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Glossary 

Absolute efficiency (ϵabs) - fraction of radiation interactions recorded by a detector as 

compared to the radiation emitted by the source (Knoll, 2010).  

Absorbed dose - energy deposited in a medium due to radiation interactions (Knoll, 2010). 

Measured in Gray (Gy).  

Anthropogenic radionuclide - radionuclides created through artificial processes, e.g. nuclear 

weapons (Thorne, 2003). 

Avalanche initiation probability - probability that a cascade of electrons will be created in a 

gas-filled detector by electrons moving in its electric field (Knoll, 2010). 

Background radiation - contribution to count rate from radiation present in the surrounding 

environment.  

Becquerel (Bq) - unit of radioactivity. One becquerel is defined as one radioactive decay per 

second (Knoll, 2010). 

Biological half-life - time it takes for a particular radionuclide within an organism to reach half 

of its initial concentration due to biological processes (Whicker and Schultz, 1982). 

Branching ratio - the fraction of atoms that decay via a particular decay mode (e.g. alpha, 

beta, gamma).  

Characteristic decay energy - energy of the radiation emitted from a radionuclide when it 

decays to a lower energy level. The characteristic decay energy can be used to identify the 

radionuclide present. 

Characteristic energy peak - characteristic decay energy of a radionuclide when displayed on 

an energy spectrum. Also known as the photopeak. 

Compliance monitoring - monitoring of radionuclides to ensure a nuclear facility is adhering 

to regulated emission levels. 

Concentration ratio (CRwo-media) - ratio used to relate radionuclide activity concentration 

within an organism and an activity concentration within a particular medium (e.g. soil) 

(Howard, 2013). Written as CR for later chances in this thesis. 

Count time - amount of time for measuring radiation from a sample. 
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Critical limit (LC) - the point above which a single count measurement can be classified (with 

95% probability) as not being part of the background (Currie, 1968) 

Crosstalk event - The occurrence of an electron, created from a radiation interaction in one 

photodiode, crossing over into another photodiode (Knoll, 2010). 

Dead time - time required to separate two radiation events into recordable detections. 

Decay time - term used in scintillating detectors. Time required for the fluorescence from a 

radiation interaction to decay to a level where a second radiation interaction could be 

identified. 

Dose conversion coefficient (DCC) - relates radionuclide activity concentrations to absorbed 

dose in µGy h-1 per Bq kg-1 (Vives i Batlle et al., 2011). 

Effective dose - total energy deposited across the whole body (Hall and Giaccia, 2006). Sum of 

equivalent doses multiplied by a tissue weighting factor (i.e. accounts for the radiosensitivity 

of each organ or tissue). Measured in Sieverts. 

Equivalent dose - average energy deposited by radiation interaction over a tissue or organ 

(Hall and Giaccia, 2006). Absorbed dose multiplied by a radiation weighting factor (i.e. 

accounts for the properties of the radiation). Measured in Sieverts. 

Fill factor - ratio of optically active area to surrounding inactive area (Turchetta, 2016). 

Gray (Gy) - unit of absorbed dose. 1 Gy = 1 J kg-1 (Knoll, 2010). 

Gross count - total count measured during the counting time. Includes the contribution from 

background and the sample.  

Half-value thickness - material thickness required to reduce the intensity of incident radiation 

by half.  

Intrinsic efficiency (ϵint) - fraction of radiation interactions recorded by a detector as compared 

to the radiation incident on the detector surface (Knoll, 2010). 

Limit of detection (LD or LOD) - point at which a mean number of counts can be differentiated 

from background counts (Currie, 1968). Also referred to as the minimum detectable activity 

(MDA) (Knoll, 2010). 

Live-monitoring - the non-lethal measurement of radioactivity in a living organism.  
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Mass attenuation coefficient (µ/ρ) - characterises the quantity of radiation attenuated, due 

to interactions within a medium, from what was initially transmitted (Hubbell and Seltzer, 

1996).  

Naturally occurring radionuclides - radionuclides that are naturally present in the ground, 

atmosphere and water. They fall under three categories: primordial, secondary or cosmogenic 

(Eisenbud and Gesell, 1997). 

Net count - the total radioactivity measured above background. Calculated by subtracting the 

background contribution from the gross count.  

Occupancy factor - fraction of time that an organism spends within a particular medium (e.g. 

on soil, in soil, in air) (Brown et al., 2008). 

Phantom - calibration or test substitute for a living organism. Contains a radioactive material 

inserted or distributed within a tissue equivalent material.   

Photodiode - solid state semiconductor that converts incident light exiting from a scintillating 

material into an electrical signal (Turchetta, 2016). 

Photon detection efficiency (PDE) - product of fill factor, quantum efficiency and avalanche 

initiation probability (Turchetta, 2016). 

Photomultiplier tube (PMT) - device used to convert scintillation light into an electrical signal. 

Photopeak efficiency (ϵp) - fraction of counts in the characteristic energy peak as compared 

to the whole spectrum (also termed photopeak ratio) (Knoll, 2010). 

Physical half-life (T1/2) - time required for a particular radionuclide to reach half of its initial 

activity by physical decay (Krane, 1988). 

Quantum efficiency - photoelectrons emitted per incident photon (Knoll, 2010). 

Radionuclide - unstable nuclei that emits ionising radiation when it decays.  

Radionuclide activity concentration - quantity of radionuclides present within a medium. 

Measured in Bq kg-1.  

Reference Animal and Plants (RAPs) - a set of hypothetical entities that relate exposure to 

dose, and dose to radiation effects, for different types of animals and plants (ICRP, 2008) 
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Relative biological effectiveness - description of the level of damage caused to biological 

matter from one type of radiation relative to another (Hall and Giaccia, 2006). Uses a 

weighting factor to compare each type of radiation (e.g. alpha, beta, gamma). 

sec - written after a radionuclide as a shorthand method of identifying it and any radionuclides 

present in its subsequent decay chain (e.g 238U sec). 

Scintillation detector - a type of detector that works by converting incident radiation into light 

(Knoll, 2010). 

Screening level (or screening dose rate) - dose rate below which populations are unlikely to 

be significantly harmed (Brown et al., 2008). 

Sievert (Sv) - unit of radiation absorption that takes into account the RBE (IAEA, 2010b). Used 

for equivalent or effective dose in humans (but it is not applicable to wildlife).  

Silicon photomultiplier (SiPM) - an array of photodiodes (Knoll, 2010). 

Skyshine - radiation emitted from radionuclides in the ground that is reflected or scattered 

back down to the ground surface due to interactions in the atmosphere (Mitchell et al., 2009). 

Solid state detector - a type of detector that works on the same principles as those of a diode 

device. It converts incident radiation directly into an electrical signal (Knoll, 2010). 

Weighting factor - applied to an absorbed dose to give an estimate of biological damage. 

Different organs and tissues experience different amounts of biological damage (Hall and 

Giaccia, 2006). 
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Abstract 

Radionuclide measurements in wildlife are required to demonstrate that the environment is 

not significantly impacted by radioactivity. Determination of internal radionuclide activity 

concentrations often requires destructive sampling. Development of alternative (non-lethal) 

measurement methods is therefore desirable. This thesis presents the design, construction 

and testing of a new portable live-monitoring detector for measuring radionuclide activity 

concentrations in small terrestrial animals. The detector is unique in that it enables field-based 

measurement of both gamma and beta emitting radionuclides (caesium-137 and strontium-

90 are tested in this work) in living small animals. 

Literature on detector characteristics and radionuclides in the environment informed a 

modelling approach that was used to optimise the detector design. The optimised design 

contains two caesium iodide scintillators and two plastic scintillators, which enable the 

measurement of 137Cs and 90Sr respectively; all four scintillators were shaped and positioned 

to maximise detection from the organism. Four photomultiplier tubes collect light from the 

scintillators and a single channel analyser provides signal processing. Surrounding the 

detection materials is a lead shield designed to give an optimal balance between portability 

and background reduction. The organism to be measured is put into a card restraint that is 

designed to humanely secure it during counting. 

The portable detector was tested in a laboratory using 137Cs and 90Sr sources to determine 

suitable operation and detection rates. The variation in detection rate caused by source 

movement within the restraint was determined to be minimal (standard deviation <5 % for 

137Cs and <10% for 90Sr) provided the animal is placed in a restraint of similar size to its body. 

Field testing was then conducted on small rodent and bird species in the Chernobyl Exclusion 

Zone. Monitoring of internal activity concentrations for small rodents and birds showed a 

good correlation to results obtained using an alternative verified method (R2 > 0.9 for both 

137Cs and 90Sr, N = 10 for each species). The field testing demonstrated the utility of this 

portable detector in a high radiation background environment for measuring radionuclide 

contamination within a range of different small animals. The results demonstrate the detector 

could be used for monitoring radionuclides in protected species and reduce the number of 

animals euthanised for the purposes of radioecological research. The design choices made 

provide a template for developing a broader range of detectors that could monitor different 

radionuclides, organism types and sizes.  
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1 Introduction 

1.1 Research purpose 

Since the start of this century, there has been growing international recognition of the 

requirement for wildlife radiological assessments (ICRP, 2007, Pentreath, 1999, Sheppard, 

2003). In the UK, radiological environmental assessments are driven by the need for human 

protection but also by national interpretation of the EC Birds (2009/147/EC) and Habitats 

(92/43/EEC) Directives, where the focus is on demonstrating that protected species and/or 

habitats are not significantly impacted by environmental radioactivity (Copplestone et al., 

2003, Copplestone et al., 2005).  

Various modelling tools have been developed to help with radiological environmental 

assessments (e.g. Copplestone et al., 2001, Yu et al., 2003, Brown et al., 2008). These tools 

generally use simple concentration ratios (CRwo-media) that predict whole body radionuclide 

activity concentrations from activity concentrations in environmental media (air, soil or 

water). Various studies (e.g. Wood et al., 2009a, Johansen et al., 2012) have demonstrated 

that these CRwo-media values can under or over predict actual whole body radionuclide activity 

concentrations by several orders of magnitude. Therefore, direct measurement of 

radionuclide body burdens is preferable, but the conventional approach for achieving this is 

through destructive sampling of wildlife (IAEA, 1989).  

Destructive sampling of protected species for the purposes of demonstrating protection is 

difficult to justify. Therefore, there is a need to develop non-lethal monitoring techniques, 

such as live-monitoring (Wood et al., 2011, Bondarkov et al., 2011), that could be used to 

determine whole-body radionuclide activity concentrations. The creation of a portable live-

monitor would be beneficial for the monitoring of protected species and also for the purposes 

of compliance monitoring for facilities that have radioactive emissions (i.e. it would provide a 

method for confirming that regulated radionuclide releases are not resulting in radiation 

exposure to wildlife above levels required for environmental protection). The live-monitor 

would also be of benefit for measuring non-protected species and environmental media for 

the purposes of research. 

This thesis presents the development of a new portable detector for the live-monitoring of 

radionuclides in primarily (though not limited to) small terrestrial animals. The necessary 

background science behind radiation detection and measurement, along with an outline of 
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currently available monitoring methods and technologies, is provided in chapters two and 

three. Chapter three further provides an outline for the stages of development given in the 

remaining chapters: requirements, design, construction, and testing of a bespoke small animal 

live-monitor.  

1.2 Aims and objectives 

The aim of this research project was to develop a new detector for measuring radionuclide 

activity concentrations within wildlife (primarily small animals) without the need to destroy 

the target organism. This new detector needed to be portable, for use in remote field studies, 

and have short count times to reduce any stress to the targeted organisms. For the purposes 

of compliance monitoring, the detector needed to measure within radionuclide activity 

concentration ranges that are based on screening dose rates applied in UK radiological 

environmental assessments.  

The objectives for meeting this aim were as follows: 

1. Critical review of current radiation detection methods and technologies to identify suitable 

detection solutions for a portable radiation live-monitor (chapter 3). 

2. Critical assessment of UK relevant radionuclides and wildlife to identify which radionuclides 

are most radiologically significant and what wildlife are likely to be most impacted (from a 

radiological assessment viewpoint) by these radionuclides (chapter 4).  

3. Development of computer based models of radiation interaction, between radionuclides 

within the targeted organisms and an externally placed detector, to determine optimal 

radiation detector configuration(s) specific to the target organism(s) (chapter 5). 

4. Development and construction of a detection device for the live-monitoring of 

radionuclides present within the targeted organism(s) (chapter 6). 

5. Critical evaluation of the constructed device, through a combination of laboratory and field 

tests using radioactive phantoms and (samples) target organisms, to assess the suitability 

for field deployment (chapter 7). 

6. Development of correlation ratios (between measured and verified activity concentrations) 

for the selected organism(s) for the estimation of internal radionuclide concentration 

through external measurement with the constructed detector (chapter 7). 
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2 Background: radioactivity and radiation detection 

In the process of developing a new detector for monitoring radionuclides in wildlife, there is 

first the important requirement of defining and understanding what it is that needs to be 

measured. The following chapter provides a description of radioactivity and gives details of 

the fundamental physics behind radionuclide interaction and detection.  

2.1 Radionuclides 

Radionuclides are atoms with unstable nuclei that emit ionising radiation when they decay to 

a daughter nuclide (Knoll, 2010). This radiation is ionising, meaning it will interact with any 

media it travels through by removing electrons. There are several different types of emission 

that can occur depending on the condition of what is known as the parent radionuclide. The 

most common types of emission are alpha, beta and gamma.  

Alpha decay occurs primarily in radionuclides with atomic numbers greater than 82 (Whicker 

and Schultz, 1982). It has the greatest mass of the three types of emission, consisting of two 

protons and two neutrons. Interaction by alpha particles with a medium occurs primarily by 

coulomb interaction (Knoll, 2010) and, due to their mass, they experience little deflection 

through the medium they are travelling. Alpha particles have energies ranging between 4 and 

9 MeV (Podgorsak, 2010) which translates approximately to a range of 1 to 10 cm in air or 

0.001 to 0.01 cm in soft tissue. This short penetration ability of an alpha particle makes it 

particularly difficult to detect in live organisms. 

Beta decay occurs primarily in radionuclides with atomic numbers less than 82 (Krane, 1988). 

This decay is categorised into three modes depending on whether there is an excess of 

neutrons or protons in the nucleus; beta minus, beta plus, and electron capture (Knoll, 2010, 

Podgorsak, 2010). The most common, beta minus decay, produces a beta particle (electron) 

and an antineutrino to balance an excess of neutrons. The antineutrino component travels at 

the speed of light and is difficult to detect. Unlike the well-defined energies of an alpha 

particle, the presence of the neutrino in the emission means the kinetic energy released is 

shared between it and the beta particle (Knoll, 2010). This creates an energy spectrum with 

energies varying between zero and a maximum energy Emax, (the mean energy of the beta 

radiation is approximately a third of Emax). This maximum emission energy is under 4 MeV for 

beta emitting radionuclides with a physical half-life of greater than one day (Ekström and 

Firestone, 2004). Beta particles have a greater penetration ability than that of alpha particles. 
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Two approximated equations describe the estimated range for high and low energy beta 

particles (Evans, 1955). There is some debate, however, as to the boundary between these 

two equations; whereas Evans (1955) overlaps these equations for energies between 1 and 3 

MeV, Stabin (2007) suggests a more definite boundary at 2.5 MeV. The equations given by 

Stabin (2007) are used in this thesis because they have a definite energy boundary. The range, 

R, in equations 2.1 and 2.2 is calculated in mg cm-2 and therefore needs to be converted to cm 

using the density of the material of interest. For instance, the maximum range of 90Y (normally 

the most energetic beta of concern in the environment at 2.27 MeV) in air and soft tissue is 

84 cm and 1.1 cm respectively. This is calculated using an air density (ρ) of 1.29 mg cm-3 

(Bushberg et al., 2011) and a soft tissue density approximately equivalent to water at 1 g cm-

3 (Berger et al., 2005). 

 

𝑅 ≈ 412𝐸1.265−0.0954𝑙𝑛𝐸 For E < 2.5 MeV 2.1 

 

𝑅 ≈ 530𝐸 − 106 For E > 2.5 MeV 2.2 

 

Gamma radiation, unlike alpha or beta radiation, is categorised as both an electromagnetic 

wave and a photon (Whicker and Schultz, 1982). It has no mass, travels at the speed of light, 

and has a wide range of possible energies. The emission of gamma radiation often follows the 

decay of a radionuclide by alpha or beta radiation that has left the daughter radionuclide in 

an excited state; i.e. it has excess energy and is therefore still unstable (Knoll, 2010). If there 

is a delay in an excited radionuclide decaying to a stable state then it is referred to as being in 

a metastable state (denoted with an m next to the atomic mass number. e.g. Ag110m) 

(Podgorsak, 2010). The parent radionuclide can also undergo a process known as internal 

conversion (Knoll, 2010). This involves the excess energy being transferred to an orbital 

electron which is then emitted from the atom at an energy equal to the total energy minus 

the binding energy of the electron. Of the three radiation types, gamma radiation is the most 

penetrative. As gamma radiation is attenuated exponentially when it travels through a 

medium (Krane, 1988, Evans, 1955), its penetrative ability is often described (Equation 2.3, or 

in terms of range, 𝑅𝛾, in Equation 2.4) by the distance required to reduce its intensity by half 

(the half-value thickness). For example, a tissue (of density ρ = 1 g cm-3) thickness (x) of 8.2 cm 

would result in a 50% reduction in gamma intensity (I/I0), for 137Cs (662 keV) with mass 

attenuation coefficient (µ/ρ) of 0.085 cm2 g-1 (Hubbell and Seltzer, 1996). These equations also 
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apply in the case of beta emission provided suitable attenuation coefficients can be found 

(Mahajan, 2012).  

𝐼 = 𝐼0𝑒
−(

𝜇
𝜌
)𝜌𝑥

 
2.3 

 

𝑅𝛾 = −
ln⁡(0.5)

(𝜇 𝜌⁄ )𝜌
 

2.4 

 

The mass attenuation coefficient characterises the quantity of radiation removed, due to 

interactions within a medium, from what was initially transmitted (Knoll, 2010). This term is 

used instead of the linear attenuation coefficient as it does not vary with density and is only 

dependent on the atomic number of the medium and the energy of the radiation.  

There are also other emissions from radionuclides that can occur, such as spontaneous fission 

and nucleon emission (Knoll, 2010). These emissions are, however, not as common as the 

above-mentioned decay processes; occurring rarely, or not at all, in the radionuclides 

discussed in this thesis. These other processes are therefore not considered further. 

2.2 Radioactivity 

The process of radioactive decay occurs randomly within an individual radionuclide (Knoll, 

2010). Radioactive materials, therefore, are treated as having a probability per unit time of 

decaying. This probability is constant and the effect of applying that constant to each time 

step results in an exponential relationship. The relationship between the number of initial 

parent radionuclides and the number of daughter nuclides produced is displayed in Equation 

2.5. An initial number of radionuclides (N0) will decay to a number of daughter products (N) 

after a length of time (t) according to a decay constant (λ).  

 

𝑁 = 𝑁0𝑒
−𝜆𝑡 2.5 

 

The number of decays that occur per second is known as the activity and is measured in 

becquerel (Bq) (Knoll, 2010). One becquerel is defined as one decay per second. The 

relationship in Equation 2.5 is useful for determining how much of a radioactive material 

remains, though is not particularly useful in this form for comparisons between different 

radionuclides or in determining the potential hazard that they may pose (Whicker and Schultz, 
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1982). A more useful measure is that of the radionuclides physical half-life, T1/2, (Krane, 1988) 

and is calculated using Equation 2.6).  

 

 

The physical half-life is a constant for each radionuclide and describes the length of time it 

takes for a particular radionuclide to reach half of its activity. Another process, known as the 

biological half-life, describes the rate of excretion of a radionuclide from an organism through 

biological processes (Whicker and Schultz, 1982); biological half-life is corrected for physical 

decay and therefore is for the element and not a given radioisotope. Unless specified as 

biological half-life, the term half-life will hereafter refer to physical half-life.  

2.3 Interaction with organic matter and the calculation of radiation dose 

The measurement of the amount of energy deposited in a medium by radiation is defined by 

the absorbed dose (Knoll, 2010). Absorbed dose (D), as shown in Equation 2.7, is the mean 

energy (Ē) deposited per unit mass (m) and is measured in gray (Gy). The absorbed dose 

changes for different materials that the radiation interacts with.  

 

𝐷 = 𝐸̅ 𝑚⁄  2.7 

 

The physical dose from radiation is not the same as the biological dose. Each type of radiation 

will cause a different amount of damage for the same amount of energy (Hall and Giaccia, 

2006). The Relative Biological Effectiveness (RBE) is used to describe this damage to biological 

matter, along with a number of weighting factors, as different organs and tissues experience 

different amounts of biological damage. For human exposure, these help to calculate a set of 

equivalent doses (average over a tissue or an organ and taking into account the properties of 

the radiation) and effective doses (sum of all equivalent doses and taking into account the 

radiosensitivity of each organ or tissue type). These are measured in sieverts (Sv) and are only 

defined for radiation interactions in humans (IAEA, 2010b). As this is not applicable to wildlife, 

absorbed or weighted absorbed dose to animals and plants is reported in gray (Pentreath, 

2012, ICRP, 2008).  

The dose of radiation to an organism depends on the properties of both the organism and the 

radionuclide producing the radiation. Sets of Dose Conversion Coefficients (DCC) have been 

𝑇1 2⁄ =⁡
𝑙𝑛2

𝜆
 2.6 
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developed that relate radionuclide activity concentrations, in media or biota, to absorbed 

dose (Vives i Batlle et al., 2011). The total accumulated dose (Equation 2.8), for an organism 

b, is the sum of the internal and external dose that is received from each radionuclide i (Brown 

et al., 2008).  

 

 

The internal and external dose rates are calculated as shown in Equations 2.9 and 2.10 

respectively. In these equations, D is the dose in µGy h-1 received by a particular organism, b, 

from a radionuclide i. C is the radionuclide activity concentration in Bq kg-1, DCC is the dose 

conversion coefficient in µGy h-1 per Bq kg-1, v is the occupancy factor in media z (e.g. on soil, 

in soil, in air), and wf is the weighting factor for an emission type r (α, β, γ). 

 

𝐷𝑖𝑛𝑡,𝑖,𝑏 =∑(𝐶𝑤𝑜−𝑏𝑖𝑜𝑡𝑎, 𝑖,𝑏𝐷𝐶𝐶𝑖𝑛𝑡, 𝑖,𝑟𝑤𝑓𝑟)

𝑟

 2.9 

 

𝐷𝑒𝑥𝑡,𝑖,𝑏 =∑[𝑣𝑧∑(𝐶𝑚𝑒𝑑𝑖𝑎, 𝑖 𝐷𝐶𝐶𝑒𝑥𝑡, 𝑖,𝑏,𝑟, 𝑧𝑤𝑓𝑟)

𝑟

]

𝑧

 2.10 

 

The relationship between the radionuclide activity concentration in a particular medium and 

an organism (Equation 2.11) involves a number of complex biological and environmental 

processes. These processes are generally combined into a single value known as the 

Concentration Ratio (CRwo-media) (Howard, 2013, Hinton et al., 2013). This ratio is used to 

estimate the radionuclide activity concentration within an organism (on a fresh mass basis) 

from activity concentration measurements in an environmental medium (Cmedia). The units of 

media radionuclide activity concentration used in Equation 2.11 are Bq m-3 for air and Bq kg-1 

(dry mass) for soil.  

 

𝐶𝑤𝑜−𝑏𝑖𝑜𝑡𝑎,𝑖,𝑏 = 𝐶𝑅𝑖,𝑏𝐶𝑚𝑒𝑑𝑖𝑎, 𝑖 2.11 

 

The ICRP, amongst others in the international community, has been developing CRwo-media for 

a set number of Reference Animal and Plants (RAPs) (ICRP, 2008). For terrestrial organisms, 

these are calculated from measurements of radionuclide (or stable element analogue) 

𝐷𝑇𝑜𝑡𝑎𝑙, 𝑖,𝑏 = 𝐷𝑖𝑛𝑡,𝑖,𝑏 + 𝐷𝑒𝑥𝑡,𝑖,𝑏 2.8 
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concentration in the organism and the corresponding soil concentration in samples collected 

within the home range of the organism (e.g. Barnett et al., 2014). Historically, CRwo-media have 

been derived from a limited set of data and have been fragmented in their compilation 

(Beresford et al., 2008a), meaning there are few or no data for many organism and 

radionuclide combinations. Further, they assume equilibrium has been reached between the 

environment and the organism and they therefore do not apply in cases where there is a 

rapidly changing situation (Howard, 2013). Within the past decade, the available data from 

around the world have been collated in an international ‘Wildlife Transfer Database’ 

(Copplestone et al., 2013). Following reviews of these data, various authors have outlined 

research directions that would further enhance international understanding of radionuclide 

transfer in the environment (e.g. Hinton et al., 2013, Howard et al., 2013b). Live-monitoring 

techniques would assist in part to achieve this understanding by providing a means for 

monitoring a wider range and number of species. 

2.4 Sources of radionuclides 

The exposure of living organisms to radiation is a continual occurrence (Thorne, 2003). This 

radiation is either emitted from radionuclides that occur in the environment naturally or from 

radionuclides that have been artificially created by humans (i.e. anthropogenic radionuclides) 

or technologically enhanced naturally occurring radionuclides (i.e. TeNORM).  

2.4.1 Naturally occurring radionuclides 

Naturally occurring radionuclides can be categorised into primordial, secondary or 

cosmogenic (Eisenbud and Gesell, 1997) and are present in the ground, atmosphere and water 

(Thorne, 2003). The average global natural background dose (including radon gas) to humans 

is c.2.4 mSv a-1 (UNSCEAR, 2013). Differences in factors such as air flows, altitude, geology, 

and soil characteristics lead to variation in background exposure (Smith and Beresford, 2005). 

Primordial radionuclides have half-lives of the order of the age of the earth; shorter-lived 

‘secondary radionuclides’ are created through the decay of primordial radionuclides (Eisenbud 

and Gesell, 1997). The most abundant primordial radionuclides in the environment include 

40K, 232Th, and 238U (Jones et al., 2009, Thorne, 2003). Also present, but of a lower abundance, 

is 235U (Kathren, 1984). The daughter products of 232Th and 238U that are often of interest for 

environmental radionuclide assessments (from a human protection perspective) due to their 

longevity in the environment and because they are released as teNORM, are 234Th, 210Po, 228Th 
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230Th, and 234U (Environment Agency et al., 2014). The Radon isotopes 220Rn and 222Rn, while 

having relatively short half-lives, are classified as high health risks due to their presence in the 

atmosphere (UNSCEAR, 2000a). Due to the health risk that they pose, 226Ra and 228Ra are also 

of monitoring interest for humans (IAEA, 2014). Although there are other primordial 

radionuclides present in the environment, their (individual) contribution to health risks is 

relatively insignificant compared to the above mentioned radionuclides (Thorne, 2003, IAEA, 

2014). 

Cosmogenic radionuclides are formed by cosmic-rays bombarding stable nuclides in the 

atmosphere. These rays are attenuated by the atmosphere and therefore the intensity of 

cosmogenic radionuclides depends strongly on altitude (Smith and Beresford, 2005). The 

earth’s magnetic field also acts to modulate the intensity of cosmic rays which results in higher 

level dose rates at the poles than at the equator (Thorne, 2003). The most important 

radionuclides from cosmogenic sources are 3H, 14C, 7Be, and 22Na (Whicker and Schultz, 1982, 

UNSCEAR, 2000a). While other cosmogenic radionuclides are present, they are considered as 

not being abundant enough to add significantly to the total radiation dose from background 

radiation. 

2.4.2 Anthropogenic radionuclides 

The discovery of radiation, and the identification of the first radioactive elements, towards 

the end of the nineteenth century opened new possibilities for medical imaging and therapy 

and ultimately weapons and power generation, with associated production of artificial (or 

anthropogenic) radionuclides (Keevil, 2012). During the following century, the increase in use 

of radioactive materials and their mismanagement has left a lasting legacy of radioactive 

waste which needs to be managed. Testing of nuclear weapons by several countries during 

the 1950s and 60s, led to widespread contamination of large areas of the planet (IAEA, 2011). 

Fallout from these tests is still measurable in the environment for radionuclides with longer 

half-lives and a large enough initial emission (e.g. a 10-year half-life would result in almost a 

97% reduction in concentration since above ground nuclear testing ended), including 3H, 14C, 

90Sr, 137Cs, 238Pu, 239Pu, 240Pu, and 241Pu (Thorne, 2003, UNSCEAR, 2000b). Coupled with the 

production of nuclear weapons came the accidental releases of radionuclides from nuclear 

weapons facilities. The most significant of these to affect the UK was the Windscale accident 

in 1957 (Wakeford, 2007) during which substantial quantities of 137Cs, 131I, and 210Po were 

released (Garland and Wakeford, 2007). 
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The development of nuclear weapons led to the discovery of nuclear power generation 

(Eisenbud and Gesell, 1997). The use and transfer of radioactive materials at nuclear power 

generation, research, and waste management facilities, introduced anthropogenic 

radionuclides into the environment through planned (authorised) radioactive emissions (e.g. 

Environment Agency et al., 2014). These emissions are regulated and each facility has a 

maximum allowable amount of radionuclides they can release each year. Since the 

introduction of nuclear power facilities, however, there have been two further key accidents 

that have contributed to elevated levels of radionuclides in the UK. These were the Chernobyl 

accident in 1986 (Saenko et al., 2011) and (though only a minor contribution to UK levels as 

compared to Chernobyl) Fukushima in 2011 (Wakeford, 2011). Studies of radionuclide 

releases, from the nuclear accidents described in this section, are largely focused on 134Cs, 

137Cs, 131I and 90Sr due to the fallout measured in the UK as well as the risk they posed to 

human health through the food chain. Fallout from the Fukushima accident that was 

measured in the UK included low quantities of 131I and 134Cs (Beresford et al., 2012). Though 

137Cs was identified, it was considered that most of the activity present was from previous 

nuclear weapons and Chernobyl releases. 

2.4.3 Radionuclides in the UK 

The average background radiation in the UK is 2.7 mSv a-1 (Public Health England, 2011). 

Radiation from radon contributes a large proportion to the annual exposure, with Cornwall 

experiencing an average radon dose of 7.8 mSv a-1 (UK average 1.3 mSv a-1). For cosmogenic 

radiation, an estimated dose at ground level for the 50th parallel north (UK level) is around 

0.35 mSv a-1 (Kendall, 2005, Environment Agency et al., 2014). Anthropogenic sources such as 

nuclear emissions and medical waste contribute a smaller amount; nuclear facilities generally 

have emissions less than 0.1 mSv a-1 and all are below the 1 mSv annual limit for exposure of 

the public from anthropogenic sources (Environment Agency et al., 2014). 

2.5 Detection of radionuclides 

2.5.1 Radiation detectors 

The interaction of radiation with matter gives rise to a number of detection possibilities. These 

interactions can be detected and converted to a different form of energy (usually electrical or 

light) which can then be quantified (Knoll, 2010). There are three main types of detector for 

instantaneous detection; gas-filled (or ionising), scintillation, and semiconductor (or solid 

state). Gas filled detectors are constructed using an anode and cathode electrode, surrounded 
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by a gas (Krane, 1988). They utilise electric fields within the gas-filled chamber to count ions 

that have been formed as a result of a radioactive particle travelling through the detector. 

Scintillation detectors operate on the basis of converting radiation interaction into light 

(Krane, 1988). Radiation incident on a scintillation detector is converted into a photon of 

visible, or near visible, light through a process known as fluorescence. The emitted light is 

collected whereupon it is converted to an electrical signal and amplified (see section 2.5.2). 

There are two types of scintillators; organic and inorganic (Knoll, 2010). Inorganic scintillators 

operate on the crystalline structure level, whereas organic scintillators operate at the 

molecular level and can therefore be formed into liquids or plastics. Solid state detectors work 

on the same principles as those of a diode device, utilising electron hole configurations for the 

detection of radiation (Knoll, 2010). By combining a n-type (electron rich) and a p-type 

(electron deficient) semiconductor, an anode and cathode are created with a region of 

electrical neutrality in between (known as the depletion region). A radioactive particle 

entering the depletion region can interact and form an electron and hole pair. This then 

propagates through the material until the electron reaches the p-type material where it forms 

an electrical pulse that can be measured. A more detailed description of how these detection 

technologies work is available in Krane (1988) and Knoll (2010).  

2.5.2 Scintillator light collection 

Unlike gas-filled or solid state detectors, a scintillation detector requires the extra stage of 

converting light produced from a radiation interaction into an electrical signal. Each 

interaction typically produces only a few hundred photons and therefore needs to be 

amplified before it can become a usable signal (Knoll, 2010). The most common method of 

converting the fluorescence from a scintillating material is to use a Photomultiplier tube 

(PMT). Light that is incident on a PMT is collected and converted to low energy electrons by 

means of a photocathode. These electrons are then accelerated and amplified in the next 

stage of the PMT (the electron multiplier) using a series of dynodes (an electrode that emits 

one or more electrons when struck by a single electron) that have a high voltage applied to 

them. The dynodes in the electron multiplier must be contained within a vacuum so the 

electrons can be accelerated efficiently. At the end of the dynode chain, the resulting 

electrons have been amplified to a sufficient level (typically between 107 to 1010 electrons) 

whereby they can be collected by and anode and output as a useful electrical signal. 
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The other method for light collection is to use a photodiode. Photodiodes operate under the 

same principles as semiconductor detectors (Knoll, 2010, Turchetta, 2016) though instead of 

converting radiation interactions into electrical pulses, it converts incident light exiting from a 

scintillating material. As such, photodiodes are much smaller in size than a PMT. The most 

basic form of the photodiode is the Conventional (PIN) photodiode. This consists of a p and 

n-type material with a depletion region forming in between. An incident photon will interact 

in the depletion region and causes an electron-hole pair to propagate through the material 

until the electron is collected at the n-type layer, creating an electrical pulse. The electric pulse 

is equal to the energy of the electron and therefore the output signal needs to be amplified. 

This causes the input signal to be susceptible to noise; low energy radiation in large detectors 

can often be of poorer resolution than a standard PMT. Further, the size of each PIN 

photodiode is typically smaller than 1 cm2 due to high levels of noise introduced in larger 

photodiodes; doubling the surface area of a conventional photodiode will double the signal 

but will also double the noise. By inserting a second p-type material between the depletion 

region and the n-type layer, a short region of high electrical bias is created. This configuration 

makes the photodiode work in a similar fashion to gas multiplication in a proportional counter. 

As such, it is referred to as an Avalanche (APD) photodiode. Photons that enter through the 

first p-type later will be accelerated through the depletion region towards the region of high 

electrical bias, whereupon further electron-hole pairs are formed. This leads to an avalanche 

of electrons and therefore increases the measured output signal (proportional to the voltage 

bias). The gain of this signal is typically around 106 which is comparable to standard PMTs. 

These two photodiode types are aimed at singular interactions. A more complicated 

arrangement, consisting of many photodiodes, is required for the spectrographic 

measurement of radiation emitted from a sample. The Silicon Photomultiplier (SiPM), or 

Multi Pixel Photon Counter (MPPC), consists of an array of avalanche photodiodes. Each 

avalanche photodiode is operated in the “Geiger” region; the electron avalanche is allowed to 

saturate the diode. By connecting the diode in series with a large resistor, the electric field 

over the diode will drop once the diode has saturated and will therefore be quenched within 

a few nanoseconds. The size of each photodiode is kept small such that, theoretically, only a 

single photon will be collected during any single detection. The number of incident photons 

would be proportional to the number of cells that are producing an avalanche. Therefore, 

large numbers of cells are required due to the number of scintillation events that can be 
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created within a scintillating material. The size of these arrays is typically 5 to 6 mm though 

multiple SiPMs can be joined in parallel (creating a larger array) and therefore increase the 

detection surface area. The efficiency of the SiPM is defined by the photon detection efficiency 

(PDE). This is a combination of the ratio of the optically active area to the surrounding inactive 

area (fill factor), the probability that an incident photon will create an electron-hole pair 

(quantum efficiency), and the probability that an avalanche will be initiated by an electron-

hole pair (avalanche initiation probability). There are several advantages and disadvantages 

to using SiPMs over PMTs. These are discussed in more detail in chapter 3.  

2.5.3 Radionuclide decay energy spectrum 

The electrical output from the aforementioned detection technologies is processed to 

produce a readable output that can be used to identify and quantify the radionuclide present 

in a targeted sample (Knoll, 2010). The nucleus of a radionuclide will often decay to a daughter 

nuclide through a number of steps or possible routes using a combination of the previously 

described decay processes (Section 2.1). Each decay path has a characteristic energy that is 

important for identifying the type of radionuclide. As an example; Figure 2.1 (adapted from 

Podgorsak, 2010) shows an energy level diagram of the primary decay paths for 137Cs.  

 

 

 

Figure 2.1: Primary decay paths for caesium-137 to barium-137.The most prominent (or 
main) decay path is by beta minus emission to an intermediate excited state, 137mBa. From 
here, it decays to a stable state either through the emission of a gamma photon or by two 
possible internal conversions (not shown). A secondary path, though of much lower 
probability, is to decay directly to a stable state by a higher energy beta minus emission. 
Figure adapted from (Knoll, 2010). 
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For gamma emitting radionuclides, the emitted gamma photon will interact with any atoms it 

encounters in the medium it is travelling through (Knoll, 2010). Depending on its energy, a 

gamma photon will be subject to either photoelectric absorption, Compton scattering, or pair 

production. A full description of how these secondary processes form is given in Knoll (2010) 

though a general description is given below. 

Photoelectric absorption occurs when a low energy photon is absorbed by an atom resulting 

in a photoelectron being ejected. The photoelectron energy is equal to its binding energy 

within the atom and has kinetic energy equal to the difference in energy of the incident 

photon and ejected photoelectron. Characteristic x-rays may also be emitted when the 

vacancy left by the photoelectron is filled by a free electron. Compton scattering occurs when 

a photon interacts with an electron. Through this interaction, the photon is deflected by an 

angle θ and, in doing so, transfers some of its energy as kinetic energy to the electron (defined 

as a recoil electron). The angle θ determines the energy of the deflected photon and the 

electron and therefore energies can range from zero to an energy close to that of the incident 

photon. Pair production occurs when the energy of an incident photon exceeds 1.02 MeV. In 

this process, the gamma photon is converted into an electron-positron pair. Any excess energy 

above the 1.02 MeV becomes kinetic energy for the emitted electron and positron. 

These secondary processes can obscure the characteristic energy peak of a radionuclide and 

therefore make identification difficult (Knoll, 2010). Compton scattering introduces the largest 

interference on an energy diagram (pulse height spectrum), creating a plateau known as the 

Compton continuum. This is visible in Figure 2.2 (adapted from Knoll, 2010) as the higher 

region shown to the left of the characteristic decay peaks. Backscatter from surrounding 

materials, such as shielding for the detector, is another source of interference that will be 

apparent in the lower energies of the spectrum. Pair production can further introduce an 

‘escape peak’ for incident gamma photons of sufficient energy (> 1.02 MeV) though is more 

likely seen in radionuclides with decay energies above those described in this thesis (see 

Appendix 10.1). These additional interactions are, however, particularly inconvenient when 

the measurement of a lower energy decay is desired. 

The energy spectrum for beta radionuclides has already been described in Section 2.1 as a 

range of energies between zero and the maximum energy of the electron, Emax, with the 

spectrum peaking at approximately a third of Emax. This energy spectrum means the 

identification   of   a   single   beta   emitting   radionuclide   from   a   mixture   of   beta   emitting  
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Figure 2.2 Effect of resolution on 
radionuclide identification. Figure 

adapted from (Knoll, 2010) 

Figure 2.3: Spectrum of energies that define 
detector resolution. Figure adapted from 

(Knoll, 2010) 

 
radionuclides is difficult to accomplish with a spectral output like that shown in Figure 2.2. If 

the beta emitting radionuclide does not have a suitable gamma emission then identification 

therefore often has to rely on methods that either reject unwanted energies (such as using a 

thin, low density detector) or chemically separating the expected radionuclide from the 

sample for analysis (e.g ASTM International, 2014). 

2.5.4 Detector properties affecting the identification of individual radionuclides 

The pulse height spectrum differs between detectors based on a number of properties; 

resolution, efficiency, and dead time (Knoll, 2010). These properties determine how suitable 

a particular detector is for a given task or for measuring a specific radionuclide.  

The resolution of a detector indicates how well different energies can be distinguished (Knoll, 

2010). For a single energy that is recorded, the responding peak will have a specific height and 

width which is determined by the statistical variation in individual pulses (as shown in Figure 

2.3). The Full Width Half Maximum (FWHM) of this peak, if divided by the energy of the pulse, 

gives the corresponding resolution. As this is a simple ratio, the value is dimensionless and 

often reported as a percentage. For different materials that experience the exact same energy 

and number of pulses, the corresponding peaks will have the same area but can be of two 

different resolutions. A good resolution will have a tall peak with a small FWHM, whereas a 

poor resolution will have a short peak with a large FWHM. For a similar count rate on two 

detectors; one with poor resolution and the other with good resolution, the area under the 

characteristic peak will be the same. The detector with good resolution, however, will have a 

much taller (and therefore narrower) peak. Therefore, for a detector with a better resolution, 
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a much lower count rate can be used to measure a radioactive source. This will give an 

identifiable peak but will also mean that there is an overall lower signal displayed from any 

naturally present radiation (background radiation) that the main signal needs to be 

distinguished from. 

For multiple photon detections of varying energies, the peaks will be superimposed through 

the use of a multichannel analyser (MCA) to form an energy spectrum (Krane, 1988). A higher 

resolution is critical in being able to differentiate between different energies and hence for 

identifying specific radionuclides that may have emission energies that are close together 

(Knoll, 2010). For example, Figure 2.2 illustrates how the resolution can affect the 

identification of radionuclides. Detector B has a better resolution and is therefore able to 

identify more radionuclides than detector A. The figure also demonstrates (as described 

above) that the background measurement is lower for the higher resolution detector. 

The detection efficiency  of a detector is a measurement of the number of detections made in 

relation to the number of incident radiations (Knoll, 2010). For lower penetration radiations 

such as alpha and beta, nearly all the incident particles (that penetrate the detector window) 

will interact with a detector. In the case of a scintillator or a solid-state detector, this will be 

nearly 100% efficiency. Gamma photons on the other hand are more penetrative and 

therefore could travel through the entire detector and make no detectible interactions. Here 

the detection efficiency will be less than 100%. The efficiency of a detector can be described 

through a number of different terms. Important to this thesis is the absolute, intrinsic, and full 

energy photopeak efficiency (Knoll, 2010). The absolute efficiency (ϵabs) is a measure of the 

number of radiation interactions recorded by the detector as compared to the radiation 

emitted by the source. The intrinsic efficiency (ϵint) denotes the number of radiation 

interactions recorded by the detector as compared to the radiation incident on the detector 

surface. The final term used to describe detector efficiency is full energy photopeak efficiency 

(ϵp).  Also known as the photopeak ratio, this is the fraction of counts in the characteristic 

energy peak as compared to the whole spectrum. 

Between each detectable pulse, there is a short delay before another pulse can be detected 

(Knoll, 2010). Each interaction takes a minimum amount of time to discharge in the material 

during which any further interactions will not produce a separately detectable signal (though 

in some cases the undetected interaction can extend the period of non-detectability). This is 

known as the dead time and can occur in the material of the detector or in the associated 
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electronics. This creates a problem for the detection of high activity concentrations for which 

a correction to account for dead time will need to be made. Shorter dead times are therefore 

preferable if measuring high count rates (or activity concentrations). 

2.5.5 Distinguishing source signal from background 

Identifying the quantity of radiation emitted by a target source (Ns) requires the measurement 

and subtraction of the background (NB) from the gross (or total) signal (NT). There is, however, 

an uncertainty (𝜎) associated in the measurement of this signal. For large counts of NT, the 

uncertainty in the count can be fitted to a gaussian distribution and is approximated to 𝜎𝑇 =

√𝑁𝑇 (Knoll, 2010). This is the same for measurement of the background; ⁡𝜎𝐵 = √𝑁𝐵. Any 

subsequent propagation of uncertainties, such as the subtraction of background or in 

calculating the count rate (dividing by total count time), follows the standard rules as shown 

in Equations 2.12 to 2.14; examples use three variables a, b, c and a constant C.  

 

(𝑎 = 𝑏 + 𝑐)⁡𝑜𝑟⁡(𝑎 = 𝑏 − 𝑐)          𝜎𝑎 = √𝜎𝑏 + 𝜎𝑐 2.12 

 

(𝑎 = 𝐶𝑏)          ⁡𝜎𝑎 = 𝐶𝜎𝑏 2.13 

 

(𝑎 = 𝑏⁡ × 𝑐)⁡𝑜𝑟⁡(𝑎 = 𝑏/𝑐)          (
𝜎𝑎

𝑎
)
2

= (
𝜎𝑏

𝑏
)
2

+ (
𝜎𝑐

𝑐
)
2

 2.14 

 

Because both the background count and the source count have an uncertainty associated with 

them, there is a need to determine at what point a measurement can statistically distinguish 

a source from background. For this, limits of detection were outlined (or unified) in 1968 by 

Currie (1968). Of importance are the critical limit (LC) which defines the point above which a 

single count measurement can be classified (with 95% probability) as not being part of the 

background, and the detection limit (LD), at which point a mean number of counts can be 

differentiated from background counts. These two limits, as defined for radioactivity, are 

given by equations 2.15 and 2.16 (Currie, 1968, Knoll, 2010). 

 

𝐿𝐶 = 2.33√𝜎𝐵 2.15 
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𝐿𝐷 = 2.71 + 4.65√𝑁𝐵 2.16 

 

More often quoted is the MDA (Minimum Detectable Activity) because this includes the 

radiation yield per disintegration (BR), absolute efficiency of the system (ϵabs) and the total 

count time (t) (Knoll, 2010). 

 

𝑀𝐷𝐴 =
2.71 + 4.65√𝑁𝐵

𝐵𝑅⁡𝜖⁡𝑡
 2.17 
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3 Literature review: radionuclide monitoring methods and existing 

portable detection technologies 

3.1 Introduction 

This chapter details and discusses the current methods used in radionuclide monitoring for 

terrestrial wildlife with the purpose of identifying suitable live-monitoring techniques. As a 

part of this, a description and review, in terms of suitability for portability and field use, is 

given for currently available materials for radiation detection. This review identifies the 

direction for the overall project and ends in an outline for the remaining thesis. 

3.2 Description and purpose of radiological assessments 

Radionuclide monitoring and research programs for terrestrial wildlife have existed since the 

first use of nuclear weapons (e.g. Kaye and Dunaway, 1962, Garten, 1995, Gaschak et al., 2011, 

Sazykina and Kryshev, 2006). Their purpose is to measure and assess the concentration of 

radionuclides that have been introduced to the environment due to human activities such as 

the generation of nuclear power (Copplestone et al., 2003). Historically, monitoring programs 

arose primarily due to concern from potential harm to humans through contamination of food 

sources (Kathren, 1984); for instance, sheep in the uplands of Cumbria and Wales (Horrill and 

Howard, 1991) and reindeer in Norway (Brynildsen and Strand, 1994) due to fallout from the 

Chernobyl accident. Until relatively recently, it was considered that the standard of 

environmental control needed to protect man would ensure that other species were not put 

at risk (ICRP, 1977, ICRP, 1991). However, by the start of this century, national requirements 

for the demonstration of wildlife protection began to be introduced (Copplestone et al., 2005) 

and there was growing recognition that the International Commission on Radiological 

Protection (ICRP) recommendations may not always adequately protect wildlife (Pentreath, 

1999, Sheppard, 2003).  

In 2007, the ICRP updated its ‘Recommendations’ to recognise the need for explicitly 

demonstrating adequate protection of the environment (ICRP, 2007). In the UK, the regulatory 

position had already changed due to the interpretation by UK regulatory agencies of the EC 

Birds and Habitats Directives (Copplestone et al., 2003, Copplestone et al., 2005). The focus of 

these Directives is on demonstrating that protected species and/or habitats are not 

significantly impacted by hazardous substances; the UK agencies interpreted ‘hazardous 

substances’ to include radionuclides. The measurement of radionuclides within terrestrial 
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wildlife has typically focused on a specific selection of radionuclides. This is because they have 

either been the dominant radionuclides dispersed in nuclear accidents (e.g.  Chernobyl) or are 

expected to be present at the site being studied (e.g. a uranium mine). Commonly measured 

radionuclides include, 40K, 90Sr, 99Tc, 131I, 134Cs, 137Cs, 232Th, 238Pu, 238U, 239+240Pu and 241Am (e.g. 

Beresford et al., 2016, Bonisoli-Alquati et al., 2015, Barnett et al., 2014, Chesser and Sugg, 

2000, Copplestone et al., 1999, Ishida et al., 2015, Kubota et al., 2015, Maklyuk et al., 2007, 

Malinovsky et al., 2014, Ryabokon et al., 2005, Semioshkina et al., 2007, Struminska-Parulska 

et al., 2013, Wood, 2010, Wood et al., 2009b). These radionuclides, however, are not the only 

ones that require monitoring. The use, storage, and disposal of radioactive materials in the UK 

covers a broader set of radionuclides and these are required to be monitored as part of the 

Radioactive Substances Act of 1993 (RSA93). Radiological environmental assessments  (for 

public exposure to radiation from authorised radioactive discharges) are the responsibility of 

the UK environment agencies (Environment Agency et al., 2014). The levels of radioactivity 

that have been transferred into environmental compartments (including wildlife) from 

licenced facilities in the UK have been measured by these agencies and are published1 as part 

of the annual Radioactivity in Food and the Environment reports. 

3.3 Methods for radionuclide assessment / measurement 

The initial process for estimating the exposure (i.e. dose) of wildlife from radionuclides in 

England and Wales was outlined in the Habitats Regulations for Stage 3 Assessments 

(Copplestone et al., 2003) and subsequently, international approaches such as the ERICA 

Integrated Approach (Larsson, 2008) have been developed. A radionuclide assessment will 

consider all radionuclides that are present within the environment or planned to be released 

by a licenced facility. The total dose that is estimated to be received from exposure to all 

present radionuclides is compared to what is often termed a ‘screening dose rate’ (Brown et 

al., 2008). This screening dose rate is defined as the dose rate below which wildlife populations 

are unlikely to be significantly harmed (Howard et al., 2010). Screening dose rates are utilised 

to indicate if radionuclide emissions from a given facility present negligible risk to wildlife 

under highly conservative assumptions and if that facility needs a higher degree of assessment 

or not; they are applied to the additional dose and not natural background radiation. There is, 

however, no worldwide agreement on a single screening dose rate and therefore different 

                                                      
1 https://www.gov.uk/government/publications/radioactivity-in-food-and-the-environment-rife-reports-2004-
to-2016 
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ones exist in different countries (a summary is provided in Howard et al. (2010)); for the UK, 

the main modelling tool ERICA has an ICRP defined default of 10 µGy h-1 though the screening 

dose rate used in assessments in England is 5 µGy h-1 (Copplestone et al., 2005).  

To assist with the radiological assessments that monitor a mixture of radionuclides, a number 

of tools (e.g. R&D128, RESRAD-BIOTA and ERICA) have been created to model the transfer of 

radionuclides and estimate exposure and subsequent risk (Copplestone et al., 2001, Yu et al., 

2003, Brown et al., 2008). These tools can be used in advance of a facility being built, to assess 

its impact on the environment, and to review licences that are currently held. These modelling 

tools are often applied in a tiered way (e.g. Brown et al., 2008). The low-level tiers use 

conservative assumptions to undertake simple screening assessments, allowing identification 

and ‘screening out’ of situations in which it is highly unlikely that wildlife will be impacted 

significantly. Minimal site data are required for screening assessments, but at higher tiers the 

assessments become more realistic and these more detailed assessments should be 

supported by field measurements (Copplestone et al., 2003). Assumptions and simplifications 

are made in these models (Beresford et al., 2010) and this introduces a high level of 

conservatism that can cause inconsistencies in the predictions made by different modelling 

tools when applied in an initial screening level assessment. The transfer element (i.e. the CR) 

is considered to be the most uncertain aspect of this assessment (Beresford, 2010). Therefore, 

where possible, a low-cost method to directly measure targeted organisms is desirable. 

The standard process for determining radionuclide activity concentrations within an organism 

is destructive (IAEA, 1989); the body of the organism is either homogenised for a whole-body 

measurement or is dissected so the radionuclide concentration in each organ can be 

individually measured (this is employed in cases where the distribution of radionuclides in the 

body is desired to be known and maybe the only way of processing a larger organism) (e.g. 

Barnett et al., 2014, Kubota et al., 2015). This destruction of the organism is required because 

not all types of radiation are penetrative enough (or are not of a sufficient concentration) to 

be adequately quantified by an external radiation detector. Destructive sampling is, however, 

difficult to justify (ethically; (Russell et al., 1959)) and there is a drive to reduce the number of 

animals killed for the purposes of research (Home Office, 2013). Further, this method is 

undesirable for the monitoring of protected species. Therefore, there has been growing 

interest in the development of non-lethal monitoring techniques (e.g. Wood et al., 2011, 

Bondarkov et al., 2011). 
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There are two main approaches to live-monitoring; directly monitoring the organism using a 

radiation detector or taking samples from the body of the organism. Direct monitoring has 

been previously conducted on a limited range of organism and radionuclides (examples of 

these along with a description of monitoring technology are provided in the next subsection). 

The limitations of this approach, however, has generally been in requiring the target radiation 

emission to be both penetrative and in sufficient quantities such that it is detectable by an 

external radiation detector (and can be distinguished from background radiation). The other 

approach, of collecting samples from the organism, has been conducted to varying degrees of 

success. Two main pathways facilitate the entry of radionuclides into the body; absorption via 

the lungs (inhalation) or via the gastrointestinal tract (ingestion), after which they are 

transferred through different compartments of the body (ICRP, 1979). The collectable samples 

from an organisms body are therefore: blood (ICRP, 1979), fur and feathers (McLean et al., 

2009, Boryło et al., 2010, Tete et al., 2014, Strumińska-Parulska et al., 2015),faeces and urine 

(e.g. Mayes et al., 1994, Moss and Horrill, 1996), and for a limited number of radionuclides 

exhaled air (Didychuk et al., 2014). A final alternative method is to measure the radionuclide 

content of teeth (IAEA, 2002) or antler (Tiller and Poston, 1999). This is only viable for antler, 

however, as the use of teeth could be considered too invasive. 

An inherent problem with these sampling methods is the requirement to understand body 

distributions and excretion pathways and to subsequently develop approaches to convert 

these measurements into whole-organism activity concentrations (ICRP, 1979). Whilst this 

may be solved over time, the size of some samples that can be collected from an organism 

severely limits the viability of deploying these methods; blood samples, exhaled air, or urine 

(urine not possible in birds) would likely not contain sufficient radionuclide concentrations for 

measurement, especially in smaller organisms. Some of the other above mentioned 

alternative methods may be suitable to individual species in the event of no other suitable 

live-monitoring method being available, e.g. antler for deer (Tiller and Poston, 1999) and 

faeces for large organisms, e.g. grouse (Moss and Horrill, 1996), have all provided good 

alternatives for some radionuclides. The time required for sample analysis, however, means 

these sample collection methods are not a rapid process (if immediate results are required), 

nor can analysis be conducted in the field (e.g. Strumińska-Parulska et al., 2015). Therefore, 

direct whole-body live-monitoring with a portable radiation detector would be preferred. 
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3.4 Current technology for terrestrial wildlife monitoring 

Radionuclide activity concentrations in animals are often measured on high specification 

laboratory-based detectors, usually high Purity Germanium (HPGe) detectors, as they offer a 

high level of spectrometric resolution (IAEA, 1989, IAEA, 2011). The use of these detectors, 

however, has two main drawbacks; they require the animal to be brought to the detector, and 

they usually require the animal to be destroyed. The deployment of a portable detection 

method in the field would therefore be beneficial to monitoring radionuclide concentrations 

within wildlife.  

Previous instances of portable live-monitoring were primarily related to livestock screening in 

the years following a nuclear accident (Table 3.1). After the Chernobyl accident in 1986, sheep 

in the UK (Howard et al., 1987) were screened to check which sheep had low enough 

radionuclide levels for human consumption (Howard et al., 1987). Sheep found to be above 

the recommended levels were released to await internal levels falling low enough for 

consumption. This screening ended in 2012 (Wearne, 2012). Similarly, reindeer in Norway 

were, and still are, routinely monitored for 137Cs levels (Brynildsen and Strand, 1994). Other 

monitoring programs, such as Canada Geese at the Oak Ridge reservation in America 

(Middleton, 2011), focus on animals caught by hunters. The Oak Ridge live-monitoring 

assessed the uptake of 137Cs by geese, those found to be above the limit are still slaughtered 

for more detailed analysis. 

The detection technology used for these studies has commonly been Sodium Iodide (NaI) 

crystals (e.g. Howard et al., 1987, Mayes et al., 1994, Beresford et al., 1998). The use of this 

material has remained consistent. Any advancements of the devices used for live-monitoring 

have typically focused on the detection methods, such as alternative ways of accounting for 

background radiation (Meredith et al., 1988), or optimal placement of the detector 

(Brynildsen and Strand, 1994), rather than of the technology itself. Sodium Iodide has 

primarily been used for portable radiation detection because it is a cost-effective material of 

good efficiency. Despite its low spectrometric resolution, it has so far been appropriate 

because only a small number of radionuclides have been targeted at any one time; namely 

134Cs and 137Cs, or 131I. 
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The primary purpose of these detectors has been to monitor gamma emissions. While 

detectors have been developed for simultaneously identifying gamma and beta emitting 

radionuclides (e.g. Potapov et al., 2006), these have largely focused on detection within 

surface soils and are not specifically aimed towards animals. They require a second detector 

material for the detection of the beta radiation and therefore increase the size requirement 

for the detector. There is only one instance of a portable gamma / beta monitor for animals 

that has so far been identified in the literature. The live-monitoring described in Bondarkov et 

al. (2002) initially required animals to be moved to a laboratory though development 

(Bondarkov et al., 2011) of this detector led to a mobile laboratory version for use in the 

Chernobyl Exclusion Zone. This detector uses a sodium iodide crystal for gamma detection and 

a thin plastic scintillator for beta detection. The beta detector was designed to give it the 

capability of determining 90Sr content via the measurement of 90Y and has already been 

utilised for several studies (see reference list for Bondarkov et al., 2011). The size and weight 

of the detector, however, means it requires a vehicle for transport, meaning it is restricted in 

how it can be deployed; the detector deployment range is limited to areas accessible by road. 

If the complexity (i.e. quantification of gamma and beta) of the detector is to be increased, 

whilst also being made portable, then the use of newer technologies will need to be utilised.  

3.5 Technology for portable radiation detectors 

A radiation detector comprises (Figure 3.1) of a detection material, a means to collect a signal 

from the detection material (usually a light guide and PMT if the detector is a scintillator), 

electronics to amplify and shape the signal, a MCA and a means to display / store the 

measurement results, and a power supply (Knoll, 2010). The detector may optionally be 

surrounded by a shield depending on the application. This subsection details the technology 

that is available for radiation detectors and discusses it in the context of a portable detector 

 
Figure 3.1: Schematic diagram of a radiation detector (Adapted from Knoll, 2010) 
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3.5.1 Detection materials 

There are a wide variety of different materials, each with their own unique properties, that 

can be used for the detection of radiation. The following description of materials is not 

intended to be exhaustive but aims to cover some of the more common types of materials 

that are available for commercial use. 

Available since 1948, Sodium Iodide (NaI) is an inorganic scintillator that is the dominant 

material of choice for gamma radiation detection. This is due to it having good availability in 

large volumes and a low cost compared to other materials (Krane, 1988, Knoll, 2010). Pure NaI 

will produce a light output of up to 45,000 photons per MeV, though in this form it will only 

scintillate at liquid nitrogen temperatures (Sakai, 1987, Hine, 2016). It is therefore more 

commonly seen doped with thallium (as NaI(Tl)) to allow scintillation at room temperatures. 

In this state, it has a photon output of 38,000 photons per MeV. 

The resolutions typically seen in NaI(Tl) detectors are of the order of 8% for decay energies of 

662 keV (see Table 3.5). This is towards the lower end of the 3-10% resolutions typically seen 

in scintillators (Knoll, 2010) although, as already discussed in section 3.4, this resolution has 

so far been suitable for most uses of portable radionuclide detection involving wildlife. If, 

however, a larger range of radionuclides require detection, then this low resolution may not 

suffice. In addition to its low resolution, a NaI(Tl) crystal has a long decay time (time for 

fluorescence in the crystal to decay after a radiation interaction – see chapter 2.5) at 0.23 µs 

compared to other detection materials (Knoll, 2010). This makes it less useful for 

measurement of high activity concentrations. Further, while NaI(Tl) has an effective atomic 

number (Zeff) of 50 (Tavernier et al., 2006), a low density (compared to other materials) of 3.67 

g cm-3 means this material does not have as high an intrinsic efficiency as some of the other 

materials described in this chapter. The efficiency is approximately 50% for 137Cs in a 25 mm 

thick detector and 75% in a 51 mm detector. The photopeak ratio is also low at 40% for 137Cs 

in a 25 mm x 25 mm detector and 58% in a 51 mm x 51 mm detector (Hine, 2016). Counting 

efficiencies and photopeak ratios for a number radionuclide decay energies and crystal sizes 

are available in Knoll (2010). 

While NaI(Tl) crystals can be machined into various shapes and sizes, they are fragile and 

cannot withstand major mechanical or thermal shock (Hine, 2016). This property should be 

considered when planning how an animal target will be positioned against it, or if the detector 

will be used in difficult terrain (i.e. if there is a suitable housing available). Further, as it is 



44 
 

hygroscopic, it requires a surrounding material to stop moisture from reaching the crystal 

(Knoll, 2010). While this is acceptable for the measurement of gamma rays, the low 

penetrability of beta rays means that these detectors are generally not suitable (depending 

on the casing material used) for the measurement of beta radiations of below 0.8 MeV (Hine, 

2016) 

Caesium Iodide (CsI) crystals, like NaI crystals, have good availability, are available in large 

volumes (size) and are of relatively low cost (Yoo et al., 2015a). Similar to NaI, CsI is doped 

with another material and is manufactured as either CsI(Na) or CsI(Tl). Both of these crystal 

types have very similar properties. They are more durable and malleable than NaI crystals, 

having a consistency more like lead (Menefee et al., 1967), and so are better suited for 

demanding fieldwork. Further, as they have a higher density (4.51 g/cm3), can be made in 

smaller sizes to the same effect as a larger NaI detector (Knoll, 2010). Combined with a higher 

atomic number (Zeff = 54 (Tavernier et al., 2006)), this greater density means CsI crystals have 

a larger gamma ray absorption coefficient and a greater photopeak ratio than NaI (Menefee 

et al., 1967, Knoll, 2010). This does however, make it less suitable for beta detection (Menefee 

et al., 1967).  

While these properties give it several advantages over NaI, it nonetheless has some 

disadvantages. CsI(Tl) not as hygroscopic as NaI (Yang et al., 2014), but they still display some 

clouding at high humidity (CsI(Na) is hygroscopic). In the UK environment, the crystal would 

still require a casing for use outdoors. They have a variable decay time, which has some 

advantages (Knoll, 2010), though these times are longer than for NaI and therefore count rates 

are more limited. When attached to a standard PMT, both CsI(Na) and CsI(Tl) have a photon 

output lower than NaI (Knoll, 2010) and therefore lower resolution. CsI(Tl), however, operates 

outputs light in the red wavelength and if coupled to a PMT that also operates at the same 

wavelength can achieve significantly higher photon outputs than for NaI (up to 65,000 photons 

per MeV) 

Lanthanum Bromide (LaBr3) crystals were discovered at the start of this century, with mass 

availability around 2005 (Knoll, 2010). Following shortly after, Cerium Bromide (CeBr3) 

properties were first described in 2005 (Shah et al., 2005). Both CeBr3 and LaBr3 crystals share 

several similar properties and, although more expensive, have several advantages over NaI 

detectors. Photon output is higher than for NaI and CsI; CeBr3 has an output of 68,000 photons 

per MeV (Shah et al., 2005) and LaBr3 is slightly higher at 70000 photon output per MeV 
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(Salacka and Bacrania, 2010). The energy resolution for these detection crystals are improved 

over NaI and CsI at around 3 to 4 % for 662 keV (Shah et al., 2005, Guss et al., 2009). They have 

a faster decay time, at approximately 20 ns, and the intrinsic efficiency and photopeak ratios 

for these detectors both are slightly better than for NaI (Knoll, 2010). They also have a high 

density at 5.2 g/cm3 (which reduces the influence of having a lower atomic number (Zeff ≈ 45) 

than NaI (Tavernier et al., 2006)). While they are more hygroscopic than NaI, this only presents 

additional concern during the manufacturing process (Knoll, 2010). 

Although LaBr3 has a slight advantage over CeBr3 in the properties mentioned above, its 

largest disadvantage is the presence of internal radiation from 138La atoms within the 

detection material (Knoll, 2010, Nilsson et al., 2014). This causes significant problems in 

measurement e.g. Nilsson et al. (2014). CeBr3 has the same disadvantage, though not as 

pronounced. This lower internal background radiation often makes CeBr3 the preferred 

detection material out of the two crystals despite the better detection properties of LaBr3 

(Quarati et al., 2013, Guss et al., 2009). These crystals are, however, brittle (Quarati et al., 

2013, Iyudin et al., 2013) and would therefore be unsuitable for rugged fieldwork. 

Similar to LaBr3 and CeBr3, Lutetium Yttrium Orthosilicate (LYSO), has a number of 

advantages (Knoll, 2010) that makes it suitable to monitoring gamma radiation (7.1 g cm-3 

density, relatively cheap, and a similar resolution and photon per MeV output to NaI) but has 

a high internal background from 176Lu. The crystal size of LYSO is also limited due to non-

uniform light yield and self-absorption (Zhang et al., 2014) and is therefore unlikely to be 

suitable for the requirements of this project.  

Organic scintillators that can be dissolved in a solvent can be polymerised to form a plastic 

scintillator (Knoll, 2010). This has generated a number of different types of scintillating 

detectors, all with their own defining features. This makes it relatively easy to match a 

detector type to a particular application. Unlike crystals, plastic scintillators are identified 

using product codes (see Table 3.2). The product code can differ depending on the 

manufacturer. For example, the same type of material labelled by Saint Gobain as BC-400 is 

labelled as NE-102A by NE and EJ-212 by Eljen. For simplicity, the materials identified in this 

thesis will follow the identification scheme used by Saint Gobain (Saint-Gobain, 2015). 
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The resolution of plastic scintillators (at 13%) makes it the worst of the detection materials 

described in this chapter (van Loef et al., 2015). Similarly, they have a low density (≈1g/cm3) 

and atomic number (Zeff ≈ 4.5) (van Loef et al., 2015) compared to other detection materials. 

Their low density makes them better suited to alpha and beta detection rather than gamma 

(Knoll, 2010), especially if formed as a thin detector as this would better reject the higher 

energy gammas. The density can be increased by mixing in other higher density materials (a 

term called “loading”), though this has the effect of lowering the light output of the scintillator 

and is undesirable as they already have one of the lowest light outputs at approximately 

10,000 photons per MeV (Knoll, 2010). Another disadvantage of plastic scintillators is the low 

softening point. This is generally around 70˚C though there are a couple of specialised 

materials (BC-440 and BC-448) that can operate in higher temperatures. 

Instead, their main advantage over other detection crystals is the ease at which they can be 

fabricated and shaped. Shaping of the detector can help increase intrinsic efficiency in objects 

as it can be moulded to a particular shape (Yoo et al., 2015b). Sizes are available from small 

fibres to large volume detectors and they are relatively inexpensive when compared to other 

detector materials (Knoll, 2010). If the end user requires other materials to be embedded 

within the scintillation material, or if they need to be cast into unique shapes, plastic 

scintillator materials like BC-490 can be used. These materials are delivered partially 

Table 3.2: Commercially available plastic scintillators. 

 

 

Production 

code

Light output  

(% anthracene)

Max emission 

(nm)

Decay 

constant (ns)

Refractive 

Index

Density 

(g/cm3)
Typical applications

BC-400 65 423 2.4 General purpose

BC-404 68 408 1.8 Fast counting;  alpha, beta

BC-408 64 425 2.1 TOF counters; large area; alpha, beta, x-rays, charged particles

BC-412 60 434 3.3 Large area; neutron, gamma, charged particles

BC-416 38 434 4 Large area economy; neutron, charged particesl

BC-418 67 391 1.4 Ultrafast timing; small sizes

BC-420 64 391 1.5 Ultrafast timing, sheet areas

BC-422 55 370 1.4 Very fast timing; small sizes

BC-422Q <19 <360 0.7 Ultrafast timing; ultrafast counting

BC-428 36 480 12.5 Photodiodes, CCDs; Phoswich detectors

BC-430 45 580 16.8 SiPM, red enhanced PMTs

BC-436 52 425 2.2 1.61 1.13 Thin disks; neutron

BC-440 60 434 3.3 1.03 High temperatre environments (100˚C, M versions 150˚C)

BC-444 41 428 285 1.032 Phoswich detectors; neutron

BC-448 64 425 2.1 1.03 High temperatre environments (100˚C, M versions 150˚C)

BC-452 48 424 2.1 1.05 X-ray dosimetry (<100 keV)

BC-454 48 425 2.2 1.026 Neutrons

BC-470 46 423 2.4 1.037 Dosimetry

BC-490 55 425 2.3 1.032 General purpose

1.58

1.58 1.032
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polymerised (Saint-Gobain, 2015) and must be hardened by the end user. With a light output 

of 55%, they are otherwise similar to BC-400. They also have a few other advantages. They 

have one of the fastest decay times at 2 ns or less (Knoll, 2010) which makes them useful for 

fast timing applications (e.g. positron emission tomography). Further, as they are non-

hygroscopic, this makes them useful for beta and alpha detection as the material does not 

need any cladding that may otherwise attenuate the radiation before it is measured. For 

incorporation into a portable detector, the plastic scintillator would be best suited towards 

beta detection. Without requiring fast timing, the type of plastic scintillator for beta particles 

can be reduced to BC-400 or BC-430. BC-400 is a general-purpose detector and has an 

emission wavelength that matches most standard PMTs. BC-430, with emission wavelengths 

of 580 nm, would be more suited to some types of SiPMs (see section 3.5.2.2). 

High Purity Germanium (HPGe) semiconductor detectors were first developed in the 1970s 

(Knoll, 2010). Due to their high resolution (approximately 1%) they are routinely used in the 

cases of radionuclide measurement in a wide range of sample types (IAEA, 2011). They have 

decay times of only a few hundred nanoseconds (Knoll, 2010). Despite having a high density 

(5.33 g/cm3), they have a low atomic number (Z = 32) compared to NaI (Zeff = 50) and small 

crystal volumes (Tavernier et al., 2006, Knoll, 2010). This means that the intrinsic efficiency of 

HPGe is lower than for NaI. The high resolution of HPGe, however, offsets this disadvantage 

as is more capable of resolving radionuclides with similar decay energies and detecting weak 

sources of radiation from background radiation (see chapter 2.5). These properties make 

HPGe the superior choice for measurements where there is a large radionuclide mix, especially 

in cases where characteristic decay energies are similar.  

While these properties make HPGe the preferred choice in many applications (Khandaker, 

2011), they are of relatively high cost (see Table 3.6) and have the limitation of needing to be 

cooled to liquid nitrogen temperatures to operate (Knoll, 2010). Earlier germanium detectors 

(e.g. GeLi) required cooling to liquid nitrogen temperatures at all times. Fortunately, the 

introduction of HPGe meant that the new crystals can be stored at room temperature. Storage 

at room temperature, however, means that there is a long start-up time (often 4 to 12 hours, 

see Table 3.6) before the detectors are cool enough to be used. For use of these detectors in 

portable field applications, advance planning is essential.  

Cooling for HPGe detectors was initially only conducted using liquid nitrogen. The use of liquid 

nitrogen means that portability (i.e. operational range and time usage) is limited (Nilsson et 



48 
 

al., 2014) and also creates safety concerns over the correct transportation and handling of the 

coolant (Upp et al., 2005). Stirling cycle coolers later became available as an electro-

mechanical alternative to liquid nitrogen (Knoll, 2010). Through continued research and 

development, these detectors have become more portable in size as well as more efficient 

(Koike et al., 2015). These are now commonly seen in portable HPGe solutions (e.g. CANBERRA 

Industries Inc., 2015, ORTEC, 2015) though still require a number of hours to cool to an 

operable level and have limited operational time dependant on a replaceable battery.  

While HPGe detectors have the benefit of not requiring a PMT, the addition of a cooling 

mechanism, such as a liquid nitrogen Dewar, means that these semiconductor detectors are 

generally heavier than standard scintillators (Nilsson et al., 2014)(also see Table 3.5 and Table 

3.6). Having a higher resolution makes HPGe a suitable choice if measuring multiple 

radionuclides that have decay energies likely to overlap at lower resolutions. When 

considering the cost and cooling requirements, however, HPGe detectors are best to be only 

used where the added resolution is required. Several authors have already stressed that the 

higher specifications do not always make the use of HPGe justifiable (e.g. weight of cooling 

system for the detection system used by Kock et al. (2014)). 

Cadmium zinc telluride (CZT) is a room temperature semiconductor that offers similar 

specifications to HPGe. It has a higher density (6 g/cm3) and atomic number (Zeff = 48) than 

HPGe, which makes CZT a more efficient detection material (Tavernier et al., 2006, Burger et 

al., 2005). CZT offers the highest resolution for a room temperature material and has decay 

times of only a few hundred nanoseconds (Knoll, 2010). As no PMT or cooling system is 

required, it results in smaller and lighter detectors than for HPGe (Burger et al., 2005). The 

size of a CZT crystal, however, is currently limited to around 1 cm3 due to manufacturing 

defects that occur beyond this size. This, along with a small suitable yield, make the 

manufacturing costs of the CZT crystal relatively more expensive than for other commercially 

available detection materials (Yang et al., 2013). Further, the small crystal size makes it 

inefficient for gamma detection; measurement is best at low energies as at higher energies 

peaks are poorly resolved. Small crystal sizes, poor efficiency, and high cost (Bolotnikov et al., 

2015), means CZT is limited in its applications.  

There are a number of criteria to consider in assessing which of the above available materials 

are most suitable for use in a portable radiation detector. Besides requiring a good signal 

output and low intrinsic background, a portable radiation detector (for field use in potentially 
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difficult terrain) needs to be robust to mechanical shock damage and have a low weight and 

size (including extra requirements such as cooling) for transportability. A good resolution is 

also desired but may not be essential depending on the application. A summary of the above 

discussed detection materials is presented in Table 3.3. 

In comparing the materials, Table 3.3 suggests the most suitable material for a portable 

detector is likely CsI for gamma detection and a plastic scintillator for beta detection. CsI is a 

good selection for gamma detection due to its cost to performance ratio and the robust 

mechanical properties of the material make it suitable for rugged fieldwork. The plastic 

scintillator is a good selection for beta detection due to its low density and malleability. This 

means it can be shaped into a thinner detector to reduce detection from higher energy 

gamma. Having good mechanical properties also means the thinner detector would be more 

robust for beta detection than an equivalent thin NaI detector.  

 

 

Table 3.3: Comparison of materials from readily available portable detectors. 

 

 
 
Properties are ranked from 1 to 5 (5 being superior) to indicate relative performance. * - 
depends on type of PMT used. # - rank depends on application, e.g. lower density would 
be advantageous for beta or alpha detection. 
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Advantages Disadvantages

NaI 2 3 3 5 Cost and availability Hygroscopic / brittle

CsI 2 4 5* 5 Malleable Slightly hygroscopic

CeBr3 3 4 5 4 Good resolution for cost Internal radiation / hygroscopic / brittle

LaBr3 3 4 5 4 Good resolution for cost Internal radiation / hygroscopic / brittle

LYSO 2 5 3 5 High density
Internal radiation / self-absorption /non-

uniform light yield

Plastic 1 1 1 5
Low density (for gamma rejection 

in beta detection) / malleable
Low density (for gamma)

HPGe 5 4 2 1 High resolution Cooling

CZT 5 5 1 1 High density / High resolution Poor detection >1MeV / Small volume
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3.5.2 Light collection for scintillators 

Radiation interacting with a detection material needs to be converted into an electrical signal 

in order for a detection to be measured or recorded (Knoll, 2010). Gas and solid state 

detectors both produce an electrical signal directly from a radiation interaction. Radiation 

interactions within a scintillating material, on the other hand, must be converted to an 

electrical pulse through collection, and amplification, of the fluorescence produced within the 

detection material. Two main technologies are available for the collection of this fluorescence; 

the standard photomultiplier tube (PMT) and the silicone photomultiplier (SiPM). 

Advancements in these technologies, along with different manufacturing methods and a 

combination of the two technologies, means there are several different methods that can be 

chosen from; the selection of which can have considerable implications to the design of a 

portable detector. The following section discusses and compares the choices available should 

a scintillation material be desired for radiation detection. The last subsection demonstrates 

how these photon collectors are optimally joined to the detection crystal. 

3.5.2.1 Photomultiplier tube (PMT) 

The photomultiplier tube for scintillation counting was developed during the 1940s (Morton, 

1975) and, despite the introduction of newer methods, it remains the most widely used device 

for detecting photon emission (Knoll, 2010). There are many different types of PMTs available 

that vary in the design of their tube and the materials used for photomultiplication (Knoll, 

2010). The standard type of PMT, for use in radiation detection, normally utilises a box-and-

grid-type electron multiplier in a head-on arrangement fitted into a cylindrical tube (Knoll, 

2010, Hamamatsu Photonics K.K., 2016); essentially the photosensitive surface is at the end 

of the cylinder. The most common materials used in these PMTs are a bialkali photocathode 

with a borosilicate glass window; these materials make the PMT more efficient in the blue 

wavelength (420 nm), which matches the emission from most scintillators. PMTs used in 

previous and existing animal monitoring studies were of this type (see Table 3.1) and are 

recommended for radiation detection in field surveys (e.g. Hamamatsu Photonics K.K., 2016). 

The quantum efficiency (photoelectrons emitted per incident photon) of these PMTs are 

commonly quoted as between 20 to 30 % (Knoll, 2010) though, depending on the types used, 

can be up to 45%. A look at available PMTs (e.g. Hamamatsu and Photonis) shows these are 

(at the time of writing) typically around 30% quantum efficiency. The nature of PMT, however, 

means it is susceptible to magnetic fields (Knoll, 2010). They therefore need to be magnetically 
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shielded, though this is usually included within the PMT unit. They are also susceptible to 

mechanical shock and if the tube is cracked then the vacuum inside is lost. As already shown, 

however, they are commonly used for portable detectors and therefore, if they do not 

experience any undue rough handling, they are still usable within a portable detection system.  

There are two main limiting factors for the application of PMTs into a portable system. While 

most portable detectors use PMTs, they constitute a large proportion of the overall detector 

size (see examples in section 3.5.5). In instances where the detection system would be 

required to be shielded (as would be wanted for a live-monitor), the use of a PMT could 

increase the shielding weight requirements considerably as opposed to some of the other 

options that will be later discussed. This makes it a limiting factor in the operational rage of 

the detector. The other main limiting factor of the PMT is the high voltage power supply 

requirement. The PMT requires a high voltage to be placed across the anode and cathode in 

order to facilitate the acceleration of electrons at each multiplication stage. The requirement 

of this type of power supply means it impacts the operational time of the detector. Including 

a larger battery, or using removable backup batteries, further would increase the weight of 

the detector. A rechargeable system could be used but this means shorter, more frequent 

trips to allow for recharging if required. 

There are other types of PMTs that have different shapes to match different applications. A 

good description of the various types is given in Knoll (2010). Smaller tube designs are 

available with diameters as little as 10 mm (e.g. Hamamatsu Photonics K.K., 2016) and lengths 

of approximately 100 mm. These are much smaller than those used for the studies in Table 

3.1 though the smaller tube size does result in a smaller active area for measurement.  The 

smallest available PMT is the Micro PMT from Hamamatsu. This is a multialkali PMT with a size 

of 21 x 19 x 7 mm (not including a similarly sized voltage divider unit). They are, however, not 

designed for coupling with scintillators and in addition the small active area size and the higher 

cost makes it not as cost effective as a standard PMT. Another small PMT type is the MCP-

PMT. This uses a microchannel plate, consisting of a cluster of many thousands of tubes a few 

10s of um each in diameter. While this device has a faster response time than standard PMTs, 

it nevertheless has a weaker output, is easier to damage and is more expensive (Knoll, 2010). 

3.5.2.2 Silicone photomultiplier (SiPM) 

The development of the silicone photomultiplier (Renker and Lorenz, 2009) has made 

photodiode technology useful for incorporation in many applications such as in medical 
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imaging devices (Sul et al., 2015) and spaced based detectors (e.g. Kryemadhi et al., 2017). 

The semiconductor properties of the photodiode mean the SiPM has a number of advantages 

over the PMT. They have a lower power consumption (no high voltage supply is required but 

gives a similar level of gain as for PMTs), compact size, are insensitive to magnetic fields, and 

typically have a high efficiency (photon detection efficiency (PDE) is usually used as the main 

measure due to the influence of avalanche probability and active surface area, known as fill 

factor) than for a PMT (Turchetta, 2016). These properties make it appealing for use in 

portable systems. Examples of available SiPMs are listed in Table 3.4. 

Because the PMT is often the largest component of a portable scintillation detector (Knoll, 

2010), the small footprint of a SiPM (and lower power requirements) is beneficial in reducing 

the overall size of a detection system. Further, for portable detectors that require shielding 

against the background radiation, the small size of the SiPM reduces the surface area of the 

detector that needs to be shielded. This could significantly reduce the weight of the portable 

system (depending on the design of the detector). Their small size also means they can be 

embedded directly into the detection crystal. The benefit of this is it would maximise light 

collection as it removes light loss that would otherwise be introduced through coupling with 

the detection material (see section 3.5.2.4). The drawback of this is it becomes a permanent 

feature of the detection crystal; the entire crystal would have to be replaced if the SiPM 

needed to be relocated or exchanged.  

While the SiPM has a number of advantages over the PMT it nevertheless still has a number 

of disadvantages. These lay primarily in noise introduced to the system and constitutes a 

complex combination of scintillation, thermal, afterpulse (a random photodiode discharge 

shortly after a previous discharge), and crosstalk (electrons produced in one photodiode 

crossing into another photodiode) events (Knoll, 2010, Turchetta, 2016). The size of the SiPM 

and the size of each microcell (also the ratio of the active to non-active cell area; the fill factor) 

affects PDE and the amount of noise present. Generally, the larger the SiPM or microcell, the 

greater the PDE and gain but also the higher the noise. A main limiting factor in their use is 

the number of microcells available for detection (Renker and Lorenz, 2009); the unit can 

quickly saturate in the event of high count rates and therefore the types and numbers of SiPMs 

to use must be carefully selected. Further, while not necessarily a disadvantage, attention 

should be paid to the choice of detection material the SiPM is coupled to. This is because some 
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photodiodes operate in the red wavelength (580 nm) and are therefore better suited to 

scintillating materials that similarly operate in this region (Knoll, 2010). For example, when 

coupled with CsI(Tl) the pulse amplitude is typically double that of NaI(Tl) whereas it is typically 

half when using a standard PMT. 

These noise disadvantages mean there are still numerous technological hurdles to overcome. 

Advances in the manufacturing processes and the packaging options, however, are continually 

reducing the effect of some of this. SiPMs are currently packaged in three different ways: PEP, 

MLP, and TSV (Turchetta, 2016). Poured epoxy packages (PEP) consist of individual 

photodiodes joined together in an array using a wire bond. This arrangement is placed onto a 

ceramic or PCB board and is coated in epoxy for protection. While this is the cheapest 

construction, it nevertheless has a number of significant disadvantages. The epoxy coating is 

usually inconsistent in quality and uniformity and therefore means the optical transmission 

and overall PDE is poor. The materials and build method also means the service life is short 

compared to the other two methods. A more commonly used construct is the clear micro 

leadframe package (MLP) (or SMT). This involves attaching each photodiode to a large lead 

frame and covering with a clear compound. This is then cut to size, with typical sizes being 

1x1, 3x3 and 6x6 mm2. Unlike the previous construction method, the process can be 

automated and therefore fabricated in a larger, more consistent, size. The automated process 

gives the MLP overall better properties than the PEP. A final construction type is through-

silicon via (TSV). Here, photodiodes are left on their production wafer, whereupon a glass 

substrate is bonded on top of the wafer and the back of the silicon is ground to a thin layer. 

Gaps are etched into the silicon and metal contacts are inserted before the wafer is cut to size. 

This process creates the highest specifications out of the three processes due to the use of 

glass; allowing for better light transmission and removing the failure points that are caused by 

using epoxy. This increase in specification does, however, come at a higher production cost. 

There are currently three main manufacturers for SiPM technology; Hamamatsu 

(www.hamamatsu.com), Ketek (www.ketek.net), and Sensl (sensl.com). Table 3.4 shows the 

types of SiPMs available from these companies. Hamamatsu, using the term MPPC, offer four 

different types of MLP SiPMs (referred to as SMT types on the table) with packaging options 

for epoxy or silicone resin window materials. Ketek offer two types of MLP (referred to as SMD 

or BGA types on the table). Sensl provide three series of SiPM: one TSV type and two of MLP 

(both operating in different peak wavelengths). These three companies have options for SiPMs 
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to be mounted onto a pin board (easy access to anode and cathode) or onto an evaluation 

PCB that contains all of the necessary electronics (apart from the display). The dimensions and 

construct of these evaluation PCBs mean they would not be recommended for incorporation 

into a portable detector because they limit the design options for the detector and only allow 

for one SiPM per board to be used. Hamamatsu have ceramic mounted options, but this 

results in a SiPM unit with a large bezel around the chip. This is not necessarily a drawback 

unless mounting to the edge of a thin scintillator or requiring more than one fitted in a small 

space (i.e. in an array). If an array is required, then it would be recommended to instead make 

use of the custom design array options that Ketek and Sensl provide.  

At the time of writing, the cost per unit is c.£40 to £100; the TSV option is of the highest cost 

(see Table 3.4). For small sized detection crystals, the SiPM offers a lower cost solution than 

for PMT. If using a detection crystal much larger than the size of a single SiPM, then the use of 

multiple SiPMs becomes necessary and costs could therefore rapidly exceed the cost of the 

PMT solution. If the SIPM is opted for, instead of the PMT, then the 3 mm appears to have the 

best trade-off, between cost, PDE and noise if using either a cell size of 50 µm for Ketek or the 

20 or 35 µm for the Sensl. Turchetta (2016) recommends the 30035 SiPM as having the best 

combination of low crosstalk and high PDE. These recommendations, however, will depend 

entirely on the purpose of the detector. 

3.5.2.3 Hybrid Photomultiplier Tube (HPMT) 

Hybrid Photomultiplier Tubes (HPMT) combine the properties of a PMT with those of a 

photodiode (Knoll, 2010). Incident photons are converted to electrons by use of a 

photocathode whereupon a large voltage bias accelerates the electrons through a vacuum 

and into a silicone photodiode. The combination of these technologies makes for a detector 

with a size in between that of a PMT and SiPM. The main advantage in the use of a HPMT is 

their lower anode capacity and therefore they are better able to discriminate between 

individual photon interactions than for PMTs or Silicon photodiodes (D’Ambrosio and Leutz, 

2003). They are, however, more susceptible to backscattering than the other technologies. 

Further, they have a lower gain, compared to PMTs, and a poorer energy resolution for larger 

scintillators (>10mm) (Moszyński et al., 2006). Newer variants of HPMTs are under 

development such as the incorporation of SiPMs in place of APDs (Russo et al., 2010), but are 

not at this time commercially available. 
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3.5.2.4 Coupling and Coatings 

For a detection to be recorded, the light exiting the scintillator material needs to enter one of 

the light detection technologies described above. It is desired, therefore, to reduce the light 

loss from the sides of the detection material and couple the light collector in such a way as to 

maximise the light entering the light collector (Knoll, 2010). There are several materials (or 

components) that can be used to accomplish all this. To assist with describing these, examples 

are provided for each type of coupling and coating. As Saint Gobain (Saint-Gobain, 2015) 

provides a full range of what is discussed here, these materials are describe in terms of the 

codes used by this company to facilitate easy look up (and to match the product codes used 

in the description of plastic scintillators). 

The use of a light guide can help focus the light down to the particular point where the light 

collector is connected. In some circumstances (e.g. Cherenkov counting) it is beneficial to shift 

the wavelength of a scintillating material to a longer wavelength so the photons can be more 

optimally counted. BC-480, BC-482A and BC-484 are bars that can be applied to a particular 

scintillating material for this purpose. 

The scintillation material and the light collector, along with any light guides, all need to be 

coupled to the scintillator in such a way so as to minimise any light loss or reduction in quality. 

There are four methods for this. An optical cement (e.g. BC-600), which is a clear epoxy resin, 

is often used for interfacing the scintillator to a light guide. This material, however, is not 

recommended for interfacing with the photon collector. For this application either an optical 

grease (e.g. BC-630), interface (e.g. BC-634A) or coupling (e.g. BC-637) is recommended. BC-

630 and BC-637 are both silicon based and permanent. BC-630 is a compound that dries on 

the interface whereas BC-637 is an adhesive pad that sticks between surfaces. The final 

material, BC-634A, is a flexible optical disk. It benefits from being non-permanent and 

therefore can be reapplied to other scintillators or photon collection devices. It does, 

however, only come in thicknesses of 3 or 6 mm which would require factoring into a design.  

Light loss from the scintillator can be reduced by covering it in a reflective material. This can 

be thin aluminium, though often comes in the form of a tape (e.g. BC-642) or a paint (e.g. BC-

620) which are designed to maximise reflectivity and assist in ensuring there are no gaps in 

the covering. The BC-642 tape is constructed from Teflon (density 2.2 g cm-3) and is 0.08 mm 

thick. For this particular product, the Saint Gobain website (Saint-Gobain, 2015) recommends 

three layers of tape for optimum reflectivity. This thickness will need to be considered for the 
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measurement of beta radiation as it could introduce an attenuation factor greater than for a 

thin sheet of aluminium. The BC-620 is a reflective paint made using titanium dioxide. It can 

be applied directly to plastic scintillators, glass, acrylic, and metals. The recommendation from 

the manufacturer is to only use with scintillators with an emission of 400 nm and to not apply 

to large area sheets. Because the use of a portable detector in the field would expose it to 

potentially excessive wear, the paint option may not be appropriate if the detection material 

is not secured within the detector. 

3.5.3 Processing electronics 

The electrical signal from the detection material (or light collector) is typically too small to be 

directly analysed and is therefore amplified and shaped into a usable signal for processing. For 

the purposes of this project a detailed description of how the signal is amplified and shaped is 

not required; Knoll (2010) adequately details this information. Instead, the type of unit for 

processing this signal is important to consider as are the general specifications in terms of field 

use. 

Processing units can be categorised into two types (Knoll, 2010); a single channel analyser 

(SCA) and a multichannel analyser (MCA). A SCA will discriminate the input signal to identify 

peak energies between two defined thresholds. This produces a single count for the selected 

energy range. A MCA is more complex. It measures the counts for a series of selected 

threshold pairs (in effect a series of SCAs) and produces a histogram of the accumulated 

counts over a select energy range (see Figure 2.2 for an example). The more channels a MCA 

has, the more detailed the produced histogram will be. The choice of unit depends on the 

application. An SCA is more appropriate to use if only a single decay peak needs to be 

measured. If multiple radionuclides need to be identified and quantified (i.e. more decay 

peaks) then a MCA needs to be used. A MCA will, however, generally cost more than an SCA 

due to its complexity. 

Another important consideration in selecting either a SCA or a MCA (besides cost) is its 

suitability for fieldwork. Any unit selected would need to be constructed to withstand a certain 

degree of mechanical shock and to also be waterproof. Further, for remote fieldwork, it should 

have a suitable power supply such that the entire system can be powered for the duration of 

the fieldwork, e.g. a high storage battery or a way to replace or recharge the battery. Portable 

detector systems containing these elements are already available (see section 3.5.5 for 

examples) with either a MCA or SCA included. For construction of a new detector (or selection 
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of suitable components) there are separate processing units available, e.g. digiDART 

(www.ortec-online.com), InSpector™ 1000 (www.canberra.com), Model 970-X 

(www.berkeleynucleonics.com) URSA-II (www.laurussystems.com). If appropriate input 

electronics can be found then a laptop computer or tablet can also be utilised e.g. MAESTRO 

(www.ortec-online.com). All of these examples, however, only have single inputs and are 

therefore inconvenient if multiple detection crystals are needed; either multiple processing 

units will be needed or the sample will need to be re-counted with each detection material. 

For construction of a portable detector that includes multiple detection crystals, a unit similar 

to the RMS30 from JCS could instead be employed as it allows the input of two signals. If more 

inputs are required then the construction of one’s own MCA is possible; a number of open 

source projects detail how to do so (e.g. http://www.theremino.com). 

3.5.4 Shielding 

Shielding is incorporated into a detection system as a means to remove, or at least reduce, 

any background radiation that would otherwise interfere with detection from a sample (Knoll, 

2010) (see also section 2.4.1 for examples of background radiation). The shield can be any 

material that can attenuate the incident radiation (attenuation is described in chapter 2.1). 

Because attenuation occurs due to interactions of the incident radiation with atoms inside the 

material, the effectiveness of the shielding can be increased by either increasing the thickness 

of the material or by using a material of a higher density and atomic number. The allowable 

amount shielding in a portable detector is, however, typically restricted by weight. A thinner 

shield would also be preferred as a bulky detector could be more difficult to transport if there 

are space limitations. Therefore, a higher density material would be more suitable.  

Because the weight is restricted, the larger the surface area that is required to be shielded (i.e. 

the detector and organism) the thinner, and hence less effective, the shield will be. In the 

examples of the large animal monitoring described in section 3.4, the body of the organism 

itself provided some level of shielding against background radiation. A layer of lead around 

the rest of the detector provided the remainder for the shielding. For smaller animals, or for 

deployment in high radiation environments (e.g. Chernobyl), the shield would need to cover 

either the entire animal or a portion that would suitably reduce the background level. Any 

gaps or cracks would reduce the effectiveness of the shield.  

There are several different materials that are commonly used for the construction of a 

radiation shield: concrete, lead, steel, and tungsten (Knoll, 2010). The most common shielding 
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material is lead (most of the portable detectors in section 3.4 use lead). Its high density, large 

atomic number and malleability make it a suitable material for shielding against radiation. It 

can be easily shaped around a radiation detector and the density means it generally has a 

smaller volume than other solutions. Higher density materials such as tungsten can be 

employed in instances where space is an issue though these are more expensive (a search of 

material costs shows tungsten is approximately thirty times more than the price of lead per 

kg). If a large shield is required then steel can also be used, either by itself or in combination 

with lead, as a way to reduce costs. For larger installations, concrete is commonly used 

because it is a cheap material that can be easily constructed around the radiation detector. 

Because of its low density, however, large volumes of concrete are required to effectively 

shield against gamma radiation. The volumes required therefore mean this material is not 

suitable for a portable detector. A possible alternative to these materials is the use of water 

(Kodaira et al., 2014). Its fluidity means it can be easily deployed around a complicated shape 

(in a container) and, because water could be sourced locally, it would allow for easier 

transportation of the detector. The disadvantage of this is a large volume of water would be 

required to provide an effective level of shielding. Further, for use in contaminated areas, the 

water would need to be sourced from outside of the measurement location and therefore 

reintroduce the transportation problems. Out of the shielding materials described, the most 

suitable would be lead due to its good balance between low cost, high density and ease of 

shaping around a detector. 

All of these shielding materials have some form of intrinsic radiation (Sonkawade et al., 2008). 

This radiation comes from primordial radionuclides or nuclear fallout during the processing 

stage of the material. Some materials further contain isotopes of the atoms it is made up of, 

e.g. lead has 210Pb (though low level), and therefore the selection of shielding material may 

need to consider the radionuclides that will be monitored. In most cases, however, this 

intrinsic radiation is accounted for by taking measurements of the background count rate.  

Other ways of shielding against background radiation include active methods (Knoll, 2010). 

These methods do not aim to attenuate the external radiation but instead use techniques to 

selectively remove unwanted detection. Anticoincidence shielding uses an arrangement of 

two detector systems where a detection is only confirmed when an interaction occurs in one 

material and not the other. This is often used in reducing the cosmic component of the 

background but would also be useful for a beta detector as it can be used to selectively remove 
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any higher energy gammas. It would, however, mean including additional detection materials 

into the system that would require additional shielding as well as increase the processing 

requirements. Another method, coincidence shielding, can be applied when a target 

radionuclide emits two detectable emissions at the same time (e.g. a gamma and beta 

emission). This method works by selectively removing any single counts that occur within the 

detector material. Even if the target radionuclide had two such decays, the detector would 

need to surround the entire organism because the emissions could be in any direction from 

the decaying radionuclide. The shielding required to achieve this would therefore make this 

method unsuitable for incorporation into a portable live-monitor. 

3.5.5 Currently available detection systems 

3.5.5.1 Portable gamma detectors 

The availability of higher resolution detector material technology, such as Cadmium Zinc 

Telluride (CZT) and High Purity Germanium (HPGe) (Knoll, 2010), mean there are more 

technological possibilities for the detection of radionuclides within organisms than what were 

available during the early live-monitoring described in Table 3.1. Portable detector systems 

are already available using these detection materials; Table 3.5 and Table 3.6 detail (as of 

2016) the specifications for a range of portable radiation detectors that use scintillator and 

solid-state materials. The information displayed in these tables is freely available from the 

respective company websites though the price range given for the detectors is provided as an 

indication only, as these can change over time, and several companies did not disclose their 

price ranges. The selection of which portable detector to use for an application depends on a 

range of criteria; the target radionuclide(s), emission energy, and cost of the detector are all 

important factors as well as the portability of such a detection system; power requirements, 

dimensions, and weight all restrict the portability of a detector. The operating temperature of 

the detector can further restrict the locations (or time of year) where it can be deployed. 

Of the detectors listed, scintillators were mainly comprised of Sodium Iodide (NaI), though a 

few Lanthanum Bromide (LaBr3), Cerium Bromide (CeBr3), and a couple of Caesium Iodide (CsI) 

detectors were available. The semiconductor detectors were an even mix of Cadmium Zinc 

Telluride (CZT) and High Purity Germanium (HPGe). Generally, fully inclusive portable 

detectors are available from c.£3,500 to £90,000. NaI detectors are currently available for 

between c.£7000 to £20,000. LaBr3 and CeBr3 detectors are a slightly higher cost at between 

c.£19,000 to £24,500. All of these detectors have detector crystals ranging from 25 x 34 mm 
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to 76 x 76 mm. Two smaller CsI detectors (scintillators size 18 x 18 mm and 13 x 44 mm) are 

the lowest cost detectors at between c.£3,500 to £4,500. HPGe detection materials averaged 

64 x 64 mm in size though these detection systems are the most expensive with costs ranging 

between c.£27,000 for the liquid nitrogen cooled detectors, and up to c.£90,000 for the 

electrically cooled detectors. CZT detectors are the smallest with detection crystals each being 

around 10 mm3 in size. These cost approximately c.£10,000 (though up to eight crystals are 

included in some of the detectors). 

All the detectors are limited by the range of decay energies that they can detect (also by 

energy resolution). The lower energy varies from between 10 keV to 90 keV for scintillators, 

though most are 20 keV. The semiconductors are between 20 keV to 60 keV with most being 

30 keV. For most radionuclides, these average lower energy limits allow for detection. The 

choice of detector (i.e. high or low resolution), however, will depend on the requirement for 

the detection of radionuclides with low decay energies; such as the gamma emitter 241Am 

where a high resolution detector is needed to extract the decay peak (though specialised 

detectors such as the one described by Clark et al. (2011) are often preferred for these 

instead). For the upper energy limit, the majority of detectors can detect up to 3 MeV. There 

are a few that have only a maximum energy of 2 MeV, and one at 1.5 MeV. It is not stated if 

this maximum energy is a hardware limitation or a software limitation (e.g. detector is 

advertised towards a specific use i.e. lower energy natural background radiation). 

For the majority of key environmental radionuclides (see Appendix 10.1), their decay energies 

are within the 2 MeV detection limit. At 1.25 MeV, detection of radionuclides such as 60Co 

(main decay energies at 1.17 and 1.33 MeV) would be hindered. What could instead limit the 

choice of detector is the identification capabilities. All of these detectors use a MCA though 

there are five detectors (SpiR-ID, SPIR-PACK, Radeagle, RT-30, and RS-220 Super-IDENT) that 

are limited in their identification of radionuclides from a software viewpoint. Three of these 

(SpiR-ID, SPIR-PACK, and Radeagle) are limited in the number of radionuclides they can detect 

at any one time (four radionuclides for one and eight radionuclides for the other two). Two 

further detectors are limited in the default identification library. Whilst some important 

radionuclides such as 137Cs are included, others, such as 134Cs, are not in the included database. 

It is not stated if further radionuclides can be added by the user. 
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The battery life for the scintillator detectors offer mostly 8 to 14 hours; only 4 detectors can 

operate longer than this with one offering 36 hours of operation. For the semiconductor 

detectors, some of the CZT options depend on a link to an external computer and therefore 

battery time is linked to the specification of the attached computer. The other CZT options 

ranged from 12 to 24 hours of operating time. HPGe detectors had an operating time of 

between 3 to 12 hours although, due to the cooling requirements (see chapter 3.5.1), there is 

an initialisation time of between 1.5 hours to 12 hours before they can be used. Approximately 

half of the detectors have replaceable batteries whereas the remainder have an internal 

battery that requires recharging. Recharging time can last from between 2.5 hours up to 4.5 

hours. The choice of detector would depend on the locality of an external power supply. For 

extended fieldwork, the option of having replaceable batteries would likely be the suitable 

choice. The activation time could likely affect choice as well, the extra power requirements (or 

availability of liquid nitrogen) for initialisation can restrict the measurement locations (Nilsson 

et al., 2014). It also limits the time window for measurement which can be a disadvantage due 

to the unpredictability of animal capture. 

Weights of available scintillation detectors average around 1 to 3 kg with two weighing 7 kg. 

At under 0.5 kg, the CZT detectors weigh the least. The low weight of CZT can be beneficial as 

multiple CZT crystals can be arranged in a matrix configuration, or be combined with other 

detection crystals in a single system, whilst still maintaining an overall low weight. HPGe 

detectors, on the other hand, weigh the most. Weights range from 5 kg up to 15.5 kg which 

makes them less desirable for remote fieldwork.  

The minimum operating temperatures of the scintillator detectors are mostly -20 ⁰C with only 

a few at – 10 ⁰C and one at 0 ⁰C. For the semiconductor detectors, the minimum operating 

temperatures are between – 20 and 5 ⁰C though in general the temperature ranges are more 

limited than for the scintillator detectors. The maximum operating temperatures are between 

40 to 60 ⁰C. The maximum recorded temperature as recorded in the UK by the UK 

Meteorological Office (Met Office, 2013) was 38.5 ⁰C (25.2 ⁰C highest monthly average) with 

the minimum being -27.2 ⁰C (-5.2 ⁰C lowest monthly average). All the detectors would 

therefore operate under the maximum temperatures for the UK. The minimum operable 

temperatures are mostly below the average monthly low temperatures. Most of the listed 

detectors would, therefore, be operable except in the most extreme of low temperatures. 
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3.5.5.2 Portable Beta detectors 

Detection and identification of beta radionuclides in portable detectors is limited. They are 

generally detected by the inclusion of a Geiger Muller probe and therefore restricted to gross 

count instead of identification (e.g. AT1120 from atomtex.com or PM1401K from 

polimaster.com). There are some portable detectors available, (e.g Microspec Beta Probe 

from bubbletech.ca), that contain a special phoswich scintillator; two scintillators of different 

timing properties (e.g. NaI and CsI) sandwiched together to help distinguish between two 

dissimilar radiation energies (Knoll, 2010). It is therefore capable of distinguishing the required 

energy spectra components to help identify which beta-emitting radionuclide is present. 

These beta detection units are, however, fully inclusive separate units that do not include 

gamma detection. If the requirements for monitoring include emissions it would therefore 

come at the cost of having to include a sperate detector in whatever detection system is 

decided upon. 

3.5.5.3 Suitability for live-monitoring 

Of the detectors described in this section, several could be utilised for certain live-monitoring 

requirements. They incorporate detection materials that are suitable to gamma detection and 

are of a specification (e.g. weight and power supply) that makes them adequately portable for 

field studies. None of these detectors, however, are aimed towards animal monitoring 

(though do not state that they cannot be used for this purpose) and only a small number of 

the detectors (at the higher end of the cost scale) state that they can be utilised for the 

monitoring of specific objects (e.g. PYCKO Scientific Limited, 2014). Further, detector selection 

depends on a number of factors including the type of radionuclide to monitor and the target 

organism.  

An immediate concern in selection is the cost of any potential live-monitor, especially if more 

than one detector type or a high resolution detector is required. The technology used for 

measuring 137Cs in large organisms (e.g. sheep) is already sufficient for the monitoring detailed 

in section 3.4. Upgrading detectors in these instances is likely only required if a smaller unit 

with longer battery life is required. If monitoring of smaller organisms (e.g. mice) were 

required then it would be desirable to shield the organism and detector from background 

radiation; the smaller internal activity is likely to be difficult to distinguish from background if 

no shield is used. Here, the current detectors are either too large to sufficiently shield both 

the detector and any restraint used (due to weight), or the attachment of the display (on 
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smaller units) is such that is would compromise a part of the shielding. If there is also the 

added requirement to monitor both gamma and beta emitting radionuclides in both large and 

small organisms then none of the described available detection systems would be suitable. 

Multiple detection materials would be required to accomplish this and therefore, aside from 

finding the optimal configuration of materials, the selection of a suitable MCA (or SCA) to 

process the signal from detection material also becomes important.  

From the materials and technologies identified in this chapter, a likely live-monitor may 

consist of the following: 

1. A CsI(Tl) scintillator for gamma detection and a plastic scintillator (e.g. BC400) for beta 

(Section 3.5.1), sized and orientated appropriate to the target organism. 

2. A small PMT or, if a smaller detection crystal is used, a suitable number of SiPMs 

(Section 3.5.2). This depends on budget and the radioactivity likely to be encountered. 

3. Connection to a MCA if spectral analysis is required for multiple radionuclide 

identification, or an SCA if single radionuclides where the peak energies can be 

windowed (Section 3.5.3). The choice must allow for portability of the entire unit. 

4. A restraint with a lead shield surrounding it and the detector or another appropriate 

method of placing the detector against the organism (Section 3.5.4). The design and 

use of this depends entirely on the size of organism.  

From this list, it can be seen that the complete specification of a detector would need to first 

identify the targets of such a device. The approach to identifying the target radionuclides and 

organisms, as well as the design process, is outlined in the next section. 

3.6 Development of a new detection method / technology 

The review of detection methods and technologies in the previous subsections identifies 

scope (and need) to develop a new detector for the determination of radionuclide content 

within wildlife. This subsection outlines the design process and the approach taken towards 

the development of such a new detector.  

3.6.1 Approach to detector design 

From the conception of an idea to the production of a prototype, there are several 

development stages to follow (Kamrani and Nasr, 2010). The development process involves a) 

identifying the needs of the product, b) researching the identified needs to understand the 

processes of the product, c) developing potential solutions, d) selecting the best solution and 
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building a prototype(s) and, e) testing the developed prototype(s) to check the desired 

specifications have been met.  

This project had the aim of developing a new method for determining the radionuclide content 

within terrestrial wildlife (primarily small animals). The literature review chapter has so far 

discussed the methods and the technologies that are currently available and has identified the 

development of a portable radiation detector as being the preferred solution for meeting this 

aim. In planning a design, there are several components to a radiation detector (e.g. detection 

material, shielding etc) that must be considered in relation to not only the detection of 

radiation from the target radionuclide but also to what is in the surrounding environment and 

the properties of the target organism. The variables for these components are identified 

through considering what will interact with the radiation detector in question. 

For a potable detector, positioned at ground level in an unspecified outdoor location, what 

sources of radiation would the detection material measure? By considering a box (Figure 3.2), 

of undefined size, that has a detector attached to it at an unspecified point, the possible 

sources of radiation incident on the detector (described in chapter 2.4) can be identified as 

follows. 

If the box is empty (Figure 3.2a), then the detector will be exposed to radiation from four 

different sources; radon (along with decay products) from the air, cosmic radiation, intrinsic 

radiation from the detector (crystal and any shielding), and gamma radiation that is emitted 

from the ground. By introducing a non-radioactive object (in this case to represent the volume 

of an animal) into the box (Figure 3.2b), there are two changes that will occur to the radiation 

that reaches the detector. Firstly, the volume of air will reduce and, in turn, the level of 

radioactive radon in the box will reduce. Secondly, depending on the orientation of the 

detector, there will now be a shielding effect from the object meaning a potential reduction 

from the gamma radiation in the ground (cosmic is too penetrative to be effectively reduced 

as stated above). If the introduced volume is now substituted with a non-contaminated animal 

(Figure 3.2c) then a new source of radiation is introduced. An animal that is signified as free 

from anthropogenic radionuclides will still contain a level of background radiation, the most 

apparent of this natural internal radiation would be from 40K (Kathren, 1984). 



68 
 

 

Accounting for and reducing this background radiation can be accomplished using three 

methods. First, the background gamma can be reduced by means of a shield. Depending on 

the size of the animal, this would either surround the animal and the detector or surround 

only part of the detector with the animal body completing the enclosure (e.g. as for the sheep 

monitoring methods in section 3.4). This needs to be balanced such that it is still a portable 

weight but reduces the background gamma such that the target radionuclides can be 

quantified. Second, the gamma that does penetrate the shield, along with the cosmic, radon, 

and intrinsic radiation, can be accounted for by taking background measurements at the 

sampling site and ensuring the count time is long enough to sufficiently reduce the MDA for 

the target radionuclide. Finally, the introduction of a phantom, with a density of close 

approximation to the animal target, can account for the difference in volume when measuring 

the background radionuclide activity levels. This will act to reduce the radioactive radon 

present in the air, and attenuate the gamma radiation from the ground, to similar levels as if 

a true animal target was introduced. In designing the shielding, therefore, the factors to 

  

  
Figure 3.2: Sources of radiation that can interfere with radionuclide measurement. a) 
Empty box, b) box with blank organism volume, c) box with organism volume containing 
natural background radiation, d) box with contaminated organism volume. 
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identify are: i) the likely background activity in the measurement location; ii) what the 

targeted radionuclide(s) are; and iii) the size of the target organism(s).  

The last component to be introduced is an animal which is now contaminated with 

anthropogenic radionuclides (Figure 3.2d). Variables associated with the target animal itself, 

instead of from the surrounding environment, are now important to consider. These are: (i) 

the distribution of the target radionuclide within the target organism and its visibility to the 

detector (e.g. 90Sr is a bone accumulating radionuclide and therefore the emitted radiation 

would need to travel through soft tissue before it can be detected); (ii) radionuclides 

contained within the gut; (iii) shielding by, or contamination on, fur (or feathers); (iv) moisture 

present or trapped on the surface of a wet animal; and (v) movement of the animal.  

The target radionuclide has already been identified as an important factor in the 

environmental variables mentioned above. The type of radionuclide and its distribution with 

the body, however, also have implications on the type of detector to use as well as its size and 

orientation (in relation to the animal body). The possible radiation from radionuclides within 

the gut is likely not problematic for larger animal though would be difficult to account for in 

smaller animals without removing the whole gut (Beresford et al., 2016) though can be 

minimised by providing uncontaminated food to the animal if it is held in a trap. The presence 

of fur (or feathers), surface contamination, and water, all add a shielding effect to the 

detection of radiation emitted from inside the organism. Removing fur (or feathers) would 

make the method invasive and the washing of the animal is likely to not remove all 

contamination (e.g. Ishida, 2015). The final variable, movement of the animal, is one that can 

be limited by having an appropriate restraint. The true extent as to the effect of movement is 

one that will be revealed in testing of a prototype detector. In designing the main detector, 

therefore, the main factors to consider for the animal are: i) the target radionuclide; ii) the 

size and type of organism; ii) the size and orientation of the detector; and ii) how the 

movement of the animal affects the measured count.  

3.6.2 Organisation of subsequent chapters in this thesis 

In considering the main factors identified in the previous subsection, the development stages 

detailed in section 3.6.1 have been adapted for the design of a radiation detector (shown in 

Figure 3.3). The stages shown are categorised into the objectives outlined in section 1.2. The 

structure of the remaining thesis chapters is as follows:  
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1. Chapter 4 addresses objective 2. It details the selection of the target radionuclide(s) 

based on their presence in the UK environment and their importance to dose 

contribution. It also identifies the target organism(s) that would be suitable candidates 

for measuring with such a detector. 

2. Chapter 5 addresses objective 3. It determines the optimal detector material size and 

orientation (in relation to the animal) by modelling the emission of the target 

radiation(s) from the target organism(s).  

3. Chapter 6 addresses objective 4. It outlines the design and construction of a detector 

based on the information and conclusions in chapters 2, 4, and 5. 

4. Chapter 7 addresses objective 5 and 6. The detector is tested in the laboratory and 

field to ascertain how it performs in detecting the target radionuclide(s) from the live 

target organism(s). 

A discussion and conclusion is presented in Chapter 8 to draw together the research findings 

and outline a strategy for further research.  

 
Figure 3.3: Overview of the device design and development methodology 
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4 Determination of radionuclide measurement requirements. 

4.1 Introduction 

This chapter identifies organisms and radionuclides to be monitored under a UK regulatory 

context and evaluates the potential for live-monitoring. 

4.2 Methods 

4.2.1 Data Sources 

The selection of target organisms was based on the requirement to monitor protected species. 

Because there is a wide variety of different protected species in the UK (see JNCC (2015) for a 

comprehensive list) a means of categorising similar organisms and estimating internal doses 

was required. The ERICA tool (Brown et al., 2008), as an approved radiological assessment 

method for use in UK, was used to accomplish this. It categorises organisms as Reference 

Organisms, in-effect broad groups (e.g. amphibians, birds, mammals etc.), each of which are 

assigned a representative size, weight, dose conversion coefficients (DCC) and concentration 

ratio (CR). The organisms considered were the terrestrial reference organisms (not flora) 

considered in the ERICA tool (version 1.2 values used for this thesis (Brown et al., 2016)). 

The selection of target radionuclides was determined by reviewing what anthropogenic 

radionuclides are currently authorised for release in the UK. An emphasis was placed on 

radiological monitoring programs (Environment Agency et al., 2014, Copplestone et al., 2003) 

as these would give indicative profiles (i.e. information for a set of radionuclides characteristic 

for a site) for radionuclide releases from facilities across the UK. These are reported, in a 

consistent manner, as radionuclide activity concentrations in various organisms and 

environmental media. As measurement methods can vary between studies, it was decided 

not to supplement the data extracted from the RIFE reports2 with data from other studies. 

The set of radionuclides to be assessed within this chapter are those that are required to be 

monitored within the terrestrial ecosystem. For the UK, these radionuclides are Environment 

Agency et al. (2014): 3H, 14C, 32P, 35S, 41Ar, 60Co, 85Kr, 90Sr, 95Nb, 95Zr, 99Tc, 106Ru, 110mAg, 125I, 

125Sb, 129I, 131I, 134Cs, 137Cs, 144Ce, 155Eu, 210Po, 226Ra, 228Th, 230Th, 232Th, 234Th, 234mPa, 234U, 235U, 

238Pu, 238U, 239+240Pu, 241Pu, and 241Am. Although other radionuclides may be released or 

                                                      
2 https://www.gov.uk/government/publications/radioactivity-in-food-and-the-environment-rife-reports-2004-
to-2016 
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present (especially as members of decay chains) only the radionuclides listed are monitored 

in the RIFE programme. 

The RIFE reports contain radionuclide activity concentrations for a range of marine and 

terrestrial targets (organisms and environmental media). A number of terrestrial animals are 

included, such as pheasant and rabbit as well as parts of larger animals (namely consumables 

e.g. deer meat). Data for all reference organisms was not, however, present in RIFE. Instead, 

because soil data is recorded in RIFE for most sites, it was decided to use soil activity 

concentrations (Table 4.1) to generate activity concentration estimates (using ERICA CRs) in 

each reference organism. Some sites (e.g. Capenhurst) report activity concentrations from 

multiple locations within the area. These individual locations were averaged for each 

radionuclide (and listed with a standard deviation) to provide a single set of site soil 

radionuclide concentrations. Radionuclide activity concentrations, as reported in rabbit (Table 

4.1) were additionally used in combination with the soil data to verify the calculations that 

follow hold up when only limited biota data are available i.e. for a single site. Note Capenhurst 

was ignored due to a poor match between soil and rabbit data.  

For the radionuclides that were reported in each site profile (i.e. the set of radionuclides 

present at that site) there were several assumptions that were made in selecting and 

converting radionuclide activity concentrations:  

a) Only average soil radionuclide activity concentrations that were measured in dry 

weight were used. Wet weight (as no percentage dry matter was given) and maximum 

values were ignored.  

b) The plutonium radionuclides; 239Pu and 240Pu, are reported in RIFE as 239+240Pu. As a 

conservative measure (see: Wood, 2010), these were input as 240Pu to provide an 

upper estimate of dose for combined 239+240Pu.  

c) Radionuclide activity concentrations that were recorded as being at the limit of 

detection (LOD) were assumed to be present in the soil at that level. This decision was 

made so as to not under predict their contributions to dose as compared to the other 

radionuclides present within the profile. It is noted, however, that the radionuclides 

not at LOD will as a result be (assumed minimally) under predicted.  
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d) Another assumption was required for the atmospheric radionuclides: 3H, 14C, and 35S. 

These are all reported in RIFE as soil activity concentrations and, because the ERICA 

tool only contains air to biota CRs for these radionuclides, need to first be converted 

to air activity concentrations. This was estimated by assuming a) equilibrium between 

the soil and air concentrations and b) the stable element to isotope ratios were the 

same for both soil and air. It was assumed there is approximately 35% carbon content 

in UK soil (European Environment Agency, 2017) and 0.2 g m-3 carbon content in air 

(IAEA, 2010a). This equates to approximately 350g of carbon per kg of soil and 

(assuming an air density of 1.225 kg m-3) 0.163 g of carbon per kg of air. Therefore, if 

the 14C content is in equilibrium for air and soil, the ratio of 14C activity concentration 

from soil to air is estimated to be 4.6x10-4. Sulphur-35 was assumed to have the same 

ratio as for 14C. This was based on recommendations from Brown et al. (2008) and 

Copplestone et al. (2001). Tritium air concentrations was assumed from the transfer 

of tritiated water between air to soil. This is estimated from equation 4.1 (IAEA, 2010a), 

where 𝐶𝑠𝑤 is the soil water concentration in Bq L-1, 𝐶𝑎𝑖𝑟 is the air concentration in Bq 

m-3, 𝐶𝑅𝑠−𝑎 is an empirical constant set to 0.3 and 𝐻𝑎 is the absolute humidity in L m-3. 

A 10% water content was assumed for soil. An absolute humidity of 10 g m-3 was 

assumed based on data from https://www.metoffice.gov.uk. Using these values 

results in a ratio of 1.6x10-3 for soil to air activity concentrations. 

e) Lastly, radiation weighting factors were kept as the default values within the ERICA 

Tool (i.e. alpha, beta, and gamma emitting radionuclides were given weightings of 10, 

3, and 1 respectively). 

4.2.2 Assessment of organism and radionuclide importance 

The most at-risk organism groups were assessed by calculating the internal, (Equation 2.9), 

external (Equation 2.10) and total doses from each radionuclide present in each site 

(henceforth referred to as a site profile). Weight and geometry of each organism group, along 

with their associated DCC and CRwo-media values, were set as the ERICA 1.2 Tool default values. 

The doses estimated to be received by each reference organism (internal, external and total) 

were fractionally weighted between 0 and 1 (such that 1 is the reference organism with the 

𝐶𝑠𝑤 =
𝐶𝑅𝑠−𝑎𝐶𝑎𝑖𝑟

𝐻𝑎
 4.1 
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largest dose) across each site. Comparison of these fractional weightings, along with details 

on what type of radiation dominates the dose, assists in identifying the organism types that 

would be most suitable to target a new detection method towards.  

The radionuclides of importance were determined by calculating the internal dose received 

from each radionuclide that was present within a site profile. The top three contributors to 

dose were listed (for each reference organism and each site) in descending order of dose. A 

limit was set such that only radionuclides that contributed at least 10% to the internal dose 

were included. This was repeated using the data for activity concentrations in rabbit (rather 

than small mammal concentrations estimated using CR values) to verify result are similar 

when only limited data is used.  

4.2.3 Assessment of detectability and measurability 

Radionuclides identified as contributing most to the dose were assessed to determine if the 

radiations they emit are likely to be detected externally from the target organisms. Three 

methods were used to assess the detectability: 1) calculating maximum radiative range in soft 

tissue; 2) identifying potentially interfering radionuclides; and 3) determining the activity 

concentration of each radionuclide that would likely be present in the event of a screening 

dose rate level being reached. 

4.2.3.1 Detectability of selected radionuclides 

Radionuclides, once they are absorbed into an organism, will often accumulate in specific 

locations within the organism’s body. They can distribute across soft tissues (e.g. 137Cs), or 

within certain organs (e.g. 90Sr in bone or 131I in the thyroid). Therefore, a knowledge of where 

in the organism these radionuclides will be found, coupled with how far the emitted radiation 

can travel through body structures, highlighted which radionuclides could be potentially 

detected by an external detector.  

Each radionuclide was categorised as either being accumulated largely in a specific tissue(s) 

or as having a relatively homogenous distribution throughout the organism based on) ICRP 

(1979). For each category, the primary alpha, beta, and gamma emissions were identified and 

their range through soft tissue was calculated (see table in Appendix 10.1). The (50% intensity) 

range, Rγ, of gamma photons in soft tissue was estimated using Equation 2.4. As the mass 

attenuation coefficient (µ/ρ) values are energy dependant, soft tissue values were estimated 

from Hubbell and Seltzer (1996). Because all the beta decay energies of interest were below 
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2.5 MeV, the maximum range, Rβmax, of beta particles in soft tissue was estimated using 

Equation (2.1). The range of alpha particles in soft tissue was determined to be negligible 

(Podgorsak, 2010). Variances in densities and attenuation of different soft tissue types and 

bone was ignored (deemed sufficient for the purposes of this chapter) and instead a single 

tissue type, assuming a density of 1 g cm-3 (assumed in many wildlife assessment models e.g. 

Vives i Batlle et al., 2007), was used for the calculation.  

4.2.3.2 Radionuclides likely to interfere with detection 

For each radionuclide determined to be of importance, the primary decay energy was looked 

at to determine what other radionuclides could interfere with their detection. For the gamma 

emitters, a search of readily available portable gamma detectors revealed a standard FWHM 

of around 8% of the decay energy for 137Cs (see section 3.5.5). Therefore, the approach taken 

was to consider radionuclides within a +/- 8% window of the primary decay energy as being 

potentially interfering. Because there are many potentially interfering radionuclides, the list 

of radionuclides was limited by considering only those that were likely to be present within all 

of the measurement locations. The naturally occurring radionuclides that were considered as 

potentially interfering were 40K, 234Thsec, 238Usec originating from rock, and 3H and 7Be, 14C, 

and 22Na from cosmic sources. The anthropogenic radionuclides (see section 4.2.1) that are 

required to be monitored were also considered along with any progeny. For the beta emitting 

radionuclides, because they exhibit a range of energies (see section 2.1), their detection could 

be obscured by the decay of any other radionuclides within detection range. Because a thin 

detector is likely to be used (see section 3.5.5) it is assumed interfering radionuclides for the 

target radionuclides that are beta emitters would be other beta emitting radionuclides 

present within the monitoring locations.  

4.2.3.3 Radionuclide activity concentration required to reach a screening dose rate 

The activity concentration (for each radionuclide) that is required to be measured is that which 

would result in an undesirable dose to an organism; i.e. it would reach a screening dose rate 

(ERICA uses a default of 10 µGy h-1). The screening dose rate can be reached by either a single 

or a combination of radionuclides.  

The ERICA Tool has three tiers of assessment, the first two of which use a screening dose rate 

to determine the outcome of the assessment. Tier 1 compares input media radionuclide 

activity concentrations to a set of environmental media concentration limits (EMCL) (Larsson, 

2008). The EMCL is defined as the “activity concentration in the selected media that would 
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result in a dose rate to the most exposed reference organism equal to the screening dose rate” 

(Brown et al., 2008). Each reference organism and radionuclide combination has an EMCL that 

is derived by back-calculation from the screening dose rate. In this tier, however, only the 

most exposed reference organism is identified. The reason for this is that a site can be quickly 

screened out if it is deemed to have radionuclide activity concentrations that are of negligible 

risk to the reference organism of most concern. If the assessment fails, then the assessment 

should continue into Tier 2. Tier 2 also uses a screening level to determine the outcome of the 

assessment. The whole-body dose to individual reference organisms are calculated and are 

directly compared to the screening dose rate (Larsson, 2008). Unlike Tier 1, Tier 2 assesses the 

risk for multiple reference organisms (that have been selected by the assessor). A Tier 3 

assessment is more complex and requires the assessor to define parameters such as 

probability distributions for the input data and to include their own dispersion models 

(Oughton et al., 2008). A Tier 3 assessment does not assess against a screening dose rate and 

is therefore not considered for this thesis.  

This chapter required a set of internal radionuclide activity concentrations, that would result 

in a screening dose rate to be reached, to be derived for each reference organism of interest 

(section 4.2.1). A Tier 1 assessment does not allow for this calculation and therefore estimates 

on internal activity were made on a Tier 2 level. This tier further allowed each set of 

radionuclide activity concentrations to be verified as resulting in a dose that would reach the 

screening level.  

The soil radionuclide activity concentration levels from the previous section were used to 

estimate what activity concentrations for each radionuclide (within each site) would be 

required for an organism to receiving a total dose of 10 µGy h-1. For each radionuclide i, 

present in a single site profile, the estimated activity concentration Cwo-biota (Bq kg-1) within a 

reference organism b was calculated (Equation 4.2. The fractional contribution of each 

radionuclide to total dose was first determined by dividing the soil activity concentration Csoil,i 

for each radionuclide by the total dose received DTotal,I,b (Equation 2.8) from all radionuclides 

present within the site. This was then scaled to the desired screening dose rate, S (µGy h-1), 

and converted to an internal organism activity concentration using the appropriate 

concentration ratio CRi,b. 
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Equation 4.2 was used to determine the predicted activity concentration in each reference 

organism for each radionuclide present in each of the sites in Table 4.1. All activity 

concentrations were scaled to the ERICA default of 10 µGy h-1 for the purposes of this chapter. 

This calculation was repeated using the rabbit data (combined with the soil data; Table 4.1) to 

verify this resulted in activity concentrations consistent with the soil only data. Finally, 

assuming a single radiation detector would be used for analysis, the results for all reference 

organisms were amalgamated to generate maximum, minimum, and average radionuclide 

activity concentrations for each radionuclide. This provided a basis for estimating if the 

quantity of emitted radiation for each radionuclide would be sufficient for measurement. 

4.3 Results 

4.3.1 Assessment of importance 

Reference organism weighted doses for internal, external, and total dose are shown in Table 

4.2 (e.g. internal dose for all reference organisms in Capenhurst are scaled between 0 and 1 

where 1 indicates the largest dose). The table indicates the most affected groups vary 

depending on the radionuclides that were present in a location. Generally (assuming ERICA 

defaults), large organisms receive a higher internal dose for sites where a gamma emitter 

dominates (see Table 4.3) and small organisms (annelid and mollusc) when an alpha emitter 

dominates. Small organisms that are close to the ground receive the largest external dose. 

Total dose shows the same patterns for internal dose. 

Of the radionuclides that where present in each of the monitored locations, the main 

contributors to internal dose across all soil profiles were found to be 14C, 90Sr, 131I, 137Cs, 228Th, 

234U, 238U, 239+240Pu, and 241Am (Table 4.3). Due to their low contribution to dose and low 

frequency on the table both 131I and 239+240Pu will not be considered further. Of the remaining 

radionuclides, 137Cs and 241Am have gamma emissions; 14C and 90Sr only have beta emissions, 

and 234U and 238U only have alpha emissions. Thorium-228 is primarily an alpha emitter, 

though it has a small gamma emission that will be discussed. For completeness, the 

radionuclides contributing most to external dose were 60Co, 137Cs, 228Th, and 235U. 

 

𝐶𝑤𝑜−𝑏𝑖𝑜𝑡𝑎,𝑖,𝑏 = [
𝐶𝑠𝑜𝑖𝑙,𝑖 

∑ (𝐷𝑇𝑜𝑡𝑎𝑙, 𝑖,𝑏)𝑖

] ∙ S ∙ 𝐶𝑅𝑖,𝑏 4.2 
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Table 4.2: Organism group weighted dose comparison. 

 

Comparison of doses received by each organism group for the selected radionuclide soil 
activity concentrations. Numbers are coloured such that solid red indicates the most 
affected group for each site profile and white is not affected. The smaller reference 
organisms that likely requiring multiple samples accumulated to achieve measurement 
are separated from the others using the dashed line. Weighted doses were calculated 
using data from RIFE (Environment Agency et al., 2014). 
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Amphibian 0.17 0.41 0.16 0.21 0.31 0.32 0.19 0.36 0.18 0.12 0.12 0.06 0.06 0.09

Bird 0.04 0.16 0.04 0.09 0.28 0.23 0.17 0.26 0.08 0.11 0.11 0.10 0.09 0.04

Large Mammal 0.17 1.00 0.16 0.53 1.00 1.00 1.00 1.00 0.61 1.00 1.00 1.00 1.00 0.12

Small Mammal 0.17 0.55 0.16 0.36 0.66 0.58 0.55 0.59 0.38 0.51 0.50 0.50 0.50 0.09

Reptile 0.16 0.27 0.15 0.19 0.20 0.20 0.15 0.23 0.18 0.11 0.11 0.09 0.08 0.19

Annelid 1.00 0.78 1.00 0.98 0.46 0.24 0.11 0.26 0.89 0.10 0.09 0.01 0.01 0.87

Arthropod 0.31 0.34 0.31 0.32 0.18 0.15 0.08 0.17 0.30 0.06 0.05 0.01 0.01 0.43

Flying Insect 0.31 0.35 0.31 0.32 0.19 0.16 0.08 0.17 0.30 0.06 0.06 0.01 0.01 0.43

Mollusc 1.00 0.70 1.00 1.00 0.46 0.20 0.09 0.22 1.00 0.08 0.07 0.01 0.00 1.00

Amphibian 0.98 0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.99

Bird 0.43 0.36 0.43 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.35 0.37

Large Mammal 0.19 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.20

Small Mammal 0.93 0.91 0.93 0.91 0.90 0.90 0.90 0.91 0.90 0.90 0.90 0.90 0.90 0.94

Reptile 0.88 0.88 0.88 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.91

Annelid 1.00 0.97 0.99 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00

Arthropod 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Flying Insect 0.44 0.39 0.44 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.37

Mollusc 1.00 0.97 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.00

Amphibian 0.17 0.65 0.16 0.28 0.47 0.53 0.42 0.57 0.27 0.36 0.36 0.31 0.30 0.26

Bird 0.04 0.25 0.04 0.12 0.33 0.30 0.25 0.33 0.11 0.19 0.19 0.18 0.18 0.10

Large Mammal 0.17 0.99 0.16 0.50 1.00 1.00 1.00 1.00 0.57 1.00 1.00 1.00 1.00 0.13

Small Mammal 0.17 0.77 0.16 0.41 0.80 0.76 0.74 0.78 0.44 0.71 0.71 0.71 0.71 0.26

Reptile 0.16 0.50 0.16 0.26 0.34 0.39 0.35 0.43 0.26 0.33 0.33 0.31 0.30 0.33

Annelid 1.00 1.00 1.00 0.98 0.61 0.45 0.34 0.48 0.90 0.34 0.33 0.26 0.26 0.89

Arthropod 0.31 0.60 0.31 0.38 0.34 0.37 0.31 0.40 0.38 0.31 0.31 0.27 0.27 0.54

Flying Insect 0.31 0.43 0.31 0.33 0.25 0.24 0.17 0.26 0.31 0.16 0.15 0.12 0.11 0.42

Mollusc 1.00 0.93 1.00 1.00 0.61 0.40 0.32 0.43 1.00 0.32 0.31 0.26 0.25 1.00
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Table 4.3: Radionuclides that contribute most to internal dose. 

 

Radionuclides (listed in descending order) for each reference organism at each site. 
Radionuclides were determined using data from RIFE (Environment Agency et al., 2014) 

 

When incorporating internal radionuclide activity concentration measurements from rabbits 

(and limiting the measurement locations to where these are available) then 241Am dominates 

the internal doses, with 14C a close second. The only exception is for Aldermaston where 234U 

and 238U contribute the most to dose. As no further radionuclides were identified using the 

rabbit data then the list of important radionuclides as in Table 4.3 remains unaltered. 
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4.3.2 Assessment of detectability 

4.3.2.1 Radionuclide emission range and organ accumulation location 

The range of radiation (calculated using the properties included in Appendix 10.1) from each 

of the target radionuclides (beta and gamma) is shown in Figure 4.1. Alpha radionuclides are 

not included due to their previously discussed short range. 

4.3.2.2 Potentially interfering secondary radionuclides 

Radionuclides that may interfere (Figure 4.2) with the detection of the gamma emitting 

radionuclides of importance are as follows (percent decay probability is displayed in brackets): 

for 137Cs, with a primary decay energy of 661.66 keV, the interfering radionuclides are 125Sb 

(11.3), 131I (7.2), 210Bi (3.8), 90Y (0.3), and 110mAg (94.0). For 228Th, with a primary decay energy 

of 84.37 keV (1.2), the interfering radionuclides are 144Ce (1.36), 131I (2.62), 231Th (6.6), 237Np 

(12.4), 155Eu (30.7), and 231Th (0.9). For 241Am, with a primary decay energy of 59.54 keV (35.9), 

the interfering radionuclides are 155Eu (1.1), 234Th (4.8), and 232Th (0.3). 

 

 

 

 
Figure 4.1: Range of radiation in soft tissue. Maximum range for beta particles (left). Half-
value thickness for gamma photons (right). Calculated using information from Appendix 
10.1. Carbon-14 and 137Cs are relatively homogenously distributed throughout the whole-
body; 90Sr in bone; 228Th mainly on the bone surface; and 241Am on the bone surface and 
in the liver (ICRP, 1979).  
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Figure 4.2: Interfering radionuclides. Interfering energies for a) 137Cs, b) 228Th, and c) 
241Am. 
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4.3.2.3 Activity concentration within an organism required to reach a screening dose rate 

The activity concentrations required to equal 10 µGy h-1 for the radionuclides deemed to be 

of importance are given in Figure 4.3 for the soil only measurements (averaged across all 

sites). A comparison between the soil only and the combined rabbit and soil measurements 

(averaged for the four locations where this data was available) is given in Figure 4.4. Individual 

tables, containing maximum, minimum, average and standard deviations for each organism 

group are provided in Appendix 10.2. The graph displays the combined results for all targeted 

organism groups. Each set of activity concentrations were checked in the ERICA 1.2 Tool to 

ensure they result in a 10 µGy h-1 dose at Tier 2. Activity concentrations can be scaled to 

different screening levels if required. For example, the activity concentrations given in the two 

graphs would be multiplied by 4 if a 40 µGy h-1 screening dose rate is required. Similar 

manipulations would correct for other screening dose rates, e.g. those detailed in Howard et 

al. (2010).  

 

 

Figure 4.3: Average radionuclide activity concentrations required to reach a 10 μGy h-1 
screening dose rate. Calculated for each reference organism. Activities are averaged across 
all measurement sites. Error bars denotes the maximum and minimum activity calculated 
from the measurement sites where the radionuclide appears. Activity concentrations 
calculated using data from RIFE (Environment Agency et al., 2014). 

 



84 
 

 

 

Figure 4.4: Small mammal activity concentrations required to reach a 10 µGy h-1 screening 
dose rate. Compared for concentrations derived from rabbit only data and for rabbit and 
soil data. No 228Th activity concentrations are included because this radionuclide was not 
present/reported in RIFE for both rabbit and soil in the selected locations. Activity 
concentrations were calculated using data collected from RIFE (Environment Agency et 
al., 2014). 

 

4.4 Discussion  

4.4.1 Organisms and radionuclides of importance 

Examination of the estimated doses to organisms (Table 4.2) in the 14 locations recorded in 

RIFE showed that, generally, small organisms close to the ground receive a high external dose 

whereas larger ground based organisms receive a larger internal dose (as shown by Vives i 

Batlle et al. (2007)). For the smaller organisms, this is likely because their body mass is 

assumed within soil and therefore in closer proximity to the radionuclides that are present 

there whereas for larger organisms, their larger volume means more energy is deposited 

inside the organism from the decay of internally present radionuclides. The exceptions in 

Table 4.2 are for Capenhurst, East Northants and Springfields, where measured radionuclides 

are predominately alpha emitters. It should be noted that these results rely heavily on the 

occupancy factor for each organism. For example, small mammals are generally assumed to 

be ‘in soil’ instead of ‘on soil’ which is not true for all cases (but is used in screening 
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assessments). Therefore, the range of doses calculated in this chapter is likely to be greater 

than what is shown and there is likely to be more overlap between the reference organism 

groups.  

There were seven radionuclides in total that contributed most to dose in all of the targeted 

organism groups. This was a mixture of gamma (137Cs and 241Am), beta (14C and 90Sr), and alpha 

(228Th, 234U and 238U) emitters. Most of these radionuclides are commonly investigated in the 

literature (see chapter 3.2). It is noted that 228Th is only important at a single location (East 

Northants) and is so only because it has a relatively high soil concentration when compared 

to the other radionuclides that are present. Comparison of the activity concentrations (to 

reach a screening level) measured in rabbits to those estimated from the soil only data shows, 

whilst there is no difference in the outcome of the top dose contributing radionuclides (listed 

above), there is a discrepancy in the activity concentrations that were derived. In Figure 4.4 it 

is shown that there is an increase in 241Am and 14C activity concentrations in rabbit whereas 

the remaining radionuclides all decrease in activity concentration. This is caused by a 

difference between the measured and estimated (using ERICA CRs) internal activity 

concentration some of the radionuclides (e.g. the 137Cs CR is up to 400 times smaller in the 

rabbit data). This comparison highlights the importance of ascertaining activity concentrations 

in both the media and within the targeted organism for detailed assessments instead of relying 

solely on the predictive models. The CRs in the ERICA tool are often derived from a limited set 

of highly variable data (e.g. Howard et al., 2013a) and this is the reason why site-specific data 

is preferred for more detailed assessments.  

4.4.2 Live-monitoring potential of target radionuclides 

According to this study, the gamma emitting radionuclides of importance (in a UK regulatory 

context) were 137Cs and 241Am. Accumulation of 137Cs occurs within the soft tissues across the 

whole organism body (ICRP, 1979) and has sufficient penetration through tissue to be 

detected by a radiation detector placed externally to the target organism (e.g. Howard et al., 

1987, Eldridge, 1989, Brynildsen and Strand, 1994, Moss and Horrill, 1996). Interference to 

measurement of 137Cs would likely only come from 110mAg and 210Bi. Bi-210 would only be 

present because it is a product in the 238U decay chain and has a short half-life. It would, 

therefore, be highly unlikely to be in sufficient quantities to interfere with the measurement 

of 137Cs. For 110mAg, even if this were to be present in greater quantities, there are seven 

characteristic gamma peaks that have a >10% decay probability and therefore 110mAg could 
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easily be identified if an MCA is used. Because the screening level activity concentrations that 

were derived (Figure 4.3) indicate there is likely to be sufficient radiation exiting the body of 

an organism to be measurable, even at the lower estimate indicated in Figure 4.4 (or if a lower 

screening level were to be applied: e.g. 5 uGy h-1 (Copplestone et al., 2005)), this means 137Cs 

is a suitable radionuclide for live-monitoring for compliance monitoring. 

Despite accumulating mainly on the bone surface (45%) and in the liver (45%), the second 

gamma emitting radionuclide, 241Am, has sufficient penetration of soft tissue (greater than 3 

cm) to be externally detected by a suitably placed detector (e.g. in range of the liver). Further, 

the main interfering radionuclide, 232Th, would unlikely be a problem for detection; with an 

estimated average concentration in UK soil of 32 Bq kg-1(Beresford et al., 2008b) it is unlikely 

to accumulate in an organism (its CR is on the order of 10-3) such that it would not interfere 

with measurement of 241Am. The main problem with 241Am, however, is it only has one low 

emission energy of 59.54 keV (Appendix 10.1), meaning a very low background is required for 

a measurement to be made. Because 241Am has no daughter products that would be viable as 

an alternative measurement method, detection of this low emission energy is the only option. 

Detection of this low energy can be accomplished using a specially built detector (Clark et al., 

2011) named “Field Instrument for the Detection of Low Energy Radiation” (F.I.D.L.E.R.). This 

is a rugged field instrument that uses a thin scintillation crystal to reduce background 

(including interactions caused by higher energy gamma decays) to a level where 241Am can be 

quantified. Measurement of 241Am could, therefore, be possible. The low screening level 

activity concentrations (Figure 4.3), however, mean the detection and measurement of 241Am 

would be unlikely in a live-monitoring context (especially if a lower screening level were to be 

applied). 

The beta emitting radionuclides determined to be of importance were 14C and 90Sr. Although 

the 14C radionuclide accumulates across the whole body and has screening level 

concentrations that would be suitable for measurement, it does not have sufficient 

penetration ability (<0.3 mm; Figure 4.1) to detectable through fur or feathers on an organism. 

As it also decays to a stable daughter product, direct internal measurement of 14C was deemed 

not possible.  

The second beta emitter, on the other hand, presents a better prospect for measurement. The 

beta emission from 90Sr has the potential for penetration through a soft tissue thickness of up 

to 1.9 mm (Figure 4.1) though, as this radionuclide accumulates mainly in bone (Appendix 
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10.1), measurement would be restricted to within organisms where the surrounding soft 

tissue and any fur/feathers are sufficiently thin for the beta emission to pass through. Another 

barrier to measurement is the interfering radionuclides. Of the other radionuclides likely to 

be present within a measurement location, 137Cs would cause the greatest interference 

because it has a beta emission with a similar decay energy (Figure 4.1) and is often of higher 

abundance in soils (Table 4.1). To assist with the determination of 90Sr content (Bondarkov et 

al., 2011), the daughter product of 90Sr, 90Y, can be used. The decay energy of 90Y is 2.2 MeV 

(Appendix 10.1) translates to a soft tissue penetration of approximately 11 mm and, because 

it has a short half-life (64 hours), will be in equilibrium with 90Sr. Measurement via 90Y has 

already proved possible for small organisms (Bondarkov et al., 2011) and, because the derived 

activity concentrations to reach a 10 µGy h-1 screening dose rate (Figure 4.3) are relatively 

high, would therefore make 90Sr a suitable radionuclide for live-monitoring. 

The alpha emitting radionuclides determined to be of importance were 228Th, 234U, and 238U. 

These radionuclides mostly accumulate within the bone or an internal organ (See Appendix 

10.1). None of the alpha emissions from these radionuclides would have the penetrative 

ability to be detected externally from the body of an organism and only one of these 

radionuclides; 228Th, has a gamma emission. This emission is, however, of low energy and low 

decay probability and, considering the derived screening level activity concentration is 

relatively low (Figure 4.3), means live-monitoring of this emission would be unlikely. Of the 

daughter products for these alpha emitters, only 228Th and 238U decay to radionuclides that 

have a detectable emission. For 228Th, this is 212Pb, which has a 238.63 keV (43.3%) gamma 

emission, and 208Tl which has a 583.19 KeV (84.5%) gamma emission (though only 35% of the 

parent radionuclide decays to 208Tl). The already low derived screening level activity 

concentrations (Figure 4.3) mean there would be insufficient quantities of these daughter 

products to live-monitor the concentration of 228Th in the body of an organism. Similarly, 

whilst 238U has a daughter product, 234mPa, that has a detectable 2290 keV (98%). emission, 

the initial derived screening level activity concentrations (Figure 4.3) would likely be too low 

for live-monitoring (and would be obscured by 90Y if this was also present in the target 

organism. None of these three alpha emitters would, therefore, be suitable for live-

monitoring. 
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4.4.3 Live-monitoring potential for organisms in the UK 

Applying the likelihood of detection and measurement (discussed in the previous section) of 

the target radionuclides to the target organisms within each measurement site (Table 4.3) 

results in the following general categorisations for the reference organisms. The radionuclides 

likely to contribute most to internal dose in birds, large mammals and small mammals at the 

sites specified in Table 4.3 is 137Cs and 90Sr. These two radionuclides were the only two deemed 

viable for live-monitoring and large and small mammals are generally the highest (total) dose 

receivers in areas where these radionuclides appear (Table 4.2). There are already examples 

of these two radionuclides being live-monitored: 137Cs has been (and in some cases still is) 

routinely monitored in (larger) livestock and there is one detector in Ukraine capable (though 

not fully portable) of 137Cs and 90Sr monitoring in small mammals and birds (see Chapter 3.4). 

For reptiles and amphibians (and to a lesser extent annelids and flying insects) the 137Cs and 

90Sr radionuclides are a contributor to internal dose at some of the sites. The primary 

contributor to internal dose, however, is most often 241Am which was deemed unlikely to be 

live-monitored. Therefore, live-monitoring of these organisms is limited (by site) but possible. 

For the remaining reference organisms: arthropods and molluscs, there are few sites where 

137Cs or 90Sr are a main contributor to internal dose. In most instances, however, the 

radionuclides of interest are usually 241Am or the uranium radionuclides. Live-monitoring is 

therefore deemed unlikely for these two organisms. Here, new alternative monitoring 

approaches would need to be found (the type of reference organism means the ones 

described in Chapter 3.3 would not be feasible). 

A word of caution is applied to these results. They are derived from a limited set of data and 

it is assumed the monitored radionuclides are the only radionuclides present at the site. A 

look at the tables in RIFE (Environment Agency et al., 2014) shows this is unlikely (e.g. soil 

measurements from Capenhurst are limited to 99Tc, 234U, 235U and 238U whereas 

measurements from rabbit give a much wider list of radionuclides). Further, the use of generic 

ERICA CRs in these calculations means there is likely a high degree of error included in the 

derived screening level activity concentrations for each site. The radionuclides that contribute 

most to internal dose (Section 4.3.1) as well as for the screening level activity concentrations 

(Figure 4.4) does not, however, differ largely between the results for the soil only data and 

those derived using combined rabbit and soil data (Figure 4.4) though is not known how this 

would propagate across the other reference organisms. 
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4.5 Conclusion 

It was determined in this study that small ground dwelling organisms are likely to be more 

susceptible to external doses for at least gamma-emitting radionuclides whereas larger 

ground based organisms were more susceptible to internal doses (as has been reported by 

other authors, e.g. Vives i Batlle et al. (2007)). Of the radionuclides (present at UK regulated 

sites) identified as contributing the most to internal dose for these organisms the only two 

viable for live-monitored would be 137Cs and 90Sr. Monitoring of 241Am may be possible but is 

unlikely. The remaining radionuclides 14C, 228Th, 234U, and 238U all have properties 

unfavourable to live-monitoring. Quantification of these radionuclides would therefore have 

to rely on taking samples from the organism (see alternative methods in Chapter 3.3).  

Based on the likelihood of live-monitoring (section 4.4.3), the results indicated that the focus 

of method development would be best placed on the measurement of 137Cs and 90Sr and the 

most suitable organism targets would be birds and small mammals (137Cs content in large 

mammals is already possible with existing portable detectors though the determination of 90Sr 

in large mammals should also be explored). The development of a capable portable live-

monitor would, therefore, be a beneficial advancement of the currently available methods. 

In deriving these conclusions, it was noted that results were reached from a limited data set 

and using a number of broad assumptions. Therefore, there is likely a large degree of error to 

the activity concentrations (required to reach a 10 µGy h-1 screening dose rate) that were 

derived. The conclusions drawn were, however, compared to measurements taken from 

rabbit and this did not appear to affect the outcome. 
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5 Configuration of detection materials 

5.1 Introduction 

The previous chapter concluded that the portable live-monitoring detector should focus on 

detection of 137Cs and 90Sr in small mammals and birds. Detection of 137Cs can be achieved 

through measurement of a 0.662 MeV gamma emission (Figure 5.1). The most suitable 

detection material for this type of radionuclide was identified in Chapter 3.5.5 as a caesium 

iodide (CsI) scintillator. Detection of 90Sr can be achieved through measurement of a 0.546 

MeV beta emission. This energy is, however, very similar to a 0.514 MeV beta emission that 

emanates from 137Cs. As a higher energy beta emitter, 90Y (assumed to be in equilibrium with 

90Sr) can be used to assist in the determination of the 90Sr content from a beta measurement 

containing a contribution from 137Cs. The most suitable detection material for beta emitting 

radionuclides was identified in Chapter 3.5.5 as a thin plastic scintillator. A dual detector 

system is therefore required to accommodate the detection of the two target radionuclides.  

The design of the detection materials has two further factors to consider: the size of the 

detection material and where it is placed in relation to the target organism. These two factors 

depend on the properties of both the target organism and each radionuclide and the 

background radiation contribution to count rate. It is the aim of this chapter to determine the 

optimal detector sizes and orientation for the detection of 137Cs, 90Sr and 90Y. 

 

 
Figure 5.1: Decay schemes for a) 137Cs and b) 90Sr. Beta emissions are shown as straight 
lines, gamma by wavy line. Maximum energies are displayed for beta emissions.  
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5.2 Methods: 

The detector size and orientation are discussed separately (sections 5.2.2 and 5.2.3 

respectively). Preceding this is an outline of the wildlife properties and the radionuclide 

activity concentrations used in the calculations for this chapter. 

5.2.1 Wildlife and radionuclide properties: 

Five animals were selected to represent the target reference organisms (Table 5.1). Yellow-

necked mouse (Apodemus sylvaticus) and bank vole (Myodes glareolus) were selected to 

represent part of the small mammal group. These species were selected because they are of 

radioecological interest (Baryakhtar et al., 2003) and have a large difference in their respective 

CRs. Two bat species were also selected as part of the small mammal group because of their 

protection status in the UK; the common pipistrelle (Pipistrellus pipistrellus) as a 

representative of the most abundant bat species in the UK and the serotine bat (Eptesicus 

serotinus) as the largest of the UK bat species (Battersby, 2005). The Great tit (Parus major) 

was chosen to represent the bird group as it is a likely focus species for radioecological 

research (e.g. Beresford et al., 2016). 

A soil activity concentration was used, in combination with organism whole-body activity 

concentrations, to estimate internal and external doses to the organisms listed above. The soil 

radionuclide activity concentration was set at 10 kBq kg-1 for 137Cs. This was the soil 137Cs 

activity concentration required (in combination with organism internal activity) to reach a 

screening dose rate of 10 µGy h-1 in a small mammal (chapter 4). Calculations involving the 

bird reference organism were set at the same concentration so as to allow comparison of the 

measurability of each organism type under a single assumed activity concentration. Sections 

requiring activity concentrations for 90Sr assumed an internal activity concentration of 2.3 kBq 

kg-1 (also based on the results from Chapter 4).  

Table 5.1: Properties of target organism’s 

 
Weights and geometries assumed from (Macdonald, 2010) for the rodents, (Bat 
Conservation Trust, 2016) for bats, and (British Trust for Ornithology, 2016) for the bird. 
The CRs were those presented in Beresford et al. (2016). 

L W H

Yellow necked mouse Apodemus flavicollis 0.035 7 3 3 1.9

Bank vole Myodes glareolus 0.04 8 4 4 0.78

Common bat Pipistrellus pipistrellus 0.008 4.5 3 3 0.005

Serotine bat Eptesicus serotinus 0.034 7 4 4 0.005

Great tit Parus major 0.018 8 4 4 0.096

Animal Scientific name
Weight 

(kg)

Dimensions (cm)
CR for 137Cs
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5.2.2 Detector size 

For an activity measurement from the animal to be made with confidence, the radiation 

emitted from the animal must be of sufficient size such that it is distinguishable from the 

background radiation, i.e. it satisfies the criteria set out by Currie (described in chapter 2). It 

is assumed here the majority of external radiation will come from 137Cs in the ground (See 

chapter 4 for interfering radionuclides) and that the skyshine contribution (radiation emitted 

from radionuclides in the ground that is reflected or scattered back down to the ground 

surface due to interactions in the atmosphere) will be minimal (Mitchell et al., 2009). 

Therefore, for the determination of 137Cs in the body of an organism, the size of the CsI(Tl) 

scintillator must be optimised so as to maximise the measurement of the internal 137Cs 

radiation emitted from the target organism whilst minimising the measurement of 

background 137Cs gamma radiation present in the surrounding environment. In contrast, the 

low penetrative energy of 90Sr means only a thin plastic scintillator is required and, therefore, 

the background gamma contribution can be considered to be minimal (when compared to the 

CsI scintillator). Due to the low penetrative energy of the 90Sr, however, the detection material 

should cover as much of the organism’s surface areas as possible. 

To determine the optimal CsI scintillator size a model was created to estimate the radiation 

emitted from a) the ground (Section 5.2.2.1) and b) the organism (Section 5.2.2.2). The 

organism was assumed to be sitting on the surface of the detector (Figure 5.2) with the 

shielding positioned between the detector and the ground surface3.  

 

Figure 5.2: Assumed configuration for gamma detector. The detector is placed between 
the ground and organism and is surrounded by a shield on surfaces visible to the ground.  

                                                      
3 This arrangement may not always be true for a portable detector but would be the ideal placement due to the 
animal located centrally on the surface of the detector. Where possible, the effect of different detector 
placements is considered 
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5.2.2.1 External radiation from the surrounding environment 

For a given activity concentration in the ground, Csoil (Bq g-1), the number of photons 𝜙𝑠𝑜𝑖𝑙  

(Equation 2.15) estimated to be detected in the detection material due to radiation emitted 

from the ground needs to take into consideration the fraction of emitted photons that are 

attenuated in the soil (defined in this chapter as a soil coefficient, 𝜇𝑠𝑜𝑖𝑙, specific to a 

radionuclide), the attenuation caused by any shielding that is present (𝜇𝑠ℎ𝑖𝑒𝑙𝑑), the surface 

area of the detector (Adetector), and the intrinsic efficiency (ϵint) and photopeak (ϵP) of the 

scintillator. The assumptions made for each of these components are described in the rest of 

this subsection.  

𝜙𝑠𝑜𝑖𝑙 = 𝐶𝑠𝑜𝑖𝑙⁡𝜇𝑠𝑜𝑖𝑙⁡𝜇𝑠ℎ𝑖𝑒𝑙𝑑⁡𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 ⁡𝜖𝑖𝑛𝑡⁡𝜖𝑃⁡ 5.1 

 

The fraction of gamma photons per radioactive disintegration that can reach the ground 

surface (the soil coefficient, 𝜇𝑠𝑜𝑖𝑙) was estimated by modelling the ground surrounding a 

detector (assumed to be positioned on the ground surface) as a series of hemispheres (of 

radius r cm) from which the radiation is emitted from the inner surface of each one (Figure 

5.3). The quantity of gamma photons reaching the surface from each hemisphere, 𝛿𝜇𝑠𝑜𝑖𝑙, can 

therefore be estimated (Equation 5.2) by multiplying the equation for radiation attenuation 

within a spherical volume (Equation 2.3) by the visible volume (2𝜋𝑟2. 𝛿𝑟) of the hemisphere. 

𝛿𝜇𝑠𝑜𝑖𝑙 =
2𝜋𝑟2

4𝜋𝑟2
⁡𝑒−(𝜇 𝜌⁄ )𝜌𝑟 ∙ 𝛿𝑟 5.2 

 

 

Figure 5.3: Model for radiation emitted from ground. Each hemisphere (volume V g cm-2) 
is a radius r cm from central detector. The volume is defined as half the derivative of the 
equation for a spherical volume. 
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The radii of the hemispheres will range between zero and some maximum distance defined 

as Rmax. Integration of Equation 5.2 between these two radii therefore results in Equation 5.3. 

By assuming Rmax is large then the fraction of gamma photons that can reach the surface of 

the ground simplifies to the approximation shown in Equation 5.4. 

𝜇𝑠𝑜𝑖𝑙 =
1

2(𝜇 𝜌⁄ )𝜌
[1 − 𝑒−(𝜇 𝜌⁄ )𝜌𝑅𝑚𝑎𝑥] 5.3 

 

𝜇𝑠𝑜𝑖𝑙 ≈
1

2(𝜇 𝜌⁄ )𝜌
 5.4 

 

The emission rate from the soil depends on the activity concentration, 𝐶𝑠𝑜𝑖𝑙 (Bq g-1), of the 

radionuclide, the density of the ground, ρ (g cm-2), and the decay probability (branching ratio), 

BR (expressed as a decimal fraction). Therefore, per radioactive disintegration (Bq g-1), the 

fraction of photons that reach the ground surface is given by equation 5.5 (note the densities 

in the equation cancel and therefore only the soil attenuation coefficient and branching ratio 

for the radionuclide are important). 

𝜇𝑠𝑜𝑖𝑙 ≈
1

2(𝜇 𝜌⁄ )
𝐵𝑅⁡ 5.5 

 

The shielding attenuation (𝝁𝒔𝒉𝒊𝒆𝒍𝒅) depends on the thickness and mass attenuation 

coefficient of the shielding material (Chapter 2.2). The shielding was assumed to be lead 

(Chapter 3.5.5) and, therefore, has an attenuation coefficient of 0.1115 cm2 g-1 (Hubbell and 

Seltzer, 1996). The shield thickness, however, is limited by the size of the scintillator and a 

maximum allowable weight for keeping the detection system portable. A maximum shield 

weight of 20 kg was assumed. Based on the scenario shown in Figure 5.2, along with the 

assumption the majority of interfering background radiation is emitted from the ground, it 

was decided half of this shield weight should be allocated to surround the scintillator such that 

a wall, of thickness x cm, surrounds the sides and bottom of the detection material but 

remains open at the top. The remainder of the shielding weight is allocated to the walls of any 

restraint. If a different orientation is used, or more detectors are included, then these 

allocations would need to be altered appropriately.  
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A set shield weight means the shield thickness will vary depending on the size of the internal 

scintillator. The total volume of the detector comprises of the volume of the shield and the 

volume of the detector scintillator (Equation 5.6). Therefore, for a weight of 10.0 kg and 

density of 11.34 g cm-1, the maximum allowable lead shielding volume is 881.8 cm3. If this 

surrounds a detector of length L, width W, and depth D, then equation 5.6 can be rewritten 

to that shown in equation 5.7 (where x is the shield thickness in cm). 

𝑉𝑇𝑜𝑡𝑎𝑙 = 𝑉𝑠ℎ𝑖𝑒𝑙𝑑 + 𝑉𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 5.6 
 

(𝐿 + 2𝑥)(𝑊 + 2𝑥)(𝐷 + 𝑥) = 881.8 + 𝐿𝑊𝐷 5.7 

 

Shield thicknesses were calculated (using equation 5.7) for a range of detector dimensions; 

lengths from 2 to 15 cm in increments of 1 cm, widths from 1.5 to 5.5 cm in increments of 0.5 

cm and depth from 1.5 to 3.5 cm in increments of 0.5 cm (resulting in a total of 630 

geometries). These allowable thicknesses where used in combination with Equation 2.3 to 

determine the attenuation (𝜇𝑠ℎ𝑖𝑒𝑙𝑑) introduced by a lead shield (Equation 5.8). 

𝜇𝑠ℎ𝑖𝑒𝑙𝑑 = 𝑒−(𝜇 𝜌⁄ )𝜌𝑥 5.8 
 

The detector was assumed as a single plane, parallel to the ground, passing through the centre 

of the detector crystal. This simplification was deemed sufficient for the purposes of this 

chapter due to the generalisations already made for calculated surface activities. Under this 

assumption, the detector surface area (𝑨𝒅𝒆𝒕𝒆𝒄𝒕𝒐𝒓) that is visible to the ground was therefore 

assumed to only be the area (in cm2) covering the bottom surface of the detector material.  

The intrinsic efficiency (ϵint) and photopeak (ϵP) depend on the choice of detection material. 

The detection material chosen for gamma detection was CsI(Tl) (see Chapter 3.5.5). The 

efficiency of this scintillator, for the range of volumes, was determined directly from Knoll 

(2010). The photopeak was determined using equation 5.9 from Cesana and Terrani (1989), 

where the variables a(E) and b(E) are photon energy dependent coefficients that are defined 

from tables reported in Cesana and Terrani (1989) and the volume to surface area ratio (V/A) 

was calculated for the targeted range of detector dimensions. 

𝜖𝑃 = 1 − 𝑎(𝐸)⁡𝑒[−𝑏(𝐸)∙
𝑉
𝐴
] 5.9 
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5.2.2.2 Internal radiation from the organism 

For a given internal activity concentration in the organism, Corg (Bq g-1), the number of photons 

𝜙𝑜𝑟𝑔 (equation 5.10) that are estimated to be detected in the scintillating material needs to 

take into consideration the fraction of photons that will be attenuated in the organism 

(defined in this chapter as an animal coefficient, 𝜇𝑜𝑟𝑔), the surface area (Aorg) of the animal 

visible to the detector, and the intrinsic efficiency (ϵint) and photopeak (ϵP) of the scintillator. 

The assumptions made for each of these components are described in the rest of this 

subsection. 

𝜙𝑜𝑟𝑔 = 𝐶𝑜𝑟𝑔⁡𝜇𝑜𝑟𝑔⁡𝐴𝑜𝑟𝑔⁡𝜖𝑖𝑛𝑡⁡𝜖𝑃 5.10 

 

The intrinsic efficiency (ϵint) and photopeak (ϵP) values remain the same as for section 5.2.2.1. 

The animal coefficient (𝜇𝑜𝑟𝑔) was determined by modelling each organism as a cylinder with 

dimensions and weight as described in Table 5.1. The body was sectioned into cuboids such 

that the model was 11 cuboids long by 11 in diameter. The dimensions of each cuboid were 

determined by the length and diameter of each organism. The number of photons emitted 

from each cuboid 𝜙𝑖(where i identifies a specific cuboid) was calculated using Equation 5.11, 

where Corg is the activity concentration (Bq g-1), BR is the branching ratio for 137Cs, m is the 

mass (g) of the organism, and nT is the total number of cuboids in the model (set at 1869 in 

this model). 

𝜙𝑖 =
𝐶𝑜𝑟𝑔⁡𝐵𝑅⁡𝑚

𝑛𝑇
 5.11 

 

The detector was assumed to be one cuboid in size and positioned centrally and underneath 

the organism, touching the skin surface (shown in Figure 5.4). The distance, r cm, between 

each cuboid and the detector was determined using Pythagoras theorem (calculated with 

three dimensions due to the 3D view of the model). The number of photons directed towards 

the detector, from a single cuboid, is attenuated along this distance according to Equation 2.3. 

The sum of the remaining photons from all cuboids (Equation 5.12) is therefore the total 

number of photons estimated to reach the detector (g cm-2 s-1). 
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Figure 5.4: Cross section of organism model. Cross section ‘slice’ through central view of 
organism model. Ten further slices make up the length of the organism. Each cuboid is 
represented by the yellow squares. The detector is shown as the red square to the bottom 
of the model. 

 

𝜇𝑜𝑟𝑔 =∑
𝜙𝑖

4𝜋𝑟𝑖
2 ⁡𝑒

−(𝜇 𝜌⁄ )𝜌𝑟𝑖

𝑛𝑇

𝑖=1

 5.12 

 

By assuming an initial body activity concentration 𝐶𝑜𝑟𝑔 of 1 Bq g-1, 𝜇𝑜𝑟𝑔 becomes a coefficient 

for the fraction of photons, per radioactive disintegration (Bq g-1), that reach the surface of 

the respective organism (g cm-2 s-1). For the purposes of this chapter, the organism tissue 

density was assumed to be 1 g cm2 (this does cause a discrepancy between the organism 

volume and mass but is accepted here because the model ignores internal cavities and bones). 

Mass attenuation for soft tissue was assumed to be 7.87x10-2 cm2 g-1 (Hubbell and Seltzer, 

1996).  

The surface area (Aorg) was assumed to be the area of contact between the animal and the 

detector i.e. a detector that is much larger than the organism will be limited by the surface 

area of the organism and a detector that is much smaller than the organism will be limited by 

the surface area of the detector. It could be expected there will be some degree of detection 

in the sides of the detector material due to the parts of the organism overlapping the edges 

of the detector. It was assumed for the purposes of this model, however, that this influence 

was negligible due to the already simplified shape used for the organism model. There are 

four scenarios (Figure 5.5) for how the animal can vary in size in relation to each of the 

scintillator sizes defined in section 5.2.2.1. The surface area in contact was therefore 

determined by multiplying the minimum width by the minimum length (detector vs animal 

dimensions). 
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Figure 5.5: Arrangement of animal over detector. Arrangements of animal (green) and 
detector (blue) showing a) detector > animal, b) detector < animal, c) detector = animal 
and d) detector crosses under animal.  

 

5.2.2.3 Determination of optimal detector size for gamma detection  

Optimal detector dimensions were determined by calculating the ratio (𝜙𝑟𝑎𝑡𝑖𝑜; dimensionless) 

for the estimated detected photon emission from the organism (𝜙𝑜𝑟𝑔; Equation 5.10) against 

the limit of detection, LD (Equation 2.16), for the estimated detected photon emission from 

the ground (𝜙𝑠𝑜𝑖𝑙; Equation 2.15). In this form, this ratio (Equation 5.13) defines how far above 

the background LD the estimated emission from the organism is (i.e. if 𝜙𝑟𝑎𝑡𝑖𝑜is less than one 

then the source measurement cannot be statistically separated from background). 𝜙𝑟𝑎𝑡𝑖𝑜was 

calculated for each detector size and each organism. The maximum 𝜙𝑟𝑎𝑡𝑖𝑜 for each organism 

would indicate the optimal detector dimensions. 

𝜙𝑟𝑎𝑡𝑖𝑜 =
𝜙𝑜𝑟𝑔𝑡

(2.71 + 4.65√𝜙𝑠𝑜𝑖𝑙⁡𝑡)
 5.13 

 

A counting time was set based on the desire for a short restraint time. Bondarkov et al. (2011) 

found in the use of their live-monitor that small mammals could reasonably withstand (though 

would be unethical to restrain for) several hours in the sampling box but are likely to destroy 

the restrain if held for a long period of time. For birds, on the other hand, Bondarkov et al. 

(2011) found they can only survive for up to 600 seconds when held in the restraint. It was 

therefore decided to set a count time of 600 s as an absolute maximum for each organism, 

though the use of shorter count times, especially for birds, will also be discussed. The 

background counting time was also set at 600 s as a conservative measure though in practice 

it is expected that longer background readings would be made whilst in the field. 
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5.2.3 Detector orientation 

The penetrative ability of gamma radiation from 137Cs, coupled with the accumulation across 

the soft tissues, means the location of the CsI scintillator should not impact greatly on 

measurement, provided the detector is aligned centrally and lengthways on the organism 

body. In contrast to this, the accumulation of 90Sr in bone, coupled with its short penetration 

in tissue, means the measurement of this beta radiation from an organism requires the plastic 

scintillator to be orientated in such a way that the maximum emission from the organism can 

be measured. The detector could be designed in such a way that it surrounds the entire 

animal. This design, however, limits the possibility of adapting a detector to multiple animal 

sizes and could hinder the measurement of 137Cs from the organism (especially if any 

supporting backing material and covering is sufficiently thick enough). Placement for the 90Sr 

detector was therefore considered in one of the following orientations; above, below, or to 

the side of the organism. The direction of maximum detection of 90Sr from an organism was 

estimated by modelling the fractional radiation emitted from bone and its subsequent 

attenuation through the surrounding soft tissues before reaching the plastic scintillator. This 

estimation was repeated for 90Y since it will be used to assist the determination of 90Sr content. 

For a given bone surface emission, 𝑁𝑏𝑜𝑛𝑒 (Bq), emitted from an infinitely small surface area 

on the bone, 𝛿𝑎 (cm2), the quantity of radiation, 𝑁𝑠𝑢𝑟𝑓 (Bq), that passes through a distance, R 

(cm), of surrounding tissues can be estimated using equation 5.14. Integration of this equation 

over the whole surface area, 𝐴𝑏𝑜𝑛𝑒 (cm2), of a single bone results in equation 5.15. 

𝑁𝑠𝑢𝑟𝑓 = ∫
𝑁𝑏𝑜𝑛𝑒
4𝜋𝑅2

𝑒−(𝜇 𝜌⁄ )𝜌𝑅
𝐴𝑏𝑜𝑛𝑒

. 𝛿𝑎 5.14 

 

𝑁𝑠𝑢𝑟𝑓 =
𝑁𝑏𝑜𝑛𝑒⁡𝐴𝑏𝑜𝑛𝑒

4𝜋𝑅2
𝑒−(𝜇 𝜌⁄ )𝜌𝑅 5.15 

 

If the radioactivity present on the bone is assumed to be distributed evenly across the bone 

surface (see section 5.2.3.1), the emission rate per cm2 is dependent (as shown in equation 

5.16) simply on the radionuclide activity concentration, 𝐶𝑜𝑟𝑔 (Bq kg-1), the mass, m (kg), of the 

organism and the total surface area, 𝐴𝑇𝑜𝑡𝑎𝑙  (cm), of all bones within the organism.  

𝑁𝑏𝑜𝑛𝑒 =
𝐶𝑜𝑟𝑔⁡𝑚

𝐴𝑇𝑜𝑡𝑎𝑙
 5.16 
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Radiation emitted from the surface of the bone traverses through a layer of muscle, skin, and 

fur before it reaches an externally located detector (Figure 5.6). The emission geometry in this 

model is only considered in a single direction (i.e. it ignores the standard 4π geometry) for the 

purpose of simplifying the calculation of attenuation within the tissues covering the bone. This 

was considered appropriate as the model is designed to only estimate the optimal orientation 

of a detector and not to provide an accurate estimation of measurement. The tissues (of R 

cm) surrounding the bone was simplified to be only a layer of soft tissue (thickness 𝑅𝑡𝑖𝑠 cm) 

and a layer of fur (thickness 𝑅𝑓𝑢𝑟 cm). Substituting this, along with equation 5.16, into 

equation 5.15 results in the total estimated externally measurable radiation from an 

organism’s body (Equation 5.17), where 𝜔𝑇𝑖𝑠 and 𝜔𝑓𝑢𝑟 are equal to the mass attenuation 

coefficient multiplied by the density, (𝜇 𝜌⁄ )𝜌, for tissue and fur respectively. Density of tissue 

is again assumed as 1 g cm-3 and the density of fur was assumed 1.32 g cm-3 (Robbins, 2012). 

 

𝑁𝑠𝑢𝑟𝑓 =
1

4𝜋(𝑅𝑡𝑖𝑠 + 𝑅𝑓𝑢𝑟)2
𝐶𝑜𝑟𝑔⁡𝑚⁡𝐴𝐵𝑜𝑛𝑒

𝐴𝑇𝑜𝑡𝑎𝑙
𝑒−(𝜔𝑡𝑖𝑠⁡𝑅𝑡𝑖𝑠+𝜔𝑓𝑢𝑟⁡𝑅𝑓𝑢𝑟) 5.17 

 

Animal masses and radionuclide content are given in section 5.2.1. To use equation 5.17 to 

set up a model for the estimation of the quantity of detectable 90Sr and 90Y emerging an 

organism, the following information was required: surface area of each bone and the total 

bone surface area, tissue and fur thicknesses, and tissue and fur attenuation coefficients. 

These are detailed in the following subsections. 

 

 
Figure 5.6: Emission of 90Sr beta radiation from within an organism. Diagram showing 
radiation path for bone surface to animal surface.  
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5.2.3.1 Model data 

Beta emissions from the organism body were modelled based on properties of a mouse (as a 

likely main sampling organism) though the effect the different anatomical structures, such as 

wings in birds and bats, would have on the model are discussed in section 5.4.2. Anatomical 

properties of a mouse were defined from CT images by Dogdas et al. (2007). This was a CT 

scan of a 28 g nude normal male mouse saved as a matrix of 380 x 992 x 208 pixels (0.1 mm 

per pixel). Dogdas et al. (2007) have used the CT data to define an atlas model of the mouse 

that shows details of the skeletal structure as well as various internal organs. Conversion of 

the CT images into the atlas model has, however, introduced some differences in object 

placement as can be seen in Figure 5.7 and Figure 5.8. These visual differences are present 

because Dogdas et al. (2007) have accounted for imaging artefacts such as those caused by 

scatter and beam hardening. Measurements from the atlas view (in Brainsuite version 16a1) 

for bone lengths (e.g. Figure 5.7) and bone surface to skin surface distances (e.g. Figure 5.8) 

are in close agreement to measurements taken from the CT images as shown in Table 5.2. As 

the atlas view has been corrected for the previously mentioned artefacts, it was decided to 

use this model view to define the bone surface areas and tissue thicknesses.  

 

  

  

Figure 5.7: Axial cross section of forearms. Bone on the right side of the animal was 
measured. Coordinates for each view are given in the same position. CT Images from 
model by Dogdas et al. (2007). 
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Figure 5.8: Intensity profile for coronal cross section of left mouse knee. Right shows the 
CT image, left shows the atlas view. Skin for knee in CT image could be 0.6 +/- 0.3 mm. 
Skin for knee on for atlas view could be 1.0 +/- 0.1 mm. CT Images from model by Dogdas 
et al. (2007). 

 

Table 5.2: Comparison of CT and Atlas bone lengths. 

 Coordinate 1 (pixel) Coordinate 2 (pixel) Length 

 x y z x y z Pixels mm 

CT 317 300 39 233 300 115 113 11.3 
Atlas 313 300 42 223 300 114 115 11.5 
 
CT coordinates are as described from Figure 5.7. Atlas coordinates are defined as 
positional coordinates in terms of pixels. 

 

The position the mouse was placed in for the CT images was assumed to be close to the natural 

resting posture the organism would take if placed in a detector. Although deposition of 90Sr 

occurs mainly within the bone (Cooper et al., 2012), due to the small bone sizes within the 

target organisms, it was assumed sufficient for this model that all the 90Sr is distributed evenly 

over all bone surfaces. For the estimation of 90Y emission rate, it was assumed 90Y was in 

equilibrium with 90Sr at the bone surface. 

5.2.3.2 Bone surface area 

The total surface area of bone was determined by analysing the atlas view images (208 slices) 

with ImageJ4 (version 1.50i). The following instructions detail how a surface area was reached: 

1. With all slices loaded into ImageJ, the scale was set using the “set scale” function 

(Analyze  Set Scale) to give a scale of 1 pixel per pixel5.  

                                                      
4 https://imagej.nih.gov/ij/ 
5 Measurements in ImageJ are made from the middle of each pixel 
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2. The “threshold” function in ImageJ (Image  Adjust  Threshold) was then used to 

convert each slice into a black and white image. A “Default”, “B&W” image was 

selected and the options for “Dark background” and “stack histogram” were set to 

true. The threshold range was set from 2 to 3. This setting gave an image for only the 

bones within the mouse being filled black and the area outside the bones filled white.  

3. With the threshold option window left open, the “analyse particles” function (Analyse 

 Analyse Particles) was used to create an outline of the mouse (Figure 5.9) in each 

slice and measure its internal area the area. The pixel size was set to “0-Infinity” and 

“Outlines” was selected for the show option. “Display results”, “Clear results” and 

“Summarize” were set to true.  

4. Pressing “OK” then processed all 208 slices and output the perimeter of each bone in 

a table. The calculated perimeters were summed to produce a surface area in pixels 

and converted to mm2 using the scale of 100 pixels per mm2.  

The surface area of each bone, or bone section, was calculated from the dimensions of the 

respective bone. Only bone surfaces that would be visible to an external detector were 

calculated (e.g. only the outer surface area of the ribs were calculated). Potential detection of 

radiation emitted from the inner surface of the bone is ignored under the assumption that the 

contribution from this ‘hidden’ surface will be minimal compared to the outer bone surface 

area. The body of the mouse was categorised into 5 regions for these calculations (Figure 5.10) 

and the nomenclature of bones and regions was defined from Bab et al. (2007). The bone or 

bone sections were modelled as follows: 

 

Figure 5.9: Outlines for bone perimeter in ImageJ. Slice 40. Each bone region is identified 
with a number (used for summing the bone surfaces). Image produced using data from 
Dogdas et al. (2007) 
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Figure 5.10: Partitioning of bone structures (above) for surface area modelling (below).1. 
Head: cranium and mandible, 2. Back: spinal column and caudal vertabrae, 3. Chest: ribs 
and sternum, 4. Arms: scapula, clavicle, humerus, forearm and manus. 5. Legs: pelvis, 
femur, tibio-fibular complex and hind foot. Skeletal model developed using data from 
Dogdas et al. (2007). 

 

Figure 5.11: Model structure for skull. Grey regions are considered the only section of the 
skull where 90Sr can penetrate to the skin surface. 
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Head: The skull was modelled in three sections; cranium, nose, and mandible (Figure 5.11). 

The cranium was modelled as a quarter sphere with flat circular holes removed to represent 

the ears (ignored for the 90Y calculations). The nose section joins the cranium at the mid-point 

of the cranium sphere and was modelled as a half cone, without the base, and two holes 

removed to account for eyes. For 90Sr, the mandible (jaw) is partially hidden behind the cheek 

muscles and so the bottom surface is the only part of the jaw likely to be visible to the outer 

surface of the organism. The mandible was therefore modelled for 90Sr as two flat triangular 

surfaces (to represent each side of the bottom of the jaw) that connect at the central point of 

the mouth. For 90Y, the mandible was assumed triangular (with right angle connected to skull) 

as for 90Sr except wider at the base to account for the sides covered by the cheek muscle. 

Back: The spinal cord was separated into 6 sections each containing a number of vertebra (V) 

with V1 at the base of the skull and V35 at the base of the tail. Section one (V01-V08) was 

deemed not visible to the skin surface due to the surrounding tissue. Sections 2 (V08-V17), 

Section 3 (V17-20), Section 4 (V20-V23) and Section 6 (V31-V35) were modelled as a cylinder 

with the top half curved surface being visible to the skin surface (the ends of the cylinder were 

not included); section 2 was deemed visible for only 90Y. The vertebrae in Section 5 (V23-V31) 

had a prominent ridge that was the only part visible to the skin surface for 90Sr. This section 

was therefore modelled as a half cylinder (without the ends) and a raised flat strip of individual 

rectangles to represent the ridge; the surface area of the ridge was assumed to be half the 

area of the flat strip and was subtracted from the cylinder surface area. It was assumed the 

ridge was only visible to 90Sr and the ridge plus the cylinder was visible to 90Y. No caudal 

vertebrae (tail) was present on the atlas view (nor the CT data). The bone surface area for this 

region was therefore estimated by using images recorded by Bab et al. (2007). This was 

deemed acceptable because the mouse skeleton described by Bab et al. (2007) had similar 

dimensions to those that were measured from the mouse atlas view. The diagram for the 

caudal vertebrae was copied into ImageJ and the “set scale” function was used to define the 

measurement scale (as indicated on the scale in the image). The caudal vertebrae volume was 

assumed to be solid and was modelled as an elongated cone with the base (surface of the 

base was not included) attached at the end of the spine (V35). 

Chest: There are 13 pairs of ribs in total with each rib comprising of a dorsal bone (attached 

to spine) and a ventral bone (of which most are attached to the sternum). Each rib pair was 

labelled from R1 (closest to skull) to R13 (closest to tail). The dorsal and ventral bones in R1 
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were modelled as a single thin cylinder. R2-R8 were modelled as two thin cylinders to account 

for the curvature of the rib; one for the dorsal bone and another for the ventral bone. The 

ventral bones for R9 to R12 showed little to no presence and therefore only the dorsal bones 

were modelled as a single cylinder extruding from the spinal column. Only the outer surface 

(i.e. the outer half of the curved cylinder) for each rib was used to calculate the total surface 

area (the ends of the cylinder were not included). The shape of the sternum was assumed to 

be the lower half of a flattened cylinder. 

Arms: The scapula was divided into two structures due to the prominent ridge that is present 

on the upper surface. A flat rectangle represented the ridge. A triangle, minus the area for the 

ridge, represented the larger scapula surface. The collar bone was deemed invisible to the skin 

surface due to the surrounding tissue. The humerus and forearm were each modelled as a 

cylinder. The ends of the cylinder were not included for the humerus and for the end of the 

forearm that attaches to the manus (the other end represents the elbow). Only the outer half 

of the humerus was deemed visible to the skin surface whereas the whole of the forearm was 

included in the visible surface area. The manus was simplified to a rectangular box with the 

surface that attaches to the forearm not included in the surface area.  

Legs: The pelvis is a large bony structure that is largely central and to the rear end of the 

organism. Most of the pelvis lays at a greater tissue depth than for the proximal spinal column 

and was therefore deemed largely invisible for 90Sr. Each side of the pelvis, however, has a 

ridge that runs parallel to the vertebrae V26 to V27 and is close to the back surface of the 

organism. This region was therefore modelled as a rectangular strip for 90Sr. For 90Y, the pelvis 

was modelled as a half cylinder with ends laying parallel to the spine. The femur and tibio-

fibular complex was modelled in the same way as the humerus and forearm with the knee 

modelled as the flat end of the cylinder. The hind foot was not present on the CT images. As 

for the tail, the hind foot dimensions were determined from Bab et al. (2007) and the 

geometry was assumed to be similar to the manus; a rectangular box with the surface 

attaching to the tibio-fibular complex not included. 

5.2.3.3 Tissue and fur thickness 

Each bone was assigned a tissue thickness. These were measured from the Atlas view using 

Brainsuite6 (version 16a1). Three measurements, positioned approximately evenly across the 

                                                      
6 http://brainsuite.org/ 
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bone, were made for each bone because the thickness can vary across the bone surface. This 

variance was assumed to be normally distributed and therefore the 95th percentile confidence 

intervals were calculated to provide an average, upper and lower estimates for the thickness 

of tissue covering each bone. The caudal vertebra, though absent, was estimated from the 

tissue surrounding the edge of the vertebrae stump shown in the atlas view. The hindfoot and 

manus were estimated separately because the former was not present and the latter was 

difficult to distinguish on the atlas view. These were assumed to only be covered in skin; the 

underlying muscle was considered negligible. The additional sole thickness was considered 

balanced with the layer of fur on the top of the hands/feet and therefore included in the fur 

thicknesses (see below). The hindfoot and manus skin thicknesses were estimated from 

Sundberg et al. (2012) at between 15 - 400 µm.  

The mouse in the CT images was a nude mouse and therefore no information was directly 

present in these images about fur thickness. Dawson and Webster (1967) estimated a fur 

thickness of 1.3 mm for a house mouse. From the description of their experiment it was 

assumed this is the thickness of fur including the insulative air gaps. A compact fur layer was 

instead assumed to have an average thickness of 0.65 mm. To allow for variation in depth, and 

for an allowable error in differences between species, a range of ± 50% was assumed. Images 

of mice show fur present on the caudal vertebrae, hindfeet and manus is much shorter than 

for the main body. Therefore, the fur covering these locations was assumed to be half the 

main body fur thickness. These assumed thicknesses were combined with the tissue thickness 

range such that an absolute minimum and absolute maximum range could be determined.  

5.2.3.4 Tissue and fur attenuation coefficients 

The mass attenuations for fur and tissue were calculated using equation 5.18 from Gürler and 

Yalçın (2005) and Mahajan (2012), where 𝐸𝑚 is the maximum beta energy and 𝑍𝑒𝑓𝑓 is the 

effective atomic number of the absorber material. In this form, the mass attenuation is given 

in cm2 g-1. 

𝜇

𝜌
= 8⁡Z𝑒𝑓𝑓

0.28𝐸𝑚
−1.57[

𝑍𝑒𝑓𝑓
160

]
 5.18 

 

For tissue, a 𝑍𝑒𝑓𝑓 of 7.6 was assumed based on Hendee and Ritenour (2003) and (Spiers, 1946). 

Taylor et al. (2012) does suggest a lower 𝑍𝑒𝑓𝑓 due to overestimations made in the typical 

power-law approach used to calculating these effective numbers. It was decided, however, to 
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take a more conservative approach and use the higher estimate. No 𝑍𝑒𝑓𝑓 was readily available 

for mouse fur and therefore one was derived using equation 5.19 (Spiers, 1946, Taylor et al., 

2012); where 𝑍𝑛 is the atomic number for a constituent element and 𝑎𝑛 is its fractional 

contribution. It was assumed the composition of fur was primarily keratin (Robbins, 2012, 

Wang et al., 2016) and is composed of carbon (45%), oxygen (28%), hydrogen (7%), nitrogen 

(15%), and sulphur (5%). The 𝑍𝑒𝑓𝑓 of fur was therefore estimated to be 9.39. 

𝑍𝑒𝑓𝑓 = √∑ 𝑎𝑛Z𝑛
2.94

𝑛

0

2.94

 5.19 

Inserting these values into equation 5.18 gave a 90Sr mass attenuation of 35.47 cm2 g-1 in tissue 

and 37.39 cm2 g-1 in fur. For 90Y, the mass attenuation was determined to be 4.02 cm2 g-1 in 

tissue and 4.31 cm2 g-1 in fur. 

5.2.3.5 Determination of optimal detector orientation for beta detection 

The placement for the detector was assumed to be either above, below, or to the side of the 

organism. Each bone was assigned a fractional visibility (between 0 and 1) for each view, based 

on visual observations of the CT images. The position of the mouse legs in the CT images was 

considered to be different from a live mouse. Images of mice show a more natural sitting 

position where the arms and legs are directly below the main body. They would therefore not 

be visible to the top detector as would be assumed by looking at the CT images only. The 

visibility of the arm and leg bones to the detector was therefore assumed based on a more 

natural sitting position. The calculated emission rate at the tissue surface for each bone was 

scaled according to the fractional visibility and totalled for each detector placement. These 

totals were compared to determine the most suitable detector position in relation to the body 

of the organism. 

5.3 Results 

5.3.1 Gamma detector size 

The following factors were calculated for use in Equation 2.15 (number of photons, 𝜙𝑠𝑜𝑖𝑙, from 

the ground). The soil coefficient (𝝁𝒔𝒐𝒊𝒍) was defined for 137Cs because this was assumed to be 

the most abundant type of interfering radiation that would be present in the soil (see trigger 

levels in Chapter 4.3.2). Setting a branching ratio of 0.85 for 137Cs and a mass attenuation of 

0.077 cm2 g-1 for soil (Al-Masri et al., 2013) means 𝜇𝑠𝑜𝑖𝑙 equals 5.5 g cm-2 s-1and therefore the 

photons per cm2 incident on the surface of the detector is 5.5 times the soil activity 
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concentration (in Bq g-1). The shield thicknesses used to determine the shielding attenuation 

(𝝁𝒔𝒉𝒊𝒆𝒍𝒅) are detailed in Appendix 10.3 The resulting values used for the intrinsic efficiency 

(ϵint) and photopeak (ϵP) are displayed in Table 5.3. The animal coefficients (𝝁𝒐𝒓𝒈) for use in 

Equation 5.10 (number of photons, 𝜙𝑜𝑟𝑔, emitted from the organisms) are defined in Table 

5.4 for the five organisms listed in Table 5.1. 

The ratios (𝜙𝑟𝑎𝑡𝑖𝑜) for the estimated detected photon emission from the organism, 𝜙𝑜𝑟𝑔, 

against the limit of detection, LD, for the estimated detected photon emission from the 

ground, 𝜙𝑠𝑜𝑖𝑙, are displayed in Table 5.5 for a mouse and Appendix 10.4 for the remaining four 

organisms. Each table is presented as a heat map with red indicating the highest 𝜙𝑟𝑎𝑡𝑖𝑜 for 

each organism (i.e. the largest measurement above the limit of detection) and white indicating 

the lowest. A comparison between each organism is made in Table 5.6 for a 2.5 cm thick 

detector.  

The largest 𝜙𝑟𝑎𝑡𝑖𝑜 in these tables indicates the optimal detector dimensions for each 

organism. The effect of depth on measurement is displayed in Figure 5.12. Visual inspection 

the tables showed no difference between each organism for the order of most to least optimal 

detector depth. This figure therefore shows the maximum 𝜙𝑟𝑎𝑡𝑖𝑜 for each detector depth, 

normalised to the largest 𝜙𝑟𝑎𝑡𝑖𝑜 for the respective organism, and averaged across all 

organisms. The optimal length and widths for each detector depth and each organism are 

displayed in Table 5.7. There was little difference for optimal detector dimensions at each 

detector depth except for the depth of 2.5 cm. 

Table 5.3: Derived detection efficiencies and photopeaks for CsI 

 
Units for the depth are in cm. 

 

Table 5.4: Animal coefficients (𝛍𝐨𝐫𝐠) for target organisms. 

 

Units for the animal coefficient are in g cm-2 s-1. 

1.5 2 2.5 3 3.5

ϵint 0.47 0.53 0.58 0.64 0.69

ϵP 0.67 0.79 0.85 0.89 0.92

Depth (V/A)

Organism Animal Coefficient

Yellow necked mouse 5.94E-01

Bank vole 4.13E-01

Common bat 1.88E-01

Serotine bat 3.88E-01

Great tit 1.65E-01
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Table 5.5: Table of 𝝓𝒓𝒂𝒕𝒊𝒐 for yellow necked mouse. 

 

Table shows 𝝓𝒓𝒂𝒕𝒊𝒐 calculated for each detector length, width and depth. Results are 
grouped by depth. 

 

 

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5 171.47 193.33 205.32 211.71 214.79 214.62 186.71 164.63 146.01 130.92 117.85 107.10 97.60 89.73

2.0 190.57 214.21 227.06 232.39 235.55 235.18 204.47 180.21 159.77 143.21 128.88 117.09 106.69 98.06

2.5 204.33 229.17 241.11 248.06 251.26 250.74 217.91 190.81 170.17 151.55 137.21 123.87 113.56 103.71

3.0 214.21 239.84 252.08 259.16 262.38 261.73 227.39 199.06 176.39 158.05 143.08 129.15 118.39 108.11

3.5 189.52 211.92 223.93 228.68 231.43 230.78 200.46 175.45 156.42 139.26 126.05 113.77 104.28 95.23

4.0 170.30 189.06 199.64 205.05 206.16 205.53 178.50 157.18 139.24 124.73 112.19 101.89 92.80 85.27

4.5 153.19 170.96 180.43 184.11 186.21 185.61 161.17 141.01 125.69 111.88 101.26 91.96 83.75 76.95

5.0 139.44 155.50 164.04 167.33 169.21 168.63 146.40 128.08 113.44 101.61 91.95 83.50 76.05 69.87

5.5 128.30 142.11 149.86 152.82 154.50 153.95 133.65 116.91 104.19 92.73 83.92 76.20 69.40 63.76

1.5 178.18 200.22 212.20 218.50 220.09 219.73 191.03 168.36 149.25 133.78 120.39 109.38 99.66 91.03

2.0 197.59 221.47 232.92 239.56 242.61 242.06 210.35 184.17 163.21 146.26 131.59 119.53 108.89 100.07

2.5 211.52 235.20 248.60 255.51 257.02 256.33 222.67 196.12 173.77 155.69 140.05 127.20 115.87 106.47

3.0 221.47 245.92 259.72 266.78 268.24 267.44 232.27 204.53 181.20 162.32 146.00 132.59 120.77 110.97

3.5 195.76 218.48 229.16 235.29 236.50 237.21 204.69 180.22 159.64 143.00 128.60 116.79 107.04 97.73

4.0 174.69 194.79 205.48 209.59 211.93 211.20 183.36 160.42 142.97 128.06 115.16 104.58 95.24 87.50

4.5 158.00 176.06 184.49 189.30 190.18 190.68 165.53 144.80 129.04 114.85 103.93 94.37 85.94 78.96

5.0 143.74 160.07 167.67 172.00 172.77 173.21 150.34 131.50 117.19 104.29 94.37 85.69 78.03 71.69

5.5 131.38 146.23 153.13 157.05 157.73 158.11 137.22 120.02 106.95 95.77 86.12 78.19 71.65 65.82

1.5 178.87 200.54 212.24 216.98 218.40 219.28 189.38 166.85 147.87 132.51 119.22 108.30 98.66 90.11

2.0 198.05 220.20 232.73 239.19 240.59 239.94 208.43 182.43 161.64 144.82 130.27 118.32 107.77 99.04

2.5 210.49 235.10 248.25 253.39 256.35 255.56 221.94 194.21 172.05 154.12 138.62 125.89 115.38 105.35

3.0 220.20 245.66 259.22 264.46 267.45 266.56 231.45 202.50 179.36 160.65 145.39 131.20 120.25 110.48

3.5 195.71 216.80 228.64 233.17 235.74 234.91 203.93 179.52 158.99 142.40 128.06 116.28 105.90 97.29

4.0 174.55 194.42 203.67 208.94 209.89 210.43 182.65 159.77 142.38 126.71 114.66 104.11 94.81 87.10

4.5 157.81 174.57 183.96 188.68 189.50 188.77 163.83 144.20 127.69 114.35 103.47 93.94 86.09 79.09

5.0 143.51 158.68 167.16 171.41 172.12 171.44 148.78 130.94 116.68 104.48 93.94 85.29 78.16 71.80

5.5 131.13 144.93 152.63 156.48 157.12 157.47 136.64 120.25 106.47 95.34 86.26 78.32 71.77 65.93

1.5 178.77 200.06 210.21 214.74 217.37 216.80 187.17 164.86 146.08 130.88 117.73 106.27 97.41 88.95

2.0 196.49 219.48 231.76 236.57 237.84 237.11 205.92 180.19 160.63 142.99 129.42 116.80 107.05 97.75

2.5 209.93 234.18 245.56 252.07 253.33 252.47 219.21 191.78 170.94 152.15 137.70 125.04 113.88 104.63

3.0 219.48 244.58 256.31 263.00 264.23 263.28 228.55 201.19 178.18 159.58 143.50 130.30 119.42 109.02

3.5 193.77 215.76 226.00 231.82 232.85 231.97 201.35 177.22 156.94 140.55 127.18 115.47 105.15 96.61

4.0 173.82 192.23 202.53 206.40 208.58 207.77 180.32 158.70 140.52 125.84 113.86 103.38 94.74 87.03

4.5 156.13 173.65 181.75 186.35 188.29 187.53 162.74 143.22 126.81 113.55 102.74 93.28 85.48 78.52

5.0 141.94 157.80 165.12 169.27 171.01 170.31 147.78 130.04 115.87 103.75 93.87 85.22 78.09 71.74

5.5 129.66 144.10 150.75 154.51 156.09 155.43 135.71 119.42 105.73 94.67 85.65 78.25 71.25 65.87

1.5 175.93 195.43 205.17 210.77 211.95 211.33 182.40 160.63 142.30 126.69 114.67 103.49 94.85 86.61

2.0 193.21 214.24 226.08 230.66 231.82 231.05 200.62 175.52 156.45 139.25 126.03 113.73 104.23 95.77

2.5 205.03 228.48 239.44 245.70 246.85 245.97 213.52 187.96 166.46 149.09 134.07 121.74 110.86 101.86

3.0 214.24 238.55 249.86 256.29 257.43 256.45 222.59 195.92 173.49 155.37 140.59 127.65 116.25 106.80

3.5 189.08 210.38 221.64 225.87 226.82 227.35 197.31 172.56 153.76 137.69 123.80 113.12 103.00 94.63

4.0 169.56 187.39 197.35 202.33 203.15 202.33 176.68 154.51 137.67 123.28 111.54 101.27 92.79 85.25

4.5 152.26 169.24 178.19 181.51 183.37 182.61 159.45 139.43 124.23 111.23 100.64 91.37 83.72 76.91

5.0 138.40 153.78 161.87 164.86 166.53 166.87 144.78 127.40 113.50 101.63 91.95 83.47 76.49 70.26

5.5 126.40 140.40 147.76 151.42 151.98 152.28 132.12 116.25 103.57 93.31 84.42 76.64 70.23 64.92
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Table 5.6: Table showing 𝝓𝒓𝒂𝒕𝒊𝒐 of all organisms for 2.5cm detector depth. 

 

Table shows 𝝓𝒓𝒂𝒕𝒊𝒐 calculated for each detector length, width and depth. Results are 
grouped by depth. 

 

 

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5 178.87 200.54 212.24 216.98 218.40 219.28 189.38 166.85 147.87 132.51 119.22 108.30 98.66 90.11

2.0 198.05 220.20 232.73 239.19 240.59 239.94 208.43 182.43 161.64 144.82 130.27 118.32 107.77 99.04

2.5 210.49 235.10 248.25 253.39 256.35 255.56 221.94 194.21 172.05 154.12 138.62 125.89 115.38 105.35

3.0 220.20 245.66 259.22 264.46 267.45 266.56 231.45 202.50 179.36 160.65 145.39 131.20 120.25 110.48

3.5 195.71 216.80 228.64 233.17 235.74 234.91 203.93 179.52 158.99 142.40 128.06 116.28 105.90 97.29

4.0 174.55 194.42 203.67 208.94 209.89 210.43 182.65 159.77 142.38 126.71 114.66 104.11 94.81 87.10

4.5 157.81 174.57 183.96 188.68 189.50 188.77 163.83 144.20 127.69 114.35 103.47 93.94 86.09 79.09

5.0 143.51 158.68 167.16 171.41 172.12 171.44 148.78 130.94 116.68 104.48 93.94 85.29 78.16 71.80

5.5 131.13 144.93 152.63 156.48 157.12 157.47 136.64 120.25 106.47 95.34 86.26 78.32 71.77 65.93

1.5 51.06 57.25 60.59 61.94 62.35 62.60 61.78 54.43 48.24 43.23 38.90 35.33 32.19 29.40

2.0 56.54 62.86 66.44 68.28 68.68 68.50 68.00 59.52 52.73 47.25 42.50 38.60 35.16 32.31

2.5 60.09 67.11 70.87 72.34 73.18 72.96 72.41 63.36 56.13 50.28 45.22 41.07 37.64 34.37

3.0 62.86 70.13 74.00 75.50 76.35 76.10 75.51 66.07 58.52 52.41 47.43 42.81 39.23 36.05

3.5 65.18 72.20 76.15 77.66 78.51 78.24 77.62 68.33 60.52 54.20 48.74 44.26 40.31 37.03

4.0 66.44 74.00 77.52 79.53 79.89 80.09 79.45 69.50 61.94 55.12 49.88 45.29 41.24 37.89

4.5 60.07 66.45 70.02 71.81 72.13 71.85 71.27 62.73 55.54 49.74 45.01 40.87 37.45 34.40

5.0 54.62 60.40 63.62 65.24 65.51 65.26 64.72 56.96 50.75 45.45 40.87 37.10 34.00 31.23

5.5 49.91 55.16 58.09 59.56 59.80 59.94 59.44 52.31 46.32 41.47 37.52 34.07 31.22 28.68

1.5 0.15 0.17 0.18 0.16 0.14 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.05 0.05

2.0 0.16 0.18 0.19 0.18 0.15 0.13 0.11 0.10 0.09 0.08 0.07 0.06 0.06 0.05

2.5 0.17 0.20 0.21 0.19 0.16 0.14 0.12 0.10 0.09 0.08 0.07 0.07 0.06 0.06

3.0 0.18 0.20 0.22 0.20 0.17 0.14 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.06

3.5 0.16 0.18 0.19 0.17 0.15 0.13 0.11 0.10 0.08 0.08 0.07 0.06 0.06 0.05

4.0 0.14 0.16 0.17 0.16 0.13 0.11 0.10 0.09 0.08 0.07 0.06 0.06 0.05 0.05

4.5 0.13 0.15 0.15 0.14 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.04

5.0 0.12 0.13 0.14 0.13 0.11 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.04 0.04

5.5 0.11 0.12 0.13 0.12 0.10 0.08 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.04

1.5 0.31 0.34 0.36 0.37 0.38 0.38 0.33 0.29 0.25 0.23 0.20 0.19 0.17 0.15

2.0 0.34 0.38 0.40 0.41 0.41 0.41 0.36 0.31 0.28 0.25 0.22 0.20 0.19 0.17

2.5 0.36 0.40 0.43 0.44 0.44 0.44 0.38 0.33 0.30 0.26 0.24 0.22 0.20 0.18

3.0 0.38 0.42 0.45 0.45 0.46 0.46 0.40 0.35 0.31 0.28 0.25 0.23 0.21 0.19

3.5 0.39 0.43 0.46 0.47 0.47 0.47 0.41 0.36 0.32 0.29 0.26 0.23 0.21 0.19

4.0 0.40 0.45 0.47 0.48 0.48 0.48 0.42 0.37 0.33 0.29 0.26 0.24 0.22 0.20

4.5 0.36 0.40 0.42 0.43 0.43 0.43 0.38 0.33 0.29 0.26 0.24 0.22 0.20 0.18

5.0 0.33 0.36 0.38 0.39 0.39 0.39 0.34 0.30 0.27 0.24 0.22 0.20 0.18 0.16

5.5 0.30 0.33 0.35 0.36 0.36 0.36 0.31 0.28 0.24 0.22 0.20 0.18 0.16 0.15

1.5 2.51 2.82 2.98 3.05 3.07 3.08 3.04 2.68 2.38 2.13 1.91 1.74 1.58 1.45

2.0 2.78 3.09 3.27 3.36 3.38 3.37 3.35 2.93 2.60 2.33 2.09 1.90 1.73 1.59

2.5 2.96 3.30 3.49 3.56 3.60 3.59 3.56 3.12 2.76 2.48 2.23 2.02 1.85 1.69

3.0 3.09 3.45 3.64 3.72 3.76 3.75 3.72 3.25 2.88 2.58 2.34 2.11 1.93 1.77

3.5 3.21 3.55 3.75 3.82 3.87 3.85 3.82 3.36 2.98 2.67 2.40 2.18 1.98 1.82

4.0 3.27 3.64 3.82 3.92 3.93 3.94 3.91 3.42 3.05 2.71 2.46 2.23 2.03 1.87

4.5 2.96 3.27 3.45 3.54 3.55 3.54 3.51 3.09 2.73 2.45 2.22 2.01 1.84 1.69

5.0 2.69 2.97 3.13 3.21 3.23 3.21 3.19 2.80 2.50 2.24 2.01 1.83 1.67 1.54

5.5 2.46 2.72 2.86 2.93 2.94 2.95 2.93 2.58 2.28 2.04 1.85 1.68 1.54 1.41
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Table 5.7: Optimal detector surface area. 

 
All dimensions are in cm. 

 

 

Figure 5.12: Optimal detector depth. 𝝓𝒓𝒂𝒕𝒊𝒐 normalised to a fraction of one and averaged 
over each organism. The error bars show the standard deviation between organism 
averages. 

 

5.3.2 Beta detector orientation 

Bone surface areas, tissue depth and the fractional view to each detector orientation are 

detailed in Table 5.8. Tissue depth is reported with an upper and lower 95th percentile 

estimate. The total emission from each bone (ignoring detector orientation) is shown in Figure 

5.13 for 90Sr and Figure 5.14 for 90Y. The graphs show the largest emissions for both 

radionuclides are likely to occur in the caudal vertebrae (tail), the manus, hindfoot, and head 

(cranium and nose). The optimal orientation, based in the information in Table 5.8 and the 

two figures, for a detector is shown in Figure 5.15. This figure suggests a detector would be 

best placed under the organism. 

 

Length Width Length Width Length Width Length Width Length Width

1.5 6 3 6 4 4 3 6 4 6 4

2.0 6 3 6 4 4 3 6 4 6 4

2.5 6 3 7 4 4 3 7 4 7 4

3.0 6 3 6 4 4 3 6 4 6 4

3.5 6 3 6 4 4 3 6 4 6 4

Mouse Vole Small Bat Large Bat Bird
Depth
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Table 5.8: Bone and tissue properties for mouse model 

 

The ear and eye surface areas were measured at 36.79 and 9.90 mm2 respectively. The 
nose and cranium surface areas are adjusted to reflect the loss from these two areas. 
Measurements taken from model produced by Dogdas et al. (2007). 

 

Average Up95 Low95 Top Bottom Side

1. Skull Cranium (90Sr) 61.87 0.41 0.59 0.23 1 0.25

Cranium (90Y) 71.77 0.41 0.59 0.23 1 0.25

Nose 69.48 0.84 1.12 0.56 1 0.25

Mandible (90Sr) 13.92 1.50 1.57 1.42 1

Mandible (90Y) 89.09 1.79 2.56 1.03 0.25 0.75

2. Spine V01-08 37.04 5.78 6.34 5.22 1

V08-V17 56.17 4.56 6.36 2.76 1

V17-V20 29.94 1.70 2.36 1.04 1

V20-V23 41.30 1.52 1.90 1.14 1

V23-V31 5.65 1.62 2.02 1.22 1

V23-V31 (90Y) 78.35 3.10 3.70 2.50 1

V31-V35 32.31 0.88 1.14 0.63 1

Caudal Vertabrae 282.80 0.40 0.51 0.29 0.5 0.5 0.5

3. Ribs R1 D 13.83 3.90 6.20 1.60 1 0.5

R2 D 9.46 3.12 4.79 1.45 1 0.5

R2 V 3.75 1.57 1.77 1.37 1 0.5

R3 D 13.36 2.84 4.17 1.51 1 0.5

R3 V 4.98 1.31 1.51 1.11 1 0.5

R4 D 13.46 2.62 3.45 1.79 1 0.5

R4 V 5.15 1.31 1.63 0.98 1 0.5

R5 D 13.42 2.42 2.85 1.99 1 0.5

R5 V 6.82 1.41 1.79 1.02 1 0.5

R6 D 18.12 2.10 2.66 1.54 1 0.5

R6 V 13.14 1.40 2.01 0.79 1 0.5

R7 D 29.17 1.90 2.63 1.17 1 0.5

R7 V 21.13 1.52 2.21 0.83 1 0.5

R8 D 24.68 1.78 2.12 1.44 1 0.5

R8 V 12.11 1.41 2.27 0.56 1 0.5

R9 D 23.39 1.57 1.99 1.15 1 0.5

R10 D 23.83 1.29 1.61 0.97 1 0.5

R11 D 18.68 1.31 1.79 0.83 1 0.5

R12 D 15.84 1.22 1.60 0.84 1 0.5

R13 D 8.95 1.21 1.57 0.84 1 0.5

Sternum 29.46 1.40 1.92 0.88 1

4. Arm Scapula Plate 42.06 1.82 2.45 1.19 1 0.5

Scapula Ridge 10.49 1.30 1.62 0.98 1 0.5

Clavicle 16.35 3.83 4.81 2.85 1

Humerus 47.49 2.46 2.92 2.01 1 0.5

Forearm + Elbow 134.62 0.70 1.23 0.17 0.25 0.5 0.25

Manus 49.15 0.28 0.40 0.15 0.5

5. Leg Pelvis (90Sr) 10.04 2.73 3.10 2.36 1

Pelvis (90Y) 70.67 3.61 4.48 2.73 1

Femur 59.44 2.17 2.53 1.82 1 0.5

TFC + Knee 239.34 0.84 0.91 0.76 0.25 0.5 0.25

Hindfoot 187.00 0.28 0.40 0.15 0.5

Tissue Depth (mm) Fractional View
Region Bone

Surface Area 

(mm2)
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Figure 5.15: Estimated emission rate (Bq s-1) at mouse skin surface for three different 
detector orientations. Left: 90Sr, Right: 90Y. Mouse model based on Dogdas et al. (2007) 

 

5.4 Discussion 

5.4.1 Detector size 

The optimal length and width of the 137Cs detector varied for each organism (Table 5.6). In 

general, a detector size slightly smaller than the size of the organism provided the best ratio 

(𝜙𝑟𝑎𝑡𝑖𝑜) against the limit of detection. For the mouse, vole, large bat, and bird, a detector 

length of 6 cm was deemed optimal (though the detector depth of 2.5 cm resulted in a 7 cm 

length having the largest 𝜙𝑟𝑎𝑡𝑖𝑜). The model for the small bat indicated a 4 cm length would 

provide the optimal count rate. For most of these organisms there was little difference in 

count rate (<1%) for detectors ±1 cm from the identified optimal detector lengths. A detector 

width of 4 cm was deemed optimal for the vole, large bat, and bird whereas it was 3 cm for 

the mouse and small bat. 

For all organisms, the most suitable detector depth was between 2 to 2.5 cm (Figure 5.12). 

The difference in 𝜙𝑟𝑎𝑡𝑖𝑜 between these two depths was >1% so choosing between them 

should not influence measurements greatly. The thicker (2.5 cm) depth may be preferable 

though as it is typically the smallest size of detector commercially available (approx. 1 inch; 

see chapter 3.5.5). For depths outside this range, however, 𝜙𝑟𝑎𝑡𝑖𝑜 falls rapidly (the largest 

difference between the ratios calculated for each depth was 4%). 

Besides the optimal detector sizes, 𝜙𝑟𝑎𝑡𝑖𝑜 shown in Table 5.5 and Appendix 10.4 indicate the 

likelihood of attaining measurement that can be statistically distinguished from background 

(anything above one indicates a measurement that is above the MDA). From these results, the 

mouse and vole indicate a count rate far above the limit of detection and the bird 
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approximately three to four times above. A shorter count time would therefore be possible 

for birds, placing it within more acceptable restrain times (Bondarkov et al., 2011). The 𝜙𝑟𝑎𝑡𝑖𝑜 

for the two bats, however, indicate their count rate would be below this limit of detection. 

These two organisms would require a longer counting time (approximately 43 minutes for the 

large bat) or for a much lower background to be present. An optimal detector for the 

organisms, from which a good detection is likely, would therefore be between 6 and 7 cm, 3 

to 4 cm for the width, and 2 to 2.5 cm for the depth. 

The model created to derive these dimensions included a number of simplifications that could 

impact the conclusions drawn above. The small sizes of the organisms included in this chapter 

means the use of a cylinder to represent the organism, along with the exclusion of structures 

that are denser than tissue (e.g. bone) and the assumption of an evenly distributed internal 

contamination, was considered to be sufficient due to the high penetrability of the target 

radionuclide, 137Cs. For larger organisms, a more accurate representation of the anatomical 

structure would be required to account for the distribution of the target radionuclide and 

additional absorption caused by internal structures. The range of animal dimensions provided 

for the model was limited but was also deemed sufficient to reach conclusions for the average 

dimensions of each respective species. The CR applied to each organism, whilst not having an 

influence the optimal detector size, does have a large impact on the size of 𝜙𝑟𝑎𝑡𝑖𝑜 provided in 

Table 5.5 and Appendix 10.4; a mouse, with the largest CR, had a very high 𝜙𝑟𝑎𝑡𝑖𝑜 whereas the 

two bats, with the smallest CR, were estimated to have a 𝜙𝑟𝑎𝑡𝑖𝑜 below the minimum 

(statistically significant) detection levels. These CRs were considered sufficient for this model 

(as an example of an environment where the detector will be used) but may not be fully 

representative of species in other locations. A final limitation of the model is the position of 

the organism with respect to the detector. It was assumed the animal is located centrally 

directly on the top of the detector crystal. If the animal is capable of moving off the edge of 

the detector then the emission rate from the organism will be reduced. Whilst a live animal is 

unlikely to be restrained to the extent where it cannot move (unless it is anaesthetised e.g. 

Barnett and Dutton (1995)) it is still expected it can be restrained to an extent where the 

contact surface area will not be reduced significantly. A larger impact to detection would be if 

the detector was moved away from the organism, e.g. if the detector is positioned to the side 

of a large restraint. This would reduce the count rate according to the inverse square law 

(Knoll, 2010). This is, however, unlikely to be a concern for the organisms that are already 
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listed (above) as being above the background limit of detection due to how large their 

estimated emission rate already is. For the requirements of this chapter, therefore, it is still 

expected that the range given for the dimensions provide a suitable basis on which to design 

a detector. Any large deviation (e.g. using a large restraint where the animal has more 

mobility) should, however, be considered before finalising a design for a detector. 

5.4.2 Detector orientation 

A detector placed below the organism was found to be the optimal position for both 90Sr and 

90Y (Figure 5.15). By placing the detector above or to the side of the organism, it was estimated 

the count rate of 90Sr would reduce by 65% and 67% respectively. For 90Y, this reduction in 

count rate was estimated to be 31% and 44% for the top and side orientations respectively. 

The data presented in the results are, however, an idealised position for the mouse; assumed 

to be sat with arms and legs under the body and tail visible to the bottom detector. Because 

the estimated emission is largest from the feet and tail (e.g. Figure 5.13 for 90Sr) this means 

movement of the organism, such that any of these parts are no longer visible to the detector 

(the tail is the most likely to do this), would result in a reduced count rate from the organism. 

Whilst the estimates show a detection will still be made there are other compounding factors 

that affect this estimated count rate. Contamination in the fur is not estimated in this model 

but is likely to be present. Physical removal of this contamination is difficult to accomplish 

(Ishida et al., 2015). Separating the 90Sr and 90Y components of the beta detection (i.e. using a 

different detector for each, along with an appropriately thick attenuation layer) could provide 

a way to estimate surface contamination from an organism. This would, however, use 90Y as 

the internal contamination indicator and would rely on the assumption it is in equilibrium with 

the 90Sr present in the organism. This model also only looks at one organism type out of those 

listed in Table 5.1. The other two types, bats and birds have anatomical features, different 

from the mouse, that need to be considered. The largest physical difference is the presence 

of wings. Whilst unlikely to be so for the bird, this feature could be beneficial for detection of 

90Sr + 90Y in bats because they have a large proportion of bone in their wings (as compared to 

the whole body) that is covered by only a thin membrane (Barlow, 1999). For the bird, the 

presence of feathers on the wings would hinder detection. The locations for the highest 

emissions from a bird would likely be in the legs. For both bats and birds, the optimal location 

for the 90Sr + 90Y beta detector would therefore potentially differ from that shown in Figure 

5.15, depending on how the organism is positioned in any restraint.  
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5.5 Conclusion 

Models were constructed to estimate suitable detector sizes and orientations for the 

measurement of 137Cs, 90Sr, and 90Y. Both models were considered to be sufficient to draw the 

following conclusions. The recommended dimensions of the CsI scintillator (for detection of 

137Cs) were between 6 to 7 cm in length, 3 to 4 cm width and 2 to 2.5 cm depth. Appropriate 

adjustments should, however, be made based on the ability for the organism to move within 

the restraint. The recommendation for the plastic scintillator (for detection of 90Sr and 90Y) 

was to have a surface area that covers as much of the organism as possible and to have a thin 

depth to reduce the detection of 137Cs in this detector. This coverage should not, however, be 

to the extent that it hinders detection of 137Cs in for the CsI detector. The orientation of these 

two detectors was dictated by the beta detector. The constructed model indicated the best 

orientation for the plastic scintillator was underneath the organism. This was, however, based 

on the anatomical structure of a mouse only. For other species, such as bats and birds, their 

properties may mean a different orientation may be optimal. Because the plastic scintillator 

is likely best placed under the organism, the housing of the beta detector may dictate the 

orientation of the CsI scintillator so as to maximise its detection (i.e. a thick housing for the 

beta detector would mean a side placement for the CsI detector would be better). 
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6 Design and construction 

6.1 Introduction 

The previous three chapters have served to identify the main design requirements for the 

construction of a portable radiation detector. The requirements for this detector are to live-

monitor the 137Cs and 90Sr (incl. 90Y) radionuclide content within small mammals (incl. bats) 

and small birds (chapter 4.5). Suitable detection materials were identified (chapter 3.5.5) as a 

CsI scintillator for gamma detection and a general plastic scintillator for beta detection. 

Suitable sizes and positioning of these materials, in relation to the target organism, were 

suggested in chapter 5.5. This chapter takes these requirements, outlines the design 

specifications of a small animal radiation detector and details the construction and calibration 

of a fully working unit. 

6.2 Methods: 

The general description of the radiation detector from chapter 3.5 was categorised (Figure 

6.1) into five sections: 1) restraint, 2) scintillators (detection materials), 3) processing 

electronics, 4) shield, and 5) supports and inserts (for holding the items in place within the 

shield). The designs for each of these are detailed in the following subsections.  

 

Figure 6.1: Components of the small animal radiation detector. 
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6.2.1 Restraint 

A flatpack restraint box was designed in Inkscape7 (version 0.92) and laser cut on 160 gsm 

card. This material was chosen because it was relatively cheap to acquire (so easily replaceable 

if damaged by the restrained animal) and provided a good balance between being thin enough 

for the detection of 90Sr but also thick enough to provide a sturdy box for restraint of a moving 

animal. The manufacturing method was chosen because it provided a rapid means of creating 

many boxes to the same specification. The laser cutter used was a GRAVOGRAPH (IS900) and 

required a line thickness on the templates to be 0.009 mm (or 0.026 pt). The internal 

dimensions of the detector were set according to the maximum animal size expected to be 

monitored, i.e. appropriate for small rodents (mice / voles), bats, and birds. The current 

radiation detector used to live-monitor these animal groups in the Chernobyl Exclusion Zone 

(Bondarkov et al., 2011) uses restraint boxes (three in total) that are similar to the animal 

geometries used in the models from Chapter 5.2.1. Therefore, for the new detector described 

within this thesis, the same box dimensions were adopted: 170 x 60 x 50 mm (LxWxH) for a 

large box, 100 x 50 x 35 mm for a medium, and 70 x 40 x 35 mm for a small box. 

6.2.2 Detector  

The final designs of the detectors were reached based on the conclusions of chapters 4 and 5. 

Materials for the individual scintillators were sourced from and assembled (from the design in 

this chapter) by John Caunt Scientific (JCS) and Scionix.  

6.2.2.1 Materials and positioning 

A CsI(Tl) scintillator was chosen for the detection of 137Cs and a plastic scintillator (BC-400) for 

the detection of 90Sr + 90Y (see chapter 5.5). Dimensions were set at 70 x 40 x 25 mm and 100 

x 60 x 0.58 mm respectively based on the outcomes of the models in chapter 5. To account for 

movement of the animal within the restraint box, two of each scintillator were used. A plastic 

scintillator was positioned above and below the animal and the CsI scintillators were rotated 

through 90 degrees so that they could be placed either side of the animal (the rotation was 

decided upon to reduce attenuation that would have been present if it were placed behind 

the plastic scintillator). Each scintillator was covered using reflective Teflon tape except for 

the detection surface for the plastic scintillators, which was covered using 6 µm Mylar.  

                                                      
7 https://inkscape.org/en/ 
8 Mounted on a 9.5 mm plastic backing for support of the thin scintillator. The upper scintillator had a reduced 
width of 50 mm to allow space for a protective case 
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6.2.2.2 Light collection 

Each scintillator was connected to a type 5611A 26 mm PMT (with single MHV connectors) 

sourced from Scionix. Whilst SiPMs had been considered, it was decided to use the specified 

PMTs due to the availability of materials and a suitable SCA/MCA. To avoid compromising the 

integrity of the side shielding (see section 6.2.4 for shielding design) the PMTs were mounted 

on the scintillators such that they were directed upwards out the top of the detector. For the 

CsI scintillators, the optimal placement of the PMT was determined to be towards one of the 

short edges on the top face because this is where the maximum amount of scintillation light 

can be collected (Menge et al., 2016).  

The design of the plastic scintillator presented a unique problem for mounting the PMTs in an 

upwards direction. Information for the optimal position for this design was not readily 

available in the literature and was therefore determined by means of the following 

experiment. A 0.5 mm thick plastic scintillator from a DP6 series alpha-beta probe was 

reconfigured to allow a PMT from a Nuclear Enterprises BP4 to be mounted (using coupling 

gel) on the lightguide surface in various positions (centre, normal, end; Figure 6.2). The PMT 

was connected to an Electra rate meter (beta channel set to 0.1 -0.3 V, alpha channel 0.3+ V) 

for measurement of a 16 mm diameter 90Sr + 90Y source with an activity (all source activities 

are decayed to measurement date) of 2.48 kBq (therefore a 100% efficiency should be 1240 

cps). Measurements were taken for a range of high voltages (HV) with the source in the a) far, 

b), centre, and c) near position (Figure 6.2). All results for these measurements were scaled to 

a fraction of 1 such that 1 represented 100% efficiency to allow for comparison. This 

experiment was repeated for a scintillator coating of aluminium foil and Teflon tape. A further 

experiment was undertaken with the PMT positioned in the Normal position but with the 

corners of the light guide chamfered as shown in Figure 6.3. This final experiment used a 0.25 

mm scintillator from a Ludlum 44-142 detector instead of the one from the DP6 due to 

accidental damage caused to the previous scintillator material. 

6.2.3 Processing 

A RMS30 unit was sourced from JCS for the processing and display of the signal from the 

scintillators. Two interface boxes were designed and constructed by JCS to allow for all four of 

the PMTs to be connected to the two inputs of the RMS30.  
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Figure 6.2: Experimental setup for testing the positioning of the beta scintillator PMT. 
Above, top view, below, side view. The scintillator is coloured blue and the light guide is 
coloured grey. The source is placed in the Far, Centre, or Near positions with the PMT in 
either the Centre, Normal or End position. 

 

 
Figure 6.3: Modification of the light guide for PMT placement. Left, top view, right, side 
view. The scintillator is coloured blue and the light guide is coloured grey. 

 

6.2.4 Shielding 

A shield for the detector was designed in LibreCAD9 (version 2.1.3). It was designed to enclose 

the restraint box and scintillators but allowed gaps for the PMTs to be orientated upwards out 

of the detector. The thickness of lead was set to be a maximum of 22 kg as an upper level to 

being portable; this limit also allows for transportation on most airlines if transport overseas 

is required. It was assumed (chapter 5.2.2.1) that the majority of the background count would 

come from 137Cs in the ground and therefore the walls of the shield were set to be half the 

thickness of the base. The design of the shield was optimised such that the scintillators were 

shielded with the maximum amount of lead allowable for the weight of lead specified. The lid 

thickness was set at a thickness of 10 mm to ensure a minimum level of shielding on the upper 

surface. The lid was further designed to be removable to allow for insertion and future 

replacement of the scintillators. This design was cast from lead by Perry Products Ltd. 

                                                      
9 http://librecad.org/cms/home.html 
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6.2.5 Supports and inserts 

Two main support structures were required: one to position and support the walls of the 

restraint box when placed in the cavity and the other to position and hold the scintillators 

within the shielding. The supports for the restraint boxes were designed in Inkscape (version 

0.92) and laser cut from 3 mm Perspex. The parts were assembled using plastic weld. Similar 

to the reasons for the production choice of the restraint boxes, this allowed for cheaply 

manufactured parts that could be quickly replaced if damaged. The main body of the support 

structure for positioning the detectors was also designed in Inkscape and laser cut from 3 mm 

Perspex. A protective case for the upper 90Sr detector and separate housings to protect the 

part of the PMT tubes extruding from the shielding were designed in Autodesk Fusion36010 

(version 2.0.3706) and 3D printed from PLA (Polylactic Acid) material on an Ultimaker 2+ 3D 

printer. 3D printing was initially considered for all components, both as a means to fully 

automate their manufacture and to have fewer breakage points, but laser cutting from 

Perspex was opted instead for the simpler structures because it allowed for faster prototyping. 

6.2.6 Assembly 

The detector was assembled at the University of Salford. All dimensions were checked against 

design blueprints prior to assembly. Two toughened cases were acquired to hold the 

disassembled detector; one for the scintillators and electronics and the other for the shielding. 

6.2.7 Preliminary system testing 

6.2.7.1 Energy calibration 

The two gamma scintillators were calibrated using a 9 kBq 137Cs source that was contained 

within a circular tin. The lower and upper level discriminator window on the two scintillators 

was set to 800-1100 mV. The two beta scintillators were calibrated using a 1.6 kBq 36Cl source. 

The window was set to disabled. The optimal HV bias for each PMT was determined by taking 

10 second counts for a range of voltages and identifying the peak voltage (when compared to 

background radiation levels). All sources were positioned centrally and in contact with the 

detection surfaces.  

6.2.7.2 Response to sources 

Detection of 137Cs in the two gamma scintillators and 36Cl in the two beta scintillators was 

confirmed during the energy calibration stages in section 6.2.7.1. Three further radioactive 

                                                      
10 https://www.autodesk.com/products/fusion-360/overview 
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sources: 3.02 kBq 14C, 3.06 kBq 90Sr, and 2.57 kBq 60Co, each having a surface area of 10x15 

cm and a calibration date of 31/07/2014, were placed onto the two beta scintillators to test 

their responses to different energy beta emitters (sources fully covered the detection surface). 

The response to the gamma emission from the 137Cs source was also measured with the source 

being placed 65 mm away from the detector.  

6.2.7.3 Attenuators for beta detectors 

To assist with determining the 90Sr content of targeted animals, and to provide protection to 

the lower beta scintillator (from the animal), the two beta scintillators were configured as 

follows: 

• the upper scintillator had no filtering between the source and the scintillator so was 

able to measure 90Sr, 90Y and the beta from 137Cs. 

• the lower scintillator used a layer of aluminium to filter lower energy betas so 

measured 90Y only  

It is expected the 90Sr and 137Cs contribution will be low compared to the 90Y measurement 

due to the lower penetrative ability of these radionuclide emissions. Determination of 90Sr is 

therefore to be made via measurement of 90Y. The 90Sr source was used to estimate this 

thickness of aluminium that was required to be placed on the lower beta scintillator. Counts 

lasting 100 seconds were taken for aluminium thickness between 0 to 0.4 mm in increments 

of 0.1 mm. These were graphed to identify the point at which 90Sr is removed from detection. 

6.3 Results 

6.3.1 Restraint 

Three templates were designed for the restraint boxes: small (Figure 6.4a), medium (Figure 

6.4b), and large (Figure 6.4c). The design of each restraint box means they have a single layer 

of card on the top and bottom to ensure a consistent thickness on these surfaces for the beta 

scintillators. A side hole is present to ensure there is an air supply for the contained animal. 

The dashed lines allow the box to be easily folded into shape and the tabbed design means no 

further materials are required to hold the box together once it is assembled. The perimeter of 

the box is coloured red. This is so the laser cutter can be set to cut the black lines first and 

then the red lines. Cutting in this order means there is no chance of the box shape moving 

within the laser cutter (due to the attached smoke extraction fan) before the entire shape is 

cut. 
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Five sheets of card could be stacked and cut at the same time. Therefore, batches of 10 small 

boxes, 5 medium boxes, or 5 large boxes could be cut (Figure 6.5). Using setting of 30% power 

and 15% speed meant cutting times (batched) for each box was approximately 188 seconds 

for the small box, 114 seconds for the medium box and 158 seconds for the large (timing may 

change for other laser cutters). The final assembled boxes are displayed in Figure 6.6.  

 

Figure 6.4: Template for the a) small, b) medium and c) large restraint boxes. Scale is 
shown in the lower right-hand corner of the figure (units are in cm) 
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Figure 6.5: Left: laser cutting of one of the large restraint boxes. Right: batches of boxes 
ready for testing following cutting.  

 

 
Figure 6.6: Final assembly for each of the restrain boxes. a) small restraint box, b) medium 
restraint box, and c) large restraint box. 
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6.3.2 Scintillators 

6.3.2.1 PMT positioning 

Mounting the PMT centrally on the scintillator allows for the best count rate when the source 

is positioned centrally (Figure 6.7). Moving the source away from the PMT, however, give a 

large reduction in the count rate and therefore makes this a poor PMT mounting position for 

the purposes of this application. The use of Teflon tape instead of aluminium foil helps to 

alleviate this but still shows a lot of variation as the HV is changed. Mounting the PMT at the 

end of the lightguide (as often seen for these types of detectors though not viable for the 

scintillator placement in this project) resulted in the best overall consistency between counts, 

especially with the aluminium foil (Figure 6.8). Count measurements with the aluminium foil 

in place showed little deviation of the signal when the source was moved across the surface 

of the scintillator or as the HV is changed. Using Teflon tape gives an increase in the detected 

signal (though the furthest position gives a greater count rate over the closer two positions). 

At higher voltages, however, this relationship broke down for the Teflon tape wrapping. 

Rotating the PMT so it was mounted normal to the surface but at the end of the scintillator 

(Figure 6.9) allowed for a better count rate close to the PMT but overall poorer count rate at 

any distance away from the PMT. Angling the edges of the lightguide, however, assists in 

directing the light up into the PMT and therefore there is a marked decrease in variation of 

count rates across the surface and between HV increments (Figure 6.10). Whilst not as good 

as the count rates in Figure 6.8 it does show that this is a usable position to have the PMT 

mounted onto the scintillator. 
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Figure 6.7: Count rate for PMT mounted centrally on scintillator. Blue – aluminium 
wrapping, red – reflective tape wrapping. 

 

Figure 6.8: Count rate for PMT mounted end on to the scintillator. 
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Figure 6.9: Count rate for PMT mounted normal to scintillator surface. 

 

Figure 6.10: Count rate for PMT mounted normal to scintillator surface and edges of light 
guide chamfered to assist in directing light into PMT. 
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6.3.2.2 Detector design 

The requirements of the scintillators outlined in sections 6.2.2 and 6.3.2.1 were developed 

into the schematics displayed in Figures 6.11 to 6.13 (final drawings provided by Scionix). 

Construction of each scintillator shown was completed by Scionix (delivered via JCS)  

 
Figure 6.11: Schematic diagram for one of the gamma scintillators. Above: top view, 
below: side view. The other gamma scintillator is a mirror image of this design. All units 
are in mm.  
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Figure 6.12: Schematic diagram for the lower beta scintillator. Above: top view, below: 
side view. All units are in mm. 
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Figure 6.13: Schematic diagram for the upper beta scintillator. Above: top view, below: 
side view. All units are in mm. 
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The arrangement of all four scintillators is modelled in Figure 6.14. These scintillators were 

constructed at a cost of £2775.40 for the two gamma scintillators, £1758.15 for the lower beta 

scintillator, and £1734.60 for the upper beta scintillator (these values do not include VAT). The 

final constructed scintillators are shown in Figures 6.15 and 6.16.  

 
Figure 6.14: 3D model created in Sketchup 2017. The cavity where the animal is to be 
placed is visible in the centre with a gamma scintillator to each side and a beta scintillator 
above and below. The PMTs are directed upwards from the detection materials.  
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Figure 6.15: The two CsI gamma scintillators. The detection material is wrapped within 
the black tape.  

 

 
Figure 6.16: The two beta scintillators. Top: the upper beta scintillator with the detection 
surface visible as the silver rectangle on the lower surface. Bottom: the lower beta 
scintillator with the detection surface visible as the silver rectangle on the upper surface. 
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6.3.3 Processing unit 

The RMS30 processing unit (Figure 6.17) was reconfigured by JCS to simultaneously display 

counts from all four scintillators described in the previous subsection. The four outputs from 

the scintillators are transferred to the two inputs of the RMS30 via two interface boxes (Figure 

6.18) that have been custom designed for this project. Operating instructions for this unit are 

available in Appendix 10.5. 

 

      
Figure 6.17: The RMS30 unit from JCS. Left, visible are the two scintillator inputs to the 
left side of the unit. Power and computer connections are available (not shown) on the 
right side. Right, display on the RMS30 showing all four inputs active. The top two rows 
display the counts for the gamma scintillators and the bottom row for the beta 
scintillators. 

 

     
Figure 6.18: The two interface boxes for the scintillators. One for the beta scintillators 
and the other for the gamma scintillators. One side has two inputs for the two of the 
scintillators and the other side has a single output (shown) to the RMS30. The brass 
connectors shown above are outputs to an oscilloscope to allow for a more detailed 
calibration if required.  
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6.3.4 Shielding 

The design shown in Figure 6.19 was determined to be optimal (in maximising the shield 

thickness) for the specification of the internal scintillators and for the requirements set out in 

the methods. An access door was built into the lid and the upper beta scintillator was fully 

removable to allow access to the cavity.  

 

 
Figure 6.19: Shield design for optimal balance between lead thickness and weight. 
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The design in Figure 6.19 allowed for a base lead thickness of 30 mm and wall thicknesses of 

15 mm (Figure 6.20). The lid and door were 10 mm with the lid attaching to the base section 

of the shield by use of four screws. The door rested in place by use of ridges cast into it and 

the lid. A 3D model of this plan, generated in Sketchup 2017 (Figure 6.21), shows how the 

overall design should appear once constructed. The final cast shield is shown in Figure 6.22. 

 

Figure 6.20: Schematic of shielding. a) the base unit, b) the walls, c) the lid with spaces 
left for the PMTs and access to the cavity, and d) the door to allow access to the cavity. 
All units are in mm. h is the height (in mm) of each section. 
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Figure 6.21: 3D generated model of the shielding. On the upper surface is the location 
and expected protrusion of the four PMTs. The access door will be opened using a handle.  

 

  
Figure 6.22: Cast lead shield. Left, door not in place, Right, door in place. 
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6.3.5 Supports and inserts 

The three sets of supports for the restraint boxes were designed (Figure 6.23) to pack together 

into the cavity of the detector during storage or transportation; the small restraint support 

fits inside the medium restraint support which fits in between the two parts of the large 

restraint supports. During use of the detector, the small restraint support must sit inside the 

medium restraint support if a small restraint box will be used. The other two restraint supports 

are used by themselves if either a medium or large restraint box is to be used. The gaps visible 

in the structures were included as a weight saving measure only. The round holes visible in 

the side of the two smaller restraint supports match up to the positions of the air holes present 

in the restraint boxes. The design was drawn as a 2D image of parts (Figure 6.24) and laser cut 

and glued to form the final product shown in Figure 6.25. The laser cutter used power setting 

of 100% and speed 7%, taking 605 seconds to cut a set of restraint supports.  

 

 
Figure 6.23: 3D generated model of the supports for the three restraint boxes. a) the small 
restraint support, b) the medium restraint support, and c) the large restraint support. 
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Figure 6.24: 2D template for the three restraint supports. This image is laser cut onto 3 
mm Perspex and assembles using plastic weld glue. Scale is shown to the right-hand side 
of the figure (units are in cm). 

 

 
Figure 6.25:  Restraints with boxes inserted. From left to right: large, medium, and small 
restraints. 

The insert for positioning the three scintillators within the shield was a more complicated 

design (Figure 6.26). The design created for the insert allowed for easy removal of each 

scintillators whilst maintaining enough support to hold all the parts (three of the scintillators 

and the restraints) in place (Figure 6.27). A 0.1 mm aluminium sleeve for the cavity was 

constructed to protect these three scintillators from any animal or animal waste that may 

escape from the restraint boxes. 
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Figure 6.26: 2D template for the scintillator positioning insert. The numbers and letters 
(in red) were etched (settings: power 100%, speed 100%) into the surface of the parts by 
the laser cutter as a visual marker for what parts connect. Scale is shown to the left hand 
side of the figure (units are in cm). 

 

 
Figure 6.27: Insert for positioning the scintillators within the shield. a) The fully 
constructed insert, b) The three scintillators placed into the insert, c) the insert and 
scintillators placed within the shield, and d) an aluminium box placed into the cavity to 
protect the scintillators. 
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The case for the upper beta scintillator was designed (Figure 6.28) as two parts; an upper and 

lower section. The two sections are secured together using screws. A ridge along the top of 

the case (level with the bottom of the shield door) is included for both structural support and 

a means to keep the scintillator level whilst inside the detector (this rests directly under the 

lid when the largest box is used). The assembly of this case is detailed in Figure 6.29. 

 
Figure 6.28: 3D design of the case for the upper beta scintillator. 

 

 

 
Figure 6.29: Construction of the upper scintillator case. a) tap screws inserted into base 
section, b) an aluminium insert creates a window for the detection surface, c) scintillator 
positioned in base section, and d) the upper section of the case is screwed into place.  
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The supports for the remainder of the scintillators took the form shown in Figure 6.30. Only 

the PMT section that penetrated through the shield was required to be protected (from 

accidental knocking). The design included two small protrusions on the bottom to secure the 

support between the detector insert (Figure 6.27) and the shield lid. A small gap is included 

due to the proximity of the PMT to the internal wall of the cavity. It is arched because of 

limitations in the 3D printing process. These supports are placed onto the PMTs as shown in 

Figure 6.31. 

 
Figure 6.30: 3D design of the protective support for the PMTs. Two of the left support 
were printed for the gamma scintillators. The small support of the right was designed for 
the lower beta scintillator.  

 

 

     
Figure 6.31: Protective supports placed onto the PMTs. Left, lid off, right, lid on. 
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6.3.6 Assembly 

The detection system (electronics and scintillators) were initially assembled (Figure 6.32) to 

check its operation and was confirmed to be working. The final assembly of the full detection 

system is shown in Figure 6.33 and individual component properties are available in Table 6.1. 

To assist with assembly, the scintillators, cabling and ports were labelled. The Gamma 

scintillators to the right and left sides were labelled CH1A and CH1B respectively. The upper 

and lower beta scintillators were labelled CH2A and CH2B respectively.  

 
Figure 6.32: Partial assembly of the detection system. The four scintillators connected to 
the RMS30 via the interface boxes. 

 

 

 
Figure 6.33: Full assembly of the detector. The shielded scintillators are to the left and 
the RMS30 and interface boxes are to the right. 
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6.3.7 System testing 

6.3.7.1 Energy calibration  

Energy calibration of the detection system resulted in the following high voltage (HV) setting 

for each scintillator: CH1A was set to 1075 V (Figure 6.34), CH1B was set to 975 V (there was 

a lower than expected reading for 960 V (Figure 6.35). It was assumed that this was caused 

due to a discrepancy in the positioning of the gamma source between readings. This 

calibration was redone for 950 to 1000 V (Figure 6.36) with the source left in position between 

readings). CH2A was set to 975 V (Figure 6.37) and CH2B was set to 1000 V (Figure 6.38). 

Because there is no distinctive peak for these latter two, the voltage is set at the point where 

the source counts per second squared divided by the background counts per second (S2/B) is 

largest (Knoll, 2010). 

 

Figure 6.34: Energy calibration curve for CH1A. 9 kBq 137Cs source (in circular tin) placed 
on top of scintillator (detection side facing up). LL = 800 mV, UL = 1100 mV. Not in shield. 

 

Figure 6.35: Energy calibration curve for CH1B. 9 kBq 137Cs source (in circular tin) placed 
on top of scintillator (detection side facing up). LL = 800 mV, UL = 1100 mV. Not in shield. 
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Figure 6.36: Energy calibration curve check for CH1B. Repeat of 950 to 1000V for CH1B 
Gamma. 9 kBq 137Cs source (in circular tin) placed on top of scintillator (detection side 
facing up). LL = 800 mV, UL = 1100 mV. Detector not in shield. 

 
Figure 6.37: Energy calibration curve for CH2A. 1.6 kBq 36Cl source placed in the centre 
and on top of scintillator. Scintillator was placed upside down with detection side facing 
up. Window is left open (disabled). Scintillator not in shield. 

 

Figure 6.38: Energy calibration curve for CH2B. 1.6 kBq 36Cl source placed in the centre 
and on top of scintillator. Scintillator side facing up. Window is left open (disabled). 
Scintillator not in shield. 



149 
 

6.3.7.2 Response to sources 

The response of the beta scintillators to different radioactive sources is shown in Figure 6.39. 

Out of the three beta emitters tested, 60Co and 90Sr are measurable at a 100 second count. 

The third, 14C, is measurable on CH2A but is below the limit of detection for CH2B. The gamma 

from 137Cs is picked up on both scintillators but is below the limit of detection for the 10 

seconds it was counted for. This is likely to be a significant detection on a longer count and 

therefore will need to be accounted for during sample monitoring.  

6.3.7.3 Attenuators for beta scintillators 

Filtering of the 90Sr beta emissions showed a sharp drop in recorded count rate between 0 and 

0.1 mm levels out across 0.2 to 0.4 mm (Figure 6.40). This indicates that a thickness of between 

0.1 to 0.2 mm of aluminium is required to remove the majority of the lower energies. 

Therefore, the lower beta scintillator should be covered with 0.2 mm of aluminium to ensure 

there is only a signal detected from the 90Y emission. 

 

 

Figure 6.39: Beta scintillator response to difference sources. A and B identify the upper 
and lower beta scintillator respectively. Each source was counted for 100 seconds except 
137Cs, which was counted for 10 seconds. 
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Figure 6.40: Effect on count rate for different thicknesses of aluminium placed between 
scintillator and source. CH2B used with the 90Sr source placed centrally to the detection 
surface. 

 

6.4 Discussion 

The overall design created in this project allows for a modular and portable detector. Further, 

some parts are designed to be easily replaced or adjusted if the task requires it. The restraint 

boxes are designed as consumables and can be easily adjusted if a different size is required 

(within the constraints of the cavity size). With practice, they can be quickly assembled and 

the flatpack design means many restraint boxes can be transported easily. A limitation, 

however, is that these restraint boxes are designed to be discarded after each measurement 

and therefore a sufficient quantity of boxes must be laser cut in advance of any field work. A 

further consequence in the manufacture method is the current requirement to laser cut in 

batches of 5 (or 10 for the smaller restraint box). This means a person is required to be 

physically present at the laser cutter to insert new card and activate the next batch. If a few 

hundred of each box is required then a number of hours of access to a laser cutter must be 

available. A more suitable alternative could therefore be to outsource this work to an online 

box making service (e.g. http://www.tinyboxcompany.co.uk).  

The design of the scintillators has been reached through both a review of relevant literature 

and from experimentation (e.g. Section 6.2.2.2). Each of the scintillators were designed to be 
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housed as a separate unit with the supports inside the shielding designed (Figure 6.27) to both 

hold the scintillators in the correct position but also allow for their removal. The user can 

therefore opt to use all or a combination of the four scintillators (within the current scintillator 

support structure) depending on the radionuclides targeted for measurement. This means 

transportation and assembly requirements can be reduced in the event of only part of the 

detector being required. The scintillators should be operated in pairs, however, as the design 

attempts to account for movement of the animal within the restraint box. Another design 

choice for the scintillators was in positioning all of the PMTs such that they are directed 

upwards out of the shield (Figure 6.19). This was mainly to ensure the PMTs do not 

compromise the sides of the shielding but this arrangement has created a simple structure to 

the overall design whereby the entire detection unit can be broken down to facilitate ease of 

transportation. Initial results for the two beta scintillators (Figure 6.10), however, shows there 

is a decline in detected counts the further away a source is placed from the PMT. This is 

investigated further in the next chapter.  

The overall weight of the shield is balanced between having a low weight and having a 

reasonable level of shielding against background radiation. The modularity of the shield assists 

with portability: the heaviest item is 18.3 kg (Table 6.1) and the remainder of the components 

are at a weight carriable by a second person. A concern of the PMT placement, however, lies 

in the shape of the two beta scintillators (Figure 6.16) and also the strength of the PMTs 

protruding from the shield. The shape of the two beta scintillators means there is a potential 

for these to snap at the interface between the PMT and the scintillator. This is negated in the 

upper beta scintillator due to the 3D printed case it is inserted in (Figure 6.29). Whilst the 

scintillators could remain in the shielding during transportation, if the mode of transportation 

means the case containing the shielding cannot be guaranteed to stay in an upright direction, 

the scintillators must be removed or risk damage to the PMTs. In this case, care should be 

taken when handling or transporting the lower beta scintillator as excessive stress or strain on 

the PMT connection could cause it to snap. The unique design of the overall system means 

placement of the scintillators is restricted by the dimensions of the shielding (Figure 6.20), 

though there is scope to raise or lower the two gamma scintillators. If a large alteration to the 

position of the scintillators is required then a new shield will need to be cast. 

Processing of the detected signal for this project is performed by an RMS30 unit from JCS 

(section 6.2.3). Despite costing half of the total unit (when including the interface boxes; Table 
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6.1), this processing unit was chosen due to its field readiness (rugged and waterproof 

construction), simplicity of use, and its ability to accept and display the signal from all four 

scintillators at the same time. The non-removable power supply, whilst not an ideal solution, 

is accepted here as it can be operated for at least a day and is fast at recharging (if extended 

fieldwork keeps the user away from mains power then a suitable portable power bank or car 

adapter can be used to recharge the unit). For operation, the unit is a single channel analyser 

and therefore outputs a reading for a pre-set window of energies. The unit is currently 

configured (section 6.3.7.1) for 137Cs detection on the two gamma scintillators and the window 

is left open on the beta scintillators for the measurement of beta emitting radionuclides. The 

settings can, however, be easily changed to allow for detection of other radionuclides. The 

devices ability to detect 137Cs was confirmed through the energy calibration of the two gamma 

scintillators. Initial testing of the two beta scintillators showed it was responsive to 90Sr though 

further testing is required to determine how much this detection is altered by moving the 

source over the surface of the scintillator (Section 6.3.2.1). Further, any detection made from 

the beta scintillators will need to consider the proportion of the count that is from 137Cs 

gamma (Figure 6.39). The insertion of an aluminium attenuator over the lower beta scintillator 

(Section 6.3.7.3) will assist with identifying the components of the detected signal. 

A current drawback of the current detection system is the use of the two interface boxes. This 

adds extra components and cabling and therefore increases set up time and the space 

required for operation and transportation. The modular design of the detector, however, 

means these could eventually be built into the RMS30 unit for an additional cost, or swapped 

out for a different processing unit if desired (useful for any end users who already have their 

own SCA or MCA). 

6.5 Conclusion 

A design of a portable beta / gamma detector for monitoring radionuclides in small animals 

was identified and has been constructed to specifications outlined in the methods and results 

of this chapter. All components of the detection system have been confirmed to operate and 

are capable of detecting the required energy emissions of the target radionuclides. Variation 

in the count rate, however, was seen when repositioning the detection source. The extent of 

this change, as well as the performance of the detector with animal targets, is explored in the 

next chapter.  
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7 Laboratory and field testing 

7.1 Introduction 

The design, construction, and energy calibration of a portable detector was detailed in the 

previous chapter. The ability to detect the target radionuclides with this detector was also 

confirmed during calibration and preliminary laboratory testing. This chapter aims to establish 

the performance of the detector in monitoring target animals. Investigated are: the 

performance of the restraint boxes, the positional (horizontal and rotational) effect, and the 

extent to which measurements obtained with the developed detector compare to animal 

internal activity concentrations measured by other approaches. 

7.2 Methods: 

The following methods used the full detection system (as detailed in chapter 6) and a supply 

of each restraint box. The RMS30 settings were set to those defined in chapter 6.3.7.1. 

Determination of 90Sr is determined via measurement of 90Y. Each of the four scintillators are 

subsequently identified using the codes shown in Figure 7.1.  

 

Figure 7.1: Codes used to identify each scintillator. The two gamma scintillators are 
identified as CH1A and CH1B. The upper beta scintillator is identified as CH2A and the 
lower scintillator as CH2B. This corresponds with the display output on the RMS30.  
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7.2.1 Restraint testing 

Initial testing of the restraint boxes was conducted with rescued bats in Silverdale, UK, and 

with mice in the CEZ. All testing was conducted in line with research ethics requirements 

(Appendix 10.6). Testing in Silverdale made use of four live bats, each of a different species: 

Brandt’s, (Myotis brandtii), brown long eared (Plecotus auritus), natterer’s (Myotis nattereri), 

and pipistrelle (Pipistrellus pipistrellus), that had been rescued from the wild. All bats had been 

held in captivity for a period of time such that they were used to being handled. The aim of 

this experiment was to a) check the difficulty of placing a live animal into the box and b) check 

how the bats reacted to being held in the restraint box for a period of at least 120 seconds. A 

dead Greater horseshoe bat (Rhinolophus ferrumequinum) was further used, as an example 

for one of the largest bat sizes found in the UK, to check sizing of the restraint boxes. A box 

for each bat was assembled and a trained handler inserted a bat into each box. Observations 

were made on the ease of inserting and removing the bat as well as how the bat reacted to 

being in the box. Testing in the Chernobyl Exclusion Zone (CEZ) was undertaken as part of a 

separate study to live-monitor 137Cs in small rodents caught within the exclusion zone (this 

study did not use the live-monitor developed in this thesis and instead only focuses on gamma 

detection). Testing for these small rodents was similar to that of the bats in which observations 

were made as to the insertion and subsequent restraint of the animal within the restraint 

boxes. Count time for each rodent was 180 seconds with some held in boxes for >10 minutes 

during processing. 

7.2.2 Laboratory testing 

7.2.2.1 Response to phantoms 

Three phantoms (produced for and used by the Chornobyl Center, Slavutych, Ukraine. 

Phantoms are checked periodically by the Center) were placed individually into the cavity to 

determine the response rate per Bq of each scintillator. This ‘response rate’ is used in place of 

absolute efficiency (see section 2.5.4) as a direct comparison between the detected count rate 

and the radionuclide activity concentration within the sample is instead desired. Each 

phantom was a semi-cylinder with base dimensions of 6 cm by 3 cm and a height (i.e. radius) 

of 1.5 cm. The weight of each phantom was approximately 20 g and had a density of 1 g cm-3. 

The first phantom contained 552 Bq of 137Cs, the second contained 540 Bq of 90Sr, and the 

third phantom contained 5480 Bq of 137Cs and 53.7 Bq of 90Sr (all activities decayed to date of 

experiment). Radionuclide content was distributed evenly throughout the phantom. The  
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Figure 7.2: Cross-section of cavity and scintillators. CH1 are the gamma scintillators, CH2A 
is the upper beta scintillator, and CH2B is the lower beta scintillator. Shown are the 
attenuators between the phantom and each scintillator (thicknesses described in text). 
Between 0.18 and 0.53 mm of 1.22 g cm-3 tape surrounds CH1 scintillators. . 

 

 

phantoms were placed centrally within the medium restraint box and positioned in the cavity 

using the plastic support (Figure 7.2). The thickness of the plastic restraint support was 3 mm 

and the aluminium covering each gamma scintillator (CH1) had a thickness of 0.1 mm (as 

described in chapter 6). The aluminium covering on the lower beta scintillator (CH2B) was 

varied between 0.1 and 0.3 mm. A 0.1 mm plastic sheet was added to the upper beta 

scintillator (CH2A) due to concerns of damaging the Mylar covering when in the field. A 120 

second count was taken of each phantom for the CH2B aluminium thicknesses described 

above. An additional 120 second count was taken of each phantom with the plastic covering 

of CH2A removed (aluminium on CH2B set to 0.1 mm). Background counts (120 seconds each) 

were recorded at intervals throughout the experiment. 

The response rate of each scintillator to 137Cs and 90Sr (via 90Y) was determined in the following 

way. All readings were converted to counts per second. The background component was 

subtracted from each scintillator reading. The net counts recorded on each scintillator for the 

137Cs and 90Sr phantoms were divided by the phantom activity to provide a detection response 

rate for each scintillator (counts s-1 Bq-1). This was repeated for the sum of counts on CH1A 

and CH1B and for the sum of CH2A and CH2B (summing was found to reduce the positional 

influence. See section 7.3.2.3). These response values were tested by estimating the 137Cs + 

90Sr phantom count and comparing to the counts recorded by the scintillator for that 

phantom. Repeated measurements, for the testing described in this chapter, was not possible 
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due to restricted sampling time. There is no possibility, therefore, to account for the dead (or 

decay) times described in chapter 2.5.4. 

7.2.2.2 Effect of source position on count rate  

Two radioactive sources, one 137Cs (circular tin, 38 mm diameter) and the other 90Sr (flat, 50 x 

30 mm), were used to investigate the response of the scintillators to a source placed at 

different points within the detector cavity. The positional effect of the 137Cs source on the 

gamma scintillators was determined by measuring the count rate with the 137Cs source in the 

positions identified in Figure 7.3. The two measurements taken outside of the shield were to 

check the shield was attenuating the external count rate by the desired amount. Each count 

was for 100 seconds. A 100 second background count was taken before and after this set of 

measurements. The upper beta scintillator and lid was not used for this test, nor was the 

source placed in the restraint box, due to the size of the 137Cs source. The positional effect of 

the 90Sr source on the beta scintillators was determined by measuring the count rate with the 

90Sr source placed at intervals across the surface of the scintillators as described in Figure 7.4. 

The beta scintillators were not placed in the shielding for this determination and were both 

positioned such that the detection surface was facing upwards. Each count was taken for 10 

seconds. For both experiments, background count was subtracted from the results before 

scaling to a fraction of 1; for 137Cs, 1 was defined as the result for position c (Figure 7.3) and 

for 90Sr 1 was defined as the largest count on each beta scintillator surface. 

 

Figure 7.3: Gamma scintillator response to 137Cs source. Markers (a) to (f) indicate source 
positions. (e) is midsection of cavity, (f) and (d) are placed 38 mm from ends of cavity 
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Figure 7.4: Beta scintillator response to 90Sr source. Above, upper scintillator (CH2A), 
below, lower scintillator (CH2B). Source was moved along black line in direction of arrow. 

 

7.2.2.3 Effect of animal placement on count rate 

Testing with animal sources took place in Ukraine. Small rodent and bird samples (caught in 

the CEZ during August 2017 and May 2017 respectively and were frozen for later analysis) 

were analysed in a laboratory in Slavutych (for small rodents) and in a laboratory in the CEZ 

(for birds). Details of samples are given in section 7.2.3 (only a subset is used for this section).  

Testing the effect of movement of the animal for radiation detection was conducted in two 

main parts for both rodent and bird species, with a further positional test performed on the 

rodents due to the presence of the tail (and potential impact on 90Sr estimation). The first 

positional test (as an extension to the experiment detailed in section 7.2.2.2) measured count 

rates from each scintillator with the animal placed in each of the positions shown in Figure 

7.5. This was conducted for one rodent moved horizontally within the medium restraint box 

with the box fixed centrally in the cavity using the plastic restraint support. A further test was 

conducted using one bird placed in the medium restraint box (without the plastic support) but 

with the restraint box moved to each of the far corners. This was to simulate the potential 

maximum change in count rate due to too small an animal being placed into too large a 

restraint box. These two animals were placed with their head facing towards the beta PMT 

and limbs facing the gamma scintillator CH1A (position RB in Figure 7.6). Three of each 

organism type were then selected to test the effect of rotating the animal within the cavity 

(Figure 7.6) and one mouse was further used to test the effect of the tail position on count 

rate (Figure 7.7). Example placements for each species is shown in Figure 7.8. The top of the 

card restraint box was removed to allow easier access to the inside of the restraint. Count 

times for each position detailed in this section was 120 seconds with background readings 
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being taken periodically throughout the experiment. Results were scaled to a fraction of 1 for 

comparison, where 1 is defined as placement in the middle of the cavity with feet directed to 

the bottom CH2B beta scintillator (position HA in Figure 7.5, orientation RA in Figure 7.6 and 

tail position TA in Figure 7.7). 

 

Figure 7.5: Response of scintillators to moving organism inside cavity. Shown is top view 
of cavity. H denotes this is the horizontal movement test, the subscript identifies position. 

 

 
Figure 7.6: Orientation of animal samples in detector cavity. The two black circles on the 
animal indicates the direction of the feet within the restraint box. CH1A is to the right of 
each box, CH1B is to the left. Forward position has head directed towards the beta PMT, 
backwards is away from the PMT. R denotes this is the rotational movement test, the 
subscript identifies the position. 

 

 

 

Figure 7.7: Tail position for mouse. TA – behind, TB – under, TC – side, TD – above. Beta PMT 
is to the right of each box. CH1A is in front of box, CH1B is behind, CH2A is above and 
CH2B is under. 
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Figure 7.8: Animal samples placed in detector. Left, mouse placed in corner of restraint 
box, Right, bird placed in central position. The restraint box lid was removed to give easier 
access for positioning of animal samples. 

 

7.2.3 Field testing 

The portable detector was field tested in the CEZ in Ukraine. Testing comprised of monitoring 

10 small rodents and 10 birds (caught in the CEZ and frozen for storage in the Slavutych 

laboratory) in the presence of different levels of background radiation. Animals were entire 

with pelt, feathers and gastrointestinal tracts. Results of this testing were compared to values 

(Table 7.1) that were determined using a calibrated radiation detector based at the Slavutych 

laboratory. Methodology is similar to that used in Bondarkov et al. (2011).  

Three test sites in the CEZ were selected for radiation measurements of the animal samples 

with a further set of measurements taken at the laboratory in Slavutych (a low background 

site). These were all located within or close to the Red Forest (Figure 7.9) and were designated 

as the ‘car park’ (Figure 7.10 and Figure 7.11), ‘vehicle inspection ramp’ (Figure 7.12), and 

‘roadside’ (Figure 7.13). Background dose rates at these sites were 5.7, 4.5 and 1.8 µSv h-1 

respectively. The temperature at the time of measurement was approximately 0˚C (laboratory 

site was at room temperature 22˚C) with weather conditions consisting of rain and snow with 

a light (patchy) covering of snow on the ground. It was not desirable at the time to test if the 

detection system was waterproof and therefore it was deemed necessary to place the 

detector under shelter at each site (detailed in the figures). 
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Table 7.1: Properties of small rodents and great tits. 

 

Uncertainty for G025118 is larger than the count rate because of the large 137Cs activity 
and the methods used to estimate 90Sr (Bondarkov et al., 2011) 

 

 

Figure 7.9: Map of test site locations in the CEZ. Test locations are labelled A to C. Their 
positions are shown in relation to Pripyat and the nuclear power plant. 

 

137Cs ± Bq 90Sr ± Bq

G025113 Myodes glareolus 22.8 31433 4650 981 109

G025115 Sylvaemus flavicollis 32.1 2133 319 5012 507

G025118 Myodes glareolus 22.5 36378 5381 138 501

G025119 Apodemus agrarius 21 2678 400 251 27

G025120 Myodes glareolus 16.5 6931 1031 1440 147

G025121 Sylvaemus flavicollis 27.4 14241 2110 1180 123

G025123 Sylvaemus sylvaticus 23.3 5560 825 1372 139

G025125 Sylvaemus sylvaticus 10.3 1623 243 811 82

G025126 Myodes glareolus 16.9 19092 2828 517 56

G025127 Sylvaemus sylvaticus 12.6 1354 203 987 99

G025040 Parus major 16.9 1298 197 5480 556

G025041 Parus major 16.5 1623 246 5011 513

G025042 Parus major 15.2 840 129 3753 388

G025043 Parus major 16.1 965 147 3883 396

G025044 Parus major 17.5 328 51 1529 158

G025045 Parus major 17.0 272 42 1233 126

G025046 Parus major 17.6 175 32 715 74

G025047 Parus major 16.9 91 14 690 70

G025048 Parus major 17.3 77 12 403 42

G025050 Parus major 15.8 170 26 242 25

Total count (Bq)
Sample # Species

Weight 

(g)
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Figure 7.10: Car park test site.  

 

 

 

Figure 7.11: Car park test site. The detector shield was located under the tailgate of the 
transport vehicle due to adverse weather.  

 



162 
 

 

Figure 7.12: Vehicle inspection ramp test site. The detector was positioned under a folding 
table next to the tailgate of the transport vehicle. An emergency tent was used to cover 
the table. 

 

 

Figure 7.13:Roadside test site. The detector was positioned inside the transport vehicle 
with access provided through the tailgate. 

 

Each animal was placed (in orientation RB; Figure 7.6) in the medium restraint box and 

positioned centrally in the cavity (position HA; Figure 7.5) using the plastic restraint support. 

The small rodents had tails in approximately position TA (Figure 7.7). All animals were 

monitored for 120 seconds each with periodic background counts (each 120 seconds). Based 
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on preliminary measurements during the position response experiment (Section 7.2.2.3), it 

was decided to monitor mice at all sites described above but only to measure the bird samples 

at the control (lab) site and at the roadside site. This decision was made after observing that 

the count rate from the rodents with low 137Cs activity concentration were at or below the 

MDA (for the high background site) and therefore the birds (with a 137Cs activity concentration 

lower than the rodents) would definitely be below the MDA at those sites.  

Results were interpreted in the following way. Background count was subtracted from each 

scintillator reading. The count rates on CH1A and CH1B were summed to provide the 

measured 137Cs count rate. The count rates on CH2A and CH2B were summed and the 137Cs 

contribution subtracted (fractional contribution determined from analysis of phantoms in 

section 7.2.2.1) to provide the measured 90Sr count rate. A correction factor (k) is required to 

account for self-absorption of the 90Y beta emission within the body of the organism. This 

factor varies depending on the mass (m) of the animal. Bondarkov et al. (2011) derived 

Equation 7.1 to correct for this self-absorption in their detector. It was assumed this factor 

would be similar for the newly developed live-monitor.  

𝑘 = 0.949 + 1.24𝑒−
𝑚
6.28 7.1 

 

The similarity of the results across the measurement sites was determined by first determining 

if the data was normally distributed. This was tested in SPSS (v24) and the output assessed 

against the Shapiro Wilk test because the sample size was 10 animals. A one-way repeated 

measurement ANOVA was applied to results determined as having a normal distribution. A 

non-parametric repeated measurement ANOVA (Friedmans test) was applied to the results 

that were determined as not being normally distributed. If the outcome had P<0.05 then a 

pairwise comparison was applied to check if the significant difference that was found applied 

between all sites or between specific sites. 

To ascertain the correlation between measured count rate and internal activity, the site 

measurements for each organism were plotted against verified internal activities (results 

attained from the separate study the samples were acquired from) shown in Table 7.1 for 137Cs 

and 90Sr respectively. These graphs therefore provide a conversion coefficient between 

measured count rate and actual internal activity. The strength of the correlation was tested 

by applying a bivariate correlation (Pearson) test using SPSS. 
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7.3 Results 

7.3.1 Restraint 

Out of the four bats placed into the restraint box, only one (Plecotus auritus) repeatedly 

attempted to exit the restraint. This meant two persons were required: one to handle the bat 

and the other to hold / close the restraint box. This bat, along with two of the other bats did, 

however, settle rapidly once in the box. The Myotis nattereri settled after a few minutes but 

if the restraint box was moved then it would start moving around / making noise again. Upon 

closing the restraint box, care was needed as some bats pushed their feet back out before the 

flaps could be fully closed. Placing the restraint box into the plastic restraint support also 

required observation of the breathing holes as the bats would protrude their thumbs through 

these. All the live bats fitted into the small restraint (Figure 6.1a). The largest bat (Rhinolophus 

ferrumequinum – dead) would only fit into the medium restraint box. All bats had to be enticed 

out of the box upon reopening. They were either dropped directly into a waiting bag by means 

of a gentle shake of the box or, in the case of the Plecotus auritus, both ends of the restraint 

box were opened and it was pushed out of the box. There was no visible damage to the boxes 

after use although one of the bats did defecate into the box (Figure 6.1b). The trained handlers 

were confident the bats were not under any excessive stress during handling or placement in 

the restraint boxes. They advised a darker colour card may be more appropriate for use due 

to the reflection on the card from head torches at night. This reflection could deter the bats 

from entering the box whereas a darker, less reflective, card may entice the bats into the 

darker space.  

Mice placed into the medium restraint box were more problematic overall. It was noted that, 

similar to the bats, care needs to be taken to ensure the tail and limbs are fully inside the 

restraint box (Figure 7.15a). The mice were overall more active than the bats. This increased 

activity meant it was difficult to close the restraint box without deforming (crushing) the box. 

The mice also caused damage to the restraint box (Figure 7.15b and c) and could easily escape 

from the restraint box if it was left unattended (i.e. not handled but watched) for more 

prolonged periods (Figure 7.15d). The handlers also noted that assembly of the box was 

sometimes problematic and would benefit from stapling or taping the two long ends of each 

box together before starting fieldwork (for more rapid in-field assembly).  
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Figure 7.14: Bat placed in small restraint box. a) bat remains in restraint despite open end, 
b) faeces left in box after bat held for 120 seconds.  

 

 

 

 

 
Figure 7.15: Mouse placed in medium restraint box. a) tail extruding from corner of 
restraint box, b) mouse clawing through upper surface of restraint box, c) damage caused 
to restraint box, and d) mouse having escaped from restraint box left unattended. 
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7.3.2 Laboratory testing 

7.3.2.1 Response to phantoms 

The response rates (counts s-1 Bq-1) of the scintillators to the 137Cs and 90Sr phantoms are 

shown in Figure 7.16 and Figure 7.17 respectively. The following was determined from these 

response rates. The gamma scintillators (CH1A and CH1B) have a response to the 90Y from the 

90Sr phantom but is negligible compared to the 137Cs response (as long as the beta activity is 

not much larger than the gamma activity). The two beta scintillators (CH2A and CH2B) have a 

response to the 137Cs gamma. The gamma component from the net signal on the beta 

scintillators therefore needs to be removed to determine the 90Sr count rate. A small change 

in the source position has an effect on the count rates from each gamma scintillator. Summing 

the counts for these two scintillators helps reduce this positional effect. The 0.1 mm plastic 

added to the upper beta scintillator (CH2A) appears to have little effect on detection of 90Y 

from the 90Sr source. All measurements in the subsequent sections therefore have this layer 

of plastic present on CH2A. The change in aluminium thickness on the lower beta scintillator 

(CH2B) shows a clear attenuation affect to the 90Sr source. Additional measurements (not 

shown) suggested the beta from 90Sr was removed (and subsequently so will the 137Cs beta) 

from the measurements when using an aluminium thickness of 0.2 mm on CH2B (as also 

shown in chapter 6.3.7.3). All measurements in the subsequent sections therefore use 0.2 mm 

aluminium on CH2B. Response rates on CH1A+B are therefore defined as 0.0346 ± 0.0015 and 

0.0007 ± 0.0004 counts s-1 Bq-1 for 137Cs and 90Y respectively. Response rates on CH2A+B are 

defined as 0.0048 ± 0.0013 and 0.0250 ± 0.0007 counts s-1 Bq-1 for 137Cs and 90Y respectively. 

The quantity of 90Sr (via 90Y) beta radiation on CH2 is therefore found by multiplying the total 

CH1A+B count rate by 0.140 ± 0.012 and subtracting this from the total CH2A+B count rate. 

The measured count rate for the 137Cs + 90Sr phantom is shown in Figure 7.18. Included on this 

figure is the expected 137Cs + 90Sr phantom count rates as was estimated from the individual 

137Cs and 90Sr phantom response rates and reported activity concentrations. As shown, the 

estimation was different to what was measured. The measured values were 26%, 24%, and 

29% greater than the estimated values for CH1A+B, CH2A, and CH2B respectively.  
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Figure 7.16: Response of scintillators to 137Cs phantom. Individual channels are above, 
combined channels are below. Uncertainties shown are one standard deviation of the 
measurement (Currie, 1968). * - 0.1 mm plastic not included on CH2A scintillator. 
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Figure 7.17: Response of scintillators to 90Sr phantom. Individual channels are above, 
combined channels are below. Uncertainties shown are one standard deviation of the 
measurement. * - 0.1 mm plastic not included on CH2A scintillator. 
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Figure 7.18: Count rate of 137Cs +90Sr phantom on each scintillator. Uncertainties shown 
are one standard deviation of the measurement. * - 0.1 mm plastic not included on CH2A 
scintillator. 

 

7.3.2.2 Effect of source position on count rate 

Results for source positioning are shown in Figure 7.19 for the two gamma scintillators (CH1A 

and CH1B), Figure 7.20 for the upper beta scintillator (CH2A), and Figure 7.21 for the lower 

beta scintillator (CH2B). Results were normalised (as a fraction of 1) to the middle of the cavity 

placement (C - Figure 7.3) for the gamma results and to the largest measurement for each of 

the beta scintillators. CH1 (Figure 7.19) shows a low count rate for a 137Cs source placed 

outside of the shielding. For a 137Cs source placed inside the cavity, there is a 370% increase 

in count rate when the source is placed to the right side of the cavity and against the gamma 

scintillator. Moving the source to the corners of the cavity resulted in a 65 to 80% increase in 

count rate. CH2A (Figure 7.20) shows up to a 20% decrease in counts as the source moves 

away from the PMT. Counts recorded on the left and right side of the detector were similar. 

CH2B (Figure 7.21) shows a similar decrease in count rate as for CH2A. There is negligible 

detection for a source placed off the edge of this scintillator. 
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Figure 7.19: Positional change to detected counts for CH1A and CH1B. Uncertainties 
shown are one standard deviation of the respective measurement scaled to position c. 

 

 

Figure 7.20: Positional change to detected counts for CH2A. Edges of detection surface are 
at 0 and 100 mm (0 mm is also the edge of the PMT). Uncertainties shown are one 
standard deviation of the respective measurement scaled to the highest count. 
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Figure 7.21: Positional change to detected counts for CH2B. PMT is at 0 mm. Dashed 
vertical lines indicate start and end of the active detection surface. Uncertainties shown 
are one standard deviation of the respective measurement scaled to the highest count. 

 

7.3.2.3 Effect of animal placement on count rate 

Repeated measures (3 times) of one rodent in the same position gave a percentage 

uncertainty (one SD) in the total count of 0.4, 0.2, 0.7 and 0.9% for CH1A, CH1B, CH2A, and 

CH2B respectively. Movement of the mouse in the medium restraint box showed a large 

deviation (compared to the measurement uncertainty above) in the count rate for CH1A and 

CH1B (Figure 7.22). Summing these two channels, however, meant there was a more 

consistent measurement with little deviation (SD =1% between the count rates for each 

position). This was similar for the bird (Figure 7.23) though there was a larger reduction in the 

combined count rate if the animal is placed in the extreme corners of the cavity (SD = 4%). 

Count rates on the two beta channels (CH2A and CH2B) for both the mouse and bird showed 

there was a poorer detection of counts when the animal is placed either to the corners of the 

beta scintillator or further away from the PMT. SD was 9% for the mouse restricted in the 

medium box and 25% for the bird in the extreme corners of the cavity. 

Count rates for each rotational view (N = 3) are shown in Figure 7.24 and Figure 7.25 for the 

mouse and Figure 7.26 and Figure 7.27 for the bird. The individual gamma channels (CH1A and 

CH1B) for the mouse indicated the gamma detection was not consistent for different 

rotational orientations of the animal (SD = 21% and 19% respectively). This was a little more 

consistent for the bird (SD = 12% and 14% respectively). Summing of CH1A and CH1B, for both 

the mouse and bird, meant there was little deviation of count rate for all rotational 
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orientations of the animal (SD = 2% and 4% for bird and mouse respectively). The mouse 

showed the greatest count rate for when the legs were directed towards the respective beta 

scintillator. The bird showed the greatest count rate in CH2B when the animal was on its side 

and the wings were in full view of the of the two beta scintillators. This deviation was not as 

obvious in CH2A. Summing CH2A and CH2B for the mouse and mouse count rates balanced 

this deviation in a similar way (but not as well) to the two gamma scintillators (SD = 7% and 

8% for mouse and bird respectively). Repositioning of the tail appeared to show (Figure 7.28) 

a small effect on count rate in the beta scintillators for one mouse but not for the other. 

 

Figure 7.22: Effect on detected counts for horizontal mouse movement in detector cavity. 
HA to HE denotes horizontal position. Results scaled to a fraction of counts from position 
HA. Uncertainties shown are one standard deviation of the respective measurement. 

 

 

Figure 7.23: Effect on detected counts for horizontal bird movement in detector cavity. HA 
to HE denotes horizontal position. Results scaled to a fraction of counts from position HA. 
Uncertainties shown are one standard deviation of the respective measurement 
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Figure 7.24: Effect on CH1 detected counts for rotational mouse movement in detector 
cavity. Scale shown is fraction of counts normalised to position RA (with zero marking the 
centre of the radar and each ring indicates an increase of 0.5). RA to RG are the rotation of 
the animal. Results are organised such that the subscript letter is positioned in the 
direction the animal feet are facing e.g. position RD has legs directed upwards towards 
CH2B. 
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Figure 7.25: Effect on CH2 detected counts for rotational mouse movement in detector 
cavity. Scale shown is fraction of counts normalised to position RA (with zero marking the 
centre of the radar and each ring indicates an increase of 0.5). RA to RG are the rotation of 
the animal. Results are organised such that the subscript letter is positioned in the 
direction the animal feet are facing e.g. position RD has legs directed upwards towards 
CH2B. 
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Figure 7.26: Effect on CH1 detected counts for rotational bird movement in detector 
cavity. Scale shown is fraction of counts normalised to position RA (with zero marking the 
centre of the radar and each ring indicates an increase of 0.5). RA to RG are the rotation of 
the animal. Results are organised such that the subscript letter is positioned in the 
direction the animal feet are facing e.g. position RD has legs directed upwards towards 
CH2B. 
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Figure 7.27: Effect on CH2 detected counts for rotational bird movement in detector 
cavity. Scale shown is fraction of counts normalised to position RA (with zero marking the 
centre of the radar and each ring indicates an increase of 0.5). RA to RG are the rotation of 
the animal. Results are organised such that the subscript letter is positioned in the 
direction the animal feet are facing e.g. position RD has legs directed upwards towards 
CH2B. 
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Figure 7.28: Effect on detected counts for mouse tail placement in detector cavity. TA to 
TD denote the tail position. Results scaled to a fraction of counts from position TA. 
Uncertainties shown are one standard deviation of the respective measurement. 

 

7.3.3 Field testing 

Results for small rodents at each measurement site were found to be not normally distributed 

(Shapiro Wilk test P<0.05). Comparison of the net count rate for each small rodent between 

the four measurement sites (laboratory, car park, vehicle ramp, and roadside), using the 

Friedmans test on both the 137Cs and 90Sr results, showed there was a significant difference 

between the different sites (137Cs: N = 10, χ2 = 18.4, P < 0.05. 90Sr: N = 10, χ2 = 18.4, P < 0.05). 

Dunn-Bonferroni corrected pairwise comparisons (Table 7.2 for 137Cs, Table 7.3 for 90Sr) 

showed this difference was between the laboratory measurements and the field 

measurement sites (except laboratory and car park 137Cs measurements). 



178 
 

Table 7.2: Friedmans pairwise comparison of sites for 137Cs measurement. 

 

Each row tests the null hypothesis that the sample 1 and sample 2 distributions for count 
rates are the same. Asymptotic significances (2-sided tests) are displayed. The significance 
level is .05. Significant values have been adjusted by the Bonferroni correction for 
multiple tests. 

 

Table 7.3: Friedmans pairwise comparison of sites for 90Sr measurement. 

 

Each row tests the null hypothesis that the sample 1 and sample 2 distributions for the 
count rates are the same. Asymptotic significances (2-sided tests) are displayed. The 
significance level is .05. Significant values have been adjusted by the Bonferroni correction 
for multiple tests. 

 

For comparison between measured count rate and known internal activity, the field 

measurements for the small rodents were averaged across the sites and plotted against the 

known internal activity. Laboratory measurements (as they were significantly different) were 

plotted separately (shown in Appendix 10.7). Bird results were similarly plotted. A correlation 

comparison (in SPSS) of the field results against the verified internal activities are shown in 

Figure 7.29 for 137Cs in rodents (R = 0.982, P < 0.001), Figure 7.30 for 90Sr in rodents (R = 0.975, 

P < 0.001), Figure 7.31 for 137Cs in bird (R = 0.992, P < 0.001), and Figure 7.32 for 90Sr in bird (R 

= 0.998, P < 0.001). The R2 values shown on these figures are for a y = 0 intercept (this setting 
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was deemed acceptable as the true intercept did not differ greatly from zero and the 

calculated regressions for these non-zero intercepts were not significantly different from 

those shown for a zero intercept). Uncertainties displayed on each figure are expanded 

uncertainties (k = 2). Analysis of the laboratory measurements produced similar results. The 

rodent 90Sr results shown in Figure 7.30 has a close grouping of results towards the lower end 

of the scale. The top most result was removed from the data set and the correlation test 

repeated to check it is not influencing the significance of the correlation. With this point 

removed, the correlation comparison produced R = 0.810, P < 0.001. The change in the 

gradient of the line was minimal from 0.072 to 0.076. A comparison of uncertainties between 

the portable detector and the alternative measurement method showed small rodent gamma 

uncertainties were 3 times lower whereas the beta uncertainties were much larger, and the 

bird gamma uncertainties were comparable to the alternative method whereas the beta 

uncertainties were approximately double. 

The gradient of the lines in these graphs show (for the field results) the ratio of the portable 

detector to the known internal activity. The gradients are as follows: 137Cs in rodent and bird 

is 0.027 and 0.028 respectively (0.029 and 0.030 for the laboratory results), 90Sr in rodent and 

bird is 0.072 and 0.036 respectively (0.064 and 0.034 for the laboratory results).  

 

Figure 7.29: Mouse measured 137Cs count rate (field site average) compared to internal 
activity. Uncertainties shown are the expanded uncertainties. For the portable detector 
this includes the uncertainty in the measurement (Currie, 1968) and the horizontal and 
rotational movement. 
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Figure 7.30: Mouse measured 90Sr count rate (field site average) compared to internal 
activity. Uncertainties shown are the expanded uncertainties. For the portable detector 
this includes the uncertainty in the measurement (Currie, 1968), the horizontal and 
rotational movement, and the detector response rate.  

 

 

Figure 7.31: Bird measured 137Cs count rate (field site) compared to internal activity. 
Uncertainties shown are the expanded uncertainties. For the portable detector this 
includes the uncertainty in the measurement (Currie, 1968) and the horizontal and 
rotational movement. 
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Figure 7.32: Bird measured 90Sr count rate (field site) compared to internal activity. 
Uncertainties shown are the expanded uncertainties. For the portable detector this 
includes the uncertainty in the measurement (Currie, 1968), the horizontal and rotational 
movement, and the detector response rate . 

 

These results were analysed further because of the discrepancy seen in the results for the 

measurement of the 137Cs + 90Sr phantom (Section 7.3.2.1). Figure 7.33 and Figure 7.34 show 

graphs for the measured counts per second from the small rodents at each individual site as 

compared to the expected counts per second (estimated from the phantom response rate). 

Whilst there is a strong grouping for measurements at each field site (as found in the statistical 

analysis for Table 7.2), there is a visible deviation of these count rates from the expected 

counts per second. This is not unexpected considering the discrepancy seen for the phantom 

measurements (Section 7.3.2.1). Graphs of this deviation from the expected counts per 

second is given Figure 7.35 to Figure 7.38 for the 137Cs and 90Sr measurements in small rodents 

and birds. Uncertainties displayed in these figures are derived from the uncertainty in the 

phantom response rates. These figures show that 137Cs measurement was generally lower 

than expected whereas 90Sr is larger than expected. For the 90Sr measurement, this likely due 

to the way this value is derived from the gamma measurement recoded from CH1A and CH1B. 

There appears to be no strong correlation between the expected count rate and the deviation 

from this seen in the measured count rates for all figures, except for birds where the beta 

estimation was generally 1.5 times greater than expected. 
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Figure 7.33: Mouse individual site measured 137Cs count rate compared to estimated 
count rate (derived from phantom response rates and animal internal activity 
concentration). Uncertainties are only included for estimated count rate and represent 
the uncertainty in the measured scintillator response rates (one standard deviation). 

 

 

Figure 7.34: Mouse individual site measured 90Sr count rate compared to estimated count 
rate (derived from phantom response rates and animal internal activity concentration). 
Uncertainties are only included for estimated count rate and represent the uncertainty in 
the measured scintillator response rates (one standard deviation) 
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Figure 7.35: Mouse measured 137Cs count rate deviation from expected count rate 
Uncertainties are derived from the standard deviation of each measurement. 

 

 

Figure 7.36: Bird measured 137Cs count rate deviation from expected count rate. 
Uncertainties are derived from the standard deviation of each measurement. 

 



184 
 

 

Figure 7.37: Mouse measured 90Sr count rate deviation from expected count rate. 
Uncertainties are derived from the standard deviation of each measurement. 

 

 

Figure 7.38: Bird measured 90Sr count rate deviation from expected count rate. 
Uncertainties are derived from the standard deviation of each measurement. 
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7.4 Discussion 

7.4.1 Animal restraint 

The restraint boxes that were designed in chapter 6.3.1 worked well overall. During the 

insertion of the animals into the restraint box, however, it was often the case that part of the 

animal would protruded from the box. For bats, this was the placement of thumbs out of the 

two breathing holes and also feet out the end of the box where the flaps close. For mice, this 

was the tail (Figure 7.15). A smaller hole, or series of small holes, would prevent (or at least 

minimise) the animal from putting part of its body through the breathing hole. Preventing 

protrusion through the end of the box requires the flaps to be closed rapidly. This was tried 

with the mice but resulted in the box being deformed due to the non-rigid property of the 

walls. To solve this, two support structures (Figure 7.39) have been constructed to facilitate 

animal insertion into the restraint box.  

The bats caused no visible damage to the boxes and settled quickly once enclosed inside the 

restraint box. The mice, on the other hand, did cause damage to the box by tearing at the card 

(Figure 7.15). This creates the concern that damage could occur to the scintillators. A short 

counting time, coupled with the protective coverings of the scintillators, means damage to the 

scintillators during normal operation should, however, be unlikely. Whilst the mice were 

observed escaping the box, this was only at times where the box containing the animal was 

not held securely (i.e. it was waiting to be placed into the plastic support) For normal 

operation, the animal would likely be placed into the box at the time it is ready to be inserted 

into the cavity and would be then surrounded on all sides by the walls of the detector.  

 

Figure 7.39: Supports for assisting animal insertion into restraint boxes. 
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7.4.2 Phantom response 

A set of response rates were derived in section 7.3.2.1 from the 137Cs and 90Sr phantoms. These 

response rates, however, did not provide the correct estimated count rates for the 

measurement of the combined 137Cs + 90Sr phantom. The measurement of 137Cs was up to 29% 

greater than what was estimated (conversely giving under predictions of a similar proportion 

for the counts on the beta scintillators). Multiple measurements were taken due to the 

investigation for count rate attenuation with different aluminium thicknesses on CH2B. All of 

these measurements show similar count rate discrepancies. This disagreement between 

results could be caused by the gamma scintillator as altering the known gamma activity in the 

137Cs + 90Sr phantom (i.e. assuming the 137Cs activity given for the phantom was wrong) 

realigns all separate scintillator channel estimates to the measured count rates, whereas 

altering the known beta activity does not. Testing with additional sources is therefore required 

to confirm the response rate estimations. 

The response rates from each phantom showed that all four scintillators (the two gamma and 

two beta) are responsive to both beta and gamma radiation. Whilst this is unavoidable for the 

two beta scintillators, this was not desirable for the two gamma scintillators (the two gamma 

scintillators are used to estimate the gamma component on the two beta scintillators). This is 

not problematic (and can be effectively ignored) if the gamma radiation measurement is 

greater (e.g. 10 times) than beta radiation measurement because the response rate for beta 

radiation in the two gamma scintillators was low compared to the gamma response rate. If, 

instead, the beta radiation measurement is similar or greater than the gamma radiation 

measurement then the beta component of the measurement becomes more significant. It 

would therefore be desirable to remove this beta radiation measurement. 1.095 g cm-2 is the 

estimated maximum range of 90Y (Equation 2.1). The total material between the source and 

the detection material, estimated from the material properties described in Figure 7.40, is 

between 0.423 g cm-2 to 0.466 g cm-2 (depending on the number of layers of tape surrounding 

the scintillator material) therefore 0.629 to 0.672 g cm-2 of additional material is required to 

eliminate measurement of 90Y. This equates approximately to 5 to 6 mm of additional plastic. 

7.4.3 Source positioning 

The horizontal position of the animal in the detector cavity had a measurable effect on the 

count rate recorded by each scintillator (Section 7.3.2.3). The rotational position also had an 

effect on each scintillator (Section 7.3.2.3). The gamma count rate on CH1A and CH1B showed 
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up to 50% change when the animal was rotated. One of the three rodents rotated did not 

show much difference (nor the birds) but the other two rodents appeared to produce a larger 

count rate when the back of the animal was facing the respective scintillator. This is likely 

caused from the positioning of the animal as a similar difference is seen in the horizontal 

positioning of the rodents (Figure 7.22); the protrusion of the feet from the animal body (the 

rodents were frozen) can force the rodents centre of mass to one side of the restraint box. 

The beta count rate on CH2A and CH2B showed the count rate was largest when either the 

feet of the rodent (Figure 7.25) or wings of the bird (Figure 7.27) were directed towards the 

respective scintillator. This was expected based on the results of Chapter 5.4.2.  

The effect the position of the tail had on count rate (for 90Y detection in CH2A and CH2B) was 

inconclusive. It was estimated in chapter 5.3.2 that approximately 7% of the skeletal mass in 

a mouse was in the tail and there was up to 15% of the total emission detectable from this 

region. The small sample size (N=2) for this experiment is the reason the result is inconclusive. 

Further experimentation for this is likely unnecessary, however, because the results for source 

positioning in the cavity (above) showed movement of the animal has little effect on count 

rate when the two beta channels were summed (CH2A+B).  

The variation in count rate on each scintillator means the results cannot be used separately. 

Summing the count rate on the respective channels (i.e. to give CH1A+B and CH2A+B) means 

a total count rate with a lower variance is given on each channel (e.g. Figure 7.24 and Figure 

7.25). CH1A+B has a 1% SD for horizontal positioning and between 2 to 4% for rotational 

positioning. CH2A+B has a 9% SD for horizontal positioning and between 7 to 8% for rotational 

positioning. For measurement of 137Cs gamma on CH1 this means movement of the animal in 

 
Figure 7.40: Attenuating materials between source and gamma scintillator. Material 
thickness: plastic = 3.00 mm, aluminium = 0.10 mm, scintillator coating = 0.18 to 0.54 mm 
(detailed on packaging). Material density: plastic = 1.19 g cm-3 (Hubbell and Seltzer, 1996), 
aluminium = 2.70 g cm-3 (Hubbell and Seltzer, 1996), scintillator coating = 1.22 g cm-3 
(detailed on packaging). Card = 0.02 g cm-2 (160 gsm). 
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the restraint box has little effect on the measured count rate. This is provided the animal is 

positioned centrally in the cavity otherwise the solid angle of gamma scintillators makes 

detection less effective (as expected from the models in chapter 5). Whilst summing 

significantly reduces the effect of movement on 90Sr beta measured count rate, as compared 

to the individual CH2 channels, it would still be desirable to restrict the available movement 

of the animal and therefore ensure the animal is placed in a similar size restraint box. 

7.4.4 Field results 

The net count rates measured for each animal were all found to have no significant difference 

(Friedmans pairwise comparison, P>0.34) between the field sites (Section7.3.3). The 

laboratory results were, however, significantly different from field measurements (Friedmans 

pairwise comparison, P<0.05), except for gamma (CH1A+B) measurements for rodents at the 

car park site (Friedmans pairwise comparison, P=0.5). The laboratory and car park sites were 

at the lowest and highest background activity sites respectively. The laboratory count rates 

were recorded on a different day to the field measurements and the only known differences 

between the laboratory and field sites was the temperature (approximately 22˚C difference) 

and that the laboratory site was indoors whereas the field sites were outdoors. It was also 

raining/snowing/sleeting during the measurement period and there was some snow cover on 

the ground (though not total cover). With a low number of measurement sites (N=4) it is 

unclear, from the data collected, as to the exact cause. Testing under different temperatures 

and increasing the number of sample sites in a second study is therefore required. A 

recommendation for this testing is to count the phantoms before and after (and, if possible, 

at regular intervals during) any set of animals that are monitored. This would allow for 

adjustment of the data if it has deviated from the initial calibration.  

There was a good correlation between the portable detector count rates and the known 

internal activities (determined using and alternative method; section 7.2.3) despite the 

uncertainty surrounding the count rate difference between sites and the discrepancy with the 

phantom measurements. The results for both birds and small rodents showed correlations 

with R2>0.9. The small rodent results did show one definite outlier in the gamma comparison 

and the beta comparison for small rodents does not look as visually good as the bird results. 

As with the number of sample sites, these correlations are derived from a low sample size 

(N=10 for each animal type). Increasing the number of samples monitored would therefore 

assist in better defining the gradients calculated from the comparison graphs. 
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Using the results from this chapter, the internal activity (Bq) for an animal monitored in the 

newly developed portable detector can be estimated using Equation 7.2 for 137Cs and Equation 

7.3 for 90Sr. S1 and S2 are the count rates (count s-1) on CH1A+B and CH2A+B respectively, f is 

the gradient of the comparison graphs (Section 7.3.3) for the specified animal (a = bird or 

rodent) and radionuclide (r = 137Cs or 90Sr), R is the response rate (counts s-1 Bq-1) of the 

combined beta scintillators to 137Cs (determined in this chapter as 0.140±0.012 counts s-1 Bq-

1), and k is the correction factor for self-absorption of 90Y due to mass. 

𝐶𝑠137 = 𝑓𝑎,𝑟⁡𝑆1 7.2 

𝑆𝑟90 = 𝑓𝑎,𝑟 (
𝑆2 − 𝑅𝑆1

𝑘
) 7.3 

 

7.5 Conclusion 

The results of this chapter showed the newly developed portable detector met nearly all 

expectations. The animal restraints worked as expected and held the test animals for a time 

that was adequate for live-monitoring. Some minor refinements such as pre-stapling part of 

the card restraint box before conducting fieldwork would assist in decreasing assembly time 

whilst in the field. The design of a dual scintillator system for both beta and gamma detection, 

along with their positioning within the shielding, means that positioning (and therefore 

movement) of the animal within the restraint box has little effect on the count rate. The 

condition for this is the animal must be of similar size to the restraint box. The detector was 

confirmed to respond to both of the target radionuclides; 137Cs and 90Sr (via 90Y) though the 

gamma scintillator gave a higher reading from 90Y than was wanted (including additional 

material between the source and gamma scintillator will correct this) and there was a 

discrepancy recorded in the expected count rate for phantoms with a different radioactivity. 

This discrepancy is likely due to the phantom activity being recorded incorrectly and requires 

further testing to confirm this is the case. Count rates measured from sample animals using 

the newly developed portable detector did, however, match well with verified internal 

activities. Measurements for 137Cs and 90Sr in birds displayed a very good correlation (R2>0.98). 

Mice also showed a good overall correlation though would benefit from a greater sample 

number. These results, like the phantoms, showed a discrepancy between measured count 

rates and count rates estimated (using the derived response rates) from the verified internal 

activities of the samples. Further testing is, therefore, still required (after refinement of the 

detector design) and would benefit from using a larger sample size and more test locations.  
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8 Conclusions and recommendations 

8.1 Introduction 

Monitoring of radionuclide content in wildlife is conducted for two main reasons: i) to 

demonstrate that (often protected) species and/or habitats are not significantly impacted by 

regulated releases  of radioactivity (Copplestone et al., 2003, Copplestone et al., 2005); and ii) 

for the purposes of research to, for instance, establish transfer parameters for radionuclides 

or investigate the effect of radiation on wildlife. The current methods for determining internal 

activity concentrations, however, often require the use of destructive sampling (IAEA, 1989). 

Because there is a drive in science to reduce the number of animals euthanised for the 

purposes of research (Home Office, 2013), there is need to develop non-lethal monitoring 

techniques, such as live-monitoring (Wood et al., 2011, Bondarkov et al., 2011).  

The aim of this research project was to develop a new detector for measuring gamma and 

beta radionuclide activity concentrations within wildlife (primarily small animals) without the 

need to destroy the target organism. This new detector would contribute to the development 

of non-invasive monitoring techniques (discussed in chapter 3.3), for gamma and beta 

emitting radionuclides, by using new technology to provide a fully portable detection system. 

The previous chapters within this thesis have outlined the development decisions for a live-

monitor that meets this aim and to detail the construction and testing of a fully working 

device. This chapter draws together the conclusions made throughout this thesis and 

discusses them in relation to the wider aims and objectives outlined in chapter 1. 

8.2 Outcomes 

8.2.1 Design and construction 

A portable detector was built according to the specifications outlined in chapter 6. This met 

objective 4 “Development and construction of a detection device for the live-monitoring of 

radionuclides present within the targeted organism(s)”. This detector is custom designed to 

live-monitor gamma and beta radionuclide concentrations in small animals. It comprises of an 

animal restraint, a detection system, and a lead shield. It uses a replaceable card restraint box 

and a series of plastic supports (depending on the size of restraint box used) that are designed 

to hold and position the targeted animal within the detector cavity. There are two caesium 

iodide (CsI) scintillators for the detection of 137Cs, situated to either side of the animal, and 

two plastic scintillators for the detection of 90Sr, situated above and below the animal. Four 



191 
 

PMTs, for collection of the scintillation light, are attached to these detection materials and a 

single channel analyser (SCA) is used for processing the signal. Surrounding the detection 

materials is a lead shield with access to the sample cavity provided via a removable lid on the 

upper surface. 

8.2.2 Detection targets 

Determination of the organisms and radionuclides of monitoring interest under a UK 

regulatory context, as part of objective 2“Critical assessment of UK relevant radionuclides and 

wildlife to identify which radionuclides are most radiologically significant and what wildlife are 

likely to be most impacted (from a radiological assessment viewpoint) by these radionuclides”, 

determined smaller organisms such as small mammals and birds to be suitable targets for live-

monitoring. Smaller organisms were chosen because gamma detection in larger organisms 

(such as sheep) has already been accomplished (e.g. Howard et al., 1987) and the smaller 

organisms present a greater potential for internal beta detection. Whilst field testing was 

limited to small rodents and birds (bats were only tried in the restraint box and were not 

monitored), the detector has the potential to be used for other organisms or media provided 

they fit within the cavity. This means live-monitoring of other small organisms such as 

amphibians and reptiles is feasible, as are amassed plant and invertebrate samples and soil 

samples. This is of particular benefit because it means the detector (once calibrated to the 

target) would be capable of live-monitoring a wide range of protected species. 

It was also determined, as part of this objective, that the only radionuclides of monitoring 

interest (under a UK regulatory context) that could be live-monitored were 137Cs and 90Sr; 137Cs 

has long been a target for live-monitoring in livestock (e.g. Howard et al., 1987, Mayes et al., 

1994, Beresford et al., 1998). Whilst the detector is calibrated for the detection of these two 

radionuclides (a single channel analyser (SCA) is used for processing) the detector can still be 

recalibrated for other radionuclides. 

8.2.3 Detection materials 

The detection materials were selected based on the review conducted to meet objective 1 

“Critical review of current radiation detection methods and technologies to identify suitable 

detection solutions for a portable radiation live-monitor”. Here, it was concluded CsI and 

plastic scintillators were more suited to the requirements for this detector, over other 

materials, due to their low relative cost, robustness for fieldwork, and characteristic 

properties (e.g. resolution) for detecting the required radionuclides. Reviewing currently 
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available detection systems revealed that, whilst the currently used gamma detectors and 

methods were appropriate for large organisms (e.g. livestock), there were no detectors fully 

suitable to the live-monitoring of smaller organisms such as small mammals, bats, or small 

birds. This unsuitability was caused by a limitation for simultaneous gamma and beta 

detection, an absence of an appropriate restraining system (though this could be 

incorporated), and poor potential for shielding (i.e. the dimensions of the available detection 

systems means surrounding it, along with any restraint, with an appropriate thickness of 

shielding would be unlikely). On this basis, it was decided to construct an entirely new system. 

8.2.4 Detection system 

The size and anatomy target organisms were determining factors in deciding the detection 

material size and orientation. Optimal scintillator material size and orientation were 

calculated in chapter 5 as part of objective 3 “Development of computer based models of 

radiation interaction, between radionuclides within the targeted organisms and an externally 

placed detector, to determine optimal radiation detector configuration(s) specific to the target 

organism(s)”.  

The size of the CsI scintillator was determined to be optimal when the detection material 

volume was slightly smaller than the target organism. Optimal size was calculated in chapter 

5 as the point at which the net count rate (from the organism) was maximised compared to 

the background. Because there was a range of organisms targeted for live-monitoring, it was 

decided to compromise between optimal size and overall weight and use a CsI scintillator size 

of 70 x 40 x 25 mm. For the plastic scintillator, the low penetration of the beta emissions 

meant the scintillator needed to be in close proximity to as much of the organism surface as 

possible. The size of this scintillator was set to 100 x 50 x 0.5 mm (based on the size of the 

medium animal restraint box).  

The orientation of the scintillators around the target organism was decided by the optimal 

beta collection in the plastic scintillator. The models constructed in chapter 5 concluded this 

was for anatomical features, such as legs on a rodent or wings on a bird (i.e. a large bone 

volume with thin soft tissue covering), to be directed towards the beta scintillator. These 

conclusions were verified during testing in chapter 7 where animals were rotated in the cavity. 

One plastic scintillator (beta) was therefore positioned under the organism with another 

placed above These were positioned primarily for optimal detection from a small rodent. 

Position of a bird was assumed to have little effect if the two beta scintillator count rates were 
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summed. A CsI scintillator (gamma detector) was placed to either side of the target animal; 

positioned to not experience attenuation from the beta scintillator. Two of each scintillator 

material were used to minimise the effect of animal movement within the restraint box.  

To keep the overall size of the detector low, silicon photomultipliers (SiPM) were initially 

considered for the light collection method. Availability and cost, however, meant small 

photomultiplier tubes (PMT) were instead opted for. These PMTs are smaller than those used 

in current live-monitors (Table 3.1) and therefore the overall size of the detection system can 

still be kept low. The scintillator sizes and their orientation around the cavity, however, 

created a unique problem for extracting the light signal. The size of the PMTs meant they 

would protrude from the detector shield (a larger shield was not possible as this would 

increase the weight passed what would be portable). It was desirable to direct the PMTs 

upwards, out the top of the shield, to remove any gaps where background gamma from the 

ground (Mitchell et al., 2009) could more readily penetrate the shielding. This was easily 

solved for the CsI scintillators because they were at either side of the cavity and had a top 

surface area comparable to the PMT surface (Chapter 6.3.2.1). The two plastic scintillators 

were more difficult due to their thinness and where they were to be positioned in the detector 

unit. PMT coupling for these two scintillators was solved by extending the plastic backing of 

each scintillator and angling the end such that the scintillation light was directed up into the 

PMT (Chapter 6.3.2.1). This solution does, however, mean there are four PMTs protruding out 

the top of the shield and as a result the entire detector unit needs to be disassembled for 

transportation (otherwise the PMTs could be damaged if the case is tipped). A future 

advancement of the detector may want to reconsider SiPMs instead of PMTs. Whilst the 

overall size of the detector would (likely) not change these would remove the disadvantage of 

requiring disassembly for transportation. 

8.2.5 Restraints and support structures 

The animal restraint was an important consideration throughout the design process. A good 

design of the restraint was important to reduce the stress of the animal (compared to bad 

design) (Russell et al., 1959). The restraint was designed to fully enclose the animal but to 

allow air for breathing to enter; holes were provided in the restraint system for air provision 

(see chapter 6.3.5).  

The restraint boxes for the animal was also designed (Chapter 6.3.1) to be simple to produce, 

transport and assemble. Whilst a single permanent restraint would have been preferred, as 
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this would remove additional material costs, the replaceable card box allows for alternatives 

sizes to be rapidly produced (before fieldwork commences) and for the easy transportation of 

multiple restraint boxes because they can be flat-packed. A driving factor for making the 

restraint in this way was so it could be easily replaced if damaged by the animal or 

contaminated with animal waste. The restraint boxes were damaged by small rodents (Figure 

7.15) during testing but not by bats. This damage may have been caused because of features 

inside the restraint where rodents could see a potential exit, i.e. the air hole or joints in the 

card box. The design was further found to be somewhat time consuming to assemble when in 

the field. A simpler design, that is partially assembled using staples or tape (but can still be flat 

packed) before fieldwork commences, was advised in the discussion for chapter 7. The 

restraint box was also easily deformed when inserting small rodents. Two supports were 

designed and constructed to assist with inserting animals into the restraints (Figure 7.39). 

Both the animal restraint box and the detection materials were held in place using a series of 

plastic supports. Three laser cut plastic supports (for each restraint box size) were designed to 

hold the weight of the upper beta scintillator, reinforce the walls of the card restraint, and to 

position the restraint box centrally in the cavity. In a similar fashion to the card restraints, 

these were designed to be simple to produce and transport. This design worked well for these 

restraint support structures though the large restraint box has not yet been tested with 

radioactive samples.  

Three of the detection scintillators were held in position around the cavity by use of a laser 

cut plastic support structure. This support structure slots into the shielding that was cast to 

surround the detection system. Although this support allows for redesigned if required, the 

positioning of the scintillators is limited by the design of the shield. Any repositioning of the 

detection materials would therefore require a redesign of the shield. Similarly, the 3D printed 

case of the upper beta scintillator is limited in any redesign due to the restriction of the shield. 

The design does however, allow for the entire detection system to be quickly disassembled 

for transport or storage. The advantage of this is in the modularity of the system, i.e. if only 

the gamma component of the detection system is required then the beta scintillators can be 

left out. 

8.2.6 Testing 

Initial testing of the entire detection system, as part of objective 5 “Critical evaluation of the 

constructed detector, through a combination of laboratory and field tests using radioactive 
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phantoms and (samples) target organisms, to assess the suitability for field deployment”, 

showed each detection material responded as required to the targeted radionuclides (Chapter 

6.3.7.2). Testing also showed that the count rate on each scintillator was affected by the 

positioning of the source within the cavity. The use of two beta and two gamma scintillators, 

however, meant this positional effect could be minimised; summing the two gamma 

scintillators (Figure 7.24) meant it did not matter how the sample was placed within the 

restraint box whereas summing the two beta scintillators (Figure 7.25) resulted in a 

significantly reduced effect. Any deviation still seen in the count rate for the two beta 

scintillators is likely caused by degradation of detected signal when the source is placed away 

from the end of the plastic scintillator where the PMT is attached (Chapter 7.3.2.2).  

Two discrepancies arose during field work conducted to meet Objective 6 “Development of 

correlation ratios (between measured and verified activity concentrations) for the selected 

organism(s) for the estimation of internal radionuclide concentration through external 

measurement with the constructed scintillator”. Determination of detection response rates 

(Chapter 7.3.2.1) using two phantoms resulted in an incorrect estimation of activity using a 

third phantom. This requires further testing with other radioactive sources (separate 137Cs and 

90Sr). A discrepancy was also seen in the difference between measurement locations. There 

was a significant difference found between the net counts recorded in the laboratory as 

compared to the three field sites (Chapter 7.3.3). There was, however, a 22°C temperature 

difference between these site that could have been the cause of this difference. This could be 

tested by counting a radioactive sample under different temperature regimes. Despite these 

discrepancies, there was a still a good correlation (R>0.96) found between the 137Cs count rate 

measured using the portable detector and the activity determined using the alternative 

method (laboratory detector). This was similar for the 90Sr correlation; R=0.93 for the small 

rodent correlation and the bird measurements showing a near perfect correlation at R=0.99. 

The detector therefore partially meets objective 6 as it showed a good correlation ratio 

between measured and actual internal activity for different organisms can be calculated. 

Samples sizes were low, however, and the estimation of internal activity would benefit from 

the measurement of more samples (i.e. Howard et al. (1987) required a larger number of 

samples for determining a more accurate ratio). 
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8.3 Limitations of the portable detector 

Although the detector worked well overall, there are still a few limitations in its use: 

1) The current design of the detector means it can only accept sample sizes up to 170 x 60 x 

50 mm. The combination of detection components means a larger cavity size would 

increase the overall weight such that it would no longer be portable. The allowed sample 

sizes did, however, still meet the aim of this research project.  

2) The use of a SCA means only one detection peak can be counted. There was, however, only 

one gamma emitting radionuclide that was required to be monitored for this research 

project. The SCA could, however, be exchanged for an MCA if multiple peaks were required 

to be counted (at a cost of new equipment).  

3) The detection system requires disassembly for storage and transportation. This increases 

the set-up time and increases the risk of a component being damaged. Robust packaging 

and careful handling will reduce this risk though checks should be made for damage before 

and after field work. 

8.4 Recommendations and further work 

The newly developed detector worked well. Based on this first version, a few points need to 

be addressed before it can be deployed for use in live-monitoring studies.  

1) The attenuation material between sample and gamma scintillators needs to be increased 

to remove as much of the detected beta as possible. The discussion of chapter 7.4.2 

recommended between 5 to 6 mm of extra plastic to be inserted (or a thinner amount of a 

higher density material).  

2) The discrepancy between the estimated and measured count rates from the phantoms 

needs to be investigated. This can be accomplished by checking the phantom used or 

testing the detector with a greater range of phantom activities.  

3) The significant difference between the laboratory and field measurement locations needs 

to be investigated. This could either be caused by the temperature difference between the 

laboratory and field sites or because of the low number of sampling sites. Both factors can 

be investigated; testing under different temperatures and increasing the number of sample 

sites in a second study.  

4) The transport casing for the detector requires waterproofing to ensure it can operate in 

adverse weather. During the fieldwork conducted in the CEZ, it was possible to place the 
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detector system under cover. In future work, however, the availability of shelter may not 

always be present. 

Completion of these changes and further testing will advance the new detector to a stage 

where it is expected to be deployable in live-monitoring field studies. Further testing should 

incorporate calibration against a range of additional targets (e.g. soil) to broaden the 

capabilities of the detector.  

8.5 Overall conclusion 

A fully working portable live-monitoring device was designed, constructed and tested as part 

of the research conducted for this thesis. The research described in the previous chapters 

detail a detector that can be deployed rapidly for various monitoring scenarios. It has been 

developed to be used for research involving the study of radionuclides (though currently 

calibrated to only two radionuclides; 137Cs and 90Sr) within living organisms and for use as a 

rapidly deployable monitor for use in emergency situations (e.g. in the event of an unplanned 

radioactive release).  

The newly developed detector comprises of a unique arrangement of four detection materials, 

for gamma and beta detection in small animals (small rodents and birds were tested in this 

research), and a restraint system for humanely holding animal targets for the required 

counting time. Development of this detection system has provided a template for the creation 

of a broader range of detectors that could monitor different radionuclides or organism types 

and sizes. This template includes choices for the arrangement of detection materials around 

the target organism and how to efficiently extract the scintillation light from these uniquely 

designed material shapes.  

Testing of the device showed it worked well for providing a consistent count rate for animal 

samples, no matter how they were positioned within the detector. It also gave good 

correlation for the estimation of internal activity concentrations of 137Cs and 90Sr in animal 

targets. Further work is, however, still required to ensure the device is ready to be deployed 

in further research studies. A change to be made in the design is the addition of extra material 

between the sample and the gamma scintillators to remove a beta response that is currently 

present from 90Y decay. Further testing is also required to provide a better estimation of the 

response rates for each scintillator and to test how temperature may be affecting the 

measured count rates.  



198 
 

9 References 

AL-MASRI, M. S., HASAN, M., AL-HAMWI, A., AMIN, Y. & DOUBAL, A. W. 2013. Mass 
attenuation coefficients of soil and sediment samples using gamma energies from 46.5 
to 1332 keV. Journal of Environmental Radioactivity, 116, 28-33. 

ASTM INTERNATIONAL 2014. ASTM D3648-14. Standard Practices for the Measurement of 
Radioactivity. West Conshohocken, PA. 

BAB, I., HAJBI-YONISSI, C., GABET, Y. & MÜLLER, R. 2007. Micro-tomographic atlas of the 
mouse skeleton, New York, Springer. 

BARLOW, K. 1999. Expedition field techniques: bats, London, Royal Geographical Society (with 
IBG). 

BARNETT, A. & DUTTON, J. 1995. Expedition field techniques: small mammals (excluding bats), 
London, Royal Geographical Society (with IBG). 

BARNETT, C. L., BERESFORD, N. A., WALKER, L. A., BAXTER, M., WELLS, C. & COPPLESTONE, D. 
2014. Transfer parameters for ICRP reference animals and plants collected from a 
forest ecosystem. Radiation and Environmental Biophysics, 53, 125-49. 

BARYAKHTAR, V. G., BONDARKOV, M. D., GASCHAK, S. P., GORYANAYA, J. A., MAXIMENKO, A. 
M., LIABIK, V. V., CHESSER, R. K. & BAKER, R. G. 2003. Problems in small mammal 
radioecology. Environmental Science and Pollution Research, 95-106. 

BAT CONSERVATION TRUST. 2016. UK bats [Online]. Available: 
http://www.bats.org.uk/pages/uk_bats.html [Accessed August 2016]. 

BATTERSBY, J. 2005. UK mammals: species status and population trends. first report by the 
tracking mammals partnership. JNCC/Tracking Mammals Partnership. Peterborough. 

BERESFORD, N. A. 2010. The transfer of radionuclides to wildlife. Radiation and Environmental 
Biophysics, 49, 505-8. 

BERESFORD, N. A., BARNETT, C. L., HOWARD, B. J., HOWARD, D. C., WELLS, C., TYLER, A. N., 
BRADLEY, S. & COPPLESTONE, D. 2012. Observations of Fukushima fallout in Great 
Britain. Journal of Environmental Radioactivity, 114, 48-53. 

BERESFORD, N. A., BARNETT, C. L., HOWARD, B. J., SCOTT, W. A., BROWN, J. E. & 
COPPLESTONE, D. 2008a. Derivation of transfer parameters for use within the ERICA 
Tool and the default concentration ratios for terrestrial biota. Journal of Environmental 
Radioactivity, 99, 1393-407. 

BERESFORD, N. A., BARNETT, C. L., JONES, D. G., WOOD, M. D., APPLETON, J. D., BREWARD, N. 
& COPPLESTONE, D. 2008b. Background exposure rates of terrestrial wildlife in 
England and Wales. Journal of Environmental Radioactivity, 99, 1430-9. 

BERESFORD, N. A., GASCHAK, S., MAKSIMENKO, A. & WOOD, M. D. 2016. The transfer of Cs-
137, Pu isotopes and Sr-90 to bird, bat and ground-dwelling small mammal species 
within the Chernobyl exclusion zone. Journal of Environmental Radioactivity, 153, 231-
6. 

BERESFORD, N. A., HOSSEINI, A., BROWN, J. E., CAILES, C., BEAUGELIN-SEILLER, K., BARNETT, 
C. L. & COPPLESTONE, D. 2010. Assessment of risk to wildlife from ionising radiation: 
can initial screening tiers be used with a high level of confidence? Journal of 
Radiological Protection, 30, 265-81. 

BERESFORD, N. A., MAYES, R. W., BARNETT, C. L., LAMB, C. S., WILSON, P. J., HOWARD, B. J. & 
VOIGT, G. 1997. The effectiveness of oral administration of potassium iodide to 
lactating goats in reducing the transfer of radioiodine to milk. Journal of Environmental 
Radioactivity, 35, 115-28. 



199 
 

BERESFORD, N. A., MAYES, R. W., BARNETT, C. L., MACEACHERN, P. J. & CROUT, N. M. J. 1998. 
Variation in the metabolism of radiocaesium between individual sheep. Radiation and 
Environmental Biophysics, 37, 277-81. 

BERGER, M. J., COURSEY, J. S., ZUCKER, M. A. & CHANG, J. 2005. TESTAR, PSTAR, and ASTAR: 
computer programs for calculating stopping-power and range tables for electrons, 
protons, and helium ions (version 1.2.3). [Online]. National Institute of Standards and 
Technology, Gaithersburg, MD. Available: h ttp://physics.nist.gov/Star [Accessed July 
2015]. 

BOLOTNIKOV, A. E., ACKLEY, K., CAMARDA, G. S., CUI, Y., EGER, J. F., DE GERONIMO, G., 
FINFROCK, C., FRIED, J., HOSSAIN, A., LEE, W., PROKESCH, M., PETRYK, M., REIBER, J. 
L., ROY, U., VERNON, E., YANG, G. & JAMES, R. B. 2015. High-efficiency CdZnTe gamma-
ray detectors. IEEE Transactions on Nuclear Science, 62, 3193-8. 

BONDARKOV, M. D., GASCHAK, S. P., GORYANAYA, J. A., MAXIMENKO, A. M., RYABUSHKIN, A. 
N., SALYI, O. V., SHULGA, A. A., AWAN, S., CHESSER, R. K. & RODGERS, B. E. 2002. 
Parameters of bank vole decontamination from radiocesium and radiostrontium. 
Radioprotection, 37, C1-385-90. 

BONDARKOV, M. D., MAKSIMENKO, A. M., GASCHAK, S. P., ZHELTONOZHSKY, V. A., JANNIK, G. 
T. & FARFAN, E. B. 2011. Method for simultaneous Sr-90 and Cs-137 in-vivo 
measurements of small animals and other environmental media developed for the 
conditions of the Chernobyl exclusion zone. Health Physics, 101, 383-92. 

BONISOLI-ALQUATI, A., KOYAMA, K., TEDESCHI, J., KITAMURA, W., SUKUZI, H., OSTERMILLER, 
S., ARAI, E., MOLLER, A. P. & MOUSSEAU, T. A. 2015. Abundance and genetic damage 
of barn swallows from Fukushima. Scientific Reports, 5. 

BORYŁO, A., SKWARZEC, B. & FABISIAK, J. 2010. Bioaccumulation of uranium U-234 and U-238 
in marine birds. Journal of Radioanalytical and Nuclear Chemistry, 284, 165-72. 

BRITISH TRUST FOR ORNITHOLOGY. 2016. BTO birdFacts - Great Tit (Parus major) [Online]. 
Available: https://blx1.bto.org/birdfacts/results/bob14640.htm [Accessed August 
2016]. 

BROWN, J. E., ALFONSO, B., AVILA, R., BERESFORD, N. A., COPPLESTONE, D. & HOSSEINI, A. 
2016. A new version of the ERICA tool to facilitate impact assessments of radioactivity 
on wild plants and animals. Journal of Environmental Radioactivity, 153, 141-8. 

BROWN, J. E., ALFONSO, B., AVILA, R., BERESFORD, N. A., COPPLESTONE, D., PROHL, G. & 
ULANOVSKY, A. 2008. The ERICA Tool. Journal of Environmental Radioactivity, 99, 
1371-83. 

BRYNILDSEN, L. I. & STRAND, P. 1994. A rapid method for the determination of radioactive 
cesium in live animals and carcasses, and its practical application in norway after the 
chernobyl nuclear-reactor accident. Acta Veterinaria Scandinavica, 35, 401-8. 

BURGER, A., GROZA, M., CUI, Y., ROY, U. N., HILLMAN, D., GUO, M., LI, L., WRIGHT, G. W. & 
JAMES, R. B. 2005. Development of portable CdZnTe spectrometers for remote sensing 
of signatures from nuclear materials. Physica Status Solidi, 2, 1586-91. 

BUSHBERG, J. T., SEIBERT, J. A., LEIDHOLDT, E. M. & BOONE, J. M. 2011. The essential physics 
of medical imaging, Philadelphia, USA, Wolters Kluwer Health. 

CANBERRA INDUSTRIES INC. 2015. Falcon 5000® portable HPGe-based radionuclide identifier 
[Online]. Available: h ttp://www.canberra.com/products/hp_radioprotection/falcon-
5000.asp [Accessed July 2015]. 

CESANA, A. & TERRANI, M. 1989. An empirical method for peak-to-total ratio computation of 
a gamma-ray detector. Nuclear Instruments and Methods in Physics Research, 281, 
172-5. 



200 
 

CHESSER, R. K. & SUGG, D. W. 2000. Concentrations and dose rate estimates of cesium-
134,137 and strontium-90 in small mammals at Chornobyl, Ukraine. Environmental 
Toxicology and Chemistry, 19, 305-12. 

CLARK, R., BURGESS, P. & CROUDACE, I. Measurement of plutonium contamination through 
paint using a fidler probe.  ASME 2011 14th international conference on environmental 
remediation and radioactive waste management, 2011 Reims, France. 

COOPER, D. M., CHAPMAN, L. D., CARTER, Y., WU, Y., PANAHIFAR, A., BRITZ, H. M., BEWER, B., 
ZHOUPING, W., DUKE, M. J. & DOSCHAK, M. 2012. Three dimensional mapping of 
strontium in bone by dual energy K-edge subtraction imaging. Physics in Medicine and 
Biology, 57, 5777-86. 

COPPLESTONE, D., BERESFORD, N. A., BROWN, J. E. & YANKOVICH, T. 2013. An international 
database of radionuclide concentration ratios for wildlife: development and uses. 
Journal of Environmental Radioactivity, 126, 288-98. 

COPPLESTONE, D., BIELBY, S. & JONES, S. R. 2001. Impact assessment of ionising radiation on 
wildlife. R&D Publication 128. Available online: https://www.gov.uk/government/ 
publications/impact-assessment-of-ionising-radiation-on-wildlife. 

COPPLESTONE, D., JOHNSON, M. S., JONES, S. R., TOAL, M. E. & JACKSON, D. 1999. 
Radionuclide behaviour and transport in a coniferous woodland ecosystem: 
vegetation, invertebrates and wood mice, Apodemus sylvaticus. Science of The Total 
Environment, 239, 95-109. 

COPPLESTONE, D., WOOD, M. D., BIELBY, S., JONES, S. R., VIVES, J. & BERESFORD, N. A. 2003. 
Habitats regulations for Stage 3 assessments: radioactive substances authorisations. 
Technical Report P3-101/SP1a. Bristol, UK: Environment Agency. 

COPPLESTONE, D., WOOD, M. D., MERRILL, P. C., ALLOTT, R., JONES, S. R., J. VIVES I BATLLE, 
N., BERESFORD, N. A. & ZINGER, I. 2005. Impact assessment of ionising radiation on 
wildlife: Meeting the requirements of the EU birds and habitats directives. 
Radioprotection, 40, S893-8. 

CURRIE, L. A. 1968. Limits for qualitative detection and quantitative determination. 
Application to radiochemistry. Analytical Chemistry, 40, 586-93. 

D’AMBROSIO, C. & LEUTZ, H. 2003. Hybrid photon detectors. Nuclear Instruments and 
Methods in Physics Research, 501, 463-98. 

DAWSON, N. J. & WEBSTER, M. E. D. 1967. The insulative value of mouse fur. Quarterly Journal 
of Experimental Physiology and Cognate Medical Sciences, 52, 168-73. 

DIDYCHUK, C., BURCHART, P. A., CARLISLE, S. M. & RICHARDSON, R. B. 2014. Retention and 
excretion of inhaled H-3 and C-14 radiolabeled methane in rats. Health Physics, 107, 
18-35. 

DOGDAS, B., STOUT, D., CHATZIIOANNOU, A. F. & LEAHY, R. M. 2007. Digimouse: a 3D whole 
body mouse atlas from CT and cryosection data. Physics in Medicine and Biology, 52, 
577-87. 

EISENBUD, M. & GESELL, T. 1997. Environmental radioactivity from natural, industrial and 
military sources, Michigan, USA, Academic Press. 

EKSTRÖM, L. P. & FIRESTONE, R. B. 2004. WWW table of radioactive isotopes [Online]. 
Available: http://ie.lbl.gov/toi/radSearch.asp [Accessed July 2015]. 

ELDRIDGE, J. S. 1989. Analytical chemistry division annual progress report. Oak Ridge, 
Tennessee: Oak Ridge National Laboratory. 

ENVIRONMENT AGENCY, ENVIRONMENT AND HERITAGE SERVICE, FOOD STANDARDS AGENCY 
& SCOTTISH ENVIRONMENT PROTECTION AGENCY 2014. Radioactivity in food and the 
environment, 2013 (RIFE-19). Available from: https://www.food.gov.uk/science/ 
research/radiologicalresearch/radiosurv/rife. 



201 
 

EUROPEAN ENVIRONMENT AGENCY. 2017. Soil organic carbon [Online]. Available: 
https://www.eea.europa.eu/data-and-maps/indicators/soil-organic-carbon-
1/assessment [Accessed February 2017]. 

EVANS, R. D. 1955. The atomic nucleus, New York, USA, McGraw-Hill. 
GARLAND, J. A. & WAKEFORD, R. 2007. Atmospheric emissions from the Windscale accident 

of October 1957. Atmospheric Environment, 41, 3904-20. 
GARTEN, C. T. 1995. Dispersal of radioactivity by wildlife from contaminated sites in a forested 

landscape. Journal of Environmental Radioactivity, 29, 137-56. 
GASCHAK, S. P., MAKLYUK, Y. A., MAKSIMENKO, A. M., BONDARKOV, M. D., JANNIK, G. T. & 

FARFAN, E. B. 2011. Radiation ecology issues associated with murine rodents and 
shrews in the Chernobyl exclusion zone. Health Physics, 101, 416-30. 

GÜRLER, O. & YALÇıN, S. 2005. A practical method for calculation of mass-attenuation 
coefficients of β particles. Annals of Nuclear Energy, 32, 1918-25. 

GUSS, P., REED, M., YUAN, D., REED, A. & MUKHOPADHYAY, S. 2009. CeBr3 as a room-
temperature, high-resolution gamma-ray detector. Nuclear Instruments and Methods 
in Physics Research, 608, 297-304. 

HALL, E. J. & GIACCIA, A. J. 2006. Radiobiology for the radiologist, Philadelphia, USA, Lippincott 
Williams & Wilkins. 

HAMAMATSU PHOTONICS K.K. 2016. Photomultiplier tubes and related products. 
Photomultiplier tubes. Japan: Available from Hamamatsu Photonics K.K. 

HENDEE, W. R. & RITENOUR, E. R. 2003. Medical imaging physics, New York, USA, Wiley. 
HINE, G. J. 2016. Instrumentation in nuclear medicine, London, Academic Press. 
HINTON, T. G., GARNIER-LAPLACE, J., VANDENHOVE, H., DOWDALL, M., ADAM-GUILLERMIN, 

C., ALONZO, F., BARNETT, C., BEAUGELIN-SEILLER, K., BERESFORD, N. A., BRADSHAW, 
C., BROWN, J., EYROLLE, F., FEVRIER, L., GARIEL, J. C., GILBIN, R., HERTEL-AAS, T., 
HOREMANS, N., HOWARD, B. J., IKAHEIMONEN, T., MORA, J. C., OUGHTON, D., REAL, 
A., SALBU, B., SIMON-CORNU, M., STEINER, M., SWEECK, L. & VIVES I BATLLE, J. 2013. 
An invitation to contribute to a strategic research agenda in radioecology. Journal of 
Environmental Radioactivity, 115, 73-82. 

HOME OFFICE. 2013. Research and testing using animals [Online]. Available: h 
ttps://www.gov.uk/guidance/research-and-testing-using-animals#animals-scientific-
procedures-act-1986 [Accessed August 2016]. 

HORRILL, A. D. & HOWARD, D. M. 1991. Chernobyl fallout in three areas of upland pasture in 
west Cumbria. Journal of Radiological Protection, 11, 249-57. 

HOWARD, B. J. 2013. A new IAEA handbook quantifying the transfer of radionuclides to wildlife 
for assessment tools. Journal of Environmental Radioactivity, 126, 284-7. 

HOWARD, B. J., BERESFORD, N. A., ANDERSSON, P., BROWN, J. E., COPPLESTONE, D., 
BEAUGELIN-SEILLER, K., GARNIER-LAPLACE, J., HOWE, P. D., OUGHTON, D. & 
WHITEHOUSE, P. 2010. Protection of the environment from ionising radiation in a 
regulatory context - an overview of the PROTECT coordinated action project. Journal 
of Radiological Protection, 30, 195-214. 

HOWARD, B. J., BERESFORD, N. A., BURROW, L., SHAW, P. V. & CURTIS, E. J. C. 1987. A 
comparison of caesium-137 and 134 activity in sheep remaining on upland areas 
contaminated by Chernobyl fallout with those removed to less active lowland pasture. 
Journal of the Society for Radiological Protection, 7, 71-3. 

HOWARD, B. J., BERESFORD, N. A., COPPLESTONE, D., TELLERIA, D., PROEHL, G., FESENKO, S., 
JEFFREE, R. A., YANKOVICH, T. L., BROWN, J. E., HIGLEY, K. A., JOHANSEN, M. P., MULYE, 
H., VANDENHOVE, H., GASHCHAK, S., WOOD, M. D., TAKATA, H., ANDERSSON, P., 
DALE, P., RYAN, J., BOLLHÖFER, A., DOERING, C., BARNETT, C. L. & WELLS, C. 2013a. 



202 
 

The IAEA handbook on radionuclide transfer to wildlife. Journal of Environmental 
radioactivity, 121, 55-74. 

HOWARD, B. J., WELLS, C., BERESFORD, N. A. & COPPLESTONE, D. 2013b. Exploring methods 
to prioritise concentration ratios when estimating weighted absorbed dose rates to 
terrestrial Reference Animals and Plants. Journal of Environmental Radioactivity, 126, 
326-37. 

HUBBELL, J. H. & SELTZER, S. M. 1996. Tables of X-Ray mass attenuation coefficients and mass 
energy absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 
additional substances of dosimetric interest [Online]. National Institute of Standards 
and Technology, Gaithersburg, MD. Available: http://physics.nist.gov/xaamdi 
[Accessed 2015]. 

IAEA 1989. Measurement of radionuclides in food and the environment - a guidebook. 
Technical Reports Series 295. Vienna: International Atomic Energy Agency. 

IAEA 2002. Use of electron paramagnetic resonance dosimetry with tooth enamel for 
retrospective dose assessment. IAEA TECDOC 1331. Vienna, Austria: International 
Atomic Energy Agency. 

IAEA 2010a. Handbook of parameter values for the prediction of radionuclide transfer in 
terrestrial and freshwater environments. Technical reports series No. 472. Vienna: 
International Atomic Energy Agency. 

IAEA 2010b. Radiation biology: a handbook for teachers and students. Training course series 
42. Vienna: International Atomic Energy Agency. 

IAEA 2011. Radioactive particles in the environment: sources, particle characteristics, and 
analytical techniques. IAEA-TECDOC-1663. Vienna: International Atomic Energy 
Agency. 

IAEA 2014. The environmental behaviour of radium: revised edition. Technical Reports Series 
No. 476. Vienna: International Atomic Energy Agency. 

ICRP 1977. Recommendations of the ICRP. ICRP Publication 26. Annals of the ICRP, 1, (3). 
ICRP 1979. Limits for Intakes of Radionuclides by Workers. ICRP Publication 30 (Part 1). Annals 

of the ICRP, 2, (3-4). 
ICRP 1991. 1990 Recommendations of the International Commission on radiological 

protection. ICRP Publication 60. Annals of the ICRP, 21, (1-3). 
ICRP 2007. The 2007 recommendations of the International Commission on Radiological 

Protection. ICRP Publication 103. Annals of the ICRP, 37, (2-4). 
ICRP 2008. Environmental protection: the concept and use of Reference Animals and Plants. 

ICRP Publication 108. Annals of the ICRP, 38, (4-6). 
ISHIDA, K., TANOI, K. & NAKANISHI, T. M. 2015. Monitoring free-living Japanese Bush Warblers 

(Cettia diphone) in a most highly radiocontaminated area of Fukushima Prefecture, 
Japan. Journal of Radiation Research, 56, I24-8. 

IYUDIN, A. F., BOGOMOLOV, V. V., SVERTILOV, S. I., YASHIN, I. V., SMOOT, G. F., GREINER, J. & 
FON KIENLIN, A. 2013. Characteristics of position sensitive detector pixels based on 
promising inorganic scintillators LaBr3:Ce and CeBr3. Instruments and Experimental 
Techniques, 56, 640-8. 

JNCC. 2015. UK BAP priority species [Online]. Available: h ttp://jncc.defra.gov.uk/page-5717 
[Accessed July 2015]. 

JOHANSEN, M. P., BARNETT, C. L., BERESFORD, N. A., BROWN, J. E., CERNE, M., HOWARD, B. 
J., KAMBOJ, S., KEUM, D. K., SMODIS, B., TWINING, J. R., VANDENHOVE, H., VIVES I 
BATLLE, J., WOOD, M. D. & YU, C. 2012. Assessing doses to terrestrial wildlife at a 
radioactive waste disposal site: inter-comparison of modelling approaches. The 
Science of the Total Environment, 427-428, 238-46. 



203 
 

JONES, D. G., APPLETON, J. D., BREWARD, N., MACKENZIE, A. C., SCHEIB, C., BERESFORD, N. A., 
BARNETT, C. L., WOOD, M. D. & COPPLESTONE, D. 2009. Assessment of naturally 
occurring radionuclides around England and Wales: Application of the G-BASE dataset 
to estimate doses to non-human species. Radioprotection, 44, 629-34. 

KAMRANI, A. K. & NASR, E. A. 2010. Engineering design and rapid prototyping, London, 
Springer. 

KATHREN, R. L. 1984. Radioactivity in the environment: sources, distribution, and surveillance, 
Michigan, USA, Harwood Academic Publishers. 

KAYE, S. V. & DUNAWAY, P. B. 1962. Bioaccumulation of radioactive isotopes by herbivorous 
small mammals. Health Physics, 7, 205-17. 

KEEVIL, S. F. 2012. Physics and medicine: a historical perspective. Lancet, 379, 1517-24. 
KENDALL, G. M. 2005. Factors affecting cosmic ray exposures in civil aviation. International 

Congress Series, 1276, 129-32. 
KHANDAKER, M. U. 2011. High purity germanium detector in gamma-ray spectrometry. 

International Journal of Fundamental Physical Sciences, 1, 42-6. 
KNOLL, G. F. 2010. Radiation detection and measurement, John Wiley & Sons. 
KOCK, P., RAAF, C. & SAMUELSSON, C. 2014. On background radiation gradients - the use of 

airborne surveys when searching for orphan sources using mobile gamma-ray 
spectrometry. Journal of Environmental Radioactivity, 128, 84-90. 

KODAIRA, S., TOLOCHEK, R. V., AMBROZOVA, I., KAWASHIMA, H., YASUDA, N., KURANO, M., 
KITAMURA, H., UCHIHORI, Y., KOBAYASHI, I., HAKAMADA, H., SUZUKI, A., KARTSEV, I. 
S., YARMANOVA, E. N., NIKOLAEV, I. V. & SHURSHAKOV, V. A. 2014. Verification of 
shielding effect by the water-filled materials for space radiation in the International 
Space Station using passive dosimeters. Advances in Space Research, 53, 1-7. 

KOIKE, T., CHIGA, N., HARUYAMA, T., HOSOMI, K., ICHINOHE, H., KASAMI, K., MATSUSHITA, T., 
MIZOGUCHI, Y., ONO, H., SHIROTORI, K., TAKEUCHI, T., TAMURA, H. & YAMAMOTO, T. 
O. 2015. Development of a low-temperature germanium detector via mechanical 
cooling with a compact pulse-tube refrigerator. Nuclear Instruments and Methods in 
Physics Research, 770, 1-7. 

KRANE, K. S. 1988. Introductory nuclear physics, John Wiley & Sons, Inc. 
KRYEMADHI, A., BARNER, L., GROVE, A., MOHLER, J., SISSON, C. & ROTH, A. 2017. Performance 

of LYSO and CeBr3 crystals readout by silicon photomultiplier arrays as compact 
detectors for space based applications. Journal of Instrumentation, 12, C02013. 

KUBOTA, Y., TAKAHASHI, H., WATANABE, Y., FUMA, S., KAWAGUCHI, I., AOKI, M., KUBOTA, 
M., FURUHATA, Y., SHIGEMURA, Y., YAMADA, F., ISHIKAWA, T., OBARA, S. & YOSHIDA, 
S. 2015. Estimation of absorbed radiation dose rates in wild rodents inhabiting a site 
severely contaminated by the Fukushima Dai-ichi nuclear power plant accident. 
Journal of Environmental Radioactivity, 142, 124-31. 

LARSSON, C. M. 2008. An overview of the ERICA Integrated Approach to the assessment and 
management of environmental risks from ionising contaminants. Journal of 
Environmental Radioactivity, 99, 1364-70. 

MACDONALD, D. W. 2010. The encyclopedia of mammals, Oxford, Oxford University Press. 
MAHAJAN, C. S. 2012. Mass attenuation coefficients of beta particles in elements. Science 

Research Reporter, 2, 135-41. 
MAKLYUK, Y. A., MAKSIMENKO, A. M., GASHCHAK, S. P., BONDARKOV, M. D. & CHIZHEVSKII, 

I. V. 2007. Long-term dynamics of radioactive Sr-90 and Cs-137 contamination of small 
mammals in the Chernobyl zone. Russian Journal of Ecology, 38, 181-9. 

MALINOVSKY, G. P., YARMOSHENKO, I. V., ZHUKOVSKY, M. V., STARICHENKO, V. I. & 
CHIBIRYAK, M. V. 2014. Contemporary radiation doses to murine rodents inhabiting 



204 
 

the most contaminated part of the EURT. Journal of Environmental Radioactivity, 129, 
27-32. 

MAYES, R. W., BERESFORD, N. A., LAMB, C. S., BARNETT, C. L., HOWARD, B. J., JONES, B. E., 
ERIKSSON, O., HOVE, K., PEDERSEN, O. & STAINES, B. W. 1994. Novel approaches to 
the estimation of intake and bioavailability of radiocaesium in ruminants grazing 
forested areas. Science of The Total Environment, 157, 289-300. 

MCLEAN, C. M., KOLLER, C. E., RODGER, J. C. & MACFARLANE, G. R. 2009. Mammalian hair as 
an accumulative bioindicator of metal bioavailability in Australian terrestrial 
environments. Science of the Total Environment, 407, 3588-96. 

MENEFEE, J., CHO, Y. & SWINEHAR.C 1967. Sodium activated cesium iodide as a gamma ray 
and charged particle detector. Ieee Transactions on Nuclear Science, NS14, 464-7. 

MENGE, P. R., YANG, K., MCLAUGHLIN, M. & BACON, B. Efficient positioning of silicon 
photomultipliers on large scintillation crystals.  Nuclear science symposium, medical 
imaging conference and room-temperature semiconductor detector workshop 
(NSS/MIC/RTSD), 2016. IEEE. 

MEREDITH, R. C. K., MONDON, K. J. & SHERLOCK, J. C. 1988. A rapid method for the In vivo 
monitoring of radiocaesium activity in sheep. Journal of Environmental Radioactivity, 
7, 209-14. 

MET OFFICE. 2013. Weather extremes [Online]. Available: metoffice.gov.uk/learning/ 
library/publications/factsheets [Accessed August 2016]. 

MIDDLETON, G. 2011. Tennesse Department of Environment and Conservation DOE oversight 
division environmental monitoring report January through December 2011. Oak Ridge, 
Tennessee: Oak Ridge National Laboratory. 

MITCHELL, A. L., BORGARDT, J. D. & KOUZES, R. T. 2009. Skyshine contribution to gamma ray 
background between 0 and 4 MeV. USA: Pacific Northwest National Laboratory 
(PNNL), Richland, WA (US). 

MORTON, G. A. 1975. The scintillation counter story part II. IEEE Transactions on Nuclear 
Science, 22, 26-8. 

MOSS, R. & HORRILL, A. D. 1996. Metabolism of radiocaesium in red grouse. Journal of 
Environmental Radioactivity, 33, 49-62. 

MOSZYŃSKI, M., KLAMRA, W., WOLSKI, D., CZARNACKI, W., KAPUSTA, M. & BALCERZYK, M. 
2006. Comparative study of PP0275C hybrid photodetector and XP2020Q 
photomultiplier in scintillation detection. Journal of Instrumentation, 1, P05001. 

NILSSON, J. M., OSTLUND, K., SODERBERG, J., MATTSSON, S. & RAAF, C. 2014. Tests of HPGe 
and scintillation-based backpack γ-radiation survey systems. Journal of Environmental 
Radioactivity, 135, 54-62. 

ORTEC. 2015. Micro-Detective-HX [Online]. Available: http://www.ortec-online.com/ 
Products-Solutions/Hand-Held-Radioisotope-Identifiers-Micro-Detective-HX.aspx 
[Accessed July 2015]. 

OUGHTON, D. H., AGUERO, A., AVILA, R., BROWN, J. E., COPPLESTONE, D. & GILEK, M. 2008. 
Addressing uncertainties in the ERICA Integrated Approach. Journal of Environmental 
Radioactivity, 99, 1384-92. 

PENTREATH, R. J. 1999. A system for radiological protection of the environment: some initial 
thoughts and ideas. Journal of Radiological Protection, 19, 117-28. 

PENTREATH, R. J. 2012. Radiation and protection of the environment: The work of Committee 
5. Annals of the ICRP, 41, 45-56. 

PODGORSAK, E. B. 2010. Radiation physics for medical physicists, Berlin, Springer. 
POTAPOV, V. N., VOLKOVICH, A. G., IVANOV, O. P., STEPANOV, V. E., SMIRNOV, S. V. & 

VOLKOV, V. G. 2006. Development of portable beta spectrometer for Sr-90 activity 



205 
 

measurements in field conditions and its application in rehabilitation activities at RRC 
Kurchatov Institute. WM’06 Conference. Tucson, AZ. 

PUBLIC HEALTH ENGLAND 2011. Ionising radiation: dose comparisons. Radiation and Health 
protection www.gov.uk. 

PYCKO SCIENTIFIC LIMITED 2014. NitroSPEC HPGe hand held spectrometer Technical 
Document. Available from PYCKO Scientific Limited. 

QUARATI, F. G. A., DORENBOS, P., VAN DER BIEZEN, J., OWENS, A., SELLE, M., PARTHIER, L. & 
SCHOTANUS, P. 2013. Scintillation and detection characteristics of high-sensitivity 
CeBr3 gamma-ray spectrometers. Nuclear Instruments and Methods in Physics 
Research, 729, 596-604. 

RENKER, D. & LORENZ, E. 2009. Advances in solid state photon detectors. Journal of 
Instrumentation, 4, P04004. 

ROBBINS, C. R. 2012. Chemical and physical behavior of human hair, London, Springer. 
RSA93 1993. Radioactive Substances Act 1993. HMSO: London. 
RUSSELL, W. M. S., BURCH, R. L. & HUME, C. W. 1959. The principles of humane experimental 

technique, Michigan, USA, Methuen. 
RUSSO, S., BARBARINO, G., DE ASMUNDIS, R. & DE ROSA, G. 2010. The vacuum silicon 

photomultiplier tube (VSiPMT): A new version of a hybrid photon detector. Nuclear 
Instruments and Methods in Physics Research, 623, 291-3. 

RYABOKON, N. I., SMOLICH, II, KUDRYASHOV, V. P. & GONCHAROVA, R. I. 2005. Long-term 
development of the radionuclide exposure of murine rodent populations in Belarus 
after the Chernobyl accident. Radiation and Environmental Biophysics, 44, 169-81. 

SAENKO, V., IVANOV, V., TSYB, A., BOGDANOVA, T., TRONKO, M., DEMIDCHIK, Y. & 
YAMASHITA, S. 2011. The Chernobyl accident and its consequences. Clinical Oncology, 
23, 234-43. 

SAINT-GOBAIN. 2015. Plastic scintillator cast sheets [Online]. Available: http://www. 
crystals.saint-gobain.com/Cast_Plastic_Scintillator.aspx [Accessed September 2015]. 

SAKAI, E. 1987. Recent measurements on scintillator-photodetector systems. IEEE 
Transactions on Nuclear Science, 34, 418-22. 

SALACKA, J. S. & BACRANIA, M. K. 2010. A comprehensive technique for determining the 
intrinsic light yield of scintillators. IEEE Transactions on Nuclear Science, 57, 901-9. 

SAZYKINA, T. G. & KRYSHEV, I. I. 2006. Radiation effects in wild terrestrial vertebrates - the 
EPIC collection. Journal of Environmental Radioactivity, 88, 11-48. 

SEMIOSHKINA, N., PROEHL, G., SAVINKOV, A. & VOIGT, G. 2007. The transfer of Cs-137 and Sr-
90 from feed to rabbits. Journal of Environmental Radioactivity, 98, 166-76. 

SHAH, K. S., GLODO, J., HIGGINS, W., VAN LOEF, E. V. D., MOSES, W. W., DERENZO, S. E. & 
WEBER, M. J. 2005. CeBr3 scintillators for gamma-ray spectroscopy. IEEE Transactions 
on Nuclear Science, 52, 3157-9. 

SHEPPARD, S. C. 2003. An index of radioecology, what has been important? Journal of 
Environmental Radioactivity, 68, 1-10. 

SMITH, J. T. & BERESFORD, N. A. 2005. Chernobyl: catastrophe and consequences, Springer. 
SONKAWADE, R. G., KANT, K., MURALITHAR, S., KUMAR, R. & RAMOLA, R. C. 2008. Natural 

radioactivity in common building construction and radiation shielding materials. 
Atmospheric Environment, 42, 2254-9. 

SPIERS, F. W. 1946. Effective atomic number and energy absorption in tissues. British Journal 
of Radiology, 19, 52-63. 

STABIN, M. G. 2007. Radiation protection and dosimetry: an introduction to health physics, 
Springer. 



206 
 

STRUMINSKA-PARULSKA, D. I., BORYLO, A., SKWARZEC, B. & FABISIAK, J. Polonium Po-210, 
uranium (U-234, U-238) and plutonium (Pu-238, Pu239+240) bioaccumulation in 
marine birds.  16th International Conference on Heavy Metals in the Environment, 
2013 E3S Web of Conferences. EDP Sciences. 

STRUMIŃSKA-PARULSKA, D. I., SZYMAŃSKA, K. & SKWARZEC, B. 2015. Determination of Po-
210 in hair of domestic animals from Poland and Norway. Journal of Radioanalytical 
and Nuclear Chemistry, 306, 71-8. 

SUL, W.-S., KIM, H. & CHO, G. 2015. Silicon photomultiplier modules for MRI-compatible PET. 
16th international workshop on radiation imaging detectors. Trieste, Italy: IOP 
Publishing for Sissa Medialab. 

SUNDBERG, J. P., NANNEY, L. B., FLECKMAN, P. & KING, L. E. 2012. Chapter 23 - Skin and 
Adnexa. In: DINTZIS, S. M. (ed.) Comparative Anatomy and Histology. San Diego: 
Academic Press. 

TAVERNIER, S., GEKTIN, A., GRINYOV, B. & MOSES, W. W. 2006. Radiation detectors for 
medical applications, Netherlands, Springer. 

TAYLOR, M. L., SMITH, R. L., DOSSING, F. & FRANICH, R. D. 2012. Robust calculation of effective 
atomic numbers: the Auto-Z(eff) software. Medical Physics, 39, 1769-78. 

TETE, N., AFONSO, E., CRINI, N., DROUHOT, S., PRUDENT, A. S. & SCHEIFLER, R. 2014. Hair as a 
noninvasive tool for risk assessment: do the concentrations of cadmium and lead in 
the hair of wood mice (Apodemus sylvaticus) reflect internal concentrations? 
Ecotoxicology and Environmental Safety, 108, 233-41. 

THORNE, M. C. 2003. Background radiation: natural and man-made. Journal of Radiological 
Protection, 23, 29-42. 

TILLER, B. L. & POSTON, T. M. 1999. Mule deer antlers as biomonitors of strontium-90 on the 
Hanford Site. Journal of Environmental Radioactivity, 47, 29-44. 

TURCHETTA, R. 2016. Analog electronics for radiation detection, CRC Press. 
UNSCEAR 2000a. Annex B: Exposures from natural radiation sources. Sources and effects of 

ionizing radiation. New York, USA: United Nations Scientific Committee on the effects 
of atomic radiation. 

UNSCEAR 2000b. Annex C: Exposures from man-made sources of radiation. Sources and 
effects of ionizing radiation. New York, USA: United Nations Scientific Committee on 
the effects of atomic radiation. 

UNSCEAR 2013. Volume 1: Report to the General Assembly, Annex A: Levels and effects of 
radiation exposure due to the nuclear accident after the 2011 great east-Japan 
earthquake and tsunami. New York, USA: United Nations Scientific Committee on the 
effects of atomic radiation. 

UPP, D., KEYSER, R. & TWOMEY, T. 2005. New cooling methods for HPGE detectors and 
associated electronics. Journal of Radioanalytical and Nuclear Chemistry, 264, 121-6. 

VAN LOEF, E., MARKOSYAN, G., SHIRWADKAR, U., MCCLISH, M. & SHAH, K. 2015. Gamma-ray 
spectroscopy and pulse shape discrimination with a plastic scintillator. Nuclear 
Instruments and Methods in Physics Research, 788, 71-2. 

VIVES I BATLLE, J., BALONOV, M., BEAUGELIN-SEILLER, K., BERESFORD, N. A., BROWN, J., 
CHENG, J. J., COPPLESTONE, D., DOI, M., FILISTOVIC, V., GOLIKOV, V., HORYNA, J., 
HOSSEINI, A., HOWARD, B. J., JONES, S. R., KAMBOJ, S., KRYSHEV, A., NEDVECKAITE, T., 
OLYSLAEGERS, G., PROHL, G., SAZYKINA, T., ULANOVSKY, A., VIVES LYNCH, S., 
YANKOVICH, T. & YU, C. 2007. Inter-comparison of absorbed dose rates for non-human 
biota. Radiation and Environmental Biophysics, 46, 349-73. 

VIVES I BATLLE, J., BEAUGELIN-SEILLER, K., BERESFORD, N. A., COPPLESTONE, D., HORYNA, J., 
HOSSEINI, A., JOHANSEN, M., KAMBOJ, S., KEUM, D. K., KUROSAWA, N., NEWSOME, L., 



207 
 

OLYSLAEGERS, G., VANDENHOVE, H., RYUFUKU, S., VIVES LYNCH, S., WOOD, M. D. & 
YU, C. 2011. The estimation of absorbed dose rates for non-human biota: An extended 
intercomparison. Radiation and Environmental Biophysics, 50, 231-51. 

WAKEFORD, R. 2007. The Windscale reactor accident: 50 years on. Journal of Radiological 
Protection, 27, 211-15. 

WAKEFORD, R. 2011. And now, Fukushima. Journal of Radiological Protection, 31, 167-76. 
WANG, B., YANG, W., MCKITTRICK, J. & MEYERS, M. A. 2016. Keratin: Structure, mechanical 

properties, occurrence in biological organisms, and efforts at bioinspiration. Progress 
in Materials Science, 76, 229-318. 

WEARNE, S. 2012. The removal of post-chernobyl sheep controls. Food Standards Agency. 
WHICKER, F. W. & SCHULTZ, V. 1982. Radioecology: nuclear energy and the environment Vol. 

I, CRC Press. 
WOOD, M. D. 2010. Assessing the impact of ionising radiation in temperate coastal sand dune 

ecosystems : measurement and modelling. PhD thesis, University of Liverpool. 
WOOD, M. D., BERESFORD, N. A., BARNETT, C. L., COPPLESTONE, D. & LEAH, R. T. 2009a. 

Assessing radiation impact at a protected coastal sand dune site: an intercomparison 
of models for estimating the radiological exposure of non-human biota. Journal of 
Environmental Radioactivity, 100, 1034-52. 

WOOD, M. D., BERESFORD, N. A., YANKOVICH, T. L., SEMENOV, D. V. & COPPLESTONE, D. 2011. 
Addressing current knowledge gaps on radionuclide transfer to reptiles. 
Radioprotection, 46, S521-7. 

WOOD, M. D., LEAH, R. T., JONES, S. R. & COPPLESTONE, D. 2009b. Radionuclide transfer to 
invertebrates and small mammals in a coastal sand dune ecosystem. The Science of the 
Total Environment, 407, 4062-74. 

YANG, G., BOLOTNIKOV, A. E., FOCHUK, P. M., KOPACH, O., FRANC, J., BELAS, E., KIM, K. H., 
CAMARDA, G. S., HOSSAIN, A., CUI, Y., ADAMS, A. L., RADJA, A., PINDER, R. & JAMES, 
R. B. 2013. Post-growth thermal annealing study of CdZnTe for developing room-
temperature X-ray and gamma-ray detectors. Journal of Crystal Growth, 379, 16-20. 

YANG, P., HARMON, C. D., DOTY, F. P. & OHLHAUSEN, J. A. 2014. Effect of humidity on 
scintillation performance in Na and Tl activated CsI crystals. Ieee Transactions on 
Nuclear Science, 61, 1024-31. 

YOO, H., JOO, S., YANG, S. & CHO, G. 2015a. Optimal design of a CsI(Tl) crystal in a SiPM based 
compact radiation sensor. Radiation Measurements, 82, 102-7. 

YOO, W. J., SHIN, S. H., LEE, D. E., JANG, K. W., CHO, S. & LEE, B. 2015b. Development of a 
small-sized, flexible, and insertable fiber-optic radiation sensor for gamma-ray 
spectroscopy. Sensors, 15, 21265-79. 

YU, C., LEPOIRE, D., ARNISH, J., CHENG, J. J., HLOHOWSKIJ, I., KAMBOJ, S., KLETT, T., 
DOMOTOR, S., HIGLEY, K., GRAHAM, R., NEWKIRK, P. & HARRIS, T. 2003. The RESRAD-
BIOTA code for application in biota dose evaluation: Providing screening and organism-
specific assessment capabilities for use within an environmental protection 
framework. Protection of the Environment from Ionising Radiation, 17, 283-9. 

ZHANG, L., MAO, R., YANG, F. & ZHU, R.-Y. 2014. LSO/LYSO crystals for calorimeters in future 
hep experiments. IEEE Transactions on Nuclear Science, 61, 483-8. 

 

  



208 
 

10 Appendices 

10.1 Tabulated properties of environmentally important radionuclides 

Radionuclides with a half-life of under one day are ignored. Abundances under 2% are not 

included. Beta emissions display maximum energy. Undeclared fractions pass through the 

body without being absorbed. 1 - (Environment Agency et al., 2014); 2 - (Eisenbud and Gesell, 

1997); 3 - http://www.nndc.bnl.gov/ensdf/; 4 - Y=years, D=days, H=hours, M=minutes; 5 - 

(ICRP, 1979); 6 - s=bone surface; 7 - fractional emission per decay; 8 - per 100 decays. 

 

 

 

D
au

gh
te

r

St
ab

le
?

W
B

B
o

n
e

6

K
id

n
ey

Li
ve

r

Sp
le

en

Th
yr

o
id

St
o

m
ac

h

A
lp

h
a

B
et

a

G
am

m
a

Primary 

Peak (keV)

Abundance 

(%)8

Secondary 

Peak (keV)

Abundance 

(%)8

Primary 

Peak (keV)

Abundance 

(%)8

Secondary 

Peak (keV)

Abundance 

(%)8

3H 12.32 Y 3He Y 1.00 1.00 18.60 100.00
14C 5.70E+03 Y 14N Y 1.00 1.00 156.47 100.00
32P 14.27 D 32S Y 0.40 0.30 1.00 1710.66 100.00
35S 87.37 D 35Cl Y 0.20 1.00 167.30 100.00
40K 1.25E+09 Y 40Ca Y 1.00 0.89 0.11 1311.07 89.14 1460.88 10.66

41Ar 1.10E+02 M 41K Y 1.00 0.99 1198.30 99.16 1293.64 99.16
60Co 5.27 Y 60Ni Y 0.45 0.05 1.00 2.00 317.88 99.88 1332.49 99.98 1173.23 99.85
85Kr 10.74 Y 85Rb Y 1.00 0.00 687.00 99.56
90Sr 28.79 Y 90Y N 1.00 1.00 546.00 100.00
90Y 64.00 H 90Zr Y 0.10 0.50 0.15 1.00 2280.00 99.99

95Nb 34.99 D 95Mo Y 0.26 0.71 1.00 1.00 159.70 99.97 765.80 99.81
95Zr 64.03 D 90Nb N 0.50 0.50 1.00 0.99 366.90 54.46 399.40 44.34 756.73 54.38 724.19 44.27
99Tc 2.11E+05 Y 99Ru Y 0.83 0.03 0.04 0.10 1.00 0.00 293.50 100.00

106Ru 3.72E+02 D 106Rh N 0.85 1.00 39.40 100.00
106Rh 1.31E+02 M 106Pd Y 0.85 920.00 85.00 511.70 85.50 1046.70 30.35

110mAg 2.50E+02 D 110Cd Y 0.20 0.80 1.00 3.26 83.74 68.60 530.00 31.30 657.76 95.61 884.68 74.96
125I 59.40 D 125Te Y 0.30 0.07 35.50 6.70

125Sb 2.76 Y 125Te Y 0.50 0.20 0.10 1.00 0.91 303.30 40.30 621.90 13.60 427.87 29.60 600.60 17.65
129I 1.57E+07 Y 129Xe Y 0.30 1.00 0.08 149.00 100.00 39.58 7.51
131I 8.03 D 131Xe Y 0.30 1.00 1.01 606.30 89.60 364.49 81.50 636.99 7.16

134Cs 2.07 Y 134Ba Y 1.00 1.00 2.23 658.00 70.17 415.40 2.45 604.72 97.62 795.86 85.46
137Cs 30.08 Y 137Ba Y 1.00 1.00 0.85 514.03 94.70 1176.00 5.30 661.66 85.10
144Ce 2.85E+02 D 144Pr N 0.15 0.20 0.60 1.00 0.13 318.20 76.50 184.70 19.60 133.52 11.09 80.12 1.36
144Pr 17.28 M 144Nd N 0.25 0.05 0.60 2996.00 97.90 696.51 1.34
155Eu 4.75 Y 155Gd Y 0.40 0.06 0.40 1.00 0.55 147.40 47.00 166.20 25.00 86.55 30.70 105.31 21.12
210Po 1.38E+02 D 206Pb Y 0.70 0.10 0.10 0.10 1.00 0.00
214Pb 26.80 M 214Bi N 0.55 0.02 0.25 670.00 45.90 1030.00 11.00 351.93 35.60 295.22 18.42
218Po 3.10 M 214Pb N 0.70 0.10 0.10 0.10
222Rn 3.82 D 218Po N 0.30 510.00 0.08
224Ra 3.66 D 220Rn N 1.00s 240.99 4.10
226Ra 1.60E+03 Y 222Rn N 1.00 1.00 0.04 186.21 3.64
228Ac 6.15 H 228Th N 0.45 0.45 1165.00 29.90 1738.00 11.65 911.20 25.80 968.97 15.80
228Ra 5.75 Y 228Ac N 1.00 39.10 40.00 39.50 10.00 13.52 2.00
228Th 1.91 Y 224Ra N 0.16 0.70s 1.00 0.02 84.37 1.19
230Th 7.54E+04 Y 226Ra N 0.16 0.70s 1.00 0.00
231Th 25.52 H 231Pa N 0.16 0.70s 290.20 40.00 305.00 32.00 25.64 14.12 84.21 6.60
232Th 1.40E+10 Y 228Ra N 0.16 0.70s 1.00 0.00

234mPa 1.16 M 234U N 0.40 0.02 0.15 1.00 0.02 2290.00 97.57 1224.00 1.00
234Th 24.10 D 234mPa N 0.16 0.70s 1.00 0.08 198.50 78.00 273.00 14.00 63.29 3.67 92.38 2.13
234U 2.46E+05 Y 230Th N 0.12 0.22 0.12 1.00 0.00
235U 7.04E+08 Y 231Th N 0.12 0.22 0.12 1.02 0.84 185.72 57.03 143.76 10.97
236U 2.34E+07 Y 232Th N 0.12 0.22 0.12 49.46 0.08

237Np 2.14E+06 Y 233Pa N 1.00s 29.37 14.12 86.48 12.44
238Pu 87.70 Y 234U N 0.45s 0.45 1.00 0.00
238U 4.47E+09 Y 234Th N 0.12 0.22 0.12 1.00 0.00

239Pu 2.41E+04 Y 235U N 0.45s 0.45 1.00 0.00
240Pu 6.56E+03 Y 236U N 0.45s 0.45 1.00 0.00

241Am 4.33E+02 Y 237Np N 0.45s 0.45 1.00 0.38 59.54 35.90 26.34 2.27
241Pu 14.33 Y 241Am N 0.45s 0.45 1.00 20.78 100.00
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10.2 Activity connections required to reach a screening level. 

The following tables detail the radionuclide activity concentrations (Bq kg-1) that would result 

in a 10 µGy h-1 screening dose rate in each of the indicated reference organism. 

Concentrations calculated using data from RIFE (Environment Agency et al., 2014). All values 

are averaged across all sites where soil activity concentrations were available. 

 

 

 

Max Min Average SD Max Min Average SD Max Min Average SD

Ag-110m 1.31E+02 7.58E+01 1.03E+02 3.89E+01 2.24E+02 1.26E+02 1.75E+02 6.97E+01 7.47E+01 3.19E+01 5.33E+01 3.03E+01

Am-241 1.31E+02 1.34E+01 6.92E+01 3.92E+01 7.74E+01 7.41E+00 3.20E+01 2.27E+01 1.54E+01 1.35E+00 6.51E+00 4.99E+00

C-14 3.21E+04 1.24E+04 2.05E+04 8.29E+03 5.50E+04 1.75E+04 3.41E+04 1.56E+04 1.83E+04 5.80E+03 1.05E+04 5.50E+03

Ce-144 1.52E+00 1.52E+00 1.52E+00 - 5.15E+01 5.15E+01 5.15E+01 - 8.56E-01 8.56E-01 8.56E-01 -

Co-60 1.09E+02 2.99E+00 3.23E+01 4.34E+01 1.90E+01 3.85E-01 5.19E+00 7.76E+00 7.20E+01 1.09E+00 1.91E+01 2.97E+01

Cs-134 6.06E+01 8.60E+00 3.58E+01 2.14E+01 1.92E+02 2.01E+01 9.43E+01 6.45E+01 2.99E+02 2.34E+01 1.41E+02 1.06E+02

Cs-137 1.24E+04 5.30E+02 7.06E+03 3.53E+03 2.60E+04 1.66E+03 1.63E+04 7.40E+03 2.81E+04 7.92E+03 2.26E+04 5.80E+03

Eu-155 1.17E+02 2.97E+01 5.51E+01 3.56E+01 3.37E+03 9.47E+02 1.69E+03 9.79E+02 6.67E+01 1.08E+01 2.77E+01 2.23E+01

H-3 1.37E+03 1.02E+02 7.27E+02 5.00E+02 2.05E+03 2.59E+02 1.27E+03 7.22E+02 6.84E+02 1.15E+02 3.88E+02 2.35E+02

I-125 7.45E+02 7.45E+02 7.45E+02 - 1.26E+03 1.26E+03 1.26E+03 - 2.32E+02 2.32E+02 2.32E+02 -

I-129 1.18E+01 1.18E+01 1.18E+01 - 2.81E+01 2.81E+01 2.81E+01 - 6.62E+00 6.62E+00 6.62E+00 -

I-131 5.35E+02 5.35E+02 5.35E+02 - 9.07E+02 9.07E+02 9.07E+02 - 1.67E+02 1.67E+02 1.67E+02 -

Nb-95 1.45E+01 5.18E+00 9.83E+00 6.58E+00 1.02E+02 5.09E+01 7.65E+01 3.63E+01 8.27E+00 2.92E+00 5.59E+00 3.78E+00

Pu-238 1.03E+01 4.12E-01 5.01E+00 4.99E+00 4.26E+00 1.60E-01 2.06E+00 2.07E+00 2.06E+01 2.32E-01 7.63E+00 1.13E+01

Pu-240 1.48E+01 3.37E+00 9.49E+00 5.75E+00 6.02E+00 1.32E+00 3.87E+00 2.38E+00 2.06E+01 1.90E+00 9.85E+00 9.66E+00

Ru-106 6.25E+01 3.95E+01 5.10E+01 1.63E+01 1.60E+02 9.44E+01 1.27E+02 4.65E+01 4.12E+01 2.22E+01 3.17E+01 1.34E+01

S-35 4.45E+02 9.75E+01 2.69E+02 1.52E+02 6.29E+02 1.72E+02 4.26E+02 2.14E+02 2.08E+02 5.13E+01 1.34E+02 7.79E+01

Sb-125 9.41E-01 9.41E-01 9.41E-01 - 2.41E+00 2.41E+00 2.41E+00 - 6.21E-01 6.21E-01 6.21E-01 -

Sr-90 6.50E+03 1.16E+03 2.87E+03 2.09E+03 8.56E+03 2.59E+03 4.38E+03 2.41E+03 3.85E+03 8.27E+02 1.80E+03 1.20E+03

Tc-99 4.60E+03 4.60E+03 4.60E+03 - 8.21E+03 8.21E+03 8.21E+03 - 4.65E+03 4.65E+03 4.65E+03 -

Th-228 3.44E+00 3.44E+00 3.44E+00 - 8.72E+00 8.72E+00 8.72E+00 - 2.39E+00 2.39E+00 2.39E+00 -

Th-230 7.53E-01 7.53E-01 7.53E-01 - 1.91E+00 1.91E+00 1.91E+00 - 5.23E-01 5.23E-01 5.23E-01 -

Th-232 3.01E+00 3.01E+00 3.01E+00 - 7.63E+00 7.63E+00 7.63E+00 - 2.09E+00 2.09E+00 2.09E+00 -

U-234 1.90E+02 1.75E+01 9.17E+01 7.04E+01 1.89E+02 1.03E+01 7.20E+01 7.68E+01 1.92E+02 1.15E+01 7.84E+01 7.59E+01

U-235 1.03E+01 6.34E-01 4.76E+00 3.69E+00 1.00E+01 3.74E-01 3.75E+00 3.94E+00 1.05E+01 4.19E-01 4.22E+00 3.91E+00

U-238 1.80E+02 1.65E+01 9.59E+01 7.12E+01 1.78E+02 9.75E+00 7.89E+01 7.65E+01 1.82E+02 1.09E+01 8.58E+01 7.53E+01

Zr-95 4.21E+01 4.21E+01 4.21E+01 - 7.43E+01 7.43E+01 7.43E+01 - 4.29E-02 4.29E-02 4.29E-02 -

Amphibian Bird Large Mammal

Max Min Average SD Max Min Average SD Max Min Average SD

Ag-110m 9.56E+01 4.28E+01 6.92E+01 3.73E+01 1.74E+02 9.03E+01 1.32E+02 5.93E+01 1.56E+02 9.42E+01 1.25E+02 4.37E+01

Am-241 1.98E+01 1.65E+00 8.53E+00 6.34E+00 8.09E+01 7.10E+00 4.13E+01 2.59E+01 1.48E+02 5.11E+00 9.13E+01 4.98E+01

C-14 2.35E+04 7.29E+03 1.36E+04 7.00E+03 4.27E+04 1.70E+04 2.68E+04 1.12E+04 1.23E+04 3.03E+03 7.45E+03 3.78E+03

Ce-144 1.05E+00 1.05E+00 1.05E+00 - 1.69E+00 1.69E+00 1.69E+00 - 4.36E-01 4.36E-01 4.36E-01 -

Co-60 9.24E+01 1.53E+00 2.46E+01 3.81E+01 1.42E+02 3.30E+00 4.02E+01 5.72E+01 7.00E+00 3.17E-01 2.31E+00 2.74E+00

Cs-134 3.84E+02 3.29E+01 1.85E+02 1.36E+02 9.90E+01 1.19E+01 5.54E+01 3.61E+01 9.67E+00 9.61E-01 5.58E+00 4.03E+00

Cs-137 3.97E+04 4.07E+03 2.97E+04 1.01E+04 1.56E+04 5.30E+02 1.01E+04 4.39E+03 2.60E+03 2.78E+01 1.25E+03 8.98E+02

Eu-155 8.55E+01 1.52E+01 3.62E+01 2.84E+01 1.56E+02 3.28E+01 6.91E+01 5.10E+01 2.43E+01 1.60E+00 1.05E+01 8.39E+00

H-3 8.75E+02 1.05E+02 4.77E+02 3.27E+02 1.88E+03 8.13E+01 9.32E+02 7.14E+02 1.43E+03 3.03E+01 6.90E+02 6.03E+02

I-125 3.26E+02 3.26E+02 3.26E+02 - 7.48E+02 7.48E+02 7.48E+02 - 3.44E+02 3.44E+02 3.44E+02 -

I-129 8.10E+00 8.10E+00 8.10E+00 - 1.31E+01 1.31E+01 1.31E+01 - 1.32E+00 1.32E+00 1.32E+00 -

I-131 2.34E+02 2.34E+02 2.34E+02 - 5.37E+02 5.37E+02 5.37E+02 - 2.47E+02 2.47E+02 2.47E+02 -

Nb-95 1.06E+01 3.57E+00 7.08E+00 4.96E+00 1.93E+01 5.76E+00 1.25E+01 9.56E+00 6.29E+01 5.43E+00 3.41E+01 4.06E+01

Pu-238 1.06E+01 2.84E-01 4.50E+00 5.41E+00 6.74E+00 3.76E-01 3.59E+00 3.18E+00 6.68E+00 2.59E-01 3.25E+00 3.23E+00

Pu-240 1.06E+01 2.33E+00 7.31E+00 4.39E+00 1.26E+01 3.08E+00 7.47E+00 4.80E+00 9.69E+00 2.13E+00 6.17E+00 3.81E+00

Ru-106 5.29E+01 2.72E+01 4.01E+01 1.82E+01 8.12E+01 4.39E+01 6.26E+01 2.64E+01 2.17E+00 6.05E-01 1.39E+00 1.10E+00

S-35 2.62E+02 6.79E+01 1.72E+02 9.63E+01 6.11E+02 1.31E+02 3.56E+02 2.14E+02 4.00E+02 1.15E+02 2.76E+02 1.24E+02

Sb-125 7.97E-01 7.97E-01 7.97E-01 - 1.22E+00 1.22E+00 1.22E+00 - 8.06E+00 8.06E+00 8.06E+00 -

Sr-90 4.84E+03 1.01E+03 2.31E+03 1.50E+03 2.75E+03 3.99E+02 1.17E+03 9.19E+02 2.50E+02 1.69E+01 1.35E+02 8.28E+01

Tc-99 4.60E+03 4.60E+03 4.60E+03 - 4.84E+03 4.84E+03 4.84E+03 - 7.72E+02 7.72E+02 7.72E+02 -

Th-228 1.23E+00 1.23E+00 1.23E+00 - 1.53E+01 1.53E+01 1.53E+01 - 2.40E+01 2.40E+01 2.40E+01 -

Th-230 2.69E-01 2.69E-01 2.69E-01 - 3.34E+00 3.34E+00 3.34E+00 - 5.26E+00 5.26E+00 5.26E+00 -

Th-232 1.08E+00 1.08E+00 1.08E+00 - 1.34E+01 1.34E+01 1.34E+01 - 2.10E+01 2.10E+01 2.10E+01 -

U-234 1.91E+02 1.48E+01 7.95E+01 7.46E+01 1.91E+02 1.67E+01 9.42E+01 6.95E+01 2.41E+02 4.05E+01 1.51E+02 7.11E+01

U-235 1.04E+01 5.37E-01 4.14E+00 3.84E+00 1.03E+01 7.81E-01 4.81E+00 3.65E+00 1.09E+01 2.55E+00 7.48E+00 3.29E+00

U-238 1.80E+02 1.40E+01 8.54E+01 7.48E+01 1.80E+02 1.90E+01 9.61E+01 7.16E+01 1.84E+02 4.60E+01 1.33E+02 6.06E+01

Zr-95 5.67E-02 5.67E-02 5.67E-02 - 5.68E+01 5.68E+01 5.68E+01 - 3.61E+00 3.61E+00 3.61E+00 -

ReptileSmall Mammal Annelid
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Max Min Average SD Max Min Average SD Max Min Average SD

Ag-110m 7.49E+00 4.04E+00 5.76E+00 2.44E+00 1.15E+01 7.50E+00 9.52E+00 2.86E+00 1.72E+02 1.00E+02 1.36E+02 5.09E+01

Am-241 1.06E+02 7.46E+00 6.45E+01 3.77E+01 1.57E+02 8.72E+00 1.05E+02 5.29E+01 1.33E+02 4.08E+00 8.03E+01 4.50E+01

C-14 1.48E+04 5.43E+03 9.19E+03 3.98E+03 2.28E+04 7.58E+03 1.46E+04 6.28E+03 1.35E+04 3.04E+03 8.08E+03 4.29E+03

Ce-144 5.01E-01 5.01E-01 5.01E-01 - 5.86E-01 5.86E-01 5.86E-01 - 6.11E+00 6.11E+00 6.11E+00 -

Co-60 4.39E+00 1.30E-01 1.30E+00 1.75E+00 6.11E+00 2.57E-01 1.97E+00 2.39E+00 7.54E+00 3.38E-01 2.47E+00 2.96E+00

Cs-134 1.52E+01 2.33E+00 9.62E+00 6.37E+00 2.44E+01 3.80E+00 1.55E+01 1.04E+01 5.34E+00 4.73E-01 3.00E+00 2.20E+00

Cs-137 3.28E+03 5.98E+01 1.90E+03 1.02E+03 7.85E+03 7.77E+01 3.57E+03 2.59E+03 1.32E+03 1.24E+01 6.51E+02 4.66E+02

Eu-155 1.02E+01 1.45E+00 4.38E+00 3.46E+00 1.58E+01 1.69E+00 7.19E+00 5.17E+00 2.68E+01 1.58E+00 1.14E+01 9.35E+00

H-3 1.87E+03 4.98E+01 9.38E+02 7.77E+02 2.65E+03 6.47E+01 1.43E+03 1.18E+03 1.57E+03 2.70E+01 7.35E+02 6.60E+02

I-125 6.40E+02 6.40E+02 6.40E+02 - 1.52E+03 1.52E+03 1.52E+03 - 4.03E+02 4.03E+02 4.03E+02 -

I-129 6.61E+00 6.61E+00 6.61E+00 - 7.72E+00 7.72E+00 7.72E+00 - 1.50E+00 1.50E+00 1.50E+00 -

I-131 4.59E+02 4.59E+02 4.59E+02 - 1.09E+03 1.09E+03 1.09E+03 - 2.90E+02 2.90E+02 2.90E+02 -

Nb-95 4.74E-01 8.79E-02 2.81E-01 2.73E-01 7.30E-01 1.03E-01 4.16E-01 4.44E-01 6.92E+01 5.34E+00 3.73E+01 4.52E+01

Pu-238 9.21E+00 5.63E-01 5.14E+00 4.35E+00 1.20E+01 6.58E-01 6.50E+00 5.67E+00 2.34E+01 1.00E+00 1.14E+01 1.13E+01

Pu-240 1.94E+01 4.62E+00 1.11E+01 7.57E+00 2.36E+01 5.39E+00 1.37E+01 9.24E+00 3.43E+01 8.20E+00 2.20E+01 1.31E+01

Ru-106 3.60E+00 1.57E+00 2.58E+00 1.44E+00 5.02E+00 1.83E+00 3.42E+00 2.25E+00 2.33E+00 5.95E-01 1.46E+00 1.23E+00

S-35 6.08E+02 1.38E+02 3.74E+02 2.11E+02 8.49E+02 2.15E+02 5.75E+02 2.82E+02 4.41E+02 1.27E+02 2.93E+02 1.32E+02

Sb-125 3.28E+00 3.28E+00 3.28E+00 - 4.56E+00 4.56E+00 4.56E+00 - 8.67E+00 8.67E+00 8.67E+00 -

Sr-90 2.31E+03 2.25E+02 9.97E+02 7.83E+02 3.23E+03 2.63E+02 1.50E+03 1.07E+03 3.48E+02 2.31E+01 1.98E+02 1.17E+02

Tc-99 2.47E+03 2.47E+03 2.47E+03 - 2.48E+03 2.48E+03 2.48E+03 - 7.72E+02 7.72E+02 7.72E+02 -

Th-228 2.19E+01 2.19E+01 2.19E+01 - 2.84E+01 2.84E+01 2.84E+01 - 2.14E+01 2.14E+01 2.14E+01 -

Th-230 4.78E+00 4.78E+00 4.78E+00 - 6.21E+00 6.21E+00 6.21E+00 - 4.69E+00 4.69E+00 4.69E+00 -

Th-232 1.91E+01 1.91E+01 1.91E+01 - 2.49E+01 2.49E+01 2.49E+01 - 1.88E+01 1.88E+01 1.88E+01 -

U-234 1.92E+02 2.05E+01 1.16E+02 6.66E+01 1.92E+02 2.66E+01 1.34E+02 6.82E+01 2.42E+02 3.61E+01 1.49E+02 7.13E+01

U-235 1.06E+01 1.31E+00 5.83E+00 3.48E+00 1.06E+01 1.82E+00 6.65E+00 3.44E+00 1.07E+01 2.75E+00 7.28E+00 3.16E+00

U-238 1.82E+02 2.33E+01 1.11E+02 6.90E+01 1.82E+02 3.03E+01 1.22E+02 6.68E+01 1.84E+02 4.10E+01 1.30E+02 5.98E+01

Zr-95 3.48E+00 3.48E+00 3.48E+00 - 5.41E+00 5.41E+00 5.41E+00 - 3.99E+00 3.99E+00 3.99E+00 -

Arthropod Flying Insect Mollusc

Max Min Average SD Max Min Average SD

Ag-110m 9.56E+01 4.28E+01 6.92E+01 3.73E+01 1.45E+02 8.29E+01 1.14E+02 4.37E+01

Am-241 1.21E+01 1.65E+00 6.22E+00 5.36E+00 1.99E+02 1.68E-01 1.05E+02 9.05E+01

C-14 2.35E+04 1.05E+04 1.70E+04 9.16E+03 5.64E+04 2.75E+04 4.19E+04 2.04E+04

Ce-144 1.05E+00 1.05E+00 1.05E+00 - 1.30E+02 1.30E+02 1.30E+02 -

Co-60 1.16E+01 1.08E+01 1.12E+01 5.74E-01 1.01E+02 2.82E+01 6.47E+01 5.17E+01

Cs-134 9.69E+01 9.69E+01 9.69E+01 - 2.82E+01 2.82E+01 2.82E+01 -

Cs-137 3.36E+04 2.21E+04 2.78E+04 4.70E+03 4.63E+02 8.29E+01 2.59E+02 1.56E+02

Eu-155 8.55E+01 2.18E+01 4.31E+01 3.67E+01 5.61E+01 2.79E+01 3.82E+01 1.56E+01

H-3 8.75E+02 1.40E+02 4.20E+02 3.20E+02 8.29E+03 2.82E+03 6.48E+03 2.48E+03

I-129 8.10E+00 8.10E+00 8.10E+00 - 2.82E+01 2.82E+01 2.82E+01 -

Nb-95 1.06E+01 3.57E+00 7.08E+00 4.96E+00 1.16E+02 2.82E+01 7.21E+01 6.21E+01

Pu-238 2.62E+00 2.84E-01 1.45E+00 1.65E+00 3.95E-01 1.23E-01 2.59E-01 1.92E-01

Pu-240 9.00E+00 2.33E+00 5.66E+00 4.72E+00 3.24E+00 8.05E-02 1.66E+00 2.23E+00

Ru-106 2.72E+01 2.72E+01 2.72E+01 - 2.09E+02 2.09E+02 2.09E+02 -

S-35 2.45E+02 1.12E+02 1.79E+02 9.39E+01 1.59E+03 9.95E+02 1.29E+03 4.22E+02

Sr-90 2.14E+03 1.01E+03 1.52E+03 5.76E+02 2.31E+02 5.64E+01 1.51E+02 8.85E+01

U-234 6.65E+01 5.07E+01 5.86E+01 1.12E+01 9.25E+01 3.08E+01 6.17E+01 4.37E+01

U-235 3.59E+00 2.66E+00 3.12E+00 6.55E-01 3.70E+00 1.78E+00 2.74E+00 1.36E+00

U-238 6.21E+01 5.20E+01 5.70E+01 7.13E+00 8.64E+01 2.04E+01 5.34E+01 4.67E+01

Rabbit (soil data only) Rabbit (soil and rabbit data)
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10.3 Allowable shield thicknesses for a range of scintillator sizes 

 

Maximum thickness of lead to keep overall shield weight below 10 kg. Each thickness 
displayed results from the specific scintillator length, width and depth. All shield 
thicknesses are in cm. 

 

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5 4.97 4.81 4.66 4.52 4.39 4.26 4.14 4.03 3.92 3.82 3.72 3.63 3.54 3.46

2.0 4.89 4.73 4.58 4.43 4.30 4.17 4.05 3.94 3.83 3.73 3.63 3.54 3.45 3.37

2.5 4.81 4.65 4.49 4.35 4.22 4.09 3.97 3.85 3.75 3.64 3.55 3.45 3.37 3.28

3.0 4.73 4.57 4.41 4.27 4.14 4.01 3.89 3.77 3.66 3.56 3.47 3.37 3.29 3.20

3.5 4.65 4.49 4.34 4.19 4.06 3.93 3.81 3.69 3.59 3.48 3.39 3.29 3.21 3.12

4.0 4.58 4.41 4.26 4.12 3.98 3.85 3.73 3.62 3.51 3.41 3.31 3.22 3.13 3.05

4.5 4.50 4.34 4.19 4.04 3.91 3.78 3.66 3.54 3.44 3.33 3.24 3.15 3.06 2.98

5.0 4.43 4.27 4.12 3.97 3.84 3.71 3.59 3.47 3.36 3.26 3.17 3.08 2.99 2.91

5.5 4.37 4.20 4.05 3.90 3.77 3.64 3.52 3.40 3.30 3.19 3.10 3.01 2.92 2.84

1.5 4.82 4.66 4.51 4.37 4.23 4.10 3.98 3.87 3.76 3.66 3.56 3.47 3.38 3.29

2.0 4.74 4.58 4.42 4.28 4.15 4.02 3.90 3.78 3.67 3.57 3.47 3.38 3.29 3.21

2.5 4.66 4.49 4.34 4.20 4.06 3.93 3.81 3.70 3.59 3.49 3.39 3.30 3.21 3.13

3.0 4.58 4.41 4.26 4.12 3.98 3.85 3.73 3.62 3.51 3.41 3.31 3.22 3.13 3.05

3.5 4.50 4.34 4.18 4.04 3.90 3.78 3.65 3.54 3.43 3.33 3.23 3.14 3.06 2.97

4.0 4.42 4.26 4.11 3.96 3.83 3.70 3.58 3.46 3.36 3.26 3.16 3.07 2.98 2.90

4.5 4.35 4.19 4.03 3.89 3.75 3.63 3.51 3.39 3.29 3.18 3.09 3.00 2.91 2.83

5.0 4.28 4.12 3.96 3.82 3.68 3.56 3.44 3.32 3.22 3.11 3.02 2.93 2.84 2.76

5.5 4.21 4.05 3.89 3.75 3.61 3.49 3.37 3.25 3.15 3.05 2.95 2.86 2.78 2.70

1.5 4.68 4.52 4.37 4.22 4.08 3.96 3.83 3.72 3.61 3.51 3.41 3.32 3.23 3.14

2.0 4.60 4.43 4.28 4.14 4.00 3.87 3.75 3.63 3.52 3.42 3.32 3.23 3.14 3.06

2.5 4.51 4.35 4.20 4.05 3.92 3.79 3.67 3.55 3.44 3.34 3.24 3.15 3.07 2.98

3.0 4.43 4.27 4.12 3.97 3.84 3.71 3.59 3.47 3.36 3.26 3.17 3.07 2.99 2.91

3.5 4.36 4.19 4.04 3.89 3.76 3.63 3.51 3.40 3.29 3.19 3.09 3.00 2.91 2.83

4.0 4.28 4.12 3.96 3.82 3.68 3.56 3.44 3.32 3.22 3.11 3.02 2.93 2.84 2.76

4.5 4.21 4.04 3.89 3.75 3.61 3.48 3.36 3.25 3.14 3.04 2.95 2.86 2.78 2.70

5.0 4.14 3.97 3.82 3.68 3.54 3.41 3.29 3.18 3.08 2.98 2.88 2.79 2.71 2.63

5.5 4.07 3.90 3.75 3.61 3.47 3.35 3.23 3.12 3.01 2.91 2.82 2.73 2.65 2.57

1.5 4.55 4.39 4.23 4.08 3.95 3.82 3.69 3.58 3.47 3.37 3.27 3.17 3.09 3.00

2.0 4.46 4.30 4.15 4.00 3.86 3.73 3.61 3.49 3.39 3.28 3.19 3.09 3.01 2.92

2.5 4.38 4.22 4.06 3.92 3.78 3.65 3.53 3.41 3.31 3.20 3.11 3.02 2.93 2.85

3.0 4.30 4.14 3.98 3.84 3.70 3.57 3.45 3.34 3.23 3.13 3.03 2.94 2.86 2.77

3.5 4.22 4.06 3.90 3.76 3.62 3.49 3.37 3.26 3.15 3.05 2.96 2.87 2.78 2.70

4.0 4.15 3.98 3.83 3.68 3.55 3.42 3.30 3.19 3.08 2.98 2.89 2.80 2.72 2.64

4.5 4.07 3.91 3.75 3.61 3.48 3.35 3.23 3.12 3.01 2.91 2.82 2.73 2.65 2.57

5.0 4.00 3.84 3.68 3.54 3.41 3.28 3.16 3.05 2.95 2.85 2.76 2.67 2.59 2.51

5.5 3.93 3.77 3.61 3.47 3.34 3.21 3.10 2.99 2.88 2.78 2.69 2.61 2.52 2.45

1.5 4.43 4.26 4.10 3.96 3.82 3.69 3.56 3.45 3.34 3.23 3.14 3.04 2.96 2.87

2.0 4.34 4.17 4.02 3.87 3.73 3.60 3.48 3.36 3.26 3.15 3.06 2.96 2.88 2.80

2.5 4.25 4.09 3.93 3.79 3.65 3.52 3.40 3.29 3.18 3.08 2.98 2.89 2.80 2.72

3.0 4.17 4.01 3.85 3.71 3.57 3.44 3.32 3.21 3.10 3.00 2.91 2.82 2.73 2.65

3.5 4.09 3.93 3.78 3.63 3.49 3.37 3.25 3.13 3.03 2.93 2.83 2.75 2.66 2.58

4.0 4.02 3.85 3.70 3.56 3.42 3.29 3.18 3.06 2.96 2.86 2.77 2.68 2.60 2.52

4.5 3.94 3.78 3.63 3.48 3.35 3.22 3.11 2.99 2.89 2.79 2.70 2.61 2.53 2.45

5.0 3.87 3.71 3.56 3.41 3.28 3.16 3.04 2.93 2.83 2.73 2.64 2.55 2.47 2.39

5.5 3.80 3.64 3.49 3.35 3.21 3.09 2.97 2.86 2.76 2.67 2.58 2.49 2.41 2.34
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10.4 Tables of 𝝓𝒓𝒂𝒕𝒊𝒐 for modelled organisms 

 

 

Table shows 𝝓𝒓𝒂𝒕𝒊𝒐 for vole calculated for each scintillator length, width and depth. 
Results are grouped by depth. 
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Table shows 𝝓𝒓𝒂𝒕𝒊𝒐 for small bat calculated for each scintillator length, width and depth. 
Results are grouped by depth. 
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Table shows 𝝓𝒓𝒂𝒕𝒊𝒐 for large bat calculated for each scintillator length, width and depth. 
Results are grouped by depth. 
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Table shows 𝝓𝒓𝒂𝒕𝒊𝒐 for bird calculated for each scintillator length, width and depth. 
Results are grouped by depth. 
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10.5 RMS30 operating instructions 

Introduction: The RMS30 unit from John Caunt Scientific (JCS) has been modified to work with 

the four scintillators included with the live-monitor. The setup of the electronic components 

for this live-monitor is detailed in Figure 10.1. Cables are labelled to indicate port attachment.  

 

Figure 10.1: Diagram of live-monitor electrical connections 
 

Operation: The RMS30 is turned on by pressing and holding the  button (ensure all required 

scintillators are connected before turning on). Pressing and holding the same button will turn 

off the RMS30. The main interface will appear as shown in Figure 10.2. There are four readable 

outputs, one for each scintillator, displayed on the main interface. The total counts for the 

two gamma scintillators are displayed on the top row (CH1A and CH1B for inputs A and B 

respectively) and the total counts for the two beta scintillators are displayed of the bottom 

row (CH2A and CH2B for inputs A and B respectively). If one or more of the scintillators are 

not connected to the RMS30 then a not connected message will display for the respective 

channel. Do NOT remove or add any scintillator device to the RMS30 whilst it is powered on. 

The unit will operate for approximately 10 hours and can be recharged by using the supplied 

power adapter.  

 

Figure 10.2: RMS30 interface 
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Menu options: Pressing the down button will provide the following functions: 

• Start count 

• Change sample time 

• Change CH1 HV, LLD & ULD 

• Change CH2 HV, LLD & ULD 

• Connect to a PC (USB mode) 

The RMS30 initialises with the menu set to “start count”. 

Measurement: Ensure the required scintillators are connected and the unit is powered on. 

Press (✓) when on the menu option “start count” to start a measurement. The measurement 

will count for the defined sample time. At any time during this measurement the user can 

press () to cancel and return to the initial interface. Once the measurement is complete the 

user is given the option to save to the internal memory. Pressing (✓) will save the 

measurement data and pressing () will discard the data. This option allows the user to later 

copy the measurements to a computer. 

Change sample time: The sample time period can be changed by navigating the menu and 

selecting “change sample time”. The up and down buttons then scroll through the pre-set 

values (from 1 to 10,000 seconds). Select the required sample time and then press (✓) to save 

this value. 

Energy calibration: The scintillators can be calibrated via the “Change CH1 HV, LLD & ULD” 

and “Change CH2 HV, LLD & ULD” menu options. Select the required option by pressing (✓). 

Continue to press (✓) to cycle through the options: HV (high voltage), LLD (lower level 

discriminator), ULD (upper level discriminator), and enable window. This will first cycle 

through input A and then the same options for input B. This procedure is the same for CH1 

and CH2. Each interface box contains two sockets for attaching to an oscilloscope if a more 

detailed energy calibration is required.  

PC connection: The saved measurements can be accessed by connecting the RMS30 to a 

computer (using the USB cable), powering on the unit, and selecting “Connect to a PC” from 

the menu. The data files are then accessible from the computer. Data is saved into a .csv file 

and a new file is created each time the RMS30 is powered on.  
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10.6 Ethical approval 

 

 

 

  



219 
 

10.7 Laboratory measurements of small organisms using portable detector 

Figures showing correlation between the portable detector count rate and known animal 

internal activity (verified through alternative means). Uncertainties shown are the expanded 

uncertainties. For the portable detector this includes the uncertainty in the measurement 

(Currie, 1968), the horizontal and rotational movement, and the scintillator response rates . 

 

Mouse measured 137Cs count rate (laboratory) compared to internal activity. 

 

 

Mouse measured 90Sr count rate (laboratory) compared to internal activity. 
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Bird measured 137Cs count rate (laboratory) compared to internal activity. 

 

 

 

Bird measured 90Sr count rate (laboratory) compared to internal activity. 

 

 


