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HIGHLIGHTS 

 Results show high deviations between modelling approaches and EMG. 

 Slower speeds resulted in smaller deviations than faster speeds. 

 Neither modelling approach (SO, CMC) had an overall better agreement with EMG. 

 Muscle estimation needs further improvements before it can be implemented in CGA. 
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Background: Muscle force estimation could improve clinical gait analysis by enhancing 

insight into causes of impairments and informing targeted treatments. However, it is not 

currently standard practice to use muscle force models to augment clinical gait analysis, 

partly, because robust validations of estimated muscle activations, underpinning force 

modelling processes, against recorded electromyography (EMG) are lacking.  

Research Question: Therefore, in order to facilitate future clinical use, this study sought to 

validate estimated lower limb muscle activation using two mathematical models (static 

optimisation SO, computed muscle control CMC) against recorded muscle activations of ten 

healthy participants. 

Methods: Participants walked at five speeds . Visual agreement in activation onset and offset 

as well as linear correlation (r) and mean absolute error (MAE) between models and EMG 

were evaluated. 

Results: MAE between measured and recorded activations were variable across speeds (SO vs 

EMG 15-68%, CMC vs EMG 13-69%). Slower speeds resulted in smaller deviations (mean 

MAE < 30%) than faster speeds. Correlation was high (r > 0.5) for only 11/40 (CMC) and 

6/40 (SO) conditions (muscles X speeds) compared to EMG.  

Significance: Modelling approaches do not yet show sufficient consistency of agreement 

between estimated and recorded muscle activation to support recommending immediate 

clinical adoption of muscle force modelling. This may be because assumptions underlying 

muscle activation estimations (e.g. muscles’ anatomy and maximum voluntary contraction ) 

are not yet sufficiently individualizable. Future research needs to find timely and cost efficient 

ways to scale musculoskeletal models for better individualisation to facilitate future clinical 

implementation. 

 

Keywords: Muscle activation, modelling, surface EMG, walking 
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Introduction 

Neuro-musculoskeletal impairments occurring as a consequence of disease, injury or aging 

are a substantial burden on our health care system [1]. Clinical gait analysis aids in identifying 

and understanding the causes of these impairments by measuring the movement and torque of 

the joints [2]. Knowing the activation and force profiles of individual muscles during various 

movements can help to gain further insight into the causes of impairments and inform targeted 

treatments. Yet, a range of muscle activation and force modelling approaches have been 

applied in research studies of sport performance or clinical interventions [3-7] but use of 

modelling has not yet become established as a part of routine clinical gait analysis [8].  

 

One reason muscle force modelling has not yet been used to its full advantage in clinical 

practice is that there is a huge variety of approaches producing different results [8]. The 

influence of different modelling assumptions and approaches on model outputs are still not 

fully understood. Each approach incorporates different aspects of musculoskeletal 

morphology, kinematics and kinetics and muscle function using a range of different 

assumptions [5, 9, 10]. Estimation techniques range from solving a static optimisation (SO) to 

complex optimal control problems [10]. Other techniques, for example computed muscle 

control (CMC), combine inverse and forward dynamics [11-13] to track recorded kinematics 

while improving computational time. Whilst faster than CMC,  SO does not incorporate the 

excitation-contraction dynamics of the muscle [13], which might be crucial for patients with 

an impaired neuromuscular physiology [14]. 

 

Another reason for lack of application of force modelling in clinical gait analyses maybe 

related to the difficulty in validating estimated muscle forces [15]. This, in turn, inhibits 
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selection of the approach which may best model the neuro-muscular impairments in the 

patients it is applied to. Validation of muscle activation is important to underpin valid force 

outcomes [16] because direct validation of estimated muscle force is only possible with in-

vivo force transducers. Studies have validated force estimations indirectly against EMG [9, 

10, 14, 17]. However, this approach is limited by the fact that there is no simple relationship 

between activation and force [18]. Arguably, a more robust phased approach to validation of 

force modelling is to first validate its estimated muscle activations against recorded EMG in a 

range of walking speeds and patient groups. A few studies [9, 19, 20] have made some  

attempts to validate estimated muscle activation methods against EMG, however, were 

limited in either how EMG as a validation tool was used (e.g. only visual inspection or using 

input EMG to validate outputs) or in their modelling protocol (e.g. use of different simulation 

environments to compare different modelling approaches). 

 

Additionally, an examination of estimated muscle activations at a range of walking speeds is 

lacking in the literature. To ensure force modelling is appropriate for clinical use it is 

particularly important to know whether the estimated activations respond in the same way as 

experimental EMG at different gait speeds. A prevalent gait impairment of neurological and 

musculoskeletal conditions is reduced walking speed [21]. Differences in walking speed result 

in changes in joint angles [22], ground reaction forces (GRF) [23] and EMG [22]. The change 

in joint kinematics can lead to differences in the contractile state (fibre length, velocity) [24] 

of each muscle and, therefore, lead to differences in the generation of muscle forces [19].  

Therefore, this study seeks to expand the current literature and robustly validate estimated 

muscle activations underpinning muscle force models by comparing estimated lower limb 

muscle activation using  SO and CMC with recorded EMG of ten healthy participants while 

walking at five speeds . This is a necessary step to validating force modelling and facilitating 
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its future clinical use. It was hypothesised that muscle activations will generally increase with 

walking speed, while there will be a good agreement between mathematical models and 

surface EMG. Furthermore, CMC will result in better agreement with EMG due to the 

forward dynamic approach compared to  SO.  

 

Methods 

Ethical approval was granted by the College of Health and Social Care Ethics Panel. Ten healthy 

adults (5F/5M, mean±SD of age 28±5 years, height 1.72±0.08m, mass 69±12kg) were 

recruited from amongst University students and staff. All participants provided written 

informed consent. 

Experimental setup 

A ten-camera motion capture system (Vicon Nexus 1.8.5, 100Hz) was used with four force 

plates embedded into the walkway (Kistler, 1000Hz). Before starting the measurement, 

cameras were ensured to be coexistent with the force plates by using the Caltester approach 

[25] (< 1° force orientation error, < 3mm  CoP displacement error). Surface EMG was 

collected in parallel with a wireless 16 channel Noraxon system using an in-built low pass 

filter of 500Hz (DTS receiver, 1000Hz). The SENIAM [22] guidelines were adopted and 

following preparation of the skin, electrodes were placed on the following muscles : rectus 

femoris, vastus medialis and lateralis, semitendinosus, tibialis anterior, soleus, and 

gastrocnemius medialis and lateralis.  

 

Reflective markers were placed on following anatomical landmarks similar to a CAST model 

[26] and adapted from the proposed model gait2392 in OpenSim [27]: acromion, anterior 

superior iliac spine, midpoint of both posterior superior iliac spines, three markers on the 

thigh and shank, medial and lateral epicondyle at the knee, medial and lateral malleolus, heel, 
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midfoot lateral, toe lateral and medial (1st and 5th metatarsal), and tip of the first toe (Figure 

1). 

 

Data collection 

Following a static standing trial, the participant walked at his/her self-selected speed over the 

force plates on a ten-meter walkway, while five valid (individual foot fall entirely on a single 

force plate) gait cycles for each leg were recorded. This procedure was repeated for 20% and 

40% slower and faster walking speeds in following order: self-selected, 20% slow, 40% slow, 

20% fast, 40% fast. Speed was monitored with timing gates placed five meters apart the start 

and end of the walkway. Participants were given feedback on their speed to guide them to 

walk at the prescribed speed to achieving the target speed within 1%.  

 

Data processing 

The raw marker trajectories were pre-processed in Vicon by a customised pipeline to calculate 

several virtual landmarks and joint centres for static scaling [28]. Gait events were defined via 

automatic force plate detection and visually verified. The GRFs were filtered in MATLAB 

(2012b, Mathworks, Matick NA), the kinematics in OpenSim (Release 3.3) [12], both with a 

6Hz low-pass 2nd order Butterworth filter. EMG signals were offset corrected, rectified, and 

filtered with a high-pass 20Hz Fast Fourier transform filter and, to create a linear envelope, 

with a 6Hz low-pass 2nd order Butterworth filter. 

 

Musculoskeletal model 

We used the generic musculoskeletal model gait2392 of OpenSim [29, 30], which describes a 

male subject with a body height of 1.80m and a body mass of 75.16kg. It consists of 12 rigid-

body segments (torso, pelvis, thigh, shank, talus, foot, toes) which are surrounded by 92 
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musculo-tendon actuators summing up to 72 muscles (Figure 1) while providing in total 21 

degree of freedoms (3 DoF of the upper body, 6 DoF of the pelvis, 3 DoF of the hip, 2 DoF-

driven knee, 1 DoF of the ankle). A detailed description of the model can be found elsewhere 

[29, 30]. 

 

Estimation of muscle activation 

Processed marker trajectories and experimental GRFs were imported into OpenSim 3.3 using 

tools from  Lee-Son’s Toolbox [31]. The SimTrack pipeline [12] within OpenSim was used 

for further calculations. After scaling the model [28], dynamic segment poses were tracked 

using inverse kinematics. Calculated joint angles and experimental GRFs are further used to 

estimate muscle excitations with two modelling approaches:  i)  SO and ii) CMC. These 

estimation techniques have been chosen due to their frequent use in the literature ( SO), its 

novel approach (CMC), and its independence to EMG, which allows an unbiased comparison 

with EMG.  To ensure essential dynamical consistency for CMC between joint kinematics 

and GRFs, Residual Reduction Algorithm (RRA) was used [10] to adjust mass properties of 

the model (i.e. centre of mass of the torso, mass of the body segments) using nonphysical 

compensatory forces and moments called residuals.  

 

 SO (inverse dynamics) resolves the net joint moments into individual muscle forces [10] 

using force-length velocity relation while minimising squared muscle activations as objective 

function. The same criteria were implemented in CMC, which are the standard setting in 

OpenSim for both SO and CMC. While  SO is a time independent process, CMC loops the 

process at time step t forward to the next time step t+T. Therefore, the process is time-

dependent, however, represents only a limited forward dynamics process due to its 

ACCEPTED M
ANUSCRIP

T



8 
 

independency to all other time steps [13]. This allows the model to stay efficient in 

computational time which is an important factor for routine processing. 

 

Data analysis 

All data were normalised to 100% of the gait cycle after which estimated muscle activation 

profiles were compared qualitatively via visual inspection to the profiles of recorded muscle 

activations. One representative trial of the dominant leg of each participant and walking speed 

was chosen by an experienced researcher according to a clean EMG signal to be able to 

directly compare individual observed activation with the directly related estimated muscle 

activation.  Recorded and estimated muscle activation were normalised to the maximum 

activation   of the self-selected walking trial . Data were  further analysed to calculate the 

mean absolute error (MAE) between  SO and CMC,  SO and EMG, as well as CMC and EMG 

of each of the 101 data points (n) [32] to analyse the mean deviation between techniques: 

𝑀𝐴𝐸 = ( 
1

𝑛
∑ |𝐴1𝑖 − 𝐴2𝑖|𝑛

𝑖=1 ) (1) 

A1i represents the muscle activation at the ith time step of the gait cycle of one of the three 

conditions ( SO, CMC, EMG), A2 i the muscle activation at the same time step of one of the 

other conditions [33]. MAE was then multiplied by 100 to represent the percentage of MAE 

dependent to 100% activity. 

 

Furthermore,, the linear correlation of the 101 data points was analysed using the Spearman 

correlation coefficient r (non-normal distribution) for each participant and walking speed 

between  SO and CMC,  SO and EMG, as well as between CMC and EMG was calculated. 

The classification of Cohen [34] was used (0.1 < | r | < 0.3 weak correlation, 0.3 < | r | < 0.5 

moderate correlation, 0.5 < | r | strong correlation). To be able to analyse speed-related 

changes in more detail, a descriptive trend-analysis of mean muscle activation, (taken 
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throughout the, normalised, gait cycle, of fast and slow walking speed, relative to mean 

muscle activation at self-selected speed) was undertaken. 

 

Results 

 Muscle peak activation is generally increasing with higher walking speeds for estimated and 

observed muscle activation (Figure 2, muscle activation profiles normalised to a gait cycle). 

Only tibialis anterior shows visually low speed-dependence for  SO and EMG and nearly 

none with CMC. Vastus lateralis presents similar changes for different approaches in stance 

but not in swing, where  SO shows nearly no activation for all speeds compared to CMC and 

EMG. Qualitative inspection shows peak values to be comparable between modelling 

approaches and compared to surface EMG, except for rectus femoris and semitendinosus, 

especially for the fast walking speeds. Trend analysis (Figure 3) shows average higher 

activations at faster speeds than slower speeds for both CMC and SO. Mean of slow (SO, 

CMC) and very slow (SO, EMG) walking for tibialis anterior as well as slow (CMC) for 

gastrocnemius lateralis, slow (SO, CMC, EMG) for gastrocnemius medialis, and slow (EMG) 

and very slow (EMG) for semitendinosus are around 0% and have partial standard deviations 

above zero. 

 

 MAE percentage to 100% muscle activity between modelling approaches and EMG were 

widely spread across walking speeds (SO vs EMG: 15-68%, CMC vs EMG: 13-69%), while 

only 26 of 40 and 27 of 40 conditions (muscles X speeds) for  SO and CMC, respectively, 

stayed under 30% (Table 1). Smaller MAE are generally shown for slower walking speeds 

where self-selected (except muscle rectus femoris) slow and very slow stayed under 30% for 

all muscles. High linear correlation (r > 0.5 [34]) were only found for 11 of 40 (CMC) and 6 

of 40 (SO) conditions (muscles X speeds) compared to EMG (Table 2), while shank muscles 
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resulted in better correlation (r > 0.5, 15 of 40 conditions) than thigh muscles (r > 0.5, 2 of 40 

conditions). Rectus femoris shows negative or zero correlation between estimated and 

recorded muscle activation.  

 

Both, MAE and linear correlation showed better results when comparing modelling 

approaches than when compared them to EMG.  

 

Discussion 

This study aimed to compare estimated muscle activations of  SO and CMC modelling 

approaches to recorded EMG of lower limb muscles in ten healthy participants walking at five 

different speeds. Such robust validation of estimated muscle activation patterns has been 

lacking in the literature and is necessary to underpin valid force outcomes and facilitate future 

use of force modelling to augment clinical gait analyses. Our results show high deviations 

between modelling approaches and EMG; neither modelling approach had an overall better 

agreement with EMG. The strongest agreement with EMG, for both modelling approaches, 

occurred at slower speeds but only for some of the muscles (especially those on the shank). 

We further considered the response of estimated muscle activations to speed and agreement to 

EMG of particular muscles to identify how muscle activation estimation can be improved.   

 

As hypothesised, magnitude of both estimated and recorded muscle activations increase with 

faster walking speeds in all muscles, except for some of tibialis anterior peak muscle 

activation (Figure 2). This muscle reacted differently to speed as slower walking resulted in 

partially higher estimated and recorded activation levels than faster walking, especially for 

CMC and SO after loading response. Also, slower walking speeds showed similar averaged 

activation compared to that of self-selected walking speed (Figure 3). Higher or equivalent 
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activation of tibialis anterior at slowest walking speeds has also been reported previously [19, 

20]. The higher activation for tibialis anterior while walking slower might be caused by a 

deviation from the natural walking pattern of the participant (i.e. higher energy costs [35]). 

This might increase or change the demand on the activation of tibialis anterior. Overall, these 

results show similar changes dependent on walking speed for both estimated and recorded 

muscle activity. 

 

Slower walking resulted in smaller absolute mean error between estimated and recorded 

muscle activation for both modelling approaches. This may be because joint moments are 

sensitive to accelerations [36], which increase with speed and thus amplify the residual 

between measured and model-calculated GRF. As suggested by Thelen and colleagues [11] 

we attempted to overcome this problem by introducing a residual reduction algorithm (RRA) 

before applying CMC which reduces dynamic inconsistency between experimental GRF and 

kinematic data. While CMC showed stronger correlations for shank muscles, it did not show 

better overall agreement with recorded EMG compared to  SO, as might be expected applying 

RRA before CMC. Therefore, although CMC has the advantage over  SO to include a limited 

time-dependent algorithm, CMC cannot be favoured over  SO according to our results.  

 

Our findings of a general better agreement between modelling approaches and EMG in the 

shank than thigh muscles is, mostly, in agreement with previous findings of Zuk et al. [17]. 

This study reported high correlations between modelling approaches and EMG for 

gastrocnemius or soleus  but weaker agreement for biceps femoris, rectus femoris and tibialis 

anterior. Better agreement between estimated and recorded muscle activation at the shank 

may be due to better assumptions about individual muscle characteristics in the shank 

compared to the thigh. Compliance between estimated muscle activations with EMG seems 
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more dependent on particular characteristics of individual muscles (i.e., lever arm, cross 

sectional area) rather than estimation technique. Zuk et al. [17], therefore, concluded that 

further research needs to focus on the force-sharing problem (which muscle is favoured above 

the other) and the development of cost functions describing motor control strategies 

(perception of the environment and consequential motor variability) more closely, which 

means that more effort needs to be undertaken to improve subject-specific musculoskeletal 

models.  

 

At the level of the thigh, a negative correlation was seen between estimated activation and 

EMG for rectus femoris. This is due to anticyclic activation pattern between estimated and 

recorded activation. Previous literature has shown, that rectus femoris might be only active 

around transition from stance to swing, with recorded activations at the start and end of a gait 

cycle being attributed to crosstalk from the vastii muscles [37]. This indicates a potential 

limitation of using surface EMG as a validation tool for estimating muscle activation; as 

crosstalk from other muscles may confound the validation process [32]. Further, this 

highlights the importance of good quality EMG collections in order to confirm estimated 

activations.  

 

Summarised, some other limitations of the present study are related to the limited ability to 

adjust the musculoskeletal model. Only segment length, mass and inertia were adjusted to 

match participants. Muscle specific characteristics, like the individual maximum muscle 

force-length relationships of muscle and tendon, and their origins and insertions have been 

kept according to the generic model. This may have made for less accurate muscle activation 

estimations. Furthermore,  SO is based on a rigid tendon assumption, while CMC is not. 

Again, this might have been expected to induce differences between models [38]. However, 
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neither model agreed with recorded EMG more closely or consistently than the other so this is 

not thought to be a major limitation for a healthy population [10]. Finally, when considering 

clinical use of modelling approaches, use of optimisation criterion (minimisation of the 

squared sum of all muscle activation ), which do not take co-contraction into consideration, 

may limit validity in application to patients with higher activation of agonistic and 

antagonistic muscles [39]. 

 

Conclusion 

The presented difference between estimated and recorded muscle activation and non-linear 

correlation for some of the muscles indicates that estimation of muscle activations, and, 

therefore, estimation of muscle forces, need further improvements before they can be 

implemented in a routine clinical setting. Neither  SO nor CMC resulted in better agreement 

to EMG, and can be favoured above the other. More research on patients is needed to 

understand relevant advantages of different mathematical estimation techniques. For this, 

future research needs to find timely and cost efficient ways to scale musculoskeletal models 

for a better individualisation to facilitate future clinical implementation. Specifically, further 

development in subject specific muscle modelling and the force-sharing problem are crucial 

that estimation errors can be minimised. 
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Figure legends 

 

FIGURE 1. Musculoskeletal model gait2392 with applied marker model. 

 

 

 

FIGURE 2a. Mean estimated muscle activation of the shank of 10 participants using static 

optimisation (SO) and computed muscle control (CMC) compared to surface EMG for all five 

walking speeds. Speeds are indicated from light grey (very slow) to black (very fast). Time 

(x-axis) is normalised to 100% of a gait cycle, muscle activation (y-axis) is normalised to 

peak activation of a typical self-selected walking trial.  

ACCEPTED M
ANUSCRIP

T



18 
 

FIGURE 2b. Mean estimated muscle activation of the thigh of 10 participants using static 

optimisation (SO) and computed muscle control (CMC) compared to surface EMG for all five 

walking speeds. Speeds are indicated from light grey (very slow) to black (very fast). Time 

(x-axis) is normalised to 100% of a gait cycle, muscle activation (y-axis) is normalised to 

peak activation of a typical self-selected walking trial.  
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FIGURE 3. Trend-analysis of mean muscle activation averaged over ten participants, taken 

throughout the normalised gait cycle, of fast and slow walking speed, relative to mean muscle 

activation at self-selected speed in percentage. ACCEPTED M
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T
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TABLE 1. Mean absolute error and its SD (activation level in %) between static optimisation 

(SO) and computed muscle control (CMC),  SO and EMG, and CMC and EMG. 

Speed Method TA GM GL Sol VM VL RF ST 

          

VF SO-EMG 41 (8) 33 (7) 42 (13) 46 (14) 71 (29) 65 (25) 68 (29) 49 (20) 

 CMC-EMG 32 (8) 31 (7) 40 (12) 38 (14) 57 (27) 55 (24) 69 (27) 49 (18) 

 SO-CMC 22 (3) 12 (3) 19 (7) 10 (2) 34 (14) 34 (15) 37 (16) 43 (21) 

          

F SO-EMG 29 (7) 27 (7) 28 (8) 33 (11) 41 (14) 38 (8) 46 (22) 31 (18) 

 CMC-EMG 21 (4) 26 (11) 28 (8) 28 (11) 34 (13) 32 (9) 50 (22) 32 (15) 

 SO-CMC 22 (1) 13 (2) 17 (5) 8 (2) 25 (7) 24 (8) 30 (12) 30 (17) 

           

N SO-EMG 24 (6) 25 (6) 19 (4) 27 (6) 27 (7) 23 (4) 35 (7) 21 (6) 

 CMC-EMG 19 (4) 23 (9) 20 (5) 23 (7) 22 (5) 20 (5) 34 (6) 22 (7) 

 SO-CMC 20 (1) 12 (2) 13 (3) 7 (2) 22 (6) 20 (6) 27 (6) 21 (7) 

           

S SO-EMG 23 (8) 21 (4) 15 (5) 22 (8) 18 (9) 17 (8) 23 (9) 18 (6) 

 CMC-EMG 17 (4) 21 (7) 20 (6) 20 (7) 16 (6) 15 (10) 24 (9) 19 (7) 

 SO-CMC 21 (6) 10 (2) 13 (2) 5 (1) 18 (7) 16 (8) 18 (9) 16 (7) 

           

VS SO-EMG 24 (15) 20 (6) 15 (5) 19 (8) 15 (8) 15 (7) 21 (9) 19 (7) 

 CMC-EMG 19 (10) 20 (9) 18 (4) 17 (7) 13 (5) 13 (7) 21 (11) 19 (6) 

 SO-CMC 18 (6) 10 (2) 13 (3) 5 (1) 16 (7) 15 (7) 18 (9) 17 (8) 

          

 

VF= very fast, F= fast, N= self-selected, S= slow, VS= very slow; SO= static optimisation, CMC= computed 

muscle control, TA = tibialis anterior, GM = gastrocnemius medialis, GL= gastrocnemius lateralis, Sol = soleus, 

VM = vastus medialis, VL= vastus lateralis, RF= rectus femoris, ST = semitendinosus. 
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TABLE 2. Mean correlation coefficient and SD between muscle activation of static 

optimisation (SO) and computed muscle control (CMC),  SO and EMG, and CMC and EMG. 

Speed Method TA GM GL Sol VM VL RF ST 

          

VF SO-EMG 

0.31 

(0.28) 

0.45 

(0.27) 

0.53 

(0.17) 

0.33 

(0.24) 

0.10 

(0.14) 

0.14 

(0.23) 

-0.15 

(0.23) 

0.38 

(0.37) 

 

CMC-

EMG 

0.61 

(0.26) 

0.55 

(0.34) 

0.62 

(0.22) 

0.59 

(0.28) 

0.26 

(0.30) 

0.21 

(0.35) 

-0.25 

(0.14) 

0.14 

(0.32) 

 SO-CMC 

0.51 

(0.10) 

0.93 

(0.03) 

0.95 

(0.03) 

0.88 

(0.06) 

0.60 

(0.26) 

0.61 

(0.26) 

0.46 

(0.32) 

0.39 

(0.32) 

           

F SO-EMG 

0.37 

(0.23) 

0.33 

(0.28) 

0.46 

(0.19) 

0.19 

(0.22) 

0.07 

(0.15) 

0.15 

(0.23) 

-0.05 

(0.25) 

0.48 

(0.30) 

 

CMC-

EMG 

0.62 

(0.18) 

0.49 

(0.34) 

0.52 

(0.27) 

0.35 

(0.29) 

0.15 

(0.31) 

0.22 

(0.31) 

-0.17 

(0.29) 

0.18 

(0.30) 

 SO-CMC 

0.50 

(0.08) 

0.90 

(0.05) 

0.90 

(0.03) 

0.92 

(0.04) 

0.52 

(0.20) 

0.53 

(0.20) 

0.54 

(0.25) 

0.41 

(0.38) 

           

N SO-EMG 

0.40 

(0.26) 

0.26 

(0.28) 

0.52 

(0.19) 

0.17 

(0.17) 

0.17 

(0.20) 

0.33 

(0.27) 

-0.13 

(0.23) 

0.52 

(0.22) 

 

CMC-

EMG 

0.60 

(0.15) 

0.47 

(0.33) 

0.46 

(0.22) 

0.31 

(0.22) 

0.22 

(0.27) 

0.37 

(0.35) 

-0.20 

(0.28) 

0.21 

(0.27) 

 SO-CMC 

0.48 

(0.10) 

0.87 

(0.07) 

0.84 

(0.08) 

0.92 

(0.03) 

0.45 

(0.29) 

0.46 

(0.27) 

0.33 

(0.28) 

0.49 

(0.33) 

           

S SO-EMG 

0.32 

(0.34) 

0.38 

(0.24) 

0.63 

(0.11) 

0.25 

(0.20) 

0.17 

(0.18) 

0.33 

(0.28) 

0.04 

(0.19) 

0.54 

(0.21) 

 

CMC-

EMG 

0.66 

(0.16) 

0.52 

(0.33) 

0.45 

(0.20) 

0.30 

(0.23) 

0.23 

(0.37) 

0.34 

(0.38) 

-0.12 

(0.26) 

0.19 

(0.26) 

 SO-CMC 

0.43 

(0.14) 

0.89 

(0.04) 

0.84 

(0.06) 

0.95 

(0.03) 

0.44 

(0.339 

0.43 

(0.32) 

0.33 

(0.35) 

0.41 

(0.27) 

           

VS SO-EMG 

0.33 

(0.33) 

0.41 

(0.27) 

0.60 

(0.10) 

0.30 

(0.15) 

0.18 

(0.25) 

0.28 

(0.20) 

-0.06 

(0.20) 

0.45 

(0.26) 

 

CMC-

EMG 

0.64 

(0.13) 

0.51 

(0.30) 

0.41 

(0.34) 

0.34 

(0.19) 

0.17 

(0.37) 

0.31 

(0.30) 

-0.18 

(0.19) 

0.25 

(0.25) 

 SO-CMC 

0.49 

(0.11) 

0.87 

(0.07) 

0.77 

(0.12) 

0.96 

(0.03) 

0.44 

(0.35) 

0.41 

(0.34) 

0.32 

(0.36) 

0.37 

(0.33) 

                    

 

VF= very fast, F= fast, N= self-selected, S= slow, VS= very slow; SO= static optimisation, CMC= computed 

muscle control, TA = tibialis anterior, GM = gastrocnemius medialis, GL= gastrocnemius lateralis, Sol = soleus, 

VM = vastus medialis, VL= vastus lateralis, RF= rectus femoris, ST = semitendinosus. 
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