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Abstract: A theoretical study is presented of transient mixed convection boundary layer flow of a nanofluid in the forward stagnation region of 

a heated sphere which is rotating with time dependent angular velocity. The effect of the non-linear Boussinesq approximation is taken into 
account. The nanofluid is treated as a two-component mixture i.e. nano-particles distributed homogenously in a base fluid (water or gas). The 
effects of the Brownian motion and thermophoresis are included for the nanofluid and constant wall temperature is imposed at the sphere 
surface. The first and second laws of thermodynamics are employed in order to study thermophysics as well as heat and mass transfer 
phenomena. By introducing appropriate similarity variables the governing equations are transformed into a system of dimensionless, nonlinear, 
coupled, ordinary differential equations which are solved numerically by applying the second-order accurate implicit finite difference Keller box 
method. The reliability and efficiency of the obtained numerical results are validated via comparison with the previously published results for 
special cases. The effects of various parameters on primary and secondary velocities, temperature, nanofluid volume fraction (concentration), 
primary and secondary shear stress functions, Nusselt number function (wall heat transfer rate) and Sherwood number function (wall nano-
particle mass transfer rate) are visualized. Furthermore the influence of non-linear temperature parameter, Brinkman parameter (ratio of 
Brinkman number to dimensionless temperature ratio), local Reynolds number and unsteadiness parameter on entropy generation number is 
computed. A strong elevation in entropy generation number is computed with both increasing Brinkman parameter and unsteadiness parameter. 
Primary and secondary surface shear stresses, Nusselt number and Sherwood number also increase with unsteadiness and rotation 
parameters. Primary shear stress is boosted with increasing mixed convection parameter and Brownian motion effect whereas secondary shear 
stress is depressed. Temperatures are suppressed with increasing nonlinear temperature parameter whereas nano-particle concentrations are 
elevated. Increasing thermophoresis parameter enhances both temperatures and nano-particle concentration values. The simulations find 
applications in rotating chemical engineering mixing systems and nano-coating transport phenomena.   
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NOMENCLATURE 

A unsteadiness parameter 

C concentration 

Cfx friction factor 

DB Brownian diffusion coefficient [m-2 s-1] 

DT thermophoretic diffusion coefficient [m-2 s-1] 

f dimensionless stream function 

k effective thermal conductivity [W m-1 K-1] 

Nb Brownian motion parameter 

Br Brinkman number, 
2

eu

k T




 

Nt thermophoresis parameter 

Nu Nusselt number  

Pr Prandtl number 

Grx local Grashof number 

Rex local Reynolds number 

Sc Schmidt number 

T temperature [K] 

TW wall temperature of the vertical plate [K] 

𝑇∞ ambient temperature [K] 

x, y coordinates along the plate generator and normal to the generator respectively 

u, v velocity components along the x- and y- directions respectively 

t    time 

t  dimensionless time 

Ng  dimensionless entropy generation number 

 

Greek Symbols: 

αm thermal diffusivity of porous medium [m-2 s-1] 

1  non-linear temperature (related to nonlinear Boussinesq approximation) 

𝜂  dimensionless transverse coordinate  

θ dimensionless temperature  

μ viscosity of fluid [kg m-1 s-1] 

λ dimensionless rotation parameter 

λ1 mixed convection parameter 

ρf fluid density [kg m-3] 

ρp nano-particle mass density [kg m-3] 

(ρc)f heat capacity of the fluid [J m-3 K-1] 

(ρc)m effective heat capacity of porous medium [J m-3 K-1] 

(ρc)p effective heat capacity of nano-particle material [J m-3 K-1] 

         dimensionless nano-particle volume fraction  

ψ stream function 

Br/*  viscous dissipation parameter (ratio of Brinkman number and temperature ratio) 
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1. INTRODUCTION 

Convective heat transfer is significant in numerous industrial heating or cooling devices. Heat 

convection can be modified by altering flow geometry, boundary conditions or by enhancing fluid 

thermophysical properties. A popular methodology for achieving this which has emerged in recent 

years is via doping of the working fluids in thermal engineering systems with very small solid 

particles. Fabricating particles at the nanoscale and selective suspension in base fluids creates 

solid–liquid mixtures known as nanofluids. Nanofluids therefore constitute a new kind of heat 

transfer fluid containing small quantities of nano-sized particles (usually less than 100 nm) which 

are uniformly and stably suspended in a liquid. The dispersion of a small amount of solid 

nanoparticles in conventional fluids changes their thermal conductivity remarkably. The term 

“nanofluid” was introduced by Choi [1] who initiated the synthesis of colloidal suspensions of 

nanoparticles in the base fluids. These fluids represent an innovative way to increase thermal 

conductivity and, therefore, heat transfer performance of industrial systems. Unlike heat transfer 

in conventional fluids, the exceptionally high thermal conductivity of nanofluids manifests in  

enhanced heat transfer rates, a unique feature of nanofluids. Nanofluid behaviors have been 

observed consistently by different many researchers and various metallic nanoparticles have been 

explored including copper, titanium oxide and silver owing to the high thermal conductivity of 

these metals. Various base fluids include ethylene glycol, water, oils, air etc. An early theoretical 

model for nanofluid transport phenomena was proposed by Buongiorno [2]. Zau Wu et al. [3] 

experimentally investigated the pressure drop and heat transfer characteristics of alumina/water 

nanofluids in helical heat exchangers. Ulzie Rea et al. [4] studied experimentally the laminar 

convective heat transfer and viscous pressure loss for alumina–water and zirconia–water 

nanofluids in a flow loop with a vertical heated tube, noting that the heat transfer coefficient 

enhancement is strongly related to the different mixture properties of the nanofluids. Several 

authors have attempted to develop convective transport for nanofluids as homogeneous flow 

models. Das et al. [5] presented a popular model which incorporates volume fraction via modified 

nanofluid thermophysical properties in the momentum and energy equations, but does not include 

a species conservation equation as featured in the Buongiorno model (this model emphasizes 

Brownian motion and thermophoresis effects). Kuznetsov and Nield [6] described  recent 

experimental and theoretical studies on convective heat transfer in nanofluids and further  

identified some challenges and opportunities for future research. Gorla and Hossain [7] simulated 

mixed convective boundary layer flow over a vertical cylinder embedded in a porous medium 

saturated with nanofluid. Kameswaran et al. [8] studied numerically the convective heat transfer 

in non-Darcy nanofluid flow over a vertical wavy surface incorporating the influence of non-linear 

Boussinesq approximation, thermal stratification and convective boundary conditions. 

Srinivasacharya and Surender [9] evaluated the effect of double stratification on mixed convection 

flow of a nanofluid along a vertical plate embedded in non-Darcy porous medium. Bég et al. [10] 

investigated with MAPLE numerical quadrature the hydrodynamic, thermal and mass slip effects 

in transient  asymmetric bioconvective nanofluid flow in a porous microchannel with deformable 

walls.  The influence of viscous dissipation and chemical reaction on convective transport in a 

boundary layer stagnation point nanofluid flow from a stretching/shrinking sheet has been 

considered by Murthy et al. [11]. Recently, Gorla and Vasu [12] studied unsteady convective heat 

transfer to a stretching surface in a non-Newtonian nanofluid. 

Fluid flows over heated rotating bodies have many applications in various branches of 

engineering including centrifugal chemical mixing technologies, spin-stabilized rocket cooling, 
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turbines, thermal plasma processing and paint spray mechanisms. Takhar and Nath [13] have 

reported a self-similar solution for transient stagnation-point boundary layer flow from a rotating 

sphere with magnetic field effects. Anilkumar and Roy [14] investigated unsteady mixed 

convection boundary layer flow in the stagnation point region of a rotating sphere where the free 

stream velocity and angular velocity of the rotating sphere vary continuously with time. Bég et al. 

[15] studied the nonlinear magnetized thermal convection from a rotating cone in anisotropic 

porous media using a finite difference method. Chamkha and Ahmed [16] have presented 

numerical finite difference solutions for unsteady magnetohydrodynamic mixed convection heat 

and mass transfer from a rotating sphere. Bég et al. [17] used an optimized homotopy analysis 

method (HAM) to study stagnation-point nanofluid flow from a spinning sphere, verifying the 

sensitivity of boundary layer characteristics to rotational and unsteady effects. Thumma et al. [18] 

presented variational finite element solutions for unsteady dissipative hydromagnetic convective 

heat and mass transfer in nanofluid flow from a rotating perforated plate in porous media. 

The study of nonlinear heat convection has substantial relevance in both engineering and 

geo/astro-physical flows. In the conventional Boussinesq approximation, density differences are 

sufficiently small to be neglected, except where they appear in terms multiplied by gravity and the 

convention is to use a single linear thermal buoyancy term in the momentum equation. This 

restricts the application of models to lower temperature differences. In the non-Boussinesq 

approximation a temperature-concentration-dependent density relation is employed and this also 

allows non-linear temperature variation. Non-Boussinesq flows have been studied in several 

different areas of thermal sciences. Kamel and Paolucci [19] simulated using the FIDAP finite 

element code, the thermofluid transport in a furnace for fabricating carbon aircraft brakes, noting 

that a more robust simulation is possible for a wider variation of properties with temperature with 

a non-Boussinesq model. Van der Borght [20] studied nonlinear convection numerically in a 

compressible medium of polytropic structure using a band matrix algorithm and considering two 

characteristic density stratifications. Partha [21] reported on the effects of nonlinear convection 

with nonlinear temperature and concentration in a porous medium using the non-Boussinesq 

temperature-concentration-dependent density relation. Sameen et al. [22] studied non-Boussinesq 

convection in low temperature gaseous helium at intermediate Rayleigh numbers, observing that 

the Nusselt number is reduced as the system departs from the Boussinesq approximation. Hung 

and Cheng [23] investigated computationally the free  convection of non-Boussinesq fluid in a 

rectangular enclosure, showing that better accuracy is achieved for high temperature differences  

compared with the conventional Boussinesq approximation.  

.  

Heat transfer processes are generally accompanied by thermodynamic irreversibility or 

entropy generation. Minimization of entropy generation in any thermodynamic system leads to the 

efficient use of exergy which is a part of energy and cannot be destroyed. Different sources such 

as heat transfer and viscous dissipation are responsible for the production of entropy. Many 

investigations have been conducted to study entropy generation in Newtonian /non-Newtonian 

fluids for different geometries. Bejan [24] reviewed the entropy generation analysis in a variety of 

thermal convection engineering applications. Khan and Gorla [25] discussed the second law 

characteristics of heat transfer in non-Newtonian fluids flow over a horizontal plate embedded in 

porous medium with prescribe surface temperature. A review on entropy generation in natural and 

mixed convection heat transfer for energy system has been given by Oztop and Al-Salem [26]. 

Srinivas et al. [27] investigated analytically the entropy generation in radiative heat transfer of 

two immiscible Stokes’ couple stress fluids in a channel, identifying that entropy production is 
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suppressed with thermal radiation whereas it is elevated with viscous dissipation (fluid friction).  

Chen and Liu [28] studied the entropy generation in magneto-hydrodynamic mixed convection 

flow of nanofluid within a vertical asymmetrically-heated parallel-plate channel subjected to 

viscous dissipation effect. Adesanya et al. [29] considered entropy generation in third grade 

Reiner-Rivlin viscoelastic fluid convection. Gorla et al. [30] used a power-law model to study 

entropy generation in thermal convection boundary layer flow from a two-dimensional wedge to 

a non-Newtonian saturated porous medium, observing that  Bejan number is enhanced with both 

viscosity index (non-Newtonian parameter) and the buoyancy parameter. 

 

The aim of the present work is to study the entropy analysis on mixed convective boundary 

layer flow of nanofluid at the stagnation point region of a rotating sphere. Non-linear convection 

is examined with a second-order approximation of temperature (non-Boussinesq approximation). 

The sphere surface is assumed to be isothermal (constant wall temperature). In the following 

sections, the problem is formulated, analyzed, solved numerically with a finite difference code 

with validation also included. An entropy generation analysis is also performed. Both gaseous and 

water base fluids are considered. Buongornio’s model [2] is utilized for nanoscale effects. The 

influence of the emerging thermo-physical parameters on fluid, heat and mass transfer 

characteristics are determined and illustrated graphically. The computations are relevant to nano-

coating spin processing in the chemical engineering industry.  

2. MATHEMATICAL MODEL  

Consider an unsteady mixed convection boundary layer flow in the forward stagnation point 

region of heated sphere which is rotating with time-dependent angular velocity ( ) /t B t =  and free 

stream velocity is defined as ( , ) /
e

u x t Ax t= in the viscous fluid. The x- axis is measured along the 

surface of the sphere and y- axis normal to it. It is assumed that viscous dissipation terms are 

negligible. Fig.1 shows the physical model and associated coordinate system. The fluid properties 

are considered constant except density changes which produce buoyancy forces. It is also assumed 

that the temperature and concentration/nanoparticle volume fraction at the surface has constant 

values
w

T , 
w

C  respectively while the ambient temperature and concentration beyond the boundary 

layer has constant values T

, C


. According to Partha [21] density variation is extended to a second 

order approximation with the non-linear Boussinesq approximation for better analysis of non-

linear convection of heat transport. i.e. ( ) ( )
2

0 1f f fT T T T     
   = − − − − . Buongiorno [2] 

studied the effect of nano-particle dispersion on the energy transfer of nanofluids 

and developed a two-component laminar four-equation non-homogeneous equilibrium model 

for mass, momentum, and heat transport in nanofluids. The model considered many mechanisms 

including thermophoresis, diffusiophoresis, Magnus effect and fluid drainage; however only 

Brownian diffusion and thermophoresis were found to be the dominant effects in this model. The 

model further assumes that energy transfer by nanoparticle dispersion i s  negligible 

and Dufour effects make no contribution. Buongiorno’s model equations take the 

form [2]: 

 

 

Conservation of mass:  

( ) 0nf V  =           (1) 
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Conservation of momentum: 

( ) 2
nf nfVV P V   = − +            (2) 

Conservation of energy: 

( )( ) ,P nf p np npnf
C VT T C J T   =    −          (3) 

Conservation of nanoparticles: 

1
np

np

V J


 = −            (4) 

In Eqs. (3) and (4) npJ stands for nanoparticles flux and can be written as combination of the 

effects of Brownian motion and thermophoresis as: 

, ,np np B np TJ J J= +            (5) 

,np BJ  is nanoparticle flux in Brownian motion calculated based on Einstein-Stokes’ model [2]: 

,
3

B
np B np B B

f np

k T
J D D

d
 


= −  =         (6) 

 

 

And the second term on the right side of Eq. (5) stands for particle flux due to thermophoresis 

which can be calculated using the McNab-Meisen [2] approximation for the thermophoretic 

velocity of particles dispersed in a liquid: 

, 0.26
2np

f f

np T T T

f np f

J D TD
T

 
 

  
= −  =

+
        (7) 

The thermophoretic velocity (-DTΔT) given in Eq. (7) is directly proportional to the fluid viscosity. 

However, a vast majority of theoretical and experimental results as well as molecular 

dynamics simulations imply that thermophoretic velocity in colloidal suspensions 

is inversely proportional to the fluid viscosity. Thus, further studies are needed to 

confirm the exact influence of thermophoresis on heat transfer in nanofluids. Under 

the above assumptions along with the boundary layer approximation, the governing equations for 

unsteady laminar mixed convection nanofluid flow over a rotating sphere can be extended to the 

non-Boussinesq case following [17]: 

( ) ( )
0

ru rv

x y

 
+ =

 
          (8) 

( ) ( ) ( ) ( )

2 2

2

2

0 1(1 )

e e
e

f p f

u uu u u w dr u
u v u v

t x y r dx t x y

C g T T T T g C C    
    

    
+ + − = + +

     

 + − − + − − − −
 

 (9) 

2

2

w w w uw dr w
u v v

t x y r dx y

   
+ + + =

   
        (10) 

22

2

T
m B

DT T T T C T T
u v D

t x y y y T yy
 



         
 + + = + +   

          

     (11) 
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2 2

2 2

T
B

DC C C C T
u v D

t x y Ty y

     
+ + = +  

     
       (12) 

The initial conditions are  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0, , , , 0, , , , 0, , , ,

0, , , , 0, , ( , ).

i i i

i i

u x y u x y v x y v x y w x y w x y

T x y T x y C x y C x y

= = =

= =
     (13) 

The boundary conditions are given by, 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

0 : , ,0 , , ,0 0, , ,0 ( ) ,

, ,0 , ,0 , 0

0 : , , , , , , 0, , ,

,

, , ,

w w

e

t u t x u x v t x w t x t r

T t x T C t x C at y

t u t x y u x t w t x y T t x y T C t x y C as y 

 = = = 

= = =

 = = = = → 

   (14) 

Where,     ( ) ( )
2

0 1f f fT T T T     
   = − − − − , 

( )
m

m

f

k

c



= ,  

( )

( )
f

c

c







=   (15) 

 

Fig. 1. Physical model and coordinate system. 

Here m is the thermal diffusivity of the nanofluid,   is the ratio between the effective heat 

capacity of nanoparticle material and heat capacity of the fluid, x, y and z are coordinates measured 

from the forward stagnation point along the surface, normal to the surface and in the rotating 

direction respectively, g  is the acceleration due to gravity,   is the thermal expansion coefficient, 

( )r x  is the radial distance from a surface element to the axis of symmetry ( ( )r x , x in the vicinity 

of stagnation point region) and u, v and w are velocity components along the x, y and z coordinates. 

t is time, i is initial condition,   is the thermal diffusivity,   is kinematic viscosity,  is thermal 

conductivity, 
B

D  is the Brownian diffusion coefficient, 
T

D  is the thermophoretic diffusion 

coefficient. T , C  are temperature and concentration respectively in the boundary layer and the 

subscripts e, i, w and ∞ denote the condition at the edge of the boundary layer, initial condition, 

condition at the wall and free stream condition, respectively. Proceeding with the analysis we 

introduce the following dimensionless variables: 

r(x)

x
zy

Stagnation point

Nanofluid

Ω
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2
,y

vt
 =   ( ),

Ax
u f

t


 
=  

 
  ( )

2
,

v
v Af

t
= −   ( ),

Bx
w S

t


 
=  

   

( ) ,
w

T T

T T
  



−
=

−
  ( ) ,

w

C C

C C
  



−
=

−
  ,e

Ax
u

t
=   

2

,
B

A


 
=  

 
  ( ) ,

B
t

t
 =   .r x    (16) 

Substituting Equation (16) into Equations (8) to (12), we obtain the coupled, nonlinear, 

dimensionless ordinary differential equations for primary and secondary momentum, energy and 

species conservation for the regime: 

    ( )
2 2 2

1 1

1 1
(1 ) (1 ) ( ) 0

2 2 2 2 2

A A
f Aff f s f f Nr


     

   
    + + − + − − − + + − =   

   
        (17) 

 
1

0
2 2

S A fS f S S S
 

   + − + + = 
 

         (18) 

( )
21 1

0
4

Af Nb Nt
Pr

          + + + + =         (19) 

0.
4

Nt
Sc Af

Nb


  

   
  + + + =  

   
         (20) 

The transformed dimensionless boundary conditions are: 

 

0 : 0, 0, 1, 1, 1.f f S  = = = = = =          (21) 

: 1, 0, 0, 0.f S  →  → → → →          (22) 

Where  

( ) ( ) 3

2

1
,

f m

x

C g T T x
Gr

v

 
 − −

=   
( )( )

( ) ( )
,

1

p f w

f m

Nr
T T

   

  







 

− −
=

− −
 

( )
,

B w

m

D
Nb

  



 −
=        (23)  

( )
,

T m

m

D T T
Nt

T









−
=  ,

m

Sc
D


=  ,

m

Pr



=  ,e

x

u x
Re

v
=  1 2

.x

x

Gr

Re
 =  1

1

0

(2 )wT T



−

=  

Here  represents the similarity variable (transformed y-coordinate), f is dimensionless stream 

function, S is secondary velocity function, A is the unsteadiness (acceleration) parameter, 1 is the 

mixed convection parameter,  is the dimensionless rotation parameter, 1  is non-linear 

temperature parameter (generated by the non-Boussinesq approximation). Also Pr , Sc , 
x

Gr , Re
x
, 

Nr , Nb  and Nt  denote Prandtl number, Schmidt number, local Grashof number, local Reynolds 

number, nanofluid buoyancy ratio parameter, Brownian motion, and thermophoresis parameters 

respectively. The skin friction coefficient in the x and z directions can be defined as: 

0 3/2 1/2 1/2

2

2

2 (0)
y

fx x

e

u

y
C Re A f

u





= − −

 
 

 
= =   (primary)   (24) 
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0 3/2 1/2 1/2 1/2

2

2

2 (0)
y

fz x

e

w

y
C Re A

u
S






= − −

 




 

 
= = −   (secondary)    (25) 

Local Nusselt number and local Sherwood number can be written as: 

0 1/2 1/2 1/22 (0)
y

x

w

T
x

y
Nu Re A

T T


= −



 
−  

 
= = −

−
       (26) 

0 1/2 1/2 1/22 (0)
y

x

w

C
x

y
Sh Re A

C C


= −



 
−  

 
= = −

−
        (27) 

3. ENTROPY GENERATION ANALYSIS 

In the nanofluids flows, the improvement of the heat transfer properties causes a reduction in 

entropy generation. However, a convection process involving a liquid film flow of nanofluids is 

inherently irreversible. The non-equilibrium conditions due to the exchange of energy and 

momentum, within the nanofluid and at solid boundaries, causes continuous entropy generation 

(Chen and Liu [28], Gorla et al. [30]). One part of this entropy production results from heat transfer 

in the direction of finite temperature gradients, while another part arises due to the fluid friction, 

nanoparticle concentration and complex interaction between the base fluid and the nanoparticles. 

According to Woods [31], the local volumetric rate of entropy generation is given by: 
2 2 22 2 2

2

22

2gen

k T T u w w u w
S

x y T x y r y xT

RD C C RD T C T C

C x y T x x y y





 

                    
    = + + + + + +           

                      

               
 + + + +        

               


 
 

     (28) 

By using the boundary-layer approximation, the above equation reduces to: 

2 2 22

2
2gen

k T w u RD C RD T C
S

T y T r T y C y T y y

 

    

             
 = + + + +         

             
   (29) 

The characteristic rate of entropy generation 0S  takes the form: 

( )
2

0 2 2

2k T
S

Ar T


=          (30) 

Therefore, the entropy generation number is 

0

genS
Ng

S


=


           (31) 
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The entropy generation number in terms of the variables for the present flow problem takes the 

form: 
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       (32) 

 

Where Re e
x

u x


=  is local Reynolds number, 

2

eu
Br

k T


=


 is Brinkman number (ratio between heat 

generated by viscous dissipation and heat conveyed by molecular conduction. i.e., the ratio of 

viscous heat generation to external heating), 



=

T

T
*  is temperature ratio, 

C

C





=  is 

concentration ratio, 2

RDC

k
 =  is a constant incorporating thermal conductivity, R, D are 

arbitrary constants. 

4. NUMERICAL SOLUTION WITH IMPLICIT DIFFERENCE CODE 

The equations (17) - (20) governing the present problem under the boundary conditions (21) 

and (22) were solved numerically by the Keller-Box method and is documented in Cebeci and 

Bradshaw [32]. It has been used in many complex nonlinear thermal convection problems for both 

Newtonian and non-Newtonian fluids (e.g. Prasad et al. [33]) and involves four phases which are:  

 

a) Reduction of the Nth order partial differential equation system to N 1st order equations 

b) Finite Difference Discretization 

c) Quasilinearization of Non-Linear Keller Algebraic Equations 

d) Block-tri-diagonal Elimination of Linear Keller Algebraic Equations 

 

The method allows for non-uniform grid discretization and converts the differential equations 

into algebraic equations. The linearized difference equations of the system have a block-tri-

diagonal structure. Commonly, the block-tri-diagonal structure consists of variables or constants, 

however here, an interesting feature can be observed that is, for the Keller-box method, it consists 

of block matrices, which are then solved by block tri-diagonal elimination procedure. We have 

used 751 grid points in the η-direction and the results generated for various parameter effects are 

displayed via graphs. The convergence criterion has been set at 
510−
 as the difference between the 

current and previous iterations for the desired accuracy. The detailed Keller-box solution has been 

presented in Appendix-1. Further details of the solution procedure are documented in Prasad et 

al. [33] and are omitted here for conservation of space. The mesh employed (Keller box) is also 

shown in fig. 2. 
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5. GRID SENSITIVITY ANALYSIS 

In order to study the mesh accuracy, a grid-independence study has been conducted by testing 

different grid distributions and presented the grid independent results in Table 1. Table 1 shows 

the comparison of primary and secondary skin friction (surface shear stress) coefficients ( (0)f  ,

(0)S − ), Nusselt ( (0) − ) and nanofluid Sherwood ( (0)− ) values for the different grid distributions. 

A uniform grid distribution has been used to discretize the computational domain. It is noticed that 

increasing the grid numbers in the computation domain does not change significantly the skin 

friction, Nusselt and Sherwood coefficients values, confirming that mesh-independence is 

achieved and convergent solutions attained. Therefore, the selected grid consists of 751 nodes for 

the present calculations. It is shown that ( (0)f  , (0)S − ),  ( (0) − ) and ( (0)− ) values are 

independent of the number of grid points. The following thermophysical parameter values are 

prescribed: 1,A =  0.5, = 0.5,Nr Nb Nt= = = Pr 0.71,= 0.6,Sc =
1 1, = 1 0.5, = Re 1,x = / 1,Br  = / 1  =

and 2 0.1 = .  

 

Table 1: Grid Independence Analysis 

max
  Grid Points (0)f   (0)S −  (0) −  (0)−  

5 101 1.074618652 0.604708987 0.427764316 0.409799036 

7 351 1.074486101 0.604658723 0.427787255 0.409404659 

10 501 1.074483771 0.604661812 0.427786999 0.409404425 

13 651 1.074486077 0.604658704 0.427787264 0.409404559 

15 751 1.074486085 0.604658721 0.427787266 0.409404561 

20 1001 1.074483519 0.604659040 0.427787075 0.409404358 

25 1251 1.074486065 0.604658714 0.427787263 0.409404559 

30 1501 1.074476643 0.604631742 0.427789035 0.409403617 

 

6. NUMERICAL VALIDATIONS 
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In order to assess the accuracy of numerical calculations, the present results compared for the 

special cases of Chamkha and Ahmed [15] when Pr 0.7,= 0,Nr Nt Nb Sc= = = =
1

1, =  

2 1
0.M   = = = = =  which depicts the Table 2 (nanofluid effects are negated in our model as are 

non-Boussinseq effect and magnetic field is neglected in the model of [15]). It is found that the 

present results are excellent agreement. Therefore confidence in the present Keller box code is 

justifiably high as testified to by validation of the present results.  

Table 2. Comparison of local surface shear stresses and heat transfer coefficients. 

1
    

Present Keller box computations Chamkha and Ahmed [15] 

(0)f   (0)S −  (0) −  (0)f   (0)S −  (0) −  

1 

1 1.28287 0.64652 0.59001 1.28296 0.64658 0.59006 

3 1.65037 0.69727 0.60814 1.65047 0.69723 0.60824 

5 1.99020 0.73845 0.62331 1.99024 0.73855 0.62338 

10 2.76159 0.82076 0.65391 2.76167 0.82084 0.65421 

3 

1 1.86959 0.75048 0.63038 1.86961 0.75056 0.63044 

3 2.19535 0.78589 0.64358 2.19544 0.78590 0.64369 

5 2.50459 0.81695 0.65546 2.50464 0.81700 0.65556 

10 3.22438 0.88265 0.68078 3.22444 0.88276 0.68083 

5 

1 2.39989 0.82787 0.66175 2.39994 0.82790 0.66189 

3 2.69928 0.85621 0.67256 2.69935 0.85626 0.67260 

5 2.98723 0.88134 0.68225 2.98733 0.88146 0.68226 

10 3.66796 0.93568 0.70429 3.66801 0.93576 0.70437 

10 

1 3.58371 0.96779 0.72198 3.58373 0.96785 0.72207 

3 3.84386 0.98657 0.72929 3.84399 0.98667 0.72938 

5 4.09821 1.00419 0.73610 4.09826 1.00427 0.73615 

10 4.71131 1.04378 0.75212 4.71136 1.04383 0.75218 

 

7. RESULTS AND DISCUSSION 

A detailed parametric study has been performed for the  influence of unsteadiness parameter 

( ) ,A rotation parameter ( ), non-linear temperature parameter ( )1
, Brownian motion parameter 

( ) ,Nb buoyancy ratio parameter ( ) ,Nr thermophoretic parameter ( ),Nt Prandtl number ( )Pr , and 

Schmidt number ( ) ,Sc on dimensionless primary velocity ( ) ,f  secondary velocity ( ),S temperature 

( ), nanoparticle volume fraction ( ) , primary and secondary skin friction functions, Nusselt 

number function and Sherwood number function. Table 3 depicts the Nusselt and Sherwood 

numbers for various Nb and Nt when 1,A = 0.5, = 0.5,Nr = Pr 0.71,= 0.6,Sc =
1 1, = 1 0.5, = Re 1,x =

Br/*=1, /*=1and 2 0.1. =  It is noticed that increase in the thermophoresis leads to decrease in 

the heat transfer rate ( )( )0 − and concentration rate ( )( )0− . As Nt is enhanced from 0.1 to 0.2 

there is a small associated decrease in heat transfer rate whereas there is a significant depression 

in mass transfer (nano-particle) concentration rate (over 50%). The impact is enhanced with 

increasing thermophoresis with fixed Brownian motion parameter. With fixed thermophoresis 
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parameter and progressively increasing Brownian motion parameter, there is a sustained 

depression in heat transfer rate whereas the mass transfer rate is elevated.  

 

Table 3. Nusselt and Sherwood numbers for various Nb and Nt . 

Nb  Nt   ( )0 −  ( )0−  

0.1 

0.1 0.52958 0.30693 

0.2 0.5165 0.11161 

0.3 0.50374 -0.063 

0.4 0.49131 -0.2178 

0.5 0.47919 -0.3538 

0.2 

0.1 

0.5116 0.42315 

0.3 0.49402 0.46176 

0.4 0.47685 0.48096 

0.5 0.4601 0.4924 

 

 

Table 4. Nusselt and Sherwood numbers for various Pr and Sc . 

Pr  Sc  ( )0 −  ( )0−  

1 

1 0.41328 0.57186 

2 0.38627 0.84516 

5 0.35957 1.30073 

10 0.34541 1.75771 

2 

2 

0.34043 0.91972 

5 0.16838 1.09872 

10 0.04306 1.20955 

 

 

 

In  Table 4, the Nusselt and Sherwood numbers for various Prandtl and Schmidt numbers are 

computed with 1,A = 0.5, = 0.5,Nt Nb Nr= = = 1 1, = 1 0.5, = Re 1,x =  Br/*=1, /*=1 and

2 0.1. =  It is observed that as Schmidt number ( )Sc rises nanoparticle volume fraction mass transfer 

rate increases since concentration of nano-particles in the boundary layer is depleted. Conversely 

heat transfer rate decreases strongly implying an elevation in temperatures in the boundary layer 

with greater Schmidt number. With increasing Prandtl number ( )Pr a similar trend is observed for 

wall heat transfer rate ( )( )0 − and nanoparticle volume fraction rate ( )( )0− . Higher Prandtl 

numbers are associated with lower thermal conductivities. This manifests in a reduction in heat 
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transferred to the sphere surface since greater temperatures result in the boundary layer. The nano-

particle volume fraction is conversely reduced in the boundary layer and this is due to the greater 

transfer of nano-particles to the sphere surface (wall).  

Table 5. Surface shear stresses, heat transfer rate and nanoparticle volume fraction rate. 

  1  Pr   ( )0f   ( )0S−   ( )0 −   ( )0−  

0.5 0.5 

0.71 0.84921 0.55824 0.41537 0.40205 

1 0.84906 0.55818 0.43643 0.39676 

7 0.84864 0.558 0.24104 0.64109 

10 0.84863 0.55799 0.15127 0.73171 

0.5 

0 

0.71 

0.84885 0.55816 0.41535 0.40205 

1 0.84956 0.55831 0.41539 0.40207 

2 0.85027 0.55846 0.41543 0.40209 

1 

0.5 0.71 

0.95826 0.57765 0.42043 0.40496 

2 1.16447 0.61185 0.4295 0.41014 

5 1.719425 0.691501 0.451296 0.422484 

Table 5 presents the variation in primary and secondary surface shear stresses, heat transfer rate 

and nanoparticle volume fraction rate for different  ,
1 and Pr when 1,A = 0.5,Nt Nb Nr= = = 0.6,Sc =

1 0.5, = Re 1,x = / 1,Br  = / 1  = and 2 0.1 = . The result indicates that as ,
1 and Pr increase 

surface shear stresses ( )(0), (0)f S − heat transfer rate ( )( )0 − and nano-particle mass transfer rate 

are all influenced. Primary shear stress is continuously enhanced with increasing rotation 

parameter () whereas secondary shear stress is initially decreased and then only weakly increased 

with subsequent increase in . With increasing non-linear parameter all variables are enhanced. 

We note that the Boussineq case is retrieved for 1 = 0 and this under-predicts the heat transfer 

rate compared with the non-Boussineq case (1 > 0). With increasing Prandtl number, primary and 

secondary shear stress and also heat transfer rate are all reduced, whereas nano-particle mass 

transfer rate is initially reduced and thereafter significantly enhanced. To provide additional insight 

about the effects of ,
1 and Pr into the under studied problem, the graphical results will be 

discussed hereafter. 

Comprehensive solutions have been obtained and their respective profiles are presented 

graphically for primary and secondary velocity components ( ), ,f S temperature ( ) and 

nanoparticle volume fraction ( )  in Figs. 2 – 10. Moreover, Figs. 11 – 12 depict the influence of 

selected parameters on entropy generation number, local Nusselt number and local Sherwood 

numbers. In the present computations, the following default parameters are prescribed (unless 

otherwise stated): 1,A = 0.5, = 0.5,Nt Nb Nr= = = Pr 0.71,= 0.6,Sc =
1 1, = 1 0.5, = Re 1,x = / 1,Br  =

/ 1  = and 2 0.1. =  
 

Figs. 3(a)-3(b) reveals the influence of unsteadiness parameter on the fluid velocity profiles

( ), ,f S temperature ( ) and nanoparticle volume fraction ( ) profiles. It is observed that from Fig. 

3(a) increase in unsteadiness (acceleration) parameter A results in an increase in the primary 

velocity (x-direction) ( ) ,f  whereas it decreases the secondary velocity component (S). The 
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momentum is re-distributed via rotation of the sphere which is accelerating in the primary direction 

for A>0. Hence, the fluid inside the boundary layer is accelerated in the x-direction and decelerated 

in the rotational (secondary) direction. From Fig. 3(b) it is observed that both temperature ( )  and 

nanoparticle volume fraction ( )  profiles are depressed with increasing values of A , implying that 

both thermal and concentration boundary layers are depressed with increasing unsteadiness. The 

boundary layer will therefore be cooled and more heat and nano-particles transferred to the sphere 

surface (wall) with increasing unsteadiness effect. 

   Figs. 4(a)-4(b) shows the influence of rotating parameter ( ) on primary and secondary 

velocity components ( ),f S  (i.e. x- direction and z- direction velocities), temperature ( ) and 

nanoparticle volume fraction ( ) . Increasing λ, the rotation becomes more intense and the 

secondary momentum contributes more to the primary momentum via the swirl effect. This 

accelerates the primary flow and retards the secondary flow. Conversely greater rotation depresses 

magnitudes of temperature and nanoparticle concentration manifesting in a reduction in thermal 

and nano-particle concentration boundary layer thicknesses. In all cases asymptotically smooth 

profiles are computed in the free stream indicating that a sufficiently large infinity boundary 

condition is prescribed in the Keller box numerical code. 

Figs. 5(a)-5(b) demonstrates the influence of mixed convection parameter ( )1
 in buoyancy- 

assisted flow on the primary velocity ( )f   and secondary velocity ( )S , temperature ( )  and 

nanoparticle volume fraction ( ) . The primary velocity is accelerated significantly whereas the 

secondary velocity is retarded for increasing mixed convection parameter
1

 . A primary velocity 

overshoot is observed with very high mixed convection parameter ( )1
 which may be attributable 

to the strong buoyancy force for low Prandtl number fluid. The assisting buoyancy force acts like 

a favorable pressure gradient and accelerates the primary flow considerably.  The temperature 

profiles are depressed for increasing mixed convection parameter
1

 indicating that an accentuation 

in thermal buoyancy force has an inhibitive effect on temperature. Conversely increasing mixed 

convection parameter boosts concentration of nano-particles in the boundary layer. Stronger 

thermal buoyancy cools and thins the thermal boundary layer whereas it thickens the nano-particle 

concentration boundary layer. 

Fig. 6(a)-6(b) demonstrates the influence of non-linear temperature (or non-Boussinesq)  

parameter
1

 on primary and secondary velocity profiles ( ),f S , temperature and nanoparticle 

volume fraction distributions. It is observed that increasing 
1

  the primary velocity is markedly 

accelerated and nano-particle concentration is elevated. However secondary velocity is decelerated 

and temperature is reduced with greater non-Boussinesq parameter. The Boussinesq case (1 = 0) 

therefore over-predicts the secondary velocity whereas it under-predicts the primary velocity. Also 

the Boussinesq case tends to under-predict nano-particle concentration whereas it over-predicts 

the temperature.  Significant deviation from the Boussinesq case is computed with increasing 

values of the nonlinear temperature parameter is progressively stronger non-Boussinesq case (1 

> 0). These findings concur with other studies including Kameswaran et al. [8] and Partha [21] 

indicating that the non-Boussinesq model exerts a non-trivial effect on thermofluid transport 

phenomena. 

Figs. 7(a)-7(b) depict the effect of the Schmidt number ( )Sc  on primary and secondary 

velocity components ( ),f S , temperature and nanoparticle volume fraction profiles. With 

increasing Sc primary velocity ( )f   is enhanced noticeably whereas secondary velocity ( )S  is 
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reduced weakly. Schmidt number is the ratio of momentum diffusivity to mass (nano-particle) 

diffusivity. For Sc < 1 mass diffusivity exceeds momentum diffusivity and vice versa for Sc >1.  

Temperature magnitudes are weakly decreased whereas nanoparticle volume fraction magnitudes 

are greatly increased with greater values of Schmidt number. Concentration boundary layer 

thickness for nano-particle species is significantly elevated with greater Schmidt number whereas 

the thermal boundary layer thickness is slightly decreased. 

Figs. 8(a)-8(c) demonstrate the effect of the Brownian motion parameter ( Nb ) primary and 

secondary velocity components i.e. f  and S , temperature ( )  and nanoparticle volume fraction 

( )  for Prandtl numbers 0.71 (air based) and 7 (water based) nanofluids. Increasing Nb induces a 

strong rise in primary velocity and temperature profiles whereas it results in a strong decrease in 

secondary velocity and nanoparticle volume fraction (concentration) for both air and water based 

nanofluids. Larger Nb values correspond to smaller nano-particles [2] and this encourages 

acceleration of the primary flow. However it results also in a reduction in diffusion of nano-

particles and a decrease in concentration boundary layer thickness. In Figs. 8a-c it is also observed 

that Prandtl number increment (Pr = 0.71 for gas based nanofluids and Pr = 7 for water based 

nanofluids) reduces primary velocity and temperature whereas it enhances secondary velocity and 

very substantially enhances nano-particle concentration. With larger Prandtl number the nano-

particle concentration boundary layer thickness is increased whereas the thermal boundary layer 

thickness is depleted. Similar observations have been computed by Srinivasacharya and Surender 

[9] and also Zheng et al. [34]. 

Figs. 9(a)-9(b) illustrate the effects of buoyancy ratio ( Nr ) and Prandtl number ( Pr ) on 

primary and secondary velocity profiles ( ),f S , temperature ( ) and nanoparticle volume fraction

( ) . With increasing buoyancy ratio, primary velocity is strongly depressed whereas the secondary 

velocity is increased. However positive values are sustained for secondary velocity throughout the 

boundary layer indicating that back flow (flow reversal) never arises. Higher Nr values also 

generally result in an increase in temperature ( ) and decrease in nanoparticle volume fraction ( )

profiles. When Prandtl number increases the primary velocity ( )f   decreases whereas the 

secondary velocity increases. Furthermore there is a strong elevation in temperatures with higher 

Prandtl number whereas there is a plummet in nano-particle concentration magnitudes. 

Figs. 10(a)-10(c) demonstrates the effect of thermophoresis parameter ( )Nt and Prandtl 

number ( )Pr on primary and secondary velocity ( ),f S  temperature and concentration 

distributions. Increasing the thermophoresis effect decreases the primary velocity whereas it 

elevates secondary velocity. An increase in Prandtl number a significant reduction in primary 

velocity occurs whereas a weak decrease in secondary velocity arises. Increasing Nt  tends to 

increase both temperature and nano-particle concentration magnitudes. Increasing Prandtl number 

decreases temperature profiles whereas it substantially boosts nano-particle concentration profiles. 

Greater thermophoresis implies stronger migration of nano-particles under a temperature gradient 

away from the sphere surface. This increases nano-particle concentration in the boundary layer 

and therefore also concentration boundary layer thickness.  

Fig. 11(a) shows that the effect of non-linear temperature parameter (1), for both cases of 

gas-based nanofluid ( Pr 0.71= ) and water-based nanofluid ( Pr 7= ), on entropy generation number

( )Ng . It is observed that 
G

N  increases with increases of non-linear temperature parameter i.e. 

greater entropy is generated with progressively stronger non-Boussinesq behavior (departure from 

the Boussinseq case, (1 = 0).  Entropy generation number ( )Ng  is conversely decreased with 
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greater Prandtl number (lower thermal conductivity of nanofluid). Fig. 11(b) indicates that 

magnitudes of entropy generation number increase with an increase in the viscous dissipation 

parameter (Br/*). For Br/* =0 viscous heating effects are neglected. With greater ( )/Br  i.e. 

increasing Brinkman number the slower the conduction of heat produced by viscous dissipation 

and hence the larger the temperature rise. This also increases nanofluid friction and results in a 

boost in entropy generation. In all cases entropy generation is found to be maximized at the sphere 

surface (wall). The influence of the local Reynolds number on entropy generation number ( )Ng  is 

presented in Fig 11(c). An increase in local Reynolds number corresponds to greater inertial force 

contribution which boosts the momentum in the boundary layer and increases Ng values. It will 

also be accompanied by higher heat transfer rates at the surface of the rotating sphere. Fig. 11(d) 

depicts the influence of unsteadiness ( )A  on entropy generation number. It is observed that Ng

increases with unsteadiness i.e. acceleration parameter and again this is associated with the greater 

contribution of inertial force to the regime. Generally higher values of entropy generation are 

computed with increasing Prandtl number.  

Figs. 12(a-c), present the variation in surface heat transfer rate i.e. Nusselt number ( )( )0 −  

and surface mass transfer rate i.e. Sherwood number ( )( )0−  plotted against thermophoresis 

parameter (Nt) for different values of Brownian motion parameter (Nb) and nonlinear temperature 

parameter (1). Evidently inspection of Fig 12 (a) reveals that a strong elevation in surface heat 

transfer rate accompanies an increase in Brownian motion parameter whereas a weaker elevation 

in nano-particle volume fraction mass transfer rate is computed. Generally larger Nb values i.e. 

smaller nano-particle size encourages both heat and mass transfer to the sphere surface, confirming 

the results described earlier in Table 3. With increasing non-linear temperature parameter (i.e. non-

Boussinesq case, 1 =0.5), both heat transfer and mass transfer rates are enhanced compared with 

the Boussinesq case (1 =0). With increasing thermophoresis parameter (Nt) there is a general 

decline in both heat transfer rate and mass transfer rate, although the reduction in the former is 

more significant. Figs. 12(b-c) depict the effects of the acceleration parameter ( A ) and rotation 

parameter (  ) on the local reduced Nusselt and Sherwood numbers and primary and secondary 

surface shear stress coefficients. Both Nusselt number and Sherwood number are found to be 

enhanced with rotation (swirl) and unsteadiness (acceleration) parameter, although significantly 

higher magnitudes are computed for Nusselt number. Primary and secondary shear stress (skin 

friction) coefficients are also increased as the acceleration parameter and rotation parameters 

increase, indicating that stronger thermal buoyancy and unsteadiness effects accelerate both 

primary and secondary flow, although much larger magnitudes are as expected associated with the 

primary flow. 

 

8. CONCLUSIONS 

Computational solutions have been presented to study the entropy generation in transient 

nanofluid mixed convection boundary layer flow in the stagnation region of a spinning sphere with 

the non-Boussinesq approximation. The Buongiorno model has been employed to simulate 

nanoparticle Brownian motion and thermophoresis effects for both gas-based and water-based 

nanofluids. Keller’s box method has been used to solve the transformed nonlinear ordinary 

differential boundary value problem with appropriate boundary conditions at the sphere surface 

and in the free stream. Validation of solutions with previous studies has been included. 
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Furthermore a gird-independence study has been conducted. The main deductions from the present 

computations can be summarized as follows: 

➢ Increasing unsteadiness (acceleration) parameter elevates the primary velocity component, 

primary shear stress coefficient, local reduced Nusselt and Sherwood numbers whereas it 

decreases secondary velocity component, temperature and nano-particle concentration.  

➢ With greater non-linear temperature parameter (i.e. non-Boussinesq case), both heat transfer 

and mass transfer rates are increased compared with the Boussinesq case. 

➢  With increasing thermophoresis parameter there is a decrease in heat transfer rate (Nusselt 

number) and mass transfer rate (Sherwood number). 

➢ An increase in non-linear temperature parameter (non-Boussinesq effect), Brinkman number 

(viscous dissipation parameter) and local Reynolds number increases entropy generation 

number whereas increasing Prandtl number reduces it.  

➢ Irreversibility is reduced to a great extent by using nanofluids i.e. with the presence of nano-

particles. 

➢ Primary and secondary shear stress (skin friction) coefficients, Nusselt number and 

Sherwood number are increased with rotation parameter. 

➢ Temperature is reduced whereas nanoparticle concentration is increased strongly with an 

increase in Schmidt number. 

➢ With increasing buoyancy ratio, primary velocity and nano-particle concentration are 

reduced whereas secondary velocity and temperature are increased.  

➢ Increasing Brownian motion parameter elevates both primary velocity and temperature 

profiles whereas it reduces secondary velocity and nanoparticle volume fraction 

(concentration) for both air and water based nanofluids. 

➢ With increasing mixed convection parameter, primary velocity is accelerated and nano-

particle concentration is enhanced whereas secondary velocity is decelerated and 

temperatures are reduced.  

 

 

The present study may be further extended to consider non-Newtonian e.g. viscoelastic fluid 

characteristics and non-Fourier heat conduction effects [35]. These are also of relevance in 

chemical engineering. 
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Fig. 3(a) Effect of dimensionless unsteadiness parameter ( A ) on primary (f / ) and 

secondary (S) velocities.  

 

Fig. 3(b) Effect of unsteadiness parameter (A) on temperature () and nanoparticle 

volume fraction i.e. concentration (). 
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Fig. 4(a) Effect of dimensionless rotation parameter () on primary (f / ) and secondary  

(S) velocities. 
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Fig. 4(b) Effect of dimensionless rotation parameter () on temperature () and 

nanoparticle volume fraction i.e. concentration (). 
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Fig. 5(a) Effect of mixed convection parameter (1) on primary (f / ) and secondary  (S) 

velocities. 

 

Fig. 5(b) Effect of mixed convection parameter (1) on temperature () and nanoparticle 

volume fraction i.e. concentration (). 
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-  

Fig. 6(a) Effect of non-linear temperature parameter (
1
) on primary (f / ) and secondary  

(S) velocities. 

 

Fig. 6(b) Effect of non-linear temperature parameter (
1
) on temperature () and 

nanoparticle volume fraction i.e. concentration (). 

. 

0

0.25

0.5

0.75

1

0 2 4

f

'

s



1 = 0, 0.1, 0.5, 1, 2, 5, 10. 

. 

f'

S

0

0.25

0.5

0.75

10

0.25

0.5

0.75

1

0 1 2 3 4 5





1 = 0, 0.1, 0.5, 1, 2, 5, 10. 

. 







23 

 

 

Fig. 7(a) Effect of Schmidt number (Sc) on primary (f / ) and secondary  (S) velocities. 

. 

 

Fig. 7(b) Effect of Schmidt number (Sc) on temperature () and nanoparticle volume 

fraction i.e. concentration (). 
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Fig. 8(a) Effect of Brownian motion parameter (Nb) and Prandtl number (Pr) on 

primary (f / ) and secondary  (S) velocities. 

 

Fig. 8(b) Effect of Brownian motion parameter (Nb) on temperature () for various Pr. 
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Fig. 8(c) Effect of Brownian motion parameter (Nb) on nanoparticle volume fraction i.e. 

concentration ()  for various Prandtl numbers (Pr). 

 

Fig. 9(a) Effect of buoyancy ratio parameter (Nr) and Prandtl number (Pr) on the 

primary (f / ) and secondary  (S) velocities. 
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Fig. 9(b) Effect of buoyancy ratio parameter (Nr) and Prandtl number (Pr) on 

temperature () and nanoparticle volume fraction i.e. concentration (). 

 

Fig. 10(a) Effect of thermophoresis parameter (Nt) and Prandtl number (Pr) on the 

primary (f / ) and secondary  (S) velocities. 
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Fig. 10(b) Effect of thermophoresis parameter (Nt) and Prandtl number (Pr) on 

temperature (). 

 

Fig. 10(c) Effect of thermophoresis parameter (Nt) on nano-particle volume fraction i.e. 

concentration () for various Prandtl numbers (Pr). 

 

 

0

0.25

0.5

0.75

1

0 1 2 3 4 5





Pr =0.71

Nt = 0, 0.2, 0.3, 0.5, 0.7, 1. 

Pr = 7

0

0.25

0.5

0.75

1

0 2 4



Pr =0.71

Pr = 7

Nt = 0, 0.2, 0.3, 0.5, 0.7, 1. 



28 

 

 

Fig.11(a) Effect of non-linear temperature parameter ( 
1

 ) on entropy generation 

number (Ng) for various Prandtl numbers (Pr).  

 

 

Fig.11(b) Influence of Br/* on entropy generation number (Ng). 
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Fig.11(c) Influence of local Reynolds number (Rex) on entropy generation number (Ng). 

 

 

Fig.11(d) Influence of unsteadiness parameter (A) on entropy generation number (Ng). 

for various Prandtl numbers (Pr).  
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Fig.12(a) Effects of non-linear temperature (

1
), Brownian motion (Nb) and thermophoresis 

parameter (Nt) on reduced Nusselt number (- () ) and reduced Sherwood number (-() ). 

 

Fig.12(b) Effects of mixed convection parameter () and unsteadiness parameter (A) on 

reduced Nusselt number (- () ) and reduced Sherwood number (-() ). 
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Fig.12(c) Effects of mixed convection parameter () and unsteadiness parameter (A) on 

primary (f //(0)) and secondary (-S/(0)) skin friction coefficients. 
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APPENDIX-1: KELLER-BOX METHOD OF SOLUTION 

A 2-Dimensional computational grid is imposed on the transformed (x-η) plane as sketched 

below in fig 2. The numerical stepping process is defined by:
 

0 10, , 1,2, , ,n n

nx x x n N−= = + =              (A-1a) 

0 10, , 1,2, , . ,j j j Jh j J    − = = + =             (A-2b) 

Where kn and hj denote the step distances in the x  and   directions respectively. Denoting   as 

the value of any variable at station nx , j , and the following central difference approximations 

are substituted for each reduced variable and their first order derivatives, viz: 

( )
1/2

1

1

2

1

11/
[Σ Σ Σ Σ ] / 4.n n n nn

j j j jj

−

− −

−

−

−+ = + +        (A-3a) 

1/2 1 1

1 11/2Σ / [Σ Σ( ) Σ Σ ] / 4n n n n n

j j j jjx k− − −

− −−  = + − −       (A-3b) 

1/2 1 1

1 11/2Σ / [Σ Σ( ) Σ Σ ] / 4n n n n n

j j j jjx k− − −

− −−  = + − −       (A-3c) 

Where kn= streamwise stepping distance ( − mesh spacing) and jh =
 
spanwise stepping distance 

( − mesh spacing) defined as follows: 

1/2 1[ ] / 2j j j  − −= +        (4a) 

1

1/2 [ ] / 2n n

jx x x −

− = +        (A-4b)
 

Phase a) Reduction of the Nth order partial differential equation system to N 1st order 

equations 

Equations (10) to (13) subject to the boundary conditions (14) constitute a 9th order well posed 

two-point boundary value problem. The Eqns. (10) to (13) are first written as a system of 9 first-

order equations. For this purpose, we introduce new dependent variables ( , ), ( , ), ( , ),u x v x t x    
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( , ),m x   ( , ),p x  as the variables for linear velocity, angular velocity, temperature and 

concentration. Therefore, we obtain the following nine first first-order equations: 

f u =         (A-5a) 

u v =         (A-5b) 

S t =         (A-5c) 

g p =         (A-5d) 

z m =         (A-5e) 

2 2 21
1

1
(1 ) (1 ) ( ) 0

2 2 2 2 2

A A
v Afv u S u v g g Nr z


  + + − + − − − + + − =   (A-5f) 

1
( ) ( ) 0

2 2
t A ft uS S t


 + − + + =        (A-5g) 

21
0

4
p A fp p Nb pm Ntp

Pr


 + + + + =       (A-5h) 

( ) 0
4

Nt
m Sc Af m p

Nb


 + + + =        (A-5i) 

Where primes denote differential with respect to  .  In terms of the dependent variables the 

boundary conditions become:
 

0 : 0, 0, 1, 1, 1.

: 1, 0, 0, 0.

f u S g z

u S g z





= = = = = =

→  → → → →
     

(A-6) 

Phase b) Finite Difference Discretization 

The net rectangle considered in the x-η plane is shown in the following figure and the net points 

are denoted by:  

0 10, , 1,2, , ,n n

nx x x k n N−= = + =       (A-7a) 

0 10, , 1,2, , . ,j j j Jh j J    − = = + =      (A-7b) 

Where nk is the x −spacing and jh is  −  spacing. Here n and j are just sequence numbers that 

indicate the coordinate location. We approximate the quantities ( , , , , , , , , )f u v S t g p z m  at points 

( , )n

jx  of the net by ( , , , , , , , , )n n n n n n n n n

j j j j j j j j jf u v S t g p z m , which we denote as net functions. We also 

employ the notion ( )n

j  for points and quantities midway between net points and for any net 

functions:

 
1/2 11

( )
2

n n nx x x− − − ,  1/2 1

1
( )

2
j j j  − − −    (A-8a, b) 

( ) ( ) ( )
1/2 11

2

n n n

j j j

− − = +
 

,  and ( ) ( ) ( )
1/2 1

1

2

n n n

j j j− −
 = +
 

 (A-8c, d)
 

The derivatives in the x − direction are replaced by finite difference approximations. For any net 

function ( ), generally we have x- have: 
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( ) ( ) ( )
1n n

nx k

−
 +

=


 ( )1/2,n

jx  −
     (A-9e)

 

We write the difference equations that are to approximate Eqns. (A-5a)-(A-5i) by considering one 

mesh rectangle as shown in Figure 2. We start by writing the finite-difference approximations of 

the ordinary differential equations (A-5a) to (A-5e) for the midpoint 
( )1/2,n

jx  −
 of the segment 

P1P2 using centered-difference derivatives. This process is called “centering about ( )1/2,n

jx  −
”. 

This gives: 
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2
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j
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−
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2
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j j j

j

z z
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h

−

− −

−
= − =       (A-10e) 

The finite-difference forms of the partial differential equations (A-5j) to (A-5i) are approximated 

by centering about the midpoint ( )1/2

1/2,n

jx −

−
 of the rectangles P1P2P3P4. This can be done in two 

steps. In the first step, we center equations (A-5i) to (A-5j) about the point ( )1/2 ,nx −  without 

specifying y. The differenced version of equations (A-5i) to (A-5j) at 
1/2nx −

 then take the form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 21
1

1

2 2 21
1

1
1 1

2 2 2 2 2

1
(1 ) (1 ) ( )

2 2 2 2 2

n n nn n n n n n

n

A A
v A fv u S u v g g Nr z

A A
v Afv u S u v g g Nr z


 


 

−

    + + − + − − − + + −        

 
= − − − − + + − − − + − 

            

(A-11a) 

( ) ( ) ( ) ( ) ( )
1

1 1
( ) ( )

2 2 2 2

n
n n n n n

t A ft uS S t t A ft uS S t
 

−

     + − + + = − − − − +        
         (A-11b) 

( ) ( ) ( ) ( ) ( )
1

2 21 1

4 4

n
nn n n n

p A fp p Nb pm Nt p p A fp p Nb pm Ntp
Pr Pr

 
−

 
 + + + + = − + + + + 

 

 

    

(A-11c) 

( ) ( ) ( ) ( )
1

4 4

n

n n n nNt Nt
m Sc A fm m p m Sc Afm m p

Nb Nb

 
−

    
   + + + = − − + −   

    
         (A-11d) 
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Where the notation  
1n−
corresponds to quantities in the square bracket evaluated at 

1nx x −= . We 

centre equations (A-11a-d) about the point ( )1/2

1/2,n

jx −

−
 yields: 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 2 21 1
1/2 1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2

1 1
11 1 1 2 2

1/2 1/2
1/2

1
1 (1 )

2 2 2 2 2

1
2

n n
n n nj j n n n n n n

j j j j j j
j j j

j
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nj j n n

j j j
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j
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A f v u S u v g g Nrz

h

v v A
h A f v u S

h

 




−

− − − − − −
− − −

− −
−− − −

− −
− −

−   + + − + − − − + + −     

 
 
 
 

 
 
 

−
= − + + − +

 
( )

1 1
1 1 1 2 11 1
1/2 1/2 1/2 1/2

1/2 1/2

1
(1 )

2 2 2 2

n n
n n n n

j j j j
j

A
u v g g Nrz

 − −
− − − −

− − − −
−

   − − − + + −     

( A-12a) 

( )

( )

1 1
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1/2 1/2 1/2 1/2 1/2

1 1 1 1 1 1

1/2 1/2 1/2 1/2 1/2 1/2

1

2 2

1

2 2

n n n n

j j j jn n n n n

j j j j j j
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j j j j j j

t t t t
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h h

A f t u S S t




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   − − 
+ − + + = −           

 
− + + 

 






+
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
    (A-12b)       

( ) ( ) ( )

( ) ( ) ( )
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1/2 1/2 1/2 1/2 1/2
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1
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1

Pr 4

n n
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j
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j
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h
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
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−
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−

 −
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 
 
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


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(A-12c) 
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4
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j
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j
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h Nb h h
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
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− −
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− −

−
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−   − −
+  + + = −   

   



   

−
+  + +


  
   

 
 
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(A-12d) 

At 
nx x= , the boundary conditions (14) become: 

0 0 0 0 00, 0, 0, 0, 0.

0, 0, 0, 0.

n n n n n

n n n n

J J J J

f u S g z

u S g z

    

   

= = = = =

= = = =

                   (A-13) 

Phase C) Quasilinearization of Non-Linear Keller Algebraic Equations 

Newton’s method is then employed to quasilinearize the equations (A-12). If we assume 
1,n

jf −

1 1 1 1 1 1 1 1, , , , , , ,n n n n n n n n

j j j j j j j ju v S t g p z m− − − − − − − −
 to be known for 0 j J  , then equations (A-10), (A-12) 

and (A-13) are system of equations for the solution of the unknowns ( , , , , , ,n n n n n n

j j j j j jf u v S t g

, , )n n n

j j jp z m , 0,1,2,...j J= . For simplicity of notation we shall write the unknowns at 
nx x=  as: 

( , , , , , , , , ) ( , , , , , , , , )n n n n n n n n n

j j j j j j j j j j j j j j j j j jf u v S t g p z m f u v S t g p z m  

Then the system of equations (A-10) and (A-12) can be written as (after multiplying with jh ) 
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1 1( ) 0
2

j

j j j j

h
f f u u− −− − + =        (A-14a) 

1 1( ) 0
2

j

j j j j

h
u u v v− −− − + =        (A-14b)

 

1 1( ) 0
2

j

j j j j

h
S tS t− −− − + =        (A-14c) 

1 1( ) 0
2

j

j j j j

h
g g p p− −− − + =        (A-14d) 

( )1 1 0
2

j

j j j j

h
z z m m− −− − − =        (A-14e)

 

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )  
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 

   
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(A-14f)
 

( ) ( )( ) ( )( ) ( ) ( )  1 1 1 1 1 1 1

1

2 1/24 84 4
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n
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(A-14i) 

Where

 

 
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1
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−
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j
R

−

−
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1

4 1/2

n

j
R

−

−
involve only know quantities if we assume that solution 

is known on 
nx x= . To linearize the nonlinear system of equations (A-14) using Newton’s 

method, we introduce the following iterates: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1
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, , ,

, , .
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                             (A-16)

         

 

Then we substitute these expressions into equations (A-14a)-(A-14d) except for the term
1nx −
and 

these yield: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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ji i i i i i i i
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(A-17i) 

Next we drop the terms that are quadratic in the following ( ) ( ) ( ) ( ) ( ) ( ) ( )( , , , , , , ,i i i i i i i

j j j j j j jf u v S t g p

( ) ( ), ).i i

j jz m  We also drop the superscript I for simplicity. After some algebraic manipulations, the 

following linear tri-diagonal system of equations is obtained: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 1 3 4 1 5 6 1 7 8 1

9 10 1 11 12 1 6 1/2

j j j j j j j jj j j j j j j j

j j j jj j j j j

a v a v a f a f a u a u a S a S

a g a g a z a z r

       

   

− − − −

− − −

+ + + + + + +

+ + + + =

(A-18f) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 3 4 1 5 6 1 7 8 1 7 1/2j j j j j j j j jj j j j j j j j j
b t b t b f b f b u b u b s b s r       − − − − −

+ + + + + + + =
 

( A-18g) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 1 3 4 1 1 1

1 11 12 1 8 1/2

5 6 7 8

9 10

j j j j j j j jj j j j j j j j

j j j jj j j j j

c p c p c f c f c u c u c g c g

c m c m c v c v r

       

   

− − − −

− − −

+ + + + + +

+ + =

+

+ +
 

( A-18h) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 3 4 1 5 6 1 9 1/2j j j j j jj j j j j j j
d m d m d f d f d p d p r      − − − −

+ + + + + =        (A-18i) 

( )1 1/21
2 8

j jj

A
a f h


−= + +

 
 
      

( ) ( )1/2 12 1
2 8

2j jj j

A
a f h a


−= − + +




=


− 


 

( )3 1/2
2

j jj

A
a h v −=

     
( ) ( )4 1/2 3

2
j jj j

A
a h v a−= =  

( )5 1/2

1

2 2

j

jj

h
a uA −

 
= − 

      
( ) ( )6 1/2 5

2

1

2

j

jj j

h
a uA a−

 
= − = 

 
 

( )7 1/2
2

j jj

A
a h S


−=

     
( ) ( )8 1/2 7

2
j jj j

A
a h S a


−= =  

( ) ( )1
9 1 1/21

4
j jj

A
a h g


 −= +

    
( ) ( ) ( )1

10 1 1/2 91
4

j jj j

A
a h g a


 −= + =  

( ) 1
11

4
jj

A Nr
a h

 
= −

    
( ) ( )1

12 11
4

jj j

A Nr
a h a

 
== −  

(A-19) 

( )1 1/21
2 8

j jj

A
b h f


−

 
 


= +


+

    
( ) ( )2 1/2 11 2

2 8
j jj j

A
b h f b


−

 
 


= − + =


+ −  

( )3 1/2
2

j jj

A
b h t −=

     
( ) ( )4 1/2 3

2
j jj j

A
b h t b−= =

 

( ) /5 1 2
2

j jj

A
b h S −−=

     
( ) ( )1/26 5

2
j jj j
S

A
b h b−= − =  

( ) 17 /2

1

2 2

j

jj

h
b Au −

 
 


=


−
               

( ) ( )8 71/2

1

2 2

j

jj j

h
b Au b−

 
 


=


= −  

                 

 

(A-20) 

( )1 1/2 1/2 1/2

1

Pr
,

2 8 2
j j j jj

A Nb
c h f m Ntp


− − −

 
 


+ + +


= +  

( ) ( )2 1/2 1/2 1/2 1
Pr

1 2
,

P2 8 2 r
j j j jj j

A Nb
c h f m Ntp c


− − −


= + + + +


− = − + 

 
 

( )3 1/2 ,
2

j jj

A
c h p −=

     
( ) ( )4 1/2 3 ,

2
j jj j

A
c h p c−= =

  
 

( ) /5 1 2
2

,j jj

Nb
c h p −=

     
( ) ( )6 1/ 52 ,

2
j jj j

Nb
c h p c−= =

 

                        
(A-21) 

 

( )1 1/2 ,
4

1
2

j

jj

h Sc
d A Scf −

 
+


 + 


=

  
( ) ( )2 1/2 11 2,

2 4

j

jj j

h Sc
d A Scf d−

 
= − +  +


= −

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( )3 1/2
2

,j jj

A Sc
d h m −


=

   
( ) ( )4 1/2 3

2
,j jj j

A Sc
d h m d−


= =  

( )5 ,
j

Nt
d

Nb
=

     
( ) ( )6 5 .

j j

Nt
d d

Nb
= − = −  

(A-22)
 

( )1 1 1/21/2
,j j j jj

r f f h u− −−
= − +  

( )2 1 1/21/2
,j j j jj

r u u h v− −−
= − +  

( )3 1 1/21/2
,j j j jj

r S S h t− −−
= − +  

( )4 1 1/21/2
,j j j jj

r g g h p− −−
= − +  

( )5 1 1/21/2
,j j j jj

r z z h m− −−
= − +  

( ) ( ) ( ) ( )
1 2 2

1 1 1/2 1/2 1/2 1/2 1/2 1/21/2 1/2

21 1
1/2 1/2 1/2

6

1
1 1

2 2 2

2 2

n

j j j j j j j j j j jj j

j j j j

A
r R v v Ah f v h u s h u v

A
h g g Nrz




 

−

− − − − − − −− −

− − −

 
= + − − − + + − − 

 

 
− + − 

 

−

 

( ) ( ) ( ) ( )
1

1 1/2 1/2 1/2 1/2 1/21/2 1/7 2 2

1

2 2

n

j j j j j j j j jj j
r R t t Ah f t u S h S t

−

− − − − − −− −

 
= + − − − +


− 

  

 

( ) ( ) ( )
1 2

1 1/2 1/2 1/2 1/2 1/2 1/21/2 1/8 3 2

1

Pr 4

n

j j j j j j j j j j j jj j
r R p p Ah f p h p Nb h p m Nt h p

−

− − − − − − −− −
− −−= + − −  

( ) ( ) ( ) ( )
1

1 1/2 1/2 1/2 11/29 4 1/2 4

n

j j j j j j j j jj j

Sc Nt
r R m m A Sc h f m h m p p

Nb


−

− − − − −− −
−+ −  − −= +

 
(A-23) 

To complete the system (A-18), we recall the boundary conditions (A-13), which can be satisfied 

exactly with no iteration. Therefore to maintain these correct values in all the iterates, we take: 

0 0 0 0 00, 0, 0, 0, 0.

0, 0 0 0.J J J J

f u S g m

u S g z

    

   

= = = = =

= = = =
             (A-24) 

Phase d) Block-Tridiagonal Elimination of Linear Keller-Algebraic Equations 

The linear system (A-18) can now be solved by the block-elimination method. The linearized 

difference equations of the system  (A-18) have a block-tridiagonal structure. Commonly, the 

block-tridiagonal structure consists of variables or constants, however here, an interesting feature 

can be observed that is, for the Keller-box method, it consists of block matrices. The numerical 

results are effected by the number of mesh points in both directions. Accurate results are produced 

by performing a mesh sensitivity analysis. Intrinsic to the block-elimination method used in the 

Keller-box implicit finite difference method (Keller 1978), is the correct derivation of the elements 

of the block matrices from the linear system (A-18). We consider three cases, namely when j=1,J-

1and J.  

When J=1.the linear system becomes: 
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( ) ( )1
1 0 1 0 1 1 1/22

h
f f u u r   

−
− − + =       (A-25a) 

( ) ( )1
1 0 1 20 1 1/22

h
u u v v r   

−
− − + =       (A-25b) 

( ) ( )1
1 0 1 30 1 1/22

h
S S t t r   

−
− − + =       (A-25c) 

( ) ( )1
1 0 1 40 1 1/22

h
g g p p r   

−
− − + =       (A-25d) 

( ) ( )1
1 0 1 50 1 1/22

h
z z m m r   

−
+ − + =       (A-25e) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 2 0 3 1 4 0 5 1 6 0 7 1 8 01 1 1 1 1 1 1 1

9 1 10 0 11 1 12 0 61 1 1 1 1 1/2

a v a v a f a f a u a u a S a S

a g a g a z a z r

       

   
−

+ + + + + + +

+ + + + =
    (A-25f) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 0 3 1 4 0 5 1 6 0 7 1 1 8 0 71 1 1 1 1 1 1 1 1 1/2
b t b t b f b f b u b u b b S r S       

−
+ + + + + + + =

 
( A-25g) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 0 3 1 4 0 1 0 81 1 1 1 1 1 1 /6 15 2
c p c p c f c f c m c m r     

−
+ + + + + =                       (A-25h) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 0 3 1 4 0 5 1 6 0 91 1 1 1 1 1 1 1/2
d m d m d f d f d p d p r     

−
+ + + + + =           (A-25i) 

Designating 

1 1

1
,

2
d h= −  and 0 0,f =  0 0,u =  0 0,S =  0 0g =  0 0m =

       (A-26)
 

The corresponding matrix form assumes: 

1 1

1 1

1 1

1 1

2 1 3 1 1 1

2 1 3 1 1 1

2 1 1 3 1 1 1 1

6 1 1 3 1 5 1 1

6

1

5

2

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

( ) 0 0 ( ) ( ) 0 0 0

0 ( ) 0 0 ( ) 0 ( ) 0 0

0 ( ) ( ) ( ) 0 ( ) ( )

0 0 ( ) ( ) ( ) 0 0 ( ) ( )

0

0 0

d d

d d

d d

d d

a a a

b b b

c c c c c

d d d d d

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

0

0

0

1

1

1

1

1

v

t

p

m

f

v

t

p

m



















 
 
 
 
 
 
  +
 
 
 
 
 
 
 
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11

1

1

1

2

25 1 7 1 9 1 11 1

25 1 7 1

2

2

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

( ) ( ) ( ) ( ) 0 0 0 0 0

( ) ( ) 0 0 0 0 0 0 0

0 0 0 0 00 0 0

0 0 0 0 0 0 0 0 0

0

ud

S

g

z

f

va a a a

tb b

p

m



















  
  
  
  
  
  
  
  
  
  
  
  
  

   

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 (1/2 )

1 (1/2 )

1 (1/2 )

1 (1/2 )

1 (1/2 )

1 (1/2 )

1 (1/2 )

1 1 (1/2)

2

3

4 1 (1/2)

5

6

7

8

9

r

r

r

r

r

r

r

r

r

−

−

−

−

−

−

−

−

−

 
 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
    

       1 1 1 2 1A C r + =       (A-27) 

Similar procedures are followed at the different stations. Effectively the nine linearized finite 

difference equations have the matrix-vector form:  

j j =            (A-28)  

where   = Keller coefficient matrix of order 9 x 9, j  = ninth order vector for errors (perturbation) 

quantities and j = ninth order vector for Keller residuals. This system is then recast as an 

expanded matrix-vector system, viz:  

j j j j j   − =           (A-29)  

where now j  = coefficient matrix of order 9 x 9, j  = coefficient matrix of order 9 x 9 and j = 

ninth order vector of errors (iterates) at previous station on grid. Finally the complete linearized 

system is formulated as a block matrix system where each element in the coefficient matrix is a 

matrix itself. 

 

 


