study has noted no significant influence on the electrical resistivity of unsaturated specimens 

at 65% RH when w/s ratio changed from 0.4 to 0.6 (Medeiros-Junior and Lima, 2016). 



 

CHAPTER FOUR             RESULTS OF CONCRETE RESISTIVITY AND DISCUSSION 

128 

 

 

  
 

 
 

  
 

Figure 4.13: Effect of w/c ratio on electrical resistivity of concrete specimens at various 

relative humidities and chloride contents 
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However, at a low RH, at 35% RH or oven-dried as illustrated in Figure 4.13, resistivity 

increases with the increase of w/c ratio which is the opposite of the relationship presented 

for the high levels of RH, which means the resistivity of concrete is affected directly by the 

degree of saturation not w/c ratio. Interestingly, the resistivity of specimens mixed with w/c 

ratio of 0.6 is approximatly 29% on average higher than that of the specimens mixed with 

w/c ratio of 0.4. This is due to that at low water contents, most pores, particularly of big 

sizes, are empty and occupied by air, and air is electrically inconductive. So the lower the 

water content and the higher the w/c ratio, the higher the electrical resistivity. A 40% of  RH 

has been identified by Hunkeler (1996) for capillary water to be avialable and any water 

below this level is concidered not conductive and the resistivity tends to be very high. 

Howevor, A study by Gjørv et al. (1977) showed that resistivity decreases with w/c 

correspondingly even at low RH of 40% and it is more pronounced compared to wet 

exposure and high RH conditions. Another study by Chen et al. (2014) on concrete 

specimens with low RH at oven dry or 40% RH using four-point Wenner method and 

observed such measurements are inappropriate as they were too dry to form conductive 

paths. Such results suggest that a correlation between electrical resistivity of concrete with 

amount of water is very important for a clear vision and to provide quantitative approach for 

practical application. 

4.7 Effect of Water Content 

Moisture content is an environmental factor that can significantly influence the values of 

concrete resistivity and can be considered the most controlling factor as most of electric 

charge passes through the concrete microstructure is carried by ions of the pore solution. 

The values presented here are the result of water amount for five relative humidities of 

100%, 80%, 60%, 35% and 0%. The water content were determined using the following 

equation (Saleem et al., 1996): 

𝑚% =
(𝑊−𝑊𝑑)

𝑊𝑑
× 100                      (4.1) 

 

where, m is the moisture content %, W is the weight of sample in each RH (gm) and Wd is 

the oven dry weight (gm) 
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To determine the amount of water accurately for each RH, specimens were placed in 

humidity chamber at the designated humidity and a uniform moisture content was reached 

when the variation of weight in 24 hours was less than 0.01g (Villagrán Zaccardi and Di 

Maio, 2014). 

Figure 4.14 shows the measured electrical resistivity of chloride free concrete at different 

water contents and their corresponding pore water saturation degrees (the ratio of the water 

content at a certain RH to the water content at saturated state), respectively. A significant 

influence of water content on the concrete electrical resistivity can be observed. The 

electrical resistivity decreases sharply and nonlinearly with the increase of the water content 

or water saturation degree. It also can be seen that at a certain absolute water content, the 

porosity change in the three w/c range has almost negligible influence on the concrete 

resistivity. However, porosity effect has to be taken into account independently when the 

water effect is quantified using water saturation degree. 

 

Figure 4.15 shows the measured water contents in all samples when reaching the equilibrium 

with the controlling RH. It presents a very important characteristic of the concrete, the water 

vapour sorption isotherm. Interestingly, the water content in the concrete depends not only 

on the environmental relative humidity but also on the chloride content. This result verified 

a previous research which stated that the water vapour sorption isotherm and the underlying 

capillary water condensation mechanism are intrinsically linked to the interfacial 

physiochemical interaction at pore surfaces in concrete (Wang et al., 2012), which is 

influenced by both free and bound chloride contents in this case. Under the same RH 

conditions, the higher the chloride content, the more the water condensed in pores. 

Figure 4.16 compares porosity expressed as w/c ratio influences on the electrical resistivity 

of the concrete samples at different water contents and at a near constant chloride content 

(the difference of total chloride content for each comparison is no more than 0.05%). It can 

be seen that when water content is small, saying less than 5%, the influence of porosity on 

the electrical resistivity is negligibly. The results are in good agreement with those shown 

in Figure 4.14. 

 

 

 



 

CHAPTER FOUR             RESULTS OF CONCRETE RESISTIVITY AND DISCUSSION 

131 

 

 

 

 

Figure 4.14: Water effect on the electrical resistivity of the chloride free concrete 
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Figure 4.15: Equilibrium water content of the concrete under controlled relative humidity 
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Figure 4.16: Water effect on concrete electrical resistivity at different chloride contents 
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Also, it can be seen that the change in the resistivity is very sensitive to the amount of water 

in the pores of concrete even at the highest chloride used in the study, the resistivity of the 

concrete specimens is very high at low water contents. This is due to that, as explained 

before, at low water contents large pores are empty and less liquid is available in pores, 

which significantly reduce the passing current and therefore increasing the electrical 

resistivity of concrete.  

Using the obtained results by this study, and the threshold limit of 10 kΩ.cm (Hope et al., 

1985; Morris et al., 2004; Morris et al., 2002) for the resistivity of reinforced concrete to be 

considered at high risk form corrosion, all the specimens at 100%RH independent of 

chloride contents fall below the threshold level. However, specimens at such high level of 

moisture content are unlikely to corrode due to the limited availability of oxygen (Poursaee 

and Hansson, 2009; Soleymani and Ismail, 2004). It can also be observed that increasing 

total chloride to 0.5% by concrete weight decreased the threshold moisture content by 45% 

compared to 0% chloride specimens (Figure 4.14). According to previous recommended 

interpretation (Andrade and Alonso, 1996), low to high corrosion rate is considered when 

concrete resistivity is between 10-100 kΩ.cm. Based on this interpretation and the obtained 

results, it can be conclude that water content in the range of (1.9-5.8)%, (1.3-4.7)% and (1.2-

3.8)% are enough to produce these classifications of corrosion rate for the specimens that 

having total chloride of (0.197-0.223)%, (0.358-0.402)% and (0.502-0.530)% , respectively. 

In other words, reinforced concrete specimens with high salt concentration can sustain 

corrosion even at RH less than 60%, while unlikely for specimens with chlorides less than 

0.2%. 
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CHAPTER 5 CP FOR AIR EXPOSED CONCRETE SPECIMENS 

5.1 Chloride Contents, Corrosion Potential and Concrete Resistivity  

The free and total chloride contents in the cured specimens of each mixes with different 

added NaCl were measured as with the previous chapter which are listed in the Table 1, 

where chloride contents are expressed in terms of the percentage of the concrete weight of 

specimens. It is clear that both free and total chloride increases with the increase of added 

sodium chloride, and a linear relationship was observed between free and total chloride 

contents as presented in Figure 5.1. Figures A.10 to A.13 in Appendix A show the titration 

data obtained for the determination of total and free chloride contents.  

Table 5.1: Total and free chloride content in cured specimens for different added NaCl  

Added NaCl 

% cement weight 
0 1 2 3.5 5 

Measured total Cl- 

% concrete weight 
0 0.141 0.246 0.391 0.571 

Measured free Cl- 

% concrete weight 
0 0.115 0.183 0.324 0.475 

 

 

Figure 5.1: Relation between free and total chloride content for specimens of w/c of 0.4 

and different added NaCl 
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Figure 5.2 shows the chloride effects on the corrosion potential of reinforcement in terms of 

the total chloride contents, where the potential was measured against the Ag/AgCl/0.5KCl 

reference electrode. It can be seen there was a strong correlation between corrosion 

reinforcement potential and the chloride contamination degree. The reinforcement in the 

chloride free specimens have a potential just above -135 mV (equivalent to -200 mV with 

respect to the reference CSE), which indicates of a low risk of corrosion according to the 

ASTM standard C876. When the chloride content increased, the potential of reinforcement 

significantly reduced to a more negative value. According to the same standard, the 

probability of reinforcement to corrode is 90% if potential is below -285 mV, a value 

corresponding to a chloride content of 0.141%, which may indicate a criterion for the start 

of active corrosion due to breakdown of the passive layer of rebars. The result that the 

potential value becomes more negative with the increase of chloride content is in agreement 

with that found by Oh et al. (2003) and Yodsudjai and Pattarakittam (2017), and is also 

consistent with the role of chlorides in the corrosion process. The relationship between the 

corrosion potential and the chloride content presents a non-linear trend which is in 

agreement with the study of Yodsudjai and Pattarakittam (2017). However, Oh et al. (2003), 

reported a linear correlation between the corrosion potential and chloride content. 

 

Figure 5.2: Influence of chloride concentration on steel corrosion potential in concrete 
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Due to convenience of measuring, electrical resistivity of concrete has been popularly 

employed to evaluate the risk of corrosion of rebars in the design of cathodic protection 

system. Figure 5.3 shows that the concrete resistivity decreases linearly with the increase of 

chloride content. An earlier study (Morris et al., 2004) concluded that very high corrosion 

occurred when resistivity was less than 10 kΩ.cm, and the corrosion became low to moderate 

if resistivity was more than 30 kΩ.cm. Another study (Sadowski, 2013) showed a very high 

probability of reinforcement corrosion in concrete when concrete resistivity was lower than 

5kΩ.cm measured using the four-point Wenner method, and the probability was moderate 

when concrete resistivity was higher than 5 kΩ.cm. Figure 5.4 shows relation between the 

corrosion potential and the concrete resistivity in terms of the result in Figures 5.2 and 5.3. 

It can be seen that under the chloride contaminated condition, a passive region (corrosion 

potential is more positive than -135 mV) approximately has a resistivity greater than 18 

kΩ.cm. The reinforcement may suffer a severe corrosion when concrete resistivity is less 

than 16 kΩ.cm with a corrosion potential of -300 mV. 

 

Figure 5.3: Influence of chloride content on concrete resistivity 
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Figure 5.4: Corrosion potential vs concrete resistivity 

5.2 Corrosion Rate 

As explained in Chapter 3, polarization resistance (Rp) method was adopted to measure the 

instant corrosion rate of rebars embedded into concrete specimens of varied chloride 

contents. The data of Rp measurement for all specimens of five different chloride contents 

are presented in Figure 5.5. Most of the specimens present an obvious linear relationship 

between the applied potential and the measured current at zero current except the chloride 

free ones which present a sharp slope at the point of zero current.  
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Figure 5.5: Polarization resistance data for specimens mixed with different chloride 

contents 

Figure 5.6 shows the corrosion rates worked out on the obtained values of Rp at different 

chloride concentration. It can be seen that the reinforcement in the chloride free specimens 

presents a very low corrosion rate, and the corrosion rate increases with the increase of 

chloride content. 

 

Figure 5.6: Influence of chloride concentration on steel corrosion rate in concrete 
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Figure 5.7 plots the relationship between concrete resistivity and corrosion rate in term of 

the data in Figures 5.3 and 5.6. It shows that reinforcement corrosion rate decreases with the 

increase of the electrical resistivity of the concrete.  

Previous research (Broomfield, 2007) suggested that corrosion risk is considered to be low 

when corrosion rate is in the range of 1~5 mA/m2, moderate when in the range of 5~10 

mA/m2, and high when greater than 10 mA/m2. In terms of the classification, reinforcements 

will have a low corrosion rate if the total chloride content is less than 0.1% by concrete 

weight (equivalent to 0.58% by the mass of cement) and this chloride content may be taken 

as a threshold for the risk posed by reinforcement corrossion. The threshold value is in 

agreement with that recommened in literature (Bertolini et al., 2009), in which the critical 

chloride content is in the range of 0.4 to 1% by weight of cement. If chloride content is over 

1.2% by weight of cement (equivalent to 0.208% by concrete weight), reinforcements 

present a high corrosion rate. In terms of the concrete electrical resistivity, reinforcements 

will have a low corrosion rate if the concrete electrical resistivity is higher than 17 kΩ.cm, 

or a high corrosion rate if the concrete resistivity is less than 15 kΩ.cm. These results are 

quite close to that obtained above based on the potential evaluation.  

 

Figure 5.7: Correlation between corrosion rate and concrete resistivity 
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Table 5.2 shows a summary of the chloride effect on the parameters of corrosion rate, 

corrosion potential and electrical resistivity of concrete.  

Table 5.2: The influence of chloride content on corrosion rate, corrosion potential and 

electrical resistivity of concrete 

Total 

chloride 

content,% 

by 

concrete 

weight 

Concrete 

resistivity, 

kΩ.cm 

Corrosion 

rate, 

mA/m2 

Risk of 

corrosion 

according 

to corrosion 

rate, 

Broomfield 

(2007) 

Corrosion 

potential, 

mV 

Probability 

of 

corrosion, 

ASTM 

C876 

0 18.4 1.59 low -128 10% 

(passive) 

0.141 15.9 7.62 moderate -308 90% 

0.246 12.4 10.23 high -357 90% 

0.391 10.1 16.17 high -377 90% 

0.571 7.7 29.93 very high -428 90% 

 

5.3 Effect of CP Operating Time on Instant-off Potential  

Figure 5.8 shows the variation of the instant-off potential of the reinforcements with the time 

of CP operation under three different protection current densities for the specimens of 1% 

added NaCl. It can been seen that the instant-off potential display a significant change in the 

first three hours of CP operation under all the applied current densities. After 3 hours, all the 

curves become stable and flat, showing a very slight variation up to 24 hours.  Figure 5.9 

shows the curve of the applied current density of 20 mA/m2 up to 120 hours (5 days), which 

confirms the small variation in a long time. According to the results in the Figures 5.8 and 

5.9, in this study, all the parameters used for CP performance assessment were taken after 

24 hours of CP implementation. The values of the instant-off potential in Figure 5.8 have 

been obtained based on the results in appendix B. The Figures in appendix B shows the 

variation of rebars potential with time under the application of three different CP current 

densities. They also show the potentials just after the switch-off the CP current for the 

instant-off potential determination as explained in section 3.4.6.7. 
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Figure 5.8: Reinforcement instant-off potential vs CP operation time under different CP 

current densities up to 24 hours 

 

Figure 5.9: Variation of instant-off potential with time under 20 mA/m2 CP current density 

up to 120 hours 

5.4 Applied Potential Shift 

Figure 5.10 represents the variation of the applied potential shift (also known as polarization) 

for the specimens of different chloride contents and under different applied CP current 

densities. It can be seen that the potential shift is strongly dependent on the environment 

around the reinforcement and the applied current density. The amount of potential shift 

decreases as chloride content increases, and it is directly proportional to the applied current 
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at any chloride content. However, the current becomes less influential at high amounts of 

chloride. A steep increase in the potential shift particularly happened at the initial chloride 

content increase starting from 0%. Specimens of a low chloride content show a higher 

potential shift than those of a high amount of chloride. For instance, the potential shift of the 

concrete specimens that contain 0.571% Cl was 9.2 mV compared to 204.2 mV for the 

chloride free specimens under the application of CP current density of 5 mA/m2. Increasing 

the applied current density from 5 to 25 mA/m2 the potential shift increases from 204.2 to 

382.5 mV and from 9.2 to 59.2 mV for the chloride free specimens and those having 0.571% 

Cl, respectively. This reflects that a small amount of current will effectively provide the 

required potential for the cathodic protection of specimens with low chloride contents. 

 

Figure 5.10: Potential shift of rebars under different chloride contents and applied CP 

current densities 

Figure 5.11 shows the potential shift variation of reinforcement in terms of the concrete 

resistivity. It can be seen clearly that potential shift increases with the increase of concrete 

resistivity, and the correlation is highly pronounced at high resistivity and applied current 

density. It should be pointed out that the observation here is opposite to a previous finding 

(Elsener et al., 2003), which suggested that reinforcement in low resistivity concrete had a 

high polarization. A reasonable explanation for the difference is that this work only 
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resistivity, it will increase both the corrosion potential and corrosion rate, and, as a result, 

reduces the polarization effect under a certain CP current. 

At last, Figure 5.12 shows the correlation between potential shift and polarization resistance 

of reinforcement for the specimens that only have chloride. The chloride free specimens 

gave a very high polarization resistivity (4961 Ω) indicating that reinforcement in passive 

state, and its existence in this plot affects the output of the results. From Figure 5.12, 

potential shift increases linearly with the increase of polarization resistance, and the degree 

of the increase is highly pronounced with both of the reinforcement polarization resistance 

and applied current density. 

 

 

Figure 5.11: Dependence of potential shift on resistivity of concrete 
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Figure 5.12: Dependence of potential shift on polarization resistance Rp of reinforcement 

5.5 Effect of CP Current Density and Chloride Content on Instant-off Potential 

The instant-off potential is one of the important criteria used to evaluate CP performance, 

which is measured immediately after interrupting the cathodic protection current to 

eliminate the influence of IR drop according to NACE International standard SP0290 

(2007). The measurement is independent of the position of the reference electrodes. The IR 

drop is the difference between the applied protecting potential magnitude and the instant-off 

potential magnitude due to concrete resistance, which depends both on the applied CP 

current and the concrete resistivity as shown in Figure 5.13. It can be seen that IR drop 

increases when concrete resistivity and the applied CP current increases. Under a certain CP 

current, the variation of IR drop against concrete resistivity may be characterised 

approximately using a linear trend. 
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Figure 5.13: IR drop variation with concrete resistivity under different applied CP current 

densities  

The accuracy of instant-off potential measurement is very sensitive to the time of measuring 

because the IR drop occurs in just less than a second. Katwan (1988) stated that the time to 

take measurement should be at least 0.6 seconds after switching off the protection current in 

order to obtain an accurate IR drop for cracked reinforced concrete elements subjected to 

salty water. Gummow (1993), however, found that the reading was unstable in the first 

portion of a second due to a positive spike influence the instantaneous voltage drop. The 

British standard 12696:2012 and NACE International standard SP0290:2007 recommend a 

time between 0.1-1.0 second after the switch-off of CP current to measure the instant-off 

potential. 

Figure 5.14 shows the variation of the instant-off potential of the reinforcements in the 

specimens of different chloride contents under different CP current densities. It can be seen 

that the instant-off potential absolute value increases with the increase of the applied CP 
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applied to the different chloride contaminated specimens the -720 mV criterion hasn’t been 

achieved.  

 

Figure 5.14: Variation the instant-off potential with the applied current and chloride 

content  

In order to produce applicable information, Figure 5.15 replots the data in Figure 5.14. It 

shows that the relationship between the instant-off potential and the applied current density 

for concrete under a certain chloride contamination can be characterised using a linear 

function y=a+bx, where the two parameters, a and b, depend on chloride content. Figure 

5.16 shows the variation of the two parameters against the chloride content in terms of the 

total chloride contents. It can be seen that the two parameters present a linear trend with the 

chloride content. For the data fitting of parameter b, the point of the chloride free specimens 

was ignored, because it looks like an out layer of the trend.  
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Figure 5.15: Instant-off potential vs CP current density at different chloride contents 
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Figure 5.16: Parameter fitting for instant-off potential characterisation 
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5.6 Four-hour Decay Potential 

The potential decay after switching off the CP current is another important parameter used 

to evaluate CP performance. Generally, 100 mV depolarization in a four hour period of time 

is the most accepted criterion. 

Figures 5.17 and 5.18 show the potential decay curves obtained for specimens with different 

chloride contents after application CP current densities of 15 and 75 mA/m2. The potential 

decay curves obtained for the same specimens after application various CP current densities 

are available in appendix C. It can be seen there is an immediate elimination of the IR drop 

after switching-off the protective CP current. This is practically clear after the application 

of high CP current densities or for chloride free specimens when small CP current densities 

was applied. After that, the potential goes back, at a slow rate, towards the original potential 

before the application of CP. These figures demonstrate that the most of the depolarization 

occurs during the initial hours after switching off the protection current.  

Figure 5.19 shows a summary for the obtained values of the reinforcement depolarization 

(4-hours potential decay) against the applied CP current density and the instant-off potential 

at different chloride contamination. It can be seen that for a certain chloride content, the 

depolarization of the reinforcements increases with the increase of the applied current 

density. For chloride free specimens, the 4-hours potential decay curve is in the region above 

100 mV (the horizontal solid line). It indicates that the reinforcements in a chloride free 

concrete environment are safe from corrosion even without CP (I = 0). Comparing the Figure 

5.14 and Figure 5.19, it can be clearly noticed that a current density about 15 mA/m2 is 

sufficient to provide the required protection for the reinforcement in the concrete of 0.141% 

chloride in terms of the 100 mV potential decay criterion. However, current density of 75 

mA/m2 is not enough to protect the reinforcement even in chloride free concrete in terms of 

the -720 mV instant-off potential criterion. 

Figure 5.20 plots out the correlation between the instant-off potential and 4-hours potential 

decay at different CP current density in terms of the results in Figures 5.14 &5.19. It shows 

that in terms of the 100 mV depolarization criterion, -500 mV instant-off potential is 

sufficient to protect the reinforcements in all the investigated contaminated concretes. 
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Figure 5.17: Potential decay curves for specimens at various chloride contents after 

application of CP current density of 15 mA/m2  
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Figure 5.18: Potential decay curves for specimens at various chloride contents after 

application of CP current density of 75 mA/m2 
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Figure 5.19: Reinforcement depolarization vs CP current density, (The horizontal solid line 

for the criterion of 100 mV while the dash line for 50 mV) 

 

 

Figure 5.20: Reinforcement depolarization vs instant-off potential.  

(The horizontal solid line for the criterion of 100 mV while the dash line for 50 mV) 
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Figure 5.21 shows the CP current densities and the corresponding instant-off potential after 

24 hours CP application on the specimens of different chloride contents, which give the 100 

mV depolarization (the 4-hours potential decays). The experimental data are the interception 

points of all the curves in the Figures 5.19 & 5.20 on the horizontal line at 100 mV 4-hrs 

potential decay. It is be seen  that the required CP current density and the 24-hours CP 

instant-off potential for the 100 mV depolarization criterion present an approximately linear 

correlation to chloride content. According to the results, there is no CP needed when chloride 

content is less than 0.055% (this data is about half of the 0.1% that was discussed before 

according to the classification of Broomfield (Broomfield, 2007). Considering the instant-

off potential plot, it can be seen that an instant-off potential of -500 mV can provide adequate 

protection for the reinforced concrete of up to 0.59% chloride content, and the effectiveness 

of the CP system depends on the chloride content if the instant-off potential is less negative 

than -500 mV. 

 

          (a) CP current density for 100 mV 4-hours potential decay vs chloride contents 
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           (b) Instant-off potential for 100 mV 4-hours potential decay vs chloride contents 

Figure 5.21: The required CP current density and the corresponding instant-off potential 

for the protection criterion 100mV depolarization (4-hour decay potential) at different 

chloride contents. 

(The horizontal lines indicate no CP current and -500 mV instant-off potential, 

respectively) 

Figure 5.22 replots the data in Figure 5.21, in reference to that in Figure 5.3, to show the 

interception points at the corresponding concrete resistivity. Simply using a linear trend to 

approximate these interception points enables suggesting that there is no need of CP if 

concrete resistivity is more than 17 kΩ.cm, and -500 mV instant-off potential is adequate to 

protect the reinforcements in the concrete of no less than 6.7 kΩ.cm resistivity. 
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          (a) CP current density vs concrete resistivity 

 

          (b) CP current density vs concrete resistivity  

Figure 5.22: The required CP current density and the corresponding 24-hour CP instant-off 

potential for the protection criterion 100mV depolarization (4-hour decay potential) at 

different concrete resistivity 

(The horizontal lines indicate no CP current and -500 mV instant-off potential, 

respectively) 
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Figure 5.23 shows the required current densities for 100 mV and 50 mV depolarization (the 

4-hours decays potential) for the reinforcements at different initial corrosion rates before CP 

operation, where the dash-dot line indicates the condition when the applied CP current 

density equals to the initial corrosion rate of the reinforcements. It can be seen that the 

suggested protection current density in terms of the 100 mV depolarization criterion is much 

higher than the corrosion rate of reinforcements. Particularly, the extra protection current 

density is projected at a high CP current density when reinforcement exposes to high 

chloride contamination or has a high corrosion rate. However, the CP current density in 

terms of the 50 mV depolarization condition (the interception points on the horizontal dash 

line in Figure 5.19) is very close to the dash-dot line at all reinforcement initial corrosion 

rates. Figure 5.24 shows the required current density at different chloride content and the 

corresponding concrete resistivity for the 50 mV depolarization threshold. 

 

 

Figure 5.23: The required CP current density for different depolarization vs the initial 

corrosion rate of reinforcements 
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         (a) CP current density vs concrete resistivity 

 

          (b) CP current density vs chloride contents 

Figure 5.24: The required CP current density for 50 mV depolarization 

(The horizontal lines indicate no CP current) 
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5.7 Performance of Carbon Fibre as CP System Anode 

The electrical performance of the CF anode is represented by the feeding voltage between 

the anode and the cathode when external CP current is impressed for a relatively long period 

(Van Nguyen et al., 2012; Zhu et al., 2014). 

Figure 5.25 shows the feeding voltage measured between the rebars cathode and CF anode 

when CP current density of 20 and 200 mA/m2 (on steel area) was applied for 28 days on 

the specimens of 3.5% NaCl. Although the increase of the applied current density from 20 

to 200 mA/m2 increases the magnitude of feeding voltage, the variation of feeding voltage 

under a certain current density is not significant as time goes by. The recorded voltages for 

the specimens under 20 mA/m2 CP current density was about 2000 mV during the first 5 

days. After then, the voltage was almost equal or less than 2000 mV except at the periods 

between 17.5-19 days and after 25 days. The biggest difference between the highest recorded 

voltage and the highest voltage reading during the first five days was 8%. 

 

Figure 5.25: Variation of feeding voltage between rebars cathode and CF anode with time.  

The voltage reading during the first few days of operation can be considered as a reference 

for comparison with the readings at other times of operation. Assuming no damage or 

debonding during the early days of CP operation, the increase of voltage thereafter indicates 

the change of the situation assumed around the anode system. 
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In case of the application 200 mA/m2 CP current density, the highest recorded potential 

during the first 7 days was 2400 mV. The difference between the average potential values 

for the period after the seventh day and the highest value during the first 7 days was 6%.  

Figure 5.26 presents the effect of current density on the electrical conductivity of CP circuit. 

It can be seen that the highest resistance obtained corresponded to the highest recorded 

voltage in Figure 5.24. The electrical conductivity was evaluated by resistance over a test 

period. The resistances were calculated by using Ohm’s law from the passing current and 

the measured voltages. It should be noted that the circuit resistance between carbon fibre 

anodes and steel cathodes in concrete consist of the anode resistance at the anode-concrete 

interface, the electrolyte at the steel/concrete interface, and the steel bar resistance (Van 

Nguyen et al., 2012). For the purpose of analysis and simplicity, The CP circuit resistance 

was assumed to the measured voltage divided by the applied current density. From Figures 

5.25 and 5.26, it can be seen that under both of the applied CP current densities, the results 

are very similar, i.e., the voltage and the CP circuit resistance are fluctuated and shows a 

very slow increasing trend. The fluctuation could be attributed to the change of the weather 

conditions during testing, and electrical connections (Zhu et al., 2014), while the increase in 

the measured voltage could be attributed to debonding issues or damage at the concrete-CF 

interface (Van Nguyen et al., 2012) that leads to an increase in the resistance of the CP 

circuit. But in this test there were no signs of damage or debonding problems observed at 

the concrete-CF interface. 

Van Nguyen et al. (2012) investigated the performance of using external CF, glued to the 

concrete surface using carbon reinforced epoxy, as anode. Their results showed that there 

was a significant increase in the resistivity of CP circuit due to the deterioration occurred at 

the concrete-CF interface. The resistivity increased from 36.5 to 420 Ω.m2 after 24 days of 

application of 10 V. Zhu et al. (2015) used commercial conductive carbon aluminosilicate 

paste and carbon fibre reinforced mortar as  contact materials between the CF anode and the 

concrete surface. They found that the voltage increased from 2 to 10 V after 25 days of 

application a current density of 1244 mA/m2, and in some cases the voltage increased from 

5 to 27.5 V. 
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From the results of the current study, it can be concluded that using embedded CF as anode 

improved the problems due to the debonding at concrete-CF interface as no signs of cracks 

or deterioration was observed at the concrete-embedded CF interface. 

 

Figure 5.26: The CP circuit resistance with operating time  
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CHAPTER 6 CP FOR SUBMERGED CONCRETE SPECIMENS 

6.1 Corrosion Potential, Corrosion Rate and Electrical Resistivity 

Figure 6.1 shows a plot of corrosion  potential of reinforcement against total chloride 

content for fully and partially submerged concrete specimens. It can be seen that potential 

readings of the fully submerged specimens are less (more negative) than partially submerged 

specimens. So the fully submerged specimens have more risk of corrosion. However, it can 

be clearly seen that the values of the reinforcement potential of all the specimens in the two 

cases are much lower than -300 mV vs Ag/AgCl/ 0.5KCl (-350 vs CSE), which indicate 

high risk of corrosion according to the ASTM standard C876.  

Comparing the two curves, we can see that the reinforcement in the fully saturated 

specimens has a less much potential variation in the range of chloride variation from about 

0.1 to 0.6% comparing with the potential variation of the reinforcement in the partially 

saturated specimens. The results indicates that the water content variation plays a more 

important role in corrosion than chloride, because it affects the availability of oxygen. In 

fully saturated concrete, the limitation of oxygen dwarfed the effect of the chloride contents. 

 

Figure 6.1: Corrosion potential of rebars with chloride concentration in fully and partially 

submerged concrete specimens  
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Chess and Broomfield (2013) reported that ASTM standard C876 may not be applicable to 

saturated concrete because they assume that saturated concrete reinforcement has little 

corrosion rate because of the limited amount of the oxygen available at the rebar interface 

under water. In terms of their reasoning, in the case of the Fig. 6.1, the low corrosion 

potential of the rebar in the fully saturated specimens doesn’t mean a high corrosion rate. 

However, Broomfield (2007) had a different opinion, who stated that the reinforcement in 

highly water saturated concrete structures could experience a severe corrosion.  

Figure 6.2 shows the corrosion rates of the reinforcements in the fully and partially 

submerged specimens at different chloride concentration. The result is in agreement with  

what stated by Broomfield (2007) who found that significant corrosion can develop in the 

concrete structures of high moisture content. It is evident that corrosion rate increases when 

chloride content increases in specimens. In addition, for a certain chloride content, corrosion 

rate of the reinforcement in fully submerged specimens is higher than that in partially 

submerged specimens. This confirms that water content in concrete plays an important role 

in the reinforcement corrosion as previously discussed.  

Unlike corrosion potential, corrosion rate for the fully and partially submerged specimens 

presents a clear similar correlation with the chloride content. For example, when total 

chloride increased from 0.141% to 0.571% for the fully submerged specimens, corrosion 

rate increased from 40 to 140 mA/m2. For the partially submerged specimens, corrosion rate 

increased from 10 to 110 mA/m2. 
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Figure 6.2: Influence of chloride concentration on steel corrosion rate in fully and partially 

submerged concrete specimens 

Figure 6.3 shows the values of electrical resistivity obtained for both fully and partially 

submerged specimens at different chloride contents. As previously observed in this study, 

concrete resistivity decreases linearly with the increase of chloride.  
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Figure 6.3: Concrete resistivity vs total chloride content for fully and partially submerged 

concrete specimens 

Based on the data in Figures 6.2 and 6.3, a correlation between rebars corrosion rate and 

resistivity of concrete is presented in Figure 6.4, which shows that severity of corrosion 

increases as concrete resistivity decreases. High corrosion rates in the range of (40-140) and 

(10-110) mA/m2 were observed for the fully and partially submerged specimens, 

respectively with a corresponding resistivities of less than 5,000 Ω.cm. It can be seen that 

for a certain concrete resistivity, the corrosion rate of the reinforcement in fully submerged 

specimens is higher than that in partially submerged specimens.  

Together with the finding in the previous chapter for the air-exposed specimens, the water 

content and chloride content should be explicitly related to the corrosion state rather than 

through a single parameter of the concrete resistivity for the complicated situations because 

the water content will affect the oxygen transportation in concrete, and the oxygen 

availability at the rebar surface will play an important role in the corrosion process, and this 

is unassessable by concrete resistivity. 
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Figure 6.4: Relationship between corrosion rate and electrical resistivity of fully and 

partially submerged concrete specimens 

The measured rebars corrosion potential (Ecorr) and corrosion rate (icorr) at the three 

different exposure conditions (i.e., fully submerged, partially submerged and air exposed 
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7%), values of corrosion potential are quite close varying in the range of -550 to -600 mV 
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could be due to insufficient oxygen supply under water which supressed the active influence 
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With the water content increases, the chloride effect becomes more significant. This may be 

attributed to the free chloride increases in pore water. 

 

Figure 6.5: Relation of corrosion potential and water content at different chloride 

concentrations 

 

Figure 6.6: Relation of corrosion rate and water content at different chloride concentrations 
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From the results and discussion above, it can be concluded that corrosion potential may be 

used to indicate a probability of corrosion for a general guidance but not to be used as a 

stand-alone single rule to establish the state of real activity of corrosion in saturated concrete. 

In this case, the evaluation of other measurements such as corrosion rate, concrete resistivity 

and chloride analysis could be useful for more information in such ambiguous conditions. 

6.2 Fully Submerged Specimens under Constant CP Current Density 

Figure 6.7 shows the shifted rebars potential from the start of the application of CP with 

different current densities for 5 days followed by a depolarization for other 24 hours. It can 

clearly be noticed that the rebar potential steadily decreases with time. In addition, the rate 

of potential shift with time (the slope of these curves) is proportional to the density of the 

applied current. 

This trend has been noticed for all the specimens of different chloride contents under various 

applied levels of CP current densities, as shown in Figure 6.7 (a, b, c and d), and does not 

tend to stabilize in the 5 days of CP operation period. Such steadily decrease of the rebar 

potential likely leads to overprotection and the hydrogen evolution at the reinforcement 

surface when the potential exceeds the specified limit of -1100 mV in standards (BS EN ISO 

12696, 2012).  

Figure 6.7 also shows the recorded 24 hours potential decay after CP interrupted. The 

characterisation of potential decay is considering as one of the major consideration for the 

evaluation of protection efficiency. It can be seen that the potential moves at a very slow 

rate towards the original potential before applying CP. Also, the 4 hours and 24 hours 

potential decay in all the cases are less than 100 mV. For all the fully submerged specimens, 

the instant-off potential is about the same as the on-potential. 

From the results, it may be concluded that the depolarization rate is less dependent on the 

chloride and CP current density for fully submerged samples where the availability of 

oxygen is low. 
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Figure 6.7: Potential variation with time of fully submerged specimens under various 

chloride contents and CP current densities, and the corresponding potential decay curves. 



 

CHAPTER SIX                                           CP FOR SUBMERGED CONCRETE SPECIMENS 

171 

 

6.3 Constant Potential Technique 

In order to avoid overprotection in the application of constant current technique, using 

constant potential protection could be an alternative for submerged concrete reinforcements. 

In the study, concrete specimens were fully and partially submerged in salty. The potential 

of rebars was forced and maintained using potentiostatically controlled potential technique 

at a certain level (-800 and -900 mV vs Ag/AgCl/0.5KCl, respectively in the study) for 5 

days. Specimens with four chloride concentrations were examined. The variation of passing 

current density has been monitored and recorded as shown in Figure 6.8. It shows that the 

current decreases with time. The rate of decreasing was particularly high at early stage of 

operation. After that, it was gradually decreased with time. All the specimens with different 

chloride contents show the same trend. Similar observation in which the initial current 

density is higher by several times of magnitude than the later stabilised current density was 

reported before (Chess and Broomfield, 2013). It also can be noticed that the higher the 

applied potential, the higher the current density and the shorter the time to achieve a stable 

current condition. All of these can be attributed to the re-alkalisation and chloride removal 

in concrete, which change the concrete resistivity. 

Figure 6.9 replots the data in Figure 6.8 to illustrate the influence of chloride on the current 

density under the application of -800 mV and -900 mV for the fully and partially submerged, 

respectively. It can be seen that in general the required current density under certain potential 

increases with the increase of chloride content because of the low resistivities of concrete of 

high chloride content. However, the chloride content looks have little influence on the time 

to achieve a stable condition. 
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Figure 6.8: Variation of flowing current with time for the potential demand of CP for fully 

and partially submerged specimens with various concentration of total chloride. 
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Figure 6.9: Effect of chloride contents on the required current of CP under various 

potential demands and exposure conditions. 
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A depolarization test, as shown in Figure 6.10, was also performed to evaluate the 

effectiveness of the protection based on 100 mV depolarization criteria recommended by 

standards (BS EN ISO 12696, 2012). The potential decay was recorded for 24 hours after 

CP has been stopped using data logger. A similar behavior was observed as that obtained 

for using constant current technique in the case of the fully submerged specimens. The 

depolarization of all the specimens at 4 and 24 hours were in the range of (5-15) mV and 

(10-25) mV, respectively regardless the magnitude of the applied potential or the 

concentration of the total chloride, and it is much less than the value 100 mV stated in 

standards for the efficiency of protection.  

However, in the case of partially submerged specimens, the observed 24 hours 

depolarization was higher and reached up to about 80 mV for the specimens with 0.141% 

total chloride when protection potential of -800 mV was applied. But, the depolarization 

decreased with the increase of chloride content. For example, it is about 15 mV for the 

specimens with 0.571% total chloride. When the applied protection potential increased to -

900 mV, the depolarization increased to just over 100 mV for the specimens with 0.141% 

total chloride. All other specimens with higher chloride contents showed a depolarization 

less than 100 mV. Specimens with 0.391% and 0.571% total chloride showed same 

depolarization regardless the applied potential or exposure condition. The lower 

depolarization for the specimens of higher chloride contents may be attributed to the less 

chloride redistributed under the same applied protective potential. 

In conclusion, the 100 mV depolarization criterion in 4 or 24 hours is not applicable for the 

evaluation of CP of fully submerged specimens. On the other hand, in the case of partially 

submerged specimens, the magnitude of the applied protection potential, chloride 

concentration, oxygen existence and time of depolarization have significance influences on 

the value of depolarization. The obtained results in this work produced useful information, 

but the data was inconclusive to characterize the required CP protection for those two 

situations and further investigation of this approach is needed. 
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Figure 6.10: Potential decay with time for fully and partially submerged specimens under 

different applied protection potentials and chloride contents 
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6.4 Anode Potential under CP with Constant Potential 

Figure 6.11 shows the variation of the anode potential (Ea), the cathode potential (Ec) and 

their difference (Ec-Ea) in relation with the applied feeding voltage during the application 

of CP system. The applied feeding voltage represents the voltage difference between the 

rebars cathode and the anode during CP operation. The data in Figure 6.11 were collected 

during the application of -900 mV protection potential on the rebars of the partially 

submerged specimens at three different chloride contents.  

It can be seen from Figure 6.11 that potential of the anode is not a constant at the start, but 

becomes stable after 1  ̴ 2 days. Also, it is clearly that, as expected, the applied feeding 

voltage is equal to the cathode potential minus the anode potential. However, the behaviour 

where the feeding voltage is equal to the potential difference between the cathode and the 

anode depends on the water and chloride distribution in concrete. In an evenly distributed 

conditions, the feeding voltage is equal to the potential difference between the cathode and 

the anode. Otherwise, they will be different. For example, the increase of resistivity will 

result to increase the difference between the applied potential and the actual one, which 

means higher feeding voltage is required to apply a certain value of steel polarization to 

anodic areas with high resistivity. So, this test can reflect the effect of concrete resistance 

on the polarization efficiency. 
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Figure 6.11: Rebars and anode potential and potential difference in relation with feeding 

voltage for partially submerged specimens at different chloride contents. 
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CHAPTER 7 SUMMARY, CONCLUSIONS AND FUTURE WORK 

7.1 Summary 

The research undertaken has been concerned with concrete resistivity, rebars corrosion and 

CP of reinforced concrete at different chloride contents and exposure conditions. The 

research programme was designed to provide an insight into some significant interactive 

factors which are directly related to the measurement of concrete resistivity and design 

process of the CP system.  

The main aims of the present work were to investigate the effect of chloride concentration, 

water content, exposure conditions, concrete resistivity and applied current density on the 

efficiency of CP in terms of the existing design criteria, and outline the information in order 

to obtain an optimal design parameters for corrosion protection. Reinforced concrete 

specimens had varied chloride and water contents have been examined. They were subjected 

to three different exposure conditions (air-exposure, fully and partially submerged in salty 

solutions). Constant current mode was used for the application of CP for the specimens of 

the air dried condition as it the most popular approach in practice for the structures exposed 

to atmospheric conditions. However, for submerged structures, the situation of the 

reinforcement is quite different. To understand if the constant current mode is efficient to 

provide adequate protection, a question still not very clear to date. An experimental 

investigation has been conducted to compare the two modes using constant CP current and 

constant CP potential for their effects referring to the existing CP design criteria.  

The research was also planned to investigate the key influencing factors on electrical 

resistivity of concrete, a key parameter in the design of CP. The optimal frequency and 

electrode configuration have been investigated for their effects on the measurement results. 

Specimens with internal CF electrodes and external electrodes made of CF and copper were 

compared under different alternative electrical current of frequencies. The key influencing 

factors include water to cement ratio, chloride contents and water saturation. 
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7.2 Conclusions 

Based on the results obtained in this work, the following conclusions can be drawn: 

Electrical Resistivity of Concrete 

1. To obtain a reliable measurement, low frequencies should be avoided as they give 

overestimation particularly in the case of using external electrodes. High frequency of 

10,000 Hz is recommended. 

 

2. Using internal electrodes of CF sheets is a more reliable, which improve the accuracy 

of the measurement of both saturated and unsaturated concrete specimens.  

 

3. A corrosion factor of 1.14 on average and can reach up to 1.22 in some cases could be 

applied for the resistivity values of unsaturated specimens measured at 60% RH using 

external electrodes. 

 

4. External CF sheets could be an alternative choice for copper plates to measure the 

resistivity of concrete particularly when inert, and flexible for better contact material 

is required. 

 

5. Amount of chloride and w/c ratio have an important influence on the resistivity of 

concrete. For the specimens with 0% Cl at saturated condition, increasing w/c ratio 

from 0.4 to 0.5 and from 0.4 to 0.6 led to 35 and 43% reduction in the resistivity value, 

respectively. While increasing total chloride content from 0 to 0.5% (by weight of dry 

concrete) for the specimens of w/c ratio of 0.4 at saturated condition, the resistivity 

decreased by 73%.  

 

6. RH which reflects the water content has a significant effect on the resistivity much 

more than chloride and w/c ratio. For the specimens of 0% Cl and 0.4 w/c, decreasing 

RH from 100 to 80% and from 100 to 60%, the resistivity increased from 6 to 113 

kΩ.cm and from 6 to 805 kΩ.cm, respectively. The electrical resistivity decreases 

sharply and nonlinearly with the increase of the water content. The higher the water 

content, the lower the electrical resistivity of the concrete. 
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7. Under the conditions of a certain chloride and relatively low water contents, the effect 

of the pore porosity evaluated in terms of the w/c in practical range on the electrical 

resistivity of the concrete can be neglected. However, at high water saturation, 

resistivity presents an approximately linear decrease with the increase of w/c.  

 

Cathodic Protection for Air Exposure Specimens  

1. The reinforcement in chloride free concrete is safe from corrosion. A total chloride 

content equivalent to 0.141% by concrete weight is sufficent to activate a severe 

corrosion of reinforcement, and severity of corrosion increases with the increase of 

chloride content. An approximately linear relationship exists between the resistivity 

of concrete and chloride content, while the relation between cholride content or the 

concrete resistivity with the reinforcement corrosion potentail can be represented 

using power function. 

 

2. A total chloride content of 0.055% by weight of concrete (equivalent to 0.32% by 

cement weight) or 17 kΩ.cm concrete electrical resisitivity, which showed to initiate 

corrosion, may be set as a threshold for CP implementation to protect the 

reinforcements in Portland concrete from corrosion. 

 

3. Running CP for 24 hrs is long enough to make assessment for the performance of CP. 

 

4. The recommended instant-off potential (-720 mV vs Ag/AgCl/0.5KCl) by the British 

standard as a criterion for the evaluation of CP system has not been achieved for the 

specimens with the selected chloride contents in this work even under the application 

of high CP current densities (i.e., 75 mA/m2 ). 

 

5. An instant-off potential of -500 mV with respect to Ag/AgCl/0.5KCl reference 

electrode can provide adequate protection for the reinforced concrete of up to 0.59 % 

chloride contamination by concrete weight (3.4% by weight of cement) , or with 

concrete resistivity of not less than 6.7 kΩ.cm. The adequacy of CP depends on the 

chloride content if the instant-off potential is less negative than -500 mV. 

 

6. The conventional 100 mV depolarization criterion for CP operation gives an over 

estimated protection that increases with the increase of the protection current 
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requirement. For the chloride contaminated reinforced concrete under atmospheric 

condition, half of the depolarization criterion, i.e., 50 mV, may be used for CP 

assessment. 

 

7. In term of the 100 mV depolarization criterion, the minimum current density required 

for sufficient protection is linearly proportional to the degree of chloride 

contamination with a slope of 136 mA/m2/total chloride percentage minus 7.5, or 

inversely proportional to the concrete resistivity with a slope of -6.5 and interception 

of 113.  

 

8. No sign of cracks or deterioration was observed at the concrete-embedded CF interface 

when CP current densities of 20 and 200 mA/m2 were applied, respectively, for 28 

days between the rebars and CF anode that embedded in concrete specimens. This 

reflects that using embedded CF as anode improves debonding issues that occur when 

contact materials (commercial conductive carbon aluminosilicate paste, carbon fibre 

reinforced mortar and carbon reinforced epoxy) that reported in previous publications 

were used as adhesives for external CF anode. 

 

Cathodic Protection for Submerged Specimens 

1. Corrosion potential can not be used as a stand –alone technique to indicate the real 

severity of corrosion for the fully submerged specimens as there was no clear 

relationship observed between the corrosion potential and chloride contents. 

 

2.  Measurements of chloride, concrete resistivity and corrosion rate are highly 

recommended to obtain a clear vision of the corrosion activity in structures exposed 

to high moisture. 

 

3. The water content and chloride content should be explicitly related to the corrosion 

state rather than through a single parameter of the concrete resistivity for the saturated 

specimens because the water content will affect the oxygen transportation in concrete, 

and the oxygen availability at the rebar surface will play an important role in the 

corrosion process, and this is unassessable by concrete resistivity 
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4. Adopting a constant current mode for CP operation of the fully submerged specimens 

is likely lead to overprotection and causing hydrogen evolution at the reinforcement 

surface. Using constant potential mode is more convenient than applying constant 

current mode and it is highly recommended for submerged structures. 

 

5. In terms of 100 mV depolarisation criterion, 4 or 24 hours is not applicable for 

assessing the performance CP where concrete structures are fully submerged due to 

the low availability of oxygen and the depolarization rate is less dependent on the 

chloride and CP current density. However, it can be adopted for the partially 

submerged specimens. Different parameters affect the depolarization value such as the 

magnitude of the applied protection current or potential, chloride concentration, 

exposure condition and oxygen existence and time of depolarization. 

 

6. The passing current which reflect the current demand to provide the required potential 

for a CP system increases with the increase of chloride content.  

 

7.3 Future Work 

An experimental investigation was carried out in this research and generated a significant 

laboratory and practical findings which expand the knowledge and understating when 

considering concrete resistivity measurement and designing cathodic protection for different 

site conditions. However, based on previous research and the present study, the following 

research areas would be very interesting. 

 

1. Using internal electrodes made of carbon fibre improved the accuracy of the electrical 

resistivity measurement for saturated and unsaturated concrete specimens. This was 

limited to laboratory investigation. Therefore, it is suggested to correlate this data with 

the obtained using 4-probe Wenner method, which is the most commonly technique 

used in practice. 

 

2. High corrosion rates reached up to 140 mA/m2 were measured for the submerged 

concrete specimens using linear polarization method. A research program may be 

carried out to determine corrosion rate for specimens with high moisture content using 

different test methodologies for comparison. 
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3. A research program to observe the microstructure of the contact zone between 

embedded carbon fibre anode and concrete surface. Scanning Electron Microscope 

(SEM) technique can be performed for the seek if there is any degradation. This needs 

to be undertaken before and after the application of cathodic protection. 

 

4. A research plan is suggested to study the influence of water level of the partially 

submerged laboratory columns under different chloride concentrations on the 100 mV 

depolarization design criteria. This study can also observe the variation of corrosion 

rate, corrosion potential, concrete resistivity and CP current distribution along the 

specimens. 

 

5. Unsaturated reinforced concrete specimens with different chloride and water contents 

can be investigated for corrosion potential, corrosion rate and CP under different 

temperatures. 

 

6. The benefit of rebars coating on the requirement of cathodic protection under various 

environmental condition can be investigated. 

 

7. The outcomes of this work are very useful to provide a design tool for the resistivity 

of concrete and calculation of cathodic protection current requirement in relation with 

the design criteria. 

 

8. In this study, only Portland cement was investigated. A research program is required 

to investigate the influence of different types of cement and additives on the threshold 

value of chloride, reinforcement corrosion resistance and cathodic protection 

requirements. 

 

9. Further work is also needed to compare carbon fibre sheet with the most widely used 

titanium mesh as anode in impressed current cathodic protection system. The 

comparison could include electrical and mechanical properties and service life. 

 



 

                                                                                                                        REFERENCES 

184 

 

REFERENCES 

Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and 

service life prediction––a review. Cement and Concrete Composites, 25(4–5), 459-471. 

doi:http://dx.doi.org/10.1016/S0958-9465(02)00086-0 

Ahmad, S., Jibran, M. A. A., Azad, A. K., and Maslehuddin, M. (2014). A simple and 

reliable setup for monitoring corrosion rate of steel rebars in concrete. The scientific world 

journal, 2014.  

Al-Sulaimani, G., Kaleemullah, M., and Basunbul, I. (1990). Influence of corrosion and 

cracking on bond behavior and strength of reinforced concrete members. ACI Structural 

Journal, 87(2).  

Ali, M. G., and Alsulaimani, G. J. (1993). Degradation of bond between reinforcing steel 

and concrete due to cathodic protection current. Materials Journal, 90(1), 8-15.  

Alonso, C., Andrade, C., Castellote, M., and Castro, P. (2000). Chloride threshold values to 

depassivate reinforcing bars embedded in a standardized OPC mortar. Cement and Concrete 

Research, 30(7), 1047-1055.  

Alonso, C., Andrade, C., and Gonzalez, J. (1988). Relation between resistivity and corrosion 

rate of reinforcements in carbonated mortar made with several cement types. Cement and 

Concrete Research, 18(5), 687-698.  

Andrade, C., and Alonso, C. (1996). Corrosion rate monitoring in the laboratory and on-site. 

Construction and Building Materials, 10(5), 315-328.  

Andrade, C., and Alonso, C. (2004). Test methods for on-site corrosion rate measurement 

of steel reinforcement in concrete by means of the polarization resistance method. Materials 

and Structures, 37(9), 623-643.  

Andrade, C., and Gonzalez, J. (1978). Quantitative measurements of corrosion rate of 

reinforcing steels embedded in concrete using polarization resistance measurements. 

Materials and Corrosion, 29(8), 515-519.  

http://dx.doi.org/10.1016/S0958-9465(02)00086-0


 

                                                                                                                        REFERENCES 

185 

 

Angst, U., Elsener, B., Larsen, C. K., and Vennesland, Ø. (2009). Critical chloride content 

in reinforced concrete—a review. Cement and Concrete Research, 39(12), 1122-1138.  

Angst, U. M., Elsener, B., Larsen, C. K., and Vennesland, Ø. (2011). Chloride induced 

reinforcement corrosion: electrochemical monitoring of initiation stage and chloride 

threshold values. Corrosion Science, 53(4), 1451-1464.  

Ann, K. Y., and Song, H.-W. (2007). Chloride threshold level for corrosion of steel in 

concrete. Corrosion Science, 49(11), 4113-4133.  

Araujo, A., Panossian, Z., and Lourenço, Z. (2013). Cathodic protection for concrete 

structures. Revista IBRACON de Estruturas e Materiais, 6(2), 178-193.  

Arya, C., Bioubakhsh, S., and Vassie, P. (2014). Chloride penetration in concrete subject to 

wet/dry cycling: influence of moisture content. Proceedings of the ICE - Structures and 

Buildings, 167(2), 94-107. doi:10.1680/stbu.12.00027 

Ashworth, V. (2010). Principles of Cathodic Protection. Shreir’s Corros., 2747-2762.  

ASTM C876. (2015). Standard test method for corrosion potentials of uncoated reinforcing 

steel in concrete: ASTM International, West Conshohocken, PA, USA. 

ASTM C1152/C1152M. (2012). Standard test method for acid-soluble chloride in mortar 

and concrete: ASTM International, West Conshohocken, PA, USA. 

ASTM C1218/C1218M. (2015). Standard test method for water-soluble chloride in mortar 

and concrete. ASTM International, West Conshohocken, PA, USA. 

ASTM C1760. (2012). Standard Test Method for Bulk Electrical Conductivity of Hardened 

Concrete  ASTM International, West Conshohocken, PA, USA. 

ASTM G5. (2014). Standard reference test method for making potentiodynamic anodic 

polarization measurements: ASTM International, West Conshohocken, PA, USA. 

Austin, S. A., Lyons, R., and Ing, M. (2004). Electrochemical behavior of steel-reinforced 

concrete during accelerated corrosion testing. Corrosion, 60(2), 203-212.  



 

                                                                                                                        REFERENCES 

186 

 

Azarsa, P., and Gupta, R. (2017). Electrical Resistivity of Concrete for Durability 

Evaluation: A Review. Advances in Materials Science and Engineering, 2017.  

Badea, G., Caraban, A., Sebesan, M., Dzitac, S., Cret, P., and Setel, A. (2010). Polarisation 

measurements used for corrosion rates determination. Journal of sustenable energy, 1.  

Banea, P. (2015). The study of electrical resistivity of mature concrete. TU Delft, Delft 

University of Technology.    

Banthia, N., Djeridane, S., and Pigeon, M. (1992). Electrical resistivity of carbon and steel 

micro-fiber reinforced cements. Cement and Concrete Research, 22(5), 804-814.  

Barnhart, R. (1982). FHWA position on cathodic protection systems. Memorandum of 

FHWA, FHWA, Washington, DC.  

Bastidas, D., Cobo, A., Otero, E., and González, J. (2008). Electrochemical rehabilitation 

methods for reinforced concrete structures: advantages and pitfalls. Corrosion Engineering, 

Science and Technology, 43(3), 248-255.  

Basu, B. (2016). Biomaterials for Musculoskeletal Regeneration: Concepts: Springer. 

Bentur, A., Berke, N., and Diamond, S. (1997). Steel corrosion in concrete: fundamentals 

and civil engineering practice: CRC Press. 

Berkeley, K., and Pathmanaban, S. (1990). Cathodic protection of reinforcement steel in 

concrete. london: Butterworth. 

Bertolini, L., Bolzoni, F., Cigada, A., Pastore, T., and Pedeferri, P. (1993). Cathodic 

protection of new and old reinforced concrete structures. Corrosion Science, 35(5–8), 1633-

1639. doi:http://dx.doi.org/10.1016/0010-938X(93)90393-U 

Bertolini, L., Bolzoni, F., Gastaldi, M., Pastore, T., Pedeferri, P., and Redaelli, E. (2009). 

Effects of cathodic prevention on the chloride threshold for steel corrosion in concrete. 

Electrochimica Acta, 54(5), 1452-1463. doi:10.1016/j.electacta.2008.09.033 

Bertolini, L., Bolzoni, F., Pedeferri, P., and Pastore, T. (1998). Cathodic protection of 

reinforcement in carbonated concrete. Retrieved from  

http://dx.doi.org/10.1016/0010-938X(93)90393-U


 

                                                                                                                        REFERENCES 

187 

 

Bertolini, L., Carsana, M., and Redaelli, E. (2008). Conservation of historical reinforced 

concrete structures damaged by carbonation induced corrosion by means of electrochemical 

realkalisation. Journal of Cultural Heritage, 9(4), 376-385.  

Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., and Polder, R. B. (2013). Corrosion of 

steel in concrete: prevention, diagnosis, repair (Second ed.). Germany: John Wiley & Sons. 

Bertolini, L., Yu, S., and Page, C. (1996). Effects of electrochemical chloride extraction on 

chemical and mechanical properties of hydrated cement paste. Advances in Cement 

Research, 8(31), 93-100.  

Bhargava, J., and Rehnstrom, A. (1978). Electrochemical aspects of electrical resistance 

gages for concrete. NASA STI/Recon Technical Report N, 79.  

Bird, J. O., and Chivers, P. (2014). Newnes engineering and physical science pocket book: 

Newnes. 

Bolzoni, F., Goidanich, S., Lazzari, L., and Ormellese, M. (2006). Corrosion inhibitors in 

reinforced concrete structures Part 2–Repair system. Corrosion Engineering, Science and 

Technology, 41(3), 212-220.  

Bremner, T., Hover, K., Poston, R., Broomfield, J., Joseph, T., Price, R., . . . Clifton, J. 

(2001). Protection of metals in concrete against corrosion. Retrieved from  

Broomfield, J. P. (2000). The principles and practice of galvanic cathodic protection for 

reinforced concrete structures. CPA Monograph(6).  

Broomfield, J. P. (2007). Corrosion of steel in concrete: understanding, investigation and 

repair (Second ed.). UK: Taylor & Francis. 

Browner, R. (1982). Design prediction of the life for reinforced concrete in marine and other 

chloride environments. Durability of building materials, 1(2), 113-125.  

BS EN 206. (2016). Concrete — Specification, performance, production and conformity: 

British Standards Institution, London. 

BS EN 14038-1. (2016). Electrochemical realkalization and chloride extraction treatments 

for reinforced concrete - Part 1: Realkalization: British Standards Institution, London. 



 

                                                                                                                        REFERENCES 

188 

 

BS EN 14629. (2007). Determination of chloride content in hardened concrete: British 

Standards Institution, London. 

BS EN ISO 8044. (2015). Corrosion of metals and alloys — Basic terms and definitions: 

British Standards Institution, London. 

BS EN ISO 12696. (2012). Cathodic protection of steel in concrete: British Standards 

Institution. 

Buenfeld, N. R., Glass, G. K., Hassanein, A. M., and Zhang, J.-Z. (1998). Chloride transport 

in concrete subjected to electric field. Journal of Materials in Civil Engineering, 10(4), 220-

228.  

Byrne, A., Holmes, N., and Norton, B. (2016). State-of-the-art review of cathodic protection 

for reinforced concrete structures. Magazine of Concrete Research, 68(13), 664-677.  

Cairns, J., and Melville, C. (2003). The effect of concrete surface treatments on electrical 

measurements of corrosion activity. Construction and Building Materials, 17(5), 301-309.  

Calleja, J. (1953). Determination of setting and hardening time of high-alumina cements by 

electrical resistance techniques. Paper presented at the Journal Proceedings. 

Carmona, J., Climent, M., and Garcés, P. (2016). Influence of different ways of chloride 

contamination on the efficiency of cathodic protection applied on structural reinforced 

concrete elements. Journal of Electroanalytical Chemistry.  

Carmona, J., Garcés, P., and Climent, M. (2015). Efficiency of a conductive cement-based 

anodic system for the application of cathodic protection, cathodic prevention and 

electrochemical chloride extraction to control corrosion in reinforced concrete structures. 

Corrosion Science, 96, 102-111.  

Cavalier, P., and Vassie, P. (1981). Investigation and repair of reinforcement corrosion in 

a bridge deck. Paper presented at the Institution of Civil Engineers, Proceedings, Pt 1. 

Chacko, R. M., Banthia, N., and Mufti, A. A. (2007). Carbon-fiber-reinforced cement-based 

sensors. Canadian Journal of Civil Engineering, 34(3), 284-290.  



 

                                                                                                                        REFERENCES 

189 

 

Chang, C., Song, G., Gao, D., and Mo, Y. L. (2013). Temperature and mixing effects on 

electrical resistivity of carbon fiber enhanced concrete. Smart Materials and Structures, 

22(3), 035021. doi:10.1088/0964-1726/22/3/035021 

Chang, J.-J., Yeih, W., and Huang, R. (1999). Degradation of the bond strength between 

rebar and concrete due to the impressed cathodic current. Journal of marine science and 

technology, 7(2), 89-93.  

Chaussadent, T., Nobel-Pujol, V., Farcas, F., Mabille, I., and Fiaud, C. (2006). Effectiveness 

conditions of sodium monofluorophosphate as a corrosion inhibitor for concrete 

reinforcements. Cement and Concrete Research, 36(3), 556-561.  

Checchetti, A., and Lanzo, J. (2015). Qualitative Measurement of pH and Mathematical 

Methods for the Determination of the Equivalence Point in Volumetric Analysis. World 

Journal of Chemical Education, 3(3), 64-69.  

Chemrouk, M. (2015). The deteriorations of reinforced concrete and the option of high 

performances reinforced concrete. Procedia Engineering, 125, 713-724.  

Chen, C.-T., Chang, J.-J., and Yeih, W.-c. (2014). The effects of specimen parameters on 

the resistivity of concrete. Construction and Building Materials, 71, 35-43. 

doi:10.1016/j.conbuildmat.2014.08.009 

Chess, P. M., and Broomfield, J. P. (2013). Cathodic protection of steel in concrete and 

masonry (Second ed.). USA: CRC Press. 

Cheung, M. M. S., and Cao, C. (2013). Application of cathodic protection for controlling 

macrocell corrosion in chloride contaminated RC structures. Construction & Building 

Materials, 45, 199-207. doi:10.1016/j.conbuildmat.2013.04.010 

Chynoweth, G., Stankie, R. R., Allen, W. L., Anderson, R. R., Babcock, W. N., Barlow, P., 

. . . Constantino, F. J. (1996). Concrete repair guide. ACI committee, concrete repair manual, 

546, 287-327.  

Committee, A. C. I. (1985). Corrosion of Metals in Concrete. Journal Proceedings, 82(1). 

doi:10.14359/10311 



 

                                                                                                                        REFERENCES 

190 

 

COST Action 509. (1997). Corrosion and Protection of Metals in Contact with Concrete, 

Final report (eds R.N. Cox, R. Cigna, O. Vennesland, and T. Valente), European 

Commission, Directorate General Science, Research and Development, Brussels, EUR 

17608 EN. Retrieved from  

COST Action 521. (2003). Corrosion of Steel in Reinforced Concrete Structures, Final 

Report, (eds R. Cigna, C. Andrade, U. Nürnberger, R. Polder, R. Weydert, and E. Seitz) 

European Commission, Directorate General for Research, EUR20599. Retrieved from  

Covino Jr, B. S., Cramer, S. D., Bullard, S. J., Holcomb, G. R., Russell, J. H., Collins, W. 

K., . . . Cryer, C. B. (2002). Performance of zinc anodes for cathodic protection of reinforced 

concrete bridges. Retrieved from  

Daily, S. F. (1999). Understanding corrosion and cathodic protection of reinforced concrete 

structures: Corrpro Companies, Incorporated. 

Davis, J. R. (2000). Corrosion: Understanding the basics: ASM International. 

DD CEN/TS 14038-2. (2011). Electrochemical realkalisation and chloride extraction for 

reinforced concrete. Part 2: Chloride extraction, European technical specification.: British 

Standards Institution, London. 

De Schutter, G. (2012). Damage to concrete structures: Crc Press. 

Dhir, R., Jones, M., and Ahmed, H. (1990). Determination of total and soluble chlorides in 

concrete. Cement and Concrete Research, 20(4), 579-590.  

Dugarte, M., and Sag, A. A. (2009). Galvanic point anodes for extending the service life of 

patched areas upon reinforced concrete bridge members. Retrieved from  

Elkey, W., and Sellevold, E. J. (1995). Electrical resistivity of concrete.  

Elsener, B. (2001). Corrosion inhibitors for steel in concrete: state of the art report (Vol. 

773): Maney Pub. 



 

                                                                                                                        REFERENCES 

191 

 

Elsener, B., Andrade, C., Gulikers, J., Polder, R., and Raupach, M. (2003). Hall-cell 

potential measurements—Potential mapping on reinforced concrete structures. Materials 

and Structures, 36(7), 461-471.  

Evans, U. R. (1960). The corrosion and oxidation of metals: scientific principles and 

practical application: Edward Arnold. 

Farnam, Y., Todak, H., Spragg, R., and Weiss, J. (2015). Electrical response of mortar with 

different degrees of saturation and deicing salt solutions during freezing and thawing. 

Cement and Concrete Composites, 59, 49-59.  

Feliu, S., Gonzalez, J. A., and Andrade, C. (1996). Electrochemical methods for on-site 

determinations of corrosion rates of rebars Techniques to assess the corrosion activity of 

steel reinforced concrete structures: ASTM International. 

Fontana, M. G. (2005). Corrosion engineering: Tata McGraw-Hill Education. 

Ghods, P., Chini, M., Hoseini, M., and Alizadeh, R. (2005). Evaluating the chloride 

diffusion of concrete by measuring electrical resistivity. Paper presented at the International 

Congress-Global Construction: Ultimate Concrete Opportunities, Proceedings of the 

International Conference on Young Researchers' Forum. 

Ghods, P., Isgor, O., Brown, J., Bensebaa, F., and Kingston, D. (2011). XPS depth profiling 

study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and 

the effect of chloride on the film properties. Applied Surface Science, 257(10), 4669-4677.  

Gjørv, O. E., Vennesland, Ø. E., and El-Busaidy, A. (1977). Electrical resistivity of concrete 

in the oceans. Paper presented at the Offshore Technology Conference. 

Glass, G., and Buenfeld, N. (1997). The presentation of the chloride threshold level for 

corrosion of steel in concrete. Corrosion Science, 39(5), 1001-1013.  

Glasser, F., and Sagoe-Crentsil, K. (1989). Steel in concrete: Part II Electron microscopy 

analysis. Magazine of Concrete Research, 41(149), 213-220.  

González, F., Fajardo, G., Arliguie, G., Juárez, C., and Escadeillas, G. (2011). 

Electrochemical realkalisation of carbonated concrete: An alternative approach to 



 

                                                                                                                        REFERENCES 

192 

 

prevention of reinforcing steel corrosion. International Journal of Electrochemical Science, 

6(12), 6332-6349.  

Gonzalez, J., and Andrade, C. (1982). Effect of carbonation, chlorides and relative ambient 

humidity on the corrosion of galvanized rebars embedded in concrete. British Corrosion 

Journal, 17(1), 21-28.  

Gonzalez, J., Miranda, J., and Feliu, S. (2004). Considerations on reproducibility of potential 

and corrosion rate measurements in reinforced concrete. Corrosion Science, 46(10), 2467-

2485.  

Gower, M., and Windsor, D. (2000). Cathodic protection and condition monitoring: 

residential tower block, N. Lanarkshire. Structural Engineer.  

Gowers, K., and Millard, S. (1999). Electrochemical techniques for corrosion assessment of 

reinforced concrete structures. Proceedings of the Institution of Civil Engineers. Structures 

and buildings, 134(2), 129-137.  

Gu, P., and Beaudoin, J. J. (1998). Obtaining effective half-cell potential measurements in 

reinforced concrete structures: Institute for Research in Construction, National Research 

Council of Canada Ottawa. 

Gummow, R. (1993). Cathodic protection potential criterion for underground steel 

structures. Materials Performance, 32(11).  

Hammond, E., and Robson, T. (1955). Comparison of electrical properties of various 

cements and concretes. The Engineer, 199(5165), 78-80.  

Hansson, C. (1984). Comments on electrochemical measurements of the rate of corrosion 

of steel in concrete. Cement and Concrete Research, 14(4), 574-584.  

Hansson, C., Poursaee, A., and Laurent, A. (2006). Macrocell and microcell corrosion of 

steel in ordinary Portland cement and high performance concretes. Cement and Concrete 

Research, 36(11), 2098-2102.  

Hansson, C. M., Poursaee, A., and Jaffer, S. J. (2012). Corrosion of reinforcing bars in 

concrete. Portland Cement Association (PCA), PCA R&D Serial(3013).  



 

                                                                                                                        REFERENCES 

193 

 

Hansson, I., and Hansson, C. (1983). Electrical resistivity measurements of Portland cement 

based materials. Cement and Concrete Research, 13(5), 675-683.  

Haque, M., and Kayyali, O. (1993). Aspects of chloride ion determination in concrete. Aci 

Materials Journal, 92(5).  

Hassanein, A. M., Glass, G. K., and Buenfeld, N. R. (2002). Protection current distribution 

in reinforced concrete cathodic protection systems. Cement and Concrete Composites, 

24(1), 159-167. doi:http://dx.doi.org/10.1016/S0958-9465(01)00036-1 

Haupt, S., and Strehblow, H. (1987). Corrosion, layer formation, and oxide reduction of 

passive iron in alkaline solution: a combined electrochemical and surface analytical study. 

Langmuir, 3(6), 873-885.  

Hausmann, D. (1967). Steel corrosion in concrete--How does it occur? Materials protection.  

Henry, R. L. (1964). Water Vapor Transmission and Electrical Resistivity of Concrete. 

Retrieved from  

Hong, D., Fan, W., Luo, D., Ge, Y., and Zhu, Y. (1993). Study and application of impressed 

current cathodic protection technique for atmospherically exposed salt-contaminated 

reinforced concrete structures. Aci Materials Journal, 90(1).  

Hope, B. B., Ip, A. K., and Manning, D. G. (1985). Corrosion and electrical impedance in 

concrete. Cement and Concrete Research, 15(3), 525-534. 

doi:http://dx.doi.org/10.1016/0008-8846(85)90127-9 

Hope, B. B., Page, J. A., and Poland, J. S. (1985). The determination of the chloride content 

of concrete. Cement and Concrete Research, 15(5), 863-870.  

Hornbostel, K., Larsen, C. K., and Geiker, M. R. (2013). Relationship between concrete 

resistivity and corrosion rate–a literature review. Cement and Concrete Composites, 39, 60-

72.  

Hoseini, M., Cumming, N., Fussell, J., and Cook, S. (2016). Rehabilitation and Maintenance 

of Reinforced Concrete Bridge Decks using Cathodic Protection System-A 30-year old Case 

http://dx.doi.org/10.1016/S0958-9465(01)00036-1
http://dx.doi.org/10.1016/0008-8846(85)90127-9


 

                                                                                                                        REFERENCES 

194 

 

Study. Paper presented at the TAC 2016: Efficient Transportation-Managing the Demand-

2016 Conference and Exhibition of the Transportation Association of Canada. 

Hou, Z., Li, Z., and Wang, J. (2010). Electrically conductive concrete for heating using steel 

bars as electrodes. Journal of Wuhan University of Technology-Mater. Sci. Ed., 25(3), 523-

526. doi:10.1007/s11595-010-0035-x 

Huang, R., Chang, J.-J., and Wu, J.-K. (1996). Correlation between corrosion potential and 

polarization resistance of rebar in concrete. Materials Letters, 28(4), 445-450.  

Hughes, B., Soleit, A., and Brierley, R. (1985). New technique for determining the electrical 

resistivity of concrete. Magazine of Concrete Research, 37(133), 243-248.  

Hunkeler, F. (1996). The resistivity of pore water solution—a decisive parameter of rebar 

corrosion and repair methods. Construction and Building Materials, 10(5), 381-389.  

Hussain, R. R., and Ishida, T. (2012). Multivariable Empirical Analysis of Coupled Oxygen 

and Moisture for Potential and Rate of Quantitative Corrosion in Concrete. Journal of 

Materials in Civil Engineering, 24(7), 950-958. doi:10.1061/(asce)mt.1943-5533.0000474 

Jeong, J.-A., Jin, C.-K., and Chung, W.-S. (2012). Tidal water effect on the hybrid cathodic 

protection systems for marine concrete structures. Journal of Advanced Concrete 

Technology, 10(12), 389-394.  

Joiret, S., Keddam, M., Nóvoa, X., Pérez, M., Rangel, C., and Takenouti, H. (2002). Use of 

EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed 

on iron in 1 M NaOH. Cement and Concrete Composites, 24(1), 7-15.  

Katwan, M. (1999). Corrosion of steel reinforcement  in concrete. Paper presented at the 

Proceeding of the fourth conference for corrosion and corrosion prevention in industry, Iraq. 

Katwan, M., and Al-Sofi, G. (1999). TECHNICAL ASPECTS OF CONCRETE 

RESISTANCE MEASUREMENT. Paper presented at the Controlling Concrete Degradation: 

Proceedings of the International Seminar Held at the University of Dundee, Scotland, UK 

on 7 September 1999. 



 

                                                                                                                        REFERENCES 

195 

 

Katwan, M. J. (1988). Corrosion fatique of reinforced concrete, PhD thesis. University of 

Glasgow, Glasgow, UK, ,  http://theses.gla.ac.uk/5327/.  

Katwan, M. J. (2000). Corrosion of stell reinforcement in concrete, durabilty problem No.1. 

Iraq: Ministry of housing and construction, national centre for construction labs   

 

Kendell, K. (1995). A five year review of the application of cathodic protection to various 

industrial concrete structures in the arabian gulf. Paper presented at the second regional 

concrete durability in the Arabian Gulf, Bahrain.  

Kepler, J. L., Darwin, D., and Locke, C. E. (2000). Evaluation of corrosion protection 

methods for reinforced concrete highway structures. Kansas department of transportation 

K-tran project No. Ku-99-6, University of Kansas centre for research, Inc. Lawrence, 

Kansas, , http://www2.ku.edu/~iri/projects/corrosion/SM58.PDF.  

Kerkhoff, B. (2007). Effects of substances on concrete and guide to protective treatments: 

Portland Cement Association Skokie. 

Koch, G. H., Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, Y. P., and Payer, 

J. H. (2002). HISTORIC CONGRESSIONAL STUDY: CORROSION COSTS AND 

PREVENTIVE STRATEGIES IN THE UNITED STATES. Retrieved from  

Kranc, S., Sagues, A. A., and Presuel-Moreno, F. J. (1997). Computational and experimental 

investigation of cathodic protection distribution in reinforced concrete marine piling. Paper 

presented at the CORROSION-NATIONAL ASSOCIATION OF CORROSION 

ENGINEERS ANNUAL CONFERENCE-. 

Kupwade-Patil, K., and Allouche, E. N. (2012). Examination of chloride-induced corrosion 

in reinforced geopolymer concretes. Journal of Materials in Civil Engineering, 25(10), 

1465-1476.  

Küter, A. (2009). Management of Reinforcement Corrosion: A Thermodynamic Approach. 

Technical University of Denmark (DTU).    

http://theses.gla.ac.uk/5327/
http://www2.ku.edu/~iri/projects/corrosion/SM58.PDF


 

                                                                                                                        REFERENCES 

196 

 

Lambert, P., Van Nguyen, C., Mangat, P. S., O’Flaherty, F. J., and Jones, G. (2015). Dual 

function carbon fibre fabric strengthening and impressed current cathodic protection (ICCP) 

anode for reinforced concrete structures. Materials and Structures, 48(7), 2157-2167.  

Langford, P., and Broomfield, J. (1987). Monitoring the corrosion of reinforcing steel. 

Construction Repair, 1(2).  

Layssi, H., Ghods, P., Alizadeh, A. R., and Salehi, M. (2015). Electrical Resistivity of 

Concrete: Concepts, applications, and measurement techniques. Concrete international, 

37(5), 41-46.  

Lian, C., Zhuge, Y., and Beecham, S. (2011). The relationship between porosity and strength 

for porous concrete. Construction and Building Materials, 25(11), 4294-4298. 

doi:10.1016/j.conbuildmat.2011.05.005 

Liu, Y., and Shi, X. (2009a). Cathodic protection technologies for reinforced concrete: 

introduction and recent developments. Reviews in Chemical Engineering, 25(5-6), 339-388.  

Liu, Y., and Shi, X. (2009b). Electrochemical chloride extraction and electrochemical 

injection of corrosion inhibitor in concrete: state of the knowledge. Corrosion reviews, 27(1-

2), 53-82.  

Lorenz, W., and Mansfeld, F. (1981). Determination of corrosion rates by electrochemical 

DC and AC methods. Corrosion Science, 21(9-10), 647-672.  

Lübeck, A., Gastaldini, A., Barin, D., and Siqueira, H. (2012). Compressive strength and 

electrical properties of concrete with white Portland cement and blast-furnace slag. Cement 

and Concrete Composites, 34(3), 392-399.  

Mailvaganam, N. P., and Rixom, M. (2002). Chemical admixtures for concrete: CRC Press. 

Mansfeld, F. (1981). Electrochemical corrosion testing (Vol. 727): ASTM International. 

Marcotte, T., Hansson, C., and Hope, B. (1999). The effect of the electrochemical chloride 

extraction treatment on steel-reinforced mortar Part II: Microstructural characterization. 

Cement and Concrete Research, 29(10), 1561-1568.  



 

                                                                                                                        REFERENCES 

197 

 

Martínez, I., and Andrade, C. (2008). Application of EIS to cathodically protected steel: 

Tests in sodium chloride solution and in chloride contaminated concrete. Corrosion Science, 

50(10), 2948-2958. doi:10.1016/j.corsci.2008.07.012 

McCafferty, E. (2010). Introduction to Corrosion Science: Springer Science & Business 

Media. 

McCarter, W., Taha, H., Suryanto, B., and Starrs, G. (2015). Two-point concrete resistivity 

measurements: interfacial phenomena at the electrode–concrete contact zone. Measurement 

Science and Technology, 26(8), 085007.  

Medeiros-Junior, R. A., and Lima, M. G. (2016). Electrical resistivity of unsaturated 

concrete using different types of cement. Construction and Building Materials, 107, 11-16.  

Medeiros, M., Rocha, F., Medeiros-JUNIOR, R., and Helene, P. (2017). Corrosion potential: 

influence of moisture, water-cement ratio, chloride content and concrete cover. Revista 

IBRACON de Estruturas e Materiais, 10(4), 864-885.  

Mietz, J. (1998). Electrochemical Rehabilitation Methods for Reinforced Concrete 

Structures – A State of the Art Report, European Federation of Corrosion Publication 

number 24, IOM Communications, London. Retrieved from  

MILLER, J. B. (1994). Structural Aspect of High Powered Electrochemical Treatment of 

Reinforced Concrete’. Corrosion and Corrosion Protection of Steel in Concrete, ed. By Prof. 

R.N. Swamy, Academic Press, Sheffield, ISBN 1 85075 723 2.  

Miranda, J., González, J., Cobo, A., and Otero, E. (2006). Several questions about 

electrochemical rehabilitation methods for reinforced concrete structures. Corrosion 

Science, 48(8), 2172-2188.  

Mohammed, T., and Hamada, H. (2003). Relationship between free chloride and total 

chloride contents in concrete. Cement and Concrete Research, 33(9), 1487-1490.  

Monfore, G. (1968). The electrical resistivity of concrete. Journal of the PCA Research 

andDevelopment Laboratories, 10(2), 35-48.  



 

                                                                                                                        REFERENCES 

198 

 

Montemor, M., Simoes, A., and Salta, M. (2000). Effect of fly ash on concrete reinforcement 

corrosion studied by EIS. Cement and Concrete Composites, 22(3), 175-185.  

Montemor, M. F., Simões, A. M. P., and Ferreira, M. G. S. (2003). Chloride-induced 

corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cement 

and Concrete Composites, 25(4–5), 491-502. doi:http://dx.doi.org/10.1016/S0958-

9465(02)00089-6 

Montenegro, I., Queirós, M. A., and Daschbach, J. L. (2012). Microelectrodes: theory and 

applications (Vol. 197): Springer Science & Business Media. 

Moore, W. J. (1975). A Comparison of Corrosion Rates Determined by Polarization 

Resistance Measurements for Zinc and Cadmium Metal Immersed in Nonstirred Aqueous 

Portland Cement Solution.  

Morris, W., Moreno, E., and Sagüés, A. (1996). Practical evaluation of resistivity of concrete 

in test cylinders using a Wenner array probe. Cement and Concrete Research, 26(12), 1779-

1787.  

Morris, W., Vico, A., and Vázquez, M. (2004). Chloride induced corrosion of reinforcing 

steel evaluated by concrete resistivity measurements. Electrochimica Acta, 49(25), 4447-

4453. doi:10.1016/j.electacta.2004.05.001 

Morris, W., Vico, A., Vazquez, M., and de Sanchez, S. R. (2002). Corrosion of reinforcing 

steel evaluated by means of concrete resistivity measurements. Corrosion Science, 44(1), 

81-99. doi:http://dx.doi.org/10.1016/S0010-938X(01)00033-6 

Mundra, S., Criado, M., Bernal, S. A., and Provis, J. L. (2017). Chloride-induced corrosion 

of steel rebars in simulated pore solutions of alkali-activated concretes. Cement and 

Concrete Research, 100, 385-397.  

NACE SP0290. (2007). Impressed current cathodic protection of reinforcing steel in 

atmospherically exposed concrete structures: NACE International, Houston, TX, USA. 

Naish, C., Harker, A., and Carney, R. (1990). Concrete Inspection-Interpretation of 

Potential and Resistivity Measurements. 

http://dx.doi.org/10.1016/S0958-9465(02)00089-6
http://dx.doi.org/10.1016/S0958-9465(02)00089-6
http://dx.doi.org/10.1016/S0010-938X(01)00033-6


 

                                                                                                                        REFERENCES 

199 

 

Nawy, E. G. (2008). Concrete construction engineering handbook: CRC press. 

Neville, A. (1995). Chloride attack of reinforced concrete: an overview. Materials and 

Structures, 28(2), 63-70.  

Neville, A. M. (1995). Properties of concrete (Vol. 4): Longman London. 

Newlands, M. D., Jones, M. R., Kandasami, S., and Harrison, T. A. (2008). Sensitivity of 

electrode contact solutions and contact pressure in assessing electrical resistivity of concrete. 

Materials and Structures, 41(4), 621.  

Ngala, V., Page, C., and Page, M. (2003). Corrosion inhibitor systems for remedial treatment 

of reinforced concrete. Part 2: sodium monofluorophosphate. Corrosion Science, 45(7), 

1523-1537.  

Novokshchenov, V. (1997). Corrosion surveys of prestressed bridge members using a half-

cell potential technique. Corrosion, 53(6), 489-498.  

Oelssner, W., Berthold, F., and Guth, U. (2006). The iR drop–well‐known but often 

underestimated in electrochemical polarization measurements and corrosion testing. 

Materials and Corrosion, 57(6), 455-466.  

Oh, B. H., Jang, S. Y., and Shin, Y. (2003). Experimental investigation of the threshold 

chloride concentration for corrosion initiation in reinforced concrete structures. Magazine 

of Concrete Research, 55(2), 117-124.  

Ohtsuka, T., Nishikata, A., Sakairi, M., and Fushimi, K. (2017). Electrochemistry for 

Corrosion Fundamentals: Springer. 

Orellan, J., Escadeillas, G., and Arliguie, G. (2004). Electrochemical chloride extraction: 

efficiency and side effects. Cement and Concrete Research, 34(2), 227-234.  

Osterminski, K., Polder, R. B., and Schießl, P. (2012). Long term behaviour of the resistivity 

of concrete. Heron, 57 (2012) 3.  

Page, C., and Havdahl, J. (1985). Electrochemical monitoring of corrosion of steel in 

microsilica cement pastes. Materials and Structures, 18(1), 41-47.  



 

                                                                                                                        REFERENCES 

200 

 

Page, C., and Lambert, P. (1986). Analytical and electrochemical investigations of 

reinforcement corrosion (0266-7045). Retrieved from  

Page, C. L., and Page, M. M. (2007). Durability of concrete and cement composites: 

Elsevier. 

Page, C. L., and Sergi, G. (2000). Developments in cathodic protection applied to reinforced 

concrete. Journal of Materials in Civil Engineering, 12(1), 8-15.  

Papadakis, V., Fardis, M., and Vayenas, C. (1992). Effect of composition, environmental 

factors and cement-lime mortar coating on concrete carbonation. Materials and Structures, 

25(5), 293-304.  

Pargar, F., Koleva, D. A., and van Breugel, K. (2017). Determination of Chloride Content 

in Cementitious Materials: From Fundamental Aspects to Application of Ag/AgCl Chloride 

Sensors. Sensors, 17(11), 2482.  

Parthiban, G. T., Parthiban, T., Ravi, R., Saraswathy, V., Palaniswamy, N., and Sivan, V. 

(2008). Cathodic protection of steel in concrete using magnesium alloy anode. Corrosion 

Science, 50(12), 3329-3335. doi:10.1016/j.corsci.2008.08.040 

Pastore, T., Pedeferri, P., Bertolini, L., and Bolzoni, F. (1991). Current distribution in 

cathodically protected concrete slabs. GTE Rendezveny Iroda gondozasaban(Hungary), 

676-681.  

Pedeferri, P. (1996). Cathodic protection and cathodic prevention. Construction and 

Building Materials, 10(5), 391-402. doi:http://dx.doi.org/10.1016/0950-0618(95)00017-8 

Pei, H., Li, Z., Zhang, J., and Wang, Q. (2015). Performance investigations of reinforced 

magnesium phosphate concrete beams under accelerated corrosion conditions by multi 

techniques. Construction and Building Materials, 93, 989-994.  

Perez, N. (2004). Electrochemistry and corrosion science (Vol. 412): Springer. 

Pithouse, K. B. (1986). The cathodic protection of steel reinforcement in concrete. 

CORROSION PREVENTION & CONTROL(October), 113-119.  

http://dx.doi.org/10.1016/0950-0618(95)00017-8


 

                                                                                                                        REFERENCES 

201 

 

Polder, R. B. (1998). Cathodic protection of reinforced concrete structures in The 

Netherlands-experience and developments. Book-Institute of Materials, 710, 172-183.  

Polder, R. B. (2001). Test methods for on site measurement of resistivity of concrete—a 

RILEM TC-154 technical recommendation. Construction and Building Materials, 15(2), 

125-131.  

Polder, R. B. (2009). Critical chloride content for reinforced concrete and its relationship to 

concrete resistivity. Materials and Corrosion, 60(8), 623-630. 

doi:10.1002/maco.200905302 

Polder, R. B., Leegwater, G., Worm, D., and Courage, W. (2014). Service life and life cycle 

cost modelling of cathodic protection systems for concrete structures. Cement and Concrete 

Composites, 47, 69-74. doi:10.1016/j.cemconcomp.2013.05.004 

Popoola, A., Olorunniwo, O., and Ige, O. (2014). Corrosion resistance through the 

application of anti-corrosion coatings. In M. Aliofkhazraei (Ed.), Developments in 

Corrosion Protection (pp. 241-270): InTech, DOI: 10.5772/57420.  

Popov, B. N. (2015). Corrosion engineering: principles and solved problems: Elsevier. 

Poulsen, E. (1995). Chloride profiles–Analysis and interpretation of observations. 

AEClaboratory, Vadbaek.  

Poursaee, A. (2016). Corrosion of Steel in Concrete Structures: Woodhead Publishing. 

Poursaee, A., and Hansson, C. (2009). Potential pitfalls in assessing chloride-induced 

corrosion of steel in concrete. Cement and Concrete Research, 39(5), 391-400.  

Pradhan, B. (2014). Corrosion behavior of steel reinforcement in concrete exposed to 

composite chloride–sulfate environment. Construction and Building Materials, 72, 398-410.  

Princigallo, A., van Breugel, K., and Levita, G. (2003). Influence of the aggregate on the 

electrical conductivity of Portland cement concretes. Cement and Concrete Research, 

33(11), 1755-1763.  



 

                                                                                                                        REFERENCES 

202 

 

Qian, S., Zhang, J., and Qu, D. (2006). Theoretical and experimental study of microcell and 

macrocell corrosion in patch repairs of concrete structures. Cement and Concrete 

Composites, 28(8), 685-695.  

Qiao, G., Guo, B., Ou, J., Xu, F., and Li, Z. (2016). Numerical optimization of an impressed 

current cathodic protection system for reinforced concrete structures. Construction and 

Building Materials, 119, 260-267.  

Raj, M., and Muthupriya, P. (2016). Determination of concrete carbonation depth by 

experimental investigation. International Journal of Engineering Science Invention 

Research & Development, II(VIII February).  

Rasheeduzzafar, F. H. D., Bader, M. A., and Khan, M. M. (1992). Performance of 

Corrosion-Resisting Steels in Chloride-Bearing Concrete. Aci Materials Journal, 89(5).  

Redaelli, E., and Bertolini, L. (2011). Electrochemical repair techniques in carbonated 

concrete. Part I: electrochemical realkalisation. Journal of Applied Electrochemistry, 41(7), 

817-827.  

Ribeiro, P., Meira, G., Ferreira, P., and Perazzo, N. (2013). Electrochemical realkalisation 

of carbonated concretes–Influence of material characteristics and thickness of concrete 

reinforcement cover. Construction and Building Materials, 40, 280-290.  

Robinson, R. (1975). Cathodic protection of steel in concrete. ACI Special Publication, 49.  

Rosenberg, A., Hansson, C., and Andrade, C. (1989). Mechanisms of corrosion of steel in 

concrete. Materials science of concrete, 1, 285-314.  

Roy, S., Poh, K., and Northwood, D. (1999). Durability of concrete—accelerated 

carbonation and weathering studies. Building and environment, 34(5), 597-606.  

Sadowski, L. (2013). Methodology for assessing the probability of corrosion in concrete 

structures on the basis of half-cell potential and concrete resistivity measurements. The 

scientific world journal.  



 

                                                                                                                        REFERENCES 

203 

 

Sadowski, L., and Nikoo, M. (2014). Corrosion current density prediction in reinforced 

concrete by imperialist competitive algorithm. Neural Computing and Applications, 25(7-

8), 1627-1638.  

Saleem, M., Shameem, M., Hussain, S., and Maslehuddin, M. (1996). Effect of moisture, 

chloride and sulphate contamination on the electrical resistivity of Portland cement concrete. 

Construction and Building Materials, 10(3), 209-214.  

Saremi, M., and Mahallati, E. (2002). A study on chloride-induced depassivation of mild 

steel in simulated concrete pore solution. Cement and Concrete Research, 32(12), 1915-

1921.  

Sathiyanarayanan, S., Natarajan, P., Saravanan, K., Srinivasan, S., and Venkatachari, G. 

(2006). Corrosion monitoring of steel in concrete by galvanostatic pulse technique. Cement 

and Concrete Composites, 28(7), 630-637.  

Schweitzer, P. A. (2009). Fundamentals of corrosion: mechanisms, causes, and preventative 

methods: CRC Press. 

Sellevold, E., Larsen, C., and Blankvoll, A. (1997). Moisture state of concrete in a coastal 

ridge. Special Publication, 170, 823-834.  

Sengul, O. (2014). Use of electrical resistivity as an indicator for durability. Construction 

and Building Materials, 73, 434-441.  

Sergi, G., Page, C., and Thompson, D. (1991). Electrochemical induction of alkali-silica 

reaction in concrete. Materials and Structures, 24(5), 359-361.  

Shakouri, M., Trejo, D., and Gardoni, P. (2017). A probabilistic framework to justify 

allowable admixed chloride limits in concrete. Construction and Building Materials, 139, 

490-500.  

Shi, X., Cross, J. D., Ewan, L., Liu, Y., and Fortune, K. (2011). Replacing thermal sprayed 

zinc anodes on cathodically protected steel reinforced concrete bridges. Oregon Department 

of Transportation Research Section and Federal Highway Administration, Washington, , 

http://www.trb.org/BridgesOtherStructures/Blurbs/166080.aspx.  

http://www.trb.org/BridgesOtherStructures/Blurbs/166080.aspx


 

                                                                                                                        REFERENCES 

204 

 

Siddiqi, Z. A. (2012). Concrete Structures Part-II (Vol. 2): Zahid Ahmad Siddiqi. 

Sims, I. (1994). The assessment of concrete for carbonation. Concrete, 28(6).  

Smith, J., and Virmani, Y. P. (2000). Materials and methods for corrosion control of 

reinforced and prestressed concrete structures in new construction. Retrieved from  

Soleymani, H. R., and Ismail, M. E. (2004). Comparing corrosion measurement methods to 

assess the corrosion activity of laboratory OPC and HPC concrete specimens. Cement and 

Concrete Research, 34(11), 2037-2044.  

Solomon, I., Bird, M. F., and Phang, B. (1993). An economic solution for the cathodic 

protection of concrete columns using a conductive tape system. Corrosion Science, 35(5), 

1649-1660.  

Song, H.-W., and Saraswathy, V. (2007a). Corrosion Monitoring of Reinforced Concrete 

Structures-A. Int. J. Electrochem. Sci, 2, 1-28.  

Song, H.-W., and Saraswathy, V. (2007b). Corrosion Monitoring of Reinforced Concrete 

Structures-A Review. Int. J. Electrochem. Sci, 2, 1-28.  

Söylev, T. A., and Richardson, M. (2008). Corrosion inhibitors for steel in concrete: State-

of-the-art report. Construction and Building Materials, 22(4), 609-622.  

Stanish, K., Hooton, R., and Thomas, M. (1997). Testing the chloride penetration resistance 

of concrete: a literature review. Dep. Of Civil Eng., University of Toronto.  

Stern, M., and Geary, A. L. (1957). Electrochemical polarization I. A theoretical analysis of 

the shape of polarization curves. Journal of the electrochemical society, 104(1), 56-63.  

Su, J. K., Yang, C. C., Wu, W. B., and Huang, R. (2002). Effect of moisture content on 

concrete resistivity measurement. Journal of the Chinese Institute of Engineers, 25(1), 117-

122.  

Sulapha, P., Wong, S., Wee, T., and Swaddiwudhipong, S. (2003). Carbonation of concrete 

containing mineral admixtures. Journal of Materials in Civil Engineering, 15(2), 134-143.  



 

                                                                                                                        REFERENCES 

205 

 

Takewaka, K. (1993). Cathodic protection for reinforced-concrete and prestressed-concrete 

structures. Corrosion Science, 35(5-8), 1617-1626.  

Tilly, G., and Jacobs, J. (2007). Concrete repairs: Performance in service and current 

practice: IHS BRE Press. 

Torres-Acosta, A. A., Sen, R., and Martínez-Madrid, M. (2004). Cathodic Protection of 

Reinforcing Steel in Concrete Using Conductive-Polymer System. Journal of Materials in 

Civil Engineering, 16(4), 315-321. doi:10.1061/(ASCE)0899-1561(2004)16:4(315) 

Tremper, B., Beaton, J. L., and Stratfull, R. (1958). Causes and repair of deterioration to a 

california bridge due to corrosion of reinforcing steel in a marine environment. Part ii: 

fundamental factors causing corrosion. Highway Research Board Bulletin(182).  

Trethewey, K. R., and Chamberlain, J. (1995). Corrosion for science and engineering. 

England: longman. 

Teychenné, D. C., Franklin, R. E., and Erntroy, H. C. (1997). Design of normal concrete 

mixes (Second ed.). UK: Construction Research Communications Ltd. 

Tuutti, K. (1980). Service life of structures with regard to corrosion of embedded steel. 

Special Publication, 65, 223-236.  

Tuutti, K. (1982). Corrosion of steel in concrete. Swedish Cement and Concrete Research 

Institute.    

Van Nguyen, C., Lambert, P., Mangat, P., O’Flaherty, F., and Jones, G. (2012). The 

performance of carbon fibre composites as iccp anodes for reinforced concrete structures. 

ISRN Corrosion, 2012, 1-9. doi:10.5402/2012/814923 

Van Noort, R., Hunger, M., and Spiesz, P. (2016). Long-term chloride migration coefficient 

in slag cement-based concrete and resistivity as an alternative test method. Construction and 

Building Materials, 115, 746-759.  

Verma, S. K., Bhadauria, S. S., and Akhtar, S. (2014). Monitoring corrosion of steel bars in 

reinforced concrete structures. The scientific world journal.  



 

                                                                                                                        REFERENCES 

206 

 

Villagrán Zaccardi, Y. A., and Di Maio, Á. A. (2014). Electrical resistivity measurement of 

unsaturated concrete samples. Magazine of Concrete Research, 66(10), 484-491. 

doi:10.1680/macr.13.00207 

Virmani, Y. P., and Clemena, G. G. (1998). Corrosion Protection-Concrete Bridges. 

Retrieved from  

Walter, G. (1978). The effect of IR-drop on corrosion rates calculated from low polarization 

data. Corrosion Science, 18(10), 927-945.  

Wang, Y., Wang, X., Scholz, M., and Ross, D. (2012). A physico-chemical model for the 

water vapour sorption isotherm of hardened cementitious materials. Construction and 

Building Materials, 35, 941-946.  

Wenner, F. (1915). A method for measuring earth resistivity. Journal of the Washington 

Academy of Sciences, 5(16), 561-563.  

Whiting, D. A., and Nagi, M. A. (2003). Electrical resistivity of concrete-a literature review. 

R&D Serial(2457).  

Whittington, H., McCarter, J., and Forde, M. (1981). The conduction of electricity through 

concrete. Magazine of Concrete Research, 33(114), 48-60.  

Wilson, K., Jawed, M., and Ngala, V. (2013). The selection and use of cathodic protection 

systems for the repair of reinforced concrete structures. Construction & Building Materials, 

39, 19-25. doi:10.1016/j.conbuildmat.2012.05.037 

Wyatt, B. S. (1993). Cathodic protection of steel in concrete. Corrosion Science, 35(5–8), 

1601-1615. doi:http://dx.doi.org/10.1016/0010-938X(93)90390-3 

Wyatt, B. S. (1995). Cathodic protection of steel in concrete. Paper presented at the second 

regional concrete durability in the Arabian Gulf Bahrain. 

Xi, Y., and Bažant, Z. P. (1999). Modeling chloride penetration in saturated concrete. 

Journal of Materials in Civil Engineering, 11(1), 58-65.  

http://dx.doi.org/10.1016/0010-938X(93)90390-3


 

                                                                                                                        REFERENCES 

207 

 

Xu, J., and Yao, W. (2009). Current distribution in reinforced concrete cathodic protection 

system with conductive mortar overlay anode. Construction and Building Materials, 23(6), 

2220-2226.  

Yang, L. (2008). Techniques for corrosion monitoring: Elsevier. 

Yeih, W., and Chang, J. J. (2005). A study on the efficiency of electrochemical realkalisation 

of carbonated concrete. Construction and Building Materials, 19(7), 516-524.  

Yodsudjai, W., and Pattarakittam, T. (2017). Factors influencing half-cell potential 

measurement and its relationship with corrosion level. Measurement, 104, 159-168.  

Yoon, I.-S., Çopuroğlu, O., and Park, K.-B. (2007). Effect of global climatic change on 

carbonation progress of concrete. Atmospheric Environment, 41(34), 7274-7285.  

Zafeiropoulou, T., Rakanta, E., and Batis, G. (2013). Carbonation resistance and 

anticorrosive properties of organic coatings for concrete structures. Journal of Surface 

Engineered Materials and Advanced Technology, 3(01), 67.  

Zakroczymski, T., Fan, C. J., and Szklarska‐Smialowska, Z. (1985). Kinetics and 

mechanism of passive film formation on iron in 0.05 M NaOH. Journal of the 

electrochemical society, 132(12), 2862-2867.  

Zayed, A. M., and Sagues, A. A. (1990). Corrosion at surface damage on an epoxy-coated 

reinforcing steel. Corrosion Science, 30(10), 1025-1044.  

Zhang, J., Liu, C., Sun, M., and Li, Z. (2017). An innovative corrosion evaluation technique 

for reinforced concrete structures using magnetic sensors. Construction and Building 

Materials, 135, 68-75.  

Zhao, X., Gong, P., Qiao, G., Lu, J., Lv, X., and Ou, J. (2011). Brillouin corrosion expansion 

sensors for steel reinforced concrete structures using a fiber optic coil winding method. 

Sensors, 11(11), 10798-10819.  

Zhou, Y., Gencturk, B., Willam, K., and Attar, A. (2014). Carbonation-Induced and 

Chloride-Induced Corrosion in Reinforced Concrete Structures. Journal of Materials in 

Civil Engineering.  



 

                                                                                                                        REFERENCES 

208 

 

Zhu, J.-H., Miaochang, Z., Ningxu, H., Wei, L., and Feng, X. (2014). Electrical and 

mechanical performance of carbon fiber-reinforced polymer used as the impressed current 

anode material. Materials (1996-1944), 7(8), 5438-5453. doi:10.3390/ma7085438 

Zhu, J.-H., Wei, L., Zhu, M., Sun, H., Tang, L., and Xing, F. (2015). Polarization Induced 

Deterioration of Reinforced Concrete with CFRP Anode. Materials, 8(7), 4316-4331.  



 

 

 

 

 

 

 

 

 

APPENDIXES 



 

                                                                                                                          APPENDIX A 

209 

 

APPENDIX A 

 Potentiometric Titration Data of Chloride Determination 

  

(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride 

determination 

  

  

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.1: Potentiometric titration data of the samples at w/c of 0.4 and added NaCl of 

1.5% 
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(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride 

determination 

  

  

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.2: Potentiometric titration data of the samples at w/c of 0.5 and added NaCl of 

1.5% 
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(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride 

determination 

  

  

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.3: Potentiometric titration data of the samples at w/c of 0.6 and added NaCl of 

1.5% 
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(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride 

determination 

  

  

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.4: Potentiometric titration data of the samples at w/c of 0.4 and added NaCl of 

3% 
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(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride  

determination 

  

  

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.5: Potentiometric titration data of the samples at w/c of 0.5 and added NaCl of 

3% 

 

 

 

0

100

200

300

400

0 5 10 15 20 25

P
o

te
n

ti
al

 E
, m

V

Volume of silver nitrate V, ml

0

100

200

300

400

0 4 8 12 16 20 24

P
o

te
n

ti
al

 E
, m

V

Volume of silver nitrate V, ml

-200

-100

0

100

200

20 21 22 23 24∆
2
E/

∆
V

2

Volume of silver nitrate V, ml

-200

-100

0

100

200

17 18 19 20 21∆
2
E/

∆
V

2

Volume of silver nitrate V, ml



 

                                                                                                                          APPENDIX A 

214 

 

 

  

(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride 

determination 

  

  

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.6: Potentiometric titration data of the samples at w/c of 0.6 and added NaCl of 

3% 
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(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride 

determination 

  

  

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.7: Potentiometric titration data of the samples at w/c of 0.4 and added NaCl of 

4.5% 
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(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride 

determination 

  

  

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.8: Potentiometric titration data of the samples at w/c of 0.5 and added NaCl of 

4.5% 
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(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride 

determination 

  

  

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.9: Potentiometric titration data of the samples at w/c of 0.6 and added NaCl of 

4.5% 
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(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride 

determination 

  

  

 

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.10: Potentiometric titration data of the samples at w/c of 0.4 and added NaCl of 

1% 
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(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride 

determination 

  

  

 

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.11: Potentiometric titration data of the samples at w/c of 0.4 and added NaCl of 

2% 
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(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride 

determination 

  

  

 

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.12: Potentiometric titration data of the samples at w/c of 0.4 and added NaCl of 

3.5% 
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(a) Titration curve for the total chloride 

determination 

(c) Titration curve for the free chloride 

determination 

  

  

 

(b) Second derivative curve for the total 

chloride determination 

(d) Second derivative curve for the free 

chloride determination 

 

Figure A.13: Potentiometric titration data of the samples at w/c of 0.4 and added NaCl of 

5% 
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APPENDIX B 

  

 

 

 

Figure B.1: Variation of rebars potential under the application of different CP current 

densities for 10 minutes. 
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Figure B.2: Variation of rebars potential under the application of different CP current 

densities for 30 minutes. 
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Figure B.3: Variation of rebars potential under the application of different CP current 

densities for 1 hour. 
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Figure B.4: Variation of rebars potential under the application of different CP current 

densities for 3 hours. 
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Figure B.5: Variation of rebars potential under the application of different CP current 

densities for 6 hours. 
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Figure B.6: Variation of rebars potential under the application of different CP current 

densities for 12 hours. 
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Figure B.7: Variation of rebars potential under the application of different CP current 

densities for 24 hours.
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APPENDIX C 

Potential Decay Curves for the Air Exposure Specimens 

  

 

  
Figure C.1: Potential decay curves for specimens at various chloride contents after 

application of CP current density of 5 mA/m2  
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Figure C.2: Potential decay curves for specimens at various chloride contents after 

application of CP current density of 10 mA/m2  
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Figure C.3: Potential decay curves for specimens at various chloride contents after 

application of CP current density of 20 mA/m2  
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Figure C.4: Potential decay curves for specimens at various chloride contents after 

application of CP current density of 25 mA/m2  
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Figure C.5: Potential decay curves for specimens at various chloride contents after 

application of CP current density of 35 mA/m2  
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Figure C.6: Potential decay curves for specimens at various chloride contents after 

application of CP current density of 45 mA/m2  
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Figure C.7: Potential decay curves for specimens at various chloride contents after 

application of CP current density of 55 mA/m2  
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Figure C.8: Potential decay curves for specimens at various chloride contents after 

application of CP current density of 65 mA/m2 
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APPENDIX D 

Practical Aspects in the Design of CP for Reinforced Concrete Structures 

 

In order to design a satisfactory cathodic protection for new reinforced concrete structures 

or existing structures as an optimum repair option, the designer should considered many 

influencing factors, such as exposure classifications (buried, immersed, tidal, splash, 

atmospheric, sheltered, exposed, etc.), chloride content, concrete resistivity, degree of 

saturation/water content, potential variations (BS EN ISO 12696, 2012). The design should 

also consider the type and location of anodes, the power source and possible transformer-

rectifier location and other electrical parts, and the monitoring system. 

The two most important parameters for the design of CP systems for the rebars in concrete 

are the current density required on the rebar surfaces and the current distribution provided 

(Chess and Broomfield, 2013). 

In the present study, explicit characterisation obtained for the correlations between corrosion 

potential and concrete resistivity together with chloride content, degree of saturation and 

corrosion rate. A relationship between the required cathodic protection current density based 

on the concrete resistivity, chloride content and corrosion rate were then provided for the air 

exposed concrete structures. It should be noted that the results obtained in this work has led 

to useful information for the submerged concrete structures, but the data was inconclusive 

to characterise the required CP protection for such exposure condition and further 

investigation of this approach is needed. In such situations, a combination of engineering 

judgement, experience, and trial applications or with numerical modelling, is needed in order 

to estimate the optimum current density required (Bertolini et al., 2013; Chess and 

Broomfield, 2013). 

Different CP current densities are required to be provided for effective protection system in 

the cases where a structure have different local chloride contents, degree of saturation, and 

hence the concrete resistivity. This requires to divide the structure into different electrically 

separated CP zones. Each zone has a particular part of the anode with its own power source, 

current and monitoring devices. Marine structures with tidal/splash/atmospheric zones are 

examples of structures with different resistivities as illustrated in Figure D.1. It should be 
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taken into account that the steel reinforcement of the individual zones can be electrically 

continuous over more than one zone. The reinforcement for each individual zone must be 

connected to the negative terminal of the zone power source and the anode of this zone in 

connected to the positive terminal of the power source (Bertolini et al., 2013; Chess and 

Broomfield, 2013). 

 

Figure D.1: Zoning of a marine structure (Chess and Broomfield, 2013). 

For the new structures where cathodic prevention is required, anodes will be placed inside 

the structure during construction and the current will be switched on from the beginning. 

While in general, anodes are placed on the concrete surface or inside the structure in such a 

way for the existing structures to achieve a uniform current distribution (Bertolini et al., 

2013; COST Action 521, 2003). A number of examples are given in Figures D.2 and D.3. 

 

 

 

Figure D.2:  Examples of anode layouts with respect to a concrete cross section (Bertolini 

et al., 2013) 
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Figure D.3: Schematic layout of cathodic protection for reinforced concrete bridge deck 

(Hoseini et al., 2016) 

Before the installation of CP for the existing structures, all the delaminated, cracked and 

spalled areas are removed and repaired. The reference electrodes and other monitoring 

probes are embedded. Then the anode is applied, with an overlay or top coat as designed 

(Bertolini et al., 2013) 

In addition, when appraising a structure, an assessment of which steel is considered most at 

risk and the area is most desired to protect should be made. For example, on beams close to 

the sea, the worst damage was on the outer areas exposed to the prevailing wind, and the 

areas that the structural engineers were most worried about ongoing corrosion were the 

bottom outer layers of steel, so the biggest concentration of CP current was made in the 

bottom outer area (Chess and Broomfield, 2013). 

 

  


